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Abstract

We use the abstract method of (local) martingale problems in order to give criteria for
convergence of stochastic processes. Extending previous notions, the formulation we
use is neither restricted to Markov processes (or semimartingales), nor to continuous
or càdlàg paths. We illustrate our findings both, by finding generalizations of known
results, and proving new results. For the latter, we work on processes with fixed times
of discontinuity.
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1 Introduction

1.1 Background

This article deals with one of the classical questions in probability theory: Limit
theorems for stochastic processes. Starting with the work of Prokhorov [32], limit
theorems are formulated via weak convergence of probability measures on function
spaces, such as the Wiener or the Skorokhod space. Prokhorov’s method for proving
weak convergence consists of three steps: verifying tightness, showing the convergence
of the finite dimensional distributions and establishing that these determine the limit.
The first part is well-studied and the final part is essentially trivial. In contrast, verifying
convergence of the finite dimensional distributions is often hard and sometimes even
impossible. This difficulty motivated the necessity to develop more techniques for proving
limit theorems. One of the most successful strategies is the martingale problem method
initiated by Stroock and Varadhan [37]. Instead of studying the finite dimensional
distributions, the idea is to deduce the martingale property of certain test processes
from weak convergence and to show that these martingale properties characterize the
limiting law uniquely.

Originally, Stroock and Varadhan developed their method for Itô diffusions, see
Example 3.7 below. Later, Ethier and Kurtz [12] generalized it to a Markovian framework
with Polish state space E, i.e. they considered a martingale problem described by test
processes of the type

f(X)−
∫ ·

0

g(Xs)ds, (f, g) ∈ A ⊂ Cb(E)× Cb(E), (1.1)

where A is sometimes referred to as the (pre-)generator of X, see Example 3.8 below.
In the spirit of the general theory of stochastic processes, Jacod and Shiryaev [25]
extended the martingale problem method to the class of semimartingales, which have not
necessarily Markovian dynamics, by relating martingale properties to the characteristics
of the semimartingale.

Recently, there is growing interest in processes which are not covered by [12, 25].
Examples of such are solutions to stochastic partial differential equations (SPDEs) and
Volterra equations (VSDEs), or certain processes with fixed times of discontinuity. The
latter generate increasing attention in applied probability (see, e.g. [3, 29]) and in
finance (see, e.g. [7, 14, 17, 30]). To give a concrete example, fixed times of discontinuity
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arise naturally in the context of random environments via the quenched perspective, i.e.
when the random environment is fixed. Here, we think of stochastic equations of the
type

dXt = σ(Xt−)dLt + γ(Xt−)dSt,

where σ and γ are suitable coefficients, and L and S are independent semimartingales
with jumps. The random environment is represented by one of the drives, say S. Roughly
speaking, fixing the environment means to freeze a path of S which gives rise to fixed
times of discontinuity.

Limit theorems for certain types of SPDEs and VSDEs were proved in [1, 8, 35]. In
contrast, for general processes with fixed times of discontinuity we are not aware of any
systematic study. The natural state space for distributions of stochastic processes with
discontinuities is the Skorokhod space of càdlàg functions endowed with the Skorokhod
J1 topology (which turns it into a Polish space). For this natural setup the presence
of fixed times of discontinuity turns out to be a major difficulty, because typical test
processes then lack continuity (in the Skorokhod J1 topology). Below we will explain
this issue in more detail.

1.2 Purpose of the current article

The aim of this article is to develop a general version of the martingale problem
method which on one side is flexible enough to cover existing convergence results and
on the other side can be used to establish new results, e.g. for processes with fixed
times of discontinuity. We generalize the three main ingredients in the standard theory:
(i) the state space, (ii) the set of test processes, i.e. we allow different test processes as
for instance in (1.1), and (iii) we work with an extended type of weak convergence called
weak-strong convergence in the sequel, see, e.g. [2, 23, 34] or Section 2 below.

Let us motivate the novelties (i), (ii) and (iii) in some detail. Almost all general
results in the literature are formulated for continuous or càdlàg processes. However,
some processes of recent interest have less regular paths. For example, the Volterra
processes studied in [1] only have paths in (local) Lp spaces. To include these, and
more general cases, we work with the minimal assumption that paths can be viewed as
random variables in some Polish path space.

Next, we comment on our extension of the set of test processes. In the classical litera-
ture on the martingale problem method for Itô diffusions ([37]), Markov processes ([12])
or semimartingales ([25]), the test processes only depend on the paths of the process X
whose dynamics should be described by the martingale problem. For instance, in the
classical monograph of Ethier and Kurtz [12] the test processes are of the form (1.1).
For some applications it turns out to be useful to introduce a second variable L, which
we call control variable. In a generalized version of the Ethier and Kurtz [12] setting, for
instance, this leads to test processes of the form

f(t, L,Xt)−
∫ t

0

g(s, L,Xs)ds, t ∈ R+, (1.2)

where f and g are suitable functions such that this process is well-defined. Let us
emphasis that we do not stick to processes of this type but allow more flexibility. One
reason to introduce L is to include stochastic equations with random coefficients into
our framework. A natural example is the class of change point processes of the type

dXt = (σ(Xt)1{t≤τ} + γ(Xt)1{t>τ})dWt,

where W is a Brownian motion, σ and γ are suitable measurable functions and τ is an
exogenous random time. In financial settings the random time τ could be interpreted as
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the time of interest rate adjustments, the default time of a major financial institution
or the release time of political news, see [13] for applications of such processes in a
financial context. Due to the additional randomness given through τ , the dynamics of
X cannot be described by a martingale problem with test processes of the type (1.1).
However, they can be described by test processes of the type (1.2) when L either is
taken to be τ or to be the identity on the underlying probability space. The latter choice
of L is even flexible enough to derive limit theorems for arbitrary semimartingales which
are defined on the same stochastic basis, irrespective whether their characteristics are
canonical (in the sense of [21]) or not.

Besides this extension, we also generalize the mode of convergence in the martingale
problem method. More precisely, next to the convergent sequence X1, X2, . . . , we
introduce an auxiliary sequence L1, L2, . . . of control variables such that the bivariate
sequence (X1, L1), (X2, L2), . . . converges in the weak-strong sense. Roughly speaking,
for weak-strong convergence, the first variable converges in the usual weak topology,
while the second variable has to convergence setwise. We add the sequence L1, L2, . . . for
two reasons. First, it is natural that the new control variable L in the limiting martingale
problem should also get reflected by the approximation sequence. This is, for instance,
useful when we consider sequences of processes with random coefficients. Second,
the control variables L1, L2, . . . are useful technical tools to overcome the limitation
that certain types of test processes on the Skorokhod space are not continuous in the
Skorokhod J1 topology. To see where continuity might gets lost, consider a natural
generalization of (1.1) when fixed time discontinuities are present:

f(Xt)−
∫ t

0

g(Xs)ds−
∫ t

0

h(Xs−)q(ds), t ∈ R+, (1.3)

where f, g, h are bounded and continuous and q is some deterministic locally finite
measure. As projections to fixed times are not continuous in the Skorokhod J1 topology,
these random variables are not necessarily continuous when q has point masses. To
overcome this problem we would like to relax the continuity assumption by replacing the
Skorokhod J1 topology with a stronger topology (in which more functions are continuous).
At the same time we might not want to drop the Skorokhod J1 topology in general, as, for
instance, tightness is well-studied for this topology. At this stage the sequence L1, L2, . . .

and the concept of weak-strong convergence come into play. An important and powerful
result for weak-strong convergence is the continuous mapping theorem of Jacod and
Mémin [23] (see Theorem 2.9) where it suffices to ask for continuity conditions when
the values of the controls are fixed. Roughly speaking, this means that we can restrict
our attention to a (randomized) subset of the underlying space on which continuity holds
conditionally. If we have enough control on the jump times of the sequence X1, X2, . . .

via the controls L1, L2, . . . , this allows us, for the continuity assumptions on the test
processes, to replace the Skorokhod J1 topology by the local uniform topology. This is a
major improvement, as, for instance, processes of the form (1.3) are clearly continuous
in the local uniform topology. Using this strategy we generalize convergence theorems
from the monographs [12, 25] to a setting with fixed times of discontinuity. We learned
about the idea to replace the Skorokhod J1 topology by the local uniform topology via
weak-strong convergence from proofs of Jacod and Mémin [22, 24] for certain existence
and stability results for stochastic differential equations driven by semimartingales.

1.3 Main contributions and structure of the article

Let us summarize our contributions. The main abstract results are the Theorems 3.14
and 3.20. In the former, we show the martingale property of test processes of the limiting
martingale problem directly and in the latter, we verify the martingale property using
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approximating sequences of martingales.
To illustrate applications of our theory we discuss a variety of examples. First of all,

we show that our results cover, or even extend, several known limit theorems. More
precisely, we reprove a classical theorem of Ethier and Kurtz [12] (see Section 4.1)
and the stability result for Volterra processes from [1] (see Section 4.2). Furthermore,
we localize conditions by Jacod and Shiryaev [25] which identify a weak limit as a
semimartingale via its characteristics (see Section 4.3). We think that this extension is
of interest for future applications.

Besides recovering results from the literature, we also present new results. First,
we prove a version of the Ethier–Kurtz theorem for test processes of the type (1.3) and
we present a tightness condition which is tailored to such processes, see Section 5.3.
Second, we derive a stability result for semimartingales under a continuity assumption
on the characteristics in the local uniform topology, see Section 5.5.1. As the latter
is stronger than the classical Skorokhod J1 topology, our result has a different scope
than its counterpart from [25]. Furthermore, in Section 5.5.3 we specify our results to
the annealed case where all processes are defined on the same probability space and
the limit is allowed to have characteristics which also depend on the underlying space.
Finally, in Section 5.5.4 we present an application to Itô processes with fixed times of
discontinuity.

1.4 Notation

In our paper, we use the following notation.

- An inequality up to a multiplicative positive constant is denoted by ..

- The extended real line is denoted by R , R ∪ {±∞}. The set of symmetric non-
negative definite real-valued d× d matrices is denoted by Sd+.

- The Lebegue measure is denoted by λ\.

- For a topological space E we write C(E) for the space of continuous functions E →
R, B(E) for the space of bounded Borel functions E → R and Cb(E) , C(E)∩B(E).

- For p ≥ 1 and a Banach space (E, ‖ · ‖) we denote by Lploc(R+, E) the space of equiv-
alence classes of locally p-integrable functions from R+ into E, i.e. of (strongly)
measurable functions f : R+ → E such that

∫ t
0
‖f(s)‖pds < ∞ for all t > 0. We

endow Lploc(R+, E) with the local Lp-norm topology.

- We write C2(Rd) for the space of twice continuously differentiable functions Rd →
R, C2

c (Rd) for its subspace of functions with compact support, and C2
b (Rd) for

the set of bounded functions f ∈ C2(Rd) with bounded gradient ∇f and bounded
Hessian matrix ∇2f .

- For an operator σ we write tr(σ) for its trace and σ∗ for its adjoint.

- For a Polish space E we denote the space of continuous functions R+ → E by C(E)

and the space of càdlàg functions R+ → E by D(E).

- On a space F the identity is denoted by X : F → F . In case F = C(E) or D(E), the
identity X is called coordinate process.

- For a càdlàg process Z = (Zt)t≥0 we write ∆Zt , Zt − Zt− for its time t jump.
Moreover, we denote the quadratic variation process by [·, ·].

- For an integer-valued random measure p with compensator q and a suitable mea-
surable function H = H(ω, t, y) we write

H ∗ pt ,
∫ t

0

∫
H(s, y)p(ds, dy), t ∈ R+,
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and H ∗ (p − q) for the integral process of H w.r.t. the compensated random
measure p− q, cf. [25, Section II.1.d]. Furthermore, we denote by Gloc(p) the set
of functions which are integrable w.r.t. p − q, see [25, Definition II.1.27]. For a
semimartingale Z = (Zt)t≥0 we denote the set of Z-integrable processes by L(Z),
cf. [25, Section III.6]. For all unexplained terminology related to the general theory
of stochastic processes we refer to [25, Chapter I].

2 Weak-strong convergence

In this section we recall the notion of weak-strong convergence of probability mea-
sures on a product space, which was introduced in [34] and systematically studied in
[2, 23, 34], see also [22, 24]. This type of convergence will be crucial for our treatment
of the martingale problem method.

2.1 Definition and first properties

Let (U,U) be a measurable space and let (F,B(F )) be a Polish space with its Borel
σ-field. We define the product space S , U × F and the corresponding product σ-field
S , U ⊗ B(F ). Let CS be the set of bounded S/B(R)-measurable functions f : S → R

such that ω 7→ f(α, ω) is continuous (as a function on F ) for every α ∈ U .

Definition 2.1. Let P, P 1, P 2, . . . be probability measures on (S,S). We say that the
sequence (Pn)n∈N converges in the weak-strong sense to P , written Pn →ws P , if

EP
n

[f ]→ EP [f ] as n→∞ for all f ∈ CS .

Remark 2.2. (i) Let P, P 1, P 2, . . . be probability measures on F , let U be a singleton
and extend P, P 1, P 2, . . . to the product space S = U × F in the obvious manner.
Then, it is clear that Pn →ws P if and only if Pn → P weakly in the usual sense. This
simple observation explains that weak-strong convergence is a natural extension of
the usual weak convergence with an additional control variable. In particular, any
strategy to identify weak-strong limits is also a strategy to identify weak limits in
the usual sense.

(ii) Weak-strong convergence has a close relation to the notion of stable conver-
gence, which is more commonly known in the probability literature, see [25,
Section VIII.5.c]. To be more precise, if E is a Polish space and (Ω′,F ′, P ′) is
a probability space which supports E-valued random variables Z1, Z2, . . . , then
(Zn)n∈N converges stably (in the sense of [25, Definition VIII.5.28]) if and only if
the sequence

Pn(dω, dz) , δZn(ω)(dz)P
′(dω), n ∈ N, (2.1)

converges in the weak-strong sense as a probability measure on (Ω′×E,F ′⊗B(E)),
see also [23, Proposition 2.4]. In certain cases stable (and therefore also weak-
strong) convergence is equivalent to convergence in probability. More precisely,
the sequence (Pn)n∈N as given in (2.1) converges in the weak-strong sense to

P (dω, dz) = δZ(ω)(dz)P
′(dω)

if and only if Zn → Z in probability, see [23, Proposition 3.5].

(iii) Let us provide another point of view on weak-strong convergence. Take a sequence
P1, P2, . . . of probability measures on (S,S) with the same U -marginal µ. It is
well-known that there exist transition kernel K1,K2, . . . such that

Pn(du, df) = Kn(u, df)µ(du), n ∈ N.
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Then, the sequence P1, P2, . . . converges in the weak-strong sense if and only if
for every f ∈ Cb(F ) the sequence K1f,K2f, . . . converges weakly (in the Banach
space sense) in L1(U,U , µ) (cf. also [23, Proposition 2.4]).

Let Mmc(S) be the space of all probability measures on (S,S) endowed with the
weakest topology such that the map P 7→ EP [f ] is continuous for every f ∈ CS . The
acronym mc reflects the structure of the functions from CS , as they are measurable in
the first and continuous in the second variable. Of course, Pn → P in Mmc(S) if and only
if Pn →ws P .

Let Mm(U) be the space of probability measures on (U,U) endowed with the weak-
est topology such that the map P 7→ EP [f ] is continuous for every bounded U/B(R)-
measurable function f : U → R.

Remark 2.3. By [23, Proposition 2.4], the above topology on Mm(U) is also the weakest
topology such that the map P 7→ P (A) is continuous for every A ∈ U . In other words, it
is the topology of setwise convergence.

Furthermore, letMc(F ) be the space of all probability measures on (F,B(F )) endowed
with the usual weak topology, i.e. the weakest topology such that the map P 7→ EP [f ] is
continuous for every bounded continuous function f : F → R.

For P ∈Mmc(S) we write PU for its U -marginal and PF for its F -marginal, i.e.

PU (du) , P (du× F ), PF (df) , P (U × df).

To get a better understanding of the concept of weak-strong convergence, we recall the
following result, which shows that weak-strong and weak convergence on S distinguish
by relative compactness of the first marginal in Mm(U).

Theorem 2.4 (Corollary 2.9 in [23]). Suppose that U is Polish and that U is its Borel
σ-field. Then, Pn →ws P if and only if {PnU : n ∈ N} is relatively compact in Mm(U) and
Pn → P in Mc(S).

The following result relates relative (sequential) compactness in Mmc(S) to relative
(sequential) compactness of the marginals.

Theorem 2.5. For a set Π ⊂Mmc(S) the following are equivalent:

(i) Π is relatively compact in Mmc(S).

(ii) ΠU , {PU : P ∈ Π} is relatively compact in Mm(U) and ΠF , {PF : P ∈ Π} is
relatively compact in Mc(F ).

(iii) Π is relatively sequentially compact in Mmc(S).

(iv) ΠU is relatively sequantially compact in Mm(U) and ΠF is relatively sequentially
compact in Mc(F ).

Proof. Recall that Mc(F ) is metrizable and, in particular, sequential. Thus, the equiva-
lence of (ii) and (iv) follows from [2, Proposition 2.2]. Moreover, the equivalence of (i)
and (ii) follows from [2, Theorem 5.2] and the equivalence of (ii) and (iii) follows from [2,
Theorem 2.5].

Remark 2.6. In [23, Proposition 2.10] it is claimed that Mmc(S) and Mm(U) are metriz-
able in case U is separable. It was pointed out in [2, Remark 2.1] that the proof in [23]
is not convincing and a short counterexample for the validity of the argument is given.
Indeed, [23, Proposition 2.10] is incorrect, since, in case (U,U) is a Polish space with
its Borel σ-field, the space Mm(U) is not metrizable by [18, Proposition 2.2.1]. If the
σ-field U is separable and the U -marginal of some set Π ⊂Mmc(S) is relatively compact
in Mm(U), [2, Proposition 2.3] provides the positive result that Π is metrizable for the
weak-strong topology.
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2.2 The continuous mapping theorem of Jacod and Mémin

Next, we recall the continuous mapping theorem of Jacod and Mémin [23] for weak-
strong convergence. For A ∈ S and α ∈ U , we write

Aα ,
{
ω ∈ F : (α, ω) ∈ A

}
∈ B(F ).

