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Abstract

We investigate increasing propagation of chaos for the mean-field Ising model of
ferromagnetism (also known as the Curie-Weiss model) with N spins at inverse
temperature β > 0 and subject to an external magnetic field of strength h ∈ R. Using
a different proof technique than in Ben Arous and Zeitouni [Ann. Inst. H. Poincaré:
Probab. Statist., 35(1): 85–102, 1999] we confirm the well-known propagation of chaos
phenomenon: If k = k(N) = o(N) as N → ∞, then the k’th marginal distribution of
the Gibbs measure converges to a product measure at β < 1 or h 6= 0 and to a mixture
of two product measures, if β > 1 and h = 0. More importantly, we also show that if
k(N)/N → α ∈ (0, 1], this property is lost and we identify a non-zero limit of the total
variation distance between the number of positive spins among any k-tuple and the
corresponding binomial distribution.
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1 Introduction

The Curie-Weiss model is a mean-field model for ferromagnetism in statistical me-
chanics. It is described by a sequence of probability measures, the Gibbs measures µN ,
on the sets {−1,+1}N . These measures are parametrized by a positive parameter β > 0

known as the inverse temperature and a real parameter h ∈ R interpreted as strength of
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When does the chaos in the Curie-Weiss model stop to propagate?

an external magnetic field. Given such β > 0 and h ∈ R, the Gibbs measure takes the
following form:

µN (σ) := µN,β,h(σ) :=
exp

(
β
2N

∑N
i,j=1 σiσj + h

∑N
i=1 σi

)
ZN

σ := (σi)
N
i=1 ∈ {−1,+1}N .

(1.1)
The normalizing constant

ZN = ZN (β, h) =
∑

σ′∈{−1,+1}N
exp

 β

2N

N∑
i,j=1

σ′iσ
′
j + h

N∑
i=1

σ′i

 (1.2)

is called the partition function of the model.
There is a vast literature on the Curie-Weiss model with the main asymptotic results

summarized in the textbooks [5], [11] and [14]; see also the papers [6, 10, 12]. The order
parameter of the model is called the magnetization and is defined by

mN := mN (σ) :=
1

N

N∑
i=1

σi =
2

N
PN − 1,

where PN := PN (σ) := |{i = 1, . . . , N : σi = +1}| is the number of positive spins. Let
µN ◦ m−1N denote the distribution of the random variable mN under the probability
measure µN . The first-order limiting behavior of the magnetization is given by

µN ◦m−1N ⇒

{
δm(β,h), if h 6= 0 or 0 < β ≤ 1,
1
2

(
δm(β,0) + δ−m(β,0)

)
, if h = 0 and β > 1,

(1.3)

which indicates a phase transition at β = 1 in the absence of the external magnetic field
(h = 0). Here, =⇒ denotes weak convergence, δx is the Dirac measure at x and m(β, h) is
the largest in absolute value solution to

z = tanh(βz + h). (1.4)

This solution is unique and positive if h > 0, unique and negative if h < 0, and it is equal
to zero if h = 0 and 0 < β ≤ 1. If h = 0 and β > 1, equation (1.4) has two non-zero
solutions m(β, 0) and −m(β, 0).

For the purpose of the present paper it is important that the weak convergence (1.3)
is accompanied by the corresponding Gaussian approximations whenever β 6= 1 or h 6= 0.
Let us briefly summarize these, postponing the rigorous statements to Section 2 below.
By definition, |m(β, h)| < 1 and it is also true that 0 < β(1 − m2(β, h)) < 1 for all β > 0,
h ∈ R excluding the “critical” case (β, h) = (1, 0). Put

v2β,h :=
1− m2(β, h)

1− β(1− m2(β, h))
, (β, h) 6= (1, 0). (1.5)

If 0 < β < 1 and h = 0, then
√
NmN has Gaussian fluctuations under µN with expectation

m(β, 0) = 0 and variance v2β,0 = 1/(1− β). Of course, this cannot be true for β = 1, h = 0.

In this case, the distribution of N1/4mN has a limiting density

f1(x) =
exp(− 1

12x
4)∫

R
exp(− 1

12y
4)dy

. (1.6)

For β > 1, still assuming h = 0, there is a conditional central limit theorem for
√
N(mN −

m(β, 0)) (respectively
√
N(mN + m(β, 0)), conditioned on mN > 0 (respectively, mN < 0).

In this case the limiting expectation is 0 and the limiting variance is v2β,0. Finally, if h 6= 0,

there are no phase transitions as β varies in (0,∞) and
√
N(mN − m(β, h)) converges to

the centred normal distribution with variance v2β,h.
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When does the chaos in the Curie-Weiss model stop to propagate?

