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Abstract

Several long-time limit theorems of one-dimensional Lévy processes weighted and
normalized by functions of the local time are studied. The long-time limits are taken
via certain families of random times, called clocks: exponential clock, hitting time
clock, two-point hitting time clock and inverse local time clock. The limit measure
can be characterized via a certain martingale expressed by an invariant function for
the process killed upon hitting zero. The limit processes may differ according to the
choice of the clocks when the original Lévy process is recurrent and of finite variance.
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1 Introduction

Roynette–Vallois–Yor ([27, 26] see also [28, 29]) have studied the limit distribution
for a Brownian motion, which they called a penalization problem, as follows. Let
B = (Bt, t ≥ 0) be a standard Brownian motion and L = (Lt, t ≥ 0) denote its local time
at 0. Then, for any positive integrable function f and any bounded adapted functional Ft,
it holds that

lim
s→∞

P[Ftf(Ls)]

P[f(Ls)]
= P

[
Ft
Mt

M0

]
=: Q[Ft],

where M = (Mt, t ≥ 0) is the martingale given by

Mt = f(Lt)|Bt|+
∫ ∞
0

f(Lt + u) du, t ≥ 0.
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Local time penalizations with various clocks for Lévy processes

Under the penalized probability measure Q, the total local time L∞ is finite, and in fact, a
sample path behaves as the concatenation of a Brownian bridge and a three-dimensional
Bessel process; see [27]. In particular, Q is singular to P.

This result for a Brownian motion was generalized to many other processes. In
particular, we refer to Debs [7] for random walks, Najnudel–Roynette–Yor [17] for
Markov chains and Bessel processes, Yano–Yano–Yor [42] for symmetric stable processes,
Salminen–Vallois [30] and Profeta [23, 24] for linear diffusions. Most of these results
were obtained basically under the assumption of some regular variation condition.
Profeta–Yano–Yano [25] developed a general theory for one-dimensional diffusions by
adopting a random clock approach. They studied the long-time limit of the form

lim
τ→∞

P[Ftf(Lτ )]

P[f(Lτ )]
,

where τ = (τλ) is a certain parametrized family of random times, which they called a
clock. Such a random clock approach already appeared in the problem of conditioning
to avoid zero, which is a special case of our penalization with f(u) = 1{u=0}, or in the
problem of conditioning to stay positive/negative. For example, we refer to Knight [14]
for Brownian motions, Chaumont [4], Chaumont–Doney [5, 6] and Doney [8, 15, Section
8] for Lévy processes conditioned to stay positive, Yano–Yano [40] for diffusions and
Pantí [18] for Lévy processes conditioned to avoid zero.

Let X = (Xt, t ≥ 0) be a one-dimensional Lévy process and let TA denote the hitting
time of a Borel set A ⊂ R for X, i.e.,

TA = inf{t > 0: Xt ∈ A}

and we write Ta = T{a} simply for the hitting time of a point a ∈ R. Let (ηau) denote the
right-continuous inverse of the local time at a point a ∈ R. We adopt the random clock
approach for the following four clocks:

(i) exponential clock: τ = (eq) with q → 0+;

(ii) hitting time clock: τ = (Ta) with a→ ±∞;

(iii) two-point hitting time clock: τ = (Ta ∧ T−b) with a→∞ and b→∞;

(iv) inverse local time clock: τ = (ηau) with a→ ±∞ or with u→∞.

1.1 Main results

Let (X,Px) denote the canonical representation of a Lévy process starting from x on
the càdlàg path space D and set P = P0. For t ≥ 0, we denote by FXt = σ(Xs, 0 ≤ s ≤ t)
the natural filtration of X and write Ft =

⋂
s>t FXs . We have

P[eiλXt ] = e−tΨ(λ), t ≥ 0, λ ∈ R,

where Ψ(λ) denotes the characteristic exponent of X given by the Lévy–Khintchine
formula

Ψ(λ) = ivλ+
1

2
σ2λ2 +

∫
R

(
1− eiλx + iλx1{|x|<1}

)
ν(dx)

for some constants v ∈ R and σ ≥ 0 and some measure ν on R (called the Lévy measure)
which satisfies ν({0}) = 0 and ∫

R

(
x2 ∧ 1

)
ν(dx) <∞.
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Local time penalizations with various clocks for Lévy processes

We denote the real and imaginary parts of Ψ(λ) by

θ(λ) = ReΨ(λ) =
1

2
σ2λ2 +

∫
R

(1− cosλx)ν(dx), (1.1)

ω(λ) = ImΨ(λ) = vλ+

∫
R

(
λx1{|x|<1} − sinλx

)
ν(dx).

Note that θ(λ) ≥ 0 for λ ∈ R, θ(λ) is even and ω(λ) is odd. For more details of the
notation of this section, see Section 2. Throughout this paper except Sections 2, 9
and 10, we always assume (X,P) is recurrent, i.e.,

P

[∫ ∞
0

1{|Xt−a|<ε} dt

]
=∞, for all a ∈ R and ε > 0, (1.2)

and assume the following:

(A) For each q > 0, it holds that ∫ ∞
0

∣∣∣∣ 1

q + Ψ(λ)

∣∣∣∣dλ <∞.
Note that, we say (X,P) is transient if (1.2) does not hold. Under the assumption (A),
the process (X,P) is recurrent if and only if (X,P) is point recurrent, i.e.,

P(Ta <∞) = 1, for all a ∈ R;

see Subsection 2.2. The assumption (A) implies that the q-resolvent density rq exists for
q > 0; see Subsection 2.1. For q > 0, we define

hq(x) = rq(0)− rq(−x) =
1

π

∫ ∞
0

Re

(
1− eiλx

q + Ψ(λ)

)
dλ, x ∈ R, (1.3)

where the second identity follows from Proposition 2.3. It is obvious that hq(0) = 0, and
by (2.1), we have hq(x) ≥ 0. We denote the second moment by

m2 = P[X1
2] ∈ (0,∞]. (1.4)

The following theorem plays a key role in our penalization results. Recall that X is
assumed recurrent.

Theorem 1.1. Suppose that (A) is satisfied. Then the following assertions hold.

(i) For any x ∈ R,

h(x) := lim
q→0+

hq(x) (1.5)

exists and is finite, which will be called the renormalized zero resolvent. If m2 <∞,
then h has the following representation:

h(x) =
1

π

∫ ∞
0

Re

(
1− eiλx

Ψ(λ)

)
dλ. (1.6)

(ii) The convergence (1.5) is uniform on compacts, and consequently h is continuous.

(iii) h is subadditive on R, that is, h(x+ y) ≤ h(x) + h(y) for x, y ∈ R.
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The proof of Theorem 1.1 will be given in Section 3.2. The renormalized zero resolvent
satisfies the following limit properties.

Theorem 1.2. Suppose that (A) is satisfied. Then the following assertions hold:

(i) limx→±∞
h(x)
|x| = 1

m2 ∈ [0,∞);

(ii) limy→±∞{h(x+ y)− h(y)} = ± x
m2 ∈ R, for all x ∈ R.

The proof of Theorem 1.2 will be given in Section 3.2.

Corollary 1.3. Suppose that (A) is satisfied. For −1 ≤ γ ≤ 1, define

h(γ)(x) = h(x) +
γ

m2
x, x ∈ R. (1.7)

Then h(γ) is subadditive and h(γ)(x) ≥ 0.

Proof. By definition, we have h(γ)(0) = 0. From (iii) of Theorem 1.1, the function h(γ) is
subadditive. From (i) of Theorem 1.2, it holds that limx→±∞ h(γ)(x)/|x| = (1 + γ)/m2 ≥ 0.
Suppose h(γ)(x) < 0 for some x ∈ R \ {0}. Since h(γ) is subadditive, we have h(nx)/n ≤
h(x) < 0 for n = 1, 2, . . . . Letting n→∞, we face the contradiction. Therefore we have
h(γ)(x) ≥ 0 for all x ∈ R.

We will prove in Theorem 8.1 that the function h(γ) is invariant for the process killed
upon hitting zero. Let L1

+ denote the set of non-negative functions on [0,∞) which satisfy∫∞
0
f(x) dx <∞. For f ∈ L1

+, define

M
(γ)
t = M

(γ,f)
t = h(γ)(Xt)f(Lt) +

∫ ∞
0

f(Lt + u) du. (1.8)

Note that, when m2 =∞, we have h(γ) = h(0) = h and M (γ) = M (0) for all γ.

Theorem 1.4. Suppose that (A) is satisfied. Let f ∈ L1
+, −1 ≤ γ ≤ 1 and x ∈ R. Then

(M
(γ)
t , t ≥ 0) is a non-negative ((Ft),Px)-martingale.

Theorem 1.4 will be proved in Section 5.3. Using this martingale, we discuss our
penalization problems. Let L = (Lt) denote the local time at the origin of X; see
Section 2.2.

Theorem 1.5 (hitting time clock). Suppose that the condition (A) is satisfied. Let f ∈ L1
+

and x ∈ R. Define hB(a) = P[LTa ] and

Na
t = hB(a)Px[f(LTa); t < Ta|Ft],

Ma
t = hB(a)Px[f(LTa)|Ft].

Then it holds that

lim
a→±∞

Na
t = lim

a→±∞
Ma
t = M

(±1)
t , Px-a.s. and in L1(Px).

Consequently, if M (±1)
0 > 0 under Px, it holds that

Px[Ftf(LTa)]

Px[f(LTa)]
−→ Px

[
Ft
M

(±1)
t

M
(±1)
0

]
, as a→ ±∞,

for all bounded Ft-measurable functionals Ft.

Theorem 1.5 will be proved in Section 5. If we take f = 1{u=0}, we obtain the
conditioning result.

EJP 28 (2023), paper 12.
Page 4/35

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP903
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Local time penalizations with various clocks for Lévy processes

Corollary 1.6. Suppose that the condition (A) is satisfied. Let x ∈ R with h(±1)(x) > 0.
Then it holds that

Px[Ft|T0 > Ta] −→ Px

[
Ft
h(±1)(Xt)

h(±1)(x)
;T0 > t

]
, as a→ ±∞,

for all bounded Ft-measurable functionals Ft.

See also Corollary 8.2.
Let us state our penalization result with two-point hitting time clock. For a, b ∈ R, we

write Ta,b = T{a,b} = Ta ∧ Tb. For −1 ≤ γ ≤ 1, we say

(a, b)
γ−→∞ when a→∞, b→∞ and

a− b
a+ b

→ γ. (1.9)

Theorem 1.7 (two-point hitting time clock). Suppose that the condition (A) is satisfied.
Let f ∈ L1

+, x ∈ R, and a, b > 0. Define hC(a,−b) = P[LTa,−b ], and

Na,b
t = hC(a,−b)Px[f(LTa,−b); t < Ta,−b|Ft],

Ma,b
t = hC(a,−b)Px[f(LTa,−b)|Ft].

Then it holds that

lim
(a,b)

γ−→∞
Na,b
t = lim

(a,b)
γ−→∞

Ma,b
t = M

(γ)
t , Px-a.s. and in L1(Px).

Consequently, if M (γ)
0 > 0 under Px, it holds that

Px[Ftf(LTa,−b)]

Px[f(LTa,−b)]
−→ Px

[
Ft
M

(γ)
t

M
(γ)
0

]
, as (a, b)

γ−→∞,

for all bounded Ft-measurable functionals Ft.

