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Abstract

Different versions of percolation games on Z2, with parameters p and q that indicate,
respectively, the probability with which a site in Z2 is labeled a trap and the probability
with which it is labeled a target, are shown to have probability 0 of culminating in
draws when p + q > 0. We show that, for fixed p and q, the probability of draw in
each of these games is 0 if and only if a certain 1-dimensional probabilistic cellular
automaton (PCA) Fp,q with a size-3 neighborhood is ergodic. This allows us to conclude
that Fp,q is ergodic whenever p + q > 0, thereby rigorously establishing ergodicity
for a considerable class of PCAs that tie in closely with important topics such as the
enumeration of directed animals, broadcasting of information on directed infinite
lattices, examining reliability of computations against the presence of noise etc. The
key to our proof is the technique of weight functions. We include extensive discussions
on game theoretic PCAs to which this technique may be applicable to establish
ergodicity, and on percolation games to which this technique may be applicable to
explore the ‘regimes’ (depending on the underlying parameter(s), such as (p, q) in our
case) in which the probabilities of draw are 0.
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3-Neighborhood PCA and percolation games

1 Introduction

1.1 Overview of the paper

There are two aspects to this paper that share a deep connection with each other: a
class of 1-dimensional probabilistic cellular automata (henceforth abbreviated as PCA),
and a class of percolation games that is studied on the 2-dimensional square lattice
Z2. At the very outset, we give a brief sketch of the percolation games and the specific
PCAs that we focus on, while their detailed descriptions are provided in §2.1 and §2.2
respectively.

The key components constituting our PCA (that we henceforth refer to as Fp,q) are
the alphabet {0, 1}, the universe Z, the neighborhood N = {0, 1, 2}, and the parameters
p and q with (p, q) ∈ S, where

S = {(p′, q′) ∈ [0, 1]2 : 0 < p′ + q′ 6 1}. (1.1)

A configuration for this PCA at a given time t is an element ηt of {0, 1}Z, and its evolution
can be described as follows: the state ηt+1(n) of a site n ∈ Z at time t + 1 is updated,
independent of the updates happening at all other sites, according to a probability
distribution that is supported on {0, 1} and that depends on (ηt(n+ i) : i ∈ N ), i.e. on the
states ηt(n), ηt(n+ 1) and ηt(n+ 2) of the sites n, n+ 1 and n+ 2, respectively, at time
t. The precise description of these probability distributions can be found in §2.2. We
remark here that in the sequel, much of our mathematical analysis is carried out on a
different but related PCA, F̂p,q, with alphabet {0, ?, 1}, that is referred to as the envelope
to Fp,q, since it serves to provide a more direct connection with the percolation game we
study in this paper (see §2.3).

We now come to an overview of the percolation game we are concerned with, in
which the parameters p and q, with (p, q) ∈ S, are fixed a priori. We begin by assigning,
independently to every vertex of Z2, a (random) label that reads trap with probability p,
target with probability q, and open with the remaining probability r = 1− p− q. A token
is placed at a vertex of Z2, termed the initial vertex, at the start of the game, and two
players take turns to make moves. A move involves relocating the token from its current
position (x, y) (say) to any vertex in the set Out(x, y), where

Out(x, y) = {(x, y + 1), (x+ 1, y + 1), (x+ 2, y + 1)}. (1.2)

A player loses if she is forced to relocate the token to a vertex labeled a trap, and wins
if she is able to relocate the token to a vertex labeled a target. The game may also
continue forever, with neither player being able to reach a target nor being able to force
her opponent to fall into a trap, and in this case, we say that the game results in a draw.

The primary goal of this paper is to prove Theorem 1.1, stated below, the first
assertion of which establishes ergodicity (see Definition 2.1) for the PCA Fp,q, while
the second concerns itself with the outcome of draw in the percolation game described
above.

Theorem 1.1. For all (p, q) ∈ S, the PCA Fp,q is ergodic, and the probability of draw in
the percolation game described above is 0.

We give a brief outline of the essential constituents of the proof of this theorem. Recall
the envelope PCA F̂p,q corresponding to Fp,q, with alphabet {0, ?, 1}, alluded to above.
For each (p, q) ∈ S, it is shown, via connections explained in §2.3, that the probability of
the event that the percolation game starting from the origin in Z2 culminates in a draw
is equal to the probability that the symbol ? occupies the origin in Z under a certain
stationary distribution (see Definition 2.1) for F̂p,q. This stationary distribution for F̂p,q is
the same as the probability distribution of winning (for the first player), losing (for the
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3-Neighborhood PCA and percolation games

first player) and draw positions (indicated, respectively, by the states W , L and D that
are introduced at the beginning of §2.3) on any horizontal line Hk = {(x, k) : x ∈ Z} of
Z2, for our percolation game. Next, Theorem 2.4 is used to establish that the probability
of appearance of ? at any given site in Z is 0 under every stationary distribution for
F̂p,q, for each (p, q) ∈ S, leading to the conclusion that the probability of draw in our
percolation game is 0 for each (p, q) ∈ S. Finally, Proposition 2.2 guarantees that the
probability of draw in our percolation game is 0 if and only if the PCA Fp,q is ergodic,
yielding the conclusion that Fp,q is ergodic for each (p, q) ∈ S.

The key tool used in the proof of Theorem 2.4 is the technique of weight functions.
In addition to proving the main result, Theorem 1.1, of this paper, we include an
extensive discussion on the class of percolation games to which this technique may be
applicable, with possibly suitable modifications, to explore the ‘regimes’ (depending on
the underlying parameters, such as (p, q) in our case), referred to as critical regions, in
which such games have probability 0 of culminating in draws. We also provide insight
into the class of game theoretic PCAs to which the technique of weight functions may be
applicable in order to establish ergodicity properties, or to gain an understanding of the
condition(s) to be imposed on the underlying parameter(s) of these PCAs that guarantee
ergodicity. We also provide a formal game theoretic formulation of our problem, following
which we establish connections between our work and the existing literature, speculate
on the various directions in which future research can be carried out (for instance, by
generalizing the set of actions, considering arbitrary mover-sequences, generalizing the
event of draw itself, exploring possible monotonicity properties of the probabilities of
draw, studying percolation games on higher dimensions, studying the values of such
games etc.).

1.2 Brief discussion of the literature

A cellular automaton, also referred to as a deterministic cellular automaton (and
henceforth abbreviated as CA) is a discrete dynamical system that consists of

1. a regular network of automata (or cells) indexed by Zd for some d ∈ N,

2. a finite set of states A termed the alphabet,

3. a finite set of indices N ⊂ Zd termed the neighborhood,

4. and a local update rule f : AN → A.

The state (inA) of each cell x ∈ Zd is updated by applying f to the current states of all the
cells x + y where y ∈ N , and this process is repeated at discrete time steps (see [26] for
a detailed survey on CAs). It is not surprising, therefore, that many naturally occurring
processes (such as collisions between moving point particles in a regular lattice that
serves as a model for fluid dynamics) that are governed by local and homogeneous
underlying rules can be efficiently modeled and simulated using CAs. CAs correspond
to all those functions on AZd

that are continuous with respect to the product topology
and that commute with translations (see Corollary 76, Proposition 77 and other relevant
discussions in Section 5 of [27], and [24]). Moreover, CAs serve as mathematical models
for massive parallel computations, their relatively simple update rules allow them to
be computationally universal, and they are capable of simulating any Turing machine
([20, 42, 14, 43, 37]). It is no wonder, consequently, that CAs have emerged as a useful
tool for studying computations in natural processes as well as physical aspects and
physical limits of computation.

A probabilistic cellular automaton (PCA) is obtained when the corresponding update
rule is random. PCAs may be interpreted as discrete-time Markov chains on the state
space AZd

as well as generalizations of CAs. In a d-dimensional PCA, the state ηt+1(x), at
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time t+ 1, of a cell x ∈ Zd is a random variable whose probability distribution (supported
on A) is governed by the states ηt(x+y), at time t, of the cells x+y, for all y ∈ N . PCAs
are obtained in computer science via random perturbations of CAs, and the motivation
behind studying them includes

1. investigating the fault-tolerant computational capability of CAs ([35, 36]),

2. classifying elementary CAs by using their robustness to errors and perturbations
as a discriminating criterion ([31, 7]),

3. the intimate connection PCAs have with Gibbs potentials and Gibbs measures in
statistical mechanics ([40, 30, 21]) as well as with combinatorial models such as
directed animals ([33, 6, 8, 1, 12]), queues ([33], §4.3) and percolation ([23, 22, 29,
39, 41]),

4. and the crucial role PCAs play in modeling several complex systems appearing in
physics, chemistry and biology.

We refer the reader to [13], and the more recent [33], for a detailed survey on how the
theory of PCAs has developed over the years.

In addition, to give the reader a glimpse into the vast and variegated applications
of PCAs in various disciplines, we refer to [32] that offers an insight into how PCAs are
implemented in probability, statistical mechanics, computer sciences, natural sciences,
dynamical systems and computational cell biology, to [30], [19], [44], [21] and [3] that
discuss the implementations of PCAs in statistical mechanics and dynamical systems, to
[45] that applies PCAs as a quantitative framework in astrobiology, to [15] that studies
DNA sequence evolutions and cellular mutations in computational cellular biology using
PCAs, and to [38] as an instance of how PCAs find applications in chemistry. We reiterate
to the reader that the references mentioned above form just a minuscule fraction of the
diverse ways PCAs have found applications in several branches of mathematics, physics,
chemistry and biological sciences.

We now come to a more nuanced discussion, focusing on a few of those articles
(keeping in mind that this list too is, by no means, exhaustive) that study PCAs from
perspectives closely related to how we approach Fp,q and F̂p,q. We begin our discussion
with [25], not only because this serves as the primary inspiration for our work in this
paper, but also because percolation games were introduced and studied for the first time
in [25]. The percolation game considered in [25] admits Out(x, y) = {(x+ 1, y), (x, y+ 1)}
for every (x, y) ∈ Z2, and whether the probability of a draw is strictly positive or not
is shown to be intimately connected with the ergodicity of a family of elementary 1-
dimensional PCAs (see §2.2 for details). On the other hand, certain analogous games
played on various directed graphs in higher dimensions (such as on an oriented version
of the even sub-lattice of Zd for all d > 3) are shown to exhibit positive probabilities
of draw for suitable values of the parameters involved – a fact that is established via
dimension reduction to a hard-core lattice gas model in dimension d− 1, and by showing
that draws occur whenever the corresponding hard-core model fails to have a unique
Gibbs measure.

In [34], it is shown that various families of CAs, such as nilpotent CAs, permutive
CAs, gliders, CAs with spreading symbols, surjective CAs and algebraic CAs, are highly
unstable against various types of noises, such as zero-range noise, memoryless noise,
additive noise, permutive noise and birth-death noise, in the sense that they forget
their initial conditions under the slightest positive noise – a fact that is reflected in the
ergodicity of the PCAs that result from these CAs under the application of said noise.
[34] also discusses results on the stronger notion of uniform ergodicity of PCAs as well
as spatial mixing, computability and admittance of perfect sampling algorithms for their
unique stationary or invariant measures, and the techniques used include couplings,
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entropy and Fourier analysis. In [11], a family of 1-dimensional PCAs with memory two
is studied as these arise naturally from the 8-vertex model, directed animals, gaz models,
TASEP and various other models of statistical physics – in such a PCA, the state ηt+1(n)

of the site n ∈ Z at time t + 1 is a random variable whose probability distribution is
a function of the states ηt(n − 1) and ηt(n + 1) of its two nearest neighbors n − 1 and
n+ 1 at time t, and its own state ηt−1(n) at time t− 1. In [11], conditions are proposed
under which the invariant measures for these PCAs can be expressed either in a product
form or in a Markovian form, ergodicity results that hold in this context are proved,
and the phenomenon of reversibility of the stationary space-time diagrams of these
PCAs is investigated, leading to the discovery of families of Gibbs random fields on the
square lattice that have fascinating geometric and combinatorial properties. In [9], a
computer-assisted proof of ergodicity is provided for two PCAs whose update rules can
be respectively expressed as ηt+1(n) = BSCp(NAND(ηt(n− 1), ηt(n))) (referred to as the
vertex noise scenario) and ηt+1(n) = NAND(BSCp(ηt(n − 1), ηt(n))) (referred to as the
edge noise scenario), with p ∈ (0, ε) for some suitable ε > 0. Here, BSCp refers to a
binary symmetric channel that takes a bit as input and flips it with probability p, leaving
it unchanged with probability 1− p. Similar to the approach adopted in this paper, [9]
utilizes the notion of weight function or potential function (see §4 for details) that was
introduced in [25], but instead of any explicit manual computations, they implement
local feasibility of a suitable polynomial linear programming (PLP) to guarantee the
existence of a desired potential function that then helps establish the above-mentioned
ergodicity results.

1.3 Organization of the paper

The percolation game we investigate in this paper is discussed and illustrated in
§2.1, the PCA Fp,q is formally introduced in §2.2, and its envelope F̂p,q, along with the
deep ties it exhibits with the game via the game’s recurrence relations, is elaborated
on in §2.3. The results forming the crux of this paper (apart from Theorem 1.1 that has
already been stated) are stated in Proposition 2.2, Proposition 2.3 and Proposition 2.4,
while the lemma required to prove Proposition 2.2 and Proposition 2.3 is discussed in §3.
Mathematically, the most significant section of this paper is §4, in which the method of
weight functions is employed to prove Proposition 2.4, and the pivotal steps via which
this is accomplished are outlined in §4.1 through §4.7. We go on to provide a formal,
game theoretic formulation of our percolation game, along with a detailed description
of relevant game theoretic terminology, in §5. In §6, we include discussions on several
directions in which future research closely relating to this paper can be carried out, such
as examining the probabilities of draw in games where the set of actions is generalized,
or where arbitrary mover-sequences are considered, or where the event of draw itself is
generalized, percolation games on lattices of higher dimensions, possible monotonicity
properties of the probabilities of draw, studying values of percolation games etc. Finally,
in §7, we speculate on the various other settings (both in terms of percolation games and
‘game theoretic’ PCAs that we introduce in §7) in which we believe that the technique of
weight functions can be applied to explore the probability of draw for the game under
consideration / ergodicity of the PCA under consideration.

2 The principal objects studied in this paper

2.1 Our percolation game

We begin by describing, in detail, the percolation game that we briefly dwelt on in §1.1.
The permitted moves are illustrated via the directed (as indicated by the arrowheads),
dashed, black lines in Figure 1.
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(x, y)

(x, y + 1) (x + 1, y + 1)

(x + 2, y + 1)

Figure 1: Out(x, y) in our percolation game.

We recall from §1.1 that each vertex (or site) of Z2 is assigned, independent of all
else, a label that is a trap with probability p, a target with probability q, and open with
probability r = 1 − p − q, where (p, q) ∈ S, with S as in (1.1). Starting from an initial
vertex, the two players take turns to move the token from its current position, say (x, y),
to any vertex in Out(x, y). A player wins if she is able to move the token to a target or
if her opponent is forced to move it to a trap. We clarify here that, once Z2 has been
endowed with a trap / target / open labeling, the assignment is revealed in its entirety
to both the players before the game begins (hence, this is a perfect information game).
Thereafter, to say that the corresponding game is won by a player is to assert that she
has a strategy which, when employed, allows her to win no matter what strategy her
opponent adopts. The game continues for as long as the token does not land on a site
that is marked either a target or a trap, and this could happen indefinitely, leading
to a draw. The primary question of interest to us is the same as that in [25], i.e. for
what values of the parameters p and q the game exhibits a positive probability of draw.
As previously mentioned, the proof pivots upon the connection this game has with the
envelope PCA F̂p,q (to be introduced formally in §2.3).

In this context, we mention [4] that studies the following two-player combinatorial
game on any graph: starting from an initial vertex, the players take turns to move a
token, where a move involves relocating the token from the vertex where it is currently
situated to a neighbor of that vertex that has not yet been visited. A player who is
unable to move loses the game. On Z2, in which odd and even sites, independently, are
marked closed (i.e. forbidden from being visited by the token) with probabilities p and q
respectively, it is shown that the game has probability 0 of ending in a draw provided
closed sites of one parity are sufficiently rare compared to closed sites of the other parity.
This question, however, remains open when the percolation parameters p and q are equal.
Motivations for studying the games addressed in [4] include their deep connections with
maximum-cardinality matchings in graphs, and in particular, the ways in which draws in
these games relate to sensitivity of such matchings to boundary conditions.

2.2 Our PCA

Recall that we have alluded to the specific PCA Fp,q that is of interest to us in §1.1,
and included a brief description of PCAs in general in §1.2. A PCA F defined on the lattice
Zd (and hence referred to as a d-dimensional PCA), for some d ∈ N, comprises a finite set
of states A that is called its alphabet, a finite set of indices N = {y1,y2, . . . ,ym} ⊂ Zd
that is called its neighborhood, and a stochastic matrix ϕ : Am ×A → [0, 1] that is called

its (random) local update rule. Given a configuration η in the state space Ω = AZd

, we
apply F to η, obtaining a (random) configuration Fη, in which the state Fη(x) of the site
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x ∈ Zd is a random variable whose probability distribution is given by

P[Fη(x) = b
∣∣η(x + yi) = ai for all 1 6 i 6 m] = ϕ(a1, a2, . . . , am; b) for all b ∈ A, (2.1)

for any a1, a2, . . . , am ∈ A. Here, by definition of stochastic matrices, for all a1, a2, . . . ,

am, b ∈ A, we have ϕ(a1, a2, . . . , am; b) > 0 and
∑
b∈A ϕ(a1, a2, . . . , am; b) = 1. The upda-

tion from η(x) to Fη(x) happens independently over all sites x ∈ Zd. Since we consider
discrete-time PCAs, it makes sense to indicate by ηt the configuration at time t ∈ N0,
so that ηt+1 = Fηt for all t ∈ N0. We call a PCA elementary when it is defined on Z
(i.e. d = 1) and |N | = |A| = 2. We refer the reader to [[34], §2] and [33] for excellent
expositions on PCAs in general.

Next, we come to a brief discussion regarding the notion of ergodicity of a d-
dimensional PCA. To begin with, we let F denote the σ-field that is generated by
the cylinder sets of Ω = AZd

, and we let D denote the set of all probability measures
supported on Ω and defined with respect to F . We emphasize here that every prob-
ability measure on Ω that is henceforth mentioned belongs to the set D. We define
F tη = F (F t−1η) for η ∈ Ω and t ∈ N (in particular, F 1η = Fη). In other words, F tη is
the (random) configuration that is obtained by applying F sequentially t times to the
initial configuration η. These definitions extend naturally to random η, and if η follows
the probability distribution µ (that belongs to D), we let F tµ (simply written Fµ when
t = 1) denote the probability distribution of the (also random) configuration F tη.

Definition 2.1. We say that µ is a stationary or invariant measure for a PCA F if Fµ = µ

(in other words, the pushforward measure induced by F is the same as the original
measure). We call the PCA F ergodic if it has a unique stationary measure, say µ, which
is attractive, i.e. for every probability measure ν on Ω, the sequence F tν converges
weakly to µ as t→∞.

Consider d = 1. Given y ∈ Z and a configuration η, we define the configuration T yη,
with T yη(x) = η(x + y) for all x ∈ Z, as the translation or shift of η by y. We say that
a probability measure µ belonging to D is translation-invariant or shift-invariant if for
every subset B measurable with respect to the σ-field F introduced earlier, and every
y ∈ Z, we have µ(B) = µ(T yB), where T yB = {T yη : η ∈ B}. Given a configuration
η, we denote by ηR, with ηR(x) = η(−x) for all x ∈ Z, the reflection of η. We say that
a probability measure µ belonging to D is reflection-invariant if for every subset B
measurable with respect to F , we have µ(B) = µ(BR), where BR = {ηR : η ∈ B}. These
notions will be of use to us in the sequel (see §4).

We now come to a detailed description of the PCA Fp,q, with parameters (p, q) ∈ S.
This is a 1-dimensional PCA, with alphabet A = {0, 1} and neighborhood N = {0, 1, 2},
so that Fp,qη(n) is a random variable whose probability distribution is a function of
η(n), η(n+ 1) and η(n+ 2) for all n ∈ Z. More precisely, slighty tweaking the notation
introduced in (2.1), the stochastic matrix ϕp,q : A3 ×A → [0, 1] for this PCA is defined
via the equations:

ϕp,q(0, 0, 0; b) =

{
p if b = 0,

1− p if b = 1,
(2.2)

and

ϕp,q(a0, a1, a2; b) =

{
1− q if b = 0,

q if b = 1,
for all (a0, a1, a2) ∈ A3 \ {(0, 0, 0)}. (2.3)

The (stochastic) update rule for the automaton Fp,q can be illustrated pictorially via
Figure 2.
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As defined in [34], given ε > 0, a PCA, say Φ, is said to be an ε-perturbation of a de-
terministic CA, say F , if Φ and F share the same alphabet, say S, and the same neighbor-
hood, and the stochastic update rule ϕ of Φ satisfies ϕ(a1, a2, . . . , am; f(a1, a2, . . . , am)) >
1− ε for all (a1, a2, . . . , am) ∈ Sm, where f is the local update rule for F . In other words,
given any input (a1, a2, . . . , am) ∈ Sm, the PCA Φ outputs the same symbol as F with prob-
ability at least 1− ε, and alters it with the remaining probability. The PCA Fp,q described
above can be derived from a deterministic CA, F , and a stochastic noise, θ, via such a
perturbation. The local update rule f of F is given by f(a0, a1, a2) = 1−max{a0, a1, a2},
for all a0, a1, a2 ∈ A, while the noise θ(a, b), for a, b ∈ {0, 1}2, transforms 1 into 0 with
probability p (i.e. θ(1, 0) = p) and transforms 0 into 1 with probability q (i.e. θ(0, 1) = q).
It is easily verified that ϕp,q(a0, a1, a2; b) = θ(f(a0, a1, a2), b) for all a0, a1, a2, b ∈ A. More-
over, we see that θ(a, b) = (1− ε)δa(b) + εg(b) for a, b ∈ A, where ε = p+ q, δa(b) = 1 when
b = a and δa(b) = 0 when b 6= a, and g(0) = 1− g(1) = p

p+q . Thus, our PCA Fp,q is obtained
from the CA F via perturbation using the memoryless zero-range noise θ (we refer the
reader to [34] for further reading on such noise-perturbed CAs).

n n + 1 n + 2

η(n) = 0 η(n + 1) = 0 η(n + 2) = 0

Fp,qη(n) = 0 with probability p

1 with probability 1− p

n n + 1 n + 2

η(n + 1) = a1 η(n + 2) = a2

Fp,qη(n) = 0 with probability 1− q

1 with probability q

η(n) = a0

At least one of a0, a1, a2 equals 1

Figure 2: The stochastic rules that define our PCA Fp,q.

The PCA Ap,q that is studied in [25] is an elementary one that bears some resemblance
with Fp,q in that, following the notation in (2.1), its stochastic matrix ϕ : A2×A is defined
by the equations:

ϕ(0, 0; b) =

{
p if b = 0,

1− p if b = 1,
and

ϕ(a0, a1; b) =

{
1− q if b = 0,

q if b = 1,
for all (a0, a1) ∈ A2 \ {(0, 0)}.

We draw the reader’s attention to the primary contrast between Fp,q and Ap,q: whereas
in Ap,q, we draw upon information regarding the states of 2 consecutive sites, n and
n+ 1, in order to decide the (random) updated state of the site n, in Fp,q, we draw upon
information regarding the states of 3 consecutive sites, n, n+ 1 and n+ 2, to decide the
(random) updated state of the site n. It is, therefore, expected that the latter will have a
somewhat-more-involved underlying dependence structure, and establishing ergodicity
results for Fp,q indeed proves to be a considerably more challenging feat compared
to that for Ap,q, at least as far as using the method of weight functions proposed and
implemented in [25] is concerned.

Some discussion on how important the question of ergodicity (or the lack thereof) of
PCAs is, and how difficult this question is to resolve under various circumstances, is now
in order. It has been found to be notoriously difficult to construct a CA whose trajectories,
starting from different initial conditions and evolving under repeated applications of the
local update rule, remain distinguishable from each other if even the slightest positive
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noise is incorporated into the CA (for instance, see [34]). In other words, most CAs
tend to forget their initial conditions under the influence of even the smallest amount of
noise, and this is reflected in the ergodicity of the resulting PCA. The renowned positive
rates conjecture states that all PCAs defined on Z and satisfying ϕ(a1, a2, . . . , a|N |; b) > 0

for all a1, a2, . . . , a|N |, b ∈ A (referred to as the positive rates condition) are ergodic.
An extremely complicated example proposed by [17] refutes this conjecture, but the
fascinating question still remains as to whether all sufficiently simple, naturally occurring
1-dimensional PCAs with positive rates are ergodic. There are, however, examples of
d-dimensional PCAs for d > 2, such as Glauber dynamics for the Ising model at low
temperatures, that are known to be non-ergodic. We note here that both Fp,q and Ap,q
have positive rates as long as both p and q are strictly positive.

Multiple sources (see discussions in [11], [25] and [9]) reiterate that in general,
even if the answer can be guessed from heuristics or simulations, rigorously proving
whether a given PCA is ergodic or not is a notoriously difficult problem, and is shown
to be algorithmically undecidable in [10] and [13]. Under the assumption of left-right
symmetry (which guarantees ϕ(1, 0; 0) = ϕ(0, 1; 0)), an elementary PCA is determined by
the parameters ϕ(0, 0; 0), ϕ(1, 1; 0) and ϕ(1, 0; 0) (recall these notations from (2.1)). The
many existing techniques that have been developed to study ergodicity can take care of
ergodicity questions for such PCAs over more than 90% of the volume of the cube [0, 1]3

defined by these 3 parameters ([13]). However, when p and q are small, Ap,q belongs to a
domain of this cube where none of these techniques works, and this is where [25] comes
in with their brilliant idea of employing weight functions. To the best of our knowledge,
the problem of establishing ergodicity results for Fp,q, for all (p, q) ∈ S, is an even more
challenging one that has, so far, remained open, and we, in this paper, utilize the method
of weight functions to provide a concrete proof of the first assertion of Theorem 1.1.

Apart from being an interesting object to study in its own right, motivation to
investigate Fp,q can be found from the connections that such PCAs have with the problem
of enumerating directed animals, as was first pointed out by [12], and further explored
in [6]. The relation between PCAs and the problem of enumerating directed animals
is elucidated upon in [33]. In [8], the generating functions for directed animals on
square and triangular lattices, as well as on decorated square and triangular lattices,
are obtained, further demonstrating the usefulness of these PCAs.

In [6], a directed graph G is considered, in which a vertex v is called a successor to a
vertex u if there exists a directed edge from u to v. Given any subset S of vertices of G,
a directed animal A with source S is a subset of vertices of G such that S ⊂ A, and every
v ∈ A \ S can be reached from S via a directed path all of whose vertices are in A. The
number of vertices in A, denoted |A|, is referred to as the area of A. In order to count
the number of possible directed animals on G with a given source S and a given area n,
a suitable generating function GGS (x) = x|S| + · · · is considered, where · · · represents a
sum of monomials whose degrees are at least |S|+ 1.