1.1 Propagation of chaos and the main results

For the time being, fix k ∈ N and pick any k-tuple among N spins. The propagation of
chaos paradigm for Gibbs measure states that for a mean-field model as the Curie-Weiss
model the marginal distributions of the k spins become asymptotically independent.
This shall be investigated in the sequel. Since the family of random variables (σi)

N
i=1 is

exchangeable under the Gibbs measure µN , without loss of generality we may pick the
first k spins and consider their marginal distribution µ(k)

N,β,h. Let Pk := |{j ∈ {1, . . . , k} :

σj = +1}| be the number of positive spins among the picked ones. Note that Pk
completely determines µ(k)

N,β,h, hence we might as well study the distribution of Pk under

µN , denoted by µN ◦ P−1k . Intuitively, if h = 0 and 0 < β < 1, as N → ∞, the first k
spins should indeed be asymptotically independent and take values ±1 with the same
probability 1/2. This implies that the distribution of Pk should be close to the binomial
distribution with parameters k and 1/2. This can formally be written as follows. Let
Bin(n, p) denote a binomial distribution with parameters n ∈ N0 and p ∈ [0, 1]:

Bin(n, p)({j}) =

(
n

j

)
pj(1− p)n−j , 0 ≤ j ≤ n. (1.7)

Throughout the paper we shall slightly abuse the notation and write mixtures of distribu-
tions by simply writing a mixing distribution instead of a parameter which is being mixed.
For example, for any distribution L(W ) of a random variable W on [0, 1], the distribution
Bin(n,L(W )) should be understood as

Bin(n,L(W ))({j}) = E
(

Bin(n,W )({j})
)
.

Recall that the total variation distance dTV between two probability measures M1 and
M2 on R is defined by

dTV (M1,M2) = sup
A∈B(R)

|M1(A)−M2(A)|,

where B(R) is the Borel sigma-algebra. Recall also that k ∈ N is fixed for the time being.
The ‘propagation of chaos’ phenomenon for the Curie-Weiss model tells us that, if h = 0

and 0 < β < 1, then
lim
N→∞

dTV (µN ◦ P−1k ,Bin(k, 1/2)) = 0. (1.8)

On the other hand, for h = 0 and β > 1, it is known that

lim
N→∞

dTV

(
µN ◦ P−1k ,Bin

(
k, 12 (δ(1+m(β,0))/2 + δ(1−m(β,0))/2)

))
= 0. (1.9)

Note that the approximating distribution is a mixture of two binomial distributions,
one with success probability (1 + m(β, 0))/2 and the other one with (1− m(β, 0))/2. Finally,
it is known that for h 6= 0 (and arbitrary β > 0), relation (1.8) holds with 1/2 replaced by
(1 + m(β, h))/2.

Assume now that k = k(N) depends on N and limN→∞ k(N) =∞. The aim of the this
note is to answer the question whether the analogues of (1.8) and (1.9) hold true in this
case and if not, what is a threshold on the growth of k(N) such that the limit in (1.8)
or (1.9) becomes non-zero and what is the value of the limit. Note that for k(N)/N → 0,
that is k = o(N), propagation of chaos has been explicitly shown to hold for β 6= 1 and
h = 0 in [4] (note that the authors consider relative entropy rather than total variation
distance and that their model also covers h 6= 0 implicitly). Our answer is provided by
Theorem 1.1 below, which is our main result. To simplify its formulation, let us introduce
additional notation.
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For m ∈ R and v2 > 0 put

ϕ(t; m, v2) :=
1

v
√

2π
exp

(
− (t− m)2

2v2

)
, t ∈ R. (1.10)

That is to say, t 7→ ϕ(t; m, v2) is the density of a Gaussian distribution with mean m and
variance v2. Define

D(v21, v
2
2) :=

1

2

∫
R

∣∣ϕ(t; 0, v21)− ϕ(t; 0, v22)
∣∣dt (1.11)

to be the total variation distance between two centred Gaussian distributions, which can
easily be calculated in terms of the error function. Then our main result reads as follows.

Theorem 1.1. Let k = k(N) be any sequence of positive integers such that

lim
N→∞

k(N) = +∞, lim
N→∞

k(N)

N
= α ∈ [0, 1]. (1.12)

If h = 0 and β ∈ (0, 1), then

lim
N→∞

dTV (µN ◦ P−1k(N),Bin(k(N), 1/2)) = D

(
1− β + αβ

4(1− β)
,

1

4

)
. (1.13)

If h = 0 and β > 1, then

lim
N→∞

dTV

(
µN ◦ P−1k(N),Bin

(
k(N),

1

2
(δ(1+m(β,0))/2 + δ(1−m(β,0))/2)

))
= D

(
1− m2(β, 0)

4

(
1 +

αβ(1− m2(β, 0))

1− β(1− m2(β, 0))

)
,

1− m2(β, 0)

4

)
. (1.14)

If h 6= 0 and β > 0, then

lim
N→∞

dTV
(
µN ◦ P−1k(N),Bin(k(N), (1 + m(β, h))/2)

)
= D

(
1− m2(β, h)

4

(
1 +

αβ(1− m2(β, h))

1− β(1− m2(β, h))

)
,

1− m2(β, h)

4

)
. (1.15)

In particular, if k(N) = o(N), then α = 0 and the right-hand sides in (1.13), (1.14)
and (1.15) vanish, meaning that the ‘propagation of chaos’ persists for any k(N) of a
sublinear growth.

Let us now informally discuss the case when α > 0. For simplicity, we consider (1.13).
The limit on the right-hand side is non-zero, which suggests that there is a residual
dependence between the k(N) spins under the Gibbs measure. The reason for the
non-zero limit is the fact that the distribution of Pk(N) and the corresponding binomial
distribution satisfy central limit theorems with different variances, the variance of Pk(N)

being strictly larger, which comes from the fact that the spins are positively correlated
under the Gibbs measure. The distance between these normal distributions appears
on the right-hand side of (1.13). In Theorem 3.5, we shall determine a mixed binomial
distribution which approximates the distribution of Pk(N) under µN . In some sense, this
describes the residual dependence between the spins under the Gibbs measure.