The proof of Theorem 1.7 will be given in Section 6.2.

Corollary 1.8. Suppose that the condition (A) is satisfied. Let −1 ≤ γ ≤ 1 and x ∈ R
with h(γ)(x) > 0. Then it holds that

Px[Ft|T0 > Ta,−b] −→ Px

[
Ft
h(γ)(Xt)

h(γ)(x)
;T0 > t

]
, as (a, b)

γ−→∞,

for all bounded Ft-measurable functionals Ft.

See also Corollary 8.2.
Note that Theorems 1.5 and 1.7 show that the limit law varies according to the chosen

clock when m2 <∞.

1.2 Backgrounds of the renormalized zero resolvent

The existence of h for symmetric Lévy processes was proved by Salminen–Yor [31]
under the assumption (A); see also Yano [38]. We shall review early studies of the
existence of h and its limit properties for asymmetric processes.

Similar results were obtained for random walks by Spitzer [33, Chapter VII], Port–
Stone [19, 20, 21] and Stone [34]. For Lévy processes, Port–Stone [22, Section 17]
obtained some results which were similar to but different from Theorems 1.1 and 1.2,
reducing them to the random walk case. (For the proofs of Theorems 1.1 and 1.2, we
are inspired by Spitzer [33, Chapter VII], Port–Stone [19, 20, 21, 22, Section 17] and
Stone [34].)

Yano [39] showed the existence of the renormalized zero resolvent h under the
following two conditions:

EJP 28 (2023), paper 12.
Page 5/35

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP903
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Local time penalizations with various clocks for Lévy processes

(Y1)
∫∞
0

1
q+θ(λ) dλ <∞ for all q > 0;

(Y2) θ and ω have measurable derivatives on (0,∞) which satisfy∫ ∞
0

(|θ′(λ)|+ |ω′(λ)|)(λ2 ∧ 1)

θ(λ)
2

+ ω(λ)
2 dλ <∞.

Pantí [18] proved the existence of h under the condition

(P) (Y1) and
∫
R

∣∣∣Re
(

1−eiλ
Ψ(λ)

)∣∣∣dλ <∞,

which is weaker than (Y1) and (Y2), and applied it to the conditioning to avoid zero with
exponential clock. Tsukada [35] also proved the existence of h under the assumption

(T) (A) and
∫ 1

0

∣∣∣Im( λ
Ψ(λ)

)∣∣∣dλ <∞,

which is weaker than (P); see [35, Proposition 15.3].

Remark 1.9. We do not know whether the integral representation (1.6) also holds in the
case m2 =∞. Yano [39] showed that, if X is symmetric, then (1.6) holds. Tsukada [35]
showed that (T) implies (1.6).

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we prepare certain
general properties and preliminary facts of Lévy processes. In Section 3, we study the
renormalized zero resolvent. In Sections 4, 5, 6 and 7, we discuss the penalization results
with exponential clock, hitting time clock, two-point hitting time clock and inverse local
time clock, respectively. In Section 8, we introduce certain universal σ-finite measures
to study long time behaviors of sample paths of the penalized measure. In Section 9,
we study penalization in the transient case. In Section 10 as an appendix, we study
martingale property of (Xtf(Lt), t ≥ 0).

2 Preliminaries

2.1 Absolutely continuous resolvent

We now consider the following two conditions:

(A1) The process X is not a compound Poisson process;

(A2) 0 is regular for itself, i.e., P(T0 = 0) = 1.

The next lemma is due to Kesten [13] and Bretagnolle [3].

Lemma 2.1 ([13, 3]). The conditions (A1) and (A2) hold if and only if the following two
assertions hold:

(A3) For each q > 0, the characteristic exponent Ψ satisfies∫
R

Re

(
1

q + Ψ(λ)

)
dλ <∞;

(A4) We have either σ > 0 or
∫
(−1,1)|x|ν(dx) =∞.

Furthermore, under the condition (A3), the condition (A2) holds if and only if the
condition (A4) holds.
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If the above conditions hold, it is known that X has a bounded continuous resolvent
density. See, e.g., Theorem II.16 and Theorem II.19 of Bertoin [1]

Lemma 2.2 ([1]). The condition (A3) holds if and only if X has the bounded q-resolvent
density rq, for q > 0, which satisfies∫

R

f(x)rq(x) dx = P

[∫ ∞
0

e−qtf(Xt) dt

]
for all non-negative measurable functions f . Moreover, under the condition (A3), the
condition (A2) holds if and only if x 7→ rq(x) is continuous.

If rq(x) is bounded in x ∈ R, [1, Corollary II.18] implies that the Laplace transform of
T0 can be represented as

Px[e−qT0 ] =
rq(−x)

rq(0)
, q > 0, x ∈ R. (2.1)

Proposition 2.3. Suppose that the condition (A) holds. Then the bounded continuous
resolvent density can be expressed as

rq(x) =
1

2π

∫ ∞
−∞

e−iλx

q + Ψ(λ)
dλ =

1

π

∫ ∞
0

Re

(
e−iλx

q + Ψ(λ)

)
dλ

for all q > 0 and x ∈ R.

Proposition 2.3 can be proved using Fourier inversion formula; see, e.g., [36, Lemma
2] and [35, Corollary 15.1]. By Lemmas 2.1 and 2.2 and Proposition 2.3, the condition
(A) implies (A1)–(A4).

Lemma 2.4 (Tsukada [35, Lemma 15.5]). Suppose that the condition (A) holds. Then
the following assertions hold:

(i) |Ψ(λ)| → ∞ as λ→ ±∞;

(ii)
∫∞
δ

∣∣∣ 1
Ψ(λ)

∣∣∣ dλ <∞ for all δ > 0;

(iii)
∫ δ
0

∣∣∣ λ2

Ψ(λ)

∣∣∣dλ <∞ for all δ > 0;

(iv) limq→0+

∫∞
0

∣∣∣ q
q+Ψ(λ)

∣∣∣dλ = 0. In particular, qrq(x)→ 0 as q → 0+.

2.2 Local time and its excursion measure

Assume the conditions (A1) and (A2) hold. Then we can define local time at 0, which
we denote by L = (Lt, t ≥ 0). Note that L is continuous in t and satisfies

Px

[∫ ∞
0

e−qtdLt

]
= rq(−x), q > 0, x ∈ R. (2.2)

See, e.g., [1, Section V]. In particular, rq(x) is non-decreasing as q → 0+. Let η = (ηl, l ≥
0) denote the right-continuous inverse of L which is given as ηl = inf{t > 0: Lt > l}.
Then the process (η,P) is a possibly killed subordinator, and its Laplace transform is
P[e−qηl ] = e−l/rq(0), for l, q > 0, see, e.g., [1, Proposition V.4].

Now we can apply Itô’s excursion theory. Let n denote the characteristic measure of
excursions away from the origin. We denote el for excursion which starts at local time l.
Then we see that the subordinator η has no drift and its Lévy measure is n(T0 ∈ dx). In
particular, we have

e−l/rq(0) = P[e−qηl ] = exp(−ln[1− e−qT0 ]), l ≥ 0. (2.3)
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This implies that

n[1− e−qT0 ] =
1

rq(0)
, (2.4)

which is also obtained from [42, (3.16)]. Now set

κ = lim
q→0+

1

rq(0)
= n(T0 =∞). (2.5)

It is known that κ = 0 (resp. κ > 0) if and only if X is recurrent (resp. transient); see,
e.g., [1, Theorem I.17] and [32, Theorem 37.5]. It is also known that X is recurrent if
and only if X is point recurrent; see, e.g., [32, Remark 43.12] (see also [1, Excercise
II.6.4]). Under the assumption (A), we can prove this fact by using Theorem 1.1; in fact,
by equations (2.1) and (2.5), it holds that, for x ∈ R,

Px(T0 <∞) = lim
q→0+

Px[e−qT0 ] = lim
q→0+

rq(−x)

rq(0)
= 1 + lim

q→0+

hq(x)

rq(0)
= 1.

We define D = {l ≥ 0: ηl− < ηl}. Then the following formula is well-known in the
excursion theory.

Lemma 2.5 (Compensation formula; see e.g., Bertoin [1, Corollary IV.11]). Let F (t, ω, e)

be a measurable functional on [0,∞)×D×D such that, for every fixed e ∈ D, the process
(F (t, ·, e), t ≥ 0) is (Ft)-predictable. Then

P

[∑
l∈D

F (ηl−, X, el)

]
= P⊗ ñ

[∫ ∞
0

dLt F (t,X, X̃)

]
,

where the symbol ˜ means independence.

Let La = (Lat , t ≥ 0) denote the local time at a ∈ R which is normalized by

Px

[∫ ∞
0

e−qtdLat

]
= rq(a− x), q > 0, x ∈ R.

We denote by ηa = (ηau, u ≥ 0) the right-continuous inverse of La given by ηau = inf{t >
0: Lat > u}. We denote by na the characteristic measure of excursions away from a.

3 The renormalized zero resolvent

Let us consider the existence and properties of the renormalized zero resolvent in
Theorems 1.1 and 1.2. Recall that we assume X is recurrent, i.e., κ = 0, and assume the
condition (A).

3.1 Key lemmas for the renormalized zero resolvent

To show Theorems 1.1 and 1.2, we prepare some lemmas. Recall that m2 has been
introduced in (1.4); m2 = P[X2

1 ].

Lemma 3.1. The following assertions hold.

(i) If m2 <∞, then

Ψ(λ) =
1

2
σ2λ2 +

∫
R

(1− eiλx + iλx)ν(dx),

and

lim
λ→0

Ψ(λ)

λ2
= lim
λ→0

θ(λ)

λ2
=
m2

2
=

1

2

(
σ2 +

∫
R

x2ν(dx)

)
.
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(ii) If m2 =∞, then

lim
λ→0

λ2

Ψ(λ)
= lim
λ→0

λ2

θ(λ)
= 0.

Proof. It is well-known (see, e.g., [15, Theorem 2.7]) that X has finite variance if and
only if

∫
R
x2ν(dx) <∞. We first assume that

∫
R
x2ν(dx) <∞. Then we know P[X1] and

P[X2
1 ] are finite and

P[X1] = iΨ ′(0) = −v +

∫
R\(−1,1)

xν(dx),

P[X2
1 ] = Ψ ′′(0) = σ2 +

∫
R

x2ν(dx) + P[X1]
2
.

Since X is recurrent, we have P[X1] = 0; see, e.g., [15, Problem 7.2]. This implies that

Ψ(λ) =
1

2
σ2λ+

∫
R

(1− eiλx + iλx)ν(dx).

By l’Hôpital’s rule, we obtain

lim
λ→0

Ψ(λ)

λ2
= lim
λ→0

Ψ ′(λ)

2λ
=
Ψ ′′(0)

2
=
m2

2
.

Taking real parts on both sides, we also have

lim
λ→0

θ(λ)

λ2
=
m2

2
.

We next assume that
∫
R
x2ν(dx) =∞. Then we know m2 =∞. By (1.1), we have∣∣∣∣Ψ(λ)

λ2

∣∣∣∣ ≥ ∣∣∣∣θ(λ)

λ2

∣∣∣∣ ≥ ∫
R

1− cosλx

λ2
ν(dx).