Next, [6] defines a particle system or gas occupation on G as a map X from the set of
vertices of G to {0, 1}, with respect to which any vertex u is said to be occupied if Xu = 1.
When X is random, this is referred to as a random gas model. A random colouring of
the vertices of G with colours a and b is considered. Letting Cu denote the colour of
the vertex u for each u in G, the random variables Cu are independent and identically
distributed, Cu = a with probability p and Cu = b with probability 1− p. The desired gas
model is now defined with respect to this random colouring, as follows: for each vertex
u of G,

Xu =

{
0 if Cu = a,∏
v successor of u (1−Xv) if Cu = b.

(2.4)

One of the main results of [6] states that if Ru, for any vertex u of G, is the radius of
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convergence of the generating function GG{u}(x), and (1 − p) ∈ [0, Ru), then E[Xu] =

−GG{u}(−1 + p). Therefore, knowledge about the random colouring scheme described
above is valuable for the understanding of these generating functions.

It is fairly immediate that the above-mentioned random colouring scheme can be
represented by a special case of our PCA Fp,q when we consider q = 0, and in place of G,
we consider either a 2-dimensional infinite directed lattice in which the successors of any
site (x, y) are (x, y + 1), (x+ 1, y + 1) and (x+ 2, y + 1) (see Figure 3), or a 2-dimensional
infinite directed lattice in which the successors of any site (x, y) are (x+2, y), (x+1, y+1)

and (x, y + 2) (see Figure 4).

Figure 3:
Figure 4:

Referring to [9], we know that a binary symmetric channel, denoted BSCδ where
0 < δ < 1 is a pre-specified parameter known as the crossover probability, takes as its
input a bit and flips it with probability δ (and keeps it unchanged with probability 1− δ).
For the case where p = q = δ, we see that Fp,q can be represented as

Fδ,δη(n) = BSCδ (NAND (η(n), η(n+ 1), η(n+ 2))) , (2.5)

where the NAND function outputs the value 1 when all three inputs are 0, and outputs
the value 0 when at least one of the three inputs equals 1. As outlined in § 3.2 of [9],
the problem of broadcasting of information on 2-dimensional grids showcases another
usefulness of such PCAs. Let us consider the problem of broadcasting information on
the two 2-dimensional infinite directed grid shown in Figure 5. The origin O has one
bit of information, and we are interested in broadcasting this bit to the entire infinite
directed lattice. Let us associate with each vertex of the grid the index pair (t, i), with
t > 0 and 0 6 i 6 2t. At any time t > 0, each vertex with index (t, i), for 2 6 i 6 2t − 2,
receives a bit from each of the vertices indexed (t− 1, i− 2), (t− 1, i− 1) and (t− 1, i),
applies the NAND function to these bits, and then implements BSCδ. The vertex indexed
(t, 1) receives bits from the vertices (t− 1, 0) and (t− 1, 1), the vertex indexed (t, 2t− 1)

receives bits from the vertices (t− 1, 2t− 3) and (t− 1, 2t− 2), the vertex indexed (t, 0)

receives a bit from the vertex (t− 1, 0), and the vertex indexed (t, 2t) receives a bit from
the vertex (t− 1, 2t− 2). From (2.5), it is evident that if we view the coordinate t as time,
understanding this broadcasting problem is similar to studying the PCA Fδ,δ, except that
broadcasting on such a grid involves bounded-length configurations and its behaviour is
different at the boundary.

As a third motivation for studying the PCA Fp,q, we point out, as discussed right
after (2.3), that Fp,q can be obtained by perturbing a deterministic CA by a memoryless
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Figure 5: Broadcasting of information on this grid resembles the PCA Fp,q with p = q = δ.

zero-range noise (once again, we refer the reader to [34]). The importance of noisy CAs,
as a subclass of PCAs, lies in their use in studying the reliability of computations against
the presence of noise. The study of low-noise PCAs presents us with the same kind of
challenges that we face when studying low-temperature models of statistical mechanics.
In particular, studying the ergodicity, or lack thereof, of such PCAs, is intimately tied to
the phenomenon of phase transition at low temperatures. This, along with the previous
discussions, serve to motivate our investigation of the PCA Fp,q.

2.3 Our envelope PCA and its relation to our percolation game

We begin by deducing certain recurrence relations that arise naturally in the percola-
tion game described in §2.1. Once Z2 has been endowed with the trap / target / open
labeling, we define a site (x, y) to be in the class W if the game that begins with (x, y)

as the initial vertex is won by the player who plays the first round. We define (x, y) to
be in the class L if the game that begins with (x, y) as the initial vertex is lost by the
player who plays the first round, and we define (x, y) to be in the class D if the game that
begins with (x, y) as the initial vertex results in a draw. In particular, if (x, y) is a trap,
then we place it in W , and if it is a target, we place it in L. The intuition behind these
conventions is as follows: one may imagine an “unseen” round that takes place before
the actual game begins, in which the player who is supposed to play the second round
of the actual game moves the token from somewhere else to (x, y). Thus, if (x, y) is a
trap (respectively a target), she loses (respectively wins) even before the game begins,
implying that the player who plays the first round of the actual game wins (respectively
loses).

For every k ∈ Z, we denote by Hk = {(x, k) : x ∈ Z} the horizontal line containing all
sites whose y-coordinate equals k. These lines have been illustrated in red in Figure 6.
From the moves permitted in our game, it follows that for any k ∈ Z, if all sites (x, y) that

(x, k) Hk

(x, k + 1) (x + 1, k + 1) (x + 2, k + 1)

Hk+1

Figure 6: Illustrating deduction of the recurrence relations.

lie on the horizontal line Hk+1 have already been categorized into the classes W , L and
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D, then this information, along with the pre-assigned labels of trap / target / open to the
sites on Hk, is enough to determine the classes to which the sites lying on Hk belong.

Using Figure 6 as a reference, we draw the following conclusions, assuming that
(x, y) is our initial vertex:

1. If each vertex of Out(x, y) belongs to W , then no matter which of these vertices
the first player moves the token to from (x, y), the second player wins. We thus
have the following two possibilities:

(a) either the vertex (x, y) has been marked a trap and hence belongs to W , which
happens with probability p,

(b) or else the game that begins from (x, y) results in a loss for the first player, so
that (x, y) is classified into L with the remaining probability 1− p.

2. If at least one of the vertices of Out(x, y) belongs to L, the first player moves the
token from (x, y) to this vertex, making the second player lose. We thus have the
following two possibilities:

(a) either (x, y) has been marked a target and hence belongs to L, which happens
with probability q,

(b) or else the game that begins from (x, y) results in a win for the first player, so
that (x, y) is classified into W with the remaining probability 1− q.

3. The final scenario is where none of the vertices of Out(x, y) belongs to L but at least
one of them belongs to D. In this case, we have the following three possibilities:

(a) either (x, y) has been marked a trap and hence belongs to W , which happens
with probability p,

(b) or (x, y) has been marked a target and hence belongs to L, which happens
with probability q,

(c) or else the game that begins from (x, y) results in a draw (since the first player
moves the token from (x, y) to the vertex in Out(x, y) which is in D), thus
placing (x, y) in the class D with the remaining probability r = 1− p− q.

We further note that, conditioned on the classification of the vertices that lie on Hk+1

into the classes W , L and D, the (random) class which a vertex lying on Hk gets sorted
into via the above-mentioned rules is independent of all other vertices on Hk.

The above recurrence relations are the key to establishing a connection between our
game and the envelope PCA F̂p,q that we are now ready to define. Let us identify W with
the symbol 0, L with the symbol 1 and D with the symbol ? (in other words, we label a
vertex 0 if it has been classified into W , 1 if it has been classified into L, and ? if it has
been classified into D). For any k ∈ Z, we identify Hk with Z by identifying (x, k) on Hk

with x on Z for each x ∈ Z. This allows us to represent the recurrence relations listed
above via a PCA F̂p,q that is endowed with the alphabet Â = {0, 1, ?}, the neighborhood
N = {0, 1, 2}, and the stochastic matrix ϕ̂p,q : Â3 × Â → [0, 1] defined via the equations:

ϕ̂p,q(0, 0, 0; b) =

{
p if b = 0,

1− p if b = 1,
(2.6)

ϕ̂p,q(a0, a1, a2; b) =

{
1− q if b = 0,

q if b = 1,
for all (a0, a1, a2) ∈ Â3 \ {0, ?}3 (2.7)

and

ϕ̂p,q(a0, a1, a2; b) =


p if b = 0,

q if b = 1,

r = 1− p− q if b =?,

for all (a0, a1, a2) ∈ {0, ?}3 \ (0, 0, 0). (2.8)
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F̂p,qη(n) = 0 w.p. p
1 w.p. 1− p

F̂p,qη(n) =

η(n)
η(n + 1)

η(n + 2) η(n)
η(n + 1)

η(n + 2) η(n)
η(n + 1)

η(n + 2)

When η(n) = η(n + 1)
= η(n + 2) = 0

When at least one of
η(n), η(n + 1) and
η(n + 2) equals 1

When none of η(n)
η(n + 1) and η(n + 2)
equals 1, but at least
one equals ?

0 w.p. 1− q
1 w.p. q

0 w.p. p
1 w.p. q
? w.p. r

F̂p,qη(n) =

Figure 7: The stochastic rules that define our envelope PCA F̂p,q.

We illustrate ϕ̂p,q in Figure 7. To clarify further, the classification of the vertices on
Hk+1 into W , L and D yields a configuration η ∈ ÂZ via the identifications described
above, and the classification of the vertices on Hk into W , L and D via the game’s
recurrence relations can then be represented by F̂p,q η.

If we endow Â with the total order 0 ≺? ≺ 1 and define 1−? =?, then (similar to
the way we interpret Fp,q in §2.2) the envelope PCA F̂p,q can be derived, via random

perturbations, from a deterministic CA, F̂, and a random noise θ̂, as follows. The local
update rule f̂ of F̂ is given by f̂(a0, a1, a2) = 1 − max{a0, a1, a2}, whereas the noise
θ̂(a, b), for a, b ∈ Â, transforms 0 to 1 with probability q (i.e. θ̂(0, 1) = q) and keeps it
unchanged with probability 1− q, transforms 1 to 0 with probabililty p (i.e. θ̂(1, 0) = p)
and keeps it unchanged with probability 1− p, and transforms ? to 1 with probability q
(i.e. θ̂(?, 1) = q), ? to 0 with probability p (i.e. θ̂(?, 0) = p), and keeps ? unchanged with
probability r = 1− p− q. It is now straightforward to check that F̂p,q is obtained from

F̂ by injecting into it the memoryless zero-range noise θ̂ (again, we refer the reader to
[34] for a detailed reading on PCAs obtained via perturbations of deterministic CAs by
random noises).

Although we have argued in §2.3 how the recurrence relations deduced from our
percolation game give rise to F̂p,q, there is, in fact, another angle from which one

may motivate the emergence of F̂p,q (we mention here that the term “envelope” was

introduced in [10]) – namely, the use of F̂p,q in coupling two (random) configurations
obtained via (possibly repeated) applications of the PCA Fp,q, starting from two different
initial configurations. The symbol ? is utilized to populate sites whose actual values may
differ between these two coupled configurations.

We dwell here a little longer on the notion of envelope PCAs. In [10], a random
algorithm known as a perfect sampling procedure is proposed which, when repeatedly
applied, can estimate the (unique) stationary probability distribution corresponding to
an ergodic PCA F with arbitrary precision. When the universe of F is finite (e.g. when
Z/nZ constitute the cells for F ), a new PCA F̂ on an extended alphabet, referred to as
an envelope PCA to F , is introduced, which is then run on a single initial configuration
to obtain a perfect sampling procedure for F . When the universe for F is infinite (e.g.
when Zd constitute the cells for F , making the universe uncountably infinite), [10] shows
that an efficient perfect sampling procedure can be obtained when F̂ is ergodic.

When the alphabet for F isA = {0, 1}, the alphabet for F̂ is Â = {0, 1, ?}. The universe
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E and neighborhood N for F̂ remain the same as those for F . Given a configuration
η = (η(x) : x ∈ E) in ÂE , one thinks of η as a configuration in AE as follows: if x ∈ E is
a cell such that it is not known which symbol from A occupies it, we imagine that it is
occupied by the symbol ?. It is to be noted that when η ∈ AE , i.e. η is a configuration
which is devoid of the symbol ?, the envelope PCA F̂ acts on it in exactly the same way
as F acts on it.

It is now time to connect the principal components of this paper, namely the game,
the PCA Fp,q, and its envelope F̂p,q, with one another. This connection is established via
the following three results.

Proposition 2.2. For every (p, q) ∈ S, the percolation game with parameters p and q

has probability 0 of culminating in a draw if and only if the PCA Fp,q is ergodic.

Proposition 2.3. The PCA Fp,q is ergodic if and only if the corresponding envelope PCA

F̂p,q is ergodic.

Proposition 2.4. For each (p, q) ∈ S, the envelope PCA F̂p,q admits no stationary
distribution µ that assigns positive probability to the symbol ?. To put it formally, the
probability of the event η(x) =?, where η is a random configuration with law µ, is 0 for
every x ∈ Z.

We implement the first assertion of Lemma 3.1 (that concerns itself with a couple of
results regarding stochastic domination, as stated in §3 below) and the argument used in
proving Proposition 2.1 of [25] to establish Proposition 2.3. Next, an argument identical
to that used in proving Proposition 2.2 of [25] yields a proof of Proposition 2.2. We are
now left with the task of proving Proposition 2.4.

3 An important lemma before we embark on a proof of Proposi-
tion 2.4

Recall from §2.3 that Â = {0, ?, 1}, and borrowing from the definitions in §2.2, we let
D denote the set of all probability measures on Ω = ÂZ that are defined with respect to
the σ-field F generated by the cylinder sets of Ω.

Lemma 3.1. Let µ and µ̃ be two probability distributions in D. Let � denote the
stochastic domination (on D) with respect to the coordinate-wise total order induced by
the ordering 0 ≺? ≺ 1, and let µ � µ̃. Then F̂p,q µ̃ � F̂p,q µ.

Let µ and µ̃ be two probability distributions in D. Let � denote the stochastic
domination (on D) with respect to the coordinate-wise partial order induced by 0�? � 1,
and let µ� µ̃. Then F̂p,q µ� F̂p,q µ̃.

Proof. We begin with (deterministic) configurations η and η̃ in ÂZ such that η(x) � η̃(x)

for all x ∈ Z. We consider two copies of Z2, in both of which we fix the same assignment,
say ω, of trap / target / open labels to the vertices lying on Hk. In the first copy of Z2, we
assign the state η(x) to the site (x, k+ 1) (that belongs to Hk+1), for each x ∈ Z, whereas
in the second copy of Z2, we assign the state η̃(x) to the site (x, k + 1), for each x ∈ Z.

The state, say τ(x), assigned to the site (x, k) (that belongs to Hk), for each x ∈ Z, in
the first copy of Z2, is deduced using the states η(x), η(x+ 1) and η(x+ 2), and the label
ω(x, k), according to the following rules:

1. if ω(x, k) reads trap, then τ(x) = 0,

2. if ω(x, k) reads target, then τ(x) = 1,

3. if ω(x, k) reads open, and

(a) η(x) = η(x+ 1) = η(x+ 2) = 0, then τ(x) = 1,
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(b) at least one of η(x), η(x+ 1) and η(x+ 2) equals 1, then τ(x) = 0,
(c) none of η(x), η(x+ 1) and η(x+ 2) equals 1, but at least one of them equals ?,

then τ(x) =?.

The state, say τ̃(x), assigned to (x, k), for each x ∈ Z, in the second copy of Z2, is
deduced using the states η̃(x), η̃(x+ 1) and η̃(x+ 2), and the label ω(x, k), following rules
analogous to the above.

We now compare τ(x) and τ̃(x) for each x ∈ Z. Since the same assignment, ω, of trap
/ target / open labels to the vertices of Hk is used in each copy of Z2, we need only carry
out this comparison when ω(x, k) is open. It suffices to consider x = 0.

1. Suppose η̃(0) = η̃(1) = η̃(2) = 0, which forces η(0) = η(1) = η(2) = 0. In this case,
τ(0) = τ̃(0) = 1.

2. Suppose (η̃(0), η̃(1), η̃(2)) ∈ {0, ?}3 \ {(0, 0, 0)}. In this case, we either have
(η(0), η(1), η(2)) ∈ {0, ?}3 \ {(0, 0, 0)} or we have (η(0), η(1), η(2)) = (0, 0, 0). In
the former situation, τ(0) = τ̃(0) =?, whereas in the latter situation, τ̃(0) =? and
τ(0) = 1.

3. Finally, suppose (η̃(0), η̃(1), η̃(2)) ∈ {0, ?, 1}3 \ {0, ?}3. The first possibility is that
(η(0), η(1), η(2)) ∈ {0, ?, 1}3 \ {0, ?}3, in which case τ(0) = τ̃(0) = 0. The second
possibility is where (η(0), η(1), η(2)) ∈ {0, ?}3 \ {(0, 0, 0)}, in which case, τ̃(0) = 0

whereas τ(0) =?. The third and final possibility is where (η(0), η(1), η(2)) = (0, 0, 0),
in which case τ̃(0) = 0 and τ(0) = 1.

These observations let us conclude that τ � τ̃ . Given µ � µ̃, we let η and η̃ denote
coupled random configurations (defined on the same sample space) such that η follows
µ, η̃ follows µ̃ and η � η̃ almost surely. The above deduction applied to η and η̃ completes
the proof of the first assertion of Lemma 3.1.

To prove the second assertion of Lemma 3.1, we consider a very similar set-up as
above, with the only distinction being that η(x) � η̃(x) for all x ∈ Z. Once again, we
compare τ(x) and τ̃(x) for each x ∈ Z, and it suffices to consider x = 0 and ω(0, k) open:

1. Suppose η(0) = η(1) = η(2) = 0 and (η̃(0), η̃(1), η̃(2)) ∈ {0, ?}3 \ {(0, 0, 0)}. Then
τ(0) = 1 whereas τ̃(0) =?.

2. When (η(0), η(1), η(2)) ∈ {0, ?, 1}3\{0, ?}3, we either have (η̃(0), η̃(1), η̃(2)) ∈ {0, ?}3\
{(0, 0, 0)} or (η̃(0), η̃(1), η̃(2)) ∈ {0, ?, 1}3 \ {0, ?}3. In the latter scenario, τ(0) =

τ̃(0) = 0, while in the former, we have τ(0) = 0 and τ̃(0) =?.

These observations imply τ � τ̃ , which, in turn, yields the conclusion in the second part
of Lemma 3.1.

4 The method of weight functions and the proof of Proposition2.4

As discussed in §2.2, it is a non-trivial task to establish, rigorously, the ergodicity of
PCAs in general. It has also been explicitly stated in [25] that coming up with a suitable
weight function or potential function that serves our purpose of proving ergodicity is not
an easy feat either.

Before we proceed further, we recall here the definitions of translation-invariant
and reflection-invariant probability measures as discussed right after Definition 2.1.
Given any 1-dimensional PCA with alphabet A, a finite index set S = {y1, y2, . . . , yn} ⊂ Z,
and symbols a1, a2, . . . , an that belong to A, we call (a1a2 . . . an)S = {η ∈ AZ : η(yi) =

ai for all 1 6 i 6 n} a cylinder set indexed by S. When a probability measure µ is
translation-invariant, and yi = k + i for all 1 6 i 6 n and for some k ∈ Z, we denote
the measure µ((a1a2 . . . an)S) of the cylinder set (a1a2 . . . an)S by simply µ(a1a2 . . . an),
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since the ‘location’ of S (i.e. the value of k) ceases to be relevant. For instance, if η
is a random configuration following the law µ, then for any x ∈ Z, we can let µ(?)

indicate the probability of the event η(x) =?. Likewise, for any x ∈ Z, we can let µ(0?)

indicate the probability of the event that η(x) = 0 and η(x+ 1) =?, and so on. When µ is
both translation-invariant and reflection-invariant, µ(a1a2 . . . an) = µ(anan−1 . . . a1) for
all a1, . . . , an ∈ A. For instance, µ(10?) = µ(?01), since the former is the probability of
the event η(−1) = 1, η(0) = 0, η(1) =? whereas the latter is the probability of the event
η(−1) =?, η(0) = 0, η(1) = 1.

Lemma 4.1. To prove Proposition 2.4, it suffices to show that under no translation-
invariant and reflection-invariant stationary distribution for F̂p,q can the symbol ? appear
anywhere with positive probability, for each (p, q) ∈ S (where S is as defined in (1.1)).

Proof. Suppose there exists a stationary distribution µ for F̂p,q with µ(?) > 0. To prove
Lemma 4.1, it now suffices to show the existence of a translation-invariant and reflection-
invariant stationary distribution for F̂p,q under which the probability of occurrence of
the symbol ? is strictly positive.

Let δ? indicate the configuration that assigns the state ? to each x ∈ Z. By the
second assertion of Lemma 3.1, the sequence {F̂

n

p,q δ?(?)}n∈N0 is non-increasing, and

F̂
n

p,q δ?(?) > µ(?) > 0 for each n ∈ N0. Thus, any limit point of the Césaro sums of

the sequence {F̂
n

p,q δ?}n∈N0
is a translation-invariant and reflection-invariant stationary

distribution for F̂p,q that assigns a strictly positive probabililty to the occurrence of ?

(because of our assumption that µ(?) > 0), yielding the desired conclusion.

In the rest of this paper, we consider only µ that belongs to D (recall from §3) and
that is both translation-invariant and reflection-invariant.

We now come to the actual construction of the weight function, which is accomplished
via several steps. To begin with, for the sake of brevity, we let ∗̂∗ denote the set
{0, ?}2 \ {(0, 0)} and ∗̂ ∗ ∗ the set {0, ?}3 \ {(0, 0, 0)}. We may think of (∗̂∗) as representing
the cylinder set in which (η(0), η(1)) ∈ ∗̂∗, and (∗̂ ∗ ∗) as representing the cylinder
set in which (η(0), η(1), η(2)) ∈ ∗̂ ∗ ∗. We write (S0S1 . . . Sk∗̂ ∗ ∗S′0S′1 . . . S′k′) (likewise,
(S1S2 . . . Sk∗̂∗S′1S′2 . . . S′k′)) to indicate the cylinder set in which η(i) ∈ Si for all 0 6 i 6 k,
(η(k+ 1), η(k+ 2), η(k+ 3)) ∈ ∗̂ ∗ ∗, and η(k+ 4 + i) ∈ S′i for all 0 6 i 6 k′, for any subsets
S0, . . . , Sk, S

′
0, . . . , S

′
k′ of {0, ?, 1}. When Si = {ai} is a singleton for some 0 6 i 6 k, we

replace Si in the above notation by simply ai (and likewise when S′i is a singleton for
some 0 6 i 6 k′).

Keeping the reader’s convenience in mind and before we plunge into the intricate
technicalities of the weight function derivation, we briefly dwell here on how we plan to
accomplish the task at hand, i.e. proving Proposition 2.4, using the method of weight func-
tions. Following the notations introduced above, we call a cylinder set (a1, a2, . . . , an)S
?-inclusive if ai =? for at least one i ∈ {1, . . . , n}. We envisage our weight function w(µ)

to be a linear combination

w(µ) =

s∑
i=1

ciµ(Ci) (4.1)

of cylinder sets C1, . . . , Cs, each of which is ?-inclusive, with c1, . . . , cs being real constants
(that are functions of the parameters p and q), and we want it to satisfy an inequality of
the form

w(F̂p,q µ) 6 w(µ)−
s′∑
i=1

c′iµ(C′i), (4.2)

where c′1, . . . , c
′
s′ are non-negative real constants (and are, once again, functions of p and

q) and C′1, . . . , C′s′ are, once again, ?-inclusive cylinder sets. When µ is stationary for F̂p,q,
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we have w(F̂p,q µ) = w(µ), which then yields
∑s′

i=1 c
′
iµ(C′i) = 0. The constants c′1, . . . , c

′
s′

are such that, when p+ q > 0, we can find a non-empty P ⊂ {1, . . . , s′} such that c′i > 0

whenever i ∈ P . This, in turn, yields µ(C′i) = 0 for every i ∈ P whenever µ is stationary
and p+ q > 0. From these, we infer, due to the good choice of the constants ci made in
the weight function in (4.1), that µ(?) = 0.

We outline here a summary of how we proceed in the rest of §4. Keeping in mind the
goal of showing µ(?) = 0 for every probability distribution µ that is stationary for the
envelope PCA F̂p,q, we attempt to

1. begin with an initial, reasonable guess for the weight function,

2. parallelly, come up with a suitable inequality (or equality) that is satisfied by this
initial expression for the weight function,

3. take note of the terms on the right side of this inequality (or equality) that are
non-negative and therefore need to be dealt with,

4. take note of the terms on the right side of this inequality (or equality) that are
non-positive and have some power in negating the above-mentioned non-negative
terms,

5. accordingly, introduce an adjustment into the initial weight function,

6. write down, possibly with several simplifications, how the above-mentioned adjust-
ment affects the weight function inequality (or equality), and see if the updated
weight function inequality (or equality) has the desired form as stated in (4.2),

7. declare the current weight function as the final, desired weight function if the
answer to the question in (6) is a yes,

8. otherwise, repeat the above procedure from (3) onward.

We conclude this introductory part of §4 by stating the final expression for the weight
function that we deduce in the sequel:

w3(µ) = (1−p2−pq− q)µ(?)+2µ(0?)−µ(?0?)+2r(1−p2)µ(100?)−2pr{µ(1?)+µ(10?)}
− 2p2r{µ(1??) + µ(1?0?) + µ(10??)} − 4rµ(1?01)− 2p2r{µ(1?00) + µ(10?0)}. (4.3)

4.1 Computation of the probabilities of various cylinder sets under the push-
forward measure induced by the action of F̂p,q

Recall from §2.2 the definition of the pushforward measure F̂p,q µ. Ultimately, we

would need to compute F̂p,q µ(C) for every cylinder set C that shows up in the expression
for the final weight function in (4.3). However, in §4.1, we compute only the first few
(i.e. the pushforward measures for (?), (0?), (?0?), (100?)) as these are the only cylinder
sets that show up in the expression for our initial weight function (see (4.10)). The rest
are computed as and when required (during the subsequent steps in which the weight
function is appropriately tweaked to satisfy the desired criterion).

For any translation-invariant and reflection-invariant probability measure µ belonging
to D (recall from §3), using (2.8), we have

F̂p,q µ(?) = rµ(∗̂ ∗ ∗). (4.4)

In the deduction of F̂p,q µ(C) where C is one of 0?, ?0? and 100?, we make use (2.6), (2.7)
and (2.8). Since these computations involve rather similar arguments, we explain in
detail only two of them.