Remark 1.2. The exchangeability of the measure µN has been used to investigate the
Curie-Weiss model for example, in [17, Section 5.2] and [2]. In particular, an explicit
representation of µN as a mixture of Bernoulli measures (valid for each fixed N ) can be
found in [17, Theorem 5.6]. A general propagation of chaos principle stating that the
distribution of k entries in a finite exchangeable vector of length n can be approximated
by a mixture of i.i.d. distributions can be found in [7].
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The paper is organized as follows. Our proof relies on local limit theorems for the
magnetization mN and also for the total number of positive spins PN under µN . In
some regimes those are known. We collect the corresponding results in Section 2 below.
The proofs of these local limit theorems, which we have not been able to locate in
the literature, are given in Section 4. The proof of Theorem 1.1 is given in Section 3,
including the statement of residual dependence. Two auxiliary technical results related
to calculations of the total variation distance are presented in Section 5.

2 Local limit theorem for the magnetization

Denote by N (m, v2) a Gaussian distribution with mean m and variance v2, so

N (m, v2)(A) =

∫
A

ϕ(t; m, v2)dt, A ∈ B(R).

Put δN := (1− (−1)N )/2. This correction term appears below in the local limit theorems
for mN , since NmN always has the same parity as N .

Proposition 2.1. Assume that h 6= 0 or 0 < β < 1. Then

µN

(√
N(mN − m(β, h)) ∈ ·

)
=⇒ N

(
0, v2β,h

)
, N →∞,

and the following local limit theorem holds true:

lim
N→∞

√
N sup

`∈Z

∣∣∣∣∣µN
(
NmN + δN

2
= `

)
− ϕ

(
`;
Nm(β, h)

2
,
Nv2β,h

4

)∣∣∣∣∣ = 0. (2.1)

Proposition 2.2. Assume that h = 0 and β > 1. Then

µN

(√
N(mN − (+)m(β, 0)) ∈ · | mN > (<)0

)
=⇒ N

(
0, v2β,0

)
, N →∞,

and the following local limit theorem holds true:

lim
N→∞

√
N sup

`∈Z

∣∣∣∣∣µN
(
NmN + δN

2
= `

)

− 1

2

(
ϕ

(
`;
Nm(β, 0)

2
,
Nv2β,0

4

)
+ ϕ

(
`;−Nm(β, 0)

2
,
Nv2β,0

4

))∣∣∣∣∣ = 0. (2.2)

For some values of (β, h) the above local limit theorems can be extracted from the
vast literature on the Curie-Weiss model. For example, in the high-temperature regime
β ∈ (0, 1) and for every h ∈ R, (2.1) has been proved in [19, Theorem 4.5 and Eq. (4.4)].
If h > 0 and β > 0, then (2.1) can be found in [1, Theorem 2.14 and Lemma 1.1]. The
missing case h < 0 and β > 0 in Proposition 2.1 can be derived by the same methods.
Finally, if h = 0, a local limit theorem for a multi-group Curie-Weiss model in the high-
temperature regime β ∈ (0, 1) has been derived in [13]. Quite (un-)expectedly, we have
not been able to locate Proposition 2.2 in the literature, because of the non-standard
approximation by a mixture of normal distributions. We shall give an elementary proof
based on the Stirling approximation in Section 4.

We shall actually need local limit theorems for PN rather than mN . They follow
immediately from Propositions 2.1 and 2.2 using the obvious relation PN = N

2 (1 +mN )

together with the bound

|ϕ(t1, m, v
2)− ϕ(t2, m, v

2)| ≤ C |t2 − t2|
v2

, t1, t2 ∈ R,
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for some absolute constant C > 0, which is a consequence of the mean value theorem
for differentiable functions. The above bound allows us to neglect the correction term
δN appearing in local limit theorems for mN .

Corollary 2.3. Assume that h 6= 0 or 0 < β < 1. Then

µN

(
N−1/2(PN − N

2 (1 + m(β, h))) ∈ ·
)

=⇒ N
(
0, 14v

2
β,h

)
, N →∞,

and the following local limit theorem holds true

lim
N→∞

√
N sup

`∈Z

∣∣µN (PN = `)− ϕ(`; N2 (1 + m(β, h)), N4 v
2
β,h)

∣∣ = 0.

Corollary 2.4. Assume that h = 0 and β > 1. Then

µN

(
N−1/2

(
PN − N

2 (1 + (−)m(β, 0))
)
∈ · | PN > (<)N2

)
=⇒ N

(
0, 14v

2
β,0

)
, N →∞,

and the following local limit theorem holds true

lim
N→∞

√
N sup

`∈Z

∣∣∣µN (PN = `)

− 1
2

(
ϕ
(
`; N2 (1 + m(β, 0)), N4 v

2
β,0

)
+ ϕ

(
`; N2 (1− m(β, 0)), N4 v

2
β,0

)) ∣∣∣ = 0.