Definition 2.7. An S/B(R)-measurable function g : S → R is called (Pn, P )-continuous
if there exists a set A ∈ S such that

(i) Pn(A)→ 1 as n→∞, and P (A) = 1;

(ii) the set
{(α, ω) ∈ A : Aα 3 ζ 7→ g(α, ζ) is discontinuous at ω}

is P -null.

The following partial version of the Portmanteau theorem can be used to check part
(i) in Definition 2.7.

Proposition 2.8 (Proposition 2.11 in [23]). If Pn →ws P , then lim supn→∞ Pn(G) ≤ P (G)

for all G ∈ S such that Gα is closed in F for every α ∈ U .

Theorem 2.9 (Theorem 2.16 in [23]). Suppose that Pn →ws P and let g : S → R be
(Pn, P )-continuous such that

sup
n∈N

EP
n

[|g|1{|g|>a}]→ 0

as a→∞. Then, EP
n

[g]→ EP [g] as n→∞.

At the end of this section we introduce a useful component to build a set A as in the
definition of (Pn, P )-continuity. In the following, let (E, r) be a Polish space1 and let
k : R+ → R+ be a Borel function such that, for every t > 0,

lim
ε↘0

sup
{
k(s) : s 6= t, t− ε ≤ s ≤ t+ ε

}
= 0. (2.2)

Lemma 2.10. The property (2.2) holds if and only if for every T, a > 0 there exists no
t > 0 such that the set {s ∈ [0, T ] : k(s) ≥ a} contains a sequence (tn)n∈N with tn 6= t and
tn → t as n→∞. In particular, (2.2) holds if {s ∈ [0, T ] : k(s) ≥ a} is finite for all T, a > 0.

Proof. Let us start with the if implication. Take t > 0 and assume for contradiction that
there exists a sequence εn ↘ 0 and a constant a > 0 such that sup{k(s) : s 6= t, t− εn ≤
s ≤ t + εn} > a for all n ∈ N. There exists an s1 6= t, t − ε1 ≤ s1 ≤ t + ε1 such that
k(s1) ≥ a. Next, take s2 6= t, t − ε2 ≤ s2 ≤ t + ε2 such that k(s2) ≥ a. Proceeding in
this manner, we get a sequence s1, s2, . . . with sn 6= t, sn → t and k(sn) ≥ a. This is a
contradiction and the if implication follows.

We now prove the only if implication. For contradiction, assume that T, a, t > 0 are
such that there exists a sequence t1, t2, · · · ∈ [0, T ] such that tn 6= t, tn → t and k(tn) ≥ a.
Note that |t− tn| 6= 0 and that t− |t− tn| ≤ tn ≤ t+ |t− tn|. Hence,

lim inf
n→∞

sup
{
k(s) : s 6= t, t− |t− tn| ≤ s ≤ t+ |t− tn|

}
≥ lim inf

n→∞
k(tn) ≥ a.

As this is a contradiction, the only if implication is also proved.

Remark 2.11. It is possible that (2.2) holds while {t ∈ [0, T ] : k(t) ≥ a} is infinite for
some T, a > 0. Indeed, take for instance k(t) =

∑∞
k=1 1{t=1/k}.

1r is the corresponding metric.
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To motivate what comes next, suppose that ω1, ω2, · · · ∈ D(E) is a sequence whose
jumps are controlled by k, i.e. r(ωn(t), ωn(t−)) ≤ k(t) for all t > 0 and n ∈ N. Fur-
thermore, suppose that ω ∈ D(E) is such that ωn → ω in the Skorokhod J1 topology.
By standard properties of this topology, for every t > 0 with r(ω(t), ω(t−)) > 0 there
exists a sequence tn → t such that r(ωn(tn), ωn(tn−)) → r(ω(t), ω(t−)). W.l.o.g. we
can assume that there exists an a > 0 such that r(ωn(tn), ωn(tn−)) ≥ a for all n ∈ N.
By hypothesis, k(tn) ≥ r(ωn(tn), ωn(tn−)) ≥ a. Recalling Lemma 2.10, we must have
tn = t for all large enough n. In summary, we obtain convergence of the jumps, i.e.
r(ωn(t), ωn(t−))→ r(ω(t), ω(t−)). This property is certainly necessary for local uniform
convergence and, as we will see below, it is even sufficient. Summarizing, for sequences
whose jumps are controlled via k we obtain equivalence of the Skorokhod J1 and the
local uniform topology. As we are mainly interested in continuity properties, this is quite
useful. In the following we fill in the remaining details.

Let κ : R+ → R+ be increasing and continuous. Notice that we do not assume that
κ(0) = 0. In fact, typical examples for κ could be κ ≡ 1 or κ(x) = 1 + x. Finally, fix a
reference point x0 ∈ E. Define

G ,
{
ω ∈ D(E) : r(ω(t), ω(t−)) ≤ k(t)κ

(
sup
s≤t

r(ω(s), x0)
)

for all t > 0
}
.

Using an exhausting sequence for the jumps of the coordinate process on D(E), we
immediately see that G ∈ B(D(E)), where D(E) is endowed with the Skorokhod J1

topology. In fact, we can say more, as the following proposition shows. For E = Rd and
κ ≡ 1 or κ(x) = 1 + x, Proposition 2.12 is given by [22, Lemma 4.2] and [24, Lemma 3.6].
We adapt the proof to our abstract framework.

Proposition 2.12. The set G is closed in D(E) for the local uniform and the Skorokhod
J1 topology. Moreover, on G the Skorokhod J1 topology coincides with the local uniform
topology.

Proof. First of all, as κ is continuous, it is easy to see that G is closed in the local uniform
topology. Hence, it suffices to prove the second claim, i.e. that the Skorokhod J1 and the
local uniform topology coincide on G. Of course, we only need to show that Skorokhod
J1 convergence implies local uniform convergence. Take ω1, ω2, · · · ∈ G and ω ∈ D(E)

such that ωn → ω in the Skorokhod J1 topology. By virtue of [36, Theorem 2.6.2] and [25,
Propositions VI.2.1, VI.2.7], it suffices to prove that r(ωn(t), ωn(t−))→ r(ω(t), ω(t−)) for
all t > 0 such that r(ω(t), ω(t−)) > 0. We fix such a t > 0. Thanks to [12, Problem 16,
p. 152] (or [36, Theorem 2.7.1]), there exists a compact set K = Kt ⊂ E such that
ωn(s) ∈ K for all s ≤ t + 1 and n ∈ N. Hence, taking into account that κ is increasing,
there exists a constant C > 0 such that

sup
n∈N

κ
(

sup
s≤t+1

r(ωn(s), x0)
)
≤ κ

(
sup
x∈K

r(x, x0)
)
≤ C.

It is well-known ([25, Proposition VI.2.1]) that there exists a sequence tn → t with
r(ωn(tn), ωn(tn−)) → r(ω(t), ω(t−)). Now, for large enough n we get r(ωn(tn), ωn(tn−))

≤ Ck(tn) and Lemma 2.10 yields that tn = t when n is large enough. This implies
r(ωn(t), ωn(t−))→ r(ω(t), ω(t−)) and the proof is complete.

In Section 5 below we use a randomized version of the set G and the continuous map-
ping theorem for weak-strong convergence to relax the continuity assumptions in certain
stability results for semimartingales, and to derive a version of the Ethier–Kurtz stability
theorem associated to test processes of the type (1.3). The randomization is important
as it allows for a much more flexible jump structure than the set G might suggest. We
learned about the idea to use a set similar to G to relax continuity assumptions from
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Jacod and Mémin [22, 24] and their work on stability and existence results for SDEs with
semimartingale drivers.

3 The martingale problem method revisited

The martingale problem method is a powerful tool to identify the weak limit X
of a weakly convergent sequence of stochastic processes X1, X2, . . . via martingale
properties of a family X of test processes. In the following we present a general version
of this method. More precisely, in Section 3.1 we start our program with a formal
introduction of a general martingale problem and in Section 3.2 we discuss various
examples appearing in the literature. The main results are given in Section 3.3.

3.1 Abstract martingale problems: the setting

Let us start with an introduction of an abstract martingale problem.

Setting. Let (Ω,F ,F = (Ft)t≥0) be a filtered space which supports a family X of R-
valued right-continuous adapted processes. Furthermore, let (U,U) be a measurable
space and let (E,B(E)) be a Polish space with its Borel σ-field. Take also a subset
F ⊂ ER+ and endow it with a topology which turns it into a Polish space. We emphasize
that the choice of the topology is rather flexible. Let X = (Xt)t≥0 be an E-valued process
such that for each ω ∈ Ω the path t 7→ Xt(ω) is an element of the path space F and the
map Ω × R+ 3 (ω, t) 7→ Xt(ω) ∈ F is F ⊗ B(R+)/B(F )-measurable. Finally, let L be a
U -valued random variable on (Ω,F) and, as in Section 2, we define the product space
S , U × F and S , U ⊗ B(F ).

Example 3.1. (i) In many classical cases X has càdlàg or even continuous paths and
it is natural to take F = D(E) or C(E) (endowed with the Skorokhod J1 topology2

which renders D(E) and C(E) into Polish spaces).

(ii) In some frameworks of recent interest X has less path regularity. For example,
this is the case for solutions to VSDEs as introduced in Example 3.13 below, where
F = Lploc(R+,R

d)×D(Rk) is a natural state space for solutions.

Definition 3.2. We call a probability measure P on (Ω,F) a solution to the (local)
martingale problem (MP) X, if all processes in X are (local) (F, P )-martingales. The sets
of solutions to the martingale problem and the local martingale problem are denoted by
M(X) andMloc(X), respectively.

In many cases of interest, the set X has a canonical structure as described in the
following definition.

Definition 3.3. We call X canonical for (L,X), or simply canonical, if the pair (L,X) is
clear from the context, if for every t ∈ R+ there exists a set X◦t of S/B(R)-measurable
functions Y ◦t : S → R such that for every Y ∈ X there exists a Y ◦t ∈ X◦t such that
Yt = Y ◦t (L,X). We call (Y ◦t )t≥0 a canonical version of Y .

In this paper we restrict our attention to canonical test processes.

Standing Assumption 3.4. The set X is canonical for (L,X).

A prototype example for a test process from X is given by

f(Xt)−
∫ t

0

g(s, L,X)q(ds), t ∈ R+,

2On C(E) the Skorokhod J1 coincides with the local uniform topology.
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where f and g are sufficiently measurable and q is a deterministic locally finite measure.
In Section 5.3 below, we investigate the martingale problem associated to such test
processes and specify our theorems to this setting.

Besides the set of test processes X, which are candidates for (local) martingales, we
further introduce a set of test functions for the martingale property.

Definition 3.5. We call a family Z◦ = {Z◦t , t ∈ R+} a determining set (for X), if it has
the following properties:

(i) for every t ∈ R+, Z◦t consists of bounded S/B(R)-measurable functions S → R;

(ii) for every probability measure P on (Ω,F), Y ∈ X and s < t with Yt, Ys ∈ L1(P ) the
following implication holds:

EP
[
YtZ

◦
s (L,X)

]
= EP

[
YsZ

◦
s (L,X)

]
for all Z◦s ∈ Z◦s =⇒ P -a.s. EP

[
Yt|Fs

]
= Ys.

Let us present three typical determining sets for important settings. Notice that for
product settings it is possible to combine the determining sets from these examples.

Example 3.6. (i) Suppose that Ft = σ(Xs, s ≤ t) for t ∈ R+. Take F = D(E) or C(E)

and denote the corresponding coordinate process by X. Then, for any dense set
D ⊂ R+, the family Z◦ = {Z◦t , t ∈ R+} defined by

Z◦t ,
{ n∏
i=1

hi(Xti) : n ∈ N, t1, . . . , tn ∈ D ∩ [0, t], h1, . . . , hn ∈ Cb(E)
}

is determining. As B(F ) = σ(Xt, t ∈ R+) (see [12, Proposition 3.7.1]), part (i) of
Definition 3.5 is obvious and part (ii) follows from the monotone class theorem.

(ii) Take E = R, F = Lploc(R+,R), for p ≥ 1, and let X : F → F be the identity. Fur-
thermore, assume that X is progressively measurable w.r.t. Ft , σ(Xs, s ≤ t)

and

Xt = X̂t , lim inf
n→∞

(
n

∫ t+ 1
n

t

Xsds
)
, t ∈ R+. (3.1)

By Lebesgue’s differentiation theorem we always have Xt = X̂t for a.a. t ∈ R+ and
hence, as X should be considered as an Lploc(R+,R)-valued random variable, the
last assumption is essentially without loss of generality. Then, for any dense set
D ⊂ R+, the family Z◦ = {Z◦t , t ∈ R+} defined by

Z◦t ,
{ n∏
i=1

hi

(∫ ti

0

Xsds
)

: n ∈ N, t1, . . . , tn ∈ D ∩ [0, t], h1, . . . , hn ∈ Cb(R)
}

is determining. Part (i) in Definition 3.5 follows from the fact that the maps

Lploc(R+,R) 3 f = (f(s))s≥0 7→
∫ t

0

f(s)ds, t ∈ R+,

are continuous. For (ii) it suffices to use the monotone class theorem together with
the observation that

Ft = Gt , σ
(∫ s

0

Xudu, s ≤ t
)
.

Here, the inclusion Gt ⊂ Ft is clear and the converse inclusion follows from
X = X̂. To see this, note that X̂ is (Gt+)t≥0 , (Ht)t≥0-predictable (as pointwise
limit of continuous processes) and thus (Ht−)t≥0 adapted. As Ht− ⊂ Gt, X̂ is
(Gt)t≥0-adapted and X = X̂ implies Ft ⊂ Gt.
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(iii) The determining sets from (i) and (ii) are rather classical in the sense that they
only depend on X and not on the control variable L. We now present an example
which only depends on L and which turns out to be useful for annealed settings,
see Section 5.5.3 below. Suppose that U = Ω and that L : Ω→ U = Ω is the identity
on Ω. In this case, if Πt is an intersection stable collection of subsets of Ω such
that Ω ∈ Πt and Ft = σ(Πt), then the family Z◦t = {1G : G ∈ Πt} is determining. Of
course, this fact is an immediate consequence of the monotone class theorem. We
emphasis that, quite contrary to (i) and (ii), for this example solely L is needed.

Before we turn to our abstract main results, we collect a variety of important examples
for martingale problems.

3.2 Examples for martingale problems

The first example is the most classical martingale problem as introduced by Stroock
and Varadhan.

Example 3.7 (Martingale Problem of Stroock and Varadhan). Let Ω = C(Rd) and let X be
the coordinate process on Ω. Furthermore, let b : R+×Rd → Rd and σ : R+×Rd → Rd×r

be locally bounded Borel functions. To obtain the martingale problem of Stroock and
Varadhan [37], define X to be the set of all test processes of the form

f(X)−
∫ ·

0

(
〈b(s,Xs),∇f(Xs)〉+ 1

2 tr(σσ∗(s,Xs)∇2f(Xs))
)
ds

where f ∈ C2
c (Rd). It is classical (see, e.g. [28, Section 5.4]) that the setM(X) coincides

with the set of solution measures (i.e. laws of solution processes) for the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

where W is an r-dimensional standard Brownian motion.

Example 3.8 (Martingale Problem of Ethier and Kurtz). Let E be a Polish space and take
Ω = D(E) or C(E). Again, let X be the coordinate process. Fix a set A ⊂ Cb(E)×B(E).
To obtain the martingale problem of Ethier and Kurtz [12], define X to be the set of all
test processes of the form

f(X)−
∫ ·

0

g(Xs)ds, (f, g) ∈ A.

The setting from Example 3.7 is a special case of this framework.

Example 3.9 (Semimartingale Problems). In the following we discuss two ways to
characterize the laws of semimartingales via martingale problems. The first one is given
by [25, Theorem III.2.7]. Set Ω = D(Rd) and let (B,C, ν) be a candidate triplet for
semimartingale characteristics corresponding to a fixed truncation function h : Rd → Rd,
see [25, Definition II.2.6] for a precise definition including the technical requirements.
Let X be the coordinate process and define

X(h) , X−
∑
s≤·

(
∆Xs − h(∆Xs)

)
,

M(h) , X(h)− X0 −B,

C̃ij , Cij +

∫
hi(x)hj(x)ν([0, ·]× dx)−

∑
s≤·

∆Bis∆B
j
s .

Further, let C +(Rd) be a family of bounded real-valued Borel functions on Rd vanishing
around the origin, which is measure determining for the class of Borel measures η on
Rd with the properties η({0}) = 0 and η({x ∈ Rd : ‖x‖ > ε}) < ∞ for all ε > 0, cf. [25,
II.2.20] for more details. Let X consist of the following processes:
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(i) M(h)(i), i = 1, . . . , d;
(ii) M(h)(i)M(h)(j) − C̃(ij), i, j = 1, . . . , d;

(iii)
∑
s≤· g(∆Xs)−

∫
g(x)ν([0, ·]× dx), g ∈ C +(Rd).

Then,Mloc(X) is the set of laws of semimartingales with characteristics (B,C, ν).
Next, we discuss an alternative characterization which can be seen as a reformulation

of [25, Theorem II.2.42]. It is well-known ([25, Proposition II.2.9]) that (B,C, ν) admits a
decomposition of the form

dBt = btdAt, dCt = ctdAt, ν(dt, dx) = Ft(dx)dAt,

where A is an increasing right-continuous predictable process, and b, c and F are the
predictable densities of (B,C, ν) w.r.t. the induced measure dAt. For f ∈ C2

b (Rd), set

Lf(s) , 〈bs,∇f(Xs−)〉+ 1
2 tr(cs∇2f(Xs−))

+

∫ (
f(Xs− + x)− f(Xs−)− 〈∇f(Xs−), h(x)〉

)
Fs(dx).

