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Abstract

A step reinforced random walk is a discrete time process with memory such that at
each time step, with fixed probability p ∈ (0, 1), it repeats a previously performed step
chosen uniformly at random while with complementary probability 1− p, it performs
an independent step with fixed law. In the continuum, the main result of Bertoin in
[7] states that the random walk constructed from the discrete-time skeleton of a Lévy
process for a time partition of mesh-size 1/n converges, as n ↑ ∞ in the sense of finite
dimensional distributions, to a process ξ̂ referred to as a noise reinforced Lévy process.
Our first main result states that a noise reinforced Lévy process has rcll paths and
satisfies a noise reinforced Lévy-Itô decomposition in terms of the noise reinforced
Poisson point process of its jumps. We introduce the joint distribution of a Lévy
process and its reinforced version (ξ, ξ̂) and show that the pair, conformed by the
skeleton of the Lévy process and its step reinforced version, converge towards (ξ, ξ̂)

as the mesh size tend to 0. As an application, we analyse the rate of growth of ξ̂ at the
origin and identify its main features as an infinitely divisible process.
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1 Introduction

The Lévy-Itô decomposition is one of the main tools for the study of Lévy processes.
In short, any real Lévy process ξ has rcll sample paths and its jump process induces a
Poisson random measure – called the jump measure N of ξ – whose intensity is described
by its Lévy measure Λ. Moreover, it states that ξ can be written as the sum of three
process

ξt = ξ
(1)
t + ξ

(2)
t + ξ

(3)
t , t ≥ 0,

of radically different nature. More precisely, the continuous part of ξ is given by ξ(1) =

(at+ qBt : t ≥ 0) for a Brownian motion B and reals a, q, while ξ(2) is a compound Poisson
process with jump-sizes greater than 1 and ξ(3) is a purely discontinuous martingale with
jump-sizes smaller than 1. Moreover, the processes ξ(2), ξ(3) can be reconstructed from
the jump measure N . We shall often refer to the almost sure decomposition in the last
display as Itô’s synthesis. It is well known that N is characterised by the two following
properties: for any Borel A with Λ(A) < ∞, the counting process of jumps ∆ξs ∈ A

that we denote by NA is a Poisson process with rate Λ(A), and for any disjoint Borel
sets A1, . . . , Ak with Λ(Ai) <∞, the corresponding Poisson processes NA1 , . . . , NAk

are
independent. We refer to e.g. [5, 17, 24] for a complete account on the theory of Lévy
processes.

In this work, we shall give an analogous description for real valued noise rein-
forced Lévy processes (abbreviated NRLPs). This family of processes has been re-
cently introduced by Bertoin in [7] and corresponds to weak limits of step reinforced
random walks built from discrete-time skeletons of a Lévy process. In order to be
more precise, let us briefly recall the connection between these discrete objects and
our continuous time setting. Fix a Lévy process ξ and denote, for each fixed n, by
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X
(n)
k := ξk/n − ξ(k−1)/n the k-th increment of ξ for a partition of size 1/n of the real line.

The process S(n)
k := X

(n)
1 + · · ·+X

(n)
k = ξk/n for k ≥ 1, with the convention S(n)

0 = 0, is
a random walk also called the n-skeleton of ξ. Now, fix a real number p ∈ (0, 1) that

we call the reinforcement or memory parameter and let Ŝ(n)
0 := 0, Ŝ(n)

1 := X
(n)
1 . Then,

define recursively Ŝ(n)
k for k ≥ 2 according to the following rule: for each k ≥ 2, set

Ŝ
(n)
k := Ŝ

(n)
k−1 + X̂

(n)
k where, with probability 1 − p, the step X̂

(n)
k is the increment X(n)

k

with law ξ1/n – and hence independent from the previously performed steps – while with

probability p, X̂(n)
k is an increment chosen uniformly at random from the previous ones

X̂
(n)
1 , . . . , X̂

(n)
k−1. When the former occurs, the step is called an innovation, while in the

latter case it is referred to as a reinforcement. The process (Ŝ
(n)
k ) is called the step-

reinforced version of (S
(n)
k ). It was shown in [7] that, under appropriate assumptions

on the memory parameter p, we have the following convergence in the sense of finite
dimensional distributions as the mesh-size tends to 0

(Ŝ
(n)
bntc)t∈[0,1]

f.d.d.−→
(
ξ̂t
)
t∈[0,1]

, (1.1)

towards a process ξ̂ identified in [7] and called a noise reinforced Lévy process. It should
be noted that the process ξ̂ constructed in [7] is a priori not even rcll. This will be one of
our first concerns.

We are now in position to briefly state the main results of this work. Our first main
result is composed by several statements. First, we shall prove the existence of a rcll
modification for ξ̂. In particular, this allows us to consider the jump process (∆ξ̂s); a
proper understanding of its nature will be crucial for this work. In this direction, we
introduce a new family of random measures in R+ ×R of independent interest under
the name noise reinforced Poisson point processes (abbreviated NRPPPs) and we study
their basic properties. We shall next derive a version of the Lévy-Itô decomposition and
synthesis in the reinforced setting. More precisely, we show that the jump measure of ξ̂
is a NRPPP and that ξ̂ can be written as

ξ̂t = ξ̂
(1)
t + ξ̂

(2)
t + ξ̂

(3)
t , t ≥ 0,

where now, ξ̂(1) = (at + qB̂t : t ≥ 0) for a continuous Gaussian process B̂, the process
ξ̂(2) is a reinforced compound Poisson process with jump-sizes greater than one, while
ξ̂(3) is a purely discontinuous semimartingale with jump-sizes smaller than 1. The
continuous Gaussian process B̂ is the so-called noise reinforced Brownian motion, a
Gaussian process introduced in [8] with law singular with respect to B, and arising as
the universal scaling limit of noise reinforced random walks when the law of the typical
step is in L2(P) – and hence plays the role of Brownian motion in the reinforced setting,
see also [4] for related results. Needless to say that if the starting Lévy process ξ is a
Brownian motion, the limit ξ̂ obtained in (1.1) is a noise reinforced Brownian motion. As
in the non-reinforced case, ξ̂(2) and ξ̂(3) can be recovered from the jump measure of ξ̂,
but in contrast, they are not Markovian. The terminology used for the jump measure
of ξ̂ is justified by the following remarkable property: for any Borel A with Λ(A) < ∞,
the counting process of jumps ∆ξ̂s ∈ A that we denote by N̂A is a reinforced Poisson
process and, more precisely, it has the law of the noise reinforced version of NA (hence,
the terminology N̂A is consistent). Moreover, for any disjoint Borel sets A1, . . . , Ak with
Λ(Ai) <∞, the corresponding N̂A1 , . . . , N̂Ak

are independent noise reinforced Poisson
processes. Informally, the reinforcement induces memory on the jumps of ξ̂, and these
are repeated at the jump times of an independent counting process. When working on
the unit interval, this counting process is the so-called Yule-Simon process.

The second main result of this work consists, on the one hand, in giving a pathwise
definition for the noise reinforced version ξ̂ of the Lévy process ξ and, in the other
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hand, in justifying our definition by means of a limit theorem. We always denote such a
pair by (ξ, ξ̂). This pathwise construction is mainly achieved by transforming the jump
measure of ξ into a NRPPP, by a procedure that can be interpreted as the continuous
time analogue of the reinforcement algorithm we described for random walks. More
precisely, the steps X(n)

k of the n-skeleton are replaced by the jumps ∆ξs of the Lévy
process; each jump of ξ is shared with its reinforced version ξ̂ with probability 1 − p
and then repeated at each jump time of an independent counting process that will be
attached to it, while with probability p the jump is discarded and ξ̂ remains independent
to it. We then proceed to justify our construction by showing that the skeleton of ξ and
its reinforced version (S

(n)
bn·c, Ŝ

(n)
bn·c) converge weakly towards (ξ, ξ̂), strengthening (1.1)

considerably.
Section 6 is devoted to applications: on the one hand, in Section 6.1 we study the

rates of growth at the origin of ξ̂ and prove that well known results established by
Blumenthal and Getoor in [9] for Lévy processes still hold for NRLPs. On the other hand,
in Section 6.2 we analyse NRLPs under the scope of infinitely divisible processes in the
sense of [22]. We shall give a proper description of ξ̂ in terms of the usual terminology
of infinitely divisible processes, as well as an application, by making use of the so-called
Isomorphism theorem for infinitely divisible processes.

Let us conclude with some miscellaneous remarks. In the discrete setting, rein-
forcement of processes and models has been subject of active research for a long time,
see for instance the survey by Pemantle [20] for a detailed account. For more closely
related work to the type of (discrete-time) reinforcement that we shall consider in this
manuscript, see e.g. [6, 3, 1, 19, 2, 11] and references therein. In contrast, the literature
on reinforcement of time-continuous stochastic processes, which is the main topic of this
work, is rather sparse when compared to the discrete setting. We refer to Section 6 of
[20] for some work in this direction.

1.1 Main results and organisation of the work

We shall now give a more precise overview of our main results and on how this work
is structured. We shall make use of the notations used in the introduction.

In Section 2, we recall the basic building blocks needed for the construction of
NRLPs and introduce in Proposition 2.3 the distribution of a NRLP associated to a
Lévy-Khintchine triplet (a, q2,Λ) for an admissible reinforcement parameter p ∈ (0, 1), in
the sense of Definition 2.2. The corresponding NRLP shall be referred to as the NRLP
with characteristics (a, q2,Λ, p). Some preliminary notions are needed and are recalled
for ease of reading. Notably, we give a brief overview of the features of the Yule-Simon
process and we present some important examples of NRLPs. Much of the content of
this section is taken from [7]. Let us stress that the Lévy processes and the reinforced
counterparts that we shall consider in this work are R-valued. The constructions and
results stated in [7] do hold in higher dimensions, and the restriction in this work to the
1-dimensional case is only for the sake of simplicity. We do expect our results to hold in
higher dimensions as well with minor modifications.

The reinforced Lévy-Itô decomposition and synthesis Section 3, Section 4 and
Section 5.1 are mainly devoted to establishing a reinforced version of the celebrated
Lévy-Itô decomposition and synthesis for Lévy processes. Before giving precise state-
ments, let us introduce some preliminary notions. In Section 4.2 and more precisely in
Definition 4.4, we introduce a family of measures in R+ ×R, parameterised by a Lévy
measure Λ and a parameter p ∈ (0, 1), that we shall refer to as noise reinforced Poisson
point processes with intensity Λ and reinforcement parameter p, or in short NRPPPs.
We shall see that, in analogy with Poisson point processes in R+ ×R, NRPPPs can be
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constructed by decoration and superposition of reinforced Poisson point process in R+;
as the nomenclature suggests, a reinforced Poisson point process in R+ is just the point
process of jump-times of a reinforced Poisson process, we refer to Section 4.1 for a
detailed account. After introducing NRPPPs, in Section 4.2 we explore some of their
basic properties. We shall see that, despite their drastically different nature, NRPPPs
share striking similarities with Poisson point processes – see in particular Lemma 4.5 as
well as Proposition 4.8 for a characterisation of NRPPPs in terms of counting processes.
We identify as well the distribution of NRPPPs by computing the corresponding Laplace
functionals in Proposition 4.7. The intricate connection between NRPPPs and noise
reinforced Lévy processes is the first main result of this work.

Theorem 1.1 (Trajectorial regularity and reinforced Lévy-Itô decomposition). Let ξ̂ be a
the noise reinforced version of a Lévy process with characteristic triplet (a, q2,Λ) for an
admissible reinforcement parameter p ∈ (0, 1).

1. The process ξ̂ has a rcll modification, that we still denote by ξ̂.
2. The jump measure µ̂ of ξ̂ is a noise reinforced Poisson point process with charac-

teristic measure Λ and reinforcement parameter p.

The proof of the first point of Theorem 1.1 is given in Section 3 and more precisely in
Proposition 3.1 (where in fact we give a more precise version of this result) while the
second point, which strongly relies in the elementary properties of NRPPPs obtained in
Section 4.2, is postponed to Section 4.3.

Let us now turn our attention to a reinforced version of Itô’s synthesis complementing
Theorem 1.1. In this direction, let us start by briefly recalling the precise statement of
Itô’s synthesis for Lévy processes. A Lévy process ξ with triplet (a, q2,Λ) can be written
as ξ = ξ(1) + ξ(2) + ξ(3), where ξ(1) = (at + qBt : t ≥ 0) is a Brownian motion with drift
while ξ(2) + ξ(3) is a purely discontinuous process that can be explicitly built from the
jump measure µ of ξ. More precisely, if we denote by µ(sc) the compensated measure of
jumps µ(sc) = µ− dtΛ, we can write

ξt = at+ qBt +

∫
[0,t]×(−1,1)c

xµ(ds,dx) +

∫
[0,t]×(−1,1)

xµ(sc)(ds,dx), t ≥ 0. (1.2)

The reinforced Itô synthesis states that the analogous result holds for NRLPs where
now, the PPP µ in (1.2) has been replaced by a NRPPP µ̂, and the Brownian motion
B by its reinforced version B̂ (if p < 1/2). More precisely, after properly defining the
“space-compensated” measure µ̂(sc), we prove:

Theorem 1.2 (Reinforced Itô synthesis). Let µ̂ be the jump measure of a NRLP ξ̂ of
characteristics (a, q2,Λ, p). Then, a.s. we have

ξ̂t = at+ qB̂t +

∫
[0,t]×(−1,1)c

xµ̂(ds,dx) +

∫
[0,t]×(−1,1)

xµ̂(sc)(ds,dx), t ≥ 0,

for some noise reinforced Brownian motion B̂, with the convention that if p ≥ 1/2

the process B̂ is null. Moreover, the integrals in the previous display are NRLPs with
respective characteristics (0, 0,1(−1,1)cΛ, p), (0, 0,1(−1,1)Λ, p).

Remark 1.3. Beware of the notation, µ̂(sc) stands for the space-compensated jump
measure µ̂ and should not be confused with the time-compensated measure (µ̂− µ̂p) in
the sense of [13, Chapter II-1.27], where µ̂p stands for the predictable compensator of µ̂.
For instance, we stress that ξ̂(3) is not a local martingale. For Lévy processes, the time
and space compensation of its jump measure coincide, since the compensating measure
is the same.

This result is proved in Section 5.1 and it plays an important role in proof of Theo-
rem 1.4, that we shall now introduce.
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Weak convergence of skeletons Recall from the introduction the definition of the
n-skeleton (S

(n)
k ) of a Lévy process ξ, as well as the definition of its noise-reinforced

version (Ŝ
(n)
k ) for a fixed parameter p ∈ (0, 1). The second main result of this work

concerns the weak convergence of the skeleton of ξ paired with its reinforced version(
S

(n)
bn·c, Ŝ

(n)
bn·c
)

(1.3)

towards a pair (ξ, ξ̂), conformed by a Lévy process and a process having the law of its
reinforced version. Observe that since noise-reinforcement is an inherently discrete
operation, we do not have a priori a canonical definition for the joint law (ξ, ξ̂). In
this direction, Section 5.2 is devoted to giving an explicit definition for the joint law
(ξ, ξ̂), and the precise statement is given in Definition 5.6. This is achieved by giving a
path-wise constriction, defined in terms of ξ, of the noise reinforced version of ξ and
that we still denote by ξ̂. Our main tool needed for this construction is the reinforced
Itô synthesis (Theorem 1.2). Finally, in Proposition 5.1 we characterise the finite-
dimensional distributions of the pair (ξ, ξ̂). The second main result of this work connects
the distribution of the pair (ξ, ξ̂) given in Proposition 5.1 with the family of n-skeletons
and their reinforced versions (1.3). Let us be more precise. We write D(R+) for the
space of R+ indexed rcll functions into R endowed with the Skorokhod topology and to
simplify notation, set D2(R+) for the product space D(R+)×D(R+) endowed with the
product topology.

Theorem 1.4. Let ξ be a Lévy process with characteristic triplet (a, q2,Λ), fix p ∈ (0, 1/2)

an admissible memory parameter and for each n, let (S
(n)
k , Ŝ

(n)
k ) be the pair of the n-

skeleton of ξ and its reinforced version. Then, there is weak convergence in D2(R+) as
n ↑ ∞ (

S
(n)
bn·c, Ŝ

(n)
bn·c

)
L−→ (ξ, ξ̂), (1.4)

where (ξ, ξ̂) is a pair of processes with law (5.1).

This theorem strengthens the main result obtained by Bertoin in [7], where only
the convergence of the second coordinate in the last display was established, and the
convergence was proved in the sense of finite dimensional distributions. The proof of
Theorem 1.4 is technical and is carried over in Section 5.3.

Particular attention is given through this work at comparing, when possible and
pertinent, our results for NRLPs to the classical ones for Lévy processes.

2 Preliminaries

2.1 Yule-Simon processes

In this section, we recall several results from [7] concerning Yule-Simon processes
and Lévy processes needed for defining NRLPs. These results will be used frequently in
this work and are re-stated for ease of reading.

A Yule-Simon process on the interval [0, 1] is a counting process, started from 0, with
first jump time uniformly distributed in [0, 1], and behaving afterwards as a time-changed
standard Yule process. More precisely, for fixed p ∈ (0, 1), if U is a uniform random
variable in [0, 1] and Z an independent standard Yule process – viz. a pure birth process
with unit birth rate – the process

Y (t) := 1{U≤t}Zp(ln(t)−ln(U)), t ∈ [0, 1], (2.1)

is a Yule-Simon process with parameter 1/p. Its law in D[0, 1], the space of R-valued rcll
functions in the unit interval endowed with the Skorokhod topology, will be denoted by
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Q. It readily follows from the definition that this is a time-homogeneous Markov process,
with time-dependent birth rates given at time t by λ0(t) = 1/(1 − t) and λk(t) = pk/t

for k ∈ {1, 2, . . . }. Remark as well that we have P (Y (t) ≥ 1) = t. In our work, only
p ∈ (0, 1) will be used and shall be referred to as a reinforcement or memory parameter,
for reasons that will be explained shortly. The Yule-Simon process with parameter 1/p is
closely related to the Yule-Simon distribution with parameter 1/p, i.e. the probability
measure supported on {1, 2, . . . } with probability mass function given in terms of the
Beta function B(x, y) by

p−1B(k, 1/p+ 1) = p−1

∫ 1

0

up(1− u)k−1du, for k ≥ 1. (2.2)

The relation with the Yule process is simply that Y (1) is distributed Yule-Simon with
parameter 1/p. In the following lemma we state for further use the conditional self-
similarity property of the Yule-Simon process, a key feature that will be used frequently.

Lemma 2.1 ([7, Corollary 2.3]). Let Y be a Yule-Simon process with parameter 1/p and
fix t ∈ (0, 1]. Then, the process (Y (rt))r∈[0,1] conditionally on {Y (t) ≥ 1} has the same
distribution Q as Y .

In particular, conditionally on {Y (t) ≥ 1}, Y (t) is distributed Yule-Simon with param-
eter 1/p and it follows that for every t ∈ [0, 1], the variable Y (t) has finite moments only
of order r < 1/p. Moreover, by the previous lemma and the Markov property of the
standard Yule process Z, we deduce that if Y is a Yule-Simon process with parameter
1/p with p ∈ (0, 1) and k ≥ 1, we have

E [Y (t)] = (1− p)−1t and E [Y (t)|Y (s) = k] = k(t/s)p for any 0 < s ≤ t ≤ 1,

(2.3)
while if 1/p > 2,

E [Y (s)Y (t)] =
1

(1− p)(1− 2p)
s1−ptp. (2.4)

More details on these statements can be found in Section 2 of [7].

2.2 Noise reinforced Lévy processes

Now, we turn our attention to the main ingredients involved in the construction of
NRLPs. For the rest of the section, fix a real valued Lévy process ξ of characteristic
triplet (a, q2,Λ), where Λ is the Lévy measure, and recall that its characteristic exponent
Ψ(λ) := logE

[
eiλξ1

]
is given by the Lévy-Khintchine formula

Ψ(λ) = iaλ− q2

2
λ2 +

∫
R

(
eiλx − 1− ixλ1{|x|≤1}

)
Λ(dx). (2.5)

The constraints on the reinforcement parameter p are given in terms of the following
two indices introduced by Blumenthal and Getoor: the Blumenthal-Getoor (upper) index
β(Λ) of the Lévy measure Λ is defined as

β(Λ) := inf
{
r > 0 :

∫
[0,1]

|x|rΛ(dx) <∞
}
, (2.6)

while the Blumenthal-Getoor index β of the Lévy process ξ is defined by the relation

β :=

{
β(Λ) if q2 = 0

2 if q2 6= 0.
(2.7)

When ξ has no Gaussian component, we have β = β(Λ) and both notations will be used
indifferently.
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Definition 2.2. We say that a memory parameter p ∈ (0, 1) is admissible for the triplet
(a, q2,Λ) if it satisfies that pβ < 1.

We shall now justify this definition. To this end, we fix p an admissible memory
parameter for ξ. If (S

(n)
k ) is the n-skeleton of the Lévy process ξ, the main result of [7]

states that the sequence of reinforced versions with parameter p,

(Ŝ
(n)
bntc)t∈[0,1], n ≥ 1,

converge in the sense of finite dimensional distributions, as the mesh-size tends to 0,
towards a process whose law was identified in [7] and called the noise reinforced Lévy
process ξ̂ of characteristics (a, q2,Λ, p). In the sequel, when considering a NRLP with
parameter p, it will be implicitly assumed that p is admissible for the corresponding triplet.
For instance, when working with a memory parameter p ≥ 1/2 it is implicitly assumed
that q = 0. Further, it was shown in [7, Corollary 2.11] that the finite-dimensional
distributions of ξ̂ can be expressed in terms of the Yule-Simon process Y with parameter
1/p and the characteristic exponent Ψ as follows:

E

[
exp

{
i

k∑
i=1

λiξ̂si

}]
= exp

{
(1− p)E

[
Ψ

(
k∑
i=1

λiY (si)

)]}
, (2.8)

for 0 < s1 < · · · < sk ≤ 1. We stress that NRLPs were defined in [7] in the unit interval.
Indeed, notice that the construction given in [7] can not be directly extended to the
non-negative real line since it relies on Poissonian sums of Yule-Simon processes, and
these are only defined on the unit interval. The next proposition extends the definition of
NRLPs to R+.

Proposition 2.3. Let (a, q2,Λ) be the triplet of a Lévy process of exponent Ψ and con-
sider an admissible memory parameter p ∈ (0, 1). There exists a process ξ̂ = (ξ̂s)s∈R+

whose finite dimensional distributions satisfy that, for any 0 < s1 < · · · < sk ≤ t,

E

[
exp

{
i

k∑
i=1

λiξ̂si

}]
= exp

{
(1− p)tE

[
Ψ

(
k∑
i=1

λiY (si/t)

)]}
, (2.9)

where the right-hand side does not depend on the choice of t. The process ξ̂ is called a
noise reinforced Lévy process with characteristics (a, q2,Λ, p).