3 Proof of Theorem 1.1

We embark on a simple observation which is a consequence of exchangeability of the
spins under the Gibbs measure µN . Given that PN = i ∈ N0, the conditional distribution
of Pk is hypergeometric with parameters N , i and k denoted hereafter HyperG(N, i, k).
Recall that

HyperG(n, i, k)({j}) =

(
i
j

)(
n−i
k−j
)(

n
k

) , 0 ≤ j ≤ min(i, k), i ≤ n.

In other words, the distribution of Pk(N) can be represented as the following mixture of
hypergeometric distributions:

µN ◦ P−1k(N) = HyperG(N,PN , k(N)). (3.1)

The family of hypergeometric distributions possesses the following property which is of
major importance for us.

Lemma 3.1. For n ∈ N0, k ≤ n and p ∈ [0, 1], it holds HyperG(n,Bin(n, p), k) = Bin(k, p).

Proof. For 0 ≤ j ≤ k,

HyperG(n,Bin(n, p), k)({j})

=

n∑
i=0

(
n

i

)
pi(1− p)n−i HyperG(n, i, k)({j}) =

n∑
i=j

(
n

i

)
pi(1− p)n−i

(
i
j

)(
n−i
k−j
)(

n
k

)
=

n∑
i=j

(
k

j

)(
n− k
i− j

)
pi(1− p)n−i =

(
k

j

)
pj(1− p)k−j

n∑
i=j

(
n− k
i− j

)
pi−j(1− p)n−k−i+j

=

(
k

j

)
pj(1− p)k−j

n−j∑
i=0

(
n− k
i

)
pi(1− p)n−k−i =

(
k

j

)
pj(1− p)k−j = Bin(k, p)({j}).

Alternatively, we can argue probabilistically: If each of n balls is colored black or white
with probability p and 1−p, respectively, and then a sample of k balls is drawn at random
from n balls, then the number of black balls in the sample has binomial distribution with
parameters (k, p).
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The subsequent proof of Theorem 1.1 proceeds according to the following scheme:

Step 1. We approximate L(PN ) by an appropriate mixed binomial distribution
Bin(N,L(W )), where W is a random variable taking values in [0, 1] and L(X) denotes
the distribution of a random variable X. The approximation is understood in the sense
of the dTV -distance which, as we shall show, converges to 0. To accomplish this step we
employ the local limit theorems for PN provided by Corollaries 2.3 and 2.4. It turns out
that as the mixing distribution W we can take a beta distribution (or a mixture of two
beta-distributions) with properly adjusted parameters.

Step 2. Lemma 3.1 implies that the µN -distribution of Pk is close (in a sense of the
dTV -distance) to the mixed binomial distribution Bin(k,L(W )). Formal verification of
this employs the well-known characterization of the dTV -distance

dTV (M1,M2) = inf P{X 6= Y }, (3.2)

where the infimum is taken over all pairs (X,Y ) of random variables such that X is
distributed according to M1 and Y is distributed according to M2.

Step 3. We derive a local limit theorem for Bin(k,L(W )).

Step 4. We calculate the total variation distance between Bin(k,L(W )) and the three
binomial distributions appearing in Theorem 1.1 by using local limit theorems for
binomial distributions in conjunction with another well-known formula for dTV : If
measures M1 and M2 are supported on Z, then

dTV (M1,M2) =
1

2

∑
k∈Z

|M1({k})−M2({k})|, (3.3)

see Propositions 5.1 and Proposition 5.2 below.
Our implementation of Steps 1-3 relies on the next proposition. For α, β > 0,

Beta(α, β) denotes a beta distribution with the density

Beta(α, β)(dx) =
xα−1(1− x)β−1dx

B(α, β)
1{x∈(0,1)},

where B is the Euler beta-function. In what follows we assume that all auxiliary random
variables are defined on some probability space (Ω,F ,P).

Proposition 3.2. Assume that (ΘN )N∈N is a sequence of N0-valued random variables
that satisfy a local limit theorem of the form: for a fixed integer K ∈ N, a collection of
positive weights p1, . . . , pK satisfying

∑K
j=1 pj = 1, aj ∈ (0, 1) and σ2

j ∈ (aj(1 − aj),∞),
j = 1, . . . ,K, it holds

lim
N→∞

√
N sup

`∈Z

∣∣∣∣∣∣P(ΘN = `)−
K∑
j=1

pjϕ(`;Naj , Nσ
2
j )

∣∣∣∣∣∣ = 0. (3.4)

Suppose that k = k(N) is a sequence of positive integers such that (1.12) holds for some
α ∈ [0, 1] and put

γj,1 :=
a2j (1− aj)

σ2
j − aj(1− aj)

, γj,2 :=
aj(1− aj)2

σ2
j − aj(1− aj)

, j = 1, . . . ,K. (3.5)

For N ∈ N, let XN be a random variable with a mixed hypergeometric distribution
HyperG(N,L(ΘN ), k(N)) and YN,k(N) be a random variable with the mixed binomial
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distribution Bin(k(N),
∑K
j=1 pj Beta(γj,1N, γj,2N)), that is,

P(YN,k(N) = `) =

∫ 1

0

(
k(N)

`

)
x`(1− x)k(N)−`

 K∑
j=1

pj Beta(γj,1N, γj,2N)(dx)

 ,

for ` = 0, . . . , k(N). Then limN→∞ dTV (L(XN ),L(YN,k(N))) = 0.