Let X∗ be the set of all test processes of the form

f(X)−
∫ ·

0

Lf(s)dAs, f ∈ C2
b (Rd).

Then,Mloc(X∗) =Mloc(X).
Finally, let us relate the local MP (X) to the class of Itô diffusions and the martingale

problem of Stroock and Varadhan as explained in Example 3.7. For Brownian motion,
more generally for diffusions, it is well-known that it suffices to consider linear and
quadratic test functions, i.e. f(x) = x(i) and f(x) = x(i)x(j) for i, j = 1, . . . , d, provided
one asks in addition for continuous paths, cf. [28, Proposition 5.4.6]. For Brownian
motion this observation is precisely Lévy’s characterization. Namely, using f(x) = x(i)

yields that X is a continuous3 local martingale, and using in addition f(x) = x(i)x(j)

implies that [X,X] = Id. The set X generalizes this idea to general semimartingales.
Thereby, the processes in (iii) take care of the jump structure. To see this, assume that
ν = 0, which means that (iii) consists of the processes

∑
s≤· g(∆Xs) with g ∈ C +(Rd). It

is clear that this class consists of local martingales if and only if X is a.s. continuous.
This observation relates the processes in (iii) above to the requirement of continuous
paths in Lévy’s characterization.

Remark 3.10. It may happen that a probability measure solves the martingale problems
from Examples 3.8 and 3.9 but not both in a unique manner. For instance, suppose that
X is a Brownian motion sticky at the origin, i.e. X solves the system

dXt = 1{Xt 6=0}dWt, 1{Xt=0}dt = 1
µdL

0
t (X), µ > 0,

where W is a standard Brownian motion and L0(X) denotes the semimartingale (right)
local time of X in the origin. This characterization of a sticky Brownian motion is
taken from [11]. It is obvious that X is a continuous local martingale (and hence a
semimartingale) with quadratic variation

[X,X] =

∫ ·
0

1{Xs 6=0}ds.

Thus, independent of the parameter µ, the law of X solves the (semi)martingale problem
from Example 3.9 with (0, C, 0) where

C(ω) =

∫ ·
0

1{ω(s)6=0}ds, ω ∈ D(R).

3Here, the additional requirement of continuous paths has to be taken into consideration.

EJP 28 (2023), paper 19.
Page 13/46

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP902
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The martingale problem method revisited

In fact, even the Wiener measure solves this martingale problem. We conclude that the
law of X cannot be captured in a unique manner by the semimartingale problem but, as
X is a one-dimensional diffusion in the sense of Itô and McKean [20], its law is a unique
solution to the martingale problem of Example 3.8 when A ⊂ Cb(R)× Cb(R) is chosen
appropriately,4 see the discussion on p. 994 in [11] and [6, Remark 5.3] for more details.

Example 3.11 (Martingale Problem for Diffusions with a Change Point). Let (Ω,F ,F, P )

be a filtered probability space which supports a one-dimensional standard Brownian
motion W and a finite stopping time τ . Take two Borel functions σ, γ : R→ R and let X
be a continuous adapted process whose dynamics solve the equation

dXt = (σ(Xt)1{t≤τ} + γ(Xt)1{t>τ})dWt.

The process X is a so-called change point process with change time τ . Processes of this
type (possibly with drift, which we left out for simplicity) were, for instance, studied in
[13] from a financial perspective. The dynamics of X can be captured by a canonical
martingale problem. Let X be the set of all processes of the form

f(X)−
∫ ·

0

1
2f
′′(Xs)(σ

2(Xs)1{s≤τ} + γ2(Xs)1{s>τ})ds, f ∈ C2(R).

We take U = R+, F = C(R) and we set L , τ . For these choices, it is easy to see
that the set X is canonical for (X,L). It follows from Itô’s formula that P ∈ M(X).
Conversely, if Q ∈ M(X), then, by the same arguments as used in the proof of [28,
Proposition 5.4.6], on a standard extension of the underlying basis (Ω,F ,F, Q), there
exists a one-dimensional standard Brownian motion B such that

dXt = (σ(Xt)1{t≤τ} + γ(Xt)1{t>τ})dBt.

We emphasis that in this example, the underlying space Ω does not necessarily coincide
with F = C(R) and that the MP (X) is canonical for (X,L) but that the test processes do
not solely depend on X.

Example 3.12 (Martingale Characterization for SPDEs). We now describe a martingale
problem for the semigroup approach to semilinear stochastic partial differential equa-
tions (SPDEs). The standard reference for this framework is the monograph of Da Prato
and Zabczyk [10].

Let E = (E, 〈·, ·〉E) be a separable real Hilbert space and set Ω = C(E). Take
another separable real Hilbert space (H, 〈·, ·〉H) and denote by L(H,E) the space of linear
bounded operators H → E. Moreover, let µ : R+ × Ω→ E and σ : R+ × Ω→ L(H,E) be
progressively measurable processes. To be precise, we mean that σh : R+ × Ω → E is
progressively measurable for every h ∈ H. Finally, let A : D(A)→ E be the generator of
a C0-semigroup on E and let A∗ : D(A∗)→ E be its adjoint. Define Σ to be the set of all
functions g(〈·, y∗〉E) where y∗ ∈ D(A∗) and g ∈ C2(R). For f = g(〈·, y∗〉E) ∈ Σ we set

(Lf)s , g′(〈Xs, y∗〉E)(〈Xs, A∗y∗〉E + 〈µs(X), y∗〉E)

+ 1
2g
′′(〈Xs, y∗〉E)〈σ∗s (X)y∗, σ∗s (X)y∗〉H .

Let X be the set of all test processes of the form

f(X)−
∫ ·

0

(Lf)sds, f ∈ Σ.

4see Section 2.7 in [15] for details on how A ⊂ Cb(R) × Cb(R) can be taken to capture diffusions in the
sense of Itô and McKean.
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Then, under suitable assumptions on the coefficients A, b and σ, the setMloc(X) coincides
with the set of laws of mild solutions to the SPDE

dXt = (AXt + µt(X))dt+ σt(X)dWt,

where W is a standard cylindrical Brownian motion. We refer to [9, Proposition 2.6,
Lemma 3.6] for more details.

Example 3.13 (Local Martingale Problem for SDEs of Volterra type). Let (X,Z) be a
measurable process with paths in Lploc(R+,R

d) × D(Rk) such that, on its underlying
filtered probability space, X is predictable, Z is a semimartingale with characteristics

BZ =

∫ ·
0

b(Xs)ds, CZ =

∫ ·
0

a(Xs)ds, νZ(dx, dt) = ν(Xt, dx)dt,

corresponding to a fixed truncation function h : Rk → Rk, and

Xt = g0(t) +

∫
[0,t)

Kt−sdZs, P ⊗ λ\-a.e.,

where K is a convolution kernel R+ → Rd×k. We call such a process (X,Z) a solution
to a Volterra SDE (VSDE). Recently, it was proven in [1] that solutions to VSDEs have a
martingale characterization. For f ∈ C2

b (Rk) and (x, z) ∈ Rd ×Rk we set

Lf(x, z) , 〈b(x),∇f(z)〉+ 1
2 tr(a(x)∇2f(z))

+

∫ (
f(z + y)− f(z)− 〈h(y),∇f(z)〉

)
ν(x, dy).

Then, (X,Z) is a solution to the VSDE described above if and only if the processes

f(Z)−
∫ ·

0

Lf(Xs, Zs)ds, f ∈ C2
b (Rk),

are local martingales and∫ t

0

Xsds =

∫ t

0

g0(s)ds+

∫ t

0

Kt−sZsds, t ∈ R+.

In Section 4.2 below we take a closer look at VSDEs.

3.3 Identifying weak limits via abstract martingale problems

The classical martingale problems from Examples 3.7, 3.8 and 3.9 proved them-
selves as valuable tools to identify weak limits of stochastic processes. In the following
we discuss such an application for the abstract martingale problem as introduced in
Definition 3.2. We extend the setting from the beginning of Section 3.1 as follows:

Setting. For every n ∈ N, let Bn , (Ωn,Fn,Fn = (Fnt )t≥0, P
n) be a filtered probability

space, which supports a U -valued random variable Ln and an E-valued measurable
processes Xn = (Xn

t )t≥0 such that, for every ω ∈ Ω, the process Xn(ω) is an element
of F and the map Ωn 3 ω 7→ Xn(ω) ∈ F is Fn/B(F )-measurable. Moreover, we fix a
probability measure P on (Ω,F) and denote Qn , Pn ◦ (Ln, Xn)−1 and Q , P ◦ (L,X)−1.

Recall Definition 2.1 for the concept of weak-strong convergence, and Definition 2.7
for the concept of (Qn, Q)-continuity. Furthermore, recall that X is assumed to be
canonical (see Definition 3.3).
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Theorem 3.14. Let D ⊂ R+ be dense, and assume the following:

(A1) Qn →ws Q;

(A2) there exists a determining set Z◦ = {Z◦t , t ∈ R+} for X;

(A3) for every Y ∈ X there exists a canonical version (Y ◦t )t≥0 such that for every t ∈ D,
s ∈ D ∩ [0, t] and Z◦s ∈ Z◦s the following hold: Y ◦t and Y ◦t Z

◦
s are (Qn, Q)-continuous,

the set {Y ◦r (Ln, Xn) : r ∈ D ∩ [0, t], n ∈ N} is uniformly integrable, and

lim
n→∞

EP
n[

(Y ◦t (Ln, Xn)− Y ◦s (Ln, Xn))Z◦s (Ln, Xn)
]

= 0. (3.2)

Then, P solves the MP (X), i.e. P ∈M(X).

Before we prove this theorem, we briefly recall [25, Lemma IX.1.11], which is very
useful in the following.

Lemma 3.15. A family {Zi : i ∈ I} is uniformly integrable if and only if

sup
i∈I

E
[
|Zi| − |Zi| ∧ z

]
→ 0 as z →∞.

Proof of Theorem 3.14. We have to prove that every Y ∈ X is a martingale on (Ω,F ,F, P ).
Fix Y ∈ X with canonical version Y ◦ = (Y ◦t )t≥0 and take s, t ∈ D such that s < t and
Z◦s ∈ Z◦s . Using the canonical property of Y in the first, the (Qn, Q)-continuity of Y ◦Z◦

and Theorem 2.9 in the second, and (3.2) in the third equality, we find

EP
[
(Yt − Ys)Z◦s (L,X)

]
= EP

[
(Y ◦t (L,X)− Y ◦s (L,X))Z◦s (L,X)

]
= lim
n→∞

EP
n[

(Y ◦t (Ln, Xn)− Y ◦s (Ln, Xn))Z◦s (Ln, Xn)
]

= 0.
(3.3)

Thus, by (A2) and part (ii) of Definition 3.5, we conclude that P -a.s. EP
[
Yt|Fs

]
= Ys.

Next, we show this identity for general s < t. We start by showing that the set
{Y ◦s (L,X) : s ∈ D ∩ [0, t]} is uniformly integrable for every t ∈ R+. Let s ∈ D. The
(Qn, Q)-continuity of Y ◦s and Theorem 2.9 yield that

EP
[
|Y ◦s (L,X)| − |Y ◦s (L,X)| ∧N

]
= lim
n→∞

EP
n[
|Y ◦s (Ln, Xn)| − |Y ◦s (Ln, Xn)| ∧N

]
≤ sup
n∈N

EP
n[
|Y ◦s (Ln, Xn)| − |Y ◦s (Ln, Xn)| ∧N

]
.

Thus,

sup
s∈D∩[0,t]

EP
[
|Y ◦s (L,X)| − |Y ◦s (L,X)| ∧N

]
≤ sup
s∈D∩[0,t]

sup
n∈N

EPn
[
|Y ◦s (Ln, Xn)| − |Y ◦s (Ln, Xn)| ∧N

]
→ 0

as N → ∞ by Lemma 3.15. Another application of Lemma 3.15 implies that the set
{Ys : s ∈ D ∩ [0, t]} = {Y ◦s (L,X) : s ∈ D ∩ [0, t]} is uniformly integrable.

Now, let s < t be arbitrary, i.e. not necessarily in the set D. As D is dense in R+,
there are sequences tn ↘ t and sn ↘ s in D such that sn < tn for all n ∈ N. The
right-continuity of Y and Vitali’s theorem yield that for every G ∈ Fs we have

EP
[
Yt1G

]
= lim
n→∞

EP
[
Ytn1G

]
= lim
n→∞

EP
[
Ysn1G

]
= EP

[
Ys1G

]
. (3.4)

We conclude the P -martingale property of Y . The proof is complete.

Remark 3.16. In case (A1) holds and P ∈M(X), (3.2) has to hold under the remaining
assumptions in (A3), cf. (3.3).
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Let us also comment on the case without control variables, which can be captured
with the assumption that U is a singleton. We will simplify our notation for this situation
and remove Ln and L. To clarify our terminology, we write Xn → X weakly when the
laws of Xn converge in Mc(F ) to the law of X. Moreover, we call a Borel function
f : F → R to be P -continuous at X, if there exists a set C ∈ B(F ) such that P (X ∈ C) = 1

and f(sn)→ f(s) whenever sn → s ∈ C. The following is an immediate consequence of
Theorem 3.14.

Corollary 3.17. Suppose that U be a singleton, D ⊂ R+ be dense, and assume the
following:

(S1) Xn → X weakly;

(S2) there exists a determining set Z◦ = {Z◦t , t ∈ R+} for X;

(S3) for every Y ∈ X there exists a canonical version (Y ◦t )t≥0 such that for all t ∈ D,
s ∈ D ∩ [0, t] and Z◦s ∈ Z◦s the following hold: Y ◦t and Y ◦t Z

◦
s are P -continuous at X,

the set {Y ◦r (Xn) : r ∈ D ∩ [0, t], n ∈ N} is uniformly integrable, and

lim
n→∞

EP
n[

(Y ◦t (Xn)− Y ◦s (Xn))Z◦s (Xn)
]

= 0.

Then, P solves the MP (X), i.e. P ∈M(X).

As the following proposition shows, (3.2) in Theorem 3.14 holds in case Y ◦(Ln, Xn)

can be approximated by a sequence of martingales on Bn.

Proposition 3.18. Let all assumptions from Theorem 3.14 hold, except (3.2). Suppose
that for every s ∈ D,Z◦s ∈ Z◦s the random variable Z◦s (Ln, Xn) is Fns -measurable, and
that there exists a sequence (Y n)n∈N such that Y n is a martingale on Bn. If

lim
n→∞

EP
n[

(Y nt − Y ◦t (Ln, Xn))Z◦s (Ln, Xn)
]

= 0, s, t ∈ D, s ≤ t, Z◦s ∈ Z◦s , (3.5)

then (3.2) holds. In particular, (3.2) holds in case

lim
n→∞

EP
n[
|Y nt − Y ◦t (Ln, Xn)|

]
= 0. (3.6)

Proof. Using the martingale property of Y n in the first, and (3.5) in the second equality,
the hypothesis yields that

lim
n→∞

EP
n[

(Y ◦t (Ln, Xn)− Y ◦s (Ln, Xn))Z◦s (Ln, Xn)
]

= lim
n→∞

EP
n[

(Y ◦t (Ln, Xn)− Y nt + Y ns − Y ◦s (Ln, Xn))Z◦s (Ln, Xn)
]

= 0.

The second claim follows from the first.

Remark 3.19. By Vitali’s theorem, (3.6) can be replaced by uniform integrability and
convergence in probability. More precisely, if the family {|Y nt − Y ◦t (Ln, Xn)| : n ∈ N} is
uniformly integrable and, for all ε > 0,

Pn(|Y nt − Y ◦t (Ln, Xn)| ≥ ε)→ 0 as n→∞,

then (3.6) holds.

Discussion. By virtue of Proposition 3.18, it seems natural to assume that also the
sequence P 1, P 2, . . . solves an (abstract) martingale problem. Although we are only
interested in limiting martingale problems which are canonical for (L,X), it is not always
the case that the martingale problems associated to P 1, P 2, . . . are canonical for (Ln, Xn).
The reason for this is that we ask the sequence (L1, X1), (L2, X2), . . . to converge in the
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weak-strong sense, which in particular means that the sequence L1, L2, . . . converges
setwise. In some cases this requirement does not hold for arbitrary choices of L1, L2, . . . .
To illustrate this issue, let us discuss an explicit example (inspired by [19]). For every
n = 1, 2, . . . , take a sequence Zn1 , Z

n
2 , . . . of real-valued i.i.d. random variables with mean

µn and variances vn/2. Furthermore, let N = (Nt)t≥0 be a standard Poisson process
which is independent of all Znk , n, k = 1, 2, . . . . We are interested in the limit of the
sequence

Xn , n

∫ ·
0

ZnNn2s
ds ≡ n

∫ ·
0

Y ns ds, n = 1, 2, . . . .

In case nµn → 0 and vn → 1, it follows from the Lindeberg–Feller theorem that the finite
dimensional distributions of X1, X2, . . . converge to those of Brownian motion if and
only if the Lindeberg–Feller condition holds, i.e., for every ε > 0, E[(Zn0 )21{|Zn

0 |>εn}]→ 0

as n→∞. Clearly, this shows that the only candidate for a functional limit is Brownian
motion. To use the martingale problem method to identify Brownian motion as limiting
process, one can consider the approximating martingale problems given by

Xn ,
{
f(Xn) + 1

nY
nf ′(Xn)−

∫ ·
0

(
f ′′(Xn

s )(Y ns )2 + f ′(Xn
s )nµn

)
ds : f ∈ C2

c (R)
}
.