In particular, from taking the value t = 1, it follows that this process satisfies that its
restriction to [0, 1] has the same law as ξ̂ by (2.8).

Proof. First, let us show that the right-hand side of (2.9) does not depend on t. To prove
this, pick another arbitrary T > t and write ri = si/t ∈ [0, 1]. From conditioning on
{Yt/T ≥ 1}, an event with probability t/T , by Lemma 2.1 we get

TE

[
Ψ

(
k∑
i=1

λiY (si/T )

)]
= t(T/t)E

[
Ψ

(
k∑
i=1

λiY (ri · (t/T ))

)]

= tE

[
Ψ

(
k∑
i=1

λiY (ri · (t/T ))

)∣∣∣Y (t/T ) ≥ 1

]

= tE

[
Ψ

(
k∑
i=1

λiY (si/t)

)]
, (2.10)

proving our claim, and where in the second equality we used that Ψ(0) = 0. Now, let us
establish the existence of a process with finite-dimensional distributions characterised
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by (2.9). Remark that by Kolmogorov’s consistency theorem, it suffices to show that
for arbitrary 1 ≤ S < T , there exist processes X̂S = (X̂S

t )t∈[0,S], X̂
T := (X̂T

t )t∈[0,T ] with
finite dimensional distributions characterised by the identity (2.9) for (si) in [0, S], t = S

and (si) in [0, T ], t = T respectively – and hence satisfying that (X̂T
t )t∈[0,S]

L
= (X̂S

t )t∈[0,S].

Write ξ̂S = (ξ̂St )t∈[0,1] for the reinforced version of the Lévy process (ξtS)t∈[0,1], remark

that the latter has characteristic exponent SΨ, and set (X̂S
t )t∈[0,S] := (ξ̂St/S)t∈[0,S]. From

the identity (2.8), we deduce that, for any 0 < s1 < · · · < sk in the interval [0, S], we have:

E

[
exp

{
i

k∑
i=1

λiX̂
S(si)

}]
= exp

{
(1− p)SE

[
Ψ

(
k∑
i=1

λiY (si/S)

)]}
. (2.11)

In particular X̂S restricted to the interval [0, 1] has the same distribution as (ξ̂t)t∈[0,1]

by the first part of the proof and (2.8). If we consider the restriction of (X̂T )t∈[0,T ] to
the interval [0, S], we obtain similarly and by applying (2.10) that, for any 0 < s1 < · · · <
sk ≤ S,

E

[
exp

{
i

k∑
i=1

λiX̂
T (si)

}]
= exp

{
(1− p)TE

[
Ψ

(
k∑
i=1

λiY (si/T )

)]}

= exp

{
(1− p)SE

[
Ψ

(
k∑
i=1

λiY (si/S)

)]}
,

and it follows that X̂T restricted to [0, S] has the same distribution as X̂S . Since this
holds for any 1 ≤ S < T , we deduce by Kolmogorov’s consistency theorem the existence
of a process satisfying for any 0 < s1 < · · · < sk ≤ t, the identity (2.9).

For later use, notice from (2.9) that for any fixed t ∈ R+, we have the following
equality in law

(ξ̂st)s∈[0,1]
L
= (ξ·t̂)s∈[0,1] (2.12)

where the right-hand side stands for the noise-reinforced version of the Lévy process
(ξst)s∈[0,1]. In particular, (ξ̂st)s∈[0,1] is the NRLP associated to the exponent tΨ with same
reinforcement parameter.

2.3 Building blocks: noise reinforced Brownian motion and noise reinforced
compound Poisson process

The characteristic exponent Ψ can be naturally decomposed in three terms,

Ψ(λ) =

(
iaλ− q λ

2

2

)
+ Φ(2)(λ) + Φ(3)(λ), (2.13)

where respectively, we write

Φ(2)(λ) :=

∫
{|x|≥1}

(
eiλx − 1

)
Λ(dx) and Φ(3)(λ) :=

∫
{|x|<1}

(
eiλx − 1− iλx

)
Λ(dx).

This decomposition of the exponent Ψ yields that the law of a Lévy process ξ can be
written as the sum of three independent Lévy process of radically different nature.

Namely, we have the identity in distribution ξt
L
= (at + qBt) + ξ

(2)
t + ξ

(3)
t , for t ≥ 0,

where B is a Brownian motion, ξ(2) is a compound Poisson process with exponent Φ(2)

and ξ(3) is the so-called compensated sum of jumps with characteristic exponent Φ(3).
In the reinforced setting, it readily follows from the identity (2.9) that an analogous
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decomposition holds for NRLPs. More precisely, the law of the NRLP ξ̂ of characteristics
(a, q2,Λ, p) can be written as a sum of three independent NRLPs,

ξ̂t
L
= (at+ qB̂t) + ξ̂

(2)
t + ξ̂

(3)
t , t ≥ 0, (2.14)

the equality holding in law, and where we denote respectively by B̂, ξ̂(2), ξ̂(3), independent
reinforced versions of the Lévy processes B, ξ(2), ξ(3). Notice that their respective
characteristics are given by (a, q2, 0, p), (0, 0,1(−1,1)cΛ, p) and (0, 0,1(−1,1)Λ, p). Let us
now give a brief description of these three building blocks separately:

◦ Noise reinforced Brownian motion: Assume p < 1/2, consider a Brownian motion B

and set ξ := B. In that case, we simply have Ψ(λ) = −λ2/2 and we write B̂ for the
corresponding noise reinforced Lévy process ξ̂. The process B̂ is the so-called noise
reinforced Brownian motion (abbreviated NRBM) with reinforcement parameter p, a
centred Gaussian process with covariance given by:

E
[
B̂tB̂s

]
=

(t ∨ s)p(t ∧ s)1−p

1− 2p
. (2.15)

Indeed, recalling (2.4), observe first that for any 0 ≤ t, s < T the covariance (2.15) can
be written in terms of the Yule-Simon process Y with parameter 1/p as follows:

E
[
B̂tB̂s

]
= (1− p)T · E [Y (t/T )Y (s/T )] . (2.16)

It is now straightforward to deduce from (2.9) with Ψ(λ) = −λ2/2 that the noise rein-
forced version of B corresponds to the Gaussian process with covariance (2.15). The
noise reinforced Brownian motion admits a simple representation in terms of a Wiener
integral. More precisely, the process

tp
∫ t

0

s−pdBs, t ≥ 0, (2.17)

has the law of a noise reinforced Brownian motion with parameter p – in particular,
B̂ is still a Markov process. Remark that when p = 0, there is no reinforcement and
we recover a Brownian motion in (2.17). As was already mentioned, noise reinforced
Brownian motion plays the role of Brownian motion in the reinforced setting, since it is
the scaling limit of noise reinforced random walks under mild assumptions on the law of
the typical step. We refer to [8, 4] for a detailed discussion.

◦ Noise reinforced compound Poisson process: If ξ is a compound Poisson process with
rate c > 0, then its Lévy measure Λ is finite and any p ∈ (0, 1) is admissible. When
working in [0, 1], the noise reinforced compound Poisson process ξ̂ admits a simple
representation in terms of Poissonian sums of Yule-Simon processes. In this direction,
recall that we write Q for the law of the Yule Simon process with parameter 1/p and
consider a Poisson random measureM in R+ ×D[0, 1] with intensity (1− p)Λ⊗Q. If we
denote the atoms ofM by (xi, Yi), the process

ξ̂t =
∑
i

xiYi(t), t ∈ [0, 1], (2.18)

has the law of the noise reinforced version of ξ with reinforcement parameter p –
as can be easily verified by Campbell’s formula. This was already established in [7,
Corollary 2.11]. Notice that (2.18) is a finite variation process and its jump sizes are
dictated by Λ. Getting back to (2.14), it readily follows form our discussion that the
NRLP ξ̂(2) associated with the exponent Φ(2) is a reinforced compound Poisson process
and its jumps-sizes are greater than one. Finally, notice that if Λ differs by a constant
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factor from the Dirac mass δ1, the Lévy process ξ is just a Poisson process with rate
Λ({1}) and we deduce from the last display a simple representation for the reinforced
Poisson process N̂ in [0, 1]. Observe that it is a counting process, since the atoms xi are
then identically equal to 1.

◦ Noise reinforced compensated compound Poisson process: Let us now introduce
properly ξ̂(3), viz. the noise reinforced version of the compensated martingale ξ(3). When
working in [0, 1], this process also admits a representation in terms of random series
of Yule-Simon processes. In this direction, considerM :=

∑
i δ(xi,Yi) a Poisson random

measure with intensity (1− p)Λ⊗Q and for each a ∈ [0, 1], set

ξ̂
(3)
a,1(t) :=

∑
i

1{a≤|xi|<1}xiYi(t)− t
∫
{a≤|x|<1}

xΛ(dx), t ∈ [0, 1]. (2.19)

In the terminology of [7, Section 2], the process ξ̂(3)
a,1 is a Yule-Simon compensated series1

and note that by (2.3), we have E[ξ̂
(3)
a,1(t)] = 0 for every t ∈ [0, 1]. Moreover, the following

family indexed by a ∈ (0, 1),

ξ̂
(3)
a,1(t), for t ∈ [0, 1], (2.20)

is a collection of NRLPs with memory parameter p, Lévy measure 1{a≤|x|<1}Λ(dx) and
with corresponding exponent given by

Φ(3)
a (λ) :=

∫
{a≤|x|<1}

(
eiλx − 1− iλx

)
Λ(dx).

Notice that for each a > 0, the process ξ̂(3)
a,1 is rcll and with jump-sizes in [a, 1]. Now, the

process defined at each fixed t as the pointwise and L1(P)-limit

ξ̂
(3)
t := lim

a↓0
ξ̂

(3)
a,1(t), (2.21)

is a NRLP with characteristics (0, 0,1{|x|<1}Λ). In contrast with ξ(3), the noise reinforced

version ξ̂(3) is no longer a martingale, we shall discuss this point in the next section
in detail. For later use, we point out from [7, Section 2] that the convergence in the
previous display also holds in Lr(P), for r chosen according to

r ∈ (β(Λ) ∨ 1, 1/p), if 1/p ≤ 2 and r = 2, if 1/p > 2. (2.22)

In particular, we have ξ̂
(3)
t ∈ Lr(P) and E[ξ̂

(3)
t ] = 0 for every t. We refer to [7] for a

complete account on this construction as well as for a proof of the convergence in (2.21).
The convergence in (2.21) will be strengthened in the sequel, by showing that it holds
uniformly in [0, 1]. At this point, we have introduced the main ingredients needed for this
work.

3 Trajectorial regularity

The purpose of this short section is to establish the following regularity result, which
in particular proves the first point of Theorem 1.1.

Proposition 3.1. A noise reinforced Lévy process ξ̂ has a rcll modification, that we
still denote by ξ̂. Moreover, if for ε ∈ (0, 1), ξ̂(3)

0,ε denotes a NRLP with characteristics
(0, 0,1{|x|<ε}Λ, p), then for any t > 0 we have:

lim
ε↓0
E

[
sup
s≤t
|ξ̂(3)

0,ε(s)|
]

= 0. (3.1)

1The notation used in [7] for ξ̂
(2)
t and ξ̂

(3)
t is respectively Σ1,∞(t) and Σ

(c)
0,1(t). These are respectively

referred to as Yule-Simon series and compensated Yule-Simon series.
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Before proving this result, let us explain the role of (3.1). Working in [0, 1] and
with the construction (2.21) for ξ̂(3), remark that for any ε ∈ (0, 1) we can write ξ̂(3) =

ξ̂
(3)
0,ε + ξ̂

(3)
ε,1 , where |∆ξ̂(3)

ε,1(t)| ≥ ε for every jump-time t ∈ [0, 1] by construction. Now, the

convergence (3.1) shows that in fact, the jumps of ξ̂ of size greater than ε are precisely
the jumps of ξ̂(2) + ξ̂

(3)
ε,1 . Hence, when working in [0, 1], the jumps of ξ̂(3) are precisely the

jumps of the weighted Yule-Simon processes xiYi(t) – heuristically, this is the continuous-
time analogue of the dynamics described for the noise reinforced random walk. This fact
will be used in Section 4.3. Moreover, (3.1) allows to improve the convergence stated
in (2.21) towards ξ̂(3). Namely, it follows that for some subsequence (an) with an ↓ 0 as
n ↑ ∞, the convergence

lim
n→∞

(ξ̂
(3)
an,1

(s))s∈[0,1] = (ξ̂(3)
s )s∈[0,1],

holds a.s. uniformly in [0, 1]. Remark that the convergence in the previous display was
only stated when working in [0, 1] since, so far, the only explicit construction of NRLPs is
the one in the unit interval we recalled from [7]. In Section 5.1 we shall address this
point.

The rest of the section is devoted to the proof of Proposition 3.1. In this direction,
recall the building blocks introduced in Section 2.3 as well as the identity in distribu-
tion (2.14). The process ξ̂(2) is a reinforced compound Poisson process and therefore,
has finite variation rcll trajectories, while B̂ is continuous. It is then clear that the only
difficulty consists in establishing the regularity of the process ξ̂(3). To this end, we rely
on a remarkable martingale associated with centred NRLPs, that we now introduce. This
martingale will play a key role in this work.

Proposition 3.2. Consider a Lévy process ξ with characteristic exponent Ψ satisfying
Ψ′(0) = 0 and Lévy measure fulfilling the integrability condition

∫
{|x|≥1} xΛ(dx) < ∞.

Then, the process M = (Mt)t∈R+ defined as M0 = 0 and for t > 0, as Mt = t−pξ̂t, is a
martingale. Consequently, M has a rcll modification.

Proof. Observe that under our standing hypothesis on the Lévy measure, the reinforced
compound Poisson process ξ̂(2) is in L1(P). Indeed, this readily follows from the repre-
sentation (2.18) in the unit interval, Campbell’s formula and (2.12). Moreover, from our
discussion following (2.22), the process ξ̂(3) is always in L1(P), and it therefore follows
that ξ̂t ∈ L1(P) for every t ≥ 0. Furthermore the assumption Ψ′(0) = 0 yields that ξt is
centred for every t. It now follows from this two properties that Mt ∈ L1(P) for every
t and that E [Mt] = 0. Now, it remains to show that (Mt)t∈(0,1] satisfies the martingale
property. In this direction it is enough to check that for any 0 < t0 < · · · < tk < t and
λ1, . . . , λk−1 ∈ R, we have

E

[
t−pk ξ̂tk exp

{
i

k−1∑
i=1

λiξ̂ti

}]
= E

[
t−pk−1ξ̂tk−1

exp

{
i

k−1∑
i=1

λiξ̂ti

}]
. (3.2)

On the one hand, under our standing assumptions, the left-hand side of (3.2) corresponds
to the derivative with respect to λk at λk = 0 of (2.9) multiplied by −it−pk and hence
equals:

−it(1− p) exp

t(1− p)E
Ψ

k−1∑
j=1

λjY (tj/t)

 · E [H (Y (s) : s ≤ tk−1/t)Y (tk/t)] t
−p
k ,

for H defined as

H (Y (s) : s ≤ tk−1/t) := Ψ′

k−1∑
j=1

λiY (tj/t)

 .
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Remark that this is a σ(Y (s) : s ≤ tk−1/t)-measurable random variable. On the other
hand, the right-hand side of (3.2) corresponds to the derivative with respect to λk−1 of
(2.9) multiplied by −itpk−1 for λk = 0 and similarly, we deduce that the right-hand side of
(3.2) writes:

−it(1−p) exp

t(1− p)E
Ψ

k−1∑
j=1

λjY (tj/t)

·E [H (Y (s) : s ≤ tk−1/t)Y (tk−1/t)] t
−p
k−1.

Now, it only remains to show that:

E [H(Y (s) : s ≤ tk−1/t)Y (tk/t)] t
−p
k = E [H (Y (s) : s ≤ tk−1/t)Y (tk−1/t)] t

−p
k−1. (3.3)

Notice that since Ψ′(0) = 0 and Y is increasing, H (Y (s) : s ≤ tk−1/t) vanishes if
Y (tk−1/t) = 0. This allows us to restrict the terms inside the expectations in (3.3)
to {Y (tk−1/t) ≥ 1} and to apply the Markov property (2.3) at time tk−1/t to get:

E [H(Y (r) : r ≤ tk−1/t)Y (tk/t)] t
−p
k

=

∞∑
j=1

E
[
H(Y (r) : r ≤ tk−1/t)E [Y (tk/t)|Y (tk−1/t) = j]1{Y (tk−1/t)=j}

]
t−pk

=

∞∑
j=1

E
[
H(Y (r) : r ≤ tk−1/t) · j(tk/tk−1)p1{Y (tk−1/t)=j}

]
t−pk

= E [H(Y (r) : r ≤ tk−1/t)Y (tk−1/t)] t
−p
k−1, (3.4)

proving the claim.

Let us now conclude the proof of Proposition 3.1.

Proof of Proposition 3.1. The first assertion is now a consequence of the following simple
observation: denoting by M the rcll modification of the martingale M = (t−pξ̂

(3)
t )t∈R+ , it

is then clear that the process Ĵ (3) := tpM t, for t ≥ 0, is a rcll modification of ξ̂(3). Notice
by intergrating by parts that consequently, the process ξ̂(3) is a semimartingale, this will
be needed in Section 4.3. To prove the second claim, remark that by the observation right
after (2.12), it suffices to work on the time interval [0, 1]. Moreover, by Proposition 3.2,
for each ε > 0, the process

M (ε) := (s−pξ̂
(3)
0,ε(s))s∈(0,1]

with M (ε)
0 = 0, is a Lr(P) rcll martingale in [0, 1], for r chosen according to (2.22). Since

r > 1, by Doob’s inequality at time t = 1 we have

E

[
sup
s≤t
|ξ̂(3)

0,ε(s)|r
]
≤ E

[
sup
s≤t

∣∣s−pξ̂(3)
0,ε(s)

∣∣r] ≤ CrE [|ξ̂(3)
0,ε(1)|r

]
,

for some constant Cr > 0, and it remains to show that the right-hand side converges
to 0 as ε ↓ 0. However, this is a consequence of (2.21). More precisely, recalling the
construction detailed in (2.19), note that ξ̂(3)

t − ξ̂
(3)
ε,1(t) has the same distribution as ξ̂(3)

0,ε(t)

for every t ∈ [0, 1] and ε > 0. Since the convergence (2.21) still holds in Lr(P), the result
follows by taking the limit as ε ↓ 0.

Now that we have established that a NRLP is a rcll process, in the next section we
study the structure of its jump process (∆ξ̂t). Since it will share striking similarities with

EJP 28 (2023), paper 161.
Page 13/58

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1045
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Noise reinforced Lévy processes

the jump process of a Lévy process, before concluding the section we recall well known
results on (∆ξt). Namely, if ξ is a Lévy process with Lévy measure Λ, its jump measure

µ =
∑
s

1{∆ξs 6=0}δ(s,∆ξs), (3.5)

is a homogeneous Poisson point process (abbreviated PPP) with characteristic measure
Λ. Such a PPP can be constructed by decorating the point process of jumps of a Poisson
process, and it is classic that (3.5) is determined by the following two properties:

(i) For any Borelian A with Λ(A) < ∞, the counting process of jumps ∆ξs ∈ A

occurring until time t, defined as

NA(t) = #
{

(s,∆ξs) ∈ [0, t]×A
}
, t ≥ 0,

is a Poisson process with rate Λ(A).

(ii) If A1, . . . Ak are disjoint Borelians with Λ(Ai) < ∞ for all i ∈ {1, . . . , k}, the pro-
cesses NA1 , . . . , NAk

are independent.

In particular, from (i), it follows that (NA(t)− Λ(A)t)t∈R+ is a martingale.

4 Reinforced Lévy-Itô decomposition

This section is devoted to the study of the jump process (∆ξ̂s)s∈R+ and the associated
jump measure in R+ ×R, viz.

µ̂ :=
∑
s

1{∆ξ̂s 6=0}δ(s,∆ξ̂s). (4.1)

The main contribution of this section is the proof of the second point of Theorem 1.1,
which is the reinforced version of the celebrated Lévy-Itô decomposition. The proof
of this result is achieved in Section 4.3. To this end, let us start by introducing noise
reinforced Poisson point processes. Since this family of measures is essentially built
from decorating jump processes of reinforced Poisson processes, we start our discussion
with a brief overview on the main basic properties of the latter point process.

4.1 The jumps of noise reinforced Poisson processes

Let us start by introducing the basic building block of this section.

◦ Noise reinforced Poisson process: When ξ is a Poisson process N with rate c, any
reinforcement parameter p ∈ (0, 1) is admissible and recall from the discussion following
(2.18) that N̂ is a counting process. Moreover, the corresponding noise reinforced
Poisson process (abbreviated NRPP) with rate p has finite dimensional distributions
characterised, for any 0 < s1 < · · · < sk ≤ t and λj ∈ R, by the identity

E

[
exp

{
i

k∑
i=1

λiN̂si

}]
= exp

{
(1− p)ctE

[(
exp

{
i

k∑
i=1

λiY (si/t)

}
− 1

)]}
. (4.2)

A Poisson process with rate c has associated to it the random measure dNs, also called
its point process of jumps. This is a Poisson random measure in R+ with intensity cdt
and it has a natural reinforced counterpart: namely, the random measure dN̂s, that we
shall now study in detail.

To do so, we start by introducing some standard notation for point processes. We
shall identify discrete random sets D = {t1, t2, . . . } ⊂ R with counting measures

∑
t∈D δt

and for f : R→ R, we use the notation 〈D, f〉 for
∑
t∈D f(t). The collection of counting
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measures in R is denoted byMc. We will make use of the following two basic transfor-
mations: for x ∈ R, we denote by TxD the translated point process {t+ x : t ∈ D} and
for f : R→ R, we write D ◦ f−1 for the push-forwarded point process {f(t) : t ∈ D}.

Now, consider an increasing sequence of random times 0 = T0 < T1 < T2 < · · · , such
that the increments (Tn − Tn−1 : n ≥ 1) are independent and for any n ≥ 1, Tn − Tn−1

is exponentially distributed with parameter pn. Write D := {0, T1, T2, . . .} for the point
process associated to this family and denote its law in Mc by D(dµ). Remark that if
(Zt) is a standard Yule process started from 1, D has the same law as the point process
induced by the jump-times of (Ztp), with a Dirac mass at 0. From these ingredients, we
define a decorated measure as follows: first, consider E a Poisson point process with
intensity c(1− p)etdt in R and, for each atom u of E , let Du be an independent copy of D.
Then, we set

L :=
∑
u∈E

∑
t∈Du

δu+t =
∑
u∈E

TuDu. (4.3)

In the last display, with a slight abuse of notation we write u ∈ E to indicate that the sum
is taken over the atoms of the measure E . The next proposition shows that the law of
the point process of jumps of a noise reinforced Poisson process with rate c is precisely
L ◦ exp−1, the pushforward of L by the exponential function.