Using Fatou’s lemma and l’Hôpital’s rule, we obtain

lim inf
λ→0

∣∣∣∣Ψ(λ)

λ2

∣∣∣∣ ≥ lim inf
λ→0

∣∣∣∣θ(λ)

λ2

∣∣∣∣ ≥ ∫
R

lim inf
λ→0

1− cosλx

λ2
ν(dx)

=

∫
R

x2

2
ν(dx) =∞.

Therefore the proof is complete.

When m2 <∞, the next lemma is essential for the renormalized zero resolvent.

Lemma 3.2. Assume m2 <∞. Then it holds that∫
R

∣∣∣∣ω(λ)

λ3

∣∣∣∣dλ <∞. (3.1)

Consequently, Tsukada’s condition (T) holds.

Proof of Lemma 3.2. By Lemma 3.1, we have

ω(λ) =

∫
R

(λx− sinλx)ν(dx).
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Hence we have∫
R

∣∣∣∣ω(λ)

λ3

∣∣∣∣ dλ =

∫
R

∣∣∣∣∫
R

λx− sinλx

λ3
ν(dx)

∣∣∣∣ dλ
≤
(∫ 0

−∞
+

∫ ∞
0

)(∫ 0

−∞
+

∫ ∞
0

)∣∣∣∣λx− sinλx

λ3

∣∣∣∣ν(dx) dλ.

Since λx− sinλx ≥ 0 for (x, λ) ∈ (0,∞)
2, it holds that∫ ∞

0

∫ ∞
0

∣∣∣∣λx− sinλx

λ3

∣∣∣∣ν(dx) dλ =

∫ ∞
0

∫ ∞
0

λx− sinλx

λ3
dλ ν(dx)

=

∫ ∞
0

x2ν(dx)

∫ ∞
0

ξ − sin ξ

ξ3
dξ

=
4

π

∫ ∞
0

x2ν(dx) <∞.

Other integrals are also proved to be finite by the same discussions, and we obtain (3.1).
By (i) of Lemma 3.1, we see that λ2/Ψ(λ) is bounded near λ = 0. Thus we have∫ 1

0

∣∣∣∣Im( λ

Ψ(λ)

)∣∣∣∣dλ =

∫ 1

0

∣∣∣∣ λ2Ψ(λ)

∣∣∣∣2∣∣∣∣ω(λ)

λ3

∣∣∣∣ dλ <∞.
Since (A) is assumed in this section, this implies that Tsukada’s condition (T) holds.

Lemma 3.3. The following assertions hold.

(i) hS(x) := limq→0+(hq(x) + hq(−x)) = 2
π

∫∞
0

Re
(

1−cosλx
Ψ(λ)

)
dλ, for x ∈ R.

(ii) limx→±∞
hS(x)
|x| = 2

m2 ∈ [0,∞).

(iii) For x, y ∈ R,

hD(x, y) := lim
q→0+

{hq(y + 2x)− 2hq(y + x) + hq(y)}

=
2

π

∫ ∞
0

Re

(
eiλ(y+x)

1− cosλx

Ψ(λ)

)
dλ.

Moreover, it holds that limy→±∞ hD(x, y) = 0.

Proof. (i) By (1.3), it holds that

hq(x) + hq(−x) =
2

π

∫ ∞
0

Re

(
1− cosλx

q + Ψ(λ)

)
dλ. (3.2)

Since θ(λ) ≥ 0, we have |q + Ψ(λ)| ≥ |Ψ(λ)|. Hence it holds that∣∣∣∣Re

(
1− cosλx

q + Ψ(λ)

)∣∣∣∣ ≤ ∣∣∣∣1− cosλx

q + Ψ(λ)

∣∣∣∣ ≤ 1− cosλx

|Ψ(λ)|
≤ (λx)

2 ∧ 2

|Ψ(λ)|
, (3.3)

which is integrable in λ > 0 by Lemma 2.4. Then we may apply the dominated conver-
gence theorem to deduce that

hq(x) + hq(−x) −→ 2

π

∫ ∞
0

Re

(
1− cosλx

Ψ(λ)

)
dλ, as q → 0+.
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(ii) We only consider the case x→∞ since the case x→ −∞ can be proved in the same
way. For any δ > 0, we have∣∣∣∣ 2

πx

∫ ∞
δ

Re

(
1− cosλx

Ψ(λ)

)
dλ

∣∣∣∣ ≤ 2

π|x|

∫ ∞
δ

∣∣∣∣ 2

Ψ(λ)

∣∣∣∣dλ −→ 0, as x→∞. (3.4)

Fix ε > 0. By Lemma 3.1, we can choose δ > 0 such that∣∣∣∣ λ2Ψ(λ)
− 2

m2

∣∣∣∣ < ε, for |λ| < δ.

Then it holds that

2

πx

∫ δ

0

Re

(
1− cosλx

Ψ(λ)

)
dλ ≤

(
2

m2
+ ε

)
2

πx

∫ δ

0

1− cosλx

λ2
dλ

→
(

2

m2
+ ε

)
2

π

∫ ∞
0

1− cos ξ

ξ2
dξ

=
2

m2
+ ε, as x→∞.

Thus we obtain

lim sup
x→∞

2

πx

∫ δ

0

Re

(
1− cosλx

Ψ(λ)

)
dλ ≤ 2

m2
+ ε. (3.5)

In the same way, we can show that

lim inf
x→∞

2

πx

∫ δ

0

Re

(
1− cosλx

Ψ(λ)

)
dλ ≥ 2

m2
− ε. (3.6)

By (3.4), (3.5) and (3.6), the result follows.

(iii) By (1.3), we have

hq(y + 2x)− 2hq(y + x) + hq(y) =
2

π

∫ ∞
0

Re

(
eiλ(y+x)

1− cosλx

q + Ψ(λ)

)
dλ.

By the same way as (3.3), we may apply the dominated convergence theorem to obtain

hD(x, y) = lim
q→0+

{hq(y + 2x)− 2hq(y + x) + hq(y)}

=
2

π

∫ ∞
0

Re

(
eiλ(y+x)

1− cosλx

Ψ(λ)

)
dλ.

Furthermore, by the Riemann–Lebesgue lemma, we obtain hD(x, y) −→ 0 as y → ±∞.

3.2 Proofs of Theorems 1.1 and 1.2

We separate the proof into the two cases: m2 < ∞ and m2 = ∞. We first show the
existence and properties of h in the case m2 <∞. In this case, we can use the dominated
convergence theorem.

Proof of (i) of Theorem 1.1 in the case m2 <∞. For each x, λ ∈ R, we observe that

Re

(
1− eiλx

q + Ψ(λ)

)
=

(q + θ(λ))(1− cosλx) + ω(λ) sinλx

|q + Ψ(λ)|2
.
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Hence it follows from θ(λ) ≥ 0 that∣∣∣∣Re

(
1− eiλx

q + Ψ(λ)

)∣∣∣∣
≤

(
1− cosλx

|Ψ(λ)|
+

λ4

|Ψ(λ)|2

∣∣∣∣ω(λ)

λ3

∣∣∣∣∣∣∣∣ sinλxλ

∣∣∣∣
)
∧
∣∣∣∣1− eiλx

Ψ(λ)

∣∣∣∣
≤

(∣∣∣∣λ2x2Ψ(λ)

∣∣∣∣+

∣∣∣∣ λ2Ψ(λ)

∣∣∣∣2∣∣∣∣ω(λ)

λ3

∣∣∣∣|x|
)
∧
∣∣∣∣ 2

Ψ(λ)

∣∣∣∣.
By Lemma 2.4, (i) of Lemma 3.1 and Lemma 3.2, the last quantity is integrable in λ > 0.
Therefore, we may apply the dominated convergence theorem to conclude that

hq(x) =
1

π

∫ ∞
0

Re

(
1− eiλx

q + Ψ(λ)

)
dλ

→ 1

π

∫ ∞
0

Re

(
1− eiλx

Ψ(λ)

)
dλ, as q → 0+.

Hence the proof is complete.

Proof of Theorem 1.2 in the case m2 <∞. (i) We take δ > 0 sufficiently small. By (i) of
Theorem 1.1, we have

h(x)

x
=

1

πx

∫ ∞
0

Re

(
1− eiλx

Ψ(λ)

)
dλ

=
1

πx

{∫ ∞
δ

Re

(
1− eiλx

Ψ(λ)

)
dλ+

∫ δ

0

ω(λ) sinλx

|Ψ(λ)|2
dλ+

∫ δ

0

θ(λ)(1− cosλx)

|Ψ(λ)|2
dλ

}
. (3.7)

For the first integral in (3.7), we have∣∣∣∣ 1

πx

∫ ∞
δ

Re

(
1− eiλx

Ψ(λ)

)
dλ

∣∣∣∣ ≤ 1

π|x|

∫ ∞
δ

∣∣∣∣ 2

Ψ(λ)

∣∣∣∣ dλ −→ 0, as x→ ±∞.

For the second integral in (3.7), since we have

|ω(λ) sinλx|
|Ψ(λ)|2|x|

≤
∣∣∣∣ λ2Ψ(λ)

∣∣∣∣2∣∣∣∣ω(λ)

λ3

∣∣∣∣, (3.8)

which is integrable in λ ∈ (0, δ) by (i) of Lemma 3.1 and Lemma 3.2, we can apply the
dominated convergence theorem to obtain

1

πx

∫ δ

0

ω(λ) sinλx

|Ψ(λ)|2
dλ −→ 0, as x→ ±∞.

For the third integral in (3.7), we can apply the similar discussion as the proof of (ii) of
Lemma 3.3. Therefore we obtain

lim
x→±∞

h(x)

|x|
=

1

m2
.

(ii) Take δ > 0 sufficiently small. Then we have

h(y + x)− h(y)

=
1

π

∫ ∞
0

Re

(
eiλy

1− eiλx

Ψ(λ)

)
dλ

=
1

π

∫ ∞
0

Re

(
eiλy

1− cosλx

Ψ(λ)

)
dλ+

1

π

(∫ δ

0

+

∫ ∞
δ

)
Im

(
eiλy

sinλx

Ψ(λ)

)
dλ.
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By the Riemann–Lebesgue lemma, we obtain

lim
y→±∞

∫ ∞
0

Re

(
eiλy

1− cosλx

Ψ(λ)

)
dλ = lim

y→±∞

∫ ∞
δ

Im

(
eiλy

sinλx

Ψ(λ)

)
dλ = 0.

On the other hand, we have

1

π

∫ δ

0

Im

(
eiλy

sinλx

Ψ(λ)

)
dλ

=
1

π

∫ δ

0

θ(λ) sinλx sinλy

|Ψ(λ)|2
dλ− 1

π

∫ δ

0

ω(λ) sinλx cosλy

|Ψ(λ)|2
dλ.

(3.9)

By (3.8), we may apply the Riemann–Lebesgue lemma to the second integral and we
have

1

π

∫ δ

0

ω(λ) sinλx cosλy

|Ψ(λ)|2
dλ −→ 0, as y → ±∞.

For the first integral of (3.9), we use Lemma 3.1 and Lemma 3.4 below to show that

1

π

∫ δ

0

θ(λ) sinλx sinλy

|Ψ(λ)|2
dλ =

1

π

∫ δ

0

∣∣∣∣ λ2Ψ(λ)

∣∣∣∣2 θ(λ)

λ2
sinλx

λ

sinλy

λ
dλ

→ ± x

m2
, as y → ±∞.