As shown in [19], in case supn∈NE[(Zn0 )2+ε] <∞ for some ε > 0, approximately

f(Xn) + 1
nY

nf ′(Xn)−
∫ ·

0

(
f ′′(Xn

s )(Y ns )2 + f ′(Xn
s )nµn

)
ds

≈ f(Xn)−
∫ ·

0

1
2f
′′(Xn

s )ds,

(3.7)

where the latter test process corresponds to Brownian motion. Evidently, the martingale
problem Xn is canonical for (Y n, Xn) and therefore, it would be natural to take Ln = Y n.
However, the sequence (Y 1, X1), (Y 2, X2), . . . seems not to converge in the weak-strong
sense. To overcome this problem, we can take the sequence L1, L2, . . . to be deterministic
and constant (or U to be a singleton), for instance, and solely work with the sequence
X1, X2, . . . . Finally, (3.7) shows that randomness gets lost in the limit in the sense that
the approximating martingale problems X1,X2, . . . are not only depending on X1, X2, . . . ,
while the limiting martingale problem does only depend on the limit X.

We now replace the uniform integrability assumption in (A3) by a uniform integrability
assumption on the approximating martingales.

Theorem 3.20. Let all assumptions from Theorem 3.14 hold, except (A3). Suppose that
for every s ∈ D,Z◦s ∈ Z◦s the random variable Z◦s (Ln, Xn) is Fns -measurable, and that the
following holds:

(A4) for every Y ∈ X there exists a canonical version (Y ◦t )t≥0 such that for every t ∈ D,
s ∈ D ∩ [0, t] and Z◦s ∈ Z◦s the following hold: Y ◦t and Y ◦t Z

◦
s are (Qn, Q)-continuous.

Moreover, there exists a sequence (Y n)n∈N such that Y n is a martingale on Bn, the
set {Y ns : s ∈ D ∩ [0, t], n ∈ N} is uniformly integrable and

lim
n→∞

Pn(|Y nt − Y ◦t (Ln, Xn)| ≥ ε) = 0, ε > 0. (3.8)

Then, P solves the MP (X), i.e. P ∈M(X).

Proof. It is not hard to see that the proof of Theorem 3.14 remains valid in case the
following two properties hold:

{Y ◦s (L,X) : s ∈ D ∩ [0, t]} is uniformly integrable for all t ∈ D, (3.9)
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EP
n[
Y nt Z

◦
s (Ln, Xn)

]
→ EP

[
Y ◦t (L,X)Z◦s (L,X)

]
for all s, t ∈ D, s ≤ t, Z◦s ∈ Z◦s . (3.10)

Indeed, (3.9) suffices for (3.4), and if (3.10) holds, we write for s, t ∈ D, s < t, Z◦s ∈ Z◦s

EP
[
(Yt − Ys)Z◦s (L,X)

]
= EP

[
(Y ◦t (L,X)− Y ◦s (L,X))Z◦s (L,X)

]
= lim
n→∞

EPn
[
(Y nt − Y ns )Z◦s (Ln, Xn)

]
= 0,

i.e. the conclusion of (3.3) holds as well.
For (3.9), note that (3.8) and Theorem 2.9 yield that, for all N > 0 and t ∈ D,

lim
n→∞

∣∣EPn[
|Y nt | ∧N

]
− EP

[
|Y ◦t (L,X)| ∧N

]∣∣
≤ lim
n→∞

EP
n[
|Y nt − Y ◦t (Ln, Xn)| ∧N

]
+ lim
n→∞

∣∣EPn
[
|Y ◦t (Ln, Xn)| ∧N

]
− EP

[
|Y ◦t (L,X)| ∧N

]∣∣ = 0.

Hence, for every N > 0 and t ∈ D we have

EP
[
|Y ◦t (L,X)| − |Y ◦t (L,X)| ∧N

]
= lim
m→∞

EP
[
|Y ◦t (L,X)| ∧m− |Y ◦t (L,X)| ∧N

]
= lim
m→∞

lim
n→∞

EP
n[
|Y nt | ∧m− |Y nt | ∧N

]
≤ sup
n∈N

EP
n[
|Y nt | − |Y nt | ∧N

]
.

Together with uniform integrability of {Y ns : s ∈ D ∩ [0, t], n ∈ N} and Lemma 3.15, this
inequality yields (3.9). Next, we verify (3.10). For s, t ∈ D, s ≤ t, Z◦s ∈ Z◦s and N > 0, we
obtain ∣∣EP [Y ◦t (L,X)Z◦s (L,X)

]
− EP

n[
Y nt Z

◦
s (Xn)

]∣∣
. EP

[
|Y ◦t (L,X)| − |Y ◦t (L,X)| ∧N

]
+
∣∣EP [(Y ◦t (L,X) ∨ (−N) ∧N)Z◦s (L,X)

]
− EP

n[
(Y ◦t (Ln, Xn) ∨ (−N) ∧N)Z◦s (Ln, Xn)

]∣∣
+ EP

n[∣∣Y ◦t (Ln, Xn) ∨ (−N) ∧N − Y nt ∨ (−N) ∧N
∣∣]

+ EP
n[
|Y nt | − |Y nt | ∧N |

]
, I1 + I2 + I3 + I4.

Theorem 2.9 yields that I2 → 0 as n→∞. Moreover, (3.8) implies that I3 → 0 as n→∞.
Finally, uniform integrability and Lemma 3.15 yield that I1 + I4 → 0 as N →∞ uniformly
in n. In summary, we conclude that (3.10) holds and hence the proof is complete.

In Theorem 3.20 we do not impose integrability assumptions on the elements of X but
on its approximation sequences. Hence, Theorems 3.14 and 3.20 have different scopes
and do not imply each other.

Finally, let us again comment on the case without control variables. The following is
an immediate consequence of Theorem 3.20.

Corollary 3.21. Let all assumptions from Corollary 3.17 hold, except (S3). Suppose
that for every s ∈ D and Z◦s ∈ Z◦s the random variable Z◦s (Xn) is Fns -measurable, and
that the following holds:

(S4) For every Y ∈ X there exists a canonical version (Y ◦t )t≥0 such that for every t ∈ D,
s ∈ D ∩ [0, t] and Z◦s ∈ Z◦s the following hold: Y ◦t and Y ◦t Z

◦
s are P -continuous at X.

Moreover, there exists a sequence (Y n)n∈N such that Y n is a martingale on Bn, the
set {Y ns : s ∈ D ∩ [0, t], n ∈ N} is uniformly integrable and

lim
n→∞

Pn(|Y nt − Y ◦t (Xn)| ≥ ε) = 0, ε > 0.
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Then, P solves the MP (X), i.e. P ∈M(X).

In the next section we relate the results above to known theorems from the literature.
Thereafter, in Section 5 we present new results which are tailored to processes with
fixed times of discontinuity. For these results it is crucial that we can work with the
concept of weak-strong convergence.

4 Relation to existing results

The purpose of this section is to specialize the terminologies introduced in the previ-
ous section to three examples taken from the literature: in Section 4.1 we recover the
classical convergence theorem for Markovian martingale problems as presented in the
monograph [12] by Ethier and Kurtz, and in Section 4.2 we prove a mild generalization
of a stability result for Volterra SDEs from [1]. Finally, in Section 4.3 we localize a theo-
rem by Jacod and Shiryaev [25] for semimartingales by replacing a global with a local
boundedness hypothesis on the semimartingale characteristics. Such a generalization
has been announced in [25], but it was not stated in a precise manner. We believe it to
be useful for future applications and therefore of independent interest.

4.1 Relation to a theorem by Ethier and Kurtz

LetE be a Polish space, for every n ∈ N, letB=(Ω,F ,F, P ) andBn = (Ωn,Fn,Fn, Pn)

be filtered probability spaces which support E-valued càdlàg adapted processes X and
Xn, respectively. Moreover, suppose that the filtration F on B is generated by X. Let
A ⊂ Cb(E)× Cb(E) and define X to be the set of all test processes of the form

f(X)−
∫ ·

0

g(Xs)ds, (f, g) ∈ A. (4.1)

Moreover, for every n ∈ N, let Xn be a set of pairs (ξ, φ) consisting of real-valued
progressively measurable processes on Bn such that

sup
s≤T

EP
n[
|ξs|+ |φs|

]
<∞, T > 0,

and such that

ξ −
∫ ·

0

φsds

is a martingale on Bn. The following theorem is a version of the implication (c′)⇒ (a′)
from [12, Theorem 4.8.10].

Theorem 4.1. Suppose that Xn → X weakly on D(E) endowed with the Skorokhod J1

topology, and assume that there exists a set Γ ⊂ R+ with countable complement such
that, for each (f, g) ∈ A and T > 0, there exists a sequence (ξn, φn) ∈ Xn such that

sup
n∈N

sup
s≤T

EP
n[
|ξns |+ |φns |

]
<∞, (4.2)

lim
n→∞

EP
n
[
(ξnt − f(Xn

t ))

k∏
i=1

hi(X
n
ti)
]

= 0, (4.3)

lim
n→∞

EP
n
[ ∫ t

s

(φnu − g(Xn
u ))du

k∏
i=1

hi(X
n
ti)
]

= 0, (4.4)

for all k ∈ N, t1, . . . , tk ∈ Γ ∩ [0, t], t ∈ Γ ∩ [0, T ], h1, . . . , hk ∈ Cb(E). Then, P ∈M(X).
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Proof. We check (S1) – (S3) in Corollary 3.17. Of course, (S1) holds by hypothesis. Let
Z◦ = {Z◦t , t ∈ R+} be as in part (i) of Example 3.6 with

D ,
{
t ∈ Γ: P (Xt 6= Xt−) = 0

}
.

As Γc and {t ∈ R+ : P (Xt 6= Xt−) > 0} are countable (see [12, Lemma 3.7.7] for the
countability of the second set), the set Dc is also countable. Consequently, D is dense
in R+. As explained in Example 3.6, Z◦ is a determining set for X. Thus, (S2) holds.
Finally, we check (S3). It is clear that any canonical version (Y ◦t )t≥0 from X is bounded
on finite time intervals. This implies that {Y ◦r (Xn) : r ∈ D ∩ [0, t], n ∈ N} is uniformly
integrable. Moreover, as ω 7→ ω(t) is continuous at ω whenever ω(t) = ω(t−), for every
t ∈ D any Z◦t ∈ Z◦t is P -a.s. continuous at X by definition of D. Similarly, again by
definition of D, for every t ∈ D the random variable Y ◦t is P -a.s. continuous at X. It is
left to verify the final part of (S3). Take Y ∈ X such that

Y = f(X)−
∫ ·

0

g(Xs)ds,

and set

Y n , ξn −
∫ ·

0

φns ds,

where ξn and φn are as in (4.2), (4.3) and (4.4). Let s, t ∈ D ⊂ Γ with s < t and take
Z◦s ∈ Z◦s . Clearly, we have

(Y ◦t (Xn)− Y nt + Y ns − Y ◦s (Xn))Z◦s (Xn)

= (f(Xn
t )− ξnt + ξns − f(Xn

s ))

k∏
i=1

hi(X
n
ti)

+

∫ t

s

(φnu − g(Xn
u ))du

k∏
i=1

hi(X
n
ti)

for certain k ∈ N, t1, . . . , tk ∈ Γ∩[0, s], h1, . . . , hk ∈ Cb(E) related to Z◦s , cf. Example 3.6 (i).
The Pn-expectation of the first term converges to zero by (4.3), and the Pn-expectation
of the second term converges to zero by (4.4). As Y n is a martingale on Bn we have

EP
n[

(Y ns − Y nt )Z◦s (Xn)
]

= 0,

and consequently,

lim
n→∞

EP
n[

(Y ◦t (Xn)− Y ◦s (Xn))Z◦s (Xn)
]

= lim
n→∞

EP
n[

(Y ◦t (Xn)− Y nt + Y ns − Y ◦s (Xn))Z◦s (Xn)
]

= 0.

We conclude that (S3) holds. Hence, the claim follows from Corollary 3.17.

Remark 4.2. In [12, Theorem 4.8.10, (a′) ⇒ (c′)] it is shown that in case Xn → X

weakly and P ∈M(X), there exist processes (ξn, φn) ∈ Xn with the properties (4.2), (4.3)
and (4.4).

In Section 5.3 below, we derive a version of Theorem 4.1 where we add another inte-
gral term w.r.t. a general locally finite measure to the class of test processes from (4.1).
At this point we stress that the proof (and the result itself) requires substantial adjust-
ments, as in this case the test processes have no Skorokhod J1 continuous canonical
versions in general. More comments on this issue are given at the end of Section 4.3.
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4.2 A stability result for Volterra equations

In this section we discuss a stability result for Volterra SDEs (VSDEs) of the type

Xt = g0(t) +

∫
[0,t)

Kt−sdZs, t ∈ R+, (4.5)

where X is an Rd-valued predictable process and Z is an Rk-valued semimartingale with
differential characteristics (b(X), a(X), ν(X)), i.e. whose characteristics (BZ , CZ , νZ)

are of the form

BZ =

∫ ·
0

b(Xs)ds, CZ =

∫ ·
0

a(Xs)ds, νZ(dx, dt) = ν(Xt, dx)dt.

Throughout this section we suppose them to correspond to a fixed continuous truncation
function h : Rk → Rk. A version of Theorem 4.4 below has recently been proven in [1,
Theorem 3.4]. The purpose of this section is to illustrate an application of Corollary 3.17
beyond the classical continuous or càdlàg setting.

We now provide a precise definition for solutions to VSDEs and introduce its param-
eters. The space Lploc(R+,R

d), for p ≥ 2 and d ∈ N, endowed with the local Lp-norm
topology, will serve as state space of the process X in (4.5). Now, we introduce the
following coefficients:

(D1) an initial value g0 ∈ Lploc(R+,R
d);

(D2) a convolution kernel K : R+ → Rd×k in Lploc(R+,R
d);

(D3) a characteristic triplet (b, a, ν), consisting of two Borel functions b : Rd → Rk and
a : Rd → Sk+ and a Borel transition kernel ν from Rd into Rk which does not charge
the set {0}, such that there exists a constant c > 0 with

‖b(x)‖+ ‖a(x)‖+

∫
(1 ∧ ‖y‖2)ν(x, dy) ≤ c(1 + ‖x‖p)

for all x ∈ Rd.

We are in the position to define solutions to the VSDE (4.5).

Definition 4.3. A triplet (B, X, Z) is called a weak solution to the Volterra SDE (VSDE)
associated to (g0,K, b, a, ν), if B = (Ω,F , (Ft)t≥0, P ) is a stochastic basis which sup-
ports two processes X and Z, where X is Rd-valued, predictable and has paths in
Lploc(R+,R

d), Z is an Rk-valued càdlàg semimartingale with differential characteristics
(b(X), a(X), ν(X)), and (4.5) holds P ⊗ λ\-almost everywhere.

Let (gn0 ,K
n, bn, an, νn) and (g0,K, b, a, ν) be coefficients for VSDEs. Moreover, for

every f ∈ C2
c (Rk) and (x, z) ∈ Rd ×Rk we set

Lf(x, z) , 〈b(x),∇f(z)〉+ 1
2 tr(a(x)∇2f(z))

+

∫ (
f(z + y)− f(z)− 〈h(y),∇f(z)〉

)
ν(x, dy).

Similar to L, we define Ln with (b, a, ν) replaced by (bn, an, νn). Set F = Lploc(R+,R
d)×

D(Rk) endowed with the product topology, where D(Rk) is endowed with the Skorokhod
J1 topology.

Theorem 4.4. Let (Bn, Xn, Zn) be a weak solution to the VSDE (gn0 ,K
n, bn, an, νn) for

every n ∈ N, and let (Ω,F , P ) be a probability space which supports a measurable
process (X,Z) with paths in F . Set Ft , σ(Xs, Zs, s ≤ t) for t ∈ R+ and B , (Ω,F ,F ,
(Ft)t≥0, P ). Suppose that X is F-progressively measurable, that (3.1) holds and assume
the following:
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(L1) (Xn, Zn)→ (X,Z) weakly in F ;

(L2) for every f ∈ C2
c (Rk) there exists a constant cf > 0 such that

|Lnf(x, z)| ≤ cf (1 + ‖x‖p), (n, x, z) ∈ N×Rd ×Rk;

(L3) Lf is continuous for every f ∈ C2
c (Rk);

(L4) gn0 → g0 and Kn → K in Lploc(R+,R
d), and

f ∈ C2
c (Rk), Rd+k 3 (xn, zn)→ (x, z) ∈ Rd+k

=⇒
∣∣Lnf(xn, zn)− Lf(xn, zn)

∣∣→ 0.
(4.6)

Then, (B, X, Z) is a weak solution to the VSDE (g0,K, b, a, ν).

Remark 4.5. (i) The assumption that X is F-progressively measurable comes without
loss of generality, see [31, Theorem 0.1].

(ii) It is clear that (4.6) holds whenever Lnf → Lf locally uniformly for every f ∈
C2
c (Rk). This condition and the continuity of all L1f,L2f, . . . are assumed in [1].

Of course, this already implies (L3). In Theorem 4.4 we only ask for the weaker
assumptions (L3) and (4.6) and consequently, Theorem 4.4 can also be applied
when Ln has discontinuous coefficients.

Proof. Using standard extensions, we can assume that Bn and B support random vari-
ables Un and U which are uniformly distributed on [0, 1] such that Un is independent
of (Xn, Zn), U is independent of (X,Z) and (Un, Xn, Zn)→ (U,X,Z) weakly as n→∞.
Furthermore, we can redefine Fn0 , Fn0 ∨ σ(Un) and F0 , F0 ∨ σ(U). Let (U,X,Z) be the
identity map on [0, 1]× F and set

Tm , inf
(
t ∈ R+ :

∫ t

0

(1 + U + ‖Xs‖p)ds ≥ m
)
, m > 0.