Proposition 4.1. The following properties hold:

(i) Let N̂ be a noise-reinforced Poisson process with rate c and write P̂ := dN̂s the
point process of its jump-times in R+. Then, we have the equality in distribution

P̂
L
= L ◦ exp−1. We will still refer to P̂ as a reinforced Poisson process with rate c

and reinforcement parameter p.

(ii) If Y is a Yule-Simon process with parameter 1/p, for any f : R+ → R+ we have

− logE

[
exp

{
− 〈P̂,1(0,t]f〉

}]
= tc · (1− p)E

[
1− e−

∫ 1
0
f(st)dY (s)

]
. (4.4)

In particular, from (4.3) and (i) we deduce the following identity in distribution: if P
is a Poisson process in R+ with intensity c(1− p)dt, we have

P̂ =
∑
s∈R+

1{s:∆N̂s=1}δs
L
=
∑
u∈P

∑
t∈Du

δuet . (4.5)

Roughly speaking, the jumps of N̂ consist in Poissonian jumps u ∈P which – in analogy
with the discrete setting – we refer to as innovations, and each u has attached to it a
family {uet : t ∈ Du, t 6= 0} which should be interpreted as repetitions of the original u
through time.

Figure 1: Sketch of the jumps of a noise reinforced Poisson process. We marked by x the
jumps corresponding to innovations, while each linked o is a repetition of the former.

Notice that the time at which u occurs affects the rate of the subsequent repetitions,
slowing the rate down as u grows. This is closely related to what happens to the rate at
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which a step is repeated in a step reinforced random walk, depending on its first time
of appearance. For later use, remark that for fixed deterministic u0 ∈ R+, the atoms of∑
t∈D δu0et are distributed as the jump times of the counting process

1{u0≤s}Zp(ln(s)−ln(u0)) , s ≥ 0. (4.6)

Proof. To establish the identity in distribution stated in (i), we compute the respective
Laplace functional of both random measures. Starting with P̂, fix t ≥ 0 and recall from
the identity in distribution (2.12) that (N̂ts)s∈[0,1] has the same law as a noise reinforced

Poisson process with same reinforcement parameter p and rate tc, say (N̂
(t)
s )s∈[0,1]. This

NRLP is defined in [0, 1] and hence admits a simple representation in terms of Poisson
random measures: by (2.18), if

∑
i δYi

is a Poisson random measure in D[0, 1] with
intensity tc(1 − p)Q, the process (

∑
i Yi(s) : s ∈ [0, 1]) has the same distribution as

(N̂
(t)
s )s∈[0,1]. In particular, we have∫ t

0

f(s)dN̂s =

∫ 1

0

f(st)dN̂st
L
=
∑
i

∫ 1

0

f(st)dYi(s).

Putting everything together, we deduce (4.4) by making use of the Laplace formula for
integrals with respect to Poisson random measures – we invite the reader to compare
(4.4) with the identity (2.9) for the finite-dimensional distributions of NRLPs – and it
remains to show that the Laplace functional of L ◦ exp−1 coincide with this expression.

In this direction, recall the observation made in (4.6) and denote by Z the law of the
standard Yule process Z. It follows that the law of 〈L ◦ exp−1, 1(0,t]f〉 can be expressed
in terms of the Poisson random measure

∑
i δ(ui,Z(i)) in R+ × D[0, 1], with intensity

c(1− p)dt⊗ Z, by considering the functional∑
i

∫
(0,t]

f(s) d
(
1{ui≤s}Z

(i)
p(ln(s)−ln(ui))

)
,

where the integrals in the previous expression are respectively with respect to the
Stieltjes measure associated to the counting process s→ 1{ui≤s}Z

(i)
p(ln(s)−ln(ui))

. It now
follows also by the exponential formula that

− logE
[
e−〈L◦exp−1,1{·≤t}f〉

]
(4.7)

= (1− p)c
∫
R

duE

[
1− exp

{
−
∫ t

0

f(s)d
(
1{u≤s}Zp(ln(s)−ln(u))

)}]
= (1− p)c

∫ t

0

duE

[
1− exp

{
−
∫ t

0

f(s)d
(
1{u≤s}Zp(ln(s)−ln(u))

)}]
= t(1− p)c · Z•

(
1− exp

{∫ 1

0

f(st)d
(
1{u≤st}Zp(ln(st)−ln(u))

)}∣∣u ≤ t) , (4.8)

where we denoted in the last line by Z•( · |u ≤ t) the integral in R+×D[0,∞) with respect
to the probability measure

Z•( · |u ≤ t) :=
1{u≤t}

t
duZ(dZ).

Now, we deduce by Lemma A.1–(ii) in the Appendix A that (4.7) is precisely (4.4).

Finally, for later use we state the following equivalent expression for the Laplace
functional associated to the random measure L ◦ exp−1.
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Lemma 4.2. For any measurable f : R+ → R+, we have

− logE

[
exp

{
− 〈L ◦ exp−1, f〉

}]
= (1−p)c

∫ ∞
0

du

∫
Mc

1−e−〈Tlog(u)µ,f◦ exp〉D(dµ). (4.9)

Proof. The proof follows from the equality 〈L ◦ exp−1, f〉 = 〈L, f ◦ exp〉 and the identity:

− logE [exp {−〈L, h〉}] = (1− p)c
∫ ∞

0

du

∫
Mc

1− e−〈Tlog(u)µ,h〉D(dµ),

holding for any measurable h : R+ → R+. The proof of the later is just a straightforward
consequence of (4.3) and the exponential formula for Poisson random measures.

Remark 4.3. Notice from (4.5) that the reinforced Poisson process with rate c can be
interpreted as a Yule-Simon process with immigration: this is, a process modelling
the evolution of a population where new independent immigrants arrive according to
a Poisson point process with intensity (1 − p)c · dt and reproduce according to a time
changed Yule process, independent of the rest.

4.2 Construction of noise reinforced Poisson point processes by decoration

This section is devoted to the construction of noise reinforced Poisson point processes
and to establishing their first properties. From here, we fix p ∈ (0, 1). Further, we
still write D for the point process defined at the start of the previous section for this
parameter p ∈ (0, 1).

• Step 1: Suppose first that 0 < Λ(R) <∞. With the same notation of Section 4.1,
denote by E a Poisson random measure in R with intensity Λ(R)(1− p)etdt and consider
the Poisson point process Σu∈E δ(u,xu) in R×R with intensity (1− p)etdt⊗ Λ. Now, for
each u ∈ E , consider an independent copy Du of D and set

L∗ :=
∑
u∈E

∑
t∈Du

δ(u+t,xu). (4.10)

This is just the point process L from (4.3) with c := Λ(R), marked by a collection of
i.i.d. random variables with law Λ(dx)/Λ(R). Formula (4.10) defines a random measure
in R ×R and if we consider its push forward by (t, x) → (exp(t), x), that we denote as
N̂ := L∗ ◦ (exp, Id)−1, we obtain the measure in R+ ×R given by

N̂ :=
∑
u∈P

∑
t∈Du

δ(uet,xu), (4.11)

where P := E ◦ exp−1 is a Poisson point process in R+ with intensity Λ(R)(1 − p)dt.
We refer to the measure in the previous display as a NRPPP with (finite) characteristic
measure Λ and reinforcement parameter p.
• Step 2: If we no longer assume Λ(R) < ∞, we proceed by superposition. More
precisely, let (Aj)j∈I be a disjoint partition of R \ {0} such that Λ(Aj) <∞. Consider a
collection of independent NRPPPs (N̂j : j ∈ I) with respective characteristic measures
(Λ( · ∩Aj) : j ∈ I) constructed as in (4.11), respectively in terms of:

– Independent Poisson random measures
∑
u∈Pj

δ(u,xu) with respective intensities
given by (1− p)dt⊗ Λ( · ∩Aj).

– Independent collections (Du)u∈Pj of i.i.d. copies of D.

Finally, set P :=
∑
j Pj . Now we are in position to introduce NRPPPs with sigma-finite

characteristic measures:
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Definition 4.4. The random measure N̂ :=
∑
j∈I N̂j is called a reinforced Poisson point

process with reinforcement (or memory) parameter p and characteristic measure Λ.
Moreover, N̂ writes

N̂ =
∑
u∈P

∑
t∈Du

δ(uet,xu). (4.12)

From the identity in the previous display and recalling that the first element of D
is just 0, the measure N̂ naturally decomposes as N̂ = N ′ + N ′′, where N ′ is a PPP
with intensity (1− p)dt⊗ Λ. Moreover, the following properties readily follow from our
construction:

Lemma 4.5. Let N̂ be a NRPPP with characteristic measure Λ and reinforcement
parameter p.

(i) If A ∈ B(R), the restriction 1A(x)N̂ (ds,dx) is a NRPPP with characteristic measure
1AΛ and parameter p.

(ii) If A1, A2 ∈ B(R) are disjoints, then 1A1
(x)N̂ (ds,dx), 1A2

(x)N̂ (ds,dx) are indepen-
dent.

(iii) If N̂1, N̂2 are independent NRPPPs with respective characteristic measures Λ1, Λ2

and same reinforcement parameter p, then N̂1 + N̂2 is a NRPPP with characteristic
measure Λ1 + Λ2 and parameter p.

The next lemma shows that the intensity measure of a NRPPP with characteris-
tic measure Λ and parameter p, coincides with the one of a PPP with characteristic
measure Λ.

Lemma 4.6. Let N̂ be a NRPPP with characteristic measure Λ and reinforcement param-
eter p. For any measurable f : R+ ×R→ R+, we have E[〈f, N̂ 〉] =

∫∞
0

ds
∫
R

Λ(dx)f(s, x).

Proof. Suppose first that Λ(R) <∞ and recall from (4.6) that for fixed u ∈ R+, the atoms
of the measure

∑
t∈D δuet are precisely the jumps of the time-changed Yule process (4.6).

Hence, if
∑
u∈P δ(u,xu) is a Poisson random measure with intensity (1 − p)dt ⊗ Λ and

(Z(u))u∈P is an independent collection of standard Yule processes with law Z, it is then
clear from our construction in the finite case (4.11) that we can write

E
[
N̂ (0, T ]×A

]
= E

[∑
u∈P

1{u≤T}Z
(u)
{p(ln(T )−ln(u))}1{xu∈A}

]
,

where the random measure
∑
u∈P δ(u,xu,Z(u)) is Poisson with intensity (1− p)dt⊗ Λ⊗ Z.

Consequently, if (Zt) under P is a standard Yule process, it holds that E[Zt] = et and by
Campbell’s formula we obtain that

E
[
N̂
(
(0, T ]×A

)]
= T · Λ(A),

and we deduce that the intensity measure of N̂ is given by dt⊗ Λ. When Λ(R) =∞, we
can proceed by superposition.

We now identify the law of N̂ by computing its exponential functionals.

Proposition 4.7. Let N̂ be a NRPPP with characteristic measure Λ and reinforcement
parameter p.

(i) For every measurable f : R+ ×R→ R+ and t ≥ 0 we have

E

[
exp

{
−
∫

(0,t]×R
f(s, x)N̂ (ds,dx)

}]

= exp

{
− t(1− p)

∫
R

Λ(dx)E

[
1− exp

(
−
∫ 1

0

f(st, x)dY (s)

)]}
. (4.13)
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(ii) For every measurable f : R+ × R → R satisfying
∫ t

0
ds
∫
R

Λ(dx)|f(s, x)| < ∞ we
have:

E

[
exp

{
i

∫
(0,t]×R

f(s, x)N̂ (ds,dx)

}]

= exp

{
t(1− p)

∫
R

Λ(dx)E

[
exp

(
i

∫ 1

0

f(st, x)dY (s)

)
− 1

]}
. (4.14)

Proof. (i) We start by considering the finite case Λ(R) < ∞. We shall make use of the
notations introduced before – for instance, recall that 〈N̂ , f〉 = 〈L∗, f ◦(exp, Id)〉. We start
showing the result for f of the form f(s, x) = h(s)g(x), for non-negatives h : R+ → R+

and g : R→ R+, in which case we can write

〈L∗, (h ◦ exp)g〉 =
∑
u∈E

∑
t∈Du

h ◦ exp(u+ t)g(xu) =
∑
u∈E

g(xu)〈TuDu, h ◦ exp〉.

Now, we deduce from the formula for the Laplace transform of Poisson integrals and a
change of variable that

− logE
[
e−〈L

∗,(h◦exp)g〉
]

= (1− p)
∫
R

Λ(dx)

∫
R+

du

∫
Mc

1− e−g(x)〈Tlog(u)µ,h◦exp〉D(dµ).

If we now replace h by h1{·≤t}, making use of the equivalent identities (4.9) and (4.4),
we obtain that the previous display writes:

t · (1− p)
∫
R

Λ(dx)E
[
1− e−g(x)

∫ 1
0
h(st)dY (s)

]
,

proving the claim. Now, still under the hypothesis Λ(R+) <∞, fix arbitrary αi,j ∈ R+,
consider 0 = t1 < · · · < tk+1 < t as well as disjoint subsets A1, . . . , An of R+. Further,
suppose that f is of the form

f(s, x) :=

n∑
j=1

k∑
i=1

αi,j1(ti,ti+1](s)1Aj
(x) and write gj(s, x) :=

k∑
i=1

αi,j1(ti,ti+1](s)1Aj
(x).

(4.15)
Recall from Lemma 4.5 that the restrictions 1A1

N̂ , . . . ,1An
N̂ are independent NRPPPs

with respective characteristic measures Λ(· ∩ Ai). By independence and applying the
previous case to each gj , we deduce that

E

[
exp

{
− 〈N̂ ,1{·≤t}f〉

}]
=

n∏
j=1

E

[
exp

{
− 〈N̂ ,1{·≤t}gj〉

}]

=

n∏
j=1

exp

{
t(1− p)Λ(Aj)E

[
1− exp

{
−
∫ 1

0

k∑
i=1

αi,j1(ti<st≤ti+1](s)dY (s)

}]}

= exp

{
t(1− p)

∫
R

Λ(dx)E

[
1− exp

{
−
∫ 1

0

f(st, x)dY (s)

}]}
,

and once again we recover (4.13). Finally, if f is non-negative and bounded with support
in [0, t]×R, it can be approximated by a bounded sequence of functions (fn) of the form
(4.15), the convergence holding dtΛ a.e. For each n, we have

E

[
exp

{
− 〈N̂ , fn〉

}]
= exp

{
t(1− p)

∫
R

Λ(dx)E

[
1− exp

{
−
∫ 1

0

fn(st, x)dY (s)

}]}
,

(4.16)
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and by Lipschitz-continuity, it follows that

E
[∣∣exp

{
−〈N̂ , f〉

}
− exp

{
−〈N̂ , fn〉

}∣∣] ≤ E[∫
[0,t]×R

|f(s, x)− fn(s, x)|N̂ (ds,dx)

]

=

∫ t

0

ds

∫
R

Λ(dx)|f(s, x)− fn(s, x)| → 0 as n ↑ ∞.

In the last equality we used Lemma 4.6. From the same arguments we also obtain that∫
Λ(dx)E

[
|e−

∫ 1
0
f(st,x)dY (s) − e−

∫ 1
0
fn(st,x)dY (s)|

]
≤
∫

Λ(dx)E

[∫ 1

0

|f(st, x)− fn(st, x)|dY (s)

]
= (1− p)−1

∫ 1

0

ds

∫
R

Λ(dx)|f(st, x)− fn(st, x)| → 0

as n ↑ ∞. Now, we deduce from taking the limit as n ↑ ∞ in (4.16) that the identity (4.13)
also holds for f . Finally, if we no longer assume that f is bounded, the result follows
from applying the statement to f ∧ n for n ≥ 1 followed with the monotone convergence
theorem.

If we suppose that Λ(R) = ∞, the proof follows by superposition. Namely, with
the same notation used for constructing (4.12), the random measures (N̂j)j∈I are
independent NRPPPs with respective finite characteristic measures Λ( · ∩ Aj) and by
definition we have N̂ =

∑
j N̂j . From the formula for the Laplace transform we just

proved in the finite case and independence it follows that

E
[
e−〈N̂ ,f1{·≤t}〉

]
=
∏
j∈I

E
[
e−〈N̂j ,f1{·≤t}〉

]
=
∏
j∈I

exp

{
− t · (1− p)

∫
Aj

Λ(dx)E
[(

1− e−
∫ 1
0
f(st,x)dY (s)

)]}
,

proving (i). Now (ii) follows from similar arguments, by making use of the formula for
the characteristic function for Poissonian integrals and the inequality |eib − eia| ≤ |a− b|
for a, b ∈ R, we omit the details.

The following result is the reinforced analogue of the well known characterisation
result for Poisson point processes that we recalled after (3.5). The arguments we use to
prove this characterisation are very similar to the ones in the non-reinforced case.

Proposition 4.8. Let N̂ be a point process in R+ ×R and for any Borelian A ⊂ R, set

N̂A(t) := N̂ ([0, t]×A), t ≥ 0.

Then, N̂ is a noise reinforced Poisson point process with characteristic measure Λ and
parameter p if and only if the two following conditions are satisfied:

(i) For any Borelian A with Λ(A) <∞, the process N̂A is a noise reinforced Poisson
process with rate Λ(A) and reinforcement parameter p.

(ii) If A1, . . . Ak are disjoint Borelians with Λ(Ai) < ∞ for all i ∈ {1, . . . , k}, the pro-
cesses N̂A1

, . . . , N̂Ak
are independent.

Proof. First, let us prove that NRPPP do satisfy (i) and (ii). Remark that (ii) is just a
consequence of Lemma 4.5–(ii) and we focus on (i). Fix A as in (i) as well as times
0 < t1 < · · · < tk ≤ t. We proceed by computing the characteristic function of the finite
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dimensional distributions of N̂A. This can now be done by considering the function
f(s, x) :=

∑k
i=1 λi1{s≤ti}1A(x) and applying the exponential formula (4.14), yielding

E

[
exp

{
i

k∑
i=1

λiN̂A(ti)

}]

= exp

{
t(1− p)

∫
R

Λ(dx)E

[
exp

(
i

k∑
i=1

∫ 1

0

λi1{st≤ti}1A(x)dY (s)

)
− 1

]}
.

= exp

{
t(1− p)Λ(A)E

[(
exp

{
i

k∑
i=1

λiY (ti/t)

}
− 1

)]}
.

Recalling the identity (4.2), we deduce that N̂A is a noise reinforced Poisson process
with rate Λ(A) and reinforcement p.

Now, we argue that if N̂ is a random measure satisfying (i) and (ii), then it is a
NRPPP. We will establish this claim by showing that N̂ satisfies the exponential formula
(4.14). First, observe that (i) implies that E[N̂A(t)] = tΛ(A), for example by making use
of Lemma 4.6 and the fact that if M̂ is a NRPPP with characteristic measure Λ and
parameter p, then (M̂([0, t]×A) : t ≥ 0) is a reinforced Poisson process with rate Λ(A)

and parameter p. We deduce by a monotone class argument that N̂ satisfies, for any
measurable f : R+ ×R→ R+, the identity:

E

[∫
[0,t]×R

f(s, x)N̂ (ds,dx)

]
=

∫ t

0

ds

∫
Λ(dx)f(s, x). (4.17)

Still for A as in (i) and for an arbitrary collection of times 0 = t1 < t2 < · · · < tk+1 < t,
we set

g(s, x) :=

k∑
i=1

αi1(ti,ti+1](s)1A(x). (4.18)

Since by hypothesis (N̂A(t))t∈R+ is a NRPP with rate Λ(A), by the formula (4.2) for
the characteristic function of the finite dimensional distributions of reinforced Poisson
processes, we obtain that

E

[
exp

{
i〈N̂ ,1{·≤t}g〉

}]
= E

[
exp

{
i

k∑
i=1

αi(NA(ti+1)−NA(ti))

}]

= exp

{
t(1− p)Λ(A)E

[
exp

(
i

k∑
i=1

αi(Y (ti+1/t)− Y (ti/t))

)
− 1

]}

= exp

{
t(1− p)

∫
R

Λ(dx)E

[
exp

(
i

∫ 1

0

k∑
i=1

αi1{ti<st≤ti+1}1A(x)dY (s)

)
− 1

]}
.

Remark that this is precisely the identity (ii) of Proposition 4.7 for our choice of g.
Making use of the independence hypothesis of N̂A1 , . . . N̂Ak

for disjoints A1, . . . , Ak with
Λ(Ai) <∞, we can also show that the identity holds for f as in (4.15) for such collections
of sets. Now, if f is non-negative, bounded and supported on [0, t]× A with Λ(A) <∞,
making use of (4.17), we can proceed as in (4.16) for the proof of Proposition 4.7,
approximating f by a bounded sequence of the form (4.15), and show that the exponential
formula (4.14) still holds. The general case follows by sigma finiteness of Λ and we
deduce that N̂ is a NRPPP with the desired parameters.
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4.3 Proof of Point 2 of Theorem 1.1 and compensator of the jump measure

We con now conclude the proof of Theorem 1.1.

Proof of Point 2 of Theorem 1.1. The result will follow as soon as we establish (i) and (ii)
of Proposition 4.8 for

N̂A(t) := #
{

(s,∆ξ̂s) ∈ [0, t]×A
}
, t ≥ 0, (4.19)

where A is an arbitrary Borelian satisfying Λ(A) < ∞. By the identity in distribution
(2.12), we can restrict our arguments to the unit interval and hence we can make use of
the explicit construction of NRLPs in [0, 1] that we recalled in Section 2.3, in terms of
Yule-Simon series.

Denote byM :=
∑
i δ(xi,Yi) the Poisson random measure with intensity (1− p)Λ⊗Q

and recall the discussion following Proposition 3.1. If (xi, Yi) is an atom ofM, then at
time Ui = inf{t ≥ 0 : Yi(t) = 1}, the process ξ̂ performs the jump xi for the first time, i.e.
∆ξ̂Ui

= xi and this precise jump xi is repeated in the interval [0, 1] at each jump time
of Yi. It follows that for any f : R→ R+ we have:∑

s≤t

f(∆ξ̂s) =
∑
i

f(xi)Yi(t), (4.20)

and in particular, we get:

N̂A(t) =
∑
i

1{xi∈A}Yi(t).

Hence, by the independence property of Poisson random measures, the processes
N̂A1

, . . . , N̂An
are independent as soon as Ai ∩ Aj = ∅ for all i 6= j. Now, if we fix

λ1, . . . , λk ∈ R, 0 ≤ t1 < · · · < tk ≤ 1, we deduce from the formula for the characteristic
function for Poisson integrals the equality:

E

exp

{
i

k∑
j=1

λjN̂A(tj)

} = exp

{
(1− p)Λ(A)E

exp

{
i

k∑
j=1

λjY (tj)

}
− 1

}.
Comparing with (4.2), we get that the right-hand side in the previous display is precisely
the characteristic function of the finite dimensional distributions at times t1, . . . , tk of a
reinforced Poisson process with rate Λ(A) and parameter p.