To compute F̂p,q µ(0?), we note that for (F̂p,q η(0), F̂p,q η(1)) to equal (0?) for some

η ∈ ÂZ, we require (η(1), η(2), η(3)) ∈ ∗̂ ∗ ∗, and the event F̂p,q η(1) =? occurs with

probability r. If η(0) = η(1) = η(2) = 0, forcing η(3) =?, the event F̂p,q η(0) = 0 happens

EJP 28 (2023), paper 143.
Page 17/60

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1046
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


3-Neighborhood PCA and percolation games

with probability p; if η(0) = 0 and (η(1), η(2), η(3)) ∈ ∗̂ ∗ ∗ \ {(00?)}, then again the event
F̂p,q η(0) = 0 happens with probability p as (η(0), η(1), η(2)) ∈ ∗̂ ∗ ∗ in this case. If η(0) =?,

the event F̂p,q η(0) = 0 happens with probability p, and if η(0) = 1, the event F̂p,q η(0) = 0

happens with probability (1− q). Combining all, we have

F̂p,q µ(0?) = prµ({0, ?}∗̂ ∗ ∗) + (1− q)rµ(1∗̂ ∗ ∗). (4.5)

Arguing likewise, we obtain

F̂p,q µ(100?) = (1− p)p2rµ(000∗̂ ∗ ∗) + qp2r[µ(∗̂ ∗ ∗∗̂ ∗ ∗) + µ(1{0, ?}2∗̂ ∗ ∗)]
+ q(1− q)prµ(1{0, ?}∗̂ ∗ ∗) + q(1− q)2rµ(1∗̂ ∗ ∗). (4.6)

We outline the argument to deduce F̂p,q µ(?0?). For (F̂p,q η(0), F̂p,q η(1), F̂p,q η(2)) to
equal (?0?) for some η ∈ ÂZ, we require (η(0), η(1), η(2)) ∈ ∗̂ ∗ ∗ and (η(2), η(3), η(4)) ∈
∗̂ ∗ ∗. Therefore, (η(0), η(1)) ∈ {0, ?}2, but we must avoid η(0) = η(1) = η(2) = 0. Thus
(η(0), η(1), η(2), η(3), η(4)) must belong to the set {0, ?}2∗̂ ∗ ∗\000∗̂∗. Note that this forces
(η(1), η(2), η(3)) ∈ {0, ?}3, so that F̂p,q η(1) = 0 happens with probability p. Each of the

events F̂p,q η(0) =? and F̂p,q η(2) =? occurs with probability r. Combining all, we have

F̂p,q µ(?0?) = pr2[µ({0, ?}2∗̂ ∗ ∗)− µ(000∗̂∗)]. (4.7)

4.2 Important identities used in the derivation of the weight function

We use Tables 1, 2, 3 and 4 to illustrate the derivation of a few identities. In each

−2 −1 0 1 2

1 ? ? ?
1 ? ? 0
1 ? 0 ?
1 ? 0 0
? ? ?
? ? 0

0 0 ?
? 0 ?
? ? ? 1
0 ? ? 1
1 0 ? ?
1 0 ? 0

1 ? ? 1
1 ? 0 1
1 ? 1

1 ? ? 1
1 0 ? 1

Table 1: Decomposition of ?

to establish (4.8).

−1 0 1 2

? ? ? ?
? ? ? 0
? ? 0 ?
? ? 0 0
0 ? ? ?
0 ? ? 0
0 ? 0 ?
0 ? 0 0
1 ? ? ?
1 ? ? 0
1 ? ? 1
1 ? 0 ?
1 ? 0 0
1 ? 0 1

? 1
? ? ? 1
0 ? ? 1
? ? 0 1
0 ? 0 1

Table 2: Decomposition of ?

to establish (4.9)

−1 0 1 2

? 0 ? ?
? 0 ? 0
0 0 ? ?
0 0 ? 0
1 0 ? ?
1 0 ? 0
? 0 ? 1
0 0 ? 1
1 0 ? 1

Table 3: Decomposition of
0? to establish (4.9)

−1 0 1 2

? 0 0 ?
0 0 0 ?
1 0 0 ?

Table 4: Decomposition of
00? to establish (4.9)

of these tables, the first row indicates the indices of the coordinates in Z, and the rows
that follow represent events involving cylinder sets. To elucidate, in Table 1, the second
and third rows represent respectively the events (η(−1), η(0), η(1), η(2)) = (1, ?, ?, ?) and
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(η(−1), η(0), η(1), η(2)) = (1, ?, ?, 0), and it is immediate that these two events are disjoint
since they disagree on the symbol that occupies the coordinate 2. In fact, for any two
distinct rows that are inside the same table, it can be seen that the corresponding events
are mutually exclusive. To give the reader an understanding of how we make use of
these tables, note that the union of the pairwise disjoint events listed in Table 1 forms a
subset of the event η(0) =?. Thus, Table 1, along with the previously stated assumption
that µ is translation-invariant and reflection-invariant (justified by Lemma 4.1), allows us
to write

µ(?) = µ(1???) + µ(1??0) + µ(1?0?) + µ(1?00) + µ(???) + µ(??0) + µ(00?) + µ(?0?)

+ µ(???1) + µ(0??1) + µ(10??) + µ(10?0) + µ(1??1) + µ(1?01) + µ(1?1) + µ(1??1)

+ µ(10?1)

= µ(1???) + µ(1??0) + µ(1?0?) + µ(1?00) + µ(10??) + µ(10?0)︸ ︷︷ ︸
(1)

+µ(???1) + µ(0??1)︸ ︷︷ ︸
(2)

+ µ(???) + µ(??0) + µ(00?) + µ(?0?)︸ ︷︷ ︸
(3)

+2µ(1??1) + µ(1?01) + µ(10?1)︸ ︷︷ ︸
(4)

+µ(1?1)

= µ(1∗̂ ∗ ∗)− µ(100?)︸ ︷︷ ︸
rewriting (1)

+µ(∗̂ ∗ ∗1)− µ(?001)− µ(??01)− µ(0?01)− µ(?0?1)− µ(00?1)︸ ︷︷ ︸
rewriting (2)

+ µ(∗̂ ∗ ∗)− µ(0??)− µ(0?0)− µ(?00)︸ ︷︷ ︸
rewriting (3)

+2µ(1??1) + 2µ(1?01)︸ ︷︷ ︸
reflection-invariance on (4)

+µ(1?1)

= µ(∗̂ ∗ ∗)− µ(0??)− µ(0?0)− µ(?00) + µ(1∗̂ ∗ ∗) + µ(∗̂ ∗ ∗1)−
[[[
µ(100?) + µ(?001)

]]]︸ ︷︷ ︸
from the rewritten (1) and (2) in the previous step

−
[[[
µ(??01) + µ(0?01)

]]]
−
[[[
µ(?0?1) + µ(00?1)

]]]︸ ︷︷ ︸
from the rewritten (2) in the previous step

+2µ(1??1) + µ(1?1) + 2µ(1?01)

= µ(∗̂ ∗ ∗)− µ(0??)− µ(0?0)− µ(?00) + 2µ(1∗̂ ∗ ∗)− 2µ(100?)︸ ︷︷ ︸
reflection-invariance

−
[[[
µ(??01) + µ(0?01)

]]]
−
[[[
µ(?0?1) + µ(00?1)

]]]
+ 2µ(1??1) + µ(1?1) + 2µ(1?01)

= µ(∗̂ ∗ ∗)− µ(0??)− µ(0?0)− µ(?00) + 2µ(1∗̂ ∗ ∗)− 2µ(100?)−
[[[
µ(?01)− µ(1?01)

]]]
−
[[[
µ(0?1)− µ(10?1)

]]]
+ 2µ(1??1) + µ(1?1) + 2µ(1?01)

= µ(∗̂ ∗ ∗)−
[[[
µ(0??) + µ(0?0) + µ(0?1)

]]]
−
[[[
µ(?00) + µ(?01)

]]]
+ 2µ(1∗̂ ∗ ∗)− 2µ(100?)

+ 2µ(1??1) + µ(1?1) + 4µ(1?01) (grouping the terms judiciously)

= µ(∗̂ ∗ ∗)− µ(0?)−
[[[
µ(?0)− µ(?0?)

]]]
+ 2µ(1∗̂ ∗ ∗)− 2µ(100?) + 2µ(1??1) + µ(1?1)

+ 4µ(1?01)

= µ(∗̂ ∗ ∗)− 2µ(0?) + µ(?0?)− 2µ(100?) + 2µ(1∗̂ ∗ ∗) + 2µ(1??1) + µ(1?1) + 4µ(1?01).

(4.8)

Likewise, Tables 2, 3 and 4 together yield

µ(?) + µ(0?) + µ(00?)

= µ(????) + µ(???0) + µ(??0?) + µ(??00) + µ(0???) + µ(0??0) + µ(0?0?)

+ µ(0?00) + µ(1???) + µ(1??0) + µ(1??1) + µ(1?0?) + µ(1?00) + µ(1?01) + µ(?1)

+ µ(???1) + µ(0??1) + µ(??01) + µ(0?01) + µ(?0??) + µ(?0?0) + µ(00??) + µ(00?0)

+ µ(10??) + µ(10?0) + µ(?0?1) + µ(00?1) + µ(10?1) + µ(?00?) + µ(000?) + µ(100?)

=
[[[
µ(????) + µ(???0) + µ(??0?) + µ(??00) + µ(?0??) + µ(?0?0) + µ(?00?)

]]]
+
[[[
µ(0???)

+ µ(0??0) + µ(0?0?) + µ(0?00) + µ(00??) + µ(00?0) + µ(000?)
]]]

+
[[[
µ(1???) + µ(1??0)
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+ µ(1?0?) + µ(1?00) + µ(10??) + µ(10?0) + µ(100?)
]]]

+
[[[
µ(???1) + µ(0??1) + µ(??01)

+ µ(0?01) + µ(?0?1) + µ(00?1)
]]]

+ µ(1??1) + µ(1?01) + µ(?1) + µ(10?1)

(grouping the terms judiciously)

= µ(?∗̂ ∗ ∗) + µ(0∗̂ ∗ ∗) + µ(1∗̂ ∗ ∗) + µ(∗̂ ∗ ∗1)− µ(?001) + µ(1??1) + µ(1?) + 2µ(1?01)

= µ({0, ?}∗̂ ∗ ∗) + 2µ(1∗̂ ∗ ∗)− µ(100?) + µ(1?) + 2µ(1?01) + µ(1??1). (4.9)

4.3 The first step of composing the weight function

We start by defining

w0(µ) = µ(?) + 2µ(0?)− µ(?0?) + 2µ(100?). (4.10)

It is not straightforward to explain our intuition behind setting w0 in (4.10) as our ‘initial’
choice of weight function (after which it gets tweaked and adjusted in several steps
described in the sequel to yield the final weight function). Since we are ultimately
interested in µ(?) when µ is stationary, and since each Ci in (4.1) is ?-inclusive, it is not
too far-fetched to entertain the possibility of starting with C1 = (?){0} (i.e. the cylinder
set in which ? occupies the origin). Thus, the right side of (4.2) contains µ(?), while
the left contains F̂p,q µ(?) = rµ(∗̂ ∗ ∗). When p and q are both small (intuitively, our task
of showing µ(?) = 0 for µ stationary ought to become harder the smaller p + q gets),
rµ(∗̂ ∗ ∗) is nearly equal to µ(∗̂ ∗ ∗). The appearance of 2µ(0?) in the right side of (4.2)
implies, from (4.5), that 2(1 − q)rµ(1∗̂ ∗ ∗) appears in the left side of (4.2), and when
p and q are both small, this is nearly the same as 2µ(1∗̂ ∗ ∗). From (4.8), we see that
µ(?) + 2µ(0?)− µ(?0?) + 2µ(100?) serves as an upper bound for µ(∗̂ ∗ ∗) + 2µ(1∗̂ ∗ ∗). All
these provide ample justification as to why we start with w0 in (4.10) as our initial weight
function.

Substituting the expressions from (4.4), (4.5), (4.7) and (4.6) into (4.10), we get

w0(F̂p,q µ) = F̂p,q µ(?) + 2 F̂p,q µ(0?)− F̂p,q µ(?0?) + 2 F̂p,q µ(100?)

= rµ(∗̂ ∗ ∗) + 2
{
prµ({0, ?}∗̂ ∗ ∗) + (1− q)rµ(1∗̂ ∗ ∗)

}
− pr2[µ({0, ?}2∗̂ ∗ ∗)

− µ(000∗̂∗)] + 2
{

(1− p)p2rµ(000∗̂ ∗ ∗) + qp2r[µ(∗̂ ∗ ∗∗̂ ∗ ∗) + µ(1{0, ?}2∗̂ ∗ ∗)]
+ q(1− q)prµ(1{0, ?}∗̂ ∗ ∗) + q(1− q)2rµ(1∗̂ ∗ ∗)

}
= rµ(∗̂ ∗ ∗) + 2

{
prµ({0, ?}∗̂ ∗ ∗) + (1− q)rµ(1∗̂ ∗ ∗)

}
− pr2[µ({0, ?}2∗̂ ∗ ∗)

− µ(000∗̂∗)] + 2
{

(1− p)p2rµ(000∗̂ ∗ ∗) + qp2r[µ({0, ?}3∗̂ ∗ ∗)− µ(000∗̂ ∗ ∗)︸ ︷︷ ︸
splitting µ(̂∗∗∗̂∗∗∗)

+ µ(1{0, ?}2∗̂ ∗ ∗)] + q(1− q)prµ(1{0, ?}∗̂ ∗ ∗) + q(1− q)2rµ(1∗̂ ∗ ∗)
}

= rµ(∗̂ ∗ ∗) + 2
{
prµ({0, ?}∗̂ ∗ ∗) + (1− q)rµ(1∗̂ ∗ ∗)

}
− pr2[µ({0, ?}2∗̂ ∗ ∗)

− µ(000∗̂∗)] + 2
{

(1− p)p2rµ(000∗̂ ∗ ∗) + qp2r
[

µ({0, ?}2∗̂ ∗ ∗)︸ ︷︷ ︸
adding µ({0,?}3̂∗∗∗) and µ(1{0,?}2̂∗∗∗)

− µ(000∗̂ ∗ ∗)
]

+ q(1− q)prµ(1{0, ?}∗̂ ∗ ∗) + q(1− q)2rµ(1∗̂ ∗ ∗)
}

= rµ(∗̂ ∗ ∗) + 2
{
prµ({0, ?}∗̂ ∗ ∗) + (1− q)rµ(1∗̂ ∗ ∗)

}
− pr2[µ({0, ?}2∗̂ ∗ ∗)

− µ(000∗̂∗)] + 2
{

(1− p)p2rµ(000∗̂ ∗ ∗) + qp2r
[
µ({0, ?}∗̂ ∗ ∗)− µ(1{0, ?}∗̂ ∗ ∗)︸ ︷︷ ︸

splitting µ({0,?}2̂∗∗∗)

− µ(000∗̂ ∗ ∗)
]

+ q(1− q)prµ(1{0, ?}∗̂ ∗ ∗) + q(1− q)2rµ(1∗̂ ∗ ∗)
}

= rµ(∗̂ ∗ ∗) + 2
{
prµ({0, ?}∗̂ ∗ ∗) + (1− q)rµ(1∗̂ ∗ ∗)

}
− pr2[µ({0, ?}2∗̂ ∗ ∗)

− µ(000∗̂∗)] + 2
{

(1− p)p2rµ(000∗̂ ∗ ∗) + qp2r
[
µ(∗̂ ∗ ∗)− µ(1∗̂ ∗ ∗)︸ ︷︷ ︸

splitting µ({0,?}̂∗∗∗)

− µ(1{0, ?}∗̂ ∗ ∗)− µ(000∗̂ ∗ ∗)
]

+ q(1− q)prµ(1{0, ?}∗̂ ∗ ∗)
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+ q(1− q)2rµ(1∗̂ ∗ ∗)
}

= (r + 2qp2r)µ(∗̂ ∗ ∗)︸ ︷︷ ︸
combining the terms involving µ(̂∗∗∗)

+prµ({0, ?}∗̂ ∗ ∗)

+

prµ({0, ?}∗̂ ∗ ∗) +2q(1− q)prµ(1{0, ?}∗̂ ∗ ∗)− 2qp2rµ(1{0, ?}∗̂ ∗ ∗)︸ ︷︷ ︸
combining the terms involving µ(1{0,?}̂∗∗∗)


− pr2[µ({0, ?}2∗̂ ∗ ∗)− µ(000∗̂∗)]
+
{

2(1− p)p2rµ(000∗̂ ∗ ∗)− 2qp2rµ(000∗̂ ∗ ∗)
}︸ ︷︷ ︸

combining terms involving µ(000̂∗∗∗){
2q(1− q)2rµ(1∗̂ ∗ ∗)− 2qp2rµ(1∗̂ ∗ ∗) + 2(1− q)rµ(1∗̂ ∗ ∗)

}︸ ︷︷ ︸
combining the terms involving µ(1̂∗∗∗)

= (r + 2qp2r)µ(∗̂ ∗ ∗) + prµ({0, ?}∗̂ ∗ ∗) +
{
prµ({0, ?}2∗̂ ∗ ∗) + prµ(1{0, ?}∗̂ ∗ ∗)︸ ︷︷ ︸

splitting µ({0,?}̂∗∗∗)

+ 2qpr(1− q − p)µ(1{0, ?}∗̂ ∗ ∗)
}
− pr2µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗)

+ 2p2r(1− p− q)µ(000∗̂ ∗ ∗) + 2r
{
q(1− q)2 − qp2 + (1− q)

}
µ(1∗̂ ∗ ∗)

= (r + 2qp2r)µ(∗̂ ∗ ∗) + prµ({0, ?}∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)
+ prµ({0, ?}2∗̂ ∗ ∗)− pr2µ({0, ?}2∗̂ ∗ ∗)︸ ︷︷ ︸

combining terms involving µ({0,?}2̂∗∗∗)

+pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)

+ 2r
{
q + q3 − 2q2 − qp2 + 1− q

}
µ(1∗̂ ∗ ∗)

= (r + 2qp2r)µ(∗̂ ∗ ∗) + prµ({0, ?}∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)
+ pr(p+ q)µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)
+ 2r

{
1 + q3 − 2q2 − qp2

}
µ(1∗̂ ∗ ∗). (4.11)

Next, applying

1. the identity

µ(∗̂ ∗ ∗)+2µ(1∗̂ ∗ ∗) = µ(?)+2µ(0?)−µ(?0?)+2µ(100?)−2µ(1??1)−µ(1?1)−4µ(1?01),

(4.12)
obtained by rearranging the terms of (4.8),

2. and the identity

µ({0, ?}∗̂ ∗ ∗) = µ(?)+µ(0?)+µ(00?)−2µ(1∗̂ ∗ ∗)+µ(100?)−µ(1?)−2µ(1?01)−µ(1??1),

(4.13)
obtained by rearranging the terms of (4.9), we transform (4.11) as follows:

w0(F̂p,q µ) = (r + 2qp2r)µ(∗̂ ∗ ∗) + 2r{1 + q3 − 2q2 − qp2}µ(1∗̂ ∗ ∗) + prµ({0, ?}∗̂ ∗ ∗)
+ (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗) + pr(p+ q)µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗)
+ 2p2r2µ(000∗̂ ∗ ∗)

= {rµ(∗̂ ∗ ∗) + 2rµ(1∗̂ ∗ ∗)}︸ ︷︷ ︸
to be bound using (4.12)

+2qp2rµ(∗̂ ∗ ∗)+2r{q3 − 2q2 − qp2}µ(1∗̂ ∗ ∗) +prµ({0, ?}∗̂ ∗ ∗)︸ ︷︷ ︸
to be bound using (4.13)

+ (pr+2qpr2)µ(1{0, ?}∗̂ ∗ ∗)+pr(p+ q)µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)
= r{µ(?) + 2µ(0?)− µ(?0?) + 2µ(100?)− 2µ(1??1)− µ(1?1)− 4µ(1?01)}︸ ︷︷ ︸

(1) – bound obtained from (4.12)

+2qp2rµ(∗̂ ∗ ∗)

+ 2r{q3−2q2−qp2)}µ(1∗̂ ∗ ∗) + pr{µ(?)+µ(0?)+µ(00?)−2µ(1∗̂ ∗ ∗) + µ(100?)− µ(1?)}︸ ︷︷ ︸
(2) – bound obtained from (4.13), continued next line within underbrace
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−2µ(1?01)− µ(1??1)}︸ ︷︷ ︸
(2), continued from above

+(pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗) + pr(p+ q)µ({0, ?}2∗̂ ∗ ∗)

+ pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)
= (r+pr)µ(?)+(2r+pr)µ(0?)−rµ(?0?) + prµ(00?) + (2r + pr)µ(100?)− (2r + pr)µ(1??1)︸ ︷︷ ︸

combining terms from the bounds (1) and (2)

−rµ(1?1)−(4r+2pr)µ(1?01)−prµ(1?)︸ ︷︷ ︸
combining terms from the bounds (1) and (2)

+2r{q3 − 2q2 − qp2 − p}µ(1∗̂ ∗ ∗) + 2qp2rµ(∗̂ ∗ ∗)

+ (pr+2qpr2)µ(1{0, ?}∗̂ ∗ ∗)+pr(p+ q)µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)
=
[[[
µ(?)︸︷︷︸+(r + pr − 1)µ(?)

]]]
+
[[[

2µ(0?)︸ ︷︷ ︸+(2r + pr − 2)µ(0?)
]]]

+
[[[
−µ(?0?)︸ ︷︷ ︸−(r − 1)µ(?0?)

]]]
+
[[[

2µ(100?)︸ ︷︷ ︸+(2r + pr − 2)µ(100?)
]]]

+ prµ(00?)− (2r + pr)µ(1??1)− rµ(1?1)

− (4r + 2pr)µ(1?01)− prµ(1?) + 2r{q3 − 2q2 − qp2 − p}µ(1∗̂ ∗ ∗) + 2qp2rµ(∗̂ ∗ ∗)
+ (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)+pr(p+ q)µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗)+2p2r2µ(000∗̂ ∗ ∗)

= w0(µ)︸ ︷︷ ︸
(3)

−[p(1− r) + q]µ(?)− [p(1− r) + q]µ(0?) + (r − 1)µ(0?)− (r − 1)µ(?0?)︸ ︷︷ ︸
(4)

+prµ(00?)

+ (pr − 2p− 2q)µ(100?)− (2r + pr)µ(1??1)− rµ(1?1)− (4r + 2pr)µ(1?01)− prµ(1?)

+ 2r{q3 − 2q2 − qp2 − p}µ(1∗̂ ∗ ∗) + 2qp2rµ(∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)
+ pr(p+ q)µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)

((3) obtained by combining underbraced terms from the previous step, & using (4.10))

= w0(µ)−[p(1− r) + q]µ(?)−[p(1− r) + q]µ(0?) + (r − 1)µ(10?) + (r − 1)µ(00?)︸ ︷︷ ︸
rewriting (4)

+prµ(00?)

− [p(2− r) + 2q]µ(100?)− (2r + pr)µ(1??1)− rµ(1?1)− (4r + 2pr)µ(1?01)− prµ(1?)

+ 2r{q3 − 2q2 − qp2 − p}µ(1∗̂ ∗ ∗) + 2qp2rµ(∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)
+ pr(p+ q)µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)

= w0(µ)−[p(1− r) + q]µ(?)− [p(1− r) + q]µ(0?)︸ ︷︷ ︸
(5)

−(p+ q)µ(10?)−[p(1− r) + q]µ(00?)︸ ︷︷ ︸
(6)

− [p(2− r) + 2q]µ(100?)− (2r + pr)µ(1??1)− rµ(1?1)− (4r + 2pr)µ(1?01)− prµ(1?)

+ 2r{q3 − 2q2 − qp2 − p}µ(1∗̂ ∗ ∗) + 2qp2rµ(∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)
+ pr(p+ q)µ({0, ?}2∗̂ ∗ ∗) + pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)

= w0(µ)−[p(1− r) + q][µ(?) + µ(0?) + µ(00?)]︸ ︷︷ ︸
combining (5) and (6)

−(p+ q)µ(10?)− [p(2− r) + 2q]µ(100?)

− (2r + pr)µ(1??1)− rµ(1?1)− (4r + 2pr)µ(1?01)− prµ(1?) + 2qp2rµ(∗̂ ∗ ∗)
− 2r(p+ 2q2 + qp2 − q3)µ(1∗̂ ∗ ∗)+(pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)+pr(p+ q)µ({0, ?}2∗̂ ∗ ∗)
+ pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗). (4.14)

One may note here how (4.14) lays down the first of the stepping stones which pave
the way towards an inequality that resembles (4.2). We remark here that our ultimate
goal would be to transform the equality in (4.14) into an inequality of the form (4.2).
However, there are, at this point, several terms in the right side of (4.14) (such as
2qp2rµ(∗̂ ∗ ∗), (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗) etc.), other than w0(µ), in which the coefficients
are non-negative, and this needs to be remedied. This is what we accomplish, via several
adjustments and suitable algebraic manipulations in-between, in §4.4, §4.5, §4.6 and
§4.7.
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In each of the steps involving the above-mentioned adjustments, the equality/ in-
equality (beginning from (4.14)) evolves. Suppose we have performed i adjustments so
far, and the weight function currently under consideration is denoted by wi. Let the
inequality that we currently have (which could actually be an equality, in which case we
refer to it as the current weight function equality) be given by

wi(F̂p,q µ) 6 wi(µ)−
si∑
j=1

αi,jµ(Ei,j), (4.15)

where αi,1, . . . , αi,si are real constants and Ei,1, . . . , Ei,si are cylinder sets. Suppose the
(i + 1)-st adjustment is defined via the equation wi+1(µ) = wi(µ) −

∑ti
j=1 βi,jµ(Gi,j), in

which βi,1, . . . , βi,ti are real constants and Gi,1, . . . ,Gi,ti are cylinder sets. We can now
rewrite (4.15) as follows:

wi+1(F̂p,q µ) +

ti∑
j=1

βi,j F̂p,q µ(Gi,j) 6 wi+1(µ) +

ti∑
j=1

βi,jµ(Gi,j)−
si∑
j=1

αi,jµ(Ei,j)

=⇒ wi+1(F̂p,q µ) 6 wi+1(µ) +

ti∑
j=1

βi,jµ(Gi,j)−
ti∑
j=1

βi,j F̂p,q µ(Gi,j)−
si∑
j=1

αi,jµ(Ei,j).

(4.16)

This is the commonality shared by all the adjustments described in the sequel, and we
refer back, several times, to (4.16) and use it to see how the inequality (or equality)
evolves with each adjustment.

4.4 The second step of composing the weight function

As mentioned right after (4.14), a quick comparison of (4.14) with (4.2) reveals that
the terms 2qp2rµ(∗̂ ∗ ∗), (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗), pr(p + q)µ({0, ?}2∗̂ ∗ ∗), pr2µ(000∗̂∗)
and 2p2r2µ(000∗̂ ∗ ∗) in the right side of (4.14) are all non-negative. To make sure that
the final inequality is of the form given in (4.2), we have to use the existing non-positive
terms in the right side of (4.14) to nullify these non-negative terms.

With the aim to tackle first the terms (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗) and
pr(p + q)µ({0, ?}2∗̂ ∗ ∗), and then the terms pr2µ(000∗̂∗) and 2p2r2µ(000∗̂ ∗ ∗), we con-
sider the following first adjustment to the initial weight function in (4.10):

w1(µ) = w0(µ)− p(p+ q)µ(?) = w0(µ)− p(1− r)µ(?). (4.17)

Rewriting (4.14) as w0(F̂p,q µ) = w0(µ) +A0, and using the idea presented in (4.16), we
see that the adjustment of (4.17) would transform (4.14) into

w1(F̂p,q µ) = w1(µ) + p(1− r)µ(?)− p(1− r) F̂p,q µ(?) +A0

= w1(µ) + p(1− r)µ(?)− p(p+ q) F̂p,q µ(?) +A0. (4.18)

We include a brief discussion attempting to explain why we choose to subtract
p(1− r)µ(?) in (4.17). At the very outset, we let the reader know that we do not claim
here that this is the only way to begin the sequence of adjustments. Some other term out
of the existing non-positive terms in the right side of (4.14) might very well have worked.
However, a significant amount of work went into trying out adjustments using terms that
seemed plausible enough to negate the above-mentioned non-negative terms, using the
idea presented in (4.16), and the choice in (4.17) has the following advantages:

1. As seen from the much neater (4.18) and by recalling the coefficient of µ(?) in
the right side of (4.14), the coefficient of µ(?) becomes −q once (4.17) has been
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implemented, which is still non-positive and therefore creates no problems in the
subsequent steps. This has been one of our main considerations in each adjustment
step: that the adjustments are chosen such that they do not upset existing non-
positive terms on the right side of the weight function inequality (or equality) and
turn them non-negative.