This ends the proof.

The following lemma is an elementary calculus.

Lemma 3.4 (Jordan’s theorem for the Dirichlet integral). Let δ > 0 and let f : (0, δ)→ R

be continuous and be of bounded variation. Then it holds that

lim
x→±∞

2

π

∫ δ

0

f(λ)
sinλx

λ
dλ = ±f(0+),

where f(0+) = limλ→0+ f(λ).

Proof. By integration by parts, we have

2

π

∫ δ

0

f(λ)
sinλx

λ
dλ =

2

π

∫ δ

0

(∫ λ

0

df(ξ)

)
sinλx

λ
dλ+

2

π
f(0+)

∫ δ

0

sinλx

λ
dλ

=
2

π

∫ δ

0

(∫ δ

ξ

sinλx

λ
dλ

)
df(ξ) +

2

π
f(0+)

∫ δ

0

sinλx

λ
dλ

→ 0± f(0+), as x→ ±∞.

Thus we obtain the desired result.

Then let us prove the existence of h in the case X is recurrent and m2 =∞. Its proof
is quite different from that in the case m2 <∞.

Proof of (i) of Theorem 1.1 in the case m2 =∞. Since hq(0) = 0, we have the limit h(0) =

limq→0+ hq(0) = 0.
Fix a 6= 0 and set

h(a) = lim sup
q→0+

hq(a), h(a) = lim inf
q→0+

hq(a).
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We also define ∆ = h(a)− h(a) ≥ 0 and A = {2ja : j = 0, 1, 2, 3, . . .}.
It follows from hq(x) ≤ hq(x) + hq(−x) and (3.2)–(3.3) that {hq(x)}q>0 is bounded for

each x ∈ R. Hence, by the diagonal argument, we can take two sequences {qn}, {q′n},
which satisfies the following three conditions:

• qn, q
′
n → 0+ as n→∞;

• limn→∞ hqn(x) and limn→∞ hq′n(x) exist and are finite for each x ∈ A;

• h(a) = limn→∞ hqn(a) and h(a) = limn→∞ hq′n(a).

Then we define, for x ∈ A,

h(x) = lim
n→∞

hqn(x), h(x) = lim
n→∞

hq′n(x).

By (iii) of Lemma 3.3, we have

hD(x, 0) = h(2x)− 2h(x) = h(2x)− 2h(x), x ∈ A.

This implies that h(2x)−h(2x) = 2(h(x)−h(x)). Hence it holds that h(2ja)−h(2ja) = 2j∆,
i.e.,

h(2ja)

2ja
− h(2ja)

2ja
=
∆

a
, j = 0, 1, 2, 3, . . . . (3.10)

It follows from (ii) of Lemma 3.3 that

max

{
h(2ja)

2ja
,
h(2ja)

2ja

}
≤ hS(2ja)

2ja
−→ 0, as j →∞.

Thus, by letting j → ∞ in (3.10), we obtain ∆ = 0. Therefore, we conclude that
h(a) = limq→0+ hq(a) exists.

Next, we prove (ii) and (iii) of Theorem 1.1 in both cases m2 =∞ and m2 <∞.

Proof of (ii) and (iii) of Theorem 1.1. By the Markov property, we have, for x, y ∈ R,

Px+y[e−qT0 ] = P0[e−qT−x−y ] ≥ P0[e−qT−xP−x[e−qT−x−y ]] = Px[e−qT0 ]Py[e−qT0 ].

Since hq(x) = rq(0)(1− Px[e−qT0 ]) and (1− Px[e−qT0 ])(1− Py[e−qT0 ]) ≥ 0, it holds that

hq(x+ y) ≤ hq(x) + hq(y).

Hence hq is subadditive. (This proof can also be found in [18, Lemma 3.3].) Since hq is
non-negative and subadditive, and by (3.2) and (3.3), it holds that

|hq(x+ δ)− hq(x)| ≤ hq(δ) + hq(−δ) ≤
∫ ∞
0

∣∣∣∣∣ (λδ)2 ∧ 2

Ψ(λ)

∣∣∣∣∣dλ.
Hence {hq}q>0 is equi-continuous. Equi-continuity and pointwise-convergence imply the
uniform convergence on compact subset of R. The subadditivity of h follows directly
from that of hq.

Finally, we show the properties of h in Theorem 1.2 in the case m2 =∞.
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Proof of Theorem 1.2 in the case m2 =∞. (i) This is directly from (ii) of Lemma 3.3.
(ii) Since h is subadditive, we have

n∑
k=1

{h(kx+ y)− h((k − 1)x+ y)} = h(nx+ y)− h(y) ≤ h(nx). (3.11)

By (iii) of Lemma 3.3, it holds that

{h(2x+ y)− h(x+ y)} − {h(x+ y)− h(y)} −→ 0, as y → ±∞.

Thus we have

lim sup
y→±∞

n∑
k=1

{h(kx+ y)− h((k − 1)x+ y)} = n lim sup
y→±∞

{h(x+ y)− h(y)}. (3.12)

Combining (3.11) and (3.12), we obtain

lim sup
y→±∞

{h(x+ y)− h(y)} ≤ h(nx)

n
.

Since we have limn→∞
h(nx)
n = 0 by (iii) of Lemma 3.3, we have

lim sup
y→±∞

{h(x+ y)− h(y)} ≤ 0.

Replacing x with −x, we also have

lim inf
y→±∞

{h(y)− h(y − x)} ≥ 0.

Therefore we obtain limy→±∞{h(x+ y)− h(y)} = 0.

3.3 The function hB

Let us compute P[LTa ] and Px(Ta < Tb).

Lemma 3.5. (i) For a ∈ R,

hBq (a) := P

[∫ Ta

0

e−qt dLt

]
= hq(a) + hq(−a)− hq(a)hq(−a)

rq(0)
. (3.13)

Consequently, it holds that

hB(a) := lim
q→0+

hBq (a) = P[LTa ] = h(a) + h(−a). (3.14)

(ii) For x, a, b ∈ R, a 6= b and for q > 0, it holds that

Px[e−qTa ;Ta < Tb]

=
hq(b− a) + hq(x− b)− hq(x− a)− hq(x− b)hq(b− a)/rq(0)

hBq (a− b)
.

(3.15)

Consequently, it holds that

Px(Ta < Tb) =
h(b− a) + h(x− b)− h(x− a)

hB(a− b)
. (3.16)
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Proof. (i) We omit the proof of (3.13), which can be found in [1, Lemma V.11]. Letting
q → 0+ in (3.13), and using (2.5), we obtain (3.14).
(ii) By the strong Markov property, it holds that, for x, a, b ∈ R, a 6= b, q > 0,

Px[e−qTa ] = Px[e−qTa ;Ta < Tb] + Px[e−qTb ;Tb < Ta]Pb[e
−qTa ],

Px[e−qTb ] = Px[e−qTb ;Tb < Ta] + Px[e−qTa ;Ta < Tb]Pa[e−qTb ].

Combining the above two equalities, we have

Px[e−qTa ;Ta < Tb] =
Px[e−qTa ]− Px[e−qTb ]Pb[e

−qTa ]

1− Pa[e−qTb ]Pb[e−qTa ]
.

By (2.1), this implies that

Px[e−qTa ;Ta < Tb]

=
rq(a− x)− rq(b− x)rq(a− b)/rq(0)

rq(0)− rq(b− a)rq(a− b)/rq(0)

=
hq(b− a) + hq(x− b)− hq(x− a)− hq(x− b)hq(b− a)/rq(0)

hBq (a− b)
.

Hence we obtain (3.15). Letting q → 0+ in (3.15), we obtain (3.16).

Remark 3.6. The formulae (3.15) and (3.16) are also discussed in Theorem 6.5 of
Getoor [12]. See also Proposition 5.3, Proposition 5.4 and Remark 5.5 of Yano–Yano–
Yor [41].

The next theorem can be proved in the same way as Pantí [18, Lemma 3.10].

Lemma 3.7 ([18, Lemma 3.10]). It holds that limx→∞ hB(x) =∞.

Proof. For completeness of this paper, we give the proof. Let e be an independent
exponential time of mean 1 and set eq := e/q for q > 0. Then we have

hB(x) = P[LTx ] = P[LTx ;Tx ≤ eq] + P[LTx ;Tx > eq] ≥ P[Leq ;Tx > eq]. (3.17)

Letting x→∞, we have

lim inf
x→∞

hB(x) ≥ P[Leq ] = rq(0), for all q > 0. (3.18)

Since X is recurrent, i.e., κ = 0 in (2.5), we let q → 0+ to obtain lim infx→∞ hB(x) ≥ ∞.
Hence we obtain the desired result.

The following theorem, which will be used in Section 7, is a generalization of the
result in the symmetric case by Yano [38, Theorem 6.1].

Theorem 3.8. For a ∈ R \ {0}, it holds that

n(Ta < T0) =
1

hB(a)
. (3.19)

Proof. For l > 0, it holds that

P(LTa > l) = P(Ta > ηl) = P(σ{Ta<T0} > l),

where σA = inf{l : el ∈ A} for A ⊂ D. Since σA is the hitting time of the set A for the
Poisson point process ((l, el), l ≥ 0), we have

P(LTa > l) = e−ln(Ta<T0). (3.20)

For more details, see, e.g., [15, Lemma 6.17]. In particular, LTa is exponentially dis-
tributed. On the other hand, we know hB(a) = P[LTa ] by Lemma 3.5. Hence we
obtain (3.19).
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3.4 Examples of the renormalized zero resolvent

Example 3.9 (Brownian motion). Assume X is a standard Brownian motion. Since
m2 = σ2 = 1, it holds that

h(γ)(x) = |x|+ γx =

{
(1 + γ)x x ≥ 0,

(1− γ)x x ≤ 0,
for −1 ≤ γ ≤ 1.

Example 3.10 (Strictly stable process). Assume that X is a strictly stable process of
index α ∈ (1, 2) with the Lévy measure

ν(dx) =

{
c+|x|−α−1 dx on (0,∞),

c−|x|−α−1 dx on (−∞, 0),

where c+, c− ≥ 0 and c+ + c− > 0. Then its characteristic exponent is given by

Ψ(λ) = c|λ|α
(

1− iβ sgn(λ) tan
απ

2

)
,

where c and β are constants defined by

c =
(c+ + c−)π

2αΓ(α) sin(πα/2)
, β =

c+ − c−
c+ + c−

.

In this case, we have m2 =∞ and the function h can be represented as

h(x) =
1

K(α)
(1− β sgn(x))|x|α−1,

where

K(α) = −2cΓ(α) cos
πα

2

(
1 + β2 tan2 πα

2

)
.

For more details, see [39, Section 5].

4 Local time penalization with exponential clock

We now start to deal with the penalization result with exponential clock. Let e be an
independent exponential time of mean 1 and for q > 0, we write eq := e/q, which has an
exponential distribution of mean 1/q. We compute Px[f(Leq )], Px[f(Leq )|Ft] and its limit
as q → 0+ to investigate limq→0+Px[Ftf(Leq )]/Px[f(Leq )] for bounded Ft-measurable
functional Ft. Recall that we assume X is recurrent and assume the condition (A).

4.1 The law of the local time with exponential clock

First, we compute Px[f(Leq )].