Moreover, let X◦ be the set of all processes

f(Z·∧Tm
)−

∫ ·∧Tm

0

Lf(Xs,Zs)ds, m > 0, f ∈ C2
c (Rk),

and define Xn to be the set of all processes

f(Zn·∧Tm(Un,Xn))−
∫ ·∧Tm(Un,Xn)

0

Lf(Xn
s , Z

n
s )ds, m > 0, f ∈ C2

c (Rk).

The following lemma is a direct consequence of [1, Lemma 3.3].

Lemma 4.6. (i) (B, X, Z) is a weak solution to the VSDE (g0,K, b, a, ν), if for every
Y ◦ ∈ X◦ the process Y ◦(U,X,Z) is a martingale, and∫ t

0

Xsds =

∫ t

0

g0(s)ds+

∫ t

0

Kt−sZsds, t ∈ R+. (4.7)

(ii) All processes in Xn are martingales on Bn.

Equation (4.7) follows from (L1) and (L4), see [1, Lemma 3.5] for details. Thus,
to conclude the claim of the theorem, it suffices to show that all processes in X ,
{Y ◦(U,X,Z) : Y ◦ ∈ X◦} are martingales. To show this we use Corollary 3.17.

First of all, note that (S1) in Corollary 3.17 coincides with (L1). Thus, we only need
to verify (S2) and (S3), where we take

D ,
{
t > 0: P (∆Zt 6= 0) = 0

}
.
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Recall that D is dense in R+ (see [12, Lemma 3.7.7]).
For t ∈ R+, define Z◦t to be the set of functions

m∏
i=1

hi

(
U,

∫ ti

0

Xsds,Zti

)
,

where m ∈ N, t1, . . . , tm ∈ D ∩ [0, t] and h1, . . . , hm ∈ Cb(R1+d+k). Recalling both parts
of Example 3.6, we note that Z◦ = {Z◦t , t ∈ R+} is a determining set for X. Thus, (S2)
holds.

Finally, we verify (S3). By (D3) and the definition of Tm, all processes in X◦ are
bounded on finite time intervals. Furthermore, by the definition of D, for every t ∈ R+,
all elements of Z◦t are P -a.s. continuous at (U,X,Z). Take t ∈ D and Y ◦ ∈ X◦ such that

Y ◦t = f(Zt∧Tm
)−

∫ t∧Tm

0

Lf(Xs,Zs)ds.

Note that

{Tm > s} =
{∫ s

0

(1 + U + ‖Xu‖p)du < m
}
,

{Tm < s} =
{∫ s

0

(1 + U + ‖Xu‖p)du > m
}
,

because s 7→
∫ s

0
(1 + U + ‖Xu‖p)du is strictly increasing. Hence, using the continuity

of (U,X) 7→
∫ s

0
(1 + U + ‖Xu‖p)du, the map Tm is upper and lower semicontinuous and

consequently, continuous. With this observation at hand, it follows easily from the
continuity of Lf that

(U,X,Z) 7→
∫ t∧Tm(U,X)

0

Lf(Xs,Zs)ds

is continuous, too. Thanks to the randomization given by U , a.s. Z does not jump at time
Tm(U,X), see [1] for details. Thus, (U,X,Z) 7→ Zt∧Tm(U,X) is P -continuous at (U,X,Z) for
every t ∈ D, by the definition of the set D and [25, Proposition VI.2.1]. In summary, Y ◦t
and Y ◦t Z

◦
s for Z◦s ∈ Z◦s and s ≤ t are P -continuous at (U,X,Z) for every t ∈ D.

It is left to verify the final part of (S3). Let Y n ∈ Xn be given by

f(Zn·∧Tm(Un,Xn))−
∫ ·∧Tm(Un,Xn)

0

Lnf(Xn
s , Z

n
s )ds.

Thanks to part (ii) of Lemma 4.6, Y n is a martingale on Bn. By Skorokhod’s coupling
theorem ([27, Theorem 3.30]), we can and will assume that (Un, Xn, Zn) and (U,X,Z)

are defined on the same probability space and that a.s. (Un, Xn, Zn) → (U,X,Z) as
n→∞. We now show that

E
[∣∣Y nt − Y ◦t (Un, Xn, Zn)

∣∣]→ 0 as n→∞, (4.8)

i.e. (3.6) in Proposition 3.18. This implies the last part in (S3) and thereby completes the
proof. Notice that

Y nt − Y ◦t (Un, Xn, Zn) =

∫ t∧Tm(Un,Xn)

0

(Lnf(Xn
s , Z

n
s )− Lf(Xn

s , Z
n
s ))ds.

The implication (4.6) yields that a.s. for a.a. s ∈ [0, t]∣∣Lnf(Xn
s , Z

n
s )− Lf(Xn

s , Z
n
s )
∣∣→ 0 as n→∞.
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As a.s. Xn → X in Lploc(R+,R
k), the family {‖Xn‖p : n ∈ N} restricted to any finite time

interval is a.s. uniformly integrable w.r.t. the Lebesgue measure. Thus, using (D3) and
(L2), we deduce from Vitali’s theorem that a.s.∫ t

0

∣∣Lnf(Xn
s , Z

n
s )− Lf(Xn

s , Z
n
s )
∣∣ds→ 0 as n→∞.

Finally, since ∫ t∧Tm(Un,Xn)

0

∣∣Lnf(Xn
s , Z

n
s )− Lf(Xn

s , Z
n
s )
∣∣ds . 1 +m

by (D3), (L2) and the definition of Tm, the dominated convergence theorem yields (4.8).
The proof is complete.

4.3 An extension of a theorem by Jacod and Shiryaev

Let (B,C, ν) be a candidate triplet for semimartingale characteristics defined on the
canonical space D(Rd) endowed with the Skorokhod J1 topology, see [25, III.2.3] for the
technical requirements. Here, we assume that (B,C, ν) corresponds to a continuous
truncation function h : Rd → Rd.

For m > 0, we set

Tm(ω) , inf(t ∈ R+ : ‖ω(t)‖ ≥ m or ‖ω(t−)‖ ≥ m), ω ∈ D(Rd), (4.9)

Θm,t ,
{
ω ∈ D(Rd) : sup

s≤t
‖ω(s)‖ ≤ m

}
.

Let C1(Rd) be a subset of the set of non-negative bounded continuous functions vanishing
around the origin as described in [25, VII.2.7].

The following theorem generalizes [25, Theorem IX.2.11] for the quasi-left continuous
case as outlined on p. 533 in [25].

Theorem 4.7. Let (Ω,F ,F, P ) and (Ωn,Fn,Fn, Pn) be filtered probability spaces which
support Rd-valued càdlàg adapted processes X and Xn such that each Xn is a semi-
martingale with semimartingale characteristics (Bn, Cn, νn) corresponding to the (con-
tinuous) truncation function h. Assume that Xn → X weakly on D(Rd) and that the
following hold:

(i) there exists a set Γ ⊂ R+ with countable complement such that, for every t ∈ Γ,
m, ε > 0 and g ∈ C1(Rd), we have

Pn(‖Bnt∧Tm(Xn) −Bt∧Tm(Xn)(X
n)‖ ≥ ε)→ 0,

Pn(‖C̃nt∧Tm(Xn) − C̃t∧Tm(Xn)(X
n)‖ ≥ ε)→ 0,

Pn(|g ∗ νnt∧Tm(Xn) − g ∗ νt∧Tm(Xn)(X
n)| ≥ ε)→ 0,

as n→∞;

(ii) for all t ∈ R+,m > 0 and g ∈ C1(Rd), we have

sup
ω∈Θm,t

(
‖C̃t(ω)‖+ |(g ∗ νt)(ω)|

)
<∞;

(iii) there exists a dense set Γ∗ ⊂ R+ such that, for all t ∈ Γ∗ and g ∈ C1(Rd), the maps

D(Rd) 3 ω 7→ Bt(ω), C̃t(ω), (g ∗ νt)(ω)

are Skorokhod J1 continuous;
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(iv) for every m > 0, there exists a continuous increasing function Fm : R+ → R+ such
that the processes

Fm −
d∑
i=1

Var(B
(i)
·∧Tm

); Fm −
( d∑
i=1

C
(ii)
·∧Tm

+ (‖x‖2 ∧ 1) ∗ ν·∧Tm

)
are increasing.

Then, X is a semimartingale with semimartingale characteristics (B(X), C(X), ν(X)).

Proof. We deduce the result from Corollary 3.21, applied with a localized version of X as
defined in Example 3.9, see (i) – (iii) in Example 3.9. In the following we will verify (S4)
in Corollary 3.21 for a localized version of the processes in (i). The argument for the
processes from (ii) can be found in the proof of Theorem 5.8 below. For the processes
in (iii) the argument is similar to those in (i), see the proof of [25, Theorem IX.2.11] for
some details.

Due to [25, Propositions VI.2.11, VI.2.12] and the arguments in the proof of [25,
Proposition IX.1.17], there exists an increasing sequence (kn)n∈N ⊂ R+ with kn → ∞
such that the maps

D(Rd) 3 ω 7→ Tn(ω) , Tkn(ω), ω(· ∧ Tn(ω))

are P -a.s. Skorokhod J1 continuous at X. Let Γ be as in (i) and set

D ,
{
t ∈ Γ: P (∆X

Tm(X)
t 6= 0) = 0 for all m ∈ N

}
, XTm(X) , X·∧Tm(X).

As Dc is countable, D is dense in R+.
Fix m ∈ N, T ∈ D, and let K = K(m,T ) > 0 be such that

sup
ω∈Θkm,T

‖C̃T (ω)‖ ≤ K, (4.10)

see hypothesis (ii). We define

Sn , inf(t ∈ R+ : ‖C̃nt∧Tm(Xn)‖ ≥ K + 1).

Let us recall that

ω(h) , ω −
∑
s≤·

(∆ω(s)− h(∆ω(s))), ω ∈ D(Rd),

where h is the continuous truncation function we have fixed in the beginning of this
section. We take

Y ◦(ω) , ω(h)·∧Tm(ω)∧T − ω(0)−B·∧Tm(ω)∧T (ω),

and
Y n , Xn(h)·∧Tm(Xn)∧Sn∧T −Xn

0 −Bn·∧Tm(Xn)∧Sn∧T .

Recalling (4.10), thanks to hypothesis (i), we obtain

Pn(Sn ≤ T ) = Pn(‖C̃nT∧Tm(Xn)‖ ≥ K + 1)

≤ Pn(‖C̃nT∧Tm(Xn) − C̃T∧Tm(Xn)(X
n)‖ ≥ 1)→ 0

as n→∞. Thus, using (i) again, for all t ∈ Γ and ε > 0, we get

Pn(‖Y ◦t (Xn)− Y nt ‖ ≥ ε) ≤ Pn(‖Bnt∧T∧Tm(Xn) −Bt∧T∧Tm(Xn)(X
n)‖ ≥ ε)
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+ Pn(Sn ≤ T )→ 0

as n → ∞. Due to hypothesis (iii) and (iv) and the P -a.s. Skorokhod J1 continuity
of ω 7→ Tm(ω) at X, it follows from [25, IX.3.42] that, for every t ∈ R+, the map
ω 7→ Bt∧Tm(ω)(ω) is P -a.s. Skorokhod J1 continuous at X. Moreover, whenever t ∈ D,
[25, VI.2.3, Corollary VI.2.8] show that the map ω 7→ ω(h)t∧Tm(ω) is P -a.s. Skorokhod J1

continuous at X. Consequently, for every t ∈ D, the map ω 7→ Y ◦t (ω) is P -a.s. Skorokhod
J1 continuous at X.

By the martingale problem for semimartingales (see Example 3.9 or [25, The-
orem II.2.21]), Y n is a locally square-integrable Pn-martingale whose predictable
quadratic variation process is given by C̃n·∧Tm(Xn)∧Sn∧T . Hence, it follows from Doob’s
inequality ([25, Theorem I.1.43]) that, for all a > 0,

EP
n
[

sup
s≤a
|Y n,(i)s |2

]
≤ 4EP

n
[
C̃
n,(ii)
a∧Tm(Xn)∧Sn∧T

]
. (4.11)

As |∆C̃n,(ij)| ≤ 2‖h‖2∞, the definition of Sn yields that the r.h.s. of (4.11) is bounded
uniformly in n. Consequently, {Y nt : t ∈ [0, a], n ∈ N} is uniformly integrable.

In summary, Y ◦ and (Y n)n∈N have the properties as in (S4). As mentioned at the
beginning of this proof, similar arguments work for suitably localized versions of the
processes defined in (ii) and (iii) of Example 3.9. We omit the remaining details.

The third part of hypothesis (i) plus hypothesis (iv) yield quasi-left continuity of the
limit, see the proof of [25, Theorem IX.3.21]. In [25, Theorem IX.2.11] this assumption is
not needed, but it is assumed that part (iii) holds P -a.s. at X. Although the dependence
on P is sort of minimal, one can only benefit from it when the limit is more or less known,
see [25, Remark IX.2.13]. The monograph [25] suggests two deterministic versions of
this condition. Namely, a version of (iii) ([25, IX.2.14]) and [25, IX.2.16], i.e. continuity
of ω 7→ Bi(ω), C̃ij(ω), (g ∗ ν)(ω) from D(Rd) into D(R). As functions of the type

ω 7→
∫ t

0

f(ω(s−))q(ds) (4.12)

are not necessarily continuous in the Skorokhod J1 topology when q is allowed to have
point masses, both of these assumptions might be too stringent for applications with
fixed times of discontinuity. To give an example, consider d = 1 and

ω 7→ Ft(ω) ,
∫ t

0

ω(s−)δ1(ds) =

{
0, t < 1,

ω(1−), t ≥ 1,
ω ∈ D(R).

The function ω 7→ Ft(ω) is obviously continuous if t < 1, but it is discontinuous for all
t ≥ 1, as is easily seen by taking ωn = 1[1−1/n,∞) → ω = 1[1,∞). Thus, for this example
there is no dense set Γ ⊂ R+ such that Ft is continuous for all t ∈ Γ. Moreover, ω 7→ F (ω)

is also not continuous from D(R) into D(R). Indeed, if F would be continuous we must
have ωn → ω ⇒ Ft(ωn)→ Ft(ω) for all t 6= 1 as {s > 0: ∆Fs(ω) 6= 0} ⊂ {1}, which is not
true. Therefore, we note that functions of the type (4.12) do not necessarily have the
continuity properties from [25, IX.2.14, IX.2.16].

In Section 5.5 below we discuss versions of Theorem 4.7 where in (iii) the Skorokod
J1 topology is replaced by the local uniform topology, which seems to us more suitable
for applications to semimartingales with fixed times of discontinuity.

5 Stability results for processes with fixed times of discontinuity

In this section we establish stability results which are tailored to processes with
fixed times of discontinuity. To be more precise, in Section 5.3 we derive a version of
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Theorem 4.1 which applies to test processes of the type

f(Xt)−
∫ t

0

g(s, L,X)ds−
∫ t

0

h(s, L,X)q(ds), t ∈ R+,

where q is a locally finite Borel measure on R+ which is allowed to have point masses,
and f, g and h are suitable function of the processes to be well-defined. In Section 5.5
we prove a version of Theorem 4.7 for semimartingales whose characteristics are only
assumed to be continuous in the local uniform instead of the Skorokhod J1 topology.
In both cases we work with control variables L1, L2, . . . and the notion of weak-strong
convergence. Before we present our results, we motivate the presence of fixed times of
discontinuities.

5.1 Motivation

Continuous state branching processes (CSBP) are analogues of Galton–Watson pro-
cesses in continuous time with continuous state spaces. Typically, CSBP are modeled
as strong solutions to SDEs driven by a Brownian motion and a Poisson random mea-
sure. More recently, there is an increasing interest in CSBPs in random environments
(CSBPRE), where the random environments are modeled by additional independent,
multiplicative and (sometimes) discontinuous noise, see, e.g. [4, 5]. Leaving the en-
vironment random is often called the annealed perspective. In contrast, fixing the
random environment corresponds to the so-called quenched perspective. In case the
environment is represented by discontinuous noise, taking a specific path introduces
fixed times of discontinuity, which therefore arise in a natural manner in the context of
CSBPRE. To the best of our knowledge, the literature contains only selected stability
results for quenched dynamics of CSBPRE, see, e.g. [3, 5].

Fixed times of discontinuity also occur naturally in mathematical finance such as in
interest rate markets in the post-crisis environment. Indeed, a closer look on historical
data of European reference interest rates (see [14, Figure 1]) shows jumps at pre-
scheduled dates. As a consequence, the financial literature shows an increasing interest
in stochastic models for interest rates which allow for fixed times of discontinuity, see,
for instance, [14, 29].

5.2 A short example to keep in mind

Before we start our theoretical program, let us explain one explicit situation to keep
in mind when reading the remainder of this section. Suppose we are interested in
identifying the limiting process for a sequence X1, X2, . . . of one-dimensional processes
whose dynamics are given by the equations

dXn
t = σn(Xn

t )dWn
t −

∫ 1

0

(1− θ)Xn
t−q

n(dt, dθ),

where W 1,W 2, . . . is a sequence of (one-dimensional) Brownian motions and q1, q2, . . . is
a sequence of deterministic measures on R+ × [0, 1] such that

qn(dt, dθ) =

mn∑
i=1

δ(ti,wi)(dt, dθ)

for some mn ∈ Z+, 0 ≤ t1 < t2 < · · · < tmn < ∞ and w1, . . . , wmn ∈ [0, 1]. As in the
paper [3], one might think of qn as a realization of a Poisson random measure with
intensity measure dt⊗ P (C ∈ dθ), where C is some random variable with values in the
unit interval. Fixing such a realization corresponds to the quenched perspective as
explained in the previous motivating section.
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In case the sequence σ1, σ2, . . . converges in a suitable sense to a limiting coefficient σ
and in case the sequence q1, q2, . . . converges in a suitable sense to a limiting measure q,
it is natural to expect that the limiting object of the sequence X1, X2, . . . is a process X
whose dynamics are given by the equation

dXt = σ(Xt)dWt −
∫ 1

0

(1− θ)Xt−q(dt, dθ), (5.1)

where W is a Brownian motion. Indeed, by an application of Itô’s formula, for f ∈ C2
b (R),

the process

f(Xn)−
∫ ·

0

1
2 (σn(Xn

s ))2f ′′(Xn
s )ds−

∫ ·
0

∫ 1

0

(
f(θXn

s−)− f(Xn
s−)
)
qn(ds, dθ) (5.2)

is a local martingale. Under assumptions of the type σn → σ and qn → q, where the
convergence is meant to be in a suitable sense, it is reasonable to expect that the local
martingale property of the process (5.2) transfers to the process

f(X)−
∫ ·

0

1
2 (σ(Xs))

2f ′′(Xs)ds−
∫ ·

0

∫ 1

0

(
f(θXs−)− f(Xs−)

)
q(ds, dθ),

which relates the limiting process X to the dynamics given by (5.1).