Recalling the explicit construction of NRPPPs from Definition 4.4, Point 2 of The-
orem 1.1 formalises the idea that the jumps of NRLPs are jumps that are repeated
through time, in analogy to the dynamics of noise reinforced random walks. Further,
our terminology and notation µ̂ for the reinforced measure can now be justified by the
following: if µ is the jump measure of ξ, the counting process (µ([0, t]× A) : t ≥ 0) is a
Poisson process with rate Λ(A) while (µ̂([0, t]×A) : t ≥ 0) is a reinforced Poisson process
with rate Λ(A). Said otherwise, the following identity holds in distribution:

µ̂([0, · ]×A)
L
= µ([0, · ]×A)̂. (4.21)

Now that the main result of the section has been established, we continue our study of
the jump process of NRLPs with a last result of independent interest. In this direction,
we start by briefly recalling notions of semimartingale theory that will be needed. Let X
be a semimartingale defined on a probability space (Ω,F , (Ft),P). Its jump measure
µX is an integer valued random measure on (R+ ×R,B(R+)⊗B(R)), in the sense of
[13, Chapter II-1.13]. Denote the predictable sigma-field on Ω × R+ by Pr. If H is a
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Pr ⊗B(R+)-measurable function, we simply write H ∗ µX for the process defined at
each t ∈ R+ and every point ω of the underlying probability space as

(H ∗ µX)t(ω) :=
∑
s≤t

Hs(ω; ∆Xs(ω)), if
∑
s≤t

|Hs(ω; ∆Xs(ω))| <∞, (4.22)

and∞ otherwise. Both notations for the integral will be used indifferently. Further, we
denote by A + the class of increasing, adapted rcll finite-variation processes (At), with
A0 = 0 such that E [A∞] <∞, and by A +

loc its localisation class. The jump measure µX
possesses a predictable compensator, this is, a random measure µpX on (R+×R,B(R+)⊗
B(R)) unique up to a P-null set, characterised by being the unique predictable random
measure (in the sense of [13, Chapter II-1.6]) satisfying that for any non-negative
H ∈Pr⊗B(R), the equality

E [(H ∗ µX)∞] = E [(H ∗ µpX)∞]

holds. In the last display, we denoted by H ∗ µpX the analogous process obtained by
integrating H with respect to the measure µpX , with the same conventions as before.
Equivalently, for any H ∈ Pr ⊗B(R) such that |H| ∗ µX ∈ A +

loc, the process |H| ∗ µpX
belongs to A +

loc and H ∗ µpX is the predictable compensator of H ∗ µX . Said otherwise,
H ∗ µX −H ∗ µpX is a local martingale.

Recall that it follows from Proposition 3.2 and an integration by parts that the process
ξ̂ is a semimartingale. Hence, we can consider µ̂p, the predictable compensator of its
jump measure µ̂. Our purpose now is to identify explicitly the measure µ̂p. In contrast,
it might be worth mentioning that if ξ is a Lévy process with Lévy measure Λ, the
compensator of its jump measure µ is just the deterministic measure µp = dt⊗ Λ. The
first step consists in observing the following:

Lemma 4.9. Let A ∈ B(R) be a Borel set that doesn’t intersect some open neighbour-
hood of the origin. If we denote by (FA

t ) the natural filtration of N̂A, then the process
MA = (MA(t))t∈R+ defined as MA(0) = 0 and

MA(t) = t−p
(
N̂A(t)− tΛ(A)

)
, t > 0,

is a finite variation (FA
t )-martingale.

Remark that this is just a special case of Proposition 3.2 for a Lévy measure of the
form Λ(A)δ1 with q = 0. Now we can state:

Proposition 4.10 (Compensation formula). Denote by (Ft) the natural filtration of ξ̂
and by µ̂ its jump measure. The predictable compensator µ̂p of µ̂ is given by

µ̂p(ω; dt, dx) = (1− p)dt⊗ Λ(dx) + p
dt

t
Et(ω; dx), (4.23)

where Et(dx) =
∑
s<t δ∆ξ̂s(dx) is the empirical measure of jumps that occurred strictly

before time t.

Consequently, for any predictable process H ∈Pr⊗B(R) such that |H| ∗ µ̂ ∈ A +
loc,

we have |H| ∗ µ̂p ∈ A +
loc and the following process is a local martingale:

Mt =
∑
s≤t

Hs(· ,∆ξ̂s)− (1− p)
∫ t

0

ds

∫
R

Λ(dx)Hs(· , x)− p
∫ t

0

∑
r<s

Hs(· ,∆ξ̂r)
ds

s
, t ≥ 0.

(4.24)
The first compensating term appearing in (4.24) is compensating innovations, i.e. atoms
appearing for the first time, while the second one should be interpreted as the compen-
sator of the memory part of µ̂. Notice that Proposition 4.10 holds if p = 0. Indeed, in
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that case ξ̂ is a Lévy process and its jump process µ is the Poisson point process (3.5).
The compensator (4.23) is just the deterministic compensator dt ⊗ Λ for the Poisson
point processes with characteristic measure Λ and in (4.24) we recover the celebrated
compensation formula, see e.g. [5, Chapter 1]. Remark that since the intensity of both µ
and µ̂ is dt⊗Λ, we have, for both X a Lévy process and its associated NRLP, the equality

E
[∑

s≤t f(s,∆Xs)
]

=
∫ t

0
ds
∫
R

Λ(dx)f(s, x) for any f : R × R → R+. When X := ξ, by

the compensation formula, this identity holds also if we replace f by a non-negative
predictable process H ∈Pr⊗B(R), viz.

E

∑
s≤t

Hs(·,∆ξs)

 = E

[∫ t

0

ds

∫
R

Λ(dx)Hs(·, x)

]
. (4.25)

However, we point out that if we replace in (4.25) the Lévy process by its reinforced
version ξ̂, the identity no longer holds. Indeed, if such formula was satisfied, the exact
same proof for the exponential formula of PPPs of XII-1.12 in [21] would hold in our
reinforced setting, and since random measures are characterised by their Laplace
functional, this would lead us to the conclusion that the law of µ̂ coincides with the law
of µ.

Proof. (i) In order to establish (4.23), by (i) from Theorem 1.8 of [13, Chapter II], it
suffices to show that for any nonnegative predictable process H ∈Pr⊗B(R),

E [(H ∗ µ̂)∞] = E [(H ∗ µ̂p)∞] , (4.26)

and the first step consists in showing the result for deterministic Hs(ω, x) = 1B(x) for
B ∈ B(R). With the same the notation introduced in Proposition 4.8 for the process N̂B,
consider B an arbitrary interval not containing a neighbourhood of the origin as well as
the associated martingale,

MB(t) = t−pN̂
(c)
B (t) = t−p

(
N̂B(t)− tΛ(B)

)
.

Integrating by parts, we get

tpMB(t) =

∫ t

0

spdMB(s) +

∫ t

0

pMB(s)sp−1ds,

and consequently,

N̂B(t)− tΛ(B) =

∫ t

0

spdMB(s) +

∫ t

0

pMB(s)sp−1ds

=

∫ t

0

spdMB(s) +

∫ t

0

(
N̂B(s)− sΛ(B)

)
ps−1ds·

Said otherwise,

N̂B(t)− t(1− p)Λ(B)−
∫ t

0

N̂B(s)ps−1ds =

∫ t

0

spdMB(s)

is a martingale. Since (NB(ω; s))s∈R+ and (NB(ω; s−))s∈R+ differ in a set of null Lebesgue
measure, the equality still holds replacing

∫ t
0
N̂B(s)ps−1ds by

∫ t
0
N̂B(s−)ps−1ds and we

obtain precisely (4.24) for Hs(ω, x) = 1B(x). Now we can proceed as in the proof of
Theorem 2.21 from [13, Chapter II]. Concretely, pick any positive Borel-measurable
deterministic function h = h(x), x ∈ R such that h ∗ µ̂− h ∗ µ̂p is a local martingale and
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let T be an arbitrary stopping time. With the same terminology introduced in item 1.22
of [13, Chapter I] denote by J0, T K the subset of Ω×R+ defined by

J0, T K = {(ω, s) : 0 ≤ s ≤ T (ω)}.

In particular, (h ∗ µ̂)T = 1J0,T Kh ∗ µ̂ where the process 1J0,T K is predictable (since left
continuous) and moreover, by Theorem I 2.2 of [13], the sigma field generated by the
collection

{A× {0} where A ∈ F0, and J0, T K where T is any (Ft)-stopping time }

is precisely the predictable sigma field Pr. Then, if (Tn) is a localising sequence for the
local martingale h ∗ µ̂− h ∗ µ̂p, it follows from Doob’s stopping theorem that for each n,

E
[
(h ∗ µ̂)T∧Tn

∞
]

= E
[
(h ∗ µ̂p)T∧Tn

∞
]
.

Consequently, taking the limit as n ↑ ∞, we deduce by monotone convergence that

E
[
(1J0,T Kh ∗ µ̂)∞

]
= E

[
(1J0,T Kh ∗ µ̂p)∞

]
which in turn implies that (4.26) holds for any predictable process H = 1B1J0,T K where
B is any closed interval not containing the origin and T an arbitrary stopping time. Now
the claim follows by a monotone class argument.

We close our discussion on the jump process of NRLPs with the property at the heart
of the infinite divisibility of ξ̂ as a stochastic process, a topic that will be studied in
Section 6.2. We claim that, for A ∈ B(R) with Λ(A) <∞ the point process of jumps

νA =
∑
s

1{∆ξ̂s∈A}δs, (4.27)

is an infinitely divisible point process. More precisely, the measure νA is a reinforced
Poisson point process P̂ with rate Λ(A) in R+ and if we consider n independent copies
ν1
A, . . . , ν

n
A of the reinforced Poisson process (4.27) but with rate n−1Λ(A), we have the

equality in distribution

νA
L
= ν1

A + · · ·+ νnA. (4.28)

To see this, consider f : R+ → R+ a positive function with support in [0, t], and observe
that

〈f, νA〉 =
∑
s≤t

1A(∆ξs)f(s).

Now the claim follows by computing the Laplace functional of νA, νiA respectively, by
applying the exponential formula (4.13) and from comparing with (4.4). For a more
detailed discussion on infinitely divisible point processes we refer to page 5 of [18].

5 Weak convergence of the pair of skeletons

The main contribution of this section is the proof of Theorem 1.4. However, several
preliminary results and definitions shall be needed to obtain this result. More precisely,
as was discussed in Section 1.1, the two main points needed for the poof of Theorem 1.4
are, on the one hand, the reinforced Itô synthesis (Theorem 1.2) and, on the other
hand, the definition for the joint law (ξ, ξ̂) appearing in Theorem 1.4. We shall start
by addressing these two point separately, starting with the proof of Theorem 1.2. To
this end, in Section 5.1, we introduce the (space) compensated integral with respect
to NRPPPs and prove some of its basic properties. This is the main technical point
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needed for the proof of Theorem 1.2. We shall then define the joint law, of a Lévy
process and its reinforced version (ξ, ξ̂), by introducing an explicit coupling that relies
in Theorem 1.2. More precisely, if we let N be a PPP with intensity dt ⊗ Λ, by Itô’s
synthesis and its reinforced version of Theorem 1.2, it will suffice to define the joint
law (N , N̂ ) and (B, B̂). This is respectively the content of the construction detailed
in 5.2.1 and Definition 5.4. The construction of N̂ is done explicitly in terms of N by a
procedure that should be interpreted as the continuous-time reinforcement analogue
of the reinforcement algorithm for random walks. The definition of the joint law is
given Definition 5.6, and in Proposition 5.1 we characterise the law of the pair (ξ, ξ̂) by
computing the characteristic function of its finite dimensional distributions.

Proposition 5.1. There exists a pair (ξ, ξ̂), where ξ̂ has the law of a NRLP with char-
acteristics (a, q2,Λ, p), with law determined by the following: for all k ≥ 1, λ1, . . . , λk,
β1, . . . βk real numbers, and 0 < t1 < · · · < tk ≤ t, we have

E

exp

{
i

k∑
j=1

(
λjξtj + βj ξ̂tj

)} =

exp

{
tpE

Ψ

(
k∑
j=1

λj1{U≤tj/t}

)+ t(1− p)E

Ψ

(
k∑
j=1

(λj1{Y (tj/t)≥1} + βiY (tj/t))

)},
(5.1)

where U is a uniform random variable in [0, 1]. A pair of processes with such distribution
will always be denoted by (ξ, ξ̂).

We shall then finally turn our attention to the proof of Theorem 1.4 in Section 5.3.
A more detailed overview on how we shall proceed is included in the corresponding
section.

5.1 Proof of Theorem 1.2

Let us start by introducing the (space)-compensated integral with respect to NRPPPs
appearing in the statement of Theorem 1.2. Recall the identity of Lemma 4.6 for the
intensity measure of NRPPPs and for fixed t ∈ R, let f : R+ ×R→ R be a measurable
function satisfying, for all 0 < a < b, the integrability condition∫

(0,t]×{a≤|x|<b}
|f(s, x)|dsΛ(dx) <∞.

Next, we set∫
[0,t]×{a≤|x|<b}

f(s, x)N̂ (sc)(ds,dx) :=∫
[0,t]×{a≤|x|<b}

f(s, x)N̂ (ds,dx)−
∫

(0,t]×{a≤|x|<b}
f(s, x)dsΛ(dx).

This is a centred random variable and if we denote it by Σ
(c)
a,b(f, t), from Lemma 4.5–(ii)

we deduce that (Σ
(c)
e−r,b(f, t))r∈[− log(b),∞) has independent increments, and hence is a

martingale. When the limit of this martingale exists, we will write∫
[0,t]×(−b,b)

f(s, x)N̂ (sc)(ds,dx) := lim
r↑∞

∫
[0,t]×{e−r≤|x|<b}

f(s, x)N̂ (sc)(ds,dx). (5.2)

Recall the notation f ∗ N̂ from (4.22) for the process ((f ∗ N̂ )t, t ≥ 0). When the function
f is of the form f(x, t) = 1(a<x<b)x for some a < b, with a slight abuse of notation we
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write 1{a<x<b}x ∗N , or even 1(a,b)x ∗N when there is no risk of confusion, for f ∗ N̂ with
f(t, x) = 1{a<x<b}x. Analogous conventions will be used when integrating with respect

to the compensated measure N̂ sc.
Recall that the characteristics of a NRLP are being considered with respect to the

cutoff function x1{|x|<1}. The following lemma shows that purely discontinuous NRLPs
can be constructed by integrating with respect to NRPPPs.

Lemma 5.2. Fix a Lévy measure Λ, a parameter p ∈ (0, 1) such that β(Λ)p < 1 and let
N̂ be a NRPPP with characteristic measure Λ and reinforcement parameter p.

(i) For any 0 < a < b, the process 1{a≤|x|<b}x ∗ N̂ is a noise reinforced compound
Poisson process with characteristics (Λ(1{a≤|x|<1}x), 0,1{a≤|x|<b}Λ, p).

(ii) For each t ∈ R+ the compensated integral∫
[0,t]×(−1,1)

xN̂ (sc)(ds,dx) := lim
r↑∞

∫
[0,t]×{e−r≤|x|<1}

xN̂ (sc)(ds,dx) (5.3)

exists. The process 1(−1,1)x ∗ N̂ (sc) is a NRLP with characteristics (0, 0,1(−1,1)Λ, p)

and hence has a rcll modification. Moreover, the convergence (5.3) holds towards
its rcll modification uniformly in compact intervals for some subsequence (rn), and
we shall consider it and denote it in the same way without further comments.

Proof. (i) If we consider ξ̂ a reinforced compound Poisson process with such char-
acteristics and µ̂ is its jump measure, it is a pure jump process and we can write
it as the sum of its jumps. Our claim can now be proved directly from the identity

ξ̂ = (x ∗ µ̂)
L
= (1(a≤|x|<b)x ∗ N̂ ), since by Lemma 4.5–(i), the restriction 1(a≤|x|<b)N̂ has

the same distribution as µ̂. Alternatively, this can be established by means of the ex-
ponential formulas we obtained in Proposition 4.7, by fixing 0 < t1 < · · · < tk < t and
computing the characteristic function of the finite-dimensional distributions at times

t1, . . . , tk of 1{a≤|x|<b}x ∗ N̂ , noticing that for f(s, x) :=
(∑k

j=1 λj1{s≤tj}

)
x1{a≤|x|<b} we

have
k∑
j=1

λj(1{a≤|x|<b}x ∗ N̂ )tj =

∫
[0,t]×R

f(s, x)N̂ (ds,dx).

The claim follows by comparing with the identity for the characteristic function of the
finite-dimensional distributions (2.9) of ξ̂.

(ii) Recall the notation introduced before (5.2) for the martingale (Σ
(c)
e−r,1(f, t))r≥0.

In our case, we have f(s, x) = x and we just write (Σ
(c)
e−r,1(t))r≥0. The fact that the

martingale (Σ
(c)
e−r,1(t))r≥0 converges as r ↑ ∞ and that the limit is a NRLP with charac-

teristics (0, 0,1(−1,1)Λ) can be achieved by similar arguments as in [7] after a couple of

observations. Starting with the former, recall the definition of N̂ from (4.12), and remark
that for each r > 0 we have∫

[0,t]×R
1{e−r≤|x|<1}xN̂ (ds,dx) =

∑
u∈P

1{u≤t}1{e−r≤|xu|<1}xu ·#
{
{ues : s ∈ Du} ∩ [0, t]

}
.

From the discussion right after Proposition 4.1, we infer that if we we consider (Zu)u∈P

an independent collection of independent, standard Yule processes, the family {ues : s ∈
Du} has the same distribution as the collection of jump times of the counting process
1{u≤t}Z

u
p(ln(t)−ln(u)), t ≥ 0. Hence the previous display can also be written as∑

u∈P

1{e−r≤|xu|<1}xu1{u≤t}Z
u
p(ln(t)−ln(u)),
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and now the proof of the convergence as r ↑ ∞ of (Σ
(c)
e−r,1(t))r≥0 follows by the same

arguments as in [7, Lemma 2.6]. Alternatively, one can make use of (2.12) to restrict our
arguments to the interval [0, 1] and apply [7, Lemma 2.6]. Next, to see that the process
1(−1,1)x∗N̂ (sc) defines a NRLP with characteristics (0, 0,1(−1,1)Λ), fix 0 < t1 < · · · < tk < t

and for ε > 0, λ ∈ R set

Φ
(3)
ε,1(λ) =

∫
{ε≤|x|<1}

(
eiλx − 1− iλx

)
Λ(dx).

Recalling the formula (4.14) for the characteristic function of integrals with respect to
NRPPPs, we deduce from considering the function f(s, x) := (

∑k
j=1 λj1{s≤tj})x1{ε≤|x|<1}

that we have

E

exp

{
i

k∑
j=1

λj(1{ε≤|x|<1}x ∗ N̂ (sc))tj )

} = exp

{
t(1− p)E

Φ
(c)
ε,1

 k∑
j=1

λjY (tj/t)

}.
Now we can apply the exact same reasoning as in the proof of Corollary 2.8 in [7]
by writing sj = tj/t ∈ [0, 1] and taking the limit as ε ↓ 0. The uniform convergence
in compact intervals towards the rcll modification of 1(−1,1)x ∗ N̂ (sc) follows from the
second statement of Proposition 3.1, since for every ε ∈ (0, 1), the process∫

[0,t]×{0≤|x|<ε}
xN̂ (sc)(ds,dx), t ≥ 0,

is a NRLP with characteristics (0, 0,1{|x|<ε}Λ).

It immediately follows from the previous lemma that if N̂ is a NRPPP with character-
istic measure Λ, parameter p and, if p < 1/2, we consider Ŵ an independent NRBM with
same parameter, then

X̂t = at+ qŴt +

∫
[0,t]×(−1,1)c

xN̂ (ds,dx) +

∫
[0,t]×(−1,1)

xN̂ (sc)(ds,dx), t ≥ 0, (5.4)

defines a NRLP with characteristics (a, q2,Λ, p). To obtain the a.s. statement of Theo-
rem 1.2 we still need a short argument.

Proof of Theorem 1.2. The result will be deduced from the equality in distribution ξ̂
L
= X̂

for X̂ defined as in (5.4) with same characteristics as ξ̂. In this direction, wlog we assume
p < 1/2, q = 1 and we set

ξ̂≤1 := ξ̂t −
∑
s≤t

1{|∆ξ̂s|≥1}∆ξ̂s

and,

ξ̂<εt := ξ̂≤1
t −

(∑
s≤t

1{ε≤|∆ξs|<1}∆ξ̂s − t
∫
{ε≤|x|<1}

xΛ(dx)
)
.

Notice that for every ε > 0, we can write

ξ̂t = ξ̂<εt +
(∑
s≤t

1{ε≤|∆ξs|<1}∆ξ̂s − t
∫
{ε≤|x|<1}

xΛ(dx)
)

+ ξ̂
(2)
t . (5.5)

Since µ̂ is a reinforced PPP, by Lemma 5.2 the process (5.5) converges uniformly in
compact intervals for some subsequence (εn) as εn ↓ 0 towards Ĉ + ξ̂(2) + ξ̂(3), for some

EJP 28 (2023), paper 161.
Page 28/58

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1045
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Noise reinforced Lévy processes

process Ĉ := ξ̂ − ξ̂(2) − ξ̂(3) continuous by construction. Since µ̂ is a reinforced PPP, by
the independence properties of its restriction we know that ξ̂(2), ξ̂(3) are independent.
Hence, it remains to show that (ξ̂(2), ξ̂(3)) is independent of Ĉ and that Ĉ − at =: B̂ is
a NRBM. Fix arbitrary 0 < u < v ≤ ∞ and keeping the notation for Ŵ , N̂ used in the
representation (5.4). Since N̂ is the clearly the jump measure of X̂, we have the equality
in distribution: (

ξ̂,
∑
s≤·

1{u≤|∆ξ̂s|<v}∆ξ̂s

)
L
=
(
X̂,1{u≤|x|<v}x ∗ N̂

)
. (5.6)

Moreover, since Ŵ is independent of N̂ , from the independence of restrictions of NRPPP
and (5.6) we deduce that 1{ε≤|x|<1}x ∗ µ̂(sc) + 1{1≤|x|}x ∗ µ̂ and ξ̂ − 1{ε≤|x|<1}x ∗ µ̂(sc) −
1{1≤|x|}x∗ µ̂ are independent, the later having the same distribution as at+Ŵt+1(−ε,ε)x∗
N̂ . Now the claim follows by taking the limit as ε ↓ 0.