2. We now come to the term −p(p + q) F̂p,q µ(?) = −p(p + q)rµ(∗̂ ∗ ∗) in (4.18). The
simple inequality µ({0, ?}2∗̂ ∗ ∗) 6 µ(∗̂ ∗ ∗) tells us that −p(p + q)rµ(∗̂ ∗ ∗) would
suffice to fully negate the non-negative term pr(p+ q)µ({0, ?}2∗̂ ∗ ∗).

3. Note that after accomplishing the task of negating p(p+ q)µ({0, ?}2∗̂ ∗ ∗), the term
−p(p+q)rµ(∗̂ ∗ ∗) is also able to help in partially negating (pr+2qpr2)µ(1{0, ?}∗̂ ∗ ∗)
(we say “partially” because the order of magnitude of the coefficient pr+ 2qpr2 is p
when p and q are small, and this is larger than the order of magnitude of p(p+ q)r),
since µ(1{0, ?}∗̂ ∗ ∗) + µ({0, ?}2∗̂ ∗ ∗) = µ({0, ?}∗̂ ∗ ∗) 6 µ(∗̂ ∗ ∗).

We hope that the above discussions provide some insight to the reader as to why we
found −p(1− r)µ(?) a compelling choice in (4.17).

Presenting the reader with the final weight function, with all the adjustments com-
bined together, may come across as abrupt and opaque. On the other hand, outlining
the adjustments in the same chronological order in which we ourselves thought of
them while developing the weight function implies that the power of each adjustment
(in negating the existing non-negative terms in the right side of the weight function
inequality / equality) is limited by our ability to carry out intricate computations and
algebraic manipulations and to keep track of the non-negative terms that still remain.
Therefore, it is sometimes the case that we carry out two different adjustments at two
different stages of development of the weight function, but some of the terms used in
both these adjustments are the same (up to the cylinder sets involved, but with different
coefficients). For instance, in the final adjustment, i.e. (4.49), the term −qµ(?) appears,
and we may very well have combined this with −p(1− r)µ(?) of (4.17), but in doing so,
we would have been unable to point out effectively to the reader how the construction
truly unfolds.

Applying the adjustment described in (4.17) to (4.14), as illustrated in (4.18), we
obtain:

w1(F̂p,q µ)

= w1(µ) + p(1− r)µ(?)− p(1− r) F̂p,q µ(?)− [p(1− r) + q][µ(?) + µ(0?) + µ(00?)]

− (p+ q)µ(10?)− [p(2− r) + 2q]µ(100?)− (2r + pr)µ(1??1)− rµ(1?1)

− (4r + 2pr)µ(1?01)− prµ(1?) + 2qp2rµ(∗̂ ∗ ∗)− 2r(p+ 2q2 + qp2 − q3)µ(1∗̂ ∗ ∗)
+ (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗) + pr(p+ q)µ({0, ?}2∗̂ ∗ ∗)+pr2µ(000∗̂∗)+2p2r2µ(000∗̂ ∗ ∗)

= w1(µ)− qµ(?)− [p(1− r) + q][µ(0?) + µ(00?)]− (p+ q)µ(10?)− [p(2− r) + 2q]µ(100?)

− (2r + pr)µ(1??1)− rµ(1?1)− (4r + 2pr)µ(1?01)− prµ(1?) + 2qp2rµ(∗̂ ∗ ∗)

+pr2µ(000∗̂∗) + 2p2r2µ(000∗̂ ∗ ∗)︸ ︷︷ ︸
(1)

−p(p+ q) F̂p,q µ(?)− 2r(p+ 2q2 + qp2 − q3)µ(1∗̂ ∗ ∗)︸ ︷︷ ︸
(2)

+(pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗) + pr(p+ q)µ({0, ?}2∗̂ ∗ ∗)︸ ︷︷ ︸
(3)

. (4.19)

Combining the terms of (4.19) that have been highlighted by the underbraces numbered
(2) and (3), using (4.4), and using the identities

1. µ(∗̂ ∗ ∗) = µ(1∗̂ ∗ ∗) + µ(1{0, ?}∗̂ ∗ ∗) + µ({0, ?}2∗̂ ∗ ∗),
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2. µ(1{0, ?}∗̂ ∗ ∗) = µ(1∗̂ ∗ ∗{0, ?}) + µ(1000?) − µ(1?000) = µ(1∗̂ ∗ ∗) − µ(1∗̂ ∗ ∗1) +

µ(1000?)− µ(1?000),

we obtain

− p(p+ q) F̂p,q µ(?)− 2r(p+ 2q2 + qp2 − q3)µ(1∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)
+ pr(p+ q)µ({0, ?}2∗̂ ∗ ∗)

= −p(p+ q)rµ(∗̂ ∗ ∗)︸ ︷︷ ︸
use (1)

−2r(p+ 2q2 + qp2 − q3)µ(1∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)

+ pr(p+ q)µ({0, ?}2∗̂ ∗ ∗)
= −pr(p+ q)µ(1∗̂ ∗ ∗)− pr(p+ q)µ(1{0, ?}∗̂ ∗ ∗)− pr(p+ q)µ({0, ?}2∗̂ ∗ ∗)︸ ︷︷ ︸

after applying (1)

− 2r(p+ 2q2 + qp2 − q3)µ(1∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)+pr(p+ q)µ({0, ?}2∗̂ ∗ ∗)
= −pr(p+ q)µ(1∗̂ ∗ ∗)− 2r(p+ 2q2 + qp2 − q3)µ(1∗̂ ∗ ∗)︸ ︷︷ ︸

combining the terms involving µ(1̂∗∗∗)

−pr(p+ q)µ(1{0, ?}∗̂ ∗ ∗) + (pr + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)︸ ︷︷ ︸
combining the terms involving µ(1{0,?}̂∗∗∗)

(also, cancelling out the terms involving µ({0, ?}2∗̂ ∗ ∗) by each other)

= − r[p(p+ q) + 2(p+ 2q2 + qp2 − q3)]µ(1∗̂ ∗ ∗) +(pr2 + 2qpr2)µ(1{0, ?}∗̂ ∗ ∗)︸ ︷︷ ︸
use (2)

= − r[p(p+ q) + 2(p+ 2q2 + qp2 − q3)]µ(1∗̂ ∗ ∗)
+(pr2 + 2qpr2)[µ(1∗̂ ∗ ∗)− µ(1∗̂ ∗ ∗1) + µ(1000?)− µ(1?000)]︸ ︷︷ ︸

after applying (2)

= − r[p(p+ q) + 2(p+ 2q2 + qp2 − q3)]µ(1∗̂ ∗ ∗) + (pr2 + 2qpr2)[µ(1∗̂ ∗ ∗)− µ(1∗̂ ∗ ∗1)]

+ (pr2 + 2qpr2)µ(1000?)− (pr2 + 2qpr2)µ(1?000)

= −r(p+ 4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)µ(1∗̂ ∗ ∗)− (pr2 + 2qpr2)µ(1∗̂ ∗ ∗1)︸ ︷︷ ︸
(4)(we combined the terms involving µ(1̂∗∗∗))

+(pr2 + 2qpr2)µ(1000?)− (pr2 + 2qpr2)µ(1?000)︸ ︷︷ ︸
(5)

. (4.20)

Next, we combine the terms of (4.20) grouped together by the underbrace numbered
(5), with the terms of (4.19) highlighted by the underbrace numbered (1), and use the
identities

1. µ(1000?) = µ(000?)− µ(?000?)− µ(0000?),

2. µ(000∗̂ ∗ ∗) = µ(000?) + µ(0000?) + µ(00000?)− µ(000∗̂∗1)− µ(000?1),

3. µ(000∗̂∗) = µ(000??) + µ(000?0) + µ(0000?),

4. µ(000??) + µ(000?0) = µ(000?)− µ(000?1),

to obtain:

(pr2 + 2qpr2)µ(1000?)︸ ︷︷ ︸
use (1)

−(pr2 + 2qpr2)µ(1?000) + pr2µ(000∗̂∗) +2p2r2µ(000∗̂ ∗ ∗)︸ ︷︷ ︸
use (2)

= (pr2 + 2qpr2)[µ(000?)− µ(?000?)− µ(0000?)]︸ ︷︷ ︸
after applying (1)

−(pr2 + 2qpr2)µ(1?000) + pr2µ(000∗̂∗)

+2p2r2[µ(000?) + µ(0000?) + µ(00000?)− µ(000∗̂∗1)− µ(000?1)]︸ ︷︷ ︸
after applying (2)
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= (pr2 + 2qpr2)µ(000?)︸ ︷︷ ︸
(a)

−(pr2 + 2qpr2)µ(0000?)

− (pr2 + 2qpr2)µ(?000?)−(pr2 + 2qpr2)µ(1?000)︸ ︷︷ ︸
(c)

+ (pr2 + 2qpr2)µ(000∗̂∗)− 2qpr2µ(000∗̂∗)︸ ︷︷ ︸
manipulating the coefficient of µ(000∗̂∗)

+2p2r2µ(000?)︸ ︷︷ ︸
(b)

+2p2r2[µ(0000?) + µ(00000?)]

− 2p2r2µ(000∗̂∗1)−2p2r2µ(000?1)︸ ︷︷ ︸
(d)

= (pr2 + 2qpr2 + 2p2r2)µ(000?)︸ ︷︷ ︸
combining (a) and (b)

−(pr2 + 2qpr2)µ(0000?)− (pr2 + 2qpr2 + 2p2r2)µ(1?000)︸ ︷︷ ︸
combining (c) and (d)

+ (pr2 + 2qpr2)µ(000∗̂∗)︸ ︷︷ ︸
use (3)

−(pr2 + 2qpr2)µ(?000?) + 2p2r2[µ(0000?) + µ(00000?)]

− 2p2r2µ(000∗̂∗1)− 2qpr2µ(000∗̂∗)
= (pr2 + 2qpr2 + 2p2r2)µ(000?)−(pr2 + 2qpr2)µ(0000?)︸ ︷︷ ︸

(e)

−(pr2 + 2qpr2 + 2p2r2)µ(1?000)

+ (pr2 + 2qpr2)µ(000??) + (pr2 + 2qpr2)µ(000?0) + (pr2 + 2qpr2)µ(0000?)︸ ︷︷ ︸
(f): obtained by applying (3)

− (pr2 + 2qpr2)µ(?000?) + 2p2r2[µ(0000?) + µ(00000?)]− 2p2r2µ(000∗̂∗1)

− 2qpr2µ(000∗̂∗)
= (pr2 + 2qpr2 + 2p2r2)µ(000?)−(pr2 + 2qpr2)µ(0000?) + (pr2 + 2qpr2)µ(0000?)︸ ︷︷ ︸

combining (e) with the last term of (f)

− (pr2 + 2qpr2 + 2p2r2)µ(1?000) + (pr2 + 2qpr2)
[[[
µ(000??) + µ(000?0)︸ ︷︷ ︸

use (4)

]]]
− (pr2 + 2qpr2)µ(?000?) + 2p2r2[µ(0000?) + µ(00000?)]− 2p2r2µ(000∗̂∗1)

− 2qpr2µ(000∗̂∗)
= (pr2 + 2qpr2 + 2p2r2)µ(000?)︸ ︷︷ ︸

(g)

− (pr2 + 2qpr2 + 2p2r2)µ(1?000)︸ ︷︷ ︸
(h)

+ (pr2 + 2qpr2)[ µ(000?)− µ(000?1)︸ ︷︷ ︸
(i): obtained by applying (4)

]− (pr2 + 2qpr2)µ(?000?)

+ 2p2r2[µ(0000?) + µ(00000?)]− 2p2r2µ(000∗̂∗1)− 2qpr2µ(000∗̂∗)
= 2pr2(1 + p+ 2q)µ(000?)︸ ︷︷ ︸

combining (g) with 1st term of (i)

− 2pr2(1 + 2q + p)µ(1?000)︸ ︷︷ ︸
combining (h) with 2nd term of (i)

+2p2r2[µ(0000?) + µ(00000?)]

− 2p2r2µ(000∗̂∗1)− pr2(1 + 2q)µ(?000?)− 2qpr2µ(000∗̂∗). (4.21)

Applying (4.20) and (4.21) to (4.19), we obtain:

w1(F̂p,q µ) = w1(µ)− qµ(?)− [p(1− r) + q][µ(0?) + µ(00?)]− (p+ q)µ(10?)

− [p(2− r) + 2q]µ(100?)− (2r + pr)µ(1??1)− rµ(1?1)− (4r + 2pr)µ(1?01)− prµ(1?)

+ 2qp2rµ(∗̂ ∗ ∗)−r(p+ 4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)µ(1∗̂ ∗ ∗)− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)︸ ︷︷ ︸
terms grouped by underbrace numbered (4) of (4.20)

+2pr2(1 + p+ 2q)µ(000?)− 2pr2(1 + 2q + p)µ(1?000) + 2p2r2[µ(0000?) + µ(00000?)]︸ ︷︷ ︸
terms obtained from (4.21)

−2p2r2µ(000∗̂∗1)− pr2(1 + 2q)µ(?000?)− 2qpr2µ(000∗̂∗)︸ ︷︷ ︸
terms obtained from (4.21)
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= w1(µ)− qµ(?)− [p(1− r) + q][µ(0?) + µ(00?)]− (p+ q)µ(10?)− [p(2− r) + 2q]µ(100?)

− (2r + pr)µ(1??1)− rµ(1?1)− (4r + 2pr)µ(1?01)− prµ(1?) +2qp2rµ(∗̂ ∗ ∗)︸ ︷︷ ︸
− r(p+ 4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)µ(1∗̂ ∗ ∗)− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

− pr2(1 + 2q)µ(?000?)− 2qpr2µ(000∗̂∗) +2pr2(1 + p+ 2q)µ(000?)︸ ︷︷ ︸
− 2pr2(1 + 2q + p)µ(1?000)

+2p2r2[µ(0000?) + µ(00000?)]︸ ︷︷ ︸−2p2r2µ(000∗̂∗1)

(only rearrangements done in this step). (4.22)

Again, (4.22), much like (4.14), forms part of the foundation upon which the derivation
of an inequality of the form (4.2) is built. Still, there are terms in the right side of (4.22),
other than w1(µ), indicated by underbraces in the final step of the derivation of (4.22), in
which the coefficients are non-negative. Therefore, further adjustments are necessary.

4.5 The third step of composing the weight function

In order to make sure that we ultimately end up with an inequality of the form given
in (4.2), we have to ensure that the non-negative terms highlighted by underbraces in
the final expression for (4.22) are negated using some of the existing non-positive terms
in the final expression for (4.22).

The second adjustment is carried out as follows:

w2(µ) = w1(µ)−
[
2pr{µ(1?) + µ(10?)}+ 2p2r{µ(1??) + µ(1?0?) + µ(10??)}+ 4rµ(1?01)

+ 2pµ(100?)
]
. (4.23)

Again, as stated at the beginning of §4.4, a different choice of terms may very well have
worked instead of those considered in (4.23). Writing (4.22) as w1(F̂p,q µ) = w1(µ) +A1,
we see, using the idea presented in (4.16), that applying (4.23) will transform (4.22) into

w2(F̂p,q µ) = w2(µ) + {2pr{µ(1?) + µ(10?)}+ 2p2r{µ(1??) + µ(1?0?) + µ(10??)}

+ 4rµ(1?01) + 2pµ(100?)} − {2pr{F̂p,q µ(1?) + F̂p,q µ(10?)}

+ 2p2r{F̂p,q µ(1??) + F̂p,q µ(1?0?) + F̂p,q µ(10??)}+ 4r F̂p,q µ(1?01)

+ 2p F̂p,q µ(100?)}+A1. (4.24)

As in §4.4, we attempt to explain to the reader some of the motivations for choosing
the above adjustment. Each of the terms used in (4.23) has its own significance, and
these are, of course, detailed in the computations that follow for the reader to verify, so
we focus on just the reason for our choice of the term −2prµ(1?).

The terms in the right side of (4.22) that are non-negative are 2qp2rµ(∗̂ ∗ ∗), 2pr2(1 +

p + 2q)µ(000?) and 2p2r2[µ(0000?) + µ(00000?)]. When p and q are small, the order of
magnitude of the coefficient of the first of these terms is 2qp2, that of the second term
is 2p, and that of the third term is 2p2. We emphasize here, to the reader, that in our
approach for constructing the weight function, we have tried to first annihilate the non-
negative terms whose coefficients have higher orders of magnitude, and then addressed
the non-negative terms whose coefficients have lower orders of magnitude. So, here, we
first focus on 2pr2(1 + p+ 2q)µ(000?), which can be thought of as being approximately
equal to 2pµ(000?) when p and q are small.

From (4.28), we know that one of the terms in the expansion of F̂p,q µ(1?) is r2µ(000?).

Therefore, −2pr F̂p,q µ(1?) in (4.24) will contribute −2pr3µ(000?), which is approximately
equal to −2pµ(000?) when p and q are small. This, then, aids in negating much of the
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non-negative term 2pr2(1 + p+ 2q)µ(000?) – in fact, what is left of 2pr2(1 + p+ 2q)µ(000?)

after implementing this adjustment is a non-negative term whose coefficient is of a
smaller order of magnitude.

At the same time, we note that on the right side of (4.24), the term 2prµ(1?) is being
added, and we need to make sure that this does not upset any of the existing non-positive
terms to the extent that they become non-negative. Note that there already exists a
−prµ(1?) on the right side of (4.22). Next, we note that

1. −r(p+ 4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)µ(1∗̂ ∗ ∗) on the right side of (4.22) supplies us
with the terms −prµ(1???), −prµ(1??0), −prµ(1?0?) and −prµ(1?00),

2. the term −(2r + pr)µ(1??1) provides us with −prµ(1??1),

3. the term −(4r + 2pr)µ(1?01) provides us with −prµ(1?01),

4. and the term −rµ(1?1) supplies us with −prµ(1?1).

We see that −prµ(1???) − prµ(1??0) − prµ(1?0?) − prµ(1?00) − prµ(1??1) − prµ(1?01) −
prµ(1?1) = −prµ(1?). Thus, we have accounted for non-positive terms existing on
the right side of (4.22) that are capable of negating, together, the 2prµ(1?) that gets
introduced into the right side of (4.24) because of (4.23).

Once again, we hope that the above discussion is able to shed some light on why
−2prµ(1?) is a part of (4.23). Likewise, the presence of the other terms in (4.23) can be
justified / motivated.

Applying the adjustment described in (4.23) to (4.22), we obtain (as shown in (4.24)):

w2(F̂p,q µ) = w2(µ) + [2pr{µ(1?) + µ(10?)}+ 2p2r{µ(1??) + µ(1?0?) + µ(10??)}

+ 4rµ(1?01) + 2pµ(100?)]− [2pr{F̂p,q µ(1?) + F̂p,q µ(10?)}+ 2p2r{F̂p,q µ(1??)

+ F̂p,q µ(1?0?) + F̂p,q µ(10??)}+ 4r F̂p,q µ(1?01) + 2p F̂p,q µ(100?)]− qµ(?)
− [p(1− r) + q][µ(0?) + µ(00?)]− (p+ q)µ(10?)

− [p(2− r) + 2q]µ(100?)− (2r + pr)µ(1??1)− rµ(1?1)− (4r + 2pr)µ(1?01)− prµ(1?)

+ 2qp2rµ(∗̂ ∗ ∗)− r(p+ 4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)µ(1∗̂ ∗ ∗)− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

− pr2(1 + 2q)µ(?000?)− 2qpr2µ(000∗̂∗) + 2pr2(1 + p+ 2q)µ(000?)

− 2pr2(1 + 2q + p)µ(1?000) + 2p2r2[µ(0000?) + µ(00000?)]− 2p2r2µ(000∗̂∗1)

= w2(µ)+2pr{µ(1?)+µ(10?)}+2p2r{µ(1??)+µ(1?0?) + µ(10??)}+ 4rµ(1?01) + 2pµ(100?)︸ ︷︷ ︸
−(p+q)µ(10?)−[p(2−r)+2q]µ(100?)−(2r+pr)µ(1??1)−rµ(1?1)−(4r+2pr)µ(1?01)−prµ(1?)︸ ︷︷ ︸
−r(p+ 4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)µ(1∗̂ ∗ ∗)︸ ︷︷ ︸−qµ(?)− [p(1− r) + q][µ(0?) + µ(00?)]

+ 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)− pr2(1 + 2q)µ(?000?)− 2qpr2µ(000∗̂∗)

+ 2pr2(1 + p+ 2q)µ(000?)− 2pr2(1 + 2q + p)µ(1?000) + 2p2r2[µ(0000?) + µ(00000?)]

− 2p2r2µ(000∗̂∗1)− 2pr{F̂p,q µ(1?) + F̂p,q µ(10?)} − 2p2r{F̂p,q µ(1??) + F̂p,q µ(1?0?)

+ F̂p,q µ(10??)} − 4r F̂p,q µ(1?01)− 2p F̂p,q µ(100?). (4.25)

4.5.1 Step 1 of analyzing (4.25)

First, we combine the terms of (4.25) that have been highlighted using underbraces. To
this end, we use the identities:

1. µ(1∗̂ ∗ ∗) = µ(1?) + µ(10?) + µ(100?)− µ(1?1)− µ(1??1)− 2µ(1?01),

2. µ(1???) + µ(1??0) = µ(1??)− µ(1??1),

3. µ(1∗̂ ∗ ∗) = µ(1???) + µ(1??0) + µ(1?0?) + µ(10??) + µ(1?00) + µ(10?0) + µ(100?),
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and we obtain:

−(p+q)µ(10?)︸ ︷︷ ︸
(1)

−{p(2−r)+2q}µ(100?)︸ ︷︷ ︸
(3)

−(2r+pr)µ(1??1)− rµ(1?1)−(4r+2pr)µ(1?01)︸ ︷︷ ︸
(5)

−prµ(1?)︸ ︷︷ ︸
(7)

−r(p+ 4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)µ(1∗̂ ∗ ∗) +2prµ(1?)︸ ︷︷ ︸
(8)

+2prµ(10?)︸ ︷︷ ︸
(2)

+ 2p2r{µ(1??) + µ(1?0?) + µ(10??)}+4rµ(1?01)︸ ︷︷ ︸
(6)

+2pµ(100?)︸ ︷︷ ︸
(4)

= −(p+ q)µ(10?) + 2prµ(10?)︸ ︷︷ ︸
combining (1) and (2)

−{p(2− r) + 2q}µ(100?) + 2pµ(100?)︸ ︷︷ ︸
combining (3) and (4)

−(2r + pr)µ(1??1)

− rµ(1?1)−(4r + 2pr)µ(1?01) + 4rµ(1?01)︸ ︷︷ ︸
combining (5) and (6)

−prµ(1?) + 2pr{µ(1?)︸ ︷︷ ︸
combining (7) and (8)

−prµ(1∗̂ ∗ ∗)︸ ︷︷ ︸
apply (1)

− 2p2r µ(1∗̂ ∗ ∗)︸ ︷︷ ︸
split using (3)

−r(4q2 + 4qp2 − 2q3 + 2q2p)µ(1∗̂ ∗ ∗)

+ 2p2r{µ(1??) + µ(1?0?) + µ(10??)}
= [−(p+ q) + 2pr]µ(10?)− (2q − pr)µ(100?)− (2r + pr)µ(1??1)− rµ(1?1)

− 2prµ(1?01) + prµ(1?)

−pr[µ(1?) + µ(10?) + µ(100?)− µ(1?1)− µ(1??1)− 2µ(1?01)]︸ ︷︷ ︸
after applying (1)

−2p2r
[[[
µ(1???) + µ(1??0)

+ µ(1?0?) + µ(10??) + µ(1?00) + µ(10?0) + µ(100?)
]]]

− r(4q2 + 4qp2 − 2q3 + 2q2p)µ(1∗̂ ∗ ∗) + 2p2r{µ(1??) + µ(1?0?) + µ(10??)}
= [−(p+ q) + 2pr]µ(10?)︸ ︷︷ ︸

(9)

−(2q − pr)µ(100?)︸ ︷︷ ︸
(11)

−(2r + pr)µ(1??1)︸ ︷︷ ︸
(13)

−rµ(1?1)︸ ︷︷ ︸
(15)

−2prµ(1?01)︸ ︷︷ ︸
(17)

+prµ(1?)︸ ︷︷ ︸
(19)

−prµ(1?)︸ ︷︷ ︸
(20)

−prµ(10?)︸ ︷︷ ︸
(10)

−prµ(100?)︸ ︷︷ ︸
(12)

+prµ(1?1)︸ ︷︷ ︸
(16)

+prµ(1??1)︸ ︷︷ ︸
(14)

+2prµ(1?01)︸ ︷︷ ︸
(18)

− 2p2r
[[[
µ(1???) + µ(1??0)︸ ︷︷ ︸

apply (2)

+µ(1?0?) + µ(10??) + µ(1?00) + µ(10?0) + µ(100?)
]]]

− r(4q2 + 4qp2 − 2q3 + 2q2p) µ(1∗̂ ∗ ∗)︸ ︷︷ ︸
split using (3)

+2p2r{µ(1??) + µ(1?0?) + µ(10??)}

= [−(p+ q) + pr]µ(10?)︸ ︷︷ ︸
adding (9) & (10)

−2qµ(100?)︸ ︷︷ ︸
adding (11) & (12)

−2rµ(1??1)︸ ︷︷ ︸
adding (13) & (14)

−r(1− p)µ(1?1)︸ ︷︷ ︸
adding (15) & (16)

− 2p2r[µ(1??)− µ(1??1)︸ ︷︷ ︸
after applying (2)

+µ(1?0?) + µ(10??)]− 2p2r[µ(1?00) + µ(10?0) + µ(100?)]

− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1??0) + µ(1?0?) + µ(10??) + µ(1?00)

+ µ(10?0) + µ(100?)] + 2p2r{µ(1??) + µ(1?0?) + µ(10??)}
(also adding the terms indicated by underbraces numbered (17), (18), (19) & (20))

= − [p(1− r) + q]µ(10?)−2qµ(100?)︸ ︷︷ ︸
(21)

−2rµ(1??1)︸ ︷︷ ︸
(24)

−r(1− p)µ(1?1) +2p2rµ(1??1)︸ ︷︷ ︸
(25)

−2p2r[µ(1??) + µ(1?0?) + µ(10??)]︸ ︷︷ ︸
(26)

−2p2r[µ(1?00) + µ(10?0)]︸ ︷︷ ︸
(28)

−2p2rµ(100?)︸ ︷︷ ︸
(22)

− r(4q2+4qp2−2q3+2q2p)[µ(1???) + µ(1??0) + µ(1?0?) + µ(10??) +µ(1?00) + µ(10?0)︸ ︷︷ ︸
(29)

]
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−r(4q2 + 4qp2 − 2q3 + 2q2p)µ(100?)︸ ︷︷ ︸
(23)

+2p2r{µ(1??) + µ(1?0?) + µ(10??)}︸ ︷︷ ︸
(27)

= − [p(1− r) + q]µ(10?)−[2q + r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)]µ(100?)︸ ︷︷ ︸
adding (21), (22), (23)

−2r(1− p2)µ(1??1)︸ ︷︷ ︸
adding (24) & (25)

− r(1− p)µ(1?1)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1??0) + µ(1?0?) + µ(10??)]