Remark 3.3. We shall use this proposition with ΘN = PN and K = 1, p1 = 1 (in conjunc-
tion with Corollary 2.3) or K = 2, p1 = p2 = 1/2 (in conjunction with Corollary 2.4).

Remark 3.4. Let us provide an informal explanation of Proposition 3.2. Consider for
simplicity the case K = 1, p = 1. Then, (3.4) states that ΘN satisfies a local limit
theorem with asymptotic centering Na1. One is therefore tempted to approximate ΘN

by the binomial distribution Bin(N, a1), however the variance of this distribution, which
equals Na1(1 − a1), is strictly smaller than the asymptotic variance Nσ2

1 appearing
in (3.4) due to the assumption σ2

1 > a1(1− a1). Instead, we approximate ΘN by a mixed
binomial distribution that artificially blows up the variance until the variances match.
The informal explanation of this is that both distributions satisfy a local limit theorem

with the same centering and normalization. In the case k(N) = N , we have ΘN
d
= XN

and Proposition 3.2 states that the total variation distance between the distribution
of XN and Bin(N,Beta(γ1,1N, γ1,2N)) converges to 0. Moreover, in the formal limit
σ2
1 ↓ a1(1− a1), we retrieve Lemma 3.1.

Proof of Proposition 3.2. We start by noting that, for fixed j = 1, . . . ,K, the pair (γj,1, γj,2)

is a unique solution to the following system of equationsN
γj,1

γj,1+γj,2
= Naj ,

N
(

γj,1γj,2
(γj,1+γj,2)2

+
γj,1γj,2

(γj,1+γj,2)3

)
= Nσ2

j .
(3.6)

On the left-hand side of the first equation we recognize the mean of YN,N , whereas the
left-hand side of the second equation is equal to the variance of YN,N up to a term O(1).
This suggests that the distribution of ΘN is close to the distribution of YN,N . In fact,
assume that we have proved

lim
N→∞

dTV (L(ΘN ),L(YN,N )) = 0. (3.7)

According to (3.2) there exists a sequence of pairs (Θ′N , Y
′
N,N ) such that

lim
N→∞

P(Θ′N 6= Y ′N,N ) = 0

and Θ′N (respectively, Y ′N,N ) has the same distribution as ΘN (respectively, YN,N ), for
every N ∈ N. Therefore,

dTV (L(XN ),HyperG(N,L(YN,N ), k(N)))

=dTV (HyperG(N,L(ΘN ), k(N)),HyperG(N,L(YN,N ), k(N)))

=dTV (HyperG(N,L(Θ′N ), k(N)),HyperG(N,L(Y ′N,N ), k(N)))→ 0.

But this immediately yields the claim since HyperG(N,L(YN,N ), k(N)) has the same
distribution as YN,k(N) by Lemma 3.1. Thus, it remains to prove (3.7).

To this end, we shall check that YN,N satisfies exactly the same local limit theorem as
ΘN , that is,

lim
N→∞

√
N sup

`∈Z

∣∣∣∣∣∣P(YN,N = `)−
K∑
j=1

pjϕ(`;Naj , Nσ
2
j )

∣∣∣∣∣∣ = 0. (3.8)
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When does the chaos in the Curie-Weiss model stop to propagate?

We shall actually prove a stronger result for later considerations, namely

lim
N→∞

sup
`∈Z

∣∣∣∣∣∣√k(N)P(YN,k(N) = `)−
K∑
j=1

pjϕ(`; k(N)aj , k(N)σ2
α,j)

∣∣∣∣∣∣ = 0, (3.9)

where

σ2
α,j :=

γj,1γj,2
(γj,1 + γj,2)2

+
αγj,1γj,2

(γj,1 + γj,2)3
. (3.10)

Relation (3.8) follows from (3.9) upon setting k(N) = N . The intuitive fact that (3.8)
and (3.4) imply (3.7) follows from Proposition 5.2 below.

By the very definition of YN,k(N) it suffices to prove (3.9) only in the case K = 1,
p1 = 1 and j = 1. We find it instructive to first prove a central limit theorem for YN,k(N)

of the form
YN,k(N) − a1k(N)√

k(N)
=⇒ N (0, σ2

α,1), (3.11)

which explains the formula for the variance σ2
α,1 in (3.9). Let BN be a random variable

with the beta-distribution Beta(γ1,1N, γ1,2N) and C
(1)
N , C(2)

N be independent random
variables with gamma-distributions with parameters (γ1,1N, 1) and (γ1,2N, 1), respectively.
Using a representation

BN
d
=

C
(1)
N

C
(1)
N + C

(2)
N

,

for the beta-distribution, see [15, Theorem 3], and the central limit theorem for C(1)
N and

C
(2)
N , it is easy to check that

√
N

(
BN −

γ1,1
γ1,1 + γ1,2

)
=⇒ N (0, s2), N →∞, (3.12)

where s2 :=
γ1,1γ1,2

(γ1,1+γ1,2)3
. Moreover, let (Uk)k∈N be a sequence of independent copies of a

random variable with the uniform distribution on [0, 1]. It is well-known that(
√
N

(
1

N

N∑
i=1

1{Ui≤t} − t

))
t∈[0,1]

=⇒ (W (t))t∈[0,1], N →∞, (3.13)

in the Skorokhod J1-topology on D[0, 1], where (W (t))t∈[0,1] is a standard Brownian
bridge. By independence and our assumption k(N)/N → α, we have a joint convergence