5.2 The joint law (ξ, ξ̂) of a Lévy process and its reinforced version

In this section we construct explicitly, for an arbitrary fixed Lévy process ξ, the
process ξ̂ in terms of ξ that will be referred to as the noise reinforced version of ξ. This
will yield a definition for the joint law (ξ, ξ̂). Our construction will be justified by the
weak convergence of Theorem 1.4. Let us start by recalling the discrete setting, since
our construction is essentially the continuous-time analogue of the dynamics that we
now describe.

◦ The noise reinforced random walk. Given a collection of identically distributed
random variables (Xn) with law X, denote by Sn := X1 + · · ·+Xn, for n ≥ 1 the corre-
sponding random walk. We construct, simultaneously to (Sn), a noise reinforced version
using the same sample of random variables and performing the reinforcement algorithm
at each discrete time step. In this direction, consider (εn) and (U [n]) independent se-
quences of Bernoulli random variables with parameter p ∈ (0, 1) and uniform random
variables on {1, . . . , n} respectively. Set X̂1 := X1 and, for n ≥ 1, define

X̂n+1 := Xn+11{εn+1=0} + X̂U [n]1{εn+1=1}.

Finally, we denote the corresponding partial sums by Ŝn := X̂1 + · · · + X̂n, n ≥ 1. The
process (Ŝn) is the so-called noise reinforced random walk with memory parameter p,
and we refer to this particular construction of (Ŝn) as the noise reinforced version of
(Sn). The process (Ŝn) can be written in terms of the individual contributions made by
each one of the steps. In this direction, let us introduce a counting process keeping track
of the number of times each step Xk is repeated up to time n. Since if the law of X has
atoms, we have P(X1 = X2) > 0, and we need to slightly modify our algorithm. Namely,
for each n ≥ 1 we write X ′n := (Xn, n) and we perform the reinforcement algorithm to
the pairs (X ′n). This yields a sequence that, with a slight abuse of notation, we denote by
(X̂ ′n). If for every k, n ≥ 1 we set:

Nk(n) := #{1 ≤ i ≤ n : X̂ ′i = X ′k}, (5.7)

we can write:

Ŝn =

∞∑
k=1

Nk(n)Xk, for n ≥ 1. (5.8)

For convenience, we always set S0 = 0 = Ŝ0, and when working with pairs of the form
(S, Ŝ) it will always be implicitly assumed that the noise reinforced version has been
constructed by the algorithm we described. For instance, it is clear that at each discrete
time step n, with probability 1 − p, Sn and Ŝn share the same increment, while with
complementary probability p, they perform different steps.
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Roughly speaking, in the continuum, the steps (Xn) are replaced by jumps ∆ξs of the
Lévy process ξ. With probability 1 − p, the jump is shared with its reinforced version
ξ̂ while with complementary probability p, it is discarded and ξ̂ remains independent
of the discarded jump. The jumps that are not discarded by this procedure are then
repeated at each jump time of an independent counting process that will be attached to
it. The process of discarding jumps with probability p is traduced in a thinning of the
jump measure of ξ. Let us now give a formal description of this heuristic discussion.

5.2.1 Construction of the pair (N , N̂ )

For the rest of the section, we fix a Lévy process ξ with non-trivial Lévy measure Λ,
denote the set of its jump times by I := {u ∈ R+ : ∆ξu 6= 0} and let

N :=
∑
u∈I

δ(u,∆ξu)

be its jump measure. By the Lévy-Itô decomposition, this is a PPP with characteristic
measure Λ and we can write ξ = ξ(1) + J , where ξ(1) is a continuous process while J is a
process that can be explicitly recovered from N , as we recalled in (1.2).

If ξ̂ has the law of its reinforced version, by Theorem 1.2 it can also be written as
ξ̂ = ξ̂(1) + Ĵ , where Ĵ is a functional of a NRPPP N̂ with characteristic measure Λ. Hence,
the main step for defining the law of the pair (J, Ĵ) consists in appropriately defining
(N , N̂ ). However, recalling the construction of NRPPPs by superposition detailed before
Definition 4.4, this can be achieved as follows: first, set A0 := {1 ≤ |x|} and for each
j ≥ 1, let Aj := {1/(j + 1) ≤ |x| < 1/j}. Next, for j ≥ 0 consider the point process

Ij := {u ∈ R+ : ∆ξu ∈ Aj},

remark that Ij is a PPP with intensity Λ(Aj)dt and write I := ∪jIj . With the notation
introduced in Section 4, consider (Du)u∈I a collection of i.i.d. copies of D and for each
j ≥ 0 we set

Nj :=
∑
u∈Ij

∑
t∈Du

δ(uet,∆ξu).

The measure Nj is a NRPPP with characteristic measure (1− p)−1Λ( · ∩Aj), and we can
now proceed as in Section 4.2 to construct the following NRPPP with parameter p by
superposition of (Nj)j≥1, ∑

u∈I

∑
t∈Du

δ(uet,∆ξu). (5.9)

Notice however that its characteristic measure is (1 − p)−1Λ. In this direction, we
consider a sequence of independent Bernoulli random variables (bu)u∈I with parameter
1− p and apply a thinning:

N̂ :=
∑
u∈I

1{bu=1}
∑
t∈Du

δ(uet,∆ξu). (5.10)

Now, N̂ is a NRPPP with characteristic measure Λ and reinforcement parameter p built
explicitly from the jump process of ξ. From the construction, if a jump ∆ξu occurs at
time u, with probability 1− p it is kept and repeated at each uet for t ∈ Du, while with
complementary probability p, it is discarded and N̂ remains independent of the discarded
jump. From now on, we always consider the pair (N , N̂ ) constructed by this procedure.
Then, by definition of N we can write

Jt = ξ
(2)
t + ξ

(3)
t =

∫
[0,t]×{|x|≥1}

xN (ds,dx) +

∫
[0,t]×(−1,1)

xN (sc)(ds,dx), t ≥ 0,
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while on the other hand, by Theorem 1.2 the process defined as

Ĵt = ξ̂
(2)
t + ξ̂

(3)
t :=

∫
[0,t]×{|x|≥1}

xN̂ (ds,dx) +

∫
[0,t]×(−1,1)

xN̂ (sc)(ds,dx), t ≥ 0, (5.11)

is a NRLP with characteristics (0, 0,Λ, p). From our construction, the random measures
N , N̂ can be encoded in terms of a single Poisson random measure

∑
u∈I δ(u,∆ξu,Du,bu),

allowing us to compute explicitly the characteristic function of the finite dimensional
distributions of (ξ(2), ξ̂(2)) and (ξ(3), ξ̂(3)). In this direction, for λ ∈ R recall the notations

Φ(2)(λ) :=

∫
{|x|≥1}

(eiλx − 1)Λ(dx). (5.12)

as well as

Φ(3)(λ) :=

∫
{|x|<1}

(eiλx − 1− iλx)Λ(dx). (5.13)

Now we can state:

Lemma 5.3. For all k ≥ 1, let λ1, . . . , λk and β1, . . . βk be real numbers and fix times
0 < t1 < · · · < tk < t. Then, for i ∈ {2, 3} we have

E

exp

{
i

k∑
j=1

λj
(
ξ

(i)
tj + βj ξ̂

(i)
tj

)} =

exp

{
tpE

Φ(i)

 k∑
j=1

λj1{Y (tj/t)≥1}


+ t(1− p)E

Φ(i)

 k∑
j=1

(λj1{Y (tj/t)≥1} + βiY (tj/t))

} (5.14)

where we denote by Y a Yule-Simon process with parameter 1/p.

Let us briefly comment on this expression. The first exponential term in (5.14)
corresponds to the characteristic function of the finite dimensional distributions of a
Lévy process with law (ξ

(i)
pt )t∈R+ , viz.

E

exp

{
i

k∑
j=1

λjξ
(i)
ptj

} = exp

{
tpE

Φ(i)
( k∑
j=1

λj1{U≤tj/t}

)},
where U is a uniform random variable in [0, 1] (recall that the first jump time of a Yule-
Simon process is uniformly distributed in [0, 1]). More precisely, this Lévy process is
built from the discarded jumps

∑
u 1{bu=0}δ(u,∆ξu) and consequently is independent of

ξ̂(i) and
∑
u 1{bu=1}δ(u,∆ξu), which explains the form of the identity (5.14).

Proof. We start with the case i = 2. We can assume that tk < 1 by working with
t1/t < · · · < tk/t and with the pair (ξst, ξ̂st)s∈[0,1], which now has Lévy measure tΛ. Now,
the proof follows by a rather long but straightforward application of the formula for the
characteristic function of integrals with respect to Poisson random measures.

We next turn our attention to the case i = 3. By the usual scaling argument we can
suppose again that tk < 1 = t. Now, the proof is similar to the one of Corollary 2.8 in [7].
In this direction, notice that the processes ξ(3) = 1(−1,1)x∗N (sc) and ξ̂(3) = 1(−1,1)x∗N̂ (sc)

are respectively the limit as ε ↓ 0 of

ξ
(3)
ε,1 := 1{ε≤|x|<1}x ∗ N − 1{ε≤|x|<1}x ∗ dt⊗ Λ, (5.15)
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ξ̂
(3)
ε,1 := 1{ε≤|x|<1}x ∗ N̂ − 1{ε≤|x|<1}x ∗ dt⊗ Λ, (5.16)

the convergence holding uniformly in compact intervals. The characteristic function of
the finite-dimensional distributions of the pair (1{ε≤|x|<1}x ∗ N ,1{ε≤|x|<1}x ∗ N̂ ) can be
computed by the same arguments as in Lemma 5.3 and we obtain for each 0 < ε < 1 that

E

exp

{
i

k∑
j=1

(λjξ
(3)
ε,1(tj) + βj ξ̂

(3)
ε,1(tj))

}
= exp

{
pE

Φ(3)
ε

 k∑
j=1

λj1{Y (tj)≥1}


+ (1− p)E

Φ(3)
ε

 k∑
j=1

(
λj1{Y (tj)≥1} + βiY (tj)

)}. (5.17)

In order to establish that this expression converges as ε ↓ 0 towards (5.17), we recall that
since |eix − 1− ix| is O(|x2|) as |x| ↓ 0 and O(|x|) as |x| ↑ ∞, for any r ∈ (β(Λ)∨ 1, 1/p∧ 2)

if β(Λ) < 2 and r = 2 if β(Λ) = 2, we have

C := sup
x∈R
|x|−r|eix − 1− ix| <∞.

It follows that for all 0 < ε < 1, λ ∈ R, we can bound

|Φ(3)
ε (λ)| ≤

∫
{|x|<1}

|eiλx − 1− iλx|Λ(dx) ≤ C|λ|r
∫
{|x|<1}

|x|rΛ(dx).

Moreover, by the remark following Lemma 2.1, the random variable Y (t) ∈ Lr(P) for any
r < 1/p and it follows that the term

k∑
j=1

(
λj1{Y (tj)≥1} + βiY (tj)

)
,

is in Lr(P). Hence, by dominated convergence, (5.17) converges towards (5.17) as ε ↓ 0.

On the other hand, since (ξ
(3)
ε,1(tj), ξ̂

(3)
ε,1(tj)) → (ξ

(3)
tj , ξ̂

(3)
tj ) as ε ↓ 0, we obtain the desired

result.

5.2.2 The distribution of (B, B̂) and proof of Proposition 5.1

The last ingredient needed to define the joint distribution of (ξ, ξ̂) is the joint distribution
of a Brownian motion B and its reinforced version B̂, that we denote as (B, B̂). Recall
from [8] that B̂ has the same law as the solution to the SDE

dXt = dBt +
p

t
Xtdt, (5.18)

and that X can be written explicitly in terms of the stochastic integral (2.17) with respect
to the driving Brownian motion B. We also recall from (2.16) that for 0 < s, t < T the
covariance of B̂ can be expressed in terms of the Yule-Simon process. For later use, we
observe that

(t ∧ s)1−psp = T (1− p)E
[
1{Y (t/T )≥1}Y (s/T )

]
. (5.19)

We stress that the right-hand side in the previous display do not depend on the choice
of T . The proof of this identity is a consequence of the representation (2.1) of Y in terms
of a standard Yule process and an independent uniform random variable.
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Definition 5.4. Let (B, B̂) be a pair of Gaussian processes and fix a parameter 0 < p <

1/2. We say that the pair (B, B̂) has the law of a Brownian motion with its reinforced
version if the respective covariances are given by

E [BtBs] = (t ∧ s), E
[
BtB̂s

]
= (t ∧ s)1−psp, E

[
B̂tB̂s

]
=

(t ∨ s)p(t ∧ s)1−p

1− 2p
,

(5.20)
for any s, t ∈ R+.

Let us briefly explain where this definition comes from: for fixed p, by [4, Theorem
1.1] the law of the pair (B, B̂) is universal, in the sense that it is the weak joint scaling
limit of random walks paired with their reinforced version with parameter p for p < 1/2,
when the typical step is in L2(P). For more details, we refer to [8, 4].

Given a fixed Brownian motion B, it is clear that we can not expect to have an explicit
construction of the reinforced version B̂ in terms of B similar to the one performed for
(J, Ĵ). However, we can make use of the SDE (5.18) to get an explicit construct of (B, B̂)

with the right covariance structure. This can be easily achieved as follows: first, let W
be an independent copy of B; if we set

βt := (1− p)Bt +
√

1− (1− p)2Wt, (5.21)

then, B and β are two Brownian motions with E [Btβs] = (1− p)(t ∧ s). If we let B̂ be the
solution to the SDE,

dB̂t = dβt +
p

t
B̂tdt, (5.22)

B̂ has the law of a noise reinforced Brownian motion with reinforcement parameter p,
and can be written explicitly as B̂t = tp

∫ t
0
s−pdβs. Moreover, it readily follows that the

covariance of the pair of Gaussian processes (B, B̂) satisfies (5.20). The decorrelation
applied for constructing β is playing the role of the thinning in the construction of
(J, Ĵ).

Finally, we will need for the proof of Proposition 5.1 the following representation of
the characteristic function of the finite-dimensional distributions of the pair (B, B̂) in
terms of the Yule-Simon process:

Lemma 5.5. Let (B, B̂) be a Brownian motion with its reinforced version for a memory
parameter p < 1/2. For all k ≥ 1, λ1, . . . , λk, β1, . . . βk real numbers and 0 < t1 < · · · <
tk < t, we have

E

exp

{
i

k∑
j=1

(
λjBtj + βjB̂tj

)} =

exp

{
− tpE

q2

2

(
k∑
j=1

λj1{Y (tj/t)≥1}

)2


− t(1− p)E

q2

2

(
k∑
j=1

(
λj1{Y (tj/t)≥1} + βjY (tj/t)

))2
}. (5.23)

Proof. Since NRBM satisfies the same scaling property of Brownian Motion (see page 3

of [8]), from (5.20) we deduce (Btc, B̂tc)t∈R+
L
= (c1/2Bt, c

1/2B̂t)t∈R+ . Hence, as usual we
can suppose that tk < 1 and we take t := 1. To simplify notation we also suppose that
q = 1. Now, the left hand side of (5.23) writes

E

exp

{
i

k∑
j=1

(
λjBtj + βjB̂tj

)}
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= exp

{
− 1

2

∑
i,j

λiλjCov(Bti , Btj )− 1

2

∑
i,j

βiβjCov(B̂ti , B̂tj )−
∑
i,j

λiβjCov(Bti , B̂tj )

}

= exp

{
− 1

2
E

[(
k∑
j=1

λj1{Y (tj)≥1}

)2

+ (1− p)

(
k∑
j=1

βjY (tj)

)2

+ 2(1− p)
∑
i,j

λiβj1{Y (ti)≥1}Y (tj)

]}
,

where we used respectively for each one of the covariances in order of appearance that:
the first jump time of a Yule-Simon process is uniformly distributed, (2.16) and (5.19).
However, this is precisely the right hand side of (5.23).

Now that all the ingredients have been introduced, we define the law of (ξ, ξ̂).

a Recipe for reinforcing Lévy processes: consider a starting Lévy process ξ with triplet
(a, q2,Λ) and denote by ξt = at + qBt + Jt for t ≥ 0 its Lévy-Itô decomposition, where
B and J are respectively a Brownian motion and a Lévy process with triplet (0, 0,Λ).
Further, fix p ∈ (0, 1) an admissible parameter for the triplet, denote the jump measure
of ξ by N =

∑
δ(u,∆ξu) and consider the NRPPP N̂ with characteristic measure Λ

and reinforcement parameter p as constructed in (5.10) in terms of N . Denote by
Ĵ := 1(−1,1)x ∗ N̂ (sc) + 1(−1,1)cx ∗ N̂ the corresponding NRLP of characteristics (0, 0,Λ, p)

and finally, consider a NRBM B̂ independent of (J, Ĵ), such that (B, B̂) has the law of a
Brownian motion with its reinforced version – for example by proceeding as in (5.22).

Definition 5.6. We call the noise reinforced Lévy process ξ̂t := at + qB̂t + Ĵt for t ≥ 0

of characteristics (a, q2,Λ, p) the noise reinforced version of ξ, the unicity only holding
in distribution. From now on, every time we consider a pair (ξ, ξ̂), it will be implicitly
assumed that ξ̂ has been constructed by the procedure we just described in terms of ξ.

Let us now conclude the section by computing the characteristic function of the
finite-dimensional distributions of (ξ, ξ̂).

Proof of Proposition 5.1. If Ψ is the characteristic exponent of ξ, we can write

Ψ(λ) = iaλ− 1

2
q2λ2 + Φ(2)(λ) + Φ(3)(λ),

for Φ(2), Φ(3) defined respectively by (5.12) and (5.13). Recalling the independence
between the pairs (B, B̂), (ξ(2), ξ̂(2)), (ξ(3), ξ̂(3)), the proof of Proposition 5.1 now fol-
lows from Lemmas 5.3, 5.3, 5.5 and the previous decomposition for the characteristic
exponent Ψ.

From the construction of (N , N̂ ), we can sketch a sample path of (ξ, ξ̂), where the
jumps that are not appearing on the path of ξ̂ are precisely the ones deleted by the
thinning:

5.3 Proof of Theorem 1.4

Let us outline the main steps we shall follow to prove Theorem 1.4. First, by (2.12),
it suffices to prove the convergence in [0, 1] and we therefore work with ξ = (ξt)t∈[0,1].
Next, since we are working in D2[0, 1], it suffices to establish tightness coordinate-wise
to obtain tightness for the sequence of pairs. The first coordinate in (1.4) converges
a.s. towards ξ in D[0, 1] (and in particular is tight) and hence it remains to establish
tightness for the sequence of reinforced n-skeletons. This is the content of Section 5.3.2
and more precisely, of Proposition 5.9. This is achieved by means of the celebrated
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Figure 2: Sample path of a Lévy process and its reinforced version.

Aldous tightness criterion and our arguments rely on the discrete counterpart of the
remarkable martingale from Proposition 3.2. This discrete martingale is introduced in
Lemma 5.7 and we recall from [4, 3] its main features. This is the content of Section 5.3.1.
Finally, the joint convergence in the sense of finite-dimensional distributions towards
(ξ, ξ̂) is proved in Proposition 5.12, by establishing the convergence of the corresponding
characteristic functions.

5.3.1 The martingale associated with a noise reinforced random walk

◦ The elephant random walk and its associated martingale. Let us start with some
historical context. In [2], Bercu was interested in establishing asymptotic convergence
results for a particular R-valued random walk with memory, called the elephant random
walk. This process is defined, for a fixed κ ∈ (0, 1) that we still call the reinforcement
parameter, by the following algorithm. Write {Y1, Y2, . . . } for its family of increments, we
set E0 := 0 and let Y1 be a random variable with Y1 ∈ {−1, 1}. Then, the position of our
elephant at time n = 1 is given by E1 = Y1 and for n ≥ 2, it is defined recursively by the
relation En+1 := En + Yn+1, for Yn+1 constructed by selecting uniformly at random one of
the previous increments {Y1 . . . Yn}, and changing its sign with probability 1− κ. The
analysis of Bercu relies on a martingale associated to the elephant random walk, defined
as M1 = E1 and for n ≥ 2, as

Mn := ânEn, for ân :=
Γ(n)Γ(2κ)

Γ(n+ 2κ− 1)
, (5.24)

and where Γ stands for the Euler-Gamma function. This martingale had already made its
appearance in the literature in Heyde [12]. As was pointed out by Kürsten [16], the key
is that when κ ∈ [1/2, 1) and the initial step Y1 is distributed Rademacher, the elephant
random walk is a version of the noise reinforced random walk with memory parameter
p = 2κ− 1 with typical step X distributed Rademacher.

Getting back to our setting, we shall make use of the notation introduced at the
beginning of Section 5.2 for the noise reinforced random walk for a memory parameter
p ∈ (0, 1). Our first observation is that the martingale (5.24) associated to the elephant
random walk is still a martingale in our setting – we stress that the reinforcement
parameter κ in [2] corresponds to the parameter p = 2κ − 1 in our context. This
martingale plays a fundamental role in our reasoning, and also played a central role in
[4, 3]. More precisely, let a1 := 1 and for n ≥ 2 we set

an :=
Γ(n)

Γ(n+ p)
=

n−1∏
k=1

γ−1
k , (5.25)

for γn := n+p
n . We write Fn := σ(X̂1, . . . , X̂n) for the filtration generated by the rein-

forced steps. The following lemma is taken from [4].
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Lemma 5.7 ([4, Proposition 2.1]). Suppose that the typical step X is centred and in
L2(P). Then, the process M defined by M0 = 0 and Mn = anŜn for n ≥ 1 is a square-
integrable martingale with respect to the filtration (Fn).

In order to establish tightness for our sequence of reinforced skeletons, we will make
use of the explicit form of the predictable quadratic variation 〈M,M〉 of this martingale,
which is the process defined as 〈M,M〉0 = 0 and

〈M,M〉n =

n∑
k=1

E
[
(∆Mk)

2 |Fk−1

]
, n ≥ 1.

In this direction, we introduce:

V̂n := X̂2
1 + · · ·+ X̂2

n, n ≥ 1,

with V̂0 = 0. The following lemma is also taken from [4] and was the main tool for
establishing the invariance principles proven in that work.

Lemma 5.8 ([4, Proposition 2.1]). The predictable quadratic variation process 〈M,M〉 is
given by 〈M,M〉0 = 0 and for n ≥ 1,

〈M,M〉n = σ2 +

n∑
k=2

a2
k

(
(1− p)σ2 − p2 Ŝ2

k−1

(k − 1)2
+ p

V̂k−1

k − 1

)
, (5.26)

where the sum should be considered null for n = 1.

5.3.2 Proof of tightness

We stress that the f.d.d. convergence of the sequence of reinforced skeletons towards a
NRLP ξ̂ of characteristics (a, q2,Λ, p) was already established in Theorem 3.1 of [7].