−r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)[µ(1?00) + µ(10?0)]︸ ︷︷ ︸
adding (28) & (29)

(also cancelling (26) by (27)).

(4.26)

Incorporating the expression obtained in (4.26) (as indicated by the large square brackets
in the expression below), we can now rewrite (4.25) as follows:

w2(F̂p,q µ)

= w2(µ) +

[
− [p(1− r) + q]µ(10?)− [2q + r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)]µ(100?)

− 2r(1− p2)µ(1??1)− r(1− p)µ(1?1)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1??0)

+ µ(1?0?) + µ(10??)]− r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)[µ(1?00) + µ(10?0)]

]
− qµ(?)

− [p(1− r) + q][µ(0?) + µ(00?)] + 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

− pr2(1 + 2q)µ(?000?)− 2qpr2µ(000∗̂∗) + 2pr2(1 + p+ 2q)µ(000?)

− 2pr2(1 + 2q + p)µ(1?000) + 2p2r2[µ(0000?) + µ(00000?)]

− 2p2r2µ(000∗̂∗1)−2pr{F̂p,q µ(1?) + F̂p,q µ(10?)} − 2p2r{F̂p,q µ(1??)︸ ︷︷ ︸
+ F̂p,q µ(1?0?) + F̂p,q µ(10??)} − 4r F̂p,q µ(1?01)− 2p F̂p,q µ(100?)︸ ︷︷ ︸ . (4.27)

4.5.2 Step 2 of analyzing (4.25)

In §4.5.3, we deal with the terms of (4.27) that have been grouped using underbraces. To
this end, we need to compute F̂p,q µ(1?), F̂p,q µ(10?), F̂p,q µ(1??), F̂p,q µ(1?0?), F̂p,q µ(10??)

and F̂p,q µ(1?01) (note that we have already computed F̂p,q µ(100?) in (4.6)). An argument

similar to that adopted in (4.5) of §4.1 for computing F̂p,q µ(0?) can be used to deduce
that

F̂p,q µ(1?) = r2µ(000?) + qrµ(∗̂ ∗ ∗). (4.28)

However, parts of the expression for each of the probabilities F̂p,q µ(10?), F̂p,q µ(1??),

F̂p,q µ(1?0?), F̂p,q µ(10??) and F̂p,q µ(1?01) will deliberately not be made explicit, in order
to keep the subsequent mathematical expressions as concise as possible.

While computing F̂p,q µ(10?), we first consider η(0) = η(1) = η(2) = 0, so that

(η(3), η(4)) ∈ ∗̂∗, the event F̂p,q η(0) = 1 happens with probability 1 − p, and the event

F̂p,q η(1) = 0 happens with probability p. Next, we consider η(0) = 1, η(1) ∈ {0, ?} and

(η(2), η(3), η(4)) ∈ ∗̂ ∗ ∗, so that F̂p,q η(0) = 1 happens with probability q and F̂p,q η(1) = 0

happens with probability p, and finally, we consider η(1) = 1 and (η(2), η(3), η(4)) ∈ ∗̂ ∗ ∗,
so that F̂p,q η(0) = 1 happens with probability q and F̂p,q η(1) = 0 happens with probability

1− q. In each of these cases, F̂p,q η(2) =? happens with probability r. Therefore

F̂p,q µ(10?) = (1− p)prµ(000∗̂∗) + C10? +D10? > (1− p)prµ(000∗̂∗) + C10?, (4.29)
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where
C10? = qprµ(1{0, ?}∗̂ ∗ ∗) + q(1− q)rµ(1∗̂ ∗ ∗), (4.30)

and D10? is the component arising from the case where (η(0), η(1), η(2)) ∈ ∗̂ ∗ ∗. Similar
arguments lead to

• F̂p,q µ(1??) = (1− p)r2µ(000?{0, ?}) + C1?? > (1− p)r2µ(000?{0, ?}); (4.31)

• F̂p,q µ(1?0?) = (1− p)r2pµ(000?{0, ?}2) + C1?0? > (1− p)r2pµ(000?{0, ?}2); (4.32)

• F̂p,q µ(10??) = (1− p)pr2µ(000∗̂∗{0, ?}) + C10?? > (1− p)pr2µ(000∗̂∗{0, ?}); (4.33)

in which CC, where C is any of the cylinder sets (1??), (1?0?), (10??), accounts for the
contribution from the cases in which (η(0), η(1), η(2)) ∈ Â3 \ {(0, 0, 0)}.

While computing F̂p,q µ(1?01), we first consider the case where η(3) = η(4) = η(5) = 0,

so that (η(1), η(2)) ∈ ∗̂∗, and the event F̂p,q η(2) = 0 happens with probability p while the

event F̂p,q η(3) = 1 happens with probability 1− p. Note that in this situation, no matter

what the value of η(0) is, the event F̂p,q η(0) = 1 happens with probability q. The second
possibility we take into account is where η(0) = η(1) = η(2) = 0, which then forces
η(3) =?, and F̂p,q η(0) = 1 happens with probability 1 − p. If η(4) ∈ {0, ?}, the events

F̂p,q η(2) = 0 and F̂p,q η(3) = 1 happen with probabilities p and q respectively, whereas if
η(4) = 1, they happen with probabilities 1− q and q respectively. Combining all, we have

F̂p,q µ(1?01)

= qrp(1− p)µ(∗̂∗000) + (1− p)rpqµ(000?{0, ?}) + (1− p)r(1− q)qµ(000?1) + C1?01

= qrp(1− p) {µ(?000)− µ(1?000) + µ(?0000)}+ (1− p)rpq {µ(000?)− µ(000?1)}
+ (1− p)r(1− q)qµ(000?1) + C1?01

= qrp(1− p)µ(?000) + (1− p)rpqµ(000?)︸ ︷︷ ︸+qrp(1− p)µ(?0000)

−qrp(1− p)µ(1?000)− (1− p)rpqµ(000?1) + (1− p)r(1− q)qµ(000?1)︸ ︷︷ ︸+C1?01

> 2(1− p)rpqµ(000?) + (1− p)prqµ(0000?) + (1− p)rq(r − p)µ(000?1), (4.34)

where we make use of the reflection-invariance of µ, and C1?01 takes into account the
contributions from the situations not considered above.

Finally, instead of writing the entire expression of (4.6) in place of F̂p,q µ(100?), we
write

F̂p,q µ(100?) = p2r2µ(000∗̂ ∗ ∗) + C100?, (4.35)

where

C100? = qp2rµ(∗̂ ∗ ∗) + qpr2µ(1{0, ?}∗̂ ∗ ∗) + qr2(1− q + p)µ(1∗̂ ∗ ∗). (4.36)

4.5.3 Step 3 of analyzing (4.25)

As mentioned at the start of §4.5.2, we deal with the terms grouped using underbraces
in (4.27), using (4.28), (4.29), (4.31), (4.32), (4.33), (4.34), (4.35), and applying the
identities

1. µ(000∗̂ ∗ ∗) = µ(000?) + µ(0000?) + µ(00000?)− µ(000∗̂∗1)− µ(000?1),

2. µ(000∗̂∗) = µ(000?)− µ(000?1) + µ(0000?),

3. µ(000?{0, ?}) = µ(000?)− µ(000?1),

4. µ(000?{0, ?}2) = µ(000?)− µ(000?1)− µ(000?{0, ?}1),
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5. µ(000∗̂∗{0, ?}) = µ(000?) + µ(0000?)− µ(000?1)− µ(000?{0, ?}1)− µ(0000?1),

Using (4.28), (4.29), (4.31), (4.32), (4.33), (4.34) and (4.35) in the first step, and sub-
sequently applying the identities mentioned above, we find that the sum of the terms
grouped using underbraces in (4.27) can be bounded above as follows:

− 2pr{F̂p,q µ(1?) + F̂p,q µ(10?)} − 2p2r{F̂p,q µ(1??) + F̂p,q µ(1?0?) + F̂p,q µ(10??)}

− 4r F̂p,q µ(1?01)− 2p F̂p,q µ(100?)

6 − 2pr3µ(000?)− 2pqr2µ(∗̂ ∗ ∗)− 2p2r2(1− p)µ(000∗̂∗)︸ ︷︷ ︸
use (2)

−2prC10?

− 2p2r3(1− p)µ(000?{0, ?})︸ ︷︷ ︸
use (3)

− 2p3r3(1− p)µ(000?{0, ?}2)︸ ︷︷ ︸
use (4)

−2p3r3(1− p)µ(000∗̂∗{0, ?})︸ ︷︷ ︸
use (5)

−8(1− p)r2pqµ(000?)

− 4(1− p)pr2qµ(0000?)− 4(1− p)r2q(r − p)µ(000?1)− 2p3r2 µ(000∗̂ ∗ ∗)︸ ︷︷ ︸
use (1)

−2pC100?

= − 2pr3µ(000?)− 2pqr2µ(∗̂ ∗ ∗)− 2p2r2(1− p) [µ(000?)− µ(000?1) + µ(0000?)]︸ ︷︷ ︸
after applying (2)

− 2p2r3(1− p) [µ(000?)− µ(000?1)]︸ ︷︷ ︸
after applying (3)

−2p3r3(1− p) [µ(000?)− µ(000?1)− µ(000?{0, ?}1)]︸ ︷︷ ︸
after applying (4)

− 2p3r3(1− p) [µ(000?)− µ(000?1)− µ(000?{0, ?}1) + µ(0000?)− µ(0000?1)]︸ ︷︷ ︸
after applying (5)

− 8(1− p)r2pqµ(000?)− 4(1− p)pr2qµ(0000?)− 4(1− p)r2q(r − p)µ(000?1)

− 2p3r2 [µ(000?) + µ(0000?) + µ(00000?)− µ(000?1)− µ(000?{0, ?}1)− µ(0000?1)]︸ ︷︷ ︸
after applying (1)

− 2prC10? − 2pC100?

= − [2pr3 + 2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p) + 8(1− p)r2pq + 2p3r2]µ(000?)

− [2p2r2(1− p) + 2p3r3(1− p) + 4(1− p)pr2q + 2p3r2]µ(0000?)− 2p3r2µ(00000?)

+ [2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?, (4.37)

where, in the last step, we simply add all those terms that involve µ(C), for C being
any of the cylinder sets (000?), (0000?), (00000?), (000?1), (000?{0, ?}1) and (0000?1).
Incorporating the inequality (4.37), we now see that the equality in (4.27) is transformed
into an inequality as follows (it is worthwhile to note here that we encountered only
weight function equalities in the various steps of adjustments carried out earlier, and
this is the first time we encounter a weight function inequality):

w2(F̂p,q µ) 6 w2(µ)− [p(1− r) + q]µ(10?)− [2q + r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)]µ(100?)

− 2r(1− p2)µ(1??1)− r(1− p)µ(1?1)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1??0)

+ µ(1?0?) + µ(10??)]− r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)[µ(1?00) + µ(10?0)]− qµ(?)

− [p(1− r) + q][µ(0?) + µ(00?)]− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

+2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?)− 2qpr2µ(000∗̂∗) + 2pr2(1 + p+ 2q)µ(000?)︸ ︷︷ ︸
−2pr2(1 + 2q + p)µ(1?000) + 2p2r2[µ(0000?) + µ(00000?)]− 2p2r2µ(000∗̂∗1)︸ ︷︷ ︸
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−[2pr3 + 2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p) + 8(1− p)r2pq + 2p3r2]µ(000?)︸ ︷︷ ︸
−[2p2r2(1− p) + 2p3r3(1− p) + 4(1− p)pr2q + 2p3r2]µ(0000?)− 2p3r2µ(00000?)︸ ︷︷ ︸
+[2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)︸ ︷︷ ︸
+[4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)︸ ︷︷ ︸
−2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?︸ ︷︷ ︸, (4.38)

where we let B2 denote the sum of the terms of (4.38) that have been grouped using
underbraces, and we let B1 denote the remaining terms. In other words,

B1 = w2(µ)− [p(1− r) + q]µ(10?)− [2q + r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)]µ(100?)

− 2r(1−p2)µ(1??1)−r(1− p)µ(1?1)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1??0)

+ µ(1?0?) + µ(10??)]− r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)[µ(1?00) + µ(10?0)]− qµ(?)

− [p(1− r) + q][µ(0?) + µ(00?)]− pr2(1 + 2q)µ(1∗̂ ∗ ∗1), (4.39)

and

B2 = 2qp2rµ(∗̂ ∗ ∗)︸ ︷︷ ︸−pr2(1 + 2q)µ(?000?)− 2qpr2µ(000∗̂∗) +2pr2(1 + p+ 2q)µ(000?)︸ ︷︷ ︸
− 2pr2(1 + 2q + p)µ(1?000) +2p2r2µ(0000?) + 2p2r2µ(00000?)︸ ︷︷ ︸−2p2r2µ(000∗̂∗1)

− [2pr3 + 2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p) + 8(1− p)r2pq + 2p3r2]µ(000?)

− [2p2r2(1− p) + 2p3r3(1− p) + 4(1− p)pr2q + 2p3r2]µ(0000?)− 2p3r2µ(00000?)

+[2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)︸ ︷︷ ︸
+[4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)︸ ︷︷ ︸
− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?. (4.40)

It is worthwhile to note here that all of the terms, other than w2(µ), in B1 are non-positive,
whereas in B2, the possibly non-negative (we write ‘possibly’ because the coefficient
of µ(000?1) may or may not be non-negative, depending on the values of p and q) terms
have been highlighted using underbraces in (4.40). We now have to make sure that these
non-negative terms are negated using the existing non-positive terms on the right side
of (4.40), and this is what we accomplish, to some extent, in §4.5.4.

4.5.4 Step 4 of analyzing (4.25)

We dedicate §4.5.4 to the analysis of B2 in (4.40). Before we embark on this task, we
perform a couple of rather intricate algebraic simplifications that are going to be of use
while analysing B2. The first of these is as follows, and this will be used in combining
the coefficients of the various terms involving µ(000?) in the analysis of B2:

− 2qpr2 + 2pr2(1 + p+ 2q)− [2pr3 + 2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)
+ 8(1− p)r2pq + 2p3r2]

= − 2qpr2 + 2pr2 + 2p2r2 + 4pqr2 − 2pr3 − 2p2r2(1− p)− 2p2r3(1− p)− 4p3r3(1− p)
− 8(1− p)r2pq − 2p3r2

= 2pr2 − 2pr3 + 2p2r2 − 2p2r2(1− p)− 2p3r2 − 2p2r3(1− p)− 4p3r3(1− p)
− 8(1− p)r2pq + 2qpr2
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= 2pr2(1− r) +2p2r2 − 2p2r2︸ ︷︷ ︸
cancel each other

+2p3r2 − 2p3r2︸ ︷︷ ︸
cancel each other

−2p2r3(1− p)− 4p3r3(1− p)− 8pqr2

+ 8p2qr2 + 2qpr2

= 2p2r2 + 2pqr2 − 2p2r3 + 2p3r3 − 4p3r3 + 4p4r3 − 6pqr2 + 8p2qr2

= 2p2r2 − 2p2r3 − 2p3r3 + 4p4r3 − 4pqr2 + 8p2qr2

= 2p2r2(p+ q)− 2p3r3 + 4p4r3 − 4pqr2 + 8p2qr2

= 2p3r2 + 2p2qr2 − 2p3r3 + 4p4r3 − 4pqr2 + 8p2qr2

= 2p3r2 − 2p3r3 + 4p4r3 − 4pqr2 + 10p2qr2

= 2p3r2(p+ q) + 4p4r3 − 4pqr2 + 10p2qr2

= 2p4r2︸ ︷︷ ︸
(1)

+2p3r2q︸ ︷︷ ︸
(2)

+4p4r3−4pqr2 + 10p2qr2︸ ︷︷ ︸
(3)

= 2pqr2[p2 − 2 + 5p] + 6p4r2 − 4p4r2︸ ︷︷ ︸
combining (1), (2) and (3)

+4p4r3

= 2pqr2[p2 − 2 + 5p] + 6p4r2 − 4p4r2(1− r)
= 2pqr2[p2 − 2 + 5p] + 6p4r2 − 4p4r2(p+ q). (4.41)

The second algebraic simplification we detail here is as follows, and this will be utilized
in combining the coefficients of the various terms involving µ(000?1) in the analysis
of B2:

2qpr2 − 2pr2(1 + 2q + p) + [2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)
− 4(1− p)r2q(r − p) + 2p3r2]

= 2pr2[q − 1− 2q − p+ p(1− p) + pr(1− p) + 2p2r(1− p) + p2]− 4(1− p)r2q(r − p)
= − 2pr2[1 + q + p− p+ p2 − p(1− p− q)(1− p)− 2p2r(1− p)− p2]− 4(1− p)r2q(r − p)
= − 2pr2[1 + q − p(1− p)2 + pq(1− p)− 2p2r(1− p)]− 4(1− p)r2q(r − p)
= − 2pr2[1 + q − p(1− 2p+ p2) + pq(1− p)− 2p2r(1− p)]− 4(1− p)r2q(r − p)
= − 2pr2[1 + q − p+ 2p2 − p3 + pq(1− p)− 2p2r(1− p)]− 4(1− p)r2q(r − p)
= − 2pr2[1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3]− 4(1− p)r2q(r − p). (4.42)

In the analysis that follow, in many steps, we indicate using underbraces the terms that
are to be combined in the next step, and we use the following identities:

1. µ(000∗̂∗) = µ(000?)− µ(000?1) + µ(0000?),

2. µ(0000?) = µ(00000?) + µ(?0000?) + µ(10000?),

3. µ(000∗̂∗1) = µ(000?{0, ?}1) + µ(0000?1).

The simplification of B2 continues as follows:

B2 = 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?)−2qpr2µ(000∗̂∗)︸ ︷︷ ︸
use (1)

+2pr2(1 + p+ 2q)µ(000?)︸ ︷︷ ︸
term involving µ(000?)

− 2pr2(1 + 2q + p)µ(1?000) + 2p2r2µ(0000?) + 2p2r2µ(00000?)− 2p2r2µ(000∗̂∗1)

−[2pr3 + 2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p) + 8(1− p)r2pq + 2p3r2]µ(000?)︸ ︷︷ ︸
term involving µ(000?)

− [2p2r2(1− p) + 2p3r3(1− p) + 4(1− p)pr2q + 2p3r2]µ(0000?)− 2p3r2µ(00000?)

+ [2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)
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− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?)−2qpr2µ(0000?) + 2qpr2µ(000?1)︸ ︷︷ ︸
obtained from (1)

− 2pr2(1 + 2q + p)µ(1?000) + 2p2r2µ(0000?) + 2p2r2µ(00000?)− 2p2r2µ(000∗̂∗1)

+[2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)︸ ︷︷ ︸
summing terms involving µ(000?), including the one obtained from (1), and using (4.41)

− [2p2r2(1− p) + 2p3r3(1− p) + 4(1− p)pr2q + 2p3r2]µ(0000?)− 2p3r2µ(00000?)

+ [2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?) −2qpr2µ(0000?)︸ ︷︷ ︸
term involving µ(0000?)

+2qpr2µ(000?1)

− 2pr2(1 + 2q + p)µ(1?000) +2p2r2µ(0000?)︸ ︷︷ ︸
term involving µ(0000?)

+2p2r2µ(00000?)− 2p2r2µ(000∗̂∗1)

+ [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

−[2p2r2(1− p) + 2p3r3(1− p) + 4(1− p)pr2q + 2p3r2]µ(0000?)︸ ︷︷ ︸
term involving µ(0000?)

−2p3r2µ(00000?)

+ [2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?) + 2qpr2µ(000?1)− 2pr2(1 + 2q + p)µ(1?000)

+ 2p2r2µ(00000?)− 2p2r2µ(000∗̂∗1)

+ [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

−(6pqr2 − 4p2qr2)µ(0000?)− 2p3r3(1− p)µ(0000?)︸ ︷︷ ︸
summing terms involving µ(0000?)

−2p3r2µ(00000?)

+ [2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?) + 2qpr2µ(000?1)− 2pr2(1 + 2q + p)µ(1?000)

+2p2r2µ(00000?)︸ ︷︷ ︸
term involving µ(00000?)

−2p2r2µ(000∗̂∗1)

+ [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

− (6pqr2 − 4p2qr2)µ(0000?)−2p3r3(1− p)µ(0000?)︸ ︷︷ ︸
use (2)

−2p3r2µ(00000?)︸ ︷︷ ︸
term involving µ(00000?)

+ [2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?) + 2qpr2µ(000?1)− 2pr2(1 + 2q + p)µ(1?000)

− 2p2r2µ(000∗̂∗1) + [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

− (6pqr2 − 4p2qr2)µ(0000?) +2p2r2(1− p)(1− pr)µ(00000?)︸ ︷︷ ︸
summing terms involving µ(00000?), including that obtained from (2)
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−2p3r3(1− p){µ(10000?) + µ(?0000?)}︸ ︷︷ ︸
remaining terms obtained by applying (2)

+ [2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?) +2qpr2µ(000?1)− 2pr2(1 + 2q + p)µ(1?000)︸ ︷︷ ︸
terms involving µ(000?1)

− 2p2r2µ(000∗̂∗1) + [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

− (6pqr2 − 4p2qr2)µ(0000?) + 2p2r2(1− p)(1− pr)µ(00000?)

− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
+[2p2r2(1− p) + 2p2r3(1− p) + 4p3r3(1− p)− 4(1− p)r2q(r − p) + 2p3r2]µ(000?1)︸ ︷︷ ︸

term involving µ(000?1)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?)− 2p2r2 µ(000∗̂∗1)︸ ︷︷ ︸
split by (3)

+[2pqr2{5p− 2 + p2}+ 6p4r2

− 4p4r2(p+ q)]µ(000?)− (6pqr2 − 4p2qr2)µ(0000?) + 2p2r2(1− p)(1− pr)µ(00000?)

− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
−2pr2{1+q−p+2p2−2p2r(1−p)+pq(1− p)−p3}µ(000?1)−4(1−p)r2q(r−p)µ(000?1)︸ ︷︷ ︸

summing terms involving µ(000?1) and using (4.42)

+ [4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?)−2p2r2µ(000?{0, ?}1)− 2p2r2µ(0000?1)︸ ︷︷ ︸
to be added to underbraced terms below

+ [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

− (6pqr2 − 4p2qr2)µ(0000?) + 2p2r2(1− p)(1− pr)µ(00000?)

− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)

+[4p3r3(1− p) + 2p3r2]µ(000?{0, ?}1) + [2p3r3(1− p) + 2p3r2]µ(0000?1)︸ ︷︷ ︸
to be added to underbraced terms above

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?

= 2qp2rµ(∗̂ ∗ ∗)− pr2(1 + 2q)µ(?000?)

+ [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

− (6pqr2 − 4p2qr2)µ(0000?) + 2p2r2(1− p)(1− pr)µ(00000?)

− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)

−2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)− 2p2r2(1− p)(1− pr)µ(0000?1)︸ ︷︷ ︸
summing terms highlighted by underbraces in the previous step

− 2pqr2µ(∗̂ ∗ ∗)− 2prC10? − 2pC100?. (4.43)
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We now pause for a bit to write down explicitly −2prC10? − 2pC100?, where we borrow
the mathematical expressions for C10? and C100? from (4.30) and (4.36) derived in §4.5.2:

−2prC10? − 2pC100? = − 2qp2r2µ(1{0, ?}∗̂ ∗ ∗)− 2pq(1− q)r2µ(1∗̂ ∗ ∗)− 2qp3rµ(∗̂ ∗ ∗)
− 2qp2r2µ(1{0, ?}∗̂ ∗ ∗)− 2pqr2(1− q + p)µ(1∗̂ ∗ ∗)

= − 4qp2r2µ(1{0, ?}∗̂ ∗ ∗)−2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)−2qp3rµ(∗̂ ∗ ∗).
(4.44)

Substituting (4.44) in (4.43), we obtain:

B2 = 2qp2rµ(∗̂ ∗ ∗)︸ ︷︷ ︸
term involving µ(̂∗∗∗)

−pr2(1 + 2q)µ(?000?) + [2pqr2{5p− 2 + p2}+ 6p4r2

− 4p4r2(p+ q)]µ(000?)− (6pqr2 − 4p2qr2)µ(0000?) + 2p2r2(1− p)(1− pr)µ(00000?)

− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1) −2pqr2µ(∗̂ ∗ ∗)︸ ︷︷ ︸
term involving µ(̂∗∗∗)

− 4qp2r2µ(1{0, ?}∗̂ ∗ ∗)− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗) −2qp3rµ(∗̂ ∗ ∗)︸ ︷︷ ︸
term involving µ(̂∗∗∗)

= 2pqr(p− r − p2)µ(∗̂ ∗ ∗)︸ ︷︷ ︸
adding terms involving µ(̂∗∗∗)

−pr2(1 + 2q)µ(?000?)

+ [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)− (6pqr2 − 4p2qr2)µ(0000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)

− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)− 2p2r2(1− p)(1− pr)µ(0000?1)

− 4qp2r2 µ(1{0, ?}∗̂ ∗ ∗)︸ ︷︷ ︸
split into µ(1000?) and the rest

−2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)

= 2pqr(p− r − p2)µ(∗̂ ∗ ∗)−pr2(1 + 2q)µ(?000?)︸ ︷︷ ︸
+ [2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)−(6pqr2 − 4p2qr2)µ(0000?)︸ ︷︷ ︸
+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)−4qp2r2µ(1000?)︸ ︷︷ ︸
− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗). (4.45)

We show here how we combine the terms highlighted by underbraces in the last step of
(4.45):

− pr2(1 + 2q)µ(?000?)− (6pqr2 − 4p2qr2)µ(0000?)− 4qp2r2µ(1000?)

= −2p2qr2µ(?000?)−pr2{1 + 2q(1− p)}µ(?000?)︸ ︷︷ ︸
splitting the term involving µ(?000?)

−2p2qr2µ(0000?)− 6pqr2(1− p)µ(0000?)︸ ︷︷ ︸
splitting the term involving µ(0000?)

− 4p2qr2µ(1000?)
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= −2p2qr2µ(?000?)− 2p2qr2µ(0000?)− 2p2qr2µ(1000?)︸ ︷︷ ︸−pr2{1 + 2q(1− p)}µ(?000?)

− 6pqr2(1− p)µ(0000?)− 2p2qr2µ(1000?)

= − 2p2qr2µ(000?)− pr2{1 + 2q(1− p)}µ(?000?)−6pqr2(1− p)µ(0000?)−2p2qr2µ(1000?).