√k(N)

 1

k(N)

k(N)∑
i=1

1{Ui≤t} − t


t∈[0,1]

, BN ,
√
k(N) (BN − a1)


=⇒ ((W (t))t∈[0,1], a1,N (0, αs2)), n→∞, (3.14)

on D[0, 1]×R×R endowed with the product topology. Applying the map

D[0, 1]×R×R 3 (f(·), x, y) 7−→ f(x) + y ∈ R,

which is a.s. continuous at the limiting point in (3.14) we arrive at

YN,k(N) − a1k(N)√
k(N)

=⇒ W (a1) +N (0, αs2), N →∞,
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which is equivalent to (3.11), since Var (W (a1)) = a1(1− a1). Fix ε ∈ (0,min(a1, 1− a1))

and note that

P(|YN,k(N) − a1k(N)| ≥ εk(N)) = P(|YN,k(N) − EYN,k(N)| ≥ εk(N))

≤
Var(YN,k(N))

ε2(k(N))2

=
k(N)EBN (1−BN ) +N−1k2(N)Var(

√
NBN )

ε2(k(N))2

= O((k(N)−1),

where the penultimate equality follows from the law of total variance, and the last
equality is a consequence of limN→∞Var(

√
NBN ) = s2; see (3.12). The above estimate

in conjunction with a standard tail estimate for the normal law implies that (3.9) is
equivalent to√

k(N) sup
`: |`−a1k(N)|≤εk(N)

∣∣P(YN,k(N) = `)− ϕ(`; a1k(N), σ2
α,1k(N))

∣∣ −→ 0, N →∞.

(3.15)
The latter can be deduced from the following explicit formula

P(YN,k(N) =`) =

(
k(N)

`

)
B(`+ γ1,1N, k(N)− `+ γ1,2N)

B(γ1,1N, γ1,2N)
(3.16)

=
k(N) + 1

B(`+ 1, k(N)− `+ 1)

B(`+ γ1,1N, k(N)− `+ γ1,2N)

B(γ1,1N, γ1,2N)
, ` = 0, . . . , k(N),

(3.17)

together with the asymptotic relation

B(k(N)x, k(N)y) = (1 + o(1))

√
2π

k(N)

√
x+ y

xy

(
xxyy

(x+ y)x+y

)k(N)

, N →∞, (3.18)

for the beta-function, which is uniform in x, y ∈ [δ, δ−1], for every fixed δ ∈ (0, 1).
Our choice of ε ensures that all the arguments of the beta-functions in (3.16) lie in
[δk(N), δ−1k(N)] for a sufficiently small δ > 0. The uniform asymptotic relation (3.18) is
a consequence of Stirling’s formula with a uniform estimate of the remainder; see, for
example, Eq. (5.11.10) and (5.11.11) in [18]. The proof of Proposition 3.2 is complete.

By combining (3.1) and Corollary 2.3 with Proposition 3.2 applied for ΘN = PN ,
K = 1, a1 = (1 + m(β, h))/2 and σ2

1 := v2β,h/4, we obtain the next theorem. Note that
4a1(1− a1) = 1− m2β,h < v2β,h = 4σ2

1 in view of (1.5). Also some simple algebra yields

γ1(β, h) := γ1,1 =
1− β(1− m2(β, h))

2β(1− m(β, h))
, γ2(β, h) := γ1,2 =

1− β(1− m2(β, h))

2β(1 + m(β, h))
. (3.19)

Theorem 3.5. Assume that h 6= 0 or 0 < β < 1. Suppose that k = k(N) satisfies (1.12).
Then

lim
N→∞

dTV

(
µN ◦ P−1k(N),Bin (k(N),Beta (γ1(β, h)N, γ2(β, h)N))

)
= 0,

where γ1(β, h) and γ2(β, h) are given in (3.19).

Remark 3.6. The theorem above describes the residual dependence in the propagation
of chaos phenomenon via a beta-binomial distribution, which in turn has a simple
interpretation as follows. Consider a Pólya urn which initially contains γ1(β, h)N positive
spins (white balls) and γ2(β, h)N negative spins (black balls). Balls are drawn one at a
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time and immediately returned to the urn together with a new ball of the same color.
The number of white balls drawn after k(N) trials has the beta-binomial distribution
Bin (k(N),Beta (γ1(β, h)N, γ2(β, h)N)). Thus, Theorem 3.5 tells us that the number of
positive spins under the Gibbs measure is close in distribution to the number of white
balls drawn from the above Pólya urn after k(N) trials.

Similarly, Corollary 2.4 and Proposition 3.2 applied with K = 2, p1 = p2 = 1/2 yield
the next result.

Theorem 3.7. Assume that h = 0 and β > 1. Suppose that k = k(N) satisfies (1.12).
Then

lim
N→∞

dTV

(
µN ◦ P−1k(N),

Bin

(
k(N),

1

2
(Beta(γ1(β, h)N, γ2(β, h)N) + Beta(γ2(β, h)N, γ1(β, h)N))

))
= 0.

Proof of Theorem 1.1. We shall treat three cases separately.