Lemma 4.1. Let f be a non-negative measurable function. Then, for q > 0 and x ∈ R, it
holds that

Px[f(Leq )] =
1

rq(0)

{
hq(x)f(0) +

(
1− hq(x)

rq(0)

)∫ ∞
0

e−u/rq(0)f(u) du

}
. (4.1)

Proof. Using the excursion theory, we have

P0

[∫ ∞
0

f(Lt)qe
−qt dt

]
= P0

[∑
u∈D

∫ ηu

ηu−

f(u)qe−qu du

]

= P0 ⊗ ñ

[∫ ∞
0

dLt f(Lt)e
−qt
∫ T̃0

0

du qe−qu

]
,
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where the last equality follows from Lemma 2.5. By (2.3) and (2.4), we have

P0 ⊗ ñ

[∫ ∞
0

dLt f(Lt)e
−qt
∫ T̃0

0

du qe−qu

]
= P0

[∫ ∞
0

du f(u)e−qηu
]
n
[
1− e−qT0

]
=

1

rq(0)

∫ ∞
0

f(u)e−u/rq(0) du.

Applying the Markov property, we obtain

Px[f(Leq )] = Px

[∫ ∞
0

f(Lt)qe
−qt dt

]
= Px

[∫ T0

0

f(0)qe−qt dt

]
+ Px[e−qT0 ]P0

[∫ ∞
0

f(Lt)qe
−qt dt

]
= f(0)

(
1− rq(−x)

rq(0)

)
+
rq(−x)

rq(0)

∫ ∞
0

f(u)e−u/rq(0) du

=
1

rq(0)

{
hq(x)f(0) +

(
1− hq(x)

rq(0)

)∫ ∞
0

e−u/rq(0)f(u) du

}
,

here we used (2.1). Therefore we obtain the desired result.

4.2 A.s. convergence for exponential clock

To calculate Px[F (Leq )|Ft], we separate into the two cases {t < eq} and {eq ≤ t}.
Let f ∈ L1

+ and x ∈ R. For q > 0, define

Nq
t = rq(0)Px[f(Leq ); t < eq|Ft],

Mq
t = rq(0)Px[f(Leq )|Ft],
Aqt = Mq

t −N
q
t = rq(0)Px[f(Leq ); eq ≤ t|Ft],

and h(γ) and M (γ)
t are defined in (1.7) and (1.8).

Theorem 4.2. For f ∈ L1
+ and x ∈ R, it holds that

lim
q→0+

Nq
t = lim

q→0+
Mq
t = M

(0)
t , Px-a.s.

Proof. By the Markov property and the additivity of L, we have

Nq
t = rq(0)Px[f(Leq ); t < eq|Ft]

= rq(0)e−qtP̃Xt [f(Lt + L̃ẽq )]

= e−qt
{
hq(Xt)f(Lt) +

(
1− hq(Xt)

rq(0)

)∫ ∞
0

e−u/rq(0)f(Lt + u) du

}
,

here the last equality, we used Lemma 4.1. Since 1 − hq(Xt)
rq(0)

= PXt [e
−qT0 ] → 1, Px-a.s.

as q → 0+ and since
∫∞
0
f(Lt + u) du < ∞, we may apply the dominated convergence

theorem to deduce that Nq
t −→M

(0)
t , Px-a.s. as q → 0+. By (iv) of Lemma 2.4, we have

Aqt = rq(0)Px[f(Leq ); eq ≤ t|Ft] = qrq(0)

∫ t

0

f(Lu)e−qu du→ 0

Px-a.s. as q → 0+. Therefore, we obtain Mq
t →M

(0)
t , Px-a.s. as q → 0+.
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4.3 L1 convergence for exponential clock

Now we prepare some lemma to prove the L1 convergence for exponential clock. The
following lemma is a part of Theorem 15.2 of Tsukada [35].

Lemma 4.3 ([35, Theorem 15.2]). For t ≥ 0, it holds that hq(Xt) −→ h(Xt) in L1(Px) as
q → 0+.

The next theorem is the penalization result with exponential clock.

Theorem 4.4. Let f ∈ L1
+ and x ∈ R. Then (M

(0)
t , t ≥ 0) is a non-negative ((Ft),Px)-

martingale, and it holds that

lim
q→0+

Nq
t = lim

q→0+
Mq
t = M

(0)
t , in L1(Px).

Consequently, if M (0)
0 > 0 under Px, it holds that

Px[Ftf(Leq )]

Px[f(Leq )]
−→ Px

[
Ft
M

(0)
t

M
(0)
0

]
, as q → 0+, (4.2)

for all bounded Ft-measurable functionals Ft.

Note that the penalized measure in (4.2) is not the same as that of Theorems 1.5
and 1.7.

Proof of Theorem 4.4. We first consider the case where f is bounded. We write

Nq
t = e−qt

{
hq(Xt)f(Lt) +

(
1− hq(Xt)

rq(0)

)∫ ∞
0

e−u/rq(0)f(Lt + u) du

}
=: (I)q + (II)q,

M
(0)
t = h(Xt)f(Lt) +

∫ ∞
0

f(Lt + u) du

=: (I) + (II).

By Lemma 4.3 and by the boundedness of f , we obtain (I)q → (I) in L1(Px). Moreover,

since
∫∞
0
f(u) du <∞, it follows from the dominated convergence theorem that (II)q →

(II) in L1(Px). Hence we obtain Nq
t →M

(0)
t in L1(Px). By (iv) of Lemma 2.4, we have

Px[Aqt ] = qrq(0)Px

[∫ t

0

e−quf(Lu) du

]
≤ qrq(0)t‖f‖ → 0, as q → 0+.

Since Aqt ≥ 0, this means that Aqt → 0 in L1(Px). Thus we have Mq
t → M

(0)
t in L1(Px).

For 0 ≤ s ≤ t, we know Px[Mq
t |Fs] = Mq

s . Letting q → 0+ on both sides, we have

Px[M
(0)
t |Fs] = M (0)

s , (4.3)

which means that (M
(0)
t , t ≥ 0) is a non-negative ((Ft),Px)-martingale.

Let us consider the general f ∈ L1
+. We know the equality (4.3) holds for f ∧ n.

Letting n→∞, (4.3) holds for general f ∈ L1
+ by the monotone convergence theorem.

Hence we have

lim
q→0+

Px[Mq
t ] = lim

q→0+
Mq

0 = M
(0)
0 = Px[M

(0)
t ],

and by Fatou’s lemma,

M
(0)
0 = lim

q→0+
Px[Mq

t ] ≥ lim sup
q→0+

Px[Nq
t ] ≥ lim inf

q→0+
Px[Nq

t ] ≥M (0)
0 .

Thus we have limq→0+Px[Nq
t ] = limq→0+Px[Mq

t ] = Px[M
(0)
t ]. Applying Scheffé’s lemma,

we obtain limq→0+N
q
t = limq→0+M

q
t = M

(0)
t in L1(Px).
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5 Local time penalization with hitting time clock

We deal with the penalization result with hitting time clock (Ta). To this aim, we
compute Px[LTa ] and Px[LTa |Ft] and its limit as a → ±∞. Recall that we assume X is
recurrent and assume the condition (A).

5.1 The law of the local time with hitting time clock

First, we compute Px[f(LTa)].

Lemma 5.1. For x, a ∈ R, a 6= 0 and any non-negative measurable function f , we have

Px[f(LTa)] = Px(T0 > Ta)f(0) +
Px(T0 < Ta)

hB(a)

∫ ∞
0

e−u/h
B(a)f(u) du.

Proof. By (3.20), LTa is exponentially distributed with parameter 1/hB(a). Hence we
have

P0[f(LTa)] =
1

hB(a)

∫ ∞
0

e−u/h
B(a)f(u) du.

Applying the Markov property, we conclude that

Px[f(LTa)] = Px(T0 > Ta)f(0) + Px(T0 < Ta)P0[f(LTa)]

= Px(T0 > Ta)f(0) +
Px(T0 < Ta)

hB(a)

∫ ∞
0

e−u/h
B(a)f(u) du.

Hence the proof is complete.

5.2 Proof of a.s. convergence of Theorem 1.5

We now proceed the proof of the hitting time result. We separate into the two cases
{t < Ta} and {Ta ≤ t}.

Proof of a.s. convergence of Theorem 1.5. By the strong Markov property, the additivity
of L and Lemma 5.1, we have

Na
t = 1{t<Ta}h

B(a)P̃Xt [f(L̃T̃a + Lt)]

= 1{t<Ta}

{
hB(a)PXt(T0 > Ta)f(Lt) + PXt(T0 < Ta)

∫ ∞
0

e−u/h
B(a)f(Lt + u) du

}
,

Px-a.s. as a→ ±∞. (ii) of Theorem 1.2 and (3.16) imply that

hB(a)PXt(T0 > Ta) = h(Xt) + h(−a)− h(Xt − a) −→ h(±1)(Xt),

PXt(T0 < Ta) −→ 1,

Px-a.s. as a → ±∞. By Lemma 3.7, we obtain Na
t → M

(±1)
t , Px-a.s. as a → ±∞.

Furthermore, we have

Ma
t −Na

t = hB(a)Px[f(LTa);Ta ≤ t|Ft] (5.1)

= hB(a)f(LTa)1{Ta≤t}

→ 0, Px-a.s. as a→ ±∞. (5.2)

Hence we obtain Ma
t →M

(±1)
t Px-a.s. as a→ ±∞.

EJP 28 (2023), paper 12.
Page 20/35

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP903
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Local time penalizations with various clocks for Lévy processes

5.3 Proof of L1 convergence of Theorem 1.5

Proof of L1 convergence of Theorem 1.5. We first consider the case m2 =∞. Then we
know M

(±1)
t = M

(0)
t . Hence, by Theorem 4.4, (M

(±1)
t , t ≥ 0) is a non-negative ((Ft),Px)-

martingale. Thus we have

Px[Ma
t ] = Ma

0 →M
(±1)
0 = Px[M

(±1)
t ], as a→ ±∞.

By Fatou’s lemma, we have

Px[M
(±1)
t ] = lim

a→±∞
Px[Ma

t ] ≥ lim sup
a→±∞

Px[Na
t ] ≥ lim inf

a→±∞
Px[Na

t ] ≥ Px[M
(±1)
t ].

Consequently, it holds that Px[Na
t ],Px[Na

t ]→ Px[M
(±1)
t ], as a→ ±∞. Applying Scheffé’s

lemma, we obtain Na
t , N

a
t →M

(±1)
t in L1(Px) as a→ ±∞.

We next consider the case m2 <∞. Suppose first that f is bounded. We write

Na
t = 1{t<Ta}(h(Xt) + h(−a)− h(Xt − a))f(Lt)

+ 1{t<Ta}PXt(T0 < Ta)

∫ ∞
0

e−u/h
B(a)f(Lt + u) du

=: (I)a + (II)a,

M
(±1)
t = h(±1)(Xt)f(Lt) +

∫ ∞
0

f(Lt + u) du

=: (I) + (II).

Since h is subadditive, we have h(Xt) + h(−a) − h(Xt − a) ≤ h(Xt) + h(−Xt). By the
proof of Lemma 4.3, we know Px[h(Xt) + h(−Xt)] < ∞ and thus, by the dominated
convergence theorem, we have

h(Xt) + h(−a)− h(Xt − a) −→ h(±1)(Xt), in L1(Px) as a→ ±∞.