(4.46)

Substituting (4.46) in (4.45) yields (we have highlighted the terms that have come from
(4.46) using underbraces in the very first step of the computation below):

B2 = 2pqr(p− r − p2)µ(∗̂ ∗ ∗)−2p2qr2µ(000?)− pr2{1 + 2q(1− p)}µ(?000?)︸ ︷︷ ︸
−6pqr2(1− p)µ(0000?)︸ ︷︷ ︸+[2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)−2p2qr2µ(1000?)︸ ︷︷ ︸
− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)

= 2pqr(p− r − p2)µ(∗̂ ∗ ∗)−2p2qr2µ(000?)︸ ︷︷ ︸−pr2{1 + 2q(1− p)}µ(?000?)

− 6pqr2(1− p)µ(0000?) +[2pqr2{5p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)︸ ︷︷ ︸
+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)− 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)
= 2pqr(p− r − p2)µ(∗̂ ∗ ∗)− pr2{1 + 2q(1− p)}µ(?000?)− 6pqr2(1− p)µ(0000?)

+[2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)︸ ︷︷ ︸
summing terms involving µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)− 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗). (4.47)

The above, i.e. the last step of (4.47), serves as our final, simplified expression for B2.
From (4.38), (4.39) and (4.47), we see that our weight function inequality has now
transformed into:

w2(F̂p,q µ) 6 w2(µ)− [p(1− r) + q]µ(10?)− [2q + r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)]µ(100?)

− 2r(1− p2)µ(1??1)− r(1− p)µ(1?1)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1??0)

+ µ(1?0?) + µ(10??)]− r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)[µ(1?00) + µ(10?0)]− qµ(?)

− [p(1− r) + q][µ(0?) + µ(00?)]− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

+2pqr(p− r − p2)µ(∗̂ ∗ ∗)︸ ︷︷ ︸−pr2{1 + 2q(1− p)}µ(?000?)− 6pqr2(1− p)µ(0000?)

+[2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)︸ ︷︷ ︸
+2p2r2(1− p)(1− pr)µ(00000?)︸ ︷︷ ︸−2p3r3(1− p){µ(10000?) + µ(?0000?)}
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− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)− 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗). (4.48)

The underbraces in the right side of (4.48) are intended to highlight the (possibly,
depending on the values of p and q) non-negative terms that still remain. It is worthwhile
to note, comparing (4.48) with (4.40), that we have already taken care of the (previously
non-negative) terms involving µ(0000?), µ(000?1), µ(000?{0, ?}1) and µ(0000?1), via the
long and tedious algebraic manipulations that ultimately lead to (4.47).

4.6 The fourth step of composing the weight function

The third adjustment is carried out as follows:

w3(µ) = w2(µ)− 2(q + p2r)µ(100?)− 2p2r{µ(1?00) + µ(10?0)} − qµ(?). (4.49)

Writing (4.48) as w2(F̂p,q µ) 6 w2(µ) + A2, implementing the adjustment described in
(4.49), and using the idea presented in (4.16), we obtain the weight function inequality

w3(F̂p,q µ) 6 w3(µ) + 2(q + p2r)µ(100?) + 2p2r{µ(1?00) + µ(10?0)}+ qµ(?)

− 2(q + p2r) F̂p,q µ(100?)− 2p2r{F̂p,q µ(1?00) + F̂p,q µ(10?0)}

− q F̂p,q µ(?) +A2. (4.50)

As noted using underbraces in (4.48), we have to somehow negate the non-negative
terms involving µ(000?), µ(00000?) and µ(∗̂ ∗ ∗) using existing non-positive terms on the
right side of (4.48).

1. As seen from (4.52), one of the terms in the expansion of F̂p,q µ(1?00) involves
µ(000?);

2. as seen from (4.53), one of the terms in the expansion of F̂p,q µ(10?0) involves
µ(000∗̂∗), which can be written as µ(000?) + µ(0000?)− µ(000?1);

3. and finally, one of the terms in the expansion of F̂p,q µ(100?), as seen in (4.6),
involves µ(000∗̂ ∗ ∗), which can be written as µ(000∗̂ ∗ ∗) = µ(000?) + µ(0000?) +

µ(00000?)− µ(000?1)− µ(000∗̂∗1).

Therefore, from (4.50), it can be hoped that −2(q+ p2r) F̂p,q µ(100?)− 2p2r{F̂p,q µ(1?00) +

F̂p,q µ(10?0)} will aid in negating the non-negative terms involving µ(000?) and µ(0000?)

highlighted in (4.48) using underbraces. From (4.4), we see that F̂p,q µ(?) = rµ(∗̂ ∗ ∗), so

that −q F̂p,q µ(?) may aid in negating the non-negative term involving µ(∗̂ ∗ ∗) highlighted
in (4.48) using underbraces.

At the same time, we have to make sure that we can afford to introduce the non-
negative terms 2(q + p2r)µ(100?) + 2p2r{µ(1?00) + µ(10?0)} + qµ(?) in (4.50) without
turning any of the existing non-positive terms in the right side of (4.48) non-negative:

1. the term −[2q + r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)]µ(100?) in the right side of (4.48)
provides us with −2(q + p2r)µ(100?),

2. whereas the term −r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)[µ(1?00) + µ(10?0)] in the right
side of (4.48) supplies us with −2p2r{µ(1?00) + µ(10?0)};

3. finally, the existing −qµ(?) term in the right side of (4.48) cancels out the +qµ(?)

term.

We hope that the above two paragraphs serve to motivate the choice of our adjustment
described in (4.49).

EJP 28 (2023), paper 143.
Page 39/60

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1046
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


3-Neighborhood PCA and percolation games

4.6.1 Step 1 of analyzing the effect of the adjustment in (4.49)

Incorporating (4.49) into (4.48), as illustrated in (4.50), we obtain (in any given step, we
highlight, using underbraces, terms that are to be combined / manipulated algebraically
to obtain the next step):

w3(F̂p,q µ) 6 w3(µ) + 2(q + p2r)µ(100?) + 2p2r{µ(1?00) + µ(10?0)}+ qµ(?)

− [p(1− r) + q]µ(10?)− [2q + r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)]µ(100?)

− 2r(1− p2)µ(1??1)

− r(1− p)µ(1?1)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1??0) + µ(1?0?) + µ(10??)]

− r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)[µ(1?00) + µ(10?0)]− qµ(?)

− [p(1− r) + q][µ(0?) + µ(00?)]− pr2(1 + 2q)µ(1∗̂ ∗ ∗1) + 2pqr(p− r − p2)µ(∗̂ ∗ ∗)
− pr2{1 + 2q(1− p)}µ(?000?)− 6pqr2(1− p)µ(0000?)

+ [2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)− 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)

− 2(q + p2r) F̂p,q µ(100?)− 2p2r{F̂p,q µ(1?00) + F̂p,q µ(10?0)} − q F̂p,q µ(?)

= w3(µ)− [p(1− r) + q]µ(10?) +2(q + p2r)µ(100?) + 2p2r{µ(1?00) + µ(10?0)}+ qµ(?)︸ ︷︷ ︸
−[2q + r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)]µ(100?)︸ ︷︷ ︸−2r(1− p2)µ(1??1)− r(1− p)µ(1?1)

−r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1??0) + µ(1?0?) + µ(10??)]︸ ︷︷ ︸
−r(4q2 + 4qp2 − 2q3 + 2p2 + 2q2p)[µ(1?00) + µ(10?0)]− qµ(?)︸ ︷︷ ︸
− [p(1− r) + q][µ(0?) + µ(00?)]− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

+ 2pqr(p− r − p2)µ(∗̂ ∗ ∗)− pr2{1 + 2q(1− p)}µ(?000?)− 6pqr2(1− p)µ(0000?)

+ [2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)− 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)

− 2(q + p2r) F̂p,q µ(100?)− 2p2r{F̂p,q µ(1?00) + F̂p,q µ(10?0)} − q F̂p,q µ(?)

= w3(µ)− [p(1− r) + q]µ(10?) −r(4q2 + 4qp2 − 2q3 + 2q2p)µ(1∗̂ ∗ ∗)︸ ︷︷ ︸
combining all terms indicated by underbraces above

−2r(1− p2)µ(1??1)

− r(1− p)µ(1?1)− [p(1− r) + q][µ(0?) + µ(00?)]− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

+ 2pqr(p− r − p2)µ(∗̂ ∗ ∗)− pr2{1 + 2q(1− p)}µ(?000?)− 6pqr2(1− p)µ(0000?)

+ [2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)
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− 2p2r2(1− p)(1− pr)µ(0000?1)− 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]

− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)−2(q + p2r) F̂p,q µ(100?)︸ ︷︷ ︸
−2p2r{F̂p,q µ(1?00) + F̂p,q µ(10?0)} − q F̂p,q µ(?)︸ ︷︷ ︸ . (4.51)

4.6.2 Step 2 of analyzing the effect of the adjustment in (4.49)

Our next task is to compute the sum of the last three terms, highlighted by underbraces,
in the last step of (4.51). To this end, we need to compute F̂p,q µ(1?00) and F̂p,q µ(10?0).
As was the case for the computations carried out in §4.5.2, we are only concerned
with parts of the expressions for these probabilities. While computing F̂p,q µ(1?00),
we consider only those cases in which η(0) = η(1) = η(2) = 0 leads to the event that
(F̂p,q η(0), F̂p,q η(1), F̂p,q η(2), F̂p,q η(3)) = (1?00). Likewise, while computing F̂p,q µ(10?0),
we consider only those cases in which η(0) = η(1) = η(2) = 0 leads to the event that
(F̂p,q η(0), F̂p,q η(1), F̂p,q η(2), F̂p,q η(3)) = (10?0). These considerations lead to

• F̂p,q µ(1?00) = (1− p)rp2µ(000?) + (1− p)r2pµ(000?{0, ?}1)

+ (1− p)r2(1 + p− q)µ(000?1) + C1?00

> (1− p)rp2µ(000?) + (1− p)r2pµ(000?{0, ?}1) + (1− p)r2(1 + p− q)µ(000?1); (4.52)

• F̂p,q µ(10?0) = (1− p)p2rµ(000∗̂∗) + (1− p)pr2µ(000∗̂∗1) + C10?0 > (1− p)p2rµ(000∗̂∗)
+ (1− p)pr2µ(000∗̂∗1); (4.53)

where C1?00 and C10?0 are the respective contributions from the cases where
(η(0), η(1), η(2)) ∈ Â3 \ {(0, 0, 0)}. Finally, we rewrite (4.6) as

F̂p,q µ(100?) = (1− p)p2rµ(000∗̂ ∗ ∗) +D100? > (1− p)p2rµ(000∗̂ ∗ ∗), (4.54)

where D100? = qp2rµ(∗̂ ∗ ∗∗̂ ∗ ∗) + qp2rµ(1{0, ?}2∗̂ ∗ ∗) + q(1 − q)prµ(1{0, ?}∗̂ ∗ ∗) + q(1 −
q)2rµ(1∗̂ ∗ ∗).

Using (4.4), (4.54), (4.52) and (4.53), and applying the identities

1. µ(000∗̂ ∗ ∗) = µ(000?)+µ(0000?)+µ(00000?)−µ(000?1)−µ(000?{0, ?}1)−µ(0000?1),

2. µ(000∗̂∗) = µ(000?)− µ(000?1) + µ(0000?),

3. µ(000∗̂∗1) = µ(000?{0, ?}1) + µ(0000?1),

the sum of the last three terms, highlighted by underbraces, in (4.51) simplifies to

− 2(q + p2r) F̂p,q µ(100?)− 2p2r{F̂p,q µ(1?00) + F̂p,q µ(10?0)} − q F̂p,q µ(?)

6 − 2(q + p2r)(1− p)p2r µ(000∗̂ ∗ ∗)︸ ︷︷ ︸
use (1)

−2p2r{(1− p)rp2µ(000?) + (1− p)r2pµ(000?{0, ?}1)

+ (1− p)r2(1 + p− q)µ(000?1)} − 2p2r{(1− p)p2r µ(000∗̂∗)︸ ︷︷ ︸
use (2)

+(1− p)pr2 µ(000∗̂∗1)︸ ︷︷ ︸
use (3)

}

− qrµ(∗̂ ∗ ∗)
= − 2(q + p2r)(1− p)p2r

[µ(000?) + µ(0000?) + µ(00000?)− µ(000?1)− µ(000?{0, ?}1)− µ(0000?1)]︸ ︷︷ ︸
after applying (1)

− 2p4r2(1− p)µ(000?)− 2p3r3(1− p)µ(000?{0, ?}1)− 2p2r3(1− p)(1 + p− q)µ(000?1)

− 2p4r2(1− p)[µ(000?)− µ(000?1) + µ(0000?)]︸ ︷︷ ︸
after applying (2)
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− 2p3r3(1− p)[µ(000?{0, ?}1) + µ(0000?1)︸ ︷︷ ︸
after applying (3)

]− qrµ(∗̂ ∗ ∗)

= −
[[[
2(q + p2r)(1− p)p2r + 2p4r2(1− p) + 2p4r2(1− p)

]]]
µ(000?)

−
[[[
2(q + p2r)(1− p)p2r + 2p4r2(1− p)

]]]
µ(0000?)− 2(q + p2r)(1− p)p2rµ(00000?)

+
[[[
2(q + p2r)(1− p)p2r − 2p2r3(1− p)(1 + p− q) + 2p4r2(1− p)

]]]
µ(000?1)

+
[[[
2(q + p2r)(1− p)p2r − 2p3r3(1− p)− 2p3r3(1− p)

]]]
µ(000?{0, ?}1)

+
[[[
2(q + p2r)(1− p)p2r − 2p3r3(1− p)

]]]
µ(0000?1)− qrµ(∗̂ ∗ ∗)

(adding all terms involving µ(C) for C any of (000?), (0000?), (00000?), (000?1),

(000?{0, ?}1), (0000?1))

= − [2qp2r(1− p− q + q) + 6p4r2(1− p)]µ(000?)− [2qp2r(1− p) + 4p4r2(1− p)]µ(0000?)

− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?) + [2qp2r(1− p) + 4p4r2(1− p)
− 2p2r3(1− p)(1 + p− q)]µ(000?1) + [2qp2r(1− p) + 2p4r2(1− p)
− 4p3r3(1− p)]µ(000?{0, ?}1)

+ [2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)]µ(0000?1)− qrµ(∗̂ ∗ ∗)
= − [2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)− [2qp2r(1− p) + 4p4r2(1− p)]µ(0000?)

− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?) + [2qp2r(1− p) + 4p4r2(1− p)
− 2p2r3(1− p)(1 + p− q)]µ(000?1) + [2qp2r(1− p) + 2p4r2(1− p)
− 4p3r3(1− p)]µ(000?{0, ?}1)

+ [2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)]µ(0000?1)− qrµ(∗̂ ∗ ∗). (4.55)

4.6.3 Step 3 of analyzing the effect of the adjustment in (4.49)

We begin with the following observation:

2p(p− r − p2) = 2p{p− (1− p− q)− p2} = 2p{2p− 1 + q − p2}
= 2p{q − (1− p)2} 6 2p{(1− p)− (1− p)2} (by (1.1));

6 2p2(1− p) 6 2p(1− p) 6 1

2
< 1 for all p ∈ [0, 1]. (4.56)

This leads to the conclusion that

2pqr(p− r − p2) 6 qr for all (p, q) ∈ S, with S as defined in (1.1). (4.57)

Incorporating (4.55) into (4.51), and writing µ(1∗̂ ∗ ∗) as the sum of its components,
i.e. µ(1???), . . . , µ(100?), yields (once again, in each step of the computation below, we
highlight using underbraces the terms that are to be manipulated to obtain the next
step):

w3(F̂p,q µ) 6 w3(µ)− [p(1− r) + q]µ(10?)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???)

+ µ(1?0?) + µ(10??) + µ(100?)]− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1?00) + µ(10?0)

+ µ(1??0)]− 2r(1− p2)µ(1??1)− r(1− p)µ(1?1)− [p(1− r) + q][µ(0?) + µ(00?)]

− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)+2pqr(p− r − p2)µ(∗̂ ∗ ∗)︸ ︷︷ ︸−pr2{1 + 2q(1− p)}µ(?000?)

− 6pqr2(1− p)µ(0000?) + [2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}

− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)− 2p2qr2µ(1000?)
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− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)

− [2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)− [2qp2r(1− p) + 4p4r2(1− p)]µ(0000?)

− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?) + [2qp2r(1− p) + 4p4r2(1− p)

− 2p2r3(1− p)(1 + p− q)]µ(000?1) + [2qp2r(1− p) + 2p4r2(1− p)

− 4p3r3(1− p)]µ(000?{0, ?}1)

+ [2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)]µ(0000?1)−qrµ(∗̂ ∗ ∗)︸ ︷︷ ︸
= w3(µ)− [p(1− r) + q]µ(10?)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1?0?)

+ µ(10??) + µ(100?)]− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1?00) + µ(10?0) + µ(1??0)]

− 2r(1− p2)µ(1??1)− r(1− p)µ(1?1)− [p(1− r) + q][µ(0?) + µ(00?)]

− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)−qr[1− 2p(p− r − p2)]µ(∗̂ ∗ ∗)︸ ︷︷ ︸
non-positive by (4.57)

−pr2{1 + 2q(1− p)}µ(?000?)

− 6pqr2(1− p)µ(0000?) + [2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p3r3(1− p){µ(10000?) + µ(?0000?)}

− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

− 2p2r2(1− p)(1− pr)µ(0000?1)− 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)

− [2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)− [2qp2r(1− p) + 4p4r2(1− p)]µ(0000?)

− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?) + [2qp2r(1− p) + 4p4r2(1− p)

− 2p2r3(1− p)(1 + p− q)]µ(000?1)

+ [2qp2r(1− p) + 2p4r2(1− p)− 4p3r3(1− p)]µ(000?{0, ?}1)

+ [2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)]µ(0000?1)

= w3(µ)− [p(1− r) + q]µ(10?)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1?0?)

+ µ(10??) + µ(100?)]−r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1?00) + µ(10?0) + µ(1??0)]︸ ︷︷ ︸
− 2r(1− p2)µ(1??1)− r(1− p)µ(1?1)−[p(1− r) + q][µ(0?) + µ(00?)]︸ ︷︷ ︸
− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)− qr[1− 2p(p− r − p2)]µ(∗̂ ∗ ∗)− pr2{1 + 2q(1− p)}µ(?000?)

− 6pqr2(1− p)µ(0000?)+[2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)︸ ︷︷ ︸
+2p2r2(1− p)(1− pr)µ(00000?)︸ ︷︷ ︸−2p3r3(1− p){µ(10000?) + µ(?0000?)}

−2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)− 4(1− p)r2q(r − p)µ(000?1)︸ ︷︷ ︸
−2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)− 2p2r2(1− p)(1− pr)µ(0000?1)︸ ︷︷ ︸−2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)

−[2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)− [2qp2r(1− p) + 4p4r2(1− p)]µ(0000?)︸ ︷︷ ︸
−[2qp2r(1− p) + 2p4r2(1− p)]µ(00000?) + [2qp2r(1− p) + 4p4r2(1− p)︸ ︷︷ ︸
−2p2r3(1− p)(1 + p− q)]µ(000?1) + [2qp2r(1− p) + 2p4r2(1− p)− 4p3r3(1− p)]µ(000?{0, ?}1)︸ ︷︷ ︸
+[2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)]µ(0000?1)︸ ︷︷ ︸ . (4.58)

We collect all the terms that have been highlighted in the last step of (4.58) using
underbraces, and denote their sum by C2, whereas the sum of the remaning terms is
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denoted C1. In other words,

C1 = w3(µ)− [p(1− r) + q]µ(10?)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1?0?)

+ µ(10??) + µ(100?)]− 2r(1− p2)µ(1??1)− r(1− p)µ(1?1)− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

− qr[1−2p(p−r−p2)]µ(∗̂ ∗ ∗)− pr2{1 + 2q(1− p)}µ(?000?)− 6pqr2(1− p)µ(0000?)

− 2p3r3(1− p){µ(10000?) + µ(?0000?)} − 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗), (4.59)

and

C2 = − r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1?00) + µ(10?0) + µ(1??0)]

− [p(1− r) + q][µ(0?) + µ(00?)] + [2pqr2{4p− 2 + p2}
+ 6p4r2 − 4p4r2(p+ q)]µ(000?) + 2p2r2(1− p)(1− pr)µ(00000?)

− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)

− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)− 2p2r2(1− p)(1− pr)µ(0000?1)

− [2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)− [2qp2r(1− p) + 4p4r2(1− p)]µ(0000?)

− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?) + [2qp2r(1− p) + 4p4r2(1− p)
− 2p2r3(1− p)(1 + p− q)]µ(000?1) + [2qp2r(1− p) + 2p4r2(1− p)− 4p3r3(1− p)]
µ(000?{0, ?}1) + [2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)]µ(0000?1). (4.60)

It is worthwhile to note that all terms in C1, apart from w3(µ), are non-positive.
Our task, now, is to see if we can turn each of the non-negative terms in C2 non-

positive by making use of the existing non-positive terms in (4.60). In the long compu-
tation that follows, the terms that are being dealt with in each step will be highlighted
using underbraces. First, we note that, in

C2 = − r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1?00) + µ(10?0) + µ(1??0)]

− [p(1− r) + q][µ(0?) + µ(00?)]

+ [2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)
− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)
− 4(1− p)r2q(r − p)µ(000?1)− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)
− 2p2r2(1− p)(1− pr)µ(0000?1)
− [2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)− [2qp2r(1− p) + 4p4r2(1− p)]µ(0000?)
− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?) + [2qp2r(1− p) + 4p4r2(1− p)
− 2p2r3(1− p)(1 + p− q)]µ(000?1) + [2qp2r(1− p) + 2p4r2(1− p)
− 4p3r3(1− p)]µ(000?{0, ?}1) + [2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)]µ(0000?1)

= −r(4q2 + 4qp2 − 2q3 + 2q2p)µ(1?00)− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)︸ ︷︷ ︸
A1

−4(1− p)r2q(r − p)µ(000?1) + [2qp2r(1− p) + 4p4r2(1− p)− 2p2r3(1− p)(1 + p− q)]µ(000?1)︸ ︷︷ ︸
A1

−r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(10?0) + µ(1??0)]− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)︸ ︷︷ ︸
A2

+[2qp2r(1− p) + 2p4r2(1− p)− 4p3r3(1− p)]µ(000?{0, ?}1)︸ ︷︷ ︸
A2

−[2qp2r(1− p) + 4p4r2(1− p)]µ(0000?)︸ ︷︷ ︸
A3

+[2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)]µ(0000?1)− 2p2r2(1− p)(1− pr)µ(0000?1)︸ ︷︷ ︸
A3

EJP 28 (2023), paper 143.
Page 44/60

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1046
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


3-Neighborhood PCA and percolation games

− [p(1− r) + q][µ(0?) + µ(00?)] + [2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)

+ 2p2r2(1− p)(1− pr)µ(00000?)− [2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)
− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?). (4.61)

In what follows, we let Ai, for i ∈ {1, 2, 3}, denote the sum of the terms that have been
highlighted in (4.61) using underbraces tagged Ai, and we simplify each Ai separately
before incorporating these simplified expressions back into (4.61).

First, we simplify A1, using the simple inequality µ(1?00) 6 µ(1?000), as follows:

A1 = −r(4q2 + 4qp2 − 2q3 + 2q2p)µ(1?00)︸ ︷︷ ︸
split into two parts as shown below

− 2pr2{1 + q − p+ 2p2 − 2p2r(1− p) + pq(1− p)− p3}µ(000?1)

+ {2qp2r(1− p) + 4p4r2(1− p)− 2p2r3(1− p)(1 + p− q)}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)

= −r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p)µ(1?00)− 2qp2r(1− p)µ(1?00)︸ ︷︷ ︸
after splitting into two parts

− 2pr2{1 + q − p+ 2p2 − 2p2(1− p− q)(1− p) + pq(1− p)− p3}µ(000?1)

+ {2qp2r(1− p) + 4p4r2(1− p)− 2p2r3(1− p)(1 + p− q)}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)

6 − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p)µ(1?00)−2qp2r(1− p)µ(1?000)︸ ︷︷ ︸
cancel out

− 2pr2{1 + q − p+ 2p2 − 2p2(1− p)2 + 2p2q(1− p) + pq(1− p)− p3}µ(000?1)

+2qp2r(1− p)µ(000?1)︸ ︷︷ ︸
cancel out

+ {4p4r2(1− p)− 2p2r3(1− p)(1 + p− q)}µ(000?1)− 4(1− p)r2q(r − p)µ(000?1)

= − r(4q2+2qp2(1 + p)−2q3 + 2q2p)µ(1?00)− 2pr2{1 + q − p+ 2p2 − 2p2 + 4p3 − 2p4

+ 2p2q(1− p) + pq(1− p)− p3}µ(000?1) + {4p4r2(1− p)
− 2p2r3(1− p)(1 + p− q)}µ(000?1)− 4(1− p)r2q(r − p)µ(000?1)

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p)µ(1?00)

− 2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)}µ(000?1)

− 2pr2(2p3 − 2p4)µ(000?1) + {4p4r2(1− p)− 2p2r3(1− p)(1 + p− q)}µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p)µ(1?00)

− 2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)}µ(000?1)

− 4p4r2(1− p)µ(000?1) + 4p4r2(1− p)µ(000?1)− 2p2r3(1− p)(1 + p− q)µ(000?1)

− 4(1− p)r2q(r − p)µ(000?1)

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p)µ(1?00)

− 2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)}µ(000?1)

− 2p2r3(1− p)(1 + p− q)µ(000?1)− 4(1− p)r2q(r − p)µ(000?1). (4.62)

Lemma 4.2. The coefficient of µ(000?1) in (4.62) is bounded above by −2p2r3(1− p)(1 +

p− q) for all values of (p, q) ∈ S, where S is as defined in (1.1).

Proof. As long as r− p > 0, i.e. 2p+ q 6 1, the coefficient of µ(000?1) in (4.62) is the sum
of three non-positive quantities, namely −2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)},
−2p2r3(1 − p)(1 + p − q) and −4(1 − p)r2q(r − p), and hence it is obviously bounded
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above by the second of these non-positive quantities. When r − p < 0, the quantity
−4(1− p)r2q(r − p) is actually non-negative, and we negate it by observing that

− 2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)}+ 4(1− p)r2q(p− r)
= −2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)}+ 4(1− p)r2qp− 4(1− p)r3q

6 −2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)}+ 4(1− p)r2qp

= −2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)− 2q(1− p)}
= −2pr2{1 + q − p+ p3 + 2p2q(1− p) + pq(1− p)− 2q + 2pq}
= −2pr2{r + p3 + 2p2q(1− p) + pq(1− p) + 2pq},

which is non-positive. This again leads to the conclusion that the combined coefficient of
µ(000?1) in (4.62) is bounded above by −2p2r3(1− p)(1 + p− q).