Proposition 5.9. Let p < 1/2 be an admissible memory parameter for the triplet
(a, q2,Λ). Then, the sequence of laws associated to the reinforced skeletons{(

Ŝ
(n)
bntc
)
t∈[0,1]

: n ∈ N
}

is tight in D[0, 1]. (5.27)

Therefore, the convergence
(
Ŝ

(n)
bntc
)
t∈[0,1]

L−→ (ξ̂t)t∈[0,1] holds in D[0, 1].

The reason behind the restriction p < 1/2 and why we don’t expect our proof to work
for p ≥ 1/2 is explained in Remark 5.11, at the end of the proof.

Proof of Proposition 5.9 for centred ξ with compactly supported Lévy measure

Until further notice, we restrict our reasoning to the case when ξ is a centred Lévy
process, with diffusion coefficient q = 1 and with Lévy measure Λ concentrated in
[−K,K] for some K > 0. Without loss of generality, we further suppose that K = 1. In

consequence, ξ has finite moments of any order and we set σ2
n := E[ξ2

1/n] = E[(X̂
(n)
1 )2].

Notice that under our standing hypothesis, ξ̂ writes

tp
∫ t

0

s−pdBs + ξ̂
(3)
t , t ∈ [0, 1],

for some Brownian motion B independent of ξ̂(3). Further, remark that under our
restrictions, the family of discrete skeletons (Ŝ

(n)
k ), for n ∈ N, have typical steps centred

and in L2(P). Consequently, we can make use of Lemma 5.7.
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Next, to establish Proposition 5.9 under our current restrictions, we claim that it is
enough to show that the following convergence holds,(

npabntcŜ
(n)
bntc

)
t∈[0,1]

L−→
(
t−pξ̂t

)
t∈[0,1]

, (5.28)

where now, the sequence on the left-hand side of (5.28) is a sequence of martingales,
while the process on the right hand side is the martingale introduced in Proposition 3.2,
viz.

Nt :=

∫ t

0

s−pdBs + t−pξ̂
(3)
t , t ∈ [0, 1].

Indeed, for each n, let Mn be the continuous time version of the martingale of Lemma 5.7
associated with the n-reinforced skeleton (Ŝ

(n)
k )k∈N, i.e.

Mn
bntc = abntcŜ

(n)
bntc, t ∈ [0, 1],

and remark that by Lemma 5.8, the predictable quadratic variation of Mn
bn·c is given by

〈Mn,Mn〉bntc = 1{1/n≤t}σ
2
n +

bntc∑
k=2

a2
k

(
(1− p)σ2

n − p2
(Ŝ

(n)
k−1)2

(k − 1)2
+ p

V̂
(n)
k−1

k − 1

)
.

It follows that for each n ∈ N, the following process

Nn
t := npMn

bntc = npabntcŜ
(n)
bntc, t ∈ [0, 1],

is also a martingale, and its predictable quadratic variation writes:

〈Nn, Nn〉t = n2p〈Mn,Mn〉bntc

= 1{1/n≤t}n
2pσ2

n + n2p

bntc∑
k=2

a2
k

(
(1− p)σ2

n − p2
(Ŝ

(n)
k−1)2

(k − 1)2
+ p

V̂
(n)
k−1

k − 1

)
. (5.29)

Moreover, by Stirling’s formula, we have

an =
Γ(n)

Γ(n+ p)
∼ n−p, as n ↑ ∞,

which gives:
npabntc ∼ t−p, as n ↑ ∞.

This yields the claimed equivalence between (5.27) and (5.28) under our current re-
strictions for ξ. For technical reasons, we shall prove first that the convergence of the
martingales (Nn) towards N holds in the interval [ε, 1], for any ε > 0. This leads us to
the following lemma:

Lemma 5.10. For any ε > 0, the sequence (Nn
t )t∈[ε,1] for n ∈ N is tight.

Proof. We denote by (Fn
t ) the natural filtration of Nn. By Aldous’s tightness criterion

(see for e.g. Kallenberg [15] Theorem 16.11), it is enough to show that for any sequence
(τn) of (bounded) (Fn

t )-stopping times in [ε, 1] and any sequence of positive real numbers
(hn) converging to 0 such that τn + hn ≤ 1, we have

lim
n↑∞
|Nn

τn+hn
−Nn

τn | = 0, in probability.

By Rebolledo’s Theorem (see e.g. Theorem 2.3.2 in Joffre and Metivier [14]) it’s enough
to show that the sequence of associated predictable quadratic variations (〈Nn, Nn〉)
satisfies Aldous’s tightness criterion, i.e. that

lim
n↑∞
〈Nn, Nn〉τn+hn

− 〈Nn, Nn〉τn = 0, in probability.
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In this direction, by (5.29), we have

〈Nn, Nn〉τn+hn
− 〈Nn, Nn〉τn = n2p

bn(τn+hn)c∑
k=bnτnc+1

a2
k

(
(1− p)σ2

n − p2
(Ŝ

(n)
k−1)2

(k − 1)2
+ p

V̂
(n)
k−1

k − 1

)

≤ (1− p)n2p

bn(τn+hn)c∑
k=bnτnc+1

a2
kσ

2
n + p · n2p

bn(τn+hn)c∑
k=bnτnc+1

a2
k

V̂
(n)
k−1

k − 1
, (5.30)

and it remains to show that both terms in the right hand side converge to 0 in probability
as n ↑ ∞. The key now is in the asymptotic behaviour of the series

∑n
k=1 a

2
k. As was

already pointed out in [2], for p ∈ (0, 1/2), we have

lim
n↑∞

n2p−1
n∑
k=1

a2
k =

1

1− 2p
. (5.31)

Furthermore, since the Lévy measure of ξ is compactly supported, it holds that

σ2
n = E

[
(X̂

(n)
1 )2

]
= E

[
ξ2
1/n

]
= O(1/n), as n ↑ ∞. (5.32)

Now, from (5.31) and (5.32) it follows that

lim
n↑∞

(1− p)n2p−1

bn(τn+hn)c∑
k=bnτnc+1

a2
k = 0 a.s.

and a fortiori in probability, which entails that the first term in (5.30) converges in
probability to 0 as n ↑ ∞. In order to show that the second term in (5.30) also converges
in probability to 0, we need to proceed more carefully. First, since τn ∈ [ε, 1], we can
bound the second term in (5.30) by

n2p

bn(τn+hn)c∑
k=bnτnc+1

a2
k

V̂
(n)
k−1

k − 1
≤ n2p

supbnεc≤k≤n V̂
(n)
k

bnεc

bn(τn+hn)c∑
k=bnτnc+1

a2
k.

Next, since n2p

bnεc ∼ n
2p−1ε−1, in order to proceed as before we need to show that

sup
bnεc≤k≤n

V̂
(n)
k = O(1), in probability as n ↑ ∞,

i.e. that the sequence is stochastically bounded. To do so we proceed as follows: for
each n, notice that the process

V̂
(n)
k = (X̂

(n)
1 )2 + · · ·+ (X̂

(n)
k )2, k ≥ 1,

is the reinforced version of the random walk

V
(n)
k = (X

(n)
1 )2 + · · ·+ (X

(n)
k )2, k ≥ 1,

where (X
(n)
i )2 are i.i.d. variables with law ξ2

1/n. In order to have a centred noise

reinforced random walk, for k ≥ 1 set Ŷ (n)
k := (X̂

(n)
k )2 − E[ξ2

1/n] and we introduce:

Ŵ
(n)
k := V̂

(n)
k − kE

[
ξ2
1/n

]
=
(

(X̂
(n)
1 )2 − E

[
ξ2
1/n

])
+ · · ·+

(
(X̂

(n)
k )2 − E

[
ξ2
1/n

])
= Ŷ

(n)
1 + · · ·+ Ŷ

(n)
k .
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Now, the process (Ŵ
(n)
k )k∈N is the noise reinforced version of the centred random walk

defined for k ≥ 1 as

W
(n)
k = V

(n)
k − kE

[
ξ2
1/n

]
=
(

(X
(n)
1 )2 − E

[
ξ2
1/n

])
+ · · ·+

(
(X

(n)
k )2 − E

[
ξ2
1/n

])
= Y

(n)
1 + · · ·+ Y

(n)
k ,

where (Y
(n)
i )i∈N are i.i.d. with law ξ2

1/n −E[ξ2
1/n]. We can now apply Corollary 4.3 from

[8] to W (n): recalling that σ2
n = E[ξ2

1/n] = O(1/n), we have

E

[
sup
k≤n

(
V̂

(n)
k

)2
]

= E

[
sup
k≤n

(
Ŵ

(n)
k + kσ2

n

)2
]
≤ CE

[
sup
k≤n

(
Ŵ

(n)
k

)2
]

+O(1)

≤ C ′E
[(
ξ2
1/n − E

[
ξ2
1/n

])2
]
n+O(1).

Once again, since ξ has compactly supported Lévy measure, E[ξ2
1/n] and E[ξ4

1/n] are both
O(1/n) as n ↑ ∞ and we deduce that

E

[
sup
k≤n

(
V̂

(n)
k

)2
]

= O(1), as n ↑ ∞.

Hence, by Markov’s inequality the sequence (supk≤n V̂
(n)
k )n is O(1) in probability and we

can conclude as before by bounding as follows for L > 0:

P

n2p
supbnεc≤k≤n V

(n)
k

bnεc

bn(τn+hn)c∑
k=bnτnc+1

a2
k > η


≤ P

(
sup
k≤n

V̂
(n)
k > L

)
+ P

L n2p

bnεc

bn(τn+hn)c∑
k=bnτnc+1

a2
k > η

 .

We shall now conclude the proof of Proportion 5.9 under our standing assumptions,
and in this direction recall our discussion prior to Lemma 5.10. To extend the con-
vergence to the interval [0, 1] we shall use a truncation argument similar to the one

employed in Section 4.3 of [8]. For each ε > 0, we have (Nn
t )t∈[ε,1]

L→ (Nt)t∈[ε,1] and since

(Nt+ε)t∈[0,1]
L→ (Nt)t∈[0,1] by right continuity (extending N·+ε for t ∈ [1− ε, 1] identically

as the constant N1), we deduce by metrisability of the weak convergence that there
exists some sequence (ε(n))n∈N, converging to 0 slowly enough as n ↑ ∞ such that

(Nn
t )t∈[ε(n),1]

L→ (Nt)t∈[0,1] and we only need to show:

sup
s≤ε(n)

npabnscŜ
(n)
bnsc → 0, in probability as n ↑ ∞. (5.33)

In this direction, notice the inequality

〈Nn, Nn〉s ≤ n2pσ2
n + n2p

bnsc∑
k=2

a2
k

(
(1− p)σ2

n + p
V̂

(n)
k−1

k − 1

)
.

Since E[V̂
(n)
k ] = kσ2

n, an application of Doob’s inequality and the previous display yield
that, for any δ > 0, we have

P

(
sup
s≤ε(n)

|npabnscŜ
(n)
bnsc| ≥ δ

)
≤ δ−2E

[
〈N (n), N (n)〉ε(n)

]
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≤ δ−2n2pσ2
n + δ−2E

n2p

bntc∑
k=2

a2
k

(
(1− p)σ2

n + p
V̂

(n)
k−1

k − 1

)
≤ δ−2σ2

nn
2p

bnε(n)c∑
n=2

a2
k.

From the asymptotics,

lim
n↑∞

n2p−1
n∑
k=1

a2
k =

1

1− 2p
, and σ2

n = O(1/n),

we deduce that, as n ↑ ∞, the convergence (5.33) holds and we can conclude by an
application of Lemma 3.31–VI from Jacod and Shiryaev [13].

Remark 5.11. Before proceeding, we point out that our proof no longer works for
p ≥ 1/2: indeed, one might notice that the change in the asymptotic behaviour of the
series

∑n
k=1 a

2
k for p ≥ 1/2 makes the preceding reasoning unfruitful. Let us be more

precise: these series possess three different asymptotic regimes depending on p and
are the reason behind the different regimes appearing in the behaviour of the Elephant
random walk, see e.g. [2]. More generally, they are behind the three regimes appearing
in the invariance principles [8, 4]. When p ≥ 1/2, there is no Brownian component and
the martingale t−pξ̂(3) is no longer in L2(P) because Y (t) ∈ Lq(P) for q < 1/p. Since Nn

is converging weakly towards t−pξ̂(3)
t by (5.28), working with the sequence of quadratic

variations 〈Nn, Nn〉 might not be the right approach to obtain tightness.

Proof of Proposition 5.9, general case

Let us start by introducing some notation. First, if N̂ is the jump measure of ξ̂, we
will shorten our notation for the compensated integrals and simply write ξ̂

(3)
u,v(t) :=

(1{u≤|x|<v}x ∗ N̂ (sc))t, for 0 ≤ u < v. Hence, for K > 1, we can write

ξ̂
(3)
0,K(t) = ξ̂

(3)
t + ξ̂

(3)
1,K(t), t ∈ [0, 1].

It will also be convenient to introduce the following notation for the sums of jumps: for
fixed 0 < a < b, we write

Σa,b(t) :=
∑
s≤t

1{a≤|∆ξ̂s|<b}∆ξ̂s =
∑
i

1xi∈[a,b)xiYi(t), for t ∈ [0, 1], (5.34)

so that in particular we have ξ̂(2) = Σ1,∞. Next, if ξ can be decomposed into ξ =

L(1) + L(2), for independent Lévy processes L(1), L(2), we denote its reinforced skeleton
by Ŝ(n)(ξ) = (Ŝ

(n)
bntc(ξ))t∈[0,1] and we write:

Ŝ(n)(ξ) = Ŝ(n)(L(1)) + Ŝ(n)(L(2)),

for the decomposition that is naturally induced. More precisely, the two noise reinforced
random walks on the right-hand side of the previous display are built from the same
sequence of Bernoulli random variables as Ŝ(ξ), and just result from decomposing each
increment as

∆(n)ξi = +∆(n)L
(1)
i + ∆(n)L

(2)
i .

Now, we proceed by lifting progressively our restriction imposed in 5.3.2 as follows:
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Step 1: First, if ξ satisfies that ξ = M≤K where M≤K is the sum of a Brownian motion
with diffusion q and a compensated martingale with jumps smaller than K, by 5.3.2 the
following convergence holds in distribution:

Ŝ(n)
(
M≤K

) L→ qB̂ + ξ̂
(3)
0,K , as n ↑ ∞. (End of Step 1 )

Step 2: If b is a deterministic constant, let b · Id := (bt : t ≥ 0) and suppose now that ξ
can be written as ξ = b · Id+M≤K . Then, we can write

Ŝ(n)(ξ) = Ŝ(n)(b · Id) + Ŝ(n)(M≤K),

where the sequence of processes (Ŝ(n)(b · Id) : n ≥ 1) is deterministic and converges
uniformly to the continuous function b · Id. Indeed, notice that the reinforcement doesn’t
affect the drift term since Ŝ(n)(b · Id)t = bbntc/n. We deduce from [13, Lemma 3.33] that,
as n ↑ ∞, we still have

Ŝ(n)
(
b · Id+M≤K

)
= Ŝ(n)(b · Id) + Ŝ(n)

(
M≤K

) L→ b · Id+ qB̂ + ξ̂
(3)
0,K . (5.35)

(End of Step 2 )

From here, we work with the Lévy process ξ with triplet (a, q2,Λ), with Lévy-Itô decom-
position given by:

ξ = a · Id+M≤1 + ξ(3),

and we denote its jump measure by N – in particular, we have ξ(3) = 1(−1,1)cx ∗ N . For
any K > 1, we can rearrange the triplet by compensating and modifying appropriately
the drift coefficient, in such a way that we have:

ξ = bKId+M≤K + ξ≥K ,

where ξ≥K := 1(−K,K)cx ∗ N . Before moving to Step 3, let us make the two following
remarks.
• First, notice that for each fixed n, S(n)

(
ξ≥K

) P→ 0 uniformly in probability as K ↑ ∞.
Indeed, we have

P
(

sup
t∈[0,1]

|Ŝ(n)
bntc

(
ξ≥K

)
| > ε

)
≤ P

(
∆ξ≥Kt 6= 0 for some t ∈ [0, 1]

)
,

where the right-hand side can be written in terms of the jump process N of ξ as

P
(
N
(
{(t, x) ∈ [0, 1]×R : |x| ≥ K}

)
≥ 1
)

= 1− e−Λ((−∞,K]∪[K,∞)). (5.36)

The right-hand side in the previous display converges to 0 as K ↑ ∞ and notice that the
bound does not depend on n.
• Let ξ̂ be the noise reinforced Lévy process of characteristics (a, q2,Λ, p) and write

N̂ for its jump measure. Again, we can rewrite ξ̂, by compensating appropriately and
modifying the drift coefficient, as follows:

ξ̂ = bKId+ qB̂ + ξ̂
(3)
0,K + ΣK,∞.

Arguing as before, we have the uniform convergence in probability bKId+ qB̂+ ξ̂
(3)
0,K

P→ ξ̂

as K ↑ ∞, since, by the description of N̂ given in Definition 4.4, we have

P
(

sup
t∈[0,1]

|ΣK,∞(t)| ≥ ε
)
≤ P

(
N̂
(
{(t, x) ∈ [0, 1]×R : |x| ≥ K}

)
≥ 1
)
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= 1− e−(1−p)Λ((−∞,K]∪[K,∞)).

Step 3: To conclude, for K > 1, we write respectively the Lévy process and the
corresponding NRLP without their jumps of size greater than K as

ξ≤K := bKId+M≤K , and ξ̂≤K := bKId+ qB̂ + ξ̂
(3)
0,K .

In (5.35), we already proved that for each fixed K, we have

Ŝ(n)(ξ≤K)
L→ ξ̂≤K , as n ↑ ∞, while by our second remark, ξ̂≤K

L→ ξ̂ as K ↑ ∞.

Since the convergence in distribution is metrisable, there exists an increasing sequence
(K(n) : n ≥ 1) converging to infinity slowly enough as n ↑ ∞, such that

Ŝ(n)
(
ξ≤K(n)

) L→ ξ̂, as n ↑ ∞.

Moreover, we can write

Ŝ(n) (ξ) = Ŝ(n)
(
ξ≤K(n)

)
+ Ŝ(n)

(
ξ≥K(n)

)
,

where for each ε > 0, by (5.36) we have:

lim
n↑∞

P
(

sup
t∈[0,1]

|Ŝ(n)
bntc

(
ξ≥K(n)

)
| > ε

)
≤ lim
n↑∞

1− e−Λ((−∞,K(n)]∪[K(n),∞)) = 0.

We can now apply [13, Lemma 3.31, Chapter VI] to deduce that the convergence

Ŝ(n)(ξ)
L→ ξ̂ holds.

(End of Step 3 )

With this last result we conclude the proof of Proposition 5.9.

5.3.3 Convergence of finite-dimensional distributions

We keep the notation and setting introduced at the beginning of Section 5. For instance,
we recall the notation (Nj(n), j ≥ 1, n ≥ 1) for the counting process of repetitions
introduced in (5.7).

Proposition 5.12. Let ξ be a Lévy process of characteristic triplet (a, q2,Λ) and denote
its characteristic exponent by Ψ. Fix p ∈ (0, 1) an admissible memory parameter, and

for each n, let (S
(n)
k , Ŝ

(n)
k ) be the sequence of n-skeletons and its corresponding rein-

forced versions. Then, there is the weak convergence in the sense of finite-dimensional
distributions, ((

S
(n)
bntc
)
t∈[0,1]

,
(
Ŝ

(n)
bntc
)
t∈[0,1]

)
f.d.d.−→

(
(ξt)t∈[0,1], (ξ̂t)t∈[0,1]

)
, (5.37)

where we denoted by (ξ, ξ̂) a pair of processes with law characterised by (5.1).

Remark that since the convergence is in the sense of finite dimensional distributions,
the restriction p < 1/2 cam be dropped. Our proof will rely on two results taken
respectively from [7] and [9]. We state them without proof for ease of reading:

Corollary 3.7 of [7] Let F be a continuous functional on counting functions such
that F (0) = 0 where, with a slight abuse of notation we still write 0 for the identically
0 trajectory. Further, suppose that there exists c > 0 and 1 ≤ γ < 1/p such that
|F (ω)| ≤ cω(1)γ for every counting function ω : [0, 1] → N. Then, if Y is a Yule-Simon
process with parameter 1/p, the following convergence holds in L1(P):

lim
n→∞

1

n

n∑
j=1

F (Nj(bn·c)) = (1− p)E [F (Y )] . (5.38)
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The second result concerns the asymptotic behaviour of Ψ.

Lemma 3.1 of [9] For any η > 0, the asymptotic behaviour of the characteristic
exponent Ψ as |z| ↑ ∞ satisfies that:

|Ψ(z)| =


o(|z|2+η) when q 6= 0

o(|z|β(Λ)+η) when q = 0 and
∫
|x|≤1

|x|Λ(dx) =∞
o(|z|1+η) when q = 0 and

∫
|x|≤1

|x|Λ(dx) <∞.

Now we have all the ingredients needed for the proof of Proposition 5.12.

Proof. We fix k ≥ 1 as well as times 0 ≤ t1 < · · · < tk ≤ 1, and let β1, . . . βk, λ1, . . . , λk
be arbitrary real numbers. In order to establish the finite dimensional convergence, it
suffices to show that

E

exp

{
i

k∑
j=1

(
λjSbntjc + βjŜbntjc

)} (5.39)

converges as n ↑ ∞ towards (5.1). In this direction, for each n, we write (N
(n)
` (k))k≥1,`≥1

for the counting process of repetitions of Ŝ(n) introduced in (5.7). Recalling the iden-
tity (5.8), we can write,

Ŝ
(n)
bntc =

n∑
`=1

N
(n)
` (bntc)X(n)

` and S
(n)
bntc =

n∑
`=1

1{`≤bntc}X
(n)
` ,

with E[eiλX
(n)
` ] = e

1
n Ψ(λ) for every `. Then, by independence of the counting processes

(N
(n)
` (k))k≥1,`≥1 from the sequence (X

(n)
` )`≥0, the characteristic function (5.39) can be

written as follows

E

exp

{
i

k∑
j=1

(
λjSbntjc + βjŜbntjc

)}
= E

exp

{
i

n∑
`=1

 k∑
j=1

(
λjN

(n)
` (bntjc) + βj1{`≤bntjc}

)X
(n)
`

}
= E

exp

{
− 1

n

n∑
`=1

Ψ

 k∑
j=1

λjN
(n)
` (bntjc) + βj1{`≤bntjc}

} .
Remark that since the law of (N

(n)
` (k))k≥1,`≥1 doesn’t depend on n, we can drop the up-

script (n) in the last display. Next, recall that N`(bntc) = 0 for all t ∈ [0, 1] if ε` = 1 while
on the other hand, if ε` = 0, it holds that N`(bnsc) = 0 for bnsc < `, and N`(bnsc) ≥ 1 if
bnsc ≥ `. Hence, we have:

1{`≤bnsc} = 1{
N`bnsc≥1

}, on {ε` = 0}.