Although this conjecture seems intuitively reasonable, it cannot be deduced from
classical results (as in [25], for instance) due to the lack of certain continuity properties
for the Skorokhod J1 topology, see the discussion at the end of Section 4.3 for more de-
tails. In the following we will derive some results to overcome such technical difficulties.
In Section 5.4 below we will return to (a slightly more general version of) this example
and explain more precisely how our theoretical results can be used.

5.3 A version of the Ethier–Kurtz theorem with fixed times of discontinuity

In this section we derive a version of Theorem 4.1 which allows fixed times of
discontinuity. Let (E, r) be a Polish space, let (U,U) be a measurable space and let
B = (Ω,F ,F, P ) and Bn = (Ωn,Fn,Fn, Pn), n = 1, 2, 3, . . . , be filtered probability spaces
which support E-valued càdlàg adapted processes X and Xn and U -valued random
variables L and Ln, respectively. The laws of X,X1, X2, . . . are considered to be Borel
probability measures on D(E), which we endow with the Skorokhod J1 topology in this
section.

We now introduce the martingale problem of our current interest. Let Pluc be the set
of all bounded measurable functions f : R+×U ×D(E)→ R such that Ω×R+ 3 (ω, t) 7→
f(t, L(ω), X(ω)) is F-predictable and D(E) 3 α 7→ f(t, u, α) is continuous in the local
uniform topology for every (t, u) ∈ R+ × U . We parameterize the martingale problem by
a set D ⊂ Cb(E)×Pluc ×Pluc and a locally finite Borel measure q on R+. Namely, we
define X to be the set of all processes

f(X)−
∫ ·

0

g(s, L,X)ds−
∫ ·

0

h(s, L,X)q(ds), (f, g, h) ∈ D. (5.3)

Next, we also introduce a set of approximating martingales on B1,B2, . . . . Let q1, q2, . . .

be a sequence of locally finite Borel measures on R+. Moreover, for every n ∈ N, let Xn

be a set of triplets (ξ, φ, ψ) consisting of real-valued predictable processes on Bn such
that

sup
s≤T

EP
n[
|ξs|+ |φs|+ |ψs|

]
<∞, T > 0,
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and such that

ξ −
∫ ·

0

φsds−
∫ ·

0

ψsq
n(ds)

is a martingale on Bn.
Finally, we introduce some technical ingredients. Take a U⊗B(R+)/B(R+)-measurable

function u : U ×R+ → R+ such that, for every (u, t) ∈ U × (0,∞),

lim
ε↘0

sup
{
u(u, s) : s 6= t, t− ε ≤ s ≤ t+ ε

}
= 0, (5.4)

take an increasing and continuous function κ : R+ → R+ and fix a reference point x0 ∈ E.
We define

A ,
{

(u, ω) ∈ U ×D(E) : r(ω(t), ω(t−)) ≤ u(u, t)κ
(

sup
s≤t

r(ω(s), x0)
)

for all t > 0
}

=
⋂
n∈N

{
(u, ω) : r(ω(Sn(ω)), ω(Sn(ω)−)) ≤ u(u, Sn(ω))κ

(
sup

s≤Sn(ω)

r(ω(s), x0)
)}
,

where (Sn)n∈N is an exhausting sequences for the jumps of the coordinate process.
Clearly, the second line shows that A ∈ U ⊗ B(D(E)).

Assumption 5.1. We have Pn ◦ (Ln, Xn)−1 →ws P ◦ (L,X)−1 and

Pn((Ln, Xn) ∈ A)→ 1 (5.5)

as n→∞.

Remark 5.2. If Xn → X weakly and L,L1, L2, . . . have the same distribution, then
Theorem 2.5 shows that, along a subsequence, (Ln, Xn)→ws (L,X).

Discussion. The main idea behind Assumption 5.1 is inspired by proofs from [22, 24]
for stability and existence results of SDEs with semimartingale drivers. We think of (5.5)
as an assumption on the jump structure of X1, X2, . . . . More precisely, it means that
the jump times of X1, X2, . . . can be controlled via L1, L2, . . . in an uniform manner and
that the latter sequence behaves nicely in the sense that it converges in a rather strong
sense.

To get a better understanding of (5.5), suppose that L1, L2, . . . are càdlàg E-valued
processes which can be seen as drivers for the processes X1, X2, . . . . Further, suppose
that u(Ln, t) = r(Lnt , L

n
t−) for t > 0 and n = 1, 2, . . . , see also Examples 5.12 and 5.13

below. In this case u has all required properties (see Lemma 2.10) and

(Ln, Xn) ∈ A ⇐⇒ r(Xn
t , X

n
t−) ≤ r(Lnt , Lnt−)κ

(
sup
s≤t

r(Xn
s , x0)

)
∀t > 0.

In other words, (5.5) means that, with probability tending to one, the jump times of
X1, X2, . . . are controlled by those of L1, L2, . . . .

When it comes to applications, the crucial point behind (5.5) is the choice of u and
L1, L2, . . . . In Section 5.4 below we explain how these objects can be chosen for a slight
extension of the example from Section 5.2.

Let us also provide some technical comments. For notational convenience, set
Qn , Pn ◦ (Ln, Xn)−1 and Q , P ◦ (L,X)−1. By virtue of Proposition 2.12, the continuity
assumption in the definition of Pluc implies that the test processes in (5.3) are (Qn, Q)-
continuous. More precisely, for (Qn, Q)-continuity we can treat the control variables
as deterministic, i.e. we only need to verify the Skorokhod J1 continuity of the time t
values of the processes (5.3) on the sections Au for each u ∈ U . On Au the Skorokhod
J1 and the local uniform topology coincide by Proposition 2.12. Roughly speaking, the
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paths of X1, X2, . . . take values in a randomized subset of the Skorokhod space D(E)

with conditionally nice topological properties which can be used thanks to the concept
of weak-strong convergence.

Assumption 5.3. Let Γ ⊂ R+ be a dense set and let Z◦ = {Z◦t , t ∈ R+} be a determining
set for X such that, for every t ∈ Γ and all n ∈ N, u ∈ U and Z◦t ∈ Z◦t , Z◦t (Ln, Xn) is
Fnt -measurable and D(E) 3 α 7→ Zt(u, α) is continuous in the local uniform topology. For
each (f, g, h) ∈ D and T > 0, there exists a sequence (ξn, φn, ψn) ∈ Xn such that

sup
n∈N

sup
r≤T

EP
n[
|ξnr |+ |φnr |+ |ψnr |

]
<∞, (5.6)

lim
n→∞

EP
n[

(ξnt − f(Xn
t ))Z◦s (Ln, Xn)

]
= 0, (5.7)

lim
n→∞

EP
n
[ ∫ t

s

(φnu − g(u, Ln, Xn))duZ◦s (Ln, Xn)
]

= 0, (5.8)

lim
n→∞

EP
n
[ ∫ t

s

(ψnu − h(u, Ln, Xn))q(du)Z◦s (Ln, Xn)
]

= 0, (5.9)

lim
n→∞

EP
n
[ ∫ t

s

ψnu(qn − q)(du)Z◦s (Ln, Xn)
]

= 0, (5.10)

for all s, t ∈ Γ ∩ [0, T ], s < t, and Z◦s ∈ Z◦s .

The following is a version of Theorem 4.1 which allows fixed times of discontinuity.

Theorem 5.4. Suppose that the Assumptions 5.1 and 5.3 hold. Then, P ∈M(X).

Proof. We apply Theorem 3.14 with the product space (S,S) = (U ×D(E),U ⊗B(D(E))).
We set Qn , Pn ◦ (Ln, Xn)−1 and Q , P ◦ (L,X)−1. Evidently, (A1) and (A2) hold by
virtue of Assumption 5.1. Thus, it suffices to show that (A3) holds. Each Y ◦ ∈ X is
bounded on compact time intervals, which yields the uniform integrability assumption
from (A3). Simply by hypothesis, for each t ∈ Γ, s ∈ Γ∩ [0, t], u ∈ U and Z◦s ∈ Z◦s , the maps
α 7→ Y ◦t (u, α) and α 7→ Y ◦t (u, α)Z◦s (u, α) are continuous in the local uniform topology.
Thus, (5.5) and Propositions 2.8 and 2.12 show the (Qn, Q)-continuity assumption in (A3).
Finally, it remains to show (3.2). Take Y ∈ X such that

Y = f(X)−
∫ ·

0

g(s, L,X)ds−
∫ ·

0

h(s, L,X)q(ds),

and set

Y n , ξn −
∫ ·

0

φns ds−
∫ ·

0

ψns q
n(ds),

where ξn, φn and ψn are as in (5.6) – (5.10). Let s, t ∈ Γ with s < t and take Z◦s ∈ Z◦s . We
have

(Y ◦t (Ln, Xn)− Y nt + Y ns − Y ◦s (Ln, Xn))Z◦s (Ln, Xn)

= (f(Xn
t )− ξnt + ξns − f(Xn

s ))Z◦s (Ln, Xn)

+

∫ t

s

(φnu − g(u, Ln, Xn))duZ◦s (Ln, Xn)
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+

∫ t

s

(ψnu − h(u, Ln, Xn))q(du)Z◦s (Ln, Xn)

+

∫ t

s

ψnu(qn − q)(du)Z◦s (Ln, Xn).

The Pn-expectation of the first term converges to zero by (5.7), the Pn-expectation of the
second term converges to zero be (5.8), the Pn-expectation of the third term converges
to zero by (5.9), and the Pn-expectation of the last term convergences to zero by (5.10).
We now can proceed as in the proof of Theorem 4.1. As Y n is a martingale on Bn, we
have

EP
n[

(Y ns − Y nt )Z◦s (Ln, Xn)
]

= 0,

and consequently,

lim
n→∞

EP
n[

(Y ◦t (Ln, Xn)− Y ◦s (Ln, Xn))Z◦s (Ln, Xn)
]

= lim
n→∞

EP
n[

(Y ◦t (Ln, Xn)− Y nt + Y ns − Y ◦s (Ln, Xn))Z◦s (Ln, Xn)
]

= 0.

We conclude that (A3) holds. Hence, the claim follows from Theorem 3.14.

Example 5.5. An important example is the natural extension of the setting from Ethier
and Kurtz [12], where X is given through processes as in (1.3), i.e.

f(Xt)−
∫ t

0

g(Xs)ds−
∫ t

0

h(Xs−)q(ds), t ∈ R+,

for f, g, h ∈ Cb(E). Clearly, for every t ∈ R+, the map

D(E) 3 α 7→ f(α(t))−
∫ t

0

g(α(s))ds−
∫ t

0

h(α(s−))q(ds)

is continuous in the local uniform topology. Thus, the above continuity assumptions
on X are fulfilled. Furthermore, in this case we can take F to be the natural filtration
generated by X and consequently, Z◦ can be taken as in part (i) of Example 3.6. It
is also not hard to see that these processes have the necessary continuity properties
when D (from Example 3.6) is defined to be the set of all times t ∈ R+ such that
P (∆Xt 6= 0) = 0. Finally, we stress that in this setup the control variable L can be
constructed from the sequence L1, L2, . . . . More precisely, in case Xn → X weakly
on D(E) and the distributions of L1, L2, . . . are relatively (sequentially) compact in
Mm(U), then, by Theorem 2.5, there exists a weak-strong convergent subsequence of
Qn = Pn ◦ (Ln, Xn)−1, n = 1, 2, . . . . In this case, as we are only interested in the law
of X, we can start with a stochastic basis B which supports a random variable (X,L)

which is distributed according to a weak-strong accumulation point.
We emphasis that, although the test processes for the limiting martingale problem X

are independent of L, the sequence L1, L2, . . . is crucial for the proof to replace the
Skorokhod J1 topology by the local uniform topology.

We now also consider the problem of verifying tightness of the family {Xn : n ∈ N}.
A quite general criterion for tightness, which can be viewed as a version of Aldous’
criterion for processes with fixed times of discontinuity, has recently been proved in [3].
In the following we present an application of this tightness criterion in the spirit of [12,
Theorem 3.9.4]. For a compact set K ⊂ E, we set

TnK , inf(t ∈ R+ : Xn
t 6∈ K), n ∈ N.
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At least when Fn is right-continuous, which we assume without loss of generality, it is
well-known that TnK is an Fn-stopping time. We also define the stochastic interval

[[0, TnK ]] , {(ω, t) ∈ Ωn ×R+ : 0 ≤ t ≤ TnK(ω)}.

We have the following tightness condition for {Xn : n ∈ N}.
Theorem 5.6. Assume the following:

(i) for every η, T > 0 there exists a compact set K = K(η, T ) ⊂ E such that

inf
n∈N

Pn
(
Xn
t ∈ K for all 0 ≤ t ≤ T

)
≥ 1− η;

(ii) let H ⊂ Cb(E) be a subalgebra which is dense for the uniform topology on compact
subsets of E. For every f ∈ H and any compact set K ⊂ E, there exists sequences
φ1, φ2, . . . and ψ1, ψ2, . . . , which of course might depend on f and K, such that
(f(Xn), φn, ψn) ∈ Xn and

sup
{
|φns (ω)|+ |ψns (ω)| : n ∈ N, (ω, s) ∈ [[0, TnK ]]

}
<∞, T > 0;

(iii) there exists an increasing càdlàg function Q : R+ → R+ with Q(0) = 0 such that
qn([0, ·])→ Q as n→∞ in the Skorokhod J1 topology.

Then, the family {Xn : n ∈ N} is tight (in the Skorokhod space with the Skorokhod J1

topology).

Remark 5.7. Thanks to [25, Theorem VI.2.15], qn([0, ·]) → Q in the Skorokhod J1

topology if and only if there exists a dense set I ⊂ R+ such that, for all t ∈ I,

qn([0, t])→ Q(t),
∑

0<s≤t

|qn({s})|2 →
∑

0<s≤t

|∆Q(s)|2.

Here, we note that the l.h.s. means that qn converges weakly to the measure induced
by Q. The r.h.s. is an additional requirement.

Proof of Theorem 5.6. Step 1: Tightness of {f(Xn) : n ∈ N}. Take f ∈ H and fix a
compact set K ⊂ E. As H is a subalgebra, f2 ∈ H. Denote by φ1, φ2, . . . and ψ1, ψ2, . . .

the sequences from (ii) for f and K, and let φ̂1, φ̂2, . . . and ψ̂1, ψ̂2, . . . be the sequences
for f2 and K. Fix 0 ≤ s ≤ t. We compute

E
[
(f(Xn

t∧TK
n

)− f(Xn
s∧Tn

K
))2|Fns

]
= E

[
f2(Xn

t∧Tn
K

)− 2f(Xn
t∧Tn

K
)f(Xn

s∧Tn
K

) + f2(Xn
s∧Tn

K
)|Fns

]
= E

[
f2(Xn

t∧Tn
K

)−
∫ t∧Tn

K

0

φ̂nr dr −
∫ t∧Tn

K

0

ψ̂nr q
n(dr)

∣∣Fns ]
+ E

[ ∫ t∧Tn
K

0

φ̂nr dr +

∫ t∧Tn
K

0

ψ̂nr q
n(dr)

∣∣Fns ]
− 2f(Xn

s∧Tn
K

)E
[
f(Xn

t∧Tn
K

)−
∫ t∧Tn

K

0

φnr dr −
∫ t∧Tn

K

0

ψnr q
n(dr)

∣∣Fns ]
− 2f(Xn

s∧Tn
K

)E
[ ∫ t∧Tn

K

0

φnr dr +

∫ t∧Tn
K

0

ψnr q
n(dr)

∣∣Fns ]+ f2(Xn
s∧Tn

K
)

= f2(Xn
s∧Tn

K
)−

∫ s∧Tn
K

0

φ̂nr dr −
∫ s∧Tn

K

0

ψ̂nr q
n(dr)

+ E
[ ∫ t∧Tn

K

0

φ̂nr dr +

∫ t∧Tn
K

0

ψ̂nr q
n(dr)

∣∣Fns ]
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− 2f2(Xn
s∧Tn

K
) + 2f(Xn

s∧Tn
K

)
(∫ s∧Tn

K

0

φnr dr +

∫ s∧Tn
K

0

ψnr q
n(dr)

)
− 2f(Xn

s∧Tn
K

)E
[ ∫ t∧Tn

K

0

φnr dr +

∫ t∧Tn
K

0

ψnr q
n(dr)

∣∣Fns ]+ f2(Xn
s∧Tn

K
)

= E
[ ∫ t∧Tn

K

s∧Tn
K

φ̂nr dr +

∫ t∧Tn
K

s∧Tn
K

ψ̂nr q
n(dr)

∣∣Fns ]
− 2f(Xn

s∧Tn
K

)E
[ ∫ t∧Tn

K

s∧Tn
K

φnr dr +

∫ t∧Tn
K

s∧Tn
K

ψnr q
n(dr)

∣∣Fns ].
Now, using the (local) boundedness of φ1, φ2, . . . ψ1, ψ2, . . . , φ̂1, φ̂2, . . . and ψ̂1, ψ̂2, . . . as
assumed in (ii), we obtain the existence of a constant C > 0, which might depend on f,K
and the sequences φ1, φ2, . . . ψ1, ψ2, . . . , φ̂1, φ̂2, . . . and ψ̂1, ψ̂2, . . . , such that

E
[
(f(Xn

t∧TK
n

)− f(Xn
s∧Tn

K
))2|Fns

]
≤ CE

[
t ∧ TnK − s ∧ TnK +

∫ t∧Tn
K

s∧Tn
K

qn(dr)
∣∣Fns ]

≤ C
(
(t+ qn([0, t]))− (s+ qn([0, s]))

)
.