Case h = 0 and β ∈ (0, 1). In this case m(β, h) = m(β, 0) = 0 and γ1(β, 0) = γ2(β, 0) =

(1− β)/(2β). In view of Theorem 3.5 it suffices to check that

lim
N→∞

dTV (Bin (k(N),Beta (γ1(β, h)N, γ2(β, h)N)) ,Bin(k(N), 1/2))

= D

(
1− β + αβ

4(1− β)
,

1

4

)
. (3.20)

From (3.9) we infer

lim
N→∞

√
k(N) sup

`∈N

∣∣∣Bin (k(N),Beta (γ1(β, h)N, γ2(β, h)N)) ({`})

− ϕ
(
`; k(N)/2,

1− β + αβ

4(1− β)
k(N)

) ∣∣∣ = 0,

where the formula for the limiting variance follows from (3.10). By the classical de
Moivre-Laplace local limit theorem

lim
N→∞

√
k(N) sup

`∈N
|Bin (k(N), 1/2) ({`})− ϕ (`; k(N)/2, k(N)/4)| = 0.

Equality (3.20) now follows from Proposition 5.1 below.

Case h = 0 and β > 1. By the same reasoning as in the previous case, but applying
Theorem 3.7 instead of Theorem 3.5, we see that it suffices to prove

lim
N→∞

dTV

(
Bin

(
k(N),

1

2
(Beta(γ1(β, 0)N, γ2(β, 0)N) + Beta(γ2(β, 0)N, γ1(β, 0)N))

)
,

Bin

(
k(N),

1

2
(δ(1+m(β,0))/2 + δ(1−m(β,0))/2)

))

= D

(
1− m2(β, 0)

4

(
1 +

αβ(1− m2(β, 0))

1− β(1− m2(β, 0))

)
,

1− m2(β, 0)

4

)
. (3.21)

This again follows from (3.9) but now with K = 2, p1 = p2 = 1/2 and the de Moivre-
Laplace local limit theorem in conjunction with Proposition 5.2 below. Put

s2(β, h) :=
1− m2(β, h)

4

(
1 +

αβ(1− m2(β, h))

1− β(1− m2(β, h))

)
,
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and note that in (3.9) the variances coincide:

σ2
α,1 = σ2

α,2 = s2(β, 0).

The second equality here follows upon substituting (3.19) into (3.10) and using that
γ2,1 = γ1,2 = γ1(β, 0), γ1,1 = γ2,2 = γ2(β, 0) in this case.

Case h 6= 0 and β > 0. In this case we again apply Theorem 3.5. From (3.9) it follows
that

lim
N→∞

√
k(N) sup

`∈N

∣∣∣∣∣Bin (k(N),Beta (γ1(β, h)N, γ2(β, h)N)) ({`})

− ϕ
(
`;

1 + m(β, h)

2
k(N), s2(β, h)k(N)

) ∣∣∣∣∣ = 0.

Combining this with the de Moivre-Laplace local limit theorem and using Proposition 5.1
we arrive at (1.15).

Remark 3.8. Here we give a comparison of our findings with some known results on the
uniform distribution on a high-dimensional sphere, which bears some similarities with
the Curie-Weiss model in the context of the propagation of chaos phenomenon. For every
N ∈ N, consider a random vector ξN = (ξ1;N , . . . , ξN ;N ) which is uniformly distributed
on the sphere

√
NSN−1 of radius

√
N in RN . It is a classical result of Maxwell-Poincaré-

Borel that, for every k ∈ N, the distribution of any k components of ξN converges weakly
to a k-dimensional standard normal distribution, as N → ∞. Moreover, if k = k(N)

depends on N such that k(N)/N → 0, then it has been shown in [8, Section 2] that
the total variation distance between the distribution of (ξ1;n, . . . , ξk;N ) and the standard
normal distribution on Rk converges to 0. On the other hand, for k(N)/N → α with
α 6= 0, the total variation distance between these distributions converges to a non-zero
limit which has been identified in [9, Theorem 1.6 (b)]; see also Eq. (2.12) on p. 403
in [8]. All these results are similar to what we know about the Curie-Weiss model. There
is, however, one important difference: An approximation by a variance mixture of normal
distributions is not possible if α > 0 in the setting of ξN . A much more general result
has been shown in [9, Theorem 2.3 (b)]. Let us give a short informal argument. Let
(ζ1, . . . , ζk) be a random vector with the standard normal distribution on Rk and let
R > 0 be a mixing variable independent of the ζi’s. We ask whether it is possible to
approximate (ξ1;N , . . . , ξk;N ) by R · (ζ1, . . . , ζk) in the total variation distance. By rotation
invariance, it suffices to consider the distance between the squared radial parts; see
Eq. (2.4) on p. 402 in [8]. Since 1

N (ξ21;N + · · ·+ ξ2k;N ) is beta-distributed with parameters
(k/2, (N − k)/2), it follows that

E(ξ21;N + · · ·+ ξ2k;N ) = k, Var(ξ21;N + · · ·+ ξ2k;N ) =
k(N − k)/4

(N/2)2(N/2 + 1)
N2 ∼ 2α(1− α)N.