Next, using the simple inequalities µ(000??1) 6 µ(1??0) and µ(000?01) 6 µ(10?0), we
simplify A2 (recall A2 from (4.61)) as follows:

A2 = − r(4q2 + 4qp2 − 2q3 + 2q2p){µ(1??0) + µ(10?0)}
− 2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)

+ {2qp2r(1− p) + 2p4r2(1− p)− 4p3r3(1− p)}µ(000?{0, ?}1)

6 −r{4q2 + 4qp2 − 2q3 + 2q2p}{µ(1??0) + µ(10?0)}︸ ︷︷ ︸
(1)

−2p2r2(1− p)(1− 2pr)µ(000?{0, ?}1)︸ ︷︷ ︸
(2)

+2qp2r(1− p){µ(1??0) + µ(10?0)}︸ ︷︷ ︸
combine with (1)

+2p4r2(1− p)µ(000?{0, ?}1)− 4p3r3(1− p)µ(000?{0, ?}1)︸ ︷︷ ︸
combine with (2)

= −r{4q2 + 4qp2 − 2q3 + 2q2p− 2qp2(1− p)}{µ(1??0) + µ(10?0)}︸ ︷︷ ︸
(1) after combination

−2p2r2(1− p)[1− 2pr − p2 + 2pr]µ(000?{0, ?}1)︸ ︷︷ ︸
(2) after combination

= − r{4q2 + 2qp2(1 + p)− 2q3 + 2q2p}{µ(1??0) + µ(10?0)}
− 2p2r2(1− p)(1− p2)µ(000?{0, ?}1). (4.63)

Finally, using the simple inequality µ(0000?1) 6 µ(0000?), we simplify A3 (recall A3

from (4.61)) as follows:

A3 = − {2qp2r(1− p) + 4p4r2(1− p)}µ(0000?)− 2p2r2(1− p)(1− pr)µ(0000?1)

+ {2qp2r(1− p) + 2p4r2(1− p)− 2p3r3(1− p)}µ(0000?1)

= − 2qp2r(1− p)µ(0000?) + 2qp2r(1− p)µ(0000?1)− 4p4r2(1− p)µ(0000?)

− [2p2r2(1− p)(1− pr)− 2p4r2(1− p) + 2p3r3(1− p)]µ(0000?1)

6 − 2p2r2(1− p)[1− pr − p2 + pr]µ(0000?1)− 4p4r2(1− p)µ(0000?)

= − 2p2r2(1− p)(1− p2)µ(0000?1)− 4p4r2(1− p)µ(0000?). (4.64)

Incorporating the expressions obtained from (4.62) (in conjunction with the bound
obtained from Lemma 4.2), (4.63) and (4.64) into (4.61) yields (again, in each step, we
highlight using underbraces the terms to be combined to obtain the next step):

C2 6 −r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p)µ(1?00)− 2p2r3(1− p)(1 + p− q)µ(000?1)︸ ︷︷ ︸
substituting from Lemma 4.2 and (4.62)
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−r(4q2+2qp2(1 + p)−2q3+2q2p)[µ(10?0) + µ(1??0)]− 2p2r2(1− p)(1− p2)µ(000?{0, ?}1)︸ ︷︷ ︸
substituting from (4.63)

−2p2r2(1− p)(1− p2)µ(0000?1)− 4p4r2(1− p)µ(0000?)︸ ︷︷ ︸
substituting from (4.64)

−[p(1− r) + q][µ(0?) + µ(00?)]

+ [2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?) + 2p2r2(1− p)(1− pr)µ(00000?)

− [2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?)

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0) + µ(1??0)}

− [p(1− r) + q][µ(0?) + µ(00?)]+[2pqr2{4p− 2 + p2}+ 6p4r2 − 4p4r2(p+ q)]µ(000?)︸ ︷︷ ︸
+ 2p2r2(1− p)(1− pr)µ(00000?)− 2p2r3(1− p)(1 + p− q)µ(000?1)

− 2p2r2(1− p)(1− p2)µ(000?{0, ?}1)− 2p2r2(1− p)(1− p2)µ(0000?1)

−[2qp2r2 + 2q2p2r + 6p4r2(1− p)]µ(000?)︸ ︷︷ ︸−4p4r2(1− p)µ(0000?)

− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?)

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0) + µ(1??0)}

−[p(1− r) + q][µ(0?) + µ(00?)]︸ ︷︷ ︸+[2pqr2{3p− 2 + p2} − 2q2p2r+2p5r2︸ ︷︷ ︸−4p4qr2]µ(000?)

+2p2r2(1− p)(1− pr)µ(00000?)︸ ︷︷ ︸−2p2r3(1− p)(1 + p− q)µ(000?1)

− 2p2r2(1− p)(1− p2)µ(000?{0, ?}1)− 2p2r2(1− p)(1− p2)µ(0000?1)

−4p4r2(1− p)µ(0000?)− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?)︸ ︷︷ ︸ . (4.65)

We combine the terms highlighted by underbrace in the last step of (4.65) as follows:

2p2r2(1− p)(1− pr)µ(00000?)− [2qp2r(1− p) + 2p4r2(1− p)]µ(00000?) + 2p5r2µ(000?)

− 4p4r2(1− p)µ(0000?)− [p(1− r) + q][µ(0?) + µ(00?)]

= 2p2r2(1− p)(1− pr)µ(00000?)− 2p4r2(1− p)µ(00000?)− 4p4r2(1− p)µ(0000?)

+ 2p5r2µ(000?)− 2qp2r(1− p)µ(00000?)− [p(1− r) + q][µ(0?) + µ(00?)]

(rearranging the terms of the previous expression)

6 2p2r2(1− p)(1− pr)µ(00000?)− 2p4r2(1− p)µ(00000?)− 4p4r2(1− p)µ(00000?)

+ 2p5r2µ(000?)− 2qp2r(1− p)µ(00000?)− [p2 + q(1 + p)][µ(0?) + µ(00?)]

(using the inequality µ(0000?) > µ(00000?))

= 2p2r2(1− p)(1− pr − 3p2)µ(00000?) + 2p5r2µ(000?)− p2{µ(0?) + µ(00?)}
− 2qp2r(1− p)µ(00000?)− q(1 + p){µ(0?) + µ(00?)}. (4.66)

Lemma 4.3. The sum in (4.66) is non-positive for all (p, q) ∈ S, where S is as defined in
(1.1). Moreover, it is bounded above by −2qp2r(1−p)µ(00000?)−q(1+p){µ(0?)+µ(00?)}.

Proof. In this proof, we make use of the inequalities µ(0?) > µ(00?) > µ(000?) >
µ(00000?). If 1 − pr − 3p2 6 0, each of the terms in (4.66), except 2p5r2µ(000?), is
non-positive, and we tackle this single non-negative term as follows:

2p5r2µ(000?)− p2{µ(0?) + µ(00?)} = 2p5r2µ(000?)− 2p2µ(000?) = −2p2(1− p3r2)µ(000?),

(4.67)
and every term in the above sum is non-positive. If 1− pr − 3p2 > 0, both the first and
the second terms of (4.66) are non-negative, while the rest are non-positive, and these
non-negative terms are taken care of as follows:

2p2r2(1− p)(1− pr − 3p2)µ(00000?) + 2p5r2µ(000?)− p2{µ(0?) + µ(00?)}
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6 2p2r2(1− p)(1− pr − 3p2)µ(000?) + 2p5r2µ(000?)− 2p2µ(000?)

= 2p2r2[(1− p)(1− pr − 3p2) + p3]µ(000?)− 2p2µ(000?)

= 2p2r2[1− p(1− p2)− pr(1− p)− 3p2(1− p)]µ(000?)− 2p2µ(000?)

= 2p2[r2{1− p(1− p2)− pr(1− p)− 3p2(1− p)} − 1]µ(000?), (4.68)

and once again, we see that each term in the above expression is non-positive, since
each of r2 and 1− p(1− p2)− pr(1− p)− 3p2(1− p) is bounded above by 1. From the final
upper bounds in (4.67) and (4.68), we deduce that the expression in (4.66) is bounded
above by −2qp2r(1− p)µ(00000?)− q(1 + p){µ(0?) + µ(00?)}.

Incorporating (4.66) into (4.65) and using Lemma 4.3, we see that C2 can be bounded
above as follows:

C2 6 − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0) + µ(1??0)}
−q(1 + p)[µ(0?) + µ(00?)]︸ ︷︷ ︸

split this into 2 parts, as below

+[2pqr2{3p− 2 + p2}︸ ︷︷ ︸
consider this separately

−2q2p2r − 4p4qr2]µ(000?)

− 2qp2r(1− p)µ(00000?)− 2p2r3(1− p)(1 + p− q)µ(000?1)

−2p2r2(1− p)(1− p2)µ(000?{0, ?}1)− 2p2r2(1− p)(1− p2)µ(0000?1)︸ ︷︷ ︸
combine these two

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0) + µ(1??0)}
− q(1 + p− pr)[µ(0?)+µ(00?)] −qpr[µ(0?)+µ(00?)]︸ ︷︷ ︸

bounded above by −2pqrµ(000?)

+2pqr2{3p− 2 + p2}µ(000?)

− [2q2p2r + 4p4qr2]µ(000?)− 2qp2r(1− p)µ(00000?)

− 2p2r3(1− p)(1 + p− q)µ(000?1)− 2p2r2(1− p)(1− p2)µ(000∗̂∗1)

6 − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0) + µ(1??0)}
− q(1 + p− pr)[µ(0?) + µ(00?)]−2qprµ(000?) + 2pqr2{3p− 2 + p2}µ(000?)︸ ︷︷ ︸
− [2q2p2r + 4p4qr2]µ(000?)− 2qp2r(1− p)µ(00000?)

− 2p2r3(1− p)(1 + p− q)µ(000?1)− 2p2r2(1− p)(1− p2)µ(000∗̂∗1)

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0) + µ(1??0)}
− q(1 + p− pr)[µ(0?) + µ(00?)] + [−2qpr + 4p2qr2 + 2pqr2{p− 2 + p2}]µ(000?)︸ ︷︷ ︸
− [2q2p2r + 4p4qr2]µ(000?)− 2qp2r(1− p)µ(00000?)

− 2p2r3(1− p)(1 + p− q)µ(000?1)− 2p2r2(1− p)(1− p2)µ(000∗̂∗1)

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0) + µ(1??0)}
− q(1 + p− pr)[µ(0?) + µ(00?)]−2qpr[1− 2pr]µ(000?)− 2pqr2{2− p− p2}µ(000?)︸ ︷︷ ︸
− [2q2p2r + 4p4qr2]µ(000?)− 2qp2r(1− p)µ(00000?)

− 2p2r3(1− p)(1 + p− q)µ(000?1)− 2p2r2(1− p)(1− p2)µ(000∗̂∗1)

= − r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0) + µ(1??0)}
− q(1 + p− pr)[µ(0?) + µ(00?)]−2qpr[1− 2pr]µ(000?)︸ ︷︷ ︸−2pqr2(2 + p)(1− p)µ(000?)

− [2q2p2r + 4p4qr2]µ(000?)− 2qp2r(1− p)µ(00000?)

− 2p2r3(1− p)(1 + p− q)µ(000?1)− 2p2r2(1− p)(1− p2)µ(000∗̂∗1). (4.69)

We note that, by the AM-GM inequality, 2pr 6 p2 +r2 6 p+r 6 1, so that the underbraced
term, and consequently, each term in the final expression of (4.69), is non-positive. Note
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that (4.69) also provides the final, simplified expression for C2. From (4.59) and (4.69),
we see that (4.58) now transforms into the weight function inequality

w3(F̂p,q µ) 6 w3(µ)− [p(1− r) + q]µ(10?)− r(4q2 + 4qp2 − 2q3 + 2q2p)[µ(1???) + µ(1?0?)

+ µ(10??) + µ(100?)]− 2r(1− p2)µ(1??1)− r(1− p)µ(1?1)− pr2(1 + 2q)µ(1∗̂ ∗ ∗1)

− qr[1− 2p(p− r − p2)]µ(∗̂ ∗ ∗)− pr2{1 + 2q(1− p)}µ(?000?)− 6pqr2(1− p)µ(0000?)

− 2p3r3(1− p){µ(10000?) + µ(?0000?)} − 2p2qr2µ(1000?)

− 4qp2r2[µ(1{0, ?}∗̂ ∗ ∗)− µ(1000?)]− 2pqr2(2− 2q + p)µ(1∗̂ ∗ ∗)
− r(4q2 + 2qp2(1 + p)− 2q3 + 2q2p){µ(1?00) + µ(10?0)

+ µ(1??0)} − q(1 + p− pr)[µ(0?) + µ(00?)]− 2qpr[1− 2pr]µ(000?)

− 2pqr2(2 + p)(1− p)µ(000?)− [2q2p2r + 4p4qr2]µ(000?)− 2qp2r(1− p)µ(00000?)

− 2p2r3(1− p)(1 + p− q)µ(000?1)− 2p2r2(1− p)(1− p2)µ(000∗̂∗1). (4.70)

Finally, we have achieved a weight function inequality that is of the form presented in
(4.2).

4.7 The desired conclusion

From (4.10), (4.17), (4.23) and (4.49), the final weight function turns out to be

w3(µ) = µ(?) + 2µ(0?)− µ(?0?) + 2µ(100?)− p(p+ q)µ(?)− [2pr{µ(1?) + µ(10?)}
+ 2p2r{µ(1??) + µ(1?0?) + µ(10??)}+4rµ(1?01)+2pµ(100?)]− 2(q + p2r)µ(100?)

− 2p2r{µ(1?00) + µ(10?0)} − qµ(?)

= (1− p2 − pq − q)µ(?) + 2µ(0?)− µ(?0?) + [2− 2p− 2q − 2p2r]µ(100?)− 2prµ(1?)

− 2prµ(10?)− 2p2r{µ(1??) + µ(1?0?) + µ(10??)} − 4rµ(1?01)

− 2p2r{µ(1?00) + µ(10?0)},

which matches with the weight function stated in (4.3).
We now wish to draw the conclusion, using (4.70), that µ(?) = 0 when µ is a

translation-invariant and reflection-invariant stationary distribution for F̂p,q (recall
Lemma 4.1). Note that this conclusion, i.e. that µ(?) = 0, is immediate when r = 0, i.e.
p+ q = 1, so that henceforth, we only consider r > 0, i.e. p+ q < 1.

To begin with, we note that when µ is stationary for F̂p,q, we have F̂p,q µ = µ, so that

w3(F̂p,q µ) = w3(µ). When q > 0, we conclude that the coefficient −qr[1− 2p(p− r − p2)]

of µ(∗̂ ∗ ∗) in (4.70) is non-zero (see (4.56) that shows why 1 − 2p(p − r − p2) is strictly
positive). The last two sentences and (4.70) together imply that µ(∗̂ ∗ ∗) = 0 when µ is
stationary for F̂p,q and q > 0. Since µ(?) = F̂p,q µ(?) = rµ(∗̂ ∗ ∗) from (4.4), we conclude

that µ(?) = 0 when µ is stationary for F̂p,q and q > 0.
We now come to the analysis when q = 0, which forces p > 0 from the definition of S

in (1.1).

Lemma 4.4. When q = 0, we obtain µ(?) = 0 from (4.70) for any stationary distribution
µ of F̂p,q.

Proof. When q = 0, forcing p > 0, the coefficients −[p(1−r)+q] of µ(10?) and −2p2r3(1−
p)(1 + p− q) of µ(000?1) in (4.70) are both strictly negative, which implies that µ(10?) =

µ(000?1) = 0. The former, via (4.29), yields µ(000∗̂∗) = 0, and this, together with the
latter, yields

µ(000?) = µ(000??) + µ(000?0) + µ(000?1) = 0.

We now focus on finding F̂p,q µ(000?).
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In order for (F̂p,q η(0), F̂p,q η(1), F̂p,q η(2), F̂p,q η(3)) to equal (000?), we must have
(η(3), η(4), η(5)) ∈ ∗̂ ∗ ∗. If each of η(0), η(1), η(2) belongs to {0, ?}, then each of the events
F̂p,q η(i) = 0, for i = 0, 1, 2, happens with probability p. If η(0) = 1 and η(1), η(2) ∈ {0, ?},
then F̂p,q η(0) = 0 happens with probability 1−q and each of F̂p,q η(1) = 0 and F̂p,q η(2) = 0

happens with probability p. If η(1) = 1 and η(2) ∈ {0, ?}, then each of F̂p,q η(0) = 0 and

F̂p,q η(1) = 0 happens with probability 1− q and F̂p,q η(2) = 0 happens with probability

p. If η(2) = 1, then each F̂p,q η(i) = 0, for i = 0, 1, 2, happens with probability 1 − q.
Combining everything, we have

F̂p,q µ(000?) = p3rµ({0, ?}3∗̂ ∗ ∗) + (1− q)p2rµ(1{0, ?}2∗̂ ∗ ∗) + (1− q)2prµ(1{0, ?}∗̂ ∗ ∗)
+ (1− q)3rµ(1∗̂ ∗ ∗).

When µ(000?) = 0, q = 0 (and hence p > 0), and µ is stationary for F̂p,q, we conclude
from the previous paragraph that µ({0, ?}3∗̂ ∗ ∗) = µ(1{0, ?}2∗̂ ∗ ∗) = µ(1{0, ?}∗̂ ∗ ∗) =

µ(1∗̂ ∗ ∗) = 0. Adding these, we get µ(∗̂ ∗ ∗) = 0, and via (4.4), this, once again, implies
that µ(?) = 0.

5 A formal game theoretic formulation of the problem

We provide a slightly more general game theoretic formulation of our games to
facilitate the subsequent discussion on the connection of our games with various other
games in the literature. Furthermore, we discuss some interesting open problems in
this area. To this end, we shall consider N = {1, . . . , n} to be the (finite) set of players
participating in the game, with each player i ∈ N allowed to choose from a (finite) set of
actions denoted by Ai. Let T = N be the set of rounds in the game, and let T0 = T ∪ {0}.
A mover-sequence is an (infinite) sequence µ : T → N , such that µ(t), for t ∈ T , indicates
the player who is supposed to make their move in round t of the game.

Given a mover-sequence µ, a move-sequence (also referred to as a history) is a (finite
or infinite) sequence of actions a

˜
= (a1, a2, . . .) such that ak ∈ Aµ(k) for each k. We

denote by Ak the set of all move-sequences of length k, for each k ∈ T0 (note that the
move-sequence of length 0 is referred to as the empty move-sequence and denoted by
a
˜

0). We let A∞ denote the set of all move-sequences of infinite length, and A denote the

set of all move-sequences, both finite and infinite.
Each move-sequence a

˜
∈ A is assigned a random variable Xa

˜
taking values in Rn,

which denotes the (random) utilities of the players corresponding to the move-sequence a
˜
.

The game starts once a realization (xa
˜

)a
˜
∈A of values of the collection of random variables

(Xa
˜

)a
˜
∈A has been fixed and revealed to all the players.1 A strategy for player i is a

collection of functions σi := {σki : k ∈ T such that µ(k) = i}, where σki : Ak−1 → Ai.
A collection of strategies σN := (σ1, . . . , σn) is called a strategy profile.

Each strategy profile σN induces an infinite sequence of actions a
˜
(σN ) := (a1, a2, . . .)

in the following, natural way: a1 = σ1
µ(1), a2 = σ2

µ(2)(a1)), a3 = σ3
µ(3)(a1, a2), and so

on. For t ∈ T , we denote by a
˜
t(σN ) the (truncated) sequence (a1, . . . , at) of a

˜
(σN )

that is the game path of length t induced by σN . The stage utility of player i at
time t, t ∈ T , is given by uti(σN ) := xa

˜
t(σN )(i). The final utility ui(σN ) of player i

1It is worth emphasizing here that these aren’t games with incomplete information as there is no randomness
involved once the game begins.
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corresponding to a strategy profile σN is a (real-valued) function of the stage utility
sequence (u

˜
t

i

(σN ))t∈T .

We assume, in line with game theory, that each player i ∈ N plays the game optimally.
In other words, given a collection of strategies σN\{i} of the other players, i plays a
best response: a strategy σ∗i that maximizes her utility given σN\{i}, i.e. ui(σ∗i , σN\{i}) >
ui(σi, σN\{i}) for all strategies σi of player i. A strategy σi for player i is dominant if it is
a best response to every collection of strategies of the other players. In other words,
no matter what strategies the other players adopt, playing σi is the best for player
i, i.e. ui(σi, σN\{i}) > ui(σ

′
i, σN\{i}) for all strategies σ′i of player i and all collections

of strategies σN\{i} of the other players.2 A strategy profile σN is said to be a Nash
equilibrium if it is a best response to itself, i.e. for each i ∈ N , σi is a best response to
σN\{i}.

Several interesting games can be constructed by imposing restrictions and depen-
dence structures on the random variables (Xa

˜
)a
˜
∈A (and accordingly, on the strategy-

profiles). A class of such games are the ones where there are two players making
alternative moves (that is, µ = (1, 2, 1, 2, . . .)) and having the same set of actions (i.e.
A1 = A2). For such games, there is an equivalence relation ∼ on A such that Xa

˜
t = Xb

˜

t

and σtµ(t)(a˜
t) = σtµ(t)(b˜

t) whenever a
˜
t and b

˜

t are equivalent.

Combinatorial games played on directed graphs can be modeled via this approach.
Let G be a directed graph such that each vertex of G has the same number of outgoing
edges, and the outgoing edges from each vertex are identified with the elements of the
set A of common actions (where A = A1 = A2).3 Then, given an initial vertex, every
strategy profile σN induces a (directed) path in the graph G. We call two game paths
a
˜
t and b

˜

t of length t equivalent if they lead to the same vertex in G. Suppose that the

utilities are zero-sum, that is, the sum of the utilities of all the players corresponding
to any realization of Xa

˜
t is zero. Let the final utility ui(σN ) of any player i ∈ N be the

first non-zero value in the sequence of stage utilities (uti(σN ))(t∈T0). In other words, the
game ends whenever one of the players receive a non-zero stage utility and the utilities
corresponding to that stage become the final utilities. We say that the game is winning
for player i, for any i ∈ N , if player i has a dominant strategy which, when adopted,
rewards her 1 as her final utility. The game ends in a draw if neither player has a winning
dominant strategy.

Suppose, further, thatXa
˜

t(µ(t)) equals 1 with probability p, equals−1 with probability

q, and equals 0 with probability 1− p− q, for all t ∈ T0 (here, we follow the convention
that µ(0) = 2). This leads to an (i.i.d.) percolation game on a k-regular tree when
|A| = k and each equivalence class is a singleton.4 On the other hand, fixing an
initial vertex arbitrarily (say, the origin), defining A = {(0, 1), (1, 1), (2, 1)} (respectively,
A = {(0, 1), (1, 1)}), and defining two game paths a

˜
t = (a1, . . . , at) and b

˜

t = (b1, . . . , bt) to

2It is well-known that a dominant strategy for a player may not exist unless the game has some particular
structure.

3One can model the games played on arbitrary directed graphs by (recursively) defining the set of actions
At

i (for player i who is supposed to make their move in round t) as a function defined on the set of possible
histories of length t− 1. In fact, in addition to the utilities and the set of actions, which player is allowed to
make a move in a given round can also be a function of the histories. In an even more general setup, all these
three variables can be defined randomly corresponding to every history. See [16] (and §6.2 where we discuss)
for a formal definition of such random games when the corresponding graph is a tree and the said variables
are i.i.d over histories.

4See [18] for a formal definition of iid percolation games.
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be equivalent if
∑t
s=1 a

s =
∑t
s=1 b

s, one obtains the percolation game we have studied
in this paper (respectively, the percolation game considered in [25]).

Clearly, under such an optimality assumption, a player will play a dominant strategy
whenever she has one. We explore what happens to the flow of the game if none of the
players has a dominant strategy, limiting ourselves to the case where |N | = 2. Suppose
player 1 plays a strategy σ1. Since σ1 is not dominant, there is a strategy σ2 of player
2 which, if adopted by player 2, prevents player 1 from winning. Suppose player 2

wins corresponding to the strategy-profile (σ1, σ2). However, since σ2 is not dominant,
player 1 has a strategy, say σ′1, such that player 2 does not win when player 1 adopts σ′1.
Continuing in this manner, it follows that when both players play optimally (in other
words, under any Nash equilibrium), neither player wins the game, allowing the game
to continue forever with each player receiving zero utility at every stage of the game.
Summarizing, under the assumption of optimal play, a draw implies continuation of
the game for infinite time, which, in addition to requiring the existence of an infinite
open path in the (directed) graph, requires that the path be self-enforcing, i.e. that
neither of the players has an incentive to deviate from this path. The event of an
infinite path in a random graph is a prime object of interest in percolation theory,
and consequently, the event of a draw is an important object of study in percolation
games.

6 Relation with existing literature and open problems

Researchers mainly explore two types of problems in the context of combinato-
rial games played in random environments, the first of which is concerned with the
probability of draw, while the second type focuses on the value of the game.

6.1 Discussion on draw probabilities

As explained in the previous section, the probability of draw, especially whether it is
always (i.e. irrespective of the values of the parameters p and q) 0 or not, is an interesting
question in percolation games. Apart from [25] and this paper, we are not aware of any
work, so far, that looks into this problem.

6.1.1 Generalizing the set of actions

For problems related to the probability of draw in percolation games on Z2 (or even on
arbitrary Zk), the set of actions A can be generalized in three ways. The first of these
is achieved by adding more vertices at the ‘next’ level, where the ‘next’ level refers
to the value of the y-coordinate in the set A of actions being equal to 1 (for instance,
A = {(0, 1), . . . , (k, 1)} for some k ∈ N). The second possibility is the addition of vertices
at levels that are ‘higher’ than the ‘next’ level, i.e. in which the value of the y-coordinate
of at least one of the vertices in the set A of actions is strictly larger than 1 (for instance,
A = {(0, 1), (1, 2), (2, 1)}). The third option is to make A a (simple and structured) function
A(x, y) of (x, y) ∈ Z2. Such an instance has been dealt with in [5], and the percolation
game considered therein has been shown to arise when edge-percolation is considered
(i.e., instead of the vertices, it is the edges that are labeled, independently, as trap,
target or open with probabilities p, q and 1− p− q respectively). The ‘location dependent’
action set A(x, y) for the edge-percolation game studied in [5] depends (only) on the
parity of the first coordinate of (x, y) (it is shown in [5] that A(x, y) = {(0, 1), (1, 1)} when
x is even, and A(x, y) = {(1, 1), (1, 2)} when x is odd).
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6.1.2 Arbitrary mover-sequence

Both [25] and this paper consider an alternating mover-sequence (i.e., µ = (1, 2, 1, 2 . . .)).
We would like to explore what happens (in particular, whether the probability of draw
continues to be 0 or not) for other mover-sequences (that have been endowed with
enough structure, such as when µ = (1, 1, 2, 2, 1, 1, 2, 2, . . .)). Technically, this relates to a
PCA whose update rule is dependent on time. To the best of our knowledge, ergodicity
properties of such PCAs have not been explored in the literature, and we think it is an
important problem as it generalizes the commonly studied notion of PCAs to a much
broader perspective.

6.1.3 Generalizing the event of draw

Yet another class of open problems is concerned with generalizing the events of winning
/ losing / drawing. Let utN = (ut1, . . . , u

t
n) ∈ Rn denote a utility vector for all players in the

stage game at time t (the stage game refers to the base game, so that the actual game
is made up of repetitions of the stage game, and after each stage game is over, every
player receives some utility). Given a set of sequences of utility vectors Wi ⊆ {(utN )t∈T0

},
let us call a game winning for player i if player i has a dominant strategy to ensure
a utility sequence in Wi, and a game is said to lead to a draw if it is not winning for
any of the players. A natural extension of the existing notion of winning (as defined
in our paper and in [25]) is obtained by defining Wi as the set of utility sequences for
which i receives a cumulative utility of amount k, for some pre-fixed k ∈ N, before any
other player does. More formally, Wi contains those utility-vector sequences (utN )t∈T0

for which there is t̂ ∈ T0 such that
∑t̂
t=0 u

t
i = k and

∑t̄
t=0 u

t
j < k for all j ∈ N \ {i} and

all t̄ < t̂. The existing notion of winning corresponds to the situation where k = 1. We
think it is an interesting problem to explore what happens for higher values of k.