By virtue of assumption (iii), we conclude that the assumption A2’) from [3, Corollary 1.2]
holds. Next, we explain that the family {f(Xn) : n ∈ N} also satisfies the compact
containment condition given by A1) in [3]. Take η, T > 0 and let K = K(η, T ) ⊂ E be
the compact set as in assumption (i). Then, by the continuity of f , the set f(K) ⊂ R is
compact. Furthermore, by (i), we obtain

inf
n∈N

P
(
f(Xn

t ) ∈ f(K) for all 0 ≤ t ≤ T
)
≥ inf
n∈N

P
(
Xn
t ∈ K for all 0 ≤ t ≤ T

)
≥ 1− η.

Hence, A1) from [3] holds. Now, [3, Corollary 1.2] yields that {f(Xn) : n ∈ N} is tight.
Step 2: Conclusion. Due to the fact that we assume the compact containment

condition (i.e. (i)) and the properties of H, [12, Theorem 3.9.1] yields that tightness of
the family {Xn : n ∈ N} is equivalent to tightness of the families {f(Xn) : n ∈ N} for
every f ∈ H. As latter is the case thanks to Step 1, the claim of the theorem follows.

5.4 A short example to keep in mind: revisited

Let us relate Theorem 5.4 to the example from Section 5.2. More precisely, we
explain how u and L1, L2, . . . from Section 5.3 can be chosen.

Suppose that X1, X2, . . . are (one-dimensional) processes whose dynamics are given
by

dXn
t = σn(Xn

t−)dSnt −
∫ 1

0

(1− θ)Xn
t−q

n(dt, dθ),

where S1, S2, . . . is a sequence of semimartingales with equal laws and q1, q2, . . . is a
sequence of deterministic measures onR+×[0, 1] such that qn(dt, dθ) =

∑mn

i=1 δti(dt)Fi(dθ)

with Fi([0, 1]) = 1 for i = 1, . . . ,mn. Let g : R+ → R+ be continuous and increasing, and
assume that

|σn(x)| ≤ g(|x|), n = 1, 2, . . . , x ∈ R.
As explained in the discussion below Assumption 5.3, the purpose of the sequence
L1, L2, . . . is to control the jump times of X1, X2, . . . . Notice that a.s.

∆Xn
t = σn(Xn

t−)∆Snt −Xn
t−

∫ 1

0

(1− θ)qn({t} × dθ), t > 0.

Motivated by this computation, we take

U , D(R), Ln , Sn, x0 , 0, κ(x) , g(x) + x, x ∈ R+,
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and

u(u, t) , |∆u(t)|+ sup
n∈N

∫ 1

0

(1− θ)qn({t} × dθ), (u, t) ∈ D(R)×R+.

With these definitions at hand, it is clear that, for all n = 1, 2, . . . , (Ln, Xn) ∈ A up to a
null set, i.e. (5.5) holds. Furthermore, as the semimartingales S1, S2, . . . are assumed
to have the same law, the first part of Assumption 5.1 can be treated as in Remark 5.2.
Finally, we discuss the property (5.4). By virtue of Lemma 2.10, a sufficient condition for
u to satisfy (5.4) is that the set {t ∈ [0, T ] : u(u, t) ≥ a} is finite for arbitrary T, a > 0 and
u ∈ D(R). By standard properties of càdlàg functions, {t ∈ [0, T ] : |∆u(t)| ≥ a/2} is finite
for such T, a and u and hence, the same is true for {t ∈ [0, T ] : u(u, t) ≥ a} once the set{

t ∈ [0, T ] : sup
n∈N

∫ 1

0

(1− θ)qn({t} × dθ) ≥ a/2
}

is finite. Latter holds for instance when the sequence

t 7→
∫ 1

0

(1− θ)qn([0, t]× dθ), n = 1, 2, . . . ,

converges in the local uniform topology, see Example 5.12 below for more details.

5.5 Theorems for semimartingales

In this section we derive stability results for semimartingales which are tailored to the
presence of fixed times of discontinuity. We start with a general result in Section 5.5.1,
which we specify further for the annealed case in Section 5.5.3, i.e. the case where all
processes are defined on the same measurable space.

5.5.1 The main result

We pose ourselves into the setting of Section 4.3. To be precise, let (B,C, ν) be a
candidate triplet for semimartingale characteristics (corresponding to a fixed continuous
truncation function h : Rd → Rd) defined on the canonical space D(Rd). Except stated
otherwise, we endowD(Rd) with the Skorokhod J1 topology. We write C1(Rd) for a subset
of the set of non-negative bounded continuous functions vanishing in a neighborhood of
the origin as described in [25, VII.2.7].

Let (U,U) be a measurable space and fix a U ⊗ B(R+)/B(R+)-measurable function
u : U ×R+ → R+ such that for every (u, t) ∈ U × (0,∞)

lim
ε↘0

sup
{
u(u, s) : s 6= t, t− ε ≤ s ≤ t+ ε

}
= 0,

let κ : R+ → R+ be increasing and continuous, and define

A ,
{

(u, ω) ∈ U ×D(Rd) : ‖∆ω(t)‖ ≤ u(u, t)κ
(

sup
s≤t
‖ω(s)‖

)
for all t > 0

}
.

The following is the main result of this section.

Theorem 5.8. Let B = (Ω,F ,F, P ) and Bn = (Ωn,Fn,Fn, Pn) be filtered probability
spaces which support Rd-valued càdlàg adapted processes X and Xn, respectively,
such that each Xn is a semimartingale with semimartingale characteristics (Bn, Cn, νn)

corresponding to the (continuous) truncation function h. Moreover, for each n ∈ N, let
Ln be a U -valued random variable on Bn such that {Pn ◦ (Ln)−1 : n ∈ N} is relatively
(sequentially)5 compact in Mm(U). Assume that Xn → X weakly on D(Rd) and the
existence of a dense set Γ ⊂ R+ such that the following hold:

5By [16, Theorem 2.6], relative compactness and sequential relative compactness are equivalent in Mm(U).
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(i)’ for every t ∈ Γ, ε > 0 and g ∈ C1(Rd), we have

Pn(‖Bnt −Bt(Xn)‖ ≥ ε)→ 0,

Pn(‖C̃nt − C̃t(Xn)‖ ≥ ε)→ 0,

Pn(|g ∗ νnt − g ∗ νt(Xn)| ≥ ε)→ 0,

as n→∞;

(ii)’ for all T ∈ Γ and g ∈ C1(Rd), there is a sequence S1, S2, . . . of stopping times on
B1,B2, . . . , i.e. Sn is an Fn-stopping time, such that

Pn(Sn < T )→ 0, n→∞,

and

sup
n∈N

EP
n
[
‖C̃nT∧Sn

‖2 + g2 ∗ νnT∧Sn

]
<∞;

(iii)’ for all t ∈ Γ and g ∈ C1(Rd), the maps

D(Rd) 3 ω 7→ Bt(ω), C̃t(ω), (g ∗ νt)(ω)

are continuous in the local uniform topology, and

Pn((Ln, Xn) ∈ A)→ 1 as n→∞. (5.11)

Then, X is a semimartingale for its canonical filtration and its semimartingale character-
istics are given by (B(X), C(X), ν(X)).

Proof. Let Y ◦ to be any of the processes in (i) – (iii) from Example 3.9. We show that Y ◦

is a P -martingale for the (right-continuous) canonical filtration on D(Rd). For simplicity,
we restrict our attention to the process in (ii) of Example 3.9. More precisely, let Y ◦ be
defined by

Y ◦ , V (i)V (j) − C̃(ij),

where V = (V (1), . . . , V (d)) is given by

V , X(h)− X0 −B,

with
X(h) = X−

∑
s≤·

(
∆Xs − h(∆Xs)

)
.

Our strategy is to apply Theorem 3.20. We define probability measures Q1, Q2, . . . on
the product space (U ×D(Rd),U ⊗ B(D(Rd))) via

Qn , Pn ◦ (Ln, Xn)−1, n ∈ N.

As we assume that Xn → X weakly and that the distributions of L1, L2, . . . are relatively
compact in Mm(U), Theorem 2.5 yields the existence of a subsequence of (Qn)n∈N which
converges in Mmc(U × D(Rd)) to some probability measure Q. To keep our notation
simple, we denote the subsequence again by (Qn)n∈N. Clearly, we have QD(Rd) = P ◦X−1.
In the following we show that Y ◦t is (Qn, Q)-continuous for every t ∈ Γ.

Thanks to Proposition 2.12, for every u ∈ U the set Au = {ω ∈ D(Rd) : (u, ω) ∈ A}
is closed in the Skorokhod J1 topology and on Au the Skorokhod J1 topology coincides
with the local uniform topology. In (iii)’ we assume that Qn(A) → 1 as n → ∞. Hence,
we deduce from Proposition 2.8 that Q(A) = 1. The first part of assumption (iii)’ yields
that Bt|Au

and C̃t|Au
are continuous in the Skorokhod J1 topology for every t ∈ Γ.
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Lemma 5.9. Let g : Rd → R be a continuous function which vanishes in a neighborhood
of the origin. For every t > 0, the map ω 7→

∑
s≤t g(∆ω(s)) is continuous in the local

uniform topology.

Proof. For (ω, u) ∈ D(Rd)× (0,∞), we set

t0(ω, u) , 0, tp+1(ω, u) , inf(t > tp(ω, u) : ‖∆ω(t)‖ > u), p ∈ Z+.

Furthermore, we set

U(ω) ,
{
u > 0: ∃t > 0 such that ‖∆ω(t)‖ = u

}
, ω ∈ D(Rd).

Now, suppose that ωn → ω in the local uniform topology and take some t > 0. As U(ω)

is at most countable, there is a 0 < u 6∈ U(ω) such that g(x) = 0 for ‖x‖ ≤ u. Let
p′ , max{p ∈ Z+ : tp(ω, u) ≤ t}. Then, thanks to [36, Theorem 2.6.2], there exists an
N ∈ N such that

∑
s≤t

g(∆ωn+N (s)) =

p′∑
k=1

g(∆ωn+N (tk(ω, u))), n ∈ N.

As n→∞ the r.h.s. converges to

p′∑
k=1

g(∆ω(tk(ω, u))) =
∑
s≤t

g(∆ω(s)).

This completes the proof.

By virtue of this lemma, for every t ∈ Γ, we conclude that the set

{(u, ω) ∈ A : Au 3 ξ 7→ Y ◦t (ξ) is discontinuous at ω}

is Q-null and consequently, that Y ◦t is (Qn, Q)-continuous.
Let Z◦ be the determining set from part (i) of Example 3.6 with D = Γ. Then, it

is clear that for every Z◦s ∈ Z◦s with s ≤ t the random variable Y ◦t Z
◦
s is also (Qn, Q)-

continuous. It remains to verify the final two parts of (A4) from Theorem 3.20. We fix
T ∈ Γ. Let S1, S2, . . . be as in (ii)’ and set

Y n ,
(
Xn(h)·∧T∧Sn

−Xn
0 −Bn·∧T∧Sn

)(i)(
Xn(h)·∧T∧Sn

−Xn
0 −Bn·∧T∧Sn

)(j) − C̃n,(ij)·∧T∧Sn
,

which is a local martingale on Bn. First of all, as |∆(Xn(h)−X0 −Bn)(i)| ≤ 2‖h‖∞, we
deduce from [25, Lemma VII.3.34] that

EP
n
[

sup
s≤T∧Sn

∣∣(Xn(h)s∧Sn
−Xn

0 −Bns∧Sn

)(i)∣∣4] . EP
n
[∣∣C̃n,(ii)T∧Sn

∣∣2] 1
2

+ EP
n
[∣∣C̃n,(ii)T∧Sn

∣∣2].
Consequently, hypothesis (ii)’ yields that

sup
n∈N

EP
n
[

sup
s≤T
|Y ns |2

]
<∞.

Hence, Y n is a true martingale on Bn and the set {Y ns : s ∈ [0, T ], n ∈ N} is uniformly
integrable. It remains to verify (3.8). Notice that on [[0, T ∧ Sn]]

Y n − Y ◦(Xn) =
(
Xn(h)−Xn

0 −Bn
)(i)(

B(Xn)−Bn
)(j)

+
(
Xn(h)−Xn

0 −B(Xn)
)(j)(

B(Xn)−Bn
)(i) − C̃n,(ij) + C̃(ij)(Xn).
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Let us recall an elementary fact ([27, Exercise 3.5, p. 58]). If ξ1, ξ2, . . . and η1, η2, . . . are
sequences of random variables such that (ξn)n∈N is uniformly integrable and ηn → 0 in
probability, then ξnηn → 0 in probability. Using this fact and assumptions (i)’ and (ii)’,
for all t ∈ Γ ∩ [0, T ] and ε > 0, we obtain

Pn
(
|Y nt − Y ◦t (Xn)| ≥ ε

)
≤ Pn

(
|Y nt − Y ◦t (Xn)| ≥ ε, t ≤ Sn

)
+ Pn

(
T > Sn

)
→ 0

as n→∞. As T ∈ Γ was arbitrary and Γ ⊂ R+ is dense, we conclude that (A4) holds and
consequently, the claim follows.

Remark 5.10. The literature contains several conditions for tightness of processes
with fixed times of discontinuity. Conditions for semimartingales are given in [25,
Theorems VI.5.10, IX.3.20]. We also refer to the recent article [3] where a version of
Aldous’s tightness criterion for processes with fixed times of discontinuity is proved.

Remark 5.11. Hypothesis (ii)’ holds for instance under the following uniform bounded-
ness assumption: for all T > 0 and g ∈ C1(Rd), we have

sup
ω∈D(Rd)

(
‖C̃T (ω)‖+ |(g ∗ νT )(ω)|

)
<∞.

This follows from arguments used in the proof of Theorem 4.7. In practice (ii)’ seems
to be more flexible than this boundedness condition. For instance, the first part of the
assumption also holds in case

‖C̃n‖ . 1 + sup
s≤·
‖Xn

s ‖2

and
sup
n∈N

EP
n
[

sup
s≤T
‖Xn

s ‖4
]
<∞, T > 0.

Under suitable linear growth assumptions on the characteristics (Bn, Cn, νn), and a
suitable integrability condition on the initial distributions, the fourth moment condition
can be verified by Gronwall’s lemma.

5.5.2 Examples for u and L1, L2, . . .

In this section we explain how the function u and the control variables L1, L2, . . . can be
chosen such that (5.11) holds when X1, X2, . . . are stochastic integrals. Hereby, we use
ideas from [22, 24].

Example 5.12. As we only want to fix ideas, suppose that all semimartingalesX1, X2, . . .

are one-dimensional, defined on the same stochastic basis B = (Ω,F ,F, P ) and are
stochastic integrals of the form

dXn
t = σnt dZ

n
t ,

for a one-dimensional semimartingale Zn and a predictable process σn ∈ L(Zn). In
this case we have ∆Xn = σn∆Zn. Assume that there exists a non-negative predictable
process γ such that γ ∈ L(Zn) and |σn| ≤ γ(1 + sups≤· |Xn

s |) for all n ∈ N. The linear
growth condition can be relaxed. Then,

|∆Xn| ≤ γ|∆Zn|
(

1 + sup
s≤·
|Xn

s |
)

= |∆Ln|
(

1 + sup
s≤·
|Xn

s |
)
, Ln ,

∫ ·
0

γsdZ
n
s .

Now, we set U , D(R) and u(u, t) , |∆u(t)| for (u, t) ∈ D(R)×R+. By standard properties
of càdlàg functions, the set {t ∈ [0, T ] : u(u, t) ≥ a} = {t ∈ [0, T ] : |∆u(t)| ≥ a} is finite for
every (a, T, u) ∈ (0,∞)× (0,∞)×D(R). Consequently, by Lemma 2.10, u has the desired
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properties and (5.11) is satisfied with κ(x) , 1 + x for x ∈ R+. Often enough, it holds
that Zn ≡ Z, which implies that the law of Ln is independent of n.

Alternatively, suppose that there exists a càdlàg measurable process Z such that
Zn → Z in the ucp6 topology, i.e., for all t ∈ R+,

sup
s≤t
|Zns − Zs| → 0

in probability as n → ∞. For what follows, fix T > 0. Up to passing to a subsequence,
which we ignore for simplicity, the set

Ωo ,
{
ω ∈ Ω: lim

n→∞
sup
s≤T
|Zns (ω)− Zs(ω)| = 0

}
is full. Now, when we define

u(ω, t) ,

{
supn∈N |∆Znt (ω)|, ω ∈ Ωo,

0, otherwise,

for (ω, t) ∈ Ω× [0, T ], the set {t ∈ [0, T ] : u(ω, t) ≥ a} is finite for every ω ∈ Ω and a > 0.
To see this, take ω ∈ Ωo and let N = N(ω) ∈ N be such that

sup
n≥N

sup
s≤T
|Zns (ω)− Zs(ω)| ≤ a

3
.

Then, for every t ∈ [0, T ],

sup
n≥N
|∆Znt (ω)| ≥ a =⇒ |∆Zt(ω)| ≥ sup

n≥N
|∆Znt (ω)| − sup

n≥N
|∆Znt (ω)−∆Zt(ω)|

≥ a− 2a

3
=
a

3
.