On the other hand, the squared radial part of R(ζ1, . . . , ζk) is R2χ2
k, where χ2

k := ζ21 +

. . .+ ζ2k has a chi-square distribution with k degrees of freedom, and we have

E(R2(ζ21 + · · ·+ ζ2k)) = E(R2)k, Var(R2(ζ21 + · · ·+ ζ2k)) = E(R4)(2k + k2)− (E(R2)k)2.

where we used that E(χ4
k) = 2k + k2. If we want to match expectations, we need

E(R2) = 1, but then E(R4)(2k + k2) − (E(R2)k)2 ≥ 2k + k2 − k2 = 2k ∼ 2αN , and we
cannot match the variances since 2α > 2α(1− α). This is in sharp contrast to the case of
the Curie-Weiss model, for which Theorem 3.5 shows that the larger variance of Pk(N)

can be artificially matched by a mixed binomial distribution.
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4 Proof of Proposition 2.2

Recall that we work under the assumptions h = 0 and β > 1, which imply m :=

m(β, 0) ∈ (0, 1). For simplicity we also assume throughout this proof that N = 2n is even.
The case of odd N can be treated similarly. For every −n ≤ ` ≤ n, we have

µN ({σ : NmN (σ) = 2`}) =
|{σ : NmN (σ) = 2`}|

ZN (β)
exp

(
β

2N
(2`)2

)
(4.1)

=
1

Z2n(β)

(
2n

n+ `

)
exp(β`2/n). (4.2)

For further use we record the asymptotic formula for the partition function: if β > 1,
then

ZN (β) = (1 + o(1))
2vβ,0√
1− m2

2Ne−N(I(m)−βm2/2), N →∞, (4.3)

where I(x) := 1
2 ((1+x) log(1+x)+(1−x) log(1−x)) for x ∈ [−1, 1], which can be derived

from Théorème B in [3] by specializing to the Curie-Weiss model or from (3.19) in [16]
by choosing p = 1; see also [20, Theorem 1.3]. For every fixed n ∈ N, the function

{−n, . . . , n} 3 ` 7−→
(

2n

n+ `

)
exp(β`2/n) (4.4)

is even and attains two local maxima at ` ≈ nm and ` ≈ −nm. This can be checked by
calculating the ratio of its two consecutive values. Using the aforementioned symmetry
and the standard tail estimate for the normal density, we see that (2.2) is equivalent to

lim
n→∞

√
N sup

`∈Z≥0

∣∣∣∣∣µN ({σ : NmN (σ) = 2`})− 1

2
ϕ

(
`;
Nm

2
,
Nv2β,0

4

)∣∣∣∣∣ = 0,

or, by (4.1), to

lim
n→∞

√
n sup
`∈Z≥0

∣∣∣∣∣ 1

Z2n(β)

(
2n

n+ `

)
exp(β`2/n)− 1

2
ϕ

(
`;nm,

nv2β,0
2

)∣∣∣∣∣ = 0. (4.5)

Put Cn := {j ∈ Z≥0 : j ∈ [mn − n7/12, mn + n7/12]}. By Stirling’s formula, uniformly in
` ∈ Cn, it holds

2−2n
(

2n

n+ `

)
= (1 + o(1))

√
1

πn

1√
1− m2

e−2nI(`/n).

Combining this with (4.3) we deduce that, uniformly in ` ∈ Cn,

1

Z2n(β)

(
2n

n+ `

)
exp(β`2/n) =

1 + o(1)

2vβ,0
√
πn

exp

(
−2n

(
I(`/n)− I(m) +

βm2

2
− β`2

2n2

))
.

By the definition of m the first derivative of t 7→ I(t) − βt2/2 vanishes at t = m and the
second derivative at t = m is equal to v−2β,0. Thus, plugging the Taylor expansion

I(`/n) = I(m) + I ′(m)
`− mn

n
+
I ′′(m)

2

(
`− mn

n

)2

+O

((
`− mn

n

)3
)
,

we obtain

1

Z2n(β)

(
2n

n+ `

)
exp(β`2/n)=

(1 + o(1))

2vβ,0
√
πn

exp

(
− (`− mn)2

v2β,0n

)
= (1+o(1))

1

2
ϕ

(
`;nm,

nv2β,0
2

)
,
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which is again uniform over ` ∈ Cn. This yields that (4.5) holds with sup`∈Z≥0
replaced

by sup`∈Z≥0,`∈Cn .
To check that the indices outside Cn are negligible we use the same reasoning as

in [16]; see pp. 548-549 therein. According to the estimate (3.8) in [16]

2−2n
(

2n

2n+ `

)
≤ exp(−2nI(`/n)), −n ≤ ` ≤ n.

Therefore, for some absolute constant C1 > 0 all n ∈ N and |`| ≤ n,

1

Z2n(β)

(
2n

n+ `

)
exp(β`2/n) ≤ C1 exp

(
−2n

(
I(`/n)− I(m) +

βm2

2
− β`2

2n2

))
.

The function t 7→ I(t) − βt2/2 attains a local minimum on the positive half-line at m.
Therefore, for |`− mn| ≥ n7/12, |`| ≤ n, and some C2 > 0

I(`/n)− I(m) +
βm2

2
− β`2

2n2
≥ C2

(
(`− mn)2

n2

)
≥ C2n

−5/6.

Thus, for |`− mn| ≥ n7/12 and |`| ≤ n,

1

Z2n(β)

(
2n

n+ `

)
exp(β`2/n) ≤ C1e−2C2n

1/6

.

Combing this with a standard tail estimate for