The boundedness of f implies that (I)a → (I) in L1(Px) as a → ±∞. Since (II)a ≤∫∞
0
f(u) du, we may apply the dominated convergence theorem to conclude (II)a → (II)

in L1(Px) as a→ ±∞. Hence we obtain Na
t →M

(±1)
t in L1(Px). By Theorem 1.2 and the

optional stopping theorem, we obtain

Px[Aat ] = hB(a)Px[f(LTa);Ta ≤ t]

=
hB(a)

a

a

h(a)
Px[h(XTa)f(LTa);Ta ≤ t]

≤ hB(a)

a

a

h(a)
Px[M

(0)
Ta

;Ta ≤ t]

=
hB(a)

a

a

h(a)
Px[M

(0)
t ;Ta ≤ t]

→ 0, as a→ ±∞.

This yields that Aat → 0 in L1(Px) as a→ ±∞. Hence Ma
t →M

(±1)
t in L1(Px) as a→ ±∞.

Since Px[Ma
t |Fs] = Ma

s for 0 ≤ s ≤ t, we let a→ ±∞ to obtain

Px[M
(±1)
t |Fs] = M (±1)

s . (5.3)

In particular, (M
(±1)
t , t ≥ 0) is a non-negative ((Ft),Px)-martingale. To remove the

boundedness condition of f , we consider f ∧ n and let n → ∞ in (5.3). Then we have
(M

(±1)
t , t ≥ 0) is a non-negative ((Ft),Px)-martingale. The remainder of the proof is the

same as that of Theorem 4.4. So we omit it.
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Remark 5.2. Suppose that m2 <∞. Then, since M (0)
t and M (1)

t are different ((Ft),Px)-

martingales, m2(M
(1)
t −M (0)

t ) = Xtf(Lt) is also a ((Ft),Px)-martingale. In fact, if X1 is
integrable, P[X1] = 0 and f is a bounded measurable function, then (Xtf(Lt), t ≥ 0) is a
((Ft),Px)-martingale. For more details, see Theorem 10.1.

By Remark 5.2, we can prove Theorem 1.4.

Proof of Theorem 1.4. Since h(γ) is non-negative for −1 ≤ γ ≤ 1, we have M
(γ)
t ≥ 0.

Since (M
(0)
t , t ≥ 0) and (Xtf(Lt), t ≥ 0) are ((Ft),Px)-martingales, the process (M

(γ)
t =

M
(0)
t + γ

m2Xtf(Lt), t ≥ 0) is also a ((Ft),Px)-martingale.

6 Local time penalization with two-point hitting time clock

Let us consider the hitting time of two-point set, i.e., Ta,b = T{a,b} = Ta ∧ Tb. Recall
that we assume X is recurrent and assume the condition (A).

6.1 The law of the local time with two-point hitting time clock

First, we compute P[LTa∧Tb ],Px(Ta < Tb ∧ Tc) and Px[f(LTa∧Tb)] respectively.

Lemma 6.1. For a 6= b, it holds that

hC(a, b) := P[LTa∧Tb ]

=
1

hB(a− b)

{(
h(b) + h(−a)

)
h(a− b) +

(
h(a) + h(−b)

)
h(b− a)

− h(a− b)h(b− a)

}
.

Proof. For q > 0, by the strong Markov property, we have

P

[∫ ∞
0

e−qt dLt

]
= P

[∫ Ta∧Tb

0

e−qt dLt

]

+ P[e−qTa ;Ta < Tb]Pa

[∫ ∞
0

e−qt dLt

]
+ P[e−qTb ;Tb < Ta]Pb

[∫ ∞
0

e−qt dLt

]
.

Using (2.2) and (ii) of Lemma 3.5 and letting q → 0+, we obtain the desired result.

Lemma 6.2. For a, b, c, x ∈ R and a 6= b, c, it holds that

Px[e−qTa ;Ta < Tb ∧ Tc]

=
Px[e−qTa ;Ta < Tb]− Px[e−qTc ;Tc < Tb]− Pc[e−qTa ;Ta < Tb]

1− Pa[e−qTc ;Tc < Tb]Pc[e−qTa ;Ta < Tb]
,

(6.1)

and letting q → 0+, it holds that

Px(Ta < Tb ∧ Tc) =
Px(Ta < Tb)− Px(Tc < Tb)Pc(Ta < Tb)

1− Pa(Tc < Tb)Pc(Ta < Tb)
. (6.2)

Note that, by (3.16), we can express Px(Ta < Tb ∧ Tc) only in terms of h.

Proof of Lemma 6.2. Using the strong Markov property, we have

Px[e−qTa ;Ta < Tb]

= Px[e−qTa ;Ta < Tb ∧ Tc] + Px[e−qTa ;Tc < Ta < Tb]

= Px[e−qTa ;Ta < Tb ∧ Tc] + Px[e−qTc ;Tc < Ta ∧ Tb]Pc[e−qTa ;Ta < Tb].

(6.3)
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Replacing a with c, we also have

Px[e−qTc ;Tc < Tb]

= Px[e−qTc ;Tc < Ta ∧ Tb] + Px[e−qTa ;Ta < Tb ∧ Tc]Pa[e−qTc ;Tc < Tb].
(6.4)

Combining (6.3) and (6.4), we obtain (6.1). Letting q → 0+, we also have (6.2).

Lemma 6.3. For a 6= b and x ∈ R, it holds that

Px[f(LTa∧Tb)] = Px(T0 > Ta ∧ Tb)f(0) +
Px(T0 < Ta ∧ Tb)

hC(a, b)

∫ ∞
0

e−u/h
C(a,b)f(u) du.

Proof. In the same way as (3.20), we have, for l > 0,

P(LTa∧Tb > l) = P(σ{Ta∧Tb<T0} > l) = e−tn(Ta∧Tb<T0).

In particular, LTa∧Tb is exponentially distributed. (Consequently, we obtain n(Ta ∧ Tb <
T0) = 1/P[LTa,b] = 1/hC(a, b).) We may apply the strong Markov property and obtain the
desired result.

6.2 Proof of Theorem 1.7

We are now ready to prove the two-point hitting time result. Recall that (a, b)
γ−→∞

means (1.9).

Proof of Theorem 1.7. By Lemmas 6.1 and 6.2 and (3.16), we have

hC(a, b)Px(T0 > Ta ∧ Tb)

= h(x) +
1

hB(a− b)

{(
h(−a)− h(x− a)

)
h(a− b) +

(
h(−b)− h(x− b)

)
h(b− a)

−
(
h(a)− h(b)

)(
h(−a)− h(x− a)− h(−b) + h(x− b)

)}.
Recall that hB(a) = h(a) +h(−a); see (3.14). Replacing b with −b and using Theorem 1.2,
it holds that

hC(a,−b)Px(T0 > Ta ∧ T−b) −−−−−−→
(a,b)

γ−→∞
h(γ)(x).

By the strong Markov property and Lemma 6.3, we have

Na,b
t = 1{t<Ta,−b}

{
hC(a,−b)PXt(T0 > Ta,−b)f(Lt)

}
+ 1{t<Ta,−b}

{
PXt(T0 < Ta,−b)

∫ ∞
0

e−u/h
C(a,−b)f(Lt + u) dy

}
.

Hence we obtain Na,b
t → M

(γ)
t , Px-a.s. as (a, b)

γ−→ ∞. The proof of Ma,b
t → M

(γ)
t , Px-

a.s. is similar to (5.1)–(5.2). Since (M
(γ)
t , t ≥ 0) is a non-negative ((Ft),Px)-martingale

(Theorem 1.4), we may apply Scheffé’s lemma to obtain the L1 convergence.

7 Local time penalization with inverse local time clock

We define the modified Bessel function of the first kind, which is expressed as

Iν(x) =

∞∑
n=0

(x/2)
ν+2n

n!Γ(ν + n+ 1)
, ν ≥ 0, x > 0.

Note that Iν(x) is increasing in x > 0. For more details, see e.g., [16, Section 5]. Recall
that ηau denotes the inverse local time at a: ηau = inf{t ≥ 0: Lat > u}. We consider the
penalization with inverse local time clock in two ways: first, we make a tend to infinity,
and second, u tend to infinity. Recall that we assume X is recurrent and assume the
condition (A).
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7.1 The law of the local time with inverse local time clock

Lemma 7.1. Let a ∈ R \ {0}. Then the process (Lηau , u ≥ 0) under Pa is a compound
Poisson process with Laplace transform

Pa[e−βLηau ] = e−uβ/(1+βh
B(a)), β ≥ 0. (7.1)

Moreover, for any u > 0 and f ∈ L1
+, it holds that

Pa[f(Lηau)] = e−u/h
B(a)f(0) +

∫ ∞
0

f(y)ρh
B(a)
u (y) dy,

where

ρau(y) = e−(u+y)/a
√
u/y

a
I1

(
2
√
uy

a

)
.

We omit the proof because it is very similar to that in the diffusion case of Profeta–
Yano–Yano [25, Lemma 4.1], using Theorem 3.8. For the proof, we use na(T0 < Ta) =

n(T−a < T0) = 1/hB(a) in the Lévy case, instead of na(T0 < Ta) = n(Ta < T0) = 1/a in
the diffusion case. The proof of (7.1) can also be found in [1, Lemma V.13].

The proof of the next lemma is completely parallel to that of [25, Lemma 4.2]. So we
omit it.

Lemma 7.2. For u > 0, x, a ∈ R, it holds that

Px[f(Lηau)] = Px(Ta < T0)Pa[f(Lηau)] + Px(T0 < Ta)Pa[f(e1/hB(a) + Lηau)]

= Px(Ta < T0)Pa[f(Lηau)] +
Px(T0 < Ta)

hB(a)

∫ ∞
0

f(y)ρ̃h
B(a)
u (y) dy,

where

ρ̃au(y) = e−(u+y)/aI0

(
2
√
uy

a

)
.

7.2 Limit as a tends to infinity with u being fixed

Theorem 7.3. Let f ∈ L1
+ and x ∈ R. For any u > 0 and a ∈ R, we define

Na,u
t = hB(a)Px[f(Lηau); t < ηau|Ft],

Ma,u
t = hB(a)Px[f(Lηau)|Ft].

Then

lim
a→±∞

Na,u
t = lim

a→±∞
Ma,u
t = M

(±1)
t , Px-a.s. and in L1(Px).

Consequently, if M (±1)
0 > 0 under Px, it holds that

Px[Ftf(Lηau)]

Px[f(Lηau)]
−→ Px

[
Ft
M

(±1)
t

M
(±1)
0

]
, as a→ ±∞,

for all bounded Ft-measurable functionals Ft.

The proof of the theorem is very similar to that of [25, Lemma 4.4 and Theorem
4.5]. So we omit it. ([25, Lemma 4.4] states only convergence in probability but, its a.s.
convergence can also be proved by the same proof.)
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7.3 Limit as u tends to infinity with a being fixed

In this section, we only consider the cases f(x) = e−βx and f(x) = 1{x=0}. The next
theorem is in the case f(x) = e−βx.