By the previous observations, we can write:

1

n

n∑
`=1

Ψ

 k∑
j=1

λjN`(bntjc) + βj1{`≤bntjc}

 (5.40)

=
1

n

n∑
`=1

Ψ

 k∑
j=1

λjN`(bntjc) + βj1{
N`bntjc≥1

}1{ε`=0} (5.41)
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+
1

n

n∑
`=1

Ψ

 k∑
j=1

βj1{`≤bntjc}

1{ε`=1}.

Now, let us establish the convergence in probability of both terms in the previous display
separately. Starting with the first one, we introduce the functional F : D[0, 1] → C

defined as follows:

F (ω) := Ψ

(
k∑
j=1

λjω(tj) + βj1{ω(tj)∈[1,∞]}

)
, (5.42)

for ω : [0, 1] → N a generic counting function. This is a Q – a.s. continuous functional,
since ω → 1{ω(s)∈[1,∞)} can be written as ω → ω(s) ∧ 1, which is a composition of a
Q-a.s. continuous functional with the continuous mapping x→ x ∧ 1. Moreover, we have
F (0) = 0, and notice that we can bound:∣∣∣∣∣∣

k∑
j=1

λjω(tj) + βj1{ω(tj)∈[1,∞)}

∣∣∣∣∣∣ ≤ w(1)

(
k∑
j=1

|λj |+ |βj |

)
,

by monotonicity of ω and the inequality 1{ω(s)∈[1,∞)} ≤ ω(s). Now, by Lemma 3.1 of [9],
we deduce that F satisfies the hypothesis of Corollary 3.7 from [7], since

|F (ω)| ≤ |ω(1)|γK

(
k∑
j=1

|λj |+ |βj |

)γ
, with

{
γ ∈ (2, 1/p), if q 6= 0

γ ∈ (1, 1/p), if q = 0,
(5.43)

for a constant K that only depends on β(Λ) and q. From an application of Corollary 3.7
of [7], we obtain the following convergence:

lim
n→∞

1

n

n∑
`=1

Ψ

(
k∑
j=1

λjN`(bntjc) + βj1{
N`bntjc≥1

})1{ε`=0}

= lim
n→∞

1

n

n∑
`=1

Ψ

(
k∑
j=1

λjN`(bntjc) + βj1{
N`bntjc≥1

})

= (1− p)E

Ψ

(
k∑
j=1

λjY (tj) + βj1{
Y (tj)≥1

}) . (5.44)

Turning our attention to the second term, similarly, we claim that:

lim
n→∞

1

n

n∑
`=1

Ψ

(
k∑
j=1

βj1{`≤bntjc}

)
1{ε`=1} = pE

Ψ

(
n∑
j=1

βj1{
U≤tj

}) . (5.45)

Indeed, if for each n we denote by u(n) a uniform random variable on {1, . . . , n} indepen-
dent of the i.i.d. sequence (εn)n of Bernoulli’s with parameter p, we have

E

 1

n

n∑
`=1

Ψ

(
k∑
j=1

βj1{`≤bntjc}

)
1{εl=1}

 = E

Ψ

(
k∑
j=1

βj1{u(n)≤bntjc}

)
1{εu(n)=1}


= E

Ψ

(
k∑
j=1

βj1{u(n)≤bntjc}

) p, (5.46)
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since εu(n) is independent of u(n) for each n. Further, since u(n)/n converges in law to-
wards a uniform random variable in [0, 1], the sequence of step processes (1{u(n)≤bn·c})n∈N
converges weekly towards 1{U≤·}. Consequently, as n ↑ ∞, (5.46) converges towards

pE

Ψ

(
k∑
j=1

βj1{U≤tj}

) ,
where we recall that 1{U≤t} has the same distribution as 1{Y (t)≥1} by the description (2.1).
Finally, recall the identity of Proposition 5.1 for the characteristic function of the finite
dimensional distributions of the pair (ξ, ξ̂). It follows from (5.40) and the limits (5.44),
(5.45) that as n ↑ ∞, we have the convergence towards the characteristic function of the
finite-dimensional distributions of (ξ, ξ̂),

lim
n↑∞

E

exp

{
i

k∑
j=1

(
λjSbntjc + βjŜbntjc

)}
= exp

{
pE

Ψ

(
k∑
j=1

λj1{Y (tj)≥1}

)+ (1− p)E

Ψ

(
k∑
j=1

λj1{Y (tj)≥1} + βiY (si)

)}.

This result paired with the tightness established in Proposition 5.9 proves Theo-
rem 1.4.

6 Applications

We conclude this work with two sections devoted to applications.

6.1 Rates of growth at the origin

In this section we turn our attention to the trajectorial behaviour of noise reinforced
Lévy processes at the origin. In this direction let us start by recalling a well known result
established by Blumenthal and Getoor [9] for Lévy processes. Let ξ be a Lévy process
with characteristic triplet (a, q2,Λ) with no Gaussian component, viz. q = 0; in particular
β(Λ) = β. Further, we make the following hypothesis:

• If
∫
{|x|≤1} |x|Λ(dx) =∞, the characteristic exponent can be written as follows:

Ψ(λ) =

∫
R

(
eiλx − 1− iλx1{|x|≤1}

)
Λ(dx).

Observe that in this case, we have β(Λ) ∈ [1, 2].

• If
∫
{|x|≤1} |x|Λ(dx) < ∞, which can happen for β(Λ) ∈ [0, 1], we suppose Ψ takes the

following form:

Ψ(λ) =

∫
R

(
eiλx − 1

)
Λ(dx).

This is, when
∫

[0,1]
|x|Λ(dx) <∞ we are supposing that the Lévy process has no linear

drift, the reason being that in that case the behaviour at 0 is dominated by the drift term.
We insist in the fact that when β(Λ) = 1 the integral

∫
{|x|≤1} |x|Λ(dx) can be finite or

infinite. We will be working for the rest of the section under these conditions, and we will
refer to them as hypothesis (H). It was established by Blumenthal and Getoor in [9] that
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under (H), the behaviour at zero of a Lévy process is dictated by the Blumenthal-Getoor
index of the Lévy measure Λ. More precisely, almost surely, we have:

lim
t↓0

t−γξt = 0, if β(Λ) < 1/γ and lim sup
t↓0

t−γ |ξt| =∞, if β(Λ) > 1/γ.

We will show that the same result still holds if we replace the Lévy process ξ by its noise
reinforced version. Concretely, the main result of the section is the following:

Proposition 6.1. Let ξ be a Lévy process with triplet (a, 0,Λ) satisfying hypothesis (H),
and consider ξ̂ its noise reinforced version for an admissible parameter p. Then, almost
surely, we have

lim
t↓0

t−γ ξ̂t = 0, if β(Λ) < 1/γ, (6.1)

while
lim sup
t↓0

t−γ |ξ̂t| =∞, if β(Λ) > 1/γ. (6.2)

The rest of the section is devoted to the proof of Proposition 6.1 and it is achieved in
several steps. We start by proving the second statement (6.2), in Lemma 6.2 we prove
(6.1) for β(Λ) ≥ 1,

∫
|x|≤1

|x|Λ(dx) = ∞, and the case β(Λ) ≤ 1,
∫
|x|≤1

|x|Λ(dx) < ∞ is
treated separately in Lemma 6.4.

Proof of (6.2). It suffice to prove that for some r > 0 and ε > 0 a.s. there exists a
sequence of jumps occurring in [0, ε] at times, that we denote by (ti), satisfying

|∆ξ̂ti | > tγ−ri .

Now, recall from the discussion following (4.12) that the jump measure N̂ of ξ̂ dominates
a Poisson point process with intensity (1− p)(du⊗ Λ), say N ′. If we denote the atoms of
N ′ by (ui, xi), we deduce that

#{(ui, xi) ∈ N ′ : ui ∈ [0, ε] and |xi| > 2uγ−ri },

is distributed Poisson with parameter

(1− p)du⊗ Λ
(

(u, x) ∈ [0, ε]×R : |x|1/(γ−r) > 2 · u
)

=

∫
R

(
2−1|x|1/(γ−r) ∧ ε

)
Λ(dx)(1− p).

(6.3)

Now, take r > 0 small enough such that the inequality 1/(γ − r) < β(Λ) still holds. For
such a choice of r, the integral (6.3) is infinite by definition of the index β(Λ) and the
claim follows.

Now we focus on showing that limt↓0 t
−γ |ξ̂t| = 0 for γ ∈ (0, 1/β(Λ)). In this direction,

let us start introducing some notation and with some preliminary remarks. First, notice
that since we are interested in the behaviour of ξ̂ at the origin, we can rely on the original
construction in [7] in terms of Poissonian sums of Yule-Simon processes that we recalled
in Section 2.3. Next, under (H), ξ̂ can be written either as a sum of a compensated
integral ξ̂(3) and a reinforced compound Poisson process ξ̂(2) viz.

ξ̂ = ξ̂(3) + ξ̂(2), if β(Λ) > 1, (6.4)

or as an absolutely convergent series of jumps,

ξ̂ =
∑
s≤t

∆ξ̂s, t ∈ [0, 1], if β(Λ) < 1. (6.5)
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We stress that if β(Λ) = 1, ξ̂ takes the form (6.4) or (6.5) depending respectively on
if
∫
{|x|≤1} |x|Λ(dx) is infinite or not, and remark that γ can be strictly larger than one

only when β(Λ) < 1. Since ξ̂(2) is a finite sum of weighted Yule processes and ξ̂(2)
0 = 0,

independently of the value of β(Λ) it holds that limt↓0 t
−γ ξ̂

(2)
t = 0 and we can consequently

restrict our study of (6.4) resp. (6.5) to the case where ξ̂ = ξ̂(3) resp. ξ̂ has Lévy measure
concentrated in [0, 1] – and hence is a reinforced, driftless subordinator.

Lemma 6.2. Suppose that β(Λ) ≥ 1 and let γ ∈ (0, 1 ∧ 1/β(Λ)). Then,

lim
T↓0

E

[
sup
s≤T

s−γ |ξ̂(3)
s |
]

= 0.

In particular, if β(Λ) ≥ 1 with
∫
{|x|≤1} |x|Λ(dx) =∞, we have limt↓0 t

−γ |ξ̂(3)
t | = 0 a.s.

Proof. Recall from Proposition 3.2 that (t−pξ̂
(3)
t )t∈[0,1] is a martingale. We start by fixing

s < u two times in [0, 1] and notice that for any r ∈ (β(Λ), 1/p ∧ 2) (or r = 2 if β(Λ) = 2),
by Doob’s inequality in Lr(P) we have

E

[
sup
t∈[s,u]

t−γ |ξ̂(3)
t |

]
≤ s−(γ−p)E

[
sup
t∈[s,u]

t−p|ξ̂(3)
t |

]

≤ s−(γ−p)E

[
sup
t∈[s,u]

t−p·r|ξ̂(3)
t |r

]1/r

≤ c · s−(γ−p)u−pE
[
|ξ̂(3)
u |r

]1/r
,

(6.6)

for some constant c. In order to bound the expectation on the right hand side, we recall
from the proof of Lemma 2.6 in Bertoin [7] that the following bound holds 2 for some
constant C large enough:

E
[
|ξ̂(3)
u |r

]1/r
≤ CE

∑
j

Yj(u)r|xj |r
1/r

. (6.7)

Next, by Campbell’s formula we have

E

∑
j

Yj(u)r|xj |r
 = E [Y (u)r]

∫
{|x|<1}

|x|rΛ(dx) <∞, (6.8)

and remark that E [Y (u)r] = u · E [ηr] where η stands for a Yule-Simon random variable

with parameter 1/p. It now follows that we can bound E
[
|ξ̂(3)
u |r

]1/r
≤ K · u1/r for a

positive constant K depending only on r. This observation paired with the bound we
obtained in (6.6), yields:

E

[
sup
t∈[s,u]

t−γ |ξ̂(3)
t |

]
≤ s−(γ−p)u−p+1/r ·K, (6.9)

for a finite constant K that only depends on the choice of r. Now, set t0 := 1, tn :=

2−n, for n ≥ 1 and fix N ∈ N. Applying the bound (6.9) to each interval [2−(n+1), 2−n],
we get:

E

[
sup
t≤tN

t−γ |ξ̂(3)
t |
]
≤
∑
n≥N

E

[
sup

t∈[tn+1,tn]

t−γ |ξ̂(3)
t |

]
≤ 2γ−p

∑
n≥N

2n(γ−1/r), (6.10)

2The bound was first established for non-atomic Lévy measures Λ, but it was later shown that a similar
bound holds if Λ has atoms by an approximation argument.

EJP 28 (2023), paper 161.
Page 47/58

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1045
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Noise reinforced Lévy processes

and to conclude it suffices to show that, for an appropriate choice of r, the inequality
γ − 1/r < 0 is satisfied. Since r ∈ (β(Λ), 1/p ∧ 2), we can always choose ε small enough
such that r := β(Λ) + ε belongs to (β(Λ), 1/p ∧ 2) and γ < 1/(β(Λ) + ε), since we recall
that γ < 1/β(Λ). For such a particular choice of r, the series (6.10) converge and we
obtain the desired result. In particular, this proves the statement of Proposition 6.1 when∫
{|x|≤1} |x|Λ(dx) =∞, which is when ξ̂ = ξ̂(3).

It remains to prove the statement (6.1) of Proposition 6.1 when the Lévy measure
fulfils the integrability condition

∫
{|x|≤1} |x|Λ(dx) <∞. Recalling the discussion prior to

Lemma 6.2, we henceforth assume that the Lévy process is a driftless subordinator with
jumps smaller than one, say (Tt), and we denote by (T̂t) the corresponding reinforced
version for a memory parameter p ∈ (0, 1). It is then convenient to work with its Laplace
transform at time t ∈ [0, 1],

E
[
e−λT̂t

]
= exp

(
− E [Φ(Y (t)λ)]

)
, for λ ≥ 0,

for Φ(λ) := (1−p)
∫
R+

(
1− e−xλ

)
Λ(dx) and Y is a Yule-Simon process with parameter 1/p.

The following result from [9] will be needed and we state it for the reader’s convenience:

Theorem 6.3 (Blumenthal, Getoor [9]). If Φ(λ) is the Laplace exponent of a driftless
subordinator with Lévy measure Λ, then for any ε > 0,

Φ(λ) = o(λβ(Λ)+ε), as λ ↑ ∞.

Let ε > 0, fix λ > 0 and observe from Theorem 6.3 that for t ∈ (0, 1), there exists
positive constants K and R such that

Φ(ηλt−γ) ≤

{
K if ηλt−γ ≤ R,
(ληt−γ)

β(Λ)+ε
if ηλt−γ > R.

Consequently, for t ∈ (0, 1) the following bound holds:

tΦ(ηλt−γ) ≤ t
(
K +

(
ληt−γ

)β(Λ)+ε
)

= tK + (λη)β(Λ)+εt1−γβ(Λ)−γε. (6.11)

Lemma 6.4. Let T̂ be a reinforced subordinator of memory parameter p and Lévy
measure Λ. Then, for any γ ∈ R+ such that γ < 1/β(Λ),

lim
t↓0

t−γ T̂t = 0 a.s.

The proof relies on the same techniques used for subordinators, see [5, Proposition 10
– III.4].

Proof. Consider t ∈ [0, 1] and fix a > 0. An application of Markov’s inequality for
g(r) = 1− e−r and the inequality g(r) ≤ r for r ≥ 0 yield

P
(
T̂t > a

)
≤ (1− e−1)−1

(
1− exp

{
−E

[
Φ
(
a−1Y (t)

)]})
≤ (1− e−1)−1E

[
Φ
(
a−1Y (t)

)]
.

Since Φ(0) = 0 and Y (t) conditioned to Y (t) ≥ 1 follows the Yule-Simon distribution with
parameter 1/p, for a constant C we deduce the bound:

P
(
T̂t > a

)
≤ CtE [Φ (η/a)] , (6.12)
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where we denoted by η a Yule-Simon random variable with parameter 1/p. Now, let h be
an increasing function with limt↓0 h(t) = 0, and consider a = h(2−n), t = 2−(n−1). Then,
by (6.12) and from summing over n ∈ N, we deduce

∞∑
n=1

P
(
T̂2−(n−1) > h(2−n)

)
≤ 2CE

[ ∞∑
n=1

2−nΦ
(
η/h(2−n)

)]
. (6.13)

In order to apply a Borel-Cantelli argument, we specialise to our case of interest: we
set h(t) := tγ and we show that the right hand side of (6.13) is finite. From the first
inequality in (6.11) with λ = 1, we get

∞∑
n=1

2−nΦ
(
η/h(2−n)

)
≤ K

∞∑
n=1

2−n + ηβ(Λ)+ε
∞∑
n=1

(2−n)1−γβ(Λ)−γε.

For ε small enough, we have both ηβ(Λ)+ε ∈ L1(P) (since η is in Lq(P) for any q < 1/p and
β(Λ) < 1/p) and 1−γβ(Λ)−γε > 0, by our standing assumption 1 > γβ(Λ). Consequently,
we have

∞∑
n=1

P
(
T̂2−(n−1) > (2−n)γ

)
<∞,

which entails by Borel-Cantelli that T̂2−(n−1) < (2−n)γ holds for all n large enough, a.s.
From a monotonicity argument, it follows that a.s. T̂t < tγ for all t small enough and in
consequence lim supt↓0 t

−γ T̂t ≤ 1. If we now take h(t) = δtγ for δ ∈ (0, 1), by the same

reasoning we obtain lim supt↓0 t
−γ T̂t ≤ δ which leads to the desired result.

Finally, our proof of Proposition 6.1 is complete.

6.2 Noise reinforced Lévy processes as infinitely divisible processes

As was already mentioned in Section 4.3, NRLPs are infinitely divisible processes –
abbreviated ID processes. In this final section, we study their properties under this new
scope. In this direction, we start by giving a brief overview of the theory; our exposition
mainly follows Rosinski [22] and Chapter 3 of Samorodnitsky [23]. Then, we identify
the features of NRLPs in this setting and more precisely, we identify the functional
triplet of NRLPs, in the sense of ID processes. The objective here is hence to put Lévy
processes and their NRLPs counterparts in the context of ID processes and compare
them through this new lens. As an application, making use of the Isomorphism Theorem
for ID processes [22, Theorem 4.4] we establish the following result:

Proposition 6.5. Let ξ̂ be a noise reinforced Lévy process with characteristics (a, 0,Λ, p).
Let f : R → R+ be a bounded, continuous function with f(x) = O(x2) at 0. Then, we
have

lim
h↓0

h−1E
[
f
(
ξ̂h
)]

= p−1(1− p)
∫
R

Λ(dx)

∞∑
k=1

f(kx)B(k, 1/p+ 1).

Note that the probability distribution appearing in the previous display is the Yule-
Simon distribution (2.2). For an analogous result in the setting of Lévy processes, we
refer to [22, Proposition 4.13] and we shall use in our proof similar type of arguments.
To simplify notation, for the rest of the section we work with NRLPs in [0, 1], but our
exposition can be adapted to R+ with some slight changes. Hence, we can make use
of the construction of NRLPs from [7] in terms of Poissonian Yule-Simon series that we
recalled at the end of Section 3. This construction will be used for the rest of the section.
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6.2.1 Preliminaries on infinitely divisible processes

Let us introduce some standard notation mostly taken from [22]. For T a nonempty set,
we denote by RT the set of R-valued functions indexed by t ∈ T . If S ⊂ T is an arbitrary
subset and e = (e(t))t∈T ∈ RT , we write eS for the restriction of e to S. Further, let πS
be the canonical projection πS : RT → RS from RT into RS , viz. the function defined
as πS(e) := eS . For finite subsets of T of the form I := {t1, . . . , tk} ⊂ T , the space RI is
identified with Rk and we write:

eI = (e(t1), . . . , e(tk)) ∈ RI .

As usual, the space RT is equipped with the cylindrical sigma field BT := σ(πt : t ∈ T )

generated by the projection mappings. For any arbitrary S ⊂ T , we denote by 0S the 0

element of RS and we write BS
0 := {A ∈ BS : 0S /∈ A}. Consequently,

π−1
S (0S) = {e ∈ RT : e(t) = 0 for all t ∈ S} ⊂ RT .

Notice however that this subset is not BT -measurable when S is uncountable. Finally,
for x ∈ R we set JxK := x1{|x|≤1} and if x = (x1, . . . , xk) ∈ Rk, the term JxK should
be interpreted component-wise, viz. JxK := (Jx1K, . . . , JxkK). Now let us start with the
following definition:

Definition 6.6. An R-valued stochastic process X = (Xt)t∈T is said to be infinitely
divisible (in law) if for any n ∈ N, there exist independent and identically distributed
processes Y (n,1), . . . Y (n,n) such that

X
L
= Y (n,1) + · · ·+ Y (n,n).

When T = {1} is a singleton, this is just the definition of a real valued infinitely-
divisible random variable, in which case, the characteristic function of X1 takes the
Lévy-Khintchine form:

E
[
eiθX1

]
= exp

{
iθb− q2

2
θ2 +

∫
R

(
eiθx − 1− iθJxK

)
ν(dx)

}
,

for q, b ∈ R, ν a Lévy measure. Further, it is well known that the set of infinitely divisible
random variables and distributions of Lévy processes are in bijection and it is clear that
if X is a Lévy process with characteristic exponent as in the previous display, we have

X
L
= Y (n,1) + · · ·+ Y (n,n),

where for each i ∈ {1, . . . , n}, Y (n,i) is an independent copy of a Lévy process with char-
acteristic triplet (b/n, q/n, ν/n). Said otherwise, Lévy processes are infinitely divisible
processes. Moreover, from the formula for the characteristic function of Proposition 2.3,
it is clear that NRLPs are in turn infinitely divisible.

Now, recall that a Gaussian process X = (Xt)t∈T is a T -indexed process satisfying
that, for any I = {t1, . . . , tk} ⊂ T , the vector XI = (Xt1 , . . . , Xtk) is Gaussian. In the
sequel we also assume that the Gaussian processes we work with are centred. Gaussian
processes are characterised by their covariance function, in the sense that the law of X
is completely determined by the semi-definite positive function Γ : T × T → R defined by

Γ(t, s) := E [XtXs] , for t, s ∈ T. (6.14)

The following characterisation of infinitely divisible stochastic processes shows that they
are the natural generalisation of Gaussian processes:
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Proposition 6.7 (Proposition 3.1.3 of [23]). An R-valued stochastic process X = (Xt)t∈T
is infinitely divisible if and only if for any finite collection of indices I = {t1, . . . tk} ⊂ T ,
the random vector XI = (Xt1 , . . . Xtk) is infinitely divisible.