As there are only finitely many t ∈ [0, T ] such that |∆Zt(ω)| ≥ a/3, there are also only
finitely many t ∈ [0, T ] such that supn≥N |∆Znt (ω)| ≥ a. Now, since

{
t : sup

n∈N
|∆Znt (ω)| ≥ a

}
⊂
(N−1⋃
k=1

{
t : |∆Zkt (ω)| ≥ a

})
∪
{
t : sup

n≥N
|∆Znt (ω)| ≥ a

}
,

we conclude that there are at most finitely many t ∈ [0, T ] such that supn∈N |∆Znt (ω)| ≥ a,
which was the claim.

Up to a pasting argument, if γ is, for instance, constant, we can take U , Ω and
Ln ≡ Id such that (5.11) holds. In particular, as we assume that all processes are defined
on the same stochastic basis, the distributions of L1, L2, . . . are trivially (relatively)
compact in Mm(U). At the cost of slightly more complicated conditions, this argument
can be transferred to the more general case where Bn = (Ω,F ,Fn, Pn). More details on
this strategy are given in the proof of Corollary 5.19 below.

Example 5.13. In this example we explain how (iii)’ can be checked in case X1, X2, . . .

are stochastic integrals w.r.t. a (compensated) random measure. As in Example 5.12,
for simplicity assume that all X1, X2, . . . are one-dimensional and defined on the same
stochastic basis. Moreover, we assume that

Xn = Xn
0 +

∫ ·
0

∫
Hn(s, y)(pn − qn)(ds, dy),

6ucp = uniformly on compacts in probability.
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where pn − qn is a compensated integer-valued random measure on a Blackwell space
(E, E) and Hn ∈ Gloc(pn). Suppose that γ is a non-negative predictable process such that
a.s. γ ∗ qn <∞ and |Hn| ≤ γ(1 + sups≤· |Xn

s |) for all n ∈ N. The linear growth condition
can be relaxed. We now set

Ln ,
∫ ·

0

∫
γ(s, y)(pn + qn)(ds, dy),

and we obtain that

|∆Xn
t | =

∣∣∣ ∫ Hn(t, y)pn({t} × dy)−
∫
Hn(t, y)qn({t} × dy)

∣∣∣
≤
∫
|Hn(t, y)|pn({t} × dy) +

∫
|Hn(t, y)|qn({t} × dy)

≤
∫
γ(t, y)(pn + qn)({t} × dy)

(
1 + sup

s≤t
|Xn

s |
)

= |∆Lnt |
(

1 + sup
s≤t
|Xn

s |
)

for all t > 0. Now, we can define U = D(R), u(u, t) = |∆u(t)| and κ(x) = 1 + x such
that (5.11) holds. Often enough the law of Ln is independent of n. The strategy outlined
in the second part of Example 5.12 can also be transferred to this setting, see the proof
of Corollary 5.19 below.

5.5.3 The annealed setting

In this section we assume that X1, X2, . . . are defined on the same filtered probability
space, which can be viewed as an annealed setting, see Section 5.1. In this case we
allow the limiting characteristics to be random.

We fix a filtered probability space B = (Ω,F ,F, P ) which supports Rd-valued cádlág
adapted processes X1, X2, . . . . Moreover, we define an extension (Ω′,F ′,F′) of the
filtered space (Ω,F ,F) by

Ω′ , Ω×D(Rd), F ′ , F ⊗D(Rd), F ′t ,
⋂
s>t

(
Fs ⊗Ds(Rd)

)
,

where D(Rd) and (Dt(Rd))t≥0 are the canonical σ-field and the canonical (right-contin-
uous) filtration on D(Rd). With little abuse of terminology, we denote the canonical
process on Ω′ by X(ω, α) = α for (ω, α) ∈ Ω′.

Let (B,C, ν) be a candidate triplet on (Ω′,F ′,F′) relative to a fixed continuous trunca-
tion function h : Rd → Rd, cf. [25, III.2.3]. Let u : Ω×R+ → R+ be an F ⊗B(R+)/B(R+)-
measurable function such that, for every (ω, t) ∈ Ω× (0,∞),

lim
ε↘0

sup
{
u(ω, s) : s 6= t, t− ε ≤ s ≤ t+ ε

}
= 0,

let κ : R+ → R+ be increasing and continuous, and define

An ,
{
ω ∈ Ω: ‖∆Xn

t (ω)‖ ≤ u(ω, t)κ
(

sup
s≤t
‖Xn

s (ω)‖
)

for all t > 0
}
.

The set
⋂
n∈NA

n can be interpreted as follows: the jumps of the processes X1, X2, . . .

are controlled by a process u which roughly behaves like the jump process |∆Z| of some
one-dimensional càdlàg process Z.

The following is the main result of this section.
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Theorem 5.14. Suppose that each Xn is a semimartingale with semimartingale char-
acteristics (Bn, Cn, νn) corresponding to the (continuous) truncation function h. As-
sume that there exists a probability measure P ◦ X−1 on (D(Rd),D(Rd)) such that
P ◦ (Xn)−1 → P ◦X−1 weakly (where D(Rd) is endowed with the Skorokhod J1 topology)
and that there exists a dense set Γ ⊂ R+ such that the following hold:

(i) for every t ∈ Γ, ε > 0 and g ∈ C1(Rd), we have

P (‖Bnt −Bt(Xn)‖ ≥ ε)→ 0,

P (‖C̃nt − C̃t(Xn)‖ ≥ ε)→ 0,

P (|g ∗ νnt − g ∗ νt(Xn)| ≥ ε)→ 0,

as n→∞;

(ii) for all T ∈ Γ and g ∈ C1(Rd), there is a sequence of stopping times (Sn)n∈N such
that

P (Sn < T )→ 0, n→∞,

and

sup
n∈N

EP
[
‖C̃nT∧Sn

‖2 + g2 ∗ νnT∧Sn

]
<∞;

(iii) for all ω ∈ Ω, t ∈ Γ and f ∈ C1(Rd), the maps

D(Rd) 3 α 7→ Bt(ω, α), C̃t(ω, α), (f ∗ νt)(ω, α)

are continuous in the local uniform topology. Moreover,

P (An)→ 1 as n→∞.

Then, there exists a probability measure Q on (Ω′,F ′), which is a weak-strong accumula-
tion point of {P ◦ (Id, Xn)−1 : n ∈ N} with QΩ = P and QD(Rd) = P ◦X−1, such that on
(Ω′,F ′,F′, Q) the canonical process X is a semimartingale with characteristics (B,C, ν).

Proof. The proof is similar to those of Theorem 5.8 where we take (U,U) = (Ω,F) and
Ln(ω) ≡ L(ω) = ω for all ω ∈ Ω. Let us emphasis that in this case we can use a mixture
of the determining sets described in part (i) and (iii) of Example 3.6. The details are left
to the reader.

In the context of SDEs with semimartingale drivers, Theorem 5.14 is related to [24,
Theorem 3.16].

Example 5.15. We provide a short example for an application of Theorem 5.14 in a
setting without jumps. A more detailed exposition of a closely related setting with fixed
times of discontinuity is given in Section 5.5.4 below. Furthermore, a related discussion
for a setting with jumps is given on p. 205 in [24]. We take B as underlying filtered
space. Let τ0, τ1, τ2, . . . be stopping times on B, which we think to be change points
of economic scenarios, and let W be a one-dimensional standard Brownian motion on
the stochastic basis B. Moreover, take b, b◦ : R+ ×R→ R and σ, σ◦ : R+ ×R→ R to be
sufficiently regular functions such that, for each n ∈ Z+, the SDE

dXn
t =

(
b(t,Xn

t )1{t≤τn} + b◦(t,Xn
t )1{t>τn}

)
dt

+
(
σ(t,Xn

t )1{t≤τn} + σ◦(t,Xn
t )1{t>τn}

)
dWt, Xn

0 = x0,

has a solution process Xn. It is well-known that (local) Lipschitz (or monotonicity)
and linear growth conditions on b, b◦ and σ, σ◦ imply existence (and uniqueness in a

EJP 28 (2023), paper 19.
Page 41/46

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP902
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The martingale problem method revisited

strong sense), see, e.g. [21, Chapter 14] or [24, Section 4]. We also stress that the
above SDEs have random coefficients, where the randomness enters in terms of the
sequence τ0, τ1, τ2, . . . . Part (i) of Theorem 5.14 holds if τn → τ0 in probability. Under
this condition and under suitable assumptions on the coefficients (see [24, Section 4]), if
the laws of X1, X2, . . . converge weakly, then7 the measure Q in Theorem 5.14 is given
by

Q(dω, dα) = δX0(ω)(dα)P (dω).

Since QD(R) = P ◦ (X0)−1, this shows that the laws of X1, X2, . . . converge weakly to
the law of X0. In fact, we can say more: by Remark 2.2, we can even conclude that
Xn → X0 in the ucp topology. This observation can be compared to classical ucp stability
results for semimartingale SDEs as for instance given in [33]. We stress that the above
argument does not rely on the Lipschitz continuity of the coefficients as the argument
in [33], but on strong existence and uniqueness. Therefore, we think it is more flexible
when it comes to the regularity of the coefficients. However, in the presence of jumps the
argument only yields convergence in probability for the Skorokhod J1 topology, which is
weaker than ucp convergence.

5.5.4 Application: Itô processes with fixed times of discontinuity

In this section we specify Theorem 5.8 for solutions to SDEs driven by a Gaussian
continuous local martingale and a Poisson random measure.

Let (E, E) be a Blackwell space and let P be the predictable σ-field on R+ ×D(Rd)

when D(Rd) is equipped with the canonical filtration. Let σ : R+ × D(Rd) → Rd×r be
P/B(Rd×r)-measurable and let v, b : R+ ×D(R+)×E → Rd be P ⊗ E/B(Rd)-measurable.
Let Cn and C be covariance functions for r-dimensional continuous Gaussian martingales
such that

Cn =

∫ ·
0

cns ds, C =

∫ ·
0

csds.

Moreover, let q and qn be intensity measures of Poisson random measures on (E, E),
let qn and q be σ-finite measures on (R+ × E,B(R+) ⊗ E) and let h : Rd → Rd be
a continuous truncation function. For each n ∈ N, we fix a stochastic basis Bn ,
(Ω,F ,Fn, P ) which supports the following: a continuous Gaussian martingale Wn with
covariance function Cn, a Poisson random measure pn with intensity measure qn and a
semimartingale Xn with dynamics

Xn = Xn
0 +

∫ ·
0

∫
bn(t, y)qn(dt, dy) +

∫ ·
0

σnt dW
n
t +

∫ ·
0

∫
h(vn(t, y))(pn − qn)(dt, dy)

+

∫ ·
0

∫
(vn(t, y)− h(vn(t, y)))pn(dt, dy),

where bn, σn and vn are suitable processes such that the integrals are well-defined. We
now also formulate some technical conditions.

Assumption 5.16. There exists a càdlàg process X on a probability space (Ω∗,F∗, P ∗)
such that Xn → X weakly on D(Rd) endowed with the Skorokhod J1 topology. Let FX be
the canonical (right-continuous) filtration generated by X and set B , (Ω∗,F∗,FX , P ∗).

7More precisely, under (local) Lipschitz or monotonicity conditions as given in [24, Section 4], by [24,
Corollary 2.26] there exists a unique solution measure (in the sense of [24, Definition 1.6]) to the SDE of X0

and it is strong (see [24, Definition 2.21]). Thus, by [24, Theorem 2.22], the solution measure has the form
δX0(ω)(dα)P (dω). As Q in Theorem 5.14 is a solution measure to the SDE of X0 by [24, Theorem 2.10], the
claim follows.
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Assumption 5.17. Part (i)’ and (ii)’ of Theorem 5.8 hold for a dense set Γ ⊂ R+ and the
following characteristics (Bn, Cn, νn) and (B,C, ν):

Bn ,
∫ ·

0

∫
bn(t, y)qn(dt, dy),

Cn ,
∫ ·

0

σnt c
n
t σ

n∗
t dt,

νn([0, t]×G) ,
∫ t

0

∫
1G(vn(s, y))qn(ds, dy), t ∈ R+, G ∈ B(Rd\{0}),

and

B ,
∫ ·

0

∫
b(t, y)q(dt, dy),

C ,
∫ ·

0

σtctσ
∗
t dt,

ν([0, t]×G) ,
∫ t

0

∫
1G(v(s, y))q(ds, dy), t ∈ R+, G ∈ B(Rd\{0}).

It is implicit8 that (Bn, Cn, νn) and (B,C, ν) are candidate triplets in the sense of [25,
III.2.3]. Moreover, for every t ∈ Γ and g ∈ C1(Rd), the functions Bt, C̃t and g ∗ νt are
continuous on D(Rd) endowed with the local uniform topology.

Assumption 5.18. Let κ : R+ → R+ be increasing and continuous. For each T ∈ N,
there exists a sequence γn = γn,T : R+ × Ω × E → R+ of non-negative B(R+) ⊗ F ⊗
E/B(R+)-measurable functions with the following properties:

(i) a.s. γn ∗ pnT <∞ for all n ∈ N;

(ii) ‖vn‖ ≤ γnκ(sups≤· ‖Xn
s ‖) on Ω × (T − 1, T ]× E;

(iii) there exists a càdlàg measurable process Z = ZT such that

sup
s≤T
|γn ∗ pns − Zs| → 0

in probability n→∞.

Corollary 5.19. Suppose that Assumptions 5.16, 5.17 and 5.18 hold. Then, X is a semi-
martingale on B whose semimartingale characteristics are given by (B(X), C(X), ν(X)).
Possibly on a standard extension of B, there is a Gaussian continuous martingale W with
covariance function C and a Poisson random measure p with intensity measure q such
that

X = X0 +

∫ ·
0

∫
b(t,X, y)q(dt, dy) +

∫ ·
0

σt(X)dWt +

∫ ·
0

∫
h(v(t,X, y))(p− q)(dt, dy)

+

∫ ·
0

∫
(v(t,X, y)− h(v(t,X, y)))p(dt, dy).

Proof. Our strategy is to apply Theorem 5.8. By hypothesis, referring to Theorem 5.8,
(i)’ and (ii)’ and the continuity assumption from (iii)’ hold. Via passing to a subsequence,
which we ignore in our notation for simplicity, we can assume that a.s.

sup
s≤T
|γn,T ∗ pns − ZTs | → 0, T = 1, 2, . . . ,

8In particular, ∆Bn
t =

∫
h(x)νn({t}× dx), which means

∫
bn(t, y)qn({t}× dy) =

∫
h(vn(t, y))qn({t}× dy).

As a consequence, ∆Xn
t =

∫
vn(t, y)pn({t} × dy).
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as n→∞. Define

Ωo ,
{
ω ∈ Ω: lim

n→∞
sup
t≤T
|γn,T ∗ pnt − ZTt | = 0, T = 1, 2, . . .

}
,

which then is a full set. Let (U,U) = (Ω,F) and let Ln(ω) = ω be the corresponding
identity map. The distributions of L1, L2, . . . are trivially (relatively) compact in Mm(U).
For T ∈ N and (ω, t) ∈ Ω× (T − 1, T ], we define

u(ω, t) ,

{
supn∈N

∫
γn,T (ω; t, y)pn(ω; {t} × dy), ω ∈ Ωo,

0, otherwise.

We also set u(ω, 0) ≡ 0 for all ω ∈ Ω. By definition of Ωo, the fact that ZT has càdlàg
paths and standard properties of càdlàg functions, for every ω ∈ Ω and a > 0, the set
{t ∈ (T − 1, T ] : u(ω, t) ≥ a} is finite, see Example 5.12 for more details. Consequently, by
Lemma 2.10, u is as in Section 5.5 and it remains to verify (5.11). For every T −1 < t ≤ T ,
we have a.s.

‖∆Xn
t ‖ ≤

∫
‖vn(t, y)‖pn({t} × dy)

≤
∫
γn,T (t, y)pn({t} × dy)κ

(
sup
s≤t
‖Xn

s ‖
)

≤ u(Ln, t)κ
(

sup
s≤t
‖Xn

s ‖
)
,

which shows (5.11). In summary, we conclude from Theorem 5.8 that X is a semimartin-
gale (for its canonical filtration) with characteristics (B(X), C(X), ν(X)).

The final claim, i.e. the representation of X as stochastic integrals, follows from
classical representation theorems as given in [26] and [21, Section XIV.3].

There is also a version of Corollary 5.19 for the case Bn = (Ω,F ,Fn, Pn), i.e. with
varying probability measures. Before we present this version, let us emphasis that even
if P 1, P 2, . . . are allowed to be different, we ask them to be quite close in the sense that
they converge to each other in total variation.

Corollary 5.20. Suppose that

sup
G∈F
|Pn(G)− P (G)| → 0 (5.12)

as n → ∞, that the Assumptions 5.16 and 5.17 hold, and that Assumption 5.18 holds
with (i) and (iii) replaced by

(i)’ Pn-a.s. γn ∗ pnT <∞ for all n ∈ N;

(iii)’ there exists a càdlàg measurable process Z = ZT such that for all ε > 0

Pn
(

sup
s≤T
|γn ∗ pns − Zs| ≥ ε

)
→ 0

as n→∞.

Then, Corollary 5.19 holds for Bn = (Ω,F ,Fn, Pn) and B = (Ω,F ,FX , P ).

Proof. Thanks to Remark 2.3, (5.12) implies Pn → P in Mm(Ω). Thus, the set {Pn : n ∈
N} is relatively sequentially compact in Mm(Ω). Under (5.12), we have, for every ε > 0,

Pn
(

sup
s≤T
|γn ∗ pns − Zs| ≥ ε

)
→ 0 ⇐⇒ P

(
sup
s≤T
|γn ∗ pns − Zs| ≥ ε

)
→ 0.

Furthermore, with Ωo as in the proof of Corollary 5.19, Pn(Ωo)→ P (Ωo) = 1. With these
observations at hand, the proof of Corollary 5.19 needs no further change.
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Finally, we remark that Theorem 5.14 can also be transferred to the current setting.
This yields a stability result for random coefficients b, σ and v. We leave the precise
statement to the reader.
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