6.1.4 Percolation games on three (or higher) dimensions

The set-up for percolation games can be generalized to lattices in any dimension k ∈ N.
Each site x = (x1, x2, . . . , xk) ∈ Zk is assigned, independently, the label of trap with
probability p, the label of target with probability q, and the label of open with probability
1 − p − q, and A can be defined as a subset of Zk. An even more general set-up, on
arbitrary, locally finite directed graphs is addressed in §1.2 of [25], but with q = 0 (i.e.
there are no target-labeled vertices, and hence such a percolation game is referred to as
a trapping game). The dimension reduction method is illustrated in [25], showing that
if the directed graph under consideration satisfies certain conditions, then the existence
of multiple Gibbs states for the hard-core model on a related graph would imply that
the trapping game on the directed graph has a positive probability of culminating in a
draw.

It is worthwhile to ponder if there are regime(s), as function(s) of the parameters p and
q, in which percolation games played on lattices of higher dimensions have probability 0

of resulting in a draw, and whether, when A is suitably defined, the occurrence of draw
in such a game can be connected with the ergodicity of a PCA, possibly deduced via the
recurrence relations arising from the game, the same way as illustrated in this paper.
An immediate problem to consider can be where we set A = {(0, 0, 1), (1, 0, 1), (0, 1, 1)}
and the same equivalence relation as ours (that is, (a1, . . . , ak) ∼ (b1, . . . , bl) if

∑k
j=1 aj =∑l

j=1 bl). This leads to a nice class of percolation games on Z3. Attempting to implement
the technique of weight functions to find conditions on p and q that guarantee ergodicity
of the PCA deduced from the recurrence relations of this game would be an interesting
problem for the near future.
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6.1.5 Monotonicity of draw probability

An important problem, in our opinion, of a slightly different flavour, is the analysis of
monotonicity properties, if any, of the probabilities of draw in percolation games with
respect to, in some sense, the degree of ‘mixing’ of the actions / moves. Consider a
class of percolation games on Z2, where each site (x, y) is assigned the label X(x,y),
with X(x,y) i.i.d. over all (x, y) ∈ Z2 and X(x,y) equaling trap with probability p, target
with probability q, and open with probability 1− p− q. We characterize the games we
are concerned with in this discussion by two parameters: k and `, where k > 2 is the
number of actions allowed for each player, and 1 6 ` 6 k is a mixing parameter. For
every position of the game (x, y) in Z2 (i.e. (x, y) is where the token is currently located),
the action ai leads to the site ((x− 1)`+ i, y + 1), for all 1 6 i 6 k. In other words, here,
the set of outgoing edges Out(x, y) from (x, y) is {((x− 1)`+ i, y + 1) : 1 6 i 6 k}.

Note that, for any two ‘neighboring’ game positions (x, y) and (x+1, y), the cardinality
of Out(x, y)∩Out(x+ 1, y) is precisely k− `. In particular, given k, when ` = 1, we obtain
the k-neighbor percolation game on the integer lattice Z2 (for instance, [25] considers
k = 2, and this paper is concerned with k = 3), and when ` = k, we obtain the percolation
game on a rooted k-regular tree. It has been shown in [28] that for arbitrary k, when
` = k, there are positive values of p and / or q for which the probability of draw is strictly
positive in the percolation game played on a rooted k-regular tree (more precisely, the
probability of draw is strictly positive whenever (1− p− q)(1− q)k−1 6 (k + 1)k−1k−k).
At the other extreme, for k = 2, 3 and ` = 1, it has been shown in [25] and this paper that
both p and q need to equal 0 for the probability of draw in the corresponding percolation
game to be strictly positive. These findings raise the following important questions: does
draw become less likely

1. as ` decreases (i.e. there is a greater degree of mixing) for a given k,

2. as k increases while ` remains fixed (for instance, when ` remains fixed at the value
` = 1).

It is worth emphasizing that for a given, arbitrary configuration of trap / target /
open labels (i.e. a given realization of the i.i.d. random variables (X(x,y))(x,y)∈Z2), no
monotonicity can be found for the event of draw with respect to ` in the two situations
mentioned above, implying that a coupling argument will not be sufficient to prove such
results. We believe that a more involved combinatorial argument will be needed for
addressing these questions, and currently, we are pursuing our research exploring these
questions. Exploring such monotonicity questions for just the trapping game (where
q = 0) or just the target game (where p = 0) is expected to be quite challenging.

6.2 Discussion on the value of a game

The value of a zero-sum game is a well-known quantity in game theory, but considering
readers from various backgrounds, we provide its definition here. The value of a zero-sum
game is said to exist when the utilities for player 1, obtained via the following two ‘ways
of thinking’, turn out to be equal to each other, and the value is defined as the common
utility (whenever it exists). In the first way of thinking, player 1 believes that player 2’s
only intention is to ‘hurt’ her, that is, whatever strategy σ1 she plays, player 2 will play a
strategy σ2 that minimizes her utility given σ1. Let Umax min be the maximum utility player
1 can guarantee given this belief. Formally, Umax min = maxσ1∈Σ1 minσ2∈Σ2 u1(σ1, σ2),
where Σ1 and Σ2 are the sets of all possible strategies for players 1 and 2 respectively.
In the second way of thinking, whatever strategy σ2 is played by player 2, player 1 plans
to play a strategy σ1 that maximizes her utility given σ2, and believes that player 2 will
play the strategy that minimizes her utility when she plays according to this plan. Let
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Umin max = minσ2∈Σ2
maxσ1∈Σ1

u1(σ1, σ2) be the utility player 1 receives according to this
belief. The value of a game exists when Umin max = Umax min, and this common utility is
called the value of the game.

In [18], a general notion of zero-sum percolation games on Zd is defined, with two
players making alternating moves.5 In contrast to our notion of stage games where
exactly one player makes a move in each round, [18] defines a stage game in which each
round comprises a move by player 1 followed immediately by a move by player 2. Each
of the players receives some utility at the end of each stage game. An n-stage game, for
n ∈ N, consists of n stage games played sequentially where the utility of each player
is defined as the time-average (where time refers to the number of stages) of the total
utility from all the stage games of that player. The utility function of an n-stage game
can be defined using our framework by requiring that uti(σN ) = 0 for all t ∈ 2N− 1 and
all t > n, and defining ui(σN ) = 1

n

∑
t∈T u

t
i(σN ).

For i.i.d. and oriented percolation games, [18] shows that as n tends to infinity, the
sequence of (random) values of n-stage games converges almost surely to a constant,
and the expected value converges at a rate of O(ln(n)n−1/2). They further show that the
assumption of i.i.d. is necessary for this result. It is worth mentioning that the games we
have considered in our paper are i.i.d. and oriented. We refer the reader to [18] for a
formal definition of i.i.d. and oriented percolation games.

In [16], a general class of two-player zero-sum games is considered where, in addition
to the utilities (that are defined as the capacities corresponding to any history), in
every round of the game, the mover and the set of available actions are both random
and i.i.d. over the histories. The three random variables, i.e. the chosen mover, the
chosen set of available actions, and the utilities, need not be independent of each other
corresponding to a given history. The games in [16] are played on (finitely branching)
trees for each possible realization of the above-mentioned random variables. The utility
for player 1 corresponding to a strategy profile is the infimum of the stage utilities
along the game path induced by the strategy profile. In this setting, a natural measure
space is defined over the games, and a (fixed point) characterization of the cumulative
distribution function for the value of the game is provided (together with a number of
corollaries and applications).

Although [2] does not deal with the value of a game nor its probability of draw,
uses an approach involving ideas from percolation theory which makes it relevant for
percolation games. In [2], random games are considered where the number of players is
large, each player has two strategies, and the utilities are i.i.d. with possible ties (i.e.
having an atomic distribution). In this setting, [2] explores the possibility of existence
of a (pure) Nash equilibrium which, in contrast with mixed Nash equilibrium, may not
always exist. In particular, asymptotic results regarding the (random) number of Nash
equilibria and a central limit theorem for given bounds on the probability of ties are
established. Furthermore, using tools from percolation theory, the geometry of the
set of Nash equilibria is determined, and it is shown that the best response dynamics
converges to a Nash equilibrium with high probability when the number of players is
large and the probability of ties is positive but bounded above (such as in the case of
potential games).6

5Informally speaking, a percolation game requires, among other criteria, the (random) utility functions to
be stationary and ergodic.

6More precisely, [2] establishes a connection between percolation and random oriented graphs through
a coupling where the set of strategies that are accessible by the best response dynamics coincides with the
connected component containing the origin for percolation on the hypercube.
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7 The scope of the weight function technique

Let us define the critical region for a percolation game as the set of all values of
(p, q) ∈ S (where S is as defined in (1.1)) for which the probability of draw is 0 (and
hence, the corresponding PCA is ergodic). It follows from this paper and [25] that the
critical region for the percolation games considered in both these papers is S.

We begin with noting that the weight function technique provides only a sub-region,
normally in terms of a lower bound, of the critical region of a percolation game. In
case of our percolation games or that in [25], this sub-region turns out to be ‘full’, i.e.
it covers all possible values of (p, q), and consequently, the weight function technique
succeeds in providing a characterization of the entire critical region. In general, unless
the critical region is full in the above-mentioned sense, the weight function technique
itself will not be suffice to characterize the critical region, which, in our view, is the main
weakness of this technique. Nevertheless, providing a sub-region of the critical region
is, in general, an important contribution to the literature (in fact, it may well be the case
that finding such a sub-region becomes the first breakthrough in answering questions
about the critical regions in several open problems), and in view of that, we now proceed
to describe some situations where one can apply this technique.

Recall that the weight function technique, when applicable, only shows that certain
events have probability 0 under any stationary distribution corresponding to the PCA
under consideration. One then needs to do further computations to deduce how this
actually leads to the conclusion that the event of draw has probability 0 under any
stationary distribution. The crucial step here is to link the ergodicity of the PCA under
consideration with the event of draw, which may not be straightforward unless the PCA
has some game theoretic structure. In what follows, we define a class of ‘game theoretic’
PCAs for which we believe that the weight function technique can be applied to establish
ergodicity. For PCAs outside of this class, our guess is that the applicability of the weight
function technique will depend on the particular structure of the PCA’s stochastic update
rule, but as of now, we are unable to specify what structural conditions on the update
rule guarantee such applicability.

We call a d-dimensional deterministic CA F , with universe Zd and a given neigh-
borhood N that is a finite subset of Zd, game-theoretic if it satisfies the following
criteria:

1. the alphabet Â comprises the symbols W , D and L;

2. letting ηt =
(
ηt(x) : x ∈ Zd

)
denote the configuration of states at time t, where

ηt(x) denotes the state of x at time t, the state ηt+1(x) of any site x ∈ Zd at time
t+ 1 is decided according to the following rules:

(a) if ηt(x + y) = W for each y ∈ N , then ηt+1(x) = L,
(b) if there exists at least one y ∈ N for which ηt(x + y) = L, then ηt+1(x) = W ,
(c) if there exists no y ∈ N for which ηt(x + y) = L, but there exists at least one

z ∈ N such that ηt(x + z) = D, then ηt+1(x) = D;

3. conditioned on ηt, the updates ηt+1(x) happen independently over all x ∈ Zd.

We obtain a game-theoretic PCA by perturbing the above CA in a manner similar to
what we have considered in this paper: given parameters p and q, each outcome (of the
above-mentioned deterministic CA) that is not equal to W is flipped to W with proability
p, and each outcome that is not equal to L is flipped to L with probability q. More
formally, letting η̂t =

(
η̂t(x) : x ∈ Zd

)
denote the (random) configuration of states at

time t,

1. we let η̂t+1(x) equal L with probability 1 − p and W with probability p when
ηt+1(x) = L;
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2. we let η̂t+1(x) equal W with probability 1 − q and L with probability q when
ηt+1(x) = W ;

3. we let η̂t+1(x) equal W with probability p, L with probability q and D with probabil-
ity 1− p− q when ηt+1(x) = D.

We observe, crucially, that for game-theoretic PCAs, both parts of Lemma 3.1 hold
(and this can be proved in an identical manner as shown in this paper). The first part
of Lemma 3.1 leads to the conclusion, via a proof identical to that of Proposition 2.1 of
[25], that F is ergodic if and only if the PCA A, obtained by restricting the alphabet Â
to the sub-alphabet A = {W,L}, is ergodic. Moreover, the unique stationary or limiting
distribution µ of F , when F is ergodic, is the same as that of A, and therefore, µ must
assign probability 0 to the symbol D, i.e. the probability, under µ, of the event that the
symbol D occupies the site x is 0 for every x ∈ Zd. Applying the technique of weight
functions to the PCA F , provided the process of constructing the weight function is
tractable either manually or with the aid of a computer, can reveal conditions on the
parameter pair (p, q) under which any stationary distribution µ for F assigns probability
0 to the symbol D.

We believe that the method of weight function may even be of aid in case of percolation
games (on lattices) whose recurrence relations do not necessarily yield a PCA, but
something more general. For instance, suppose we consider the same random premise
as in this paper, i.e. each site of Z2 is assigned, independently, a label that reads trap
with probability p, target with probability q, and open with probability 1− p− q, but here,
for each site (x, y) ∈ Z2, we set Out(x, y) = {(x+ 2, y), (x+ 2, y+ 2), (x, y+ 2)}. As before,
two players take turns to make moves, where a move involves relocating the token from
where it is currently located, say some site (x, y), to any of the sites in Out(x, y). The
outcome of this game is decided following the same rules as the percolation game that
we study in this paper. This problem has also been mentioned in §6.1.1, when discussing
the possibility of adding vertices at levels that are higher than the next level.

It is immediate that the recurrence relations arising from the above game cannot
be represented via a PCA, but could be by a PCA of memory two as defined in [11].
A little pondering reveals that the only way to partition the lattice Z2 into “level sets”
that are meaningful for our analysis of this game is to consider the diagonal lines
Dk = {(x, k − x) : x ∈ Z}, identify Dk with Z via the mapping (x, k − x) 7→ x for each
x ∈ Z, and consider the following discrete-time stochastic process {ηt}t∈N0

where each
ηt is a random configuration taking values in ÂZ = {W,D,L}Z. Conditioned on ηt−1

and ηt, the random variables ηt+1(x) are defined independently over all x ∈ Z, with the
distribution for ηt+1(x) being a function of ηt(x), ηt−1(x+ 2) and ηt(x+ 2), as follows:

1. if ηt(x) = ηt−1(x+ 2) = ηt(x+ 2) = W , then ηt+1(x) = L with probability 1− p and
ηt+1(x) = W with probability p,

2. if at least one of ηt(x), ηt−1(x+ 2) and ηt(x+ 2) equals L, we set ηt+1(x) = W with
probability 1− q and ηt+1(x) = L with probability q,

3. if none of ηt(x), ηt−1(x+ 2) and ηt(x+ 2) equals L but at least one of them equals
D, we set ηt+1(x) = W with probability p, ηt+1(x) = L with probability q, and
ηt+1(x) = D with probability 1− p− q.

It is evident that {ηt}t∈N0 does not constitute a Markov chain. However, it is Markov of
order 2 (i.e. retains as memory the configurations of the previous 2 time steps), and a
probability distribution µ supported on ÂZ × ÂZ is said to be stationary or invariant for
this stochastic process if the following is true: if the joint distribution of (ηt−1, ηt) is µ,
then the joint distribution of (ηt, ηt+1) is µ as well. We then say that {ηt}t∈N0 is ergodic if

1. it possesses a unique stationary distribution µ, and
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2. if ν denotes any probability distribution supported on ÂZ × ÂZ, and if the joint
distribution of (η0, η1) is ν, then the joint distribution of (ηt, ηt+1) converges to µ as
t→∞.

It should be possible to prove, along the same lines as Proposition 2.2 of [25] has
been argued, that the percolation game described above has probability 0 of culminating
in a draw if and only if the process {ηt}t∈N0 is ergodic. Once again, it becomes important
to investigate the critical region for this percolation game. We expect that the technique
of weight functions is applicable in this set-up. Here, we must look for a suitable function
w that is defined on the space of probability measures supported on ÂZ × ÂZ, and we
suspect that we have to consider measures of Carteisan products of cylinder sets (in
other words, we have to consider events of the form (ηt−1(x) = ax for all x ∈ A, ηt(y) =

by for all y ∈ B), where A and B are finite subsets of Z, and ax, by ∈ Â for all x ∈ A and
y ∈ B).
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[10] Ana Bušić, Jean Mairesse, and Irene Marcovici, Probabilistic cellular automata, invariant
measures, and perfect sampling, Advances in Applied Probability 45 (2013), no. 4, 960–980.
MR3161292

[11] Jérôme Casse and Irène Marcovici, Probabilistic cellular automata with memory two: in-
variant laws and multidirectional reversibility, Annales Henri Lebesgue 3 (2020), 501–559.
MR4149819

[12] Deepak Dhar, Exact solution of a directed-site animals-enumeration problem in three dimen-
sions, Physical Review Letters 51 (1983), no. 10, 853. MR0721768

[13] RL Dobrušin, VI Kriukov, and AL Toom, Stochastic cellular systems: ergodicity, memory,
morphogenesis, Manchester University Press, 1990.

[14] Jean-Christophe Dubacq, How to simulate turing machines by invertible one-dimensional
cellular automata, International Journal of Foundations of Computer Science 6 (1995), no. 04,
395–402.

EJP 28 (2023), paper 143.
Page 58/60

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2569810
https://mathscinet.ams.org/mathscinet-getitem?mr=4370838
https://mathscinet.ams.org/mathscinet-getitem?mr=2254497
https://mathscinet.ams.org/mathscinet-getitem?mr=3582816
https://arXiv.org/abs/2212.01753
https://mathscinet.ams.org/mathscinet-getitem?mr=2365970
https://mathscinet.ams.org/mathscinet-getitem?mr=3002413
https://mathscinet.ams.org/mathscinet-getitem?mr=1603701
https://arXiv.org/abs/2204.06357
https://mathscinet.ams.org/mathscinet-getitem?mr=3161292
https://mathscinet.ams.org/mathscinet-getitem?mr=4149819
https://mathscinet.ams.org/mathscinet-getitem?mr=0721768
https://doi.org/10.1214/23-EJP1046
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


3-Neighborhood PCA and percolation games

[15] Wesam M Elsayed, Mohammed Elmogy, and B El-Desouky, Evolutionary behavior of dna
sequences analysis using non-uniform probabilistic cellular automata model, Cincia e Tcnica
Vitivincola 32 (2017), 137–148.

[16] János Flesch, Arkadi Predtetchinski, and Ville Suomala, Random perfect information games,
Mathematics of Operations Research 48 (2023), no. 2, 708–727. MR4588937

[17] Peter Gács, Reliable cellular automata with self-organization, Journal of Statistical Physics
103 (2001), no. 1, 45–267. MR1828729

[18] Guillaume Garnier and Bruno Ziliotto, Percolation games, Mathematics of Operations Re-
search (2022).

[19] Antoine Georges and Pierre Le Doussal, From equilibrium spin models to probabilistic cellular
automata, Journal of Statistical Physics 54 (1989), no. 3, 1011–1064. MR0988570

[20] Eric Goles and Martín Matamala, Uniform simulation of turing machines by cellular automata,
Cellular Automata and Complex Systems (1999), 23–36. MR1672854

[21] G Grinstein, C Jayaprakash, and Yu He, Statistical mechanics of probabilistic cellular au-
tomata, Physical Review Letters 55 (1985), no. 23, 2527. MR0819681

[22] I Hartarsky and R Szabó, Generalised oriented site percolation, probabilistic cellular au-
tomata and bootstrap percolation, arXiv preprint (2021). MR4408459

[23] Ivailo Hartarsky, Bootstrap percolation, probabilistic cellular automata and sharpness, Journal
of Statistical Physics 187 (2022), no. 3, 1–17. MR4408459

[24] Gustav A Hedlund, Endomorphisms and automorphisms of the shift dynamical system,
Mathematical Systems Theory 3 (1969), no. 4, 320–375. MR0259881

[25] Alexander E Holroyd, Irène Marcovici, and James B Martin, Percolation games, probabilistic
cellular automata, and the hard-core model, Probability Theory and Related Fields 174
(2019), no. 3, 1187–1217. MR3980314

[26] Jarkko Kari, Theory of cellular automata: A survey, Theoretical Computer Science 334 (2005),
no. 1-3, 3–33. MR2132942

[27] Jarkko Kari, Cellular automata, University of Turku (2013).

[28] Sayar Karmakar, Moumanti Podder, Souvik Roy, and Soumyarup Sadhukhan, Phase transition
in percolation games on rooted galton-watson trees, arXiv preprint arXiv:2303.11402 (2023).

[29] Lemont B Kier, Chao-Kun Cheng, and Bernard Testa, A cellular automata model of the
percolation process, Journal of chemical information and computer sciences 39 (1999), no. 2,
326–332.

[30] Joel L Lebowitz, Christian Maes, and Eugene R Speer, Statistical mechanics of probabilistic
cellular automata, Journal of Statistical Physics 59 (1990), no. 1, 117–170. MR1049965

[31] Qin Lei, Jia Lee, Xin Huang, and Shuji Kawasaki, Entropy-based classification of elementary
cellular automata under asynchronous updating: an experimental study, Entropy 23 (2021),
no. 2, 209. MR4224579

[32] Pierre-Yves Louis and Francesca R Nardi, Probabilistic cellular automata, Emergence, Com-
plexity, Computation 27 (2018). MR3791805

[33] Jean Mairesse and Irene Marcovici, Around probabilistic cellular automata, Theoretical
Computer Science 559 (2014), 42–72. MR3280727

[34] Irène Marcovici, Mathieu Sablik, and Siamak Taati, Ergodicity of some classes of cellular
automata subject to noise, Electronic Journal of Probability 24 (2019), 1–44. MR3940771

[35] Mark McCann and Nicholas Pippenger, Fault tolerance in cellular automata at high fault
rates, Journal of Computer and System Sciences 74 (2008), no. 5, 910–918. MR2416359

[36] Mark McCann and Nicholas Pippenger, Fault tolerance in cellular automata at low fault rates,
Journal of Computer and System Sciences 79 (2013), no. 7, 1126–1143. MR3061405

[37] Kenichi Morita and Masateru Harao, Computation universality of one-dimensional reversible
(injective) cellular automata, IEICE Transactions (1976–1990) 72 (1989), no. 6, 758–762.
MR1178211

[38] E Popova, Y Staraselski, A Brahme, RK Mishra, and K Inal, Coupled crystal plasticity–
probabilistic cellular automata approach to model dynamic recrystallization in magnesium
alloys, International Journal of Plasticity 66 (2015), 85–102.

EJP 28 (2023), paper 143.
Page 59/60

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=4588937
https://mathscinet.ams.org/mathscinet-getitem?mr=1828729
https://mathscinet.ams.org/mathscinet-getitem?mr=0988570
https://mathscinet.ams.org/mathscinet-getitem?mr=1672854
https://mathscinet.ams.org/mathscinet-getitem?mr=0819681
https://mathscinet.ams.org/mathscinet-getitem?mr=4408459
https://mathscinet.ams.org/mathscinet-getitem?mr=4408459
https://mathscinet.ams.org/mathscinet-getitem?mr=0259881
https://mathscinet.ams.org/mathscinet-getitem?mr=3980314
https://mathscinet.ams.org/mathscinet-getitem?mr=2132942
https://arXiv.org/abs/2303.11402
https://mathscinet.ams.org/mathscinet-getitem?mr=1049965
https://mathscinet.ams.org/mathscinet-getitem?mr=4224579
https://mathscinet.ams.org/mathscinet-getitem?mr=3791805
https://mathscinet.ams.org/mathscinet-getitem?mr=3280727
https://mathscinet.ams.org/mathscinet-getitem?mr=3940771
https://mathscinet.ams.org/mathscinet-getitem?mr=2416359
https://mathscinet.ams.org/mathscinet-getitem?mr=3061405
https://mathscinet.ams.org/mathscinet-getitem?mr=1178211
https://doi.org/10.1214/23-EJP1046
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


3-Neighborhood PCA and percolation games

[39] Damien Regnault, Directed percolation arising in stochastic cellular automata analysis, in:
International Symposium on Mathematical Foundations of Computer Science, Springer, 2008,
pp. 563–574. MR2539401

[40] Pal Rujan, Cellular automata and statistical mechanical models, Journal of Statistical Physics
49 (1987), no. 1, 139–222. MR0923854

[41] Ville Salo, Guillaume Theyssier, and Ilkka Törmä, Bootstrap percolation and cellular automata,
arXiv preprint arXiv:2110.00656 (2021). MR4437739

[42] JW Thatcher, Self-describing turing machines and self-reproducing cellular automata, Essays
on Cellular Automata (1970), 103–131.

[43] Tommaso Toffoli, Computation and construction universality of reversible cellular automata,
Journal of Computer and System Sciences 15 (1977), no. 2, 213–231. MR0462816

[44] Vladimir K Vanag, Study of spatially extended dynamical systems using probabilistic cellular
automata, Physics-Uspekhi 42 (1999), no. 5, 413.

[45] Branislav Vukotić and Milan M Ćirković, Astrobiological complexity with probabilistic cellular
automata, Origins of Life and Evolution of Biospheres 42 (2012), no. 4, 347–371.

Acknowledgments. We are thankful to the editor and two anonymous referee for their
useful feedbacks that certainly helped improve the paper.

EJP 28 (2023), paper 143.
Page 60/60

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2539401
https://mathscinet.ams.org/mathscinet-getitem?mr=0923854
https://arXiv.org/abs/2110.00656
https://mathscinet.ams.org/mathscinet-getitem?mr=4437739
https://mathscinet.ams.org/mathscinet-getitem?mr=0462816
https://doi.org/10.1214/23-EJP1046
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Overview of the paper
	Brief discussion of the literature
	Organization of the paper

	The principal objects studied in this paper
	Our percolation game
	Our PCA
	Our envelope PCA and its relation to our percolation game

	An important lemma before we embark on a proof of Proposition 2.4
	The method of weight functions and the proof of Proposition2.4
	Computation of the probabilities of various cylinder sets under the pushforward measure induced by the action of `39`42`"613A``45`47`"603AF"0362Fp,q
	Important identities used in the derivation of the weight function
	The first step of composing the weight function
	The second step of composing the weight function
	The third step of composing the weight function
	Step 1 of analyzing (4.25)
	Step 2 of analyzing (4.25)
	Step 3 of analyzing (4.25)
	Step 4 of analyzing (4.25)

	The fourth step of composing the weight function
	Step 1 of analyzing the effect of the adjustment in (4.49)
	Step 2 of analyzing the effect of the adjustment in (4.49)
	Step 3 of analyzing the effect of the adjustment in (4.49)

	The desired conclusion

	A formal game theoretic formulation of the problem
	Relation with existing literature and open problems
	Discussion on draw probabilities
	Generalizing the set of actions
	Arbitrary mover-sequence
	Generalizing the event of draw
	Percolation games on three (or higher) dimensions
	Monotonicity of draw probability

	Discussion on the value of a game

	The scope of the weight function technique
	References