Theorem 7.4. Let x ∈ R, a ∈ R \ {0}, β > 0 and t > 0. Define

Nu,β,a
t = eβu/(1+βh

B(a))Px[e−βLηau ; t < ηau|Ft],

Mu,β,a
t = eβu/(1+βh

B(a))Px[e−βLηau |Ft],

and

Mβ,a
t = e−βLt

{
PXt(Ta < T0) +

PXt(T0 < Ta)

1 + βhB(a)
eβL

a
t /(1+βh

B(a))

}
.

Then it holds that

lim
u→∞

Nu,β,a
t = lim

u→∞
Mu,β,a
t = Mβ,a

t , Px-a.s. and in L1(Px).

The proof of Theorem 7.4 is parallel to that of [25, Lemma 4.6 and Theorem 4.7]. So
we omit it.

We consider the case f(x) = 1{x=0}.

Theorem 7.5. Let x ∈ R, a ∈ R \ {0}, β > 0 and t > 0. Define

Nu,∞,a
t = eu/h

B(a)Px(t < ηau < T0|Ft),

Mu,∞,a
t = eu/h

B(a)Px(ηau < T0|Ft),

and

M∞,at = eL
a
t /h

B(a)PXt(Ta < T0)1{t<T0}.

Then it holds that

lim
u→∞

Nu,∞,a
t = lim

u→∞
Mu,∞,a
t = M∞,at , Px-a.s. and in L1(Px).

The proof of Theorem 7.5 is very similar to that of [25, Theorem 4.8]. So we omit it.

8 Universal σ-finite measures

In this section, we shall discuss the penalized processes and σ-finite measures
unifying the processes. We have obtained the penalized measure Q(γ,f)

x , which is given
by

Q(γ,f)
x |Ft =

M
(γ,f)
t

M
(γ,f)
0

· Px|Ft , −1 ≤ γ ≤ 1.

8.1 Lévy processes conditioned to avoid zero

We show that h(γ) is invariant for the killed process.

Theorem 8.1. For −1 ≤ γ ≤ 1, it holds that

Px[h(γ)(Xt);T0 > t] = h(γ)(x), n[h(γ)(Xt);T0 > t] = 1, x ∈ R.

Proof. We can show the case γ = 0 by the completely same discussion as the proof
of Pantí [18, (iii) of Theorem 2.2]. Combining this with Theorem 10.1, we obtain the

desired result. The former equation also follows from the fact that (M
(γ,1{u=0})
t , t ≥ 0) is

a ((Ft),Px)-martingale.
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Let H(γ) = {x ∈ R : h(γ)(x) > 0} and H(γ)
0 = H(γ) ∪ {0}. We introduce the h(γ)

transformed process given by

P(γ)
x |Ft =

1{T0>t}
h(γ)(Xt)

h(γ)(x)
· Px|Ft if x ∈ H(γ),

1{T0>t}h
(γ)(Xt) · n|Ft if x = 0.

Since P(γ)
x |Ft is consistent in t > 0, the probability measure P(γ)

x can be well-defined on
F∞ := σ(Xt, t ≥ 0), for more details, see Yano [37, Theorem 9.1]. For any t > 0, we have

P
(γ)
x (TR\H(γ) > t) = 1. Consequently, we have P(γ)

x (TR\H(γ) = ∞) = 1 and in particular,

P
(γ)
x (T0 =∞) = 1. The process P(γ)

x is called a Lévy process conditioned to avoid zero.

Note that, for x ∈ H(γ), the measure P(γ)
x is absolutely continuous with respect to Px on

Ft, but is singular to Px on F∞ since Px(T0 <∞) = 1.
By Theorems 4.4, 1.5, 1.7 and 7.3 (Corollaries 1.6 and 1.8) and by taking f = 1{u=0},

we have the following conditioning results.

Corollary 8.2. Let t > 0 and Ft be a bounded Ft-measurable functional. Then the
following assertions hold:

(i) limq→0+Px[Ft|T0 > eq] = P
(0)
x [Ft], for x ∈ H(0);

(ii) lima→±∞Px[Ft|T0 > Ta] = P
(±1)
x [Ft], for x ∈ H(±1);

(iii) lim
(a,b)

γ−→∞Px[Ft|T0 > Ta,−b] = P
(γ)
x [Ft], for −1 ≤ γ ≤ 1 and x ∈ H(γ);

(iv) lima→±∞Px[Ft|T0 > ηau] = P
(±1)
x [Ft], for u > 0 and x ∈ H(±1).

Note that (i) of Corollary 8.2 generalizes Pantí [18, Theorem 2.7].

8.2 Universal σ-finite measures

In this subsection, we assume that (X,Px) has a transition density pt(·). Then we can
construct the Lévy bridge. Let Pux,y denote the law of bridge from X0 = x to Xu = y.
This measure can be constructed as

Pux,y(A) = Px

[
1A
pu−t(y −Xt)

pt(y − x)

]
, A ∈ Ft, 0 < t < u.

See Fitzsimmons–Pitman–Yor [10]. We have the conditioning formula:

Px

[∫ t

0

Fu dLu

]
=

∫ t

0

Px[dLu]Pux,0[Fu], t > 0,

for all non-negative predictable processes (Fu), where we write symbolically Px[dLu] =

pu(−x) du.
For x ∈ R and −1 ≤ γ ≤ 1, we define

P(γ)
x =

∫ ∞
0

Px[dLu]
(
Pux,0 • P

(γ)
0

)
+ h(γ)(x)P(γ)

x ,

where the symbol • stands for the concatenation and h(γ)(x)P
(γ)
x = 0 for x ∈ R \ H(γ).

Then we have the following:

Theorem 8.3. Let x ∈ R and f ∈ L1
+. Let t > 0 and Ft be a bounded Ft-measurable

functional. Then the following assertions hold:

(i) limq→0+ rq(0)Px[Ftf(Leq )] = P(0)
x [Ftf(L∞)];
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(ii) lima→±∞ hB(a)Px[Ftf(LTa)] = P(±1)
x [Ftf(L∞)];

(iii) lim
(a,b)

γ−→∞ hC(a,−b)Px[Ftf(LTa,−b)] = P(γ)
x [Ftf(L∞)], for −1 ≤ γ ≤ 1;

(iv) lima→±∞ hB(a)Px[Ftf(Lηau)] = P(±1)
x [Ftf(L∞)], for u > 0.

Proof. It suffices to show that

P(γ)
x [Ftf(L∞)] = Px[FtM

(γ)
t ],

for −1 ≤ γ ≤ 1. The proof is the same as that of Theorem 5.3 of [25].

Consequently, we obtain the representation of Q(γ,f)
x as follows:

Q(γ,f)
x =

f(L∞)

P(γ)
x [f(L∞)]

· P(γ)
x .

Recall that g = sup{t : Xt = 0}. Since O(γ,f)
x (g <∞) = Px(g =∞) = 1, the two measures

are singular on F∞.

8.3 The law of L∞ under Q(γ,f)
0

We assume, for simplicity, that f ∈ L1
+ satisfies

∫∞
0
f(u) du = 1. Then we have

M
(γ,f)
0 = 1, P0-a.s. For l ≥ 0, the optional stopping theorem implies that

Q
(γ,f)
0 (Lt ≥ l) = P0[M

(γ,f)
t ;Lt ≥ l] = P0[M (γ,f)

ηl
; ηl ≤ t].

Letting t→∞, we may apply the monotone convergence theorem to deduce that

Q
(γ,f)
0 (L∞ ≥ l) = P0[M (γ,f)

ηl
].

Since Xηl = 0 and Lηl = l, we have

P0[M (γ,f)
ηl

] =

∫ ∞
0

f(l + u) du.

Therefore, it holds that

Q
(γ,f)
0 (L∞ ∈ du) = f(u) du, u > 0.

9 The transient case

We now study penalization in the transient case. Throughout this section, we always
assume X is transient and the conditions (A1) and (A2) hold. Recall that

κ := lim
q→0+

1

rq(0)
= n(T0 =∞) > 0;

see (2.5).

9.1 The renormalized zero resolvent in the transient case

As in the recurrent case, we define hq(x) = rq(0)− rq(−x).

Theorem 9.1. Suppose that the conditions (A1) and (A2) hold. Then the following
assertions hold.

(i) For any x ∈ R, it holds that h(x) := limq→0+ hq(x) = κ−1Px(T0 =∞).
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(ii) The above convergence is uniform on compacts, and consequently h is continuous.

(iii) h is subadditive on R, that is, h(x+ y) ≤ h(x) + h(y) for x, y ∈ R.

Proof. It follows from (2.1) and (2.5) that

hq(x) = rq(0)Px[1− e−qT0 ] −→ κ−1Px(T0 =∞), as q → 0+.

The proof of (ii) and (iii) are the same as that of Theorem 1.1.

Theorem 9.2. Suppose that the conditions (A1) and (A2) hold. Then the following
assertions hold:

(i) limx→±∞
h(x)
|x| = 0;

(ii) limy→±∞{h(x+ y)− h(y)} = 0, for all x ∈ R.

Proof. Since h(x) ≤ κ−1, it is obvious that (i) holds. The proof of (ii) is the same as that
of (ii) of Theorem 1.2 in the recurrent and m2 =∞ case.

9.2 Useful equations

Before stating out penalization result, we introduce some useful equations.

Lemma 9.3. (i) For a ∈ R,

hB(a) := lim
q→0+

hBq (a) = P0[LTa ] = h(a) + h(−a)− κh(a)h(−a).

(ii) For x, a, b ∈ R and a 6= b,

Px(Ta < Tb) =
h(b− a) + h(x− b)− h(x− a)− κh(x− b)h(b− a)

hB(a− b)
.

(iii) For x, a, b ∈ R and a 6= b,

P[LTa∧Tb ] =
1

hB(a− b)


(
h(b) + h(−a)− κh(−a)h(b)

)
h(a− b)

+
(
h(a) + h(−b)− κh(−b)h(a)

)
h(b− a)

− h(a− b)h(b− a)

.
The proof of Lemma 9.3 is similar to that in the recurrent case. So we omit it.

Lemma 9.4 ([18, Lemma 3.10]). It holds that limx→∞ hB(x) = κ−1.

Proof. For completeness of the paper, we give the same proof as that of [18, Lemma
3.10]. Let e be the exponentially distributed with parameter 1 and eq := e/q for q > 0.
Then we already have (3.17) and (3.18). Letting q → 0+ in (3.18), we obtain

lim inf
x→∞

hB(x) ≥ κ−1.

On the other hand, it holds that

hB(x) ≤ P[Leq ] + P[LTx ;Tx > eq] = rq(0) + P[LTx ;Tx > eq].

Letting q → 0+, we have hB(x) ≤ κ−1. Therefore we obtain the desired result.

Theorem 9.5. For a ∈ R \ {0}, it holds that

n(Ta < T0 <∞) =
1− κhB(a)

hB(a)
, and n(Ta < T0) =

1− κh(−a)

hB(a)
.
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Proof. For l > 0, it holds that

P(LTa > l) = P(Ta > ηl) = P(σ{T0=∞}∪{Ta<T0<∞} > l),

where σA = inf{l : el ∈ A} for A ⊂ D. Since σA is the hitting time of the set A for the
killed Poisson point process ((l, el), l ≥ 0), we have

P(LTa > l) = e−l{n(T0=∞)+n(Ta<T0<∞)} = e−l{κ+n(Ta<T0<∞)}.

For more details, see, e.g., [15, Lemma 6.17]. In particular, LTa is exponentially dis-
tributed. On the other hand, we know hB(a) = P[LTa ] by Lemma 3.5. Hence we obtain

n(Ta < T0 <∞) =
1

hB(a)
− κ.