Hence, if X is an infinitely divisible process, by the Lévy-Khintchine representation
and the previous proposition, for every I = {t1, . . . , tk} there exists: an Rk-valued
measure νI(dx) satisfying∫

Rk

1 ∧ |x|2νI(dx) <∞, and νI ({0I}) = 0,

a semi-definite positive I×I matrix ΓI and an Rk vector, that we denote as b(I), satisfying
for every θ ∈ RI the identity:

E

[
exp

{∑
t∈I

θtXt

}]
= exp

{
i〈b(I), θ〉 − 1

2
〈θ ΓI , θ〉+

∫
RI

(
ei〈θ,x〉 − 1− i〈θ, JxK〉

)
νI(dx)

}
.

(6.15)

It is possible to show that one can recover the collection of triplets ((b(I),ΓI , νI) : I ⊂
T, |I| < ∞) from a so called functional triplet (b,Γ, ν̄), consisting in a path b ∈ RT , a
covariance function Γ : T ×T → R and a path-valued measure ν̄ defined in RT , satisfying
for any finite I ⊂ T , that

b(I) = πI(b) ΓI = Γ
∣∣
I

νI = ν̄ ◦ π−1
I in BI

0 ,

where ν̄ satisfies some regularity and integrability conditions that we now introduce:

Definition 6.8. A measure ν̄ on RT is called a path Lévy measure if it satisfies the
following two conditions:

(i)
∫
RT |e(t)|2 ∧ 1 ν̄(de) <∞ for all t ∈ T .

(ii) For every A ∈ BT , there exists a countable subset TA ⊂ T such that ν̄(A) =

ν̄(A \ π−1
TA

(0TA
)).

Moreover, we consider the following third condition:

(iii) There exists a countable subset T0 ⊂ T such that ν̄(π−1
T0

(0T0
)) = 0.

Then, (iii) is a stronger statement than (ii) and it has been shown that a path Lévy
measure is σ-finite if and only if (iii) holds – see e.g. [22]. Condition (ii) states roughly
speaking that ν̄ “does not charge the origin”. As we already mentioned, in general 0T is
not measurable and hence we can not state this condition as in the finite-dimensional
case of Lévy measures. One of the main results of the theory states that infinitely
divisible processes are in bijection with functional triplets (b,Γ, ν̄), we refer to [22] for
the proof:

Theorem 6.9. For every infinitely divisible stochastic process X = (Xt)t∈T there exists
a unique generating triplet (b,Γ, ν̄) consisting of a path b ∈ RT , a covariance function Γ

in T × T and a path Lévy measure ν̄ in RT such that for any finite I ⊂ T̂ ,

E

[
exp

{
i
∑
t∈I

θtXt

}]
= exp

{
i〈bI , θ〉 −

1

2
〈θ ΓI , θ〉+

∫
RT

(
ei〈θ,eI〉 − 1− i〈θ, JeIK〉

)
ν̄(de)

}
.

(6.16)
Conversely, for every generating triplet (b,Γ, ν̄) there exists an infinitely divisible process
satisfying (6.16).
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With the notation of Theorem 6.9, it follows in particular that the law of any ID

process X can be written as a sum of two independent processes X
L
= G + P , where

G is Gaussian with covariance Γ and P is a so-called Poissonian ID process. When the
equality X = G+ P holds almost surely, we call respectively G and P the Gaussian part
and the Poissonian part of X. Let us conclude our presentation with the following notion
that will be of use:

Definition 6.10. A process V = (Vt)t∈T defined in a measure space (S,S , n) is called a
representant of a path Lévy measure ν̄ if for any finite I ⊂ T , we have

n (s ∈ S : VI(s) ∈ B) = ν̄I(B), for every B ∈ BI
0 .

The representation is called exact if n ◦ V −1 = ν̄.

This is, if V is only a representant, the measure ν ◦ V −1 might not be a Lévy measure
since it might “charge the origin”. In the situations we will be interested in the represen-
tations will always be exact, and we only enunciate the weaker definition to write the
results we need in their full generality. Representants allow to build explicitly Poissonian
ID processes in terms of Poisson random measure, for more details we refer to [22], see
also our brief discussion before the proof of Proposition 6.5 below.

6.2.2 The characteristic triplet of a NRLP

We can now start investigating Lévy processes and their reinforced counterparts as ID
processes, and we start with a basic analysis of the former. More precisely, we identify
the path Lévy measure of Lévy processes as well as an exact representant. These results
are known [22, Example 2.23] and the statements are only included to contrast with the
analogous results for NRLPs – see Lemma 6.13 below.

Lemma 6.11. The following assertions hold:

(i) Let ξ be a Lévy process with characteristic triplet (a, q,Λ). The path Lévy measure
ν̄ of ξ is given by,

ν̄(de) := (dt⊗ Λ) ◦ V −1(de),

where we denoted by V the mapping V : R+ × R → RR
+

defined as V (s, x) :=

x1{s≤·}.

(ii) Consider a measure Λ on R with Λ(0) = 0 and let V be defined as in (i). Then, the
condition

∫
1 ∧ |x|2Λ(dx) <∞ holds if and only if ν̄ := (dt⊗ Λ) ◦ V −1 is a path Lévy

measure in RR
+

. Moreover, if the later holds, the path Lévy measure ν̄ is σ-finite.

In particular, from (i) we get that V is an exact representant of ν̄, on (S,S , n) :=

(R+ × R,B(R+) ⊗B(R),dt ⊗ Λ). We now turn our attention to noise reinforced Lévy
processes and we start with the following technical lemma:

Lemma 6.12. Let ξ̂ be an NRLP of characteristic triplet (a, 0,Λ, p) and let T = [0, 1].
Then, for any t ∈ T , we have

E

[∫
R

∣∣JY (t)xK− Y (t)JxK
∣∣Λ(dx)

]
<∞. (6.17)

Proof. First, recalling that JxK = x1{|x|≤1}, we can write

E
[∣∣JY (t)xK− Y (t)JxK

∣∣] = E
[∣∣Y (t)JxK

∣∣1{|xY (t)|>1}
]

+ E
[∣∣Y (t)x− Y (t)JxK

∣∣1{|xY (t)|≤1}
]
.

(6.18)
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Remark that since Y takes values in {0, 1, 2, . . . }, the second term on the right-hand side
vanishes. On the other hand, for any q ∈ (β(Λ) ∨ 1, 1/p), by Hölder’s inequality we have∫
R

E
[∣∣Y (t)JxK

∣∣1{|x|Y (t)>1}
]

Λ(dx) =

∫
{|x|≤1}

E
[
Y (t)1{|x|Y (t)>1}

]
|x|Λ(dx)

≤ E [Y q(t)]
1/q
∫
{|x|≤1}

P (Y (t) > 1/|x|)(q−1)/q |x|Λ(dx),

(6.19)

where we recall that Y ∈ Lq(P) for any q < 1/p. To conclude, recall the asymptotic
behaviour from (10) in [7],

P (Y (t) > 1/|x|) ∼ tΓ(1/p+ 1)|x|1/p, as x ↓ 0.

It now follows that we can take q close enough to 1/p such that the integral in (6.19) is
finite and we deduce (6.17).

Now, we identify the path Lévy measure of NRLPs.

Lemma 6.13. The following assertions hold:

(i) Let ξ̂ be a NRLP with characteristic triplet (a, q2,Λ, p). The path Lévy measure ν̄ of
ξ̂ is given by,

ν̄ := (1− p)(Λ⊗Q) ◦ V −1,

where V : D[0, 1]×R→ R[0,1] is defined by V (x, y) := xy.

(ii) Let (a, 0,Λ) be the characteristic triplet of a Lévy process and let V be defined as
in (i). Then, if a memory parameter p ∈ (0, 1) is admissible for the triplet (a, 0,Λ),
the measure ν̄ := (Λ ⊗ Q) ◦ V −1 is a σ-finite path Lévy measure in R[0,1]. On the
other hand, if 1/p < β(Λ), then the integrability condition of Definition 6.8–(i) fails.

In particular, from (i) we get that V is an exact representant of ν̄, in (S,S , n) =

(D[0, 1]×R,B(D[0, 1])⊗B(R),Q⊗ Λ(1− p)). On other hand, (ii) gives a natural inter-
pretation in the terminology of ID processes for the admissibility of p for Λ.

Proof. To identify the Lévy measure, let us write the characteristic function of the finite
dimensional distributions of ξ̂ in the form (6.16) and to simplify notation, we suppose
that a, q = 0. In this direction, consider a finite I ⊂ T , θ = (θt1 , . . . , θtk) ∈ RI , and
denote by y = (y(t))t∈[0,1] an arbitrary counting function. Recall the formula for the

finite dimensional distributions of ξ̂ from Proposition 2.3, for t = 1. It now follows by
Lemma 6.12 and the triangle inequality that we have:∫

R

Λ(dx)E
[∣∣∣ei〈θ,YI〉x − 1− i〈θ, JxYIK〉

∣∣∣] <∞. (6.20)

Now, we can write

E

[
exp

{
i
∑
t∈I

θtξ̂t

}]
= exp

{
(1− p)

∫
R

Λ(dx)E
[
e〈θ,YI〉x − 1− i〈θ, YI〉JxK

]}
= exp

{
(1− p)

∫
R×D[0,1]

(
e〈θ,(xy)I〉 − 1− i〈θ, JxyIK〉

)
Λ⊗Q(dx, dy)

+ i

∫
R×D[0,1]

〈θ, JxyIK〉 − 〈θ, yI〉JxKΛ⊗Q(dx, dy)(1− p)
}
,
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where all the terms in the previous expression are well defined by Lemma 6.12 and (6.20).
Since (xy)I = πI(V (x, y)) and ν̄ = (1− p)(Λ⊗Q) ◦ V −1, we obtain for a clear choice of bI
that

E

[
exp

{∑
t∈I

θtξ̂t

}]
= exp

{∫
RT

(
e〈θ,eI〉 − 1− i〈θ, JeIK〉

)
ν̄(de) + 〈θ, bI〉

}
.

Next, notice that condition (iii) of Definition 6.8 is satisfied by (Λ⊗Q) ◦ V −1. Indeed, if
we let T0 := {1} and 0T0 := {e ∈ RT : e(1) = 0}, recalling that Y (1) ≥ 1 a.s., we deduce
that

Λ⊗Q ((x, y) : xy ∈ {0T0}) = Λ({0}) = 0.

To conclude, let us show that ν̄ satisfies the integrability condition (i) of Definition 6.8 if
p is an admissible memory parameter for Λ, viz. if β(Λ) < 1/p, while when β(Λ) > 1/p,
the condition fails. By definition of ν̄, we have∫

RT

(
|e(t)|2 ∧ 1

)
ν̄(de) =

∫
R

E
[
|xYt|2 ∧ 1

]
Λ(dx), (6.21)

and write:
E
[
|xYt|2 ∧ 1

]
= |x|2E

[
|Yt|21{Yt≤1/|x|}

]
+ P (Yt > 1/|x|) . (6.22)

Now, recalling from (10) of [7] the asymptotic behaviour,

P (Yt > 1/|x|) ∼ tΓ(p−1 + 1)|x|1/p, as |x| ↓ 0,

it follows that if β(Λ) < 1/p, the term P (Yt > 1/|x|) is integrable with respect to Λ and
infinite if β(Λ) > 1/p. Let us now show that the same holds for∫

[0,1]

|x|2E
[
|Yt|21{Yt≤1/|x|}

]
Λ(dx). (6.23)

Recalling Lemma 2.1, we get:

E
[
|Yt|21{Yt≤1/|x|}

]
=

b1/|x|c∑
n=1

n2P (Yt = n) = tp−1

b1/|x|c∑
n=1

n2B
(
n, p−1 + 1

)
,

where we denoted by B the Beta function. Now, from the asymptotic behaviour

B(n, p−1 + 1) ∼ n−(1+p)/pΓ(p−1 + 1), as n ↑ ∞,

it follows that (6.23) is finite if β(Λ) < 1/p and infinite if β(Λ) > 1/p.

Let us state the last two result that we need for the proof of Proposition 6.5. First, the
Poissonian part of ID processes consists, roughly speaking, in Poissonian sums of i.i.d.
trajectories – for instance, remark that for NRLPs those trajectories are the weighted
Yule-Simon processes – for more examples see e.g. [22, Section 3]. More precisely, let
X = (Xt)t∈T be an infinitely divisible process with characteristic triplet (b,Σ, ν̄) and
suppose that V = (Vt)t∈T is a representant of ν̄ defined on a σ-finite measure space
(S,S , n). To simplify notation, set χ(u) := 1{|u|≤1} and considerM a Poisson random
measure in (S,S ) with intensity n. Then, the following process has the same distribution
as X,

bt +Gt +

∫
S

Vt(s)
(
M(ds)− χ(Vt(s))n(ds)

)
, t ∈ T, (6.24)

where G = (Gt)t∈T is an independent Gaussian process with covariance Σ. The integra-
tion in the previous display should read as a compensated integral, and for a detailed
statement we refer to [22, Proposition 3.1]. For example, notice that if X is a Lévy
process,M is Poisson with intensity dt⊗ Λ and replacing V by x1{s≤·} yields a Lévy-Itô
representation. Finally, we give one of the statements of the Isomorphism Theorem of
infinitely divisible processes needed for our proof.
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Theorem 6.14 (Isomorphism Theorem [22, 4.4]). Let X = (Xt)t∈T be an infinitely
divisible process given by (6.24). Choose an arbitrary measurable function q : S → R+

such that
∫
S

q(s)n(ds) = 1 and set N(q) :=
∫
S

q(s)M(ds). Then, for any measurable
functional F : RT → R, we have

E
[
F ((Xt)t∈T )1{N(q)>0}

]
=

∫
S

E
[
F ((Xt + Vt(s))t∈T ) (N(q) + q(s))

−1
]

q(s)n(ds).

This allows for instance to study the law of X under different conditionings, for
appropriate choices of q. This will be used in our reasoning below. Now, let us conclude
the proof of Proposition 6.5.

Proof of Proposition 6.5. To simplify notation, we will write Λp instead of (1− p)Λ. We
start by fixing δ ∈ (0, 1) small enough such that m = Λ(|x| > δ) > 0. Now, let h > 0 and as
usual, write y = (y(t))t∈[0,1] for a generic counting trajectory in D[0, 1]. Recall the result
of Lemma 6.13 and consider a Poisson random measureM =

∑
δ(xi,Yi) with intensity

Λp ⊗Q. Next, we set

q(y, x) :=
1

mh
1{|x|≥δ}1{y(h)≥1},

and take

N(q) =
1

mh

∫
D×{|x|≥δ}

1{y(h)≥1}M(dx,dy) =:
1

mh
Sh.

Then, from the definition of Sh we have

Sh = #{(xi, Yi) : |xi| ≥ δ and Yi(h) ≥ 1} ≤ #{|∆ξ̂s| ≥ δ for s ≤ h},

where the inequality holds since a jump xi is repeated at each jump time of its respective
Yi, and consequently might be repeated multiple times in [0, h]. However, we do have
#{|∆ξ̂s| ≥ δ for s ≤ h} = 0 when Sh = 0. Finally, we consider the functional F (e) :=

f(e(h)) for e ∈ D[0, 1]. An application of Theorem 6.14 yields:

E
[
f(ξ̂h)1{Sh>0}

]
=

∫
D×{|x|≥δ}

E

[
f
(
ξ̂h + xy(h)

) 1

Sh + 1

]
1{y(h)≥1}Q(dy)Λp(dx)

=

∫
D×{|x|≥δ}

Gh(xy(h))1{y(h)≥1}Q(dy)Λp(dx),

for Gh(z) = E
[
f(ξ̂h + z) 1

Sh+1

]
and notice that limh↓0Gh(z) = f(z) by right-continuity

– remark that the previous display can be interpreted as the law of ξ̂h conditioned at
having at least one jump before time h of size greater than δ. If we let η be a random
variable distributed Yule-Simon with parameter 1/p under P, this entails that we can
write:

1

h
E
[
f(ξ̂h)

]
=

1

h
E
[
f(ξ̂h)1{Sh=0}

]
+

1

h
E
[
f(ξ̂h)1{Sh>0}

]
=

1

h
E
[
f(ξ̂h)1{Sh=0}

]
+

∫
{|x|≥δ}

E [Gh(xη)] Λp(dx),

where in the last equality we used that the law of y(h) under

1{y(h)≥1}

Q(y(h) ≥ 1)
Q(dy),

is the Yule-Simon distribution with parameter 1/p by Lemma 2.1 and thatQ(y(h) ≥ 1) = h.
Consequently, we deduce that∣∣∣h−1E

[
f(ξ̂h)

]
−
∫
R

E [f(xη)] Λp(dx)
∣∣∣
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≤ h−1E
[
|f(ξ̂h)|1{Sh=0}

]
+

∫
{|x|≤δ}

E
[
|f(xη)|

]
Λp(dx)

+
∣∣∣ ∫
{|x|≥δ}

E [Gh(xη)]− E [f(xη)] Λp(dx)
∣∣∣

=: K1(h, δ) +K2(δ) +K3(h, δ).

Now, we study the limit as h ↓ 0 of these three terms separately and we start with
K1(h, δ). Recall the notation introduced in 5.3.2 for the compensated integrals as well as
Σδ,∞ := 1(−δ,δ)cx ∗ N̂ for the process obtained by adding jumps of size greater that δ > 0.

Recall that on {Sh = 0}, the process ξ̂ doesn’t have jumps of size greater than δ before
time h. It now follows that, restricted to {Sh = 0}, the following equality holds:

ξ̂h = ξ̂h −
∑
i

xiYi(h)1{|xi|≥δ} = a · h+ ξ̂
(3)
0,1(h) + Σ1,∞(h)− Σδ,∞(h) = ξ̂

(3)
0,δ (h)− cδ · h,

(6.25)

for cδ := −a+
∫
{δ≤|x|≤1} xΛ(dx) and denote the right hand side of (6.25) by ξ̂δh. Now let

us first consider the case β(Λ) < 2. Since f is bounded and O(|x|2) at the origin, for any
q ∈ (β(Λ)∨ 1, 1/p∧ 2) satisfying q < r we can bound |f(x)| ≤ C|x|q for all x ∈ R, for some
constant C large enough. Then, for a constant C ′ that only depends on q we have

K1(h, δ) = h−1E
[
|f(ξ̂h)|1{Sh=0}

]
≤ Ch−1E

[
|ξ̂δh|q

]
≤ C ′h−1E

[
|ξ̂(3)

0,δ (h)|q
]

+ C ′hq−1|cδ|q.

Now, arguing as in (6.7), (6.8), recall that for q ∈ (β(Λ)∨ 1, 1/p∧ 2) we have the following
bound for the compensated sum of Yule-Simon processes:

E
[
|ξ̂(3)

0,δ (h)|q
]
≤ E [Y (h)q]

∫
{|x|≤δ}

|x|qΛ(dx) = h · E [ηq]

∫
{|x|≤δ}

|x|qΛ(dx) <∞. (6.26)

Since q− 1 > 0, we have lim suph↓0K1(h, δ) ≤ E [ηq]
∫
{|x|≤δ} |x|

qΛ(dx) which can be made
arbitrarily small for an appropriate choice of δ. Remark that the same reasoning applies
for K2(δ), by making use once again of the bound |f(x)| ≤ C|x|q. Finally, since for any
choice of δ, K3(h, δ) ↓ 0 as h ↓ 0, we obtain the desired result.

If β(Λ) = 2, we set q = 2 and once again recall from page 9 of Bertoin [7] that the
inequality (6.26) still holds. In this case, since pβ(Λ) < 1, p must be smaller than 1/2 and
consequently E

[
η2
]
<∞, while of course

∫
{|x|≤δ} |x|

2Λ(dx) <∞ by definition of a Lévy
measure. We can then proceed as before.

A Appendix

This short section is devoted to proving a technical identity needed for the proof of
Lemma 4.1. The proof was omitted from the main discussion for readability purposes.

Fix a Lévy measure Λ in R, p ∈ (0, 1) and denote the law of the standard Yule process
Z = (Z(t))t∈R+ started at Z0 = 1 by Z. We write D[0,∞) for the space of R+ indexed,
R-valued rcll functions. Since Z is supported on the subset of D[0,∞) of counting
functions, z = (zt)t∈R+ in the sequel stands for a generic counting function. Moreover,
if F : R+ × D[0,∞) → R+ is a measurable function, we write Z• for the measure in
R+ ×D[0,∞) defined as Z•(F ) :=

∫
R+ duE[F (u, Z)]. Roughly speaking, the objective is

to describe the law of the following “process”:

(u, z)→
(
1{u≤t}zp(ln(t)−ln(u)) : t ∈ R+

)
∈ D[0,∞) (A.1)
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defined on the measure space (R × D[0,∞),Z•), under different restrictions on the
measure Z•. In this direction, for T > 0 we write

Z•(· |u ≤ T ) :=
1{u≤T}

T
duZ(dz),

which is now a probability measure on R+ ×D[0,∞). The main properties of interest
are stated in the following lemma, and shares obvious similarities with Lemma 2.1.

Lemma A.1. The following properties hold:

(i) For each fixed t > 0, the random variable

(u, z)→ 1{u≤t}zp ln(t/u) under Z•(· |u ≤ t),

has the same distribution as the Yule Simon random variable η with parameter 1/p.

(ii) For every T > 0, the process

(u, z)→
(
1{u≤Tt}zp ln(Tt/u) : t ∈ [0, 1]

)
under Z•(· |u ≤ T ),

has the same law as the Yule-Simon process (Y (t))t∈[0,1] with parameter 1/p.

Notice that the conditioning {u ≤ t} is playing the exact same role as the conditioning
on {Y (t) ≥ 1} in Lemma 2.1. Heuristically, (A.1) is then a Yule-Simon process started at
a time chosen according to du in R+.

Proof. (i) Since for each fixed t, du⊗Z(u ≤ t) = t, for every bounded measurable function
f : R→ R, we have

Z•
(
f
(
1{u≤t}zp ln(t/u)

)
|u ≤ t

)
= t−1

∫ t

0

duE
[
f
(
Z
(
p(ln(t)− ln(u))

))]
, (A.2)

where we denoted by Z a standard Yule process. Since Zr is distributed geometric with
parameter e−r, it follows from the change of variable y = (u/t)p and (2.2) that (A.2)
equals

p−1
∑
k≥1

f(k)B(k, 1 + 1/p),

and the claim follows from (2.2).
(ii) In order to show the second claim, we fix an arbitrary collection of bounded

measurable functions (fi)i≤k with fi : R → R, and an increasing sequence of times
0 ≤ t1 < · · · < tk ≤ 1, and notice that

Z•
(

k∏
i=1

fi
(
1{u≤Tti}zp ln(Tti/u)

)
|u ≤ T

)
=

∫ 1

0

duE

[
k∏
i=1

fi
(
1{u≤ti}Z (p(ln(ti)− ln(u)))

)]
.

The claim now follows from the description (2.1) by independence between U and Z.
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