We use the strong Markov property of the excursion measure n (see, e.g., [2, Theorem
III.3.28]) to obtain

n(Ta < T0 <∞) = n(Pa(T0 <∞);Ta < T0) = (1− κh(a))n(Ta < T0). (9.1)

It follows from (3.19) and (9.1) that

n(Ta < T0) =
1− κhB(a)

hB(a)(1− κh(a))
=

1− κh(−a)

hB(a)
.

Hence the proof is complete.

9.3 Penalization result in the transient case

Let f be a non-negative function on [0,∞) which satisfies
∫∞
0

e−κuf(u) du <∞. For
x ∈ R, we introduce the process given by

Mt = M
(f)
t = h(Xt)f(Lt) + (1− κh(Xt))

∫ ∞
0

e−κuf(Lt + u) du.

Then we can show that (Mt, t ≥ 0) is a non-negative martingale.

Theorem 9.6. Let x ∈ R and let f be a non-negative function on [0,∞) which satisfies∫∞
0

e−κuf(u) du <∞. Then it holds that

Px[f(L∞)] = κM0, Px-a.s., (9.2)

and (Mt, t ≥ 0) is a non-negative ((Ft),Px)-martingale.

Proof. By the same discussion, Lemma 4.1 also holds in the transient case. Suppose first
that f is bounded. We write g = sup{t : Xt = 0}. Since X is transient, Px(g < ∞) = 1.
We see that f(Leq ) → f(L∞), Px-a.s. as q → 0+; in fact, for almost every sample path,
Leq = Lg = L∞ for small q > 0 (Here we do not need continuity of f ). Hence, by the
dominated convergence theorem, we obtain

Px[f(Leq )] −→ Px[f(L∞)], as q → 0+.

On the other hand, by the monotone convergence theorem, we obtain∫ ∞
0

e−u/rq(0)f(u) du −→
∫ ∞
0

e−κuf(u) du, as q → 0+.
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Hence (9.2) follows by letting q → 0+ in (4.1). To remove the boundedness assumption
of f , we consider f ∧ n and then let n→∞ in (9.2). Moreover, by the Markov property
and the additivity of L, we have, for 0 < s < t,

Px[Mt|Fs] = κ−1Px
[
P̃Xt [f(L̃∞ + Lt)]|Fs

]
= κ−1Px

[
Px[f(L∞)|Ft]|Fs

]
= κ−1Px[f(L∞)|Fs]

= κ−1P̃Xs [f(L̃∞ + Ls)]

= Ms.

This means that (Mt, t ≥ 0) is a non-negative ((Ft),Px)-martingale.

Theorem 9.7. Suppose that the conditions (A1) and (A2) hold. Let f be a bounded
non-negative function and let τ be a random clock. Define

Mτ
t = κ−1Px[f(Lτ )|Ft].

Then it holds that

Mτ
t −→Mt, Px-a.s. and in L1(Px) as τ →∞.

Consequently, if M0 > 0 under Px, it holds that

Px[Ftf(Lτ )]

Px[f(Lτ )]
−→ Px

[
Ft
Mt

M0

]
, as τ →∞,

for all bounded Ft-measurable functionals Ft.

Proof. We have f(Lτ ) → f(L∞), Px-a.s. as τ → ∞; in fact, Lτ = Lg = L∞ for large τ .
In addition, since f is bounded, we may apply the dominated convergence theorem to
obtain f(Lτ )→ f(L∞), in L1(Px) as τ →∞. This implies that Mτ

t →Mt, Px-a.s. and in
L1(Px) as τ →∞.

Remark 9.8. If τ is exponential clock, hitting clock, two-point hitting time clock or
inverse local time clock, Theorem 9.7 also holds under the assumption that f is a
non-negative function which satisfies

∫∞
0

e−κuf(u) du <∞.

Since we have Mt = Px[f(L∞)|Ft], we see that the penalized measure Qfx can be
represented as

Qfx =
f(L∞)

Px[f(L∞)]
· Px,

which shows that Qfx is absolutely continuous with respect to Px.

10 Appendix: Martingale property of Xtf(Lt)

In Remark 5.2, we have shown that (Xtf(Lt), t ≥ 0) is a ((Ft),Px)-martingale for
f ∈ L1

+ under the condition that m2 < ∞. Let us remove the additional assumption
m2 <∞. In this section, we assume X is either recurrent or transient, and assume the
conditions (A1) and (A2).

Theorem 10.1. Suppose the conditions (A1) and (A2) hold. Suppose, in addition, that
P[|X1|] <∞ and P[X1] = 0. Then the following assertions hold:

(i) P[|Xeq |] < ∞ and n[|Xeq |;T0 > eq] < ∞ for all q > 0, and P[|Xt|] < ∞ and
n[|Xt|;T0 > t] <∞ for all t > 0;
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(ii) Px[Xt;T0 > t] = x, for all t > 0 and x ∈ R;

(iii) n[Xt;T0 > t] = 0, for all t > 0;

(iv) (Xtf(Lt), t ≥ 0) is a ((Ft),Px)-martingale for x ∈ R and all bounded measurable
functions f .

Proof. (i) We have P[|Xt+s|] ≤ P[|Xt|] +P[|Xt+s −Xt|] = P[|Xt|] +P[|Xs|], which implies
that the function t 7→ P[|Xt|] is subadditive. Hence, for any k ∈ N, we have P[|Xk|] ≤
kP[|X1|] <∞. For t > 0, it is known that

P

[
sup

0≤s≤t
|Xs|

]
≤ 8P[|Xt|]; (10.1)

see Doob [9, Theorem VII.5.1] and Sato [32, Theorem 25.18 and Remark 25.19] for
the proof. Hence we have sup0≤t≤k P[|Xt|] < ∞ for all k ∈ N. In particular, we obtain
P[|Xt|] <∞ for all t > 0. Again by the subadditivity of t 7→ P[|Xt|], we have

lim
t→∞

P[|Xt|]
t

= inf
t>0

P[|Xt|]
t

≤ P[|X1|] <∞.

Thus there exist constants C,C ′ > 0 such that P[|Xt|] ≤ C+C ′t for all t > 0. In particular,
we obtain

P[|Xeq |] ≤ q
∫ ∞
0

(C + C ′t)e−qt dt <∞, for all q > 0.

By Lemma 2.5, we have

P[|Xeq |] = P

[∑
u∈D

∫ ηu

ηu−

qe−qt|Xt|dt

]

= P⊗ ñ

[∫ ∞
0

dLu qe
−qu

∫ T̃0

0

dt e−qt|X̃t|

]

= P

[∫ ∞
0

dLu e−qu
]
n[|Xeq |;T0 > eq]

= rq(0)n[|Xeq |;T0 > eq].

Hence we have n[|Xeq |;T0 > eq] <∞ for all q > 0 and this implies that n[|Xt|;T0 > t] <∞
for almost all t > 0. For any t > 0, we can take 0 < s < t such that n[|Xs|;T0 > s] < ∞.
Then it follows from the Markov property of the excursion measure n that

n[|Xt|;T0 > t] = n[PXs [|Xt−s|;T0 > t− s];T0 > s]

≤ n[PXs [|Xt−s|];T0 > s]

≤ n[|Xs|+ P[|Xt−s|];T0 > s] <∞.

Hence we obtain n[|Xt|;T0 > t] <∞ for all t > 0.

(ii) By the Markov property, we have

Px[Xt] = Px[Xt;T0 > t] +

∫
[0,t]

Px(T0 ∈ ds)P[Xt−s].

Since Px[Xt] = x for all t ≥ 0 and x ∈ R, we obtain Px[Xt;T0 > t] = x for all t > 0.
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(iii) By Lemma 2.5, we have

P[Xeqf(Leq )] = P⊗ ñ

[∫ ∞
0

dLu qe
−quf(u)

∫ T̃0

0

dt e−qtX̃t

]

= P

[∫ ∞
0

dLu qe
−quf(u)

] ∫ ∞
0

dt e−qtn[Xt;T0 > t]. (10.2)

Here in the second equality, we use Fubini’s theorem. If we take f ≡ 1, then (10.2)
becomes

P[Xeq ] = qrq(0)

∫ ∞
0

dt e−qtn[Xt;T0 > t].

Since P[Xeq ] = 0 for all q > 0, we obtain n[Xt;T0 > t] = 0 for almost all t > 0. By the
Markov property of the excursion measure n, we have, for 0 < s < t,

n[Xt;T0 > t] = n[PXs [Xt−s;T0 > t− s];T0 > s] = n[Xs;T0 > s],

which implies that n[Xt;T0 > t] is constant in t > 0. Thus we obtain n[Xt;T0 > t] = 0 for
all t > 0.
(iv) By (iii) of Theorem 10.1 and by (10.2), we have P[Xeqf(Leq )] = 0. Hence, by the
Markov property and (ii) of Theorem 10.1, it holds that,

Px[Xeqf(Leq )] = Px

[∫ T0

0

qe−qtXtf(0) dt

]
+ Px[e−qT0 ]P[Xeqf(Leq )]

= f(0)

∫ ∞
0

qe−qtPx[Xt;T0 > t] dt

= xf(0).

Thus we obtain

Px[Xtf(Lt)] = xf(0) for almost all t > 0. (10.3)

We show the function t 7→ Px[Xtf(Lt)] is right-continuous for t > 0. Fix t > 0. Since
Xt 6= 0, Px-a.s., we see that, for almost every sample path, we can choose small δ > 0

such that Lt+δ = Lt. Since t 7→ Xt is right-continuous, we have lims→0+Xt+sf(Lt+s) =

Xtf(Lt), Px-a.s., where we do not require continuity of f . For 0 < s < 1, it holds that
|Xt+sf(Lt+s)| ≤ sup0≤t′≤t+1|Xt′ | supu∈R|f(u)|. By (10.1), we may apply the dominated
convergence theorem to deduce that t 7→ Px[Xtf(Lt)] is right-continuous. This and (10.3)
imply that

Px[Xtf(Lt)] = xf(0) for all t ≥ 0.

By the Markov property and the additivity property of L, the process (Xtf(Lt), t ≥ 0) is
a ((Ft),Px)-martingale.

By Theorems 1.4 and 10.1, we obtain the following:

Corollary 10.2. Suppose that the assumptions of Theorem 10.1 are satisfied and that X
is recurrent. For measurable function f1 and locally integrable function f2, define

F (Xt, Lt) = Xtf1(Lt) + h(Xt)f2(Lt)−
∫ Lt

0

f2(u) du.

Then the following assertions hold.
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(i) If f1 is bounded and f2 is integrable, then (F (Xt, Lt), t ≥ 0) is a ((Ft),Px)-martingale.

(ii) If f1 is locally bounded and f2 is locally integrable, then (F (Xt, Lt), t ≥ 0) is a local
((Ft),Px)-martingale.

Remark 10.3. For the Brownian motion B and its local time L at 0, Fitzsimmons–
Wroblewski [11] proved that any local martingale of the form (F (Bt, Lt), t ≥ 0) is given
by the following form:

F (Bt, Lt) = F (0, 0) +Btf1(Lt) + |Bt|f2(Lt)−
∫ Lt

0

f2(u) du,

where f1 and f2 are locally integrable functions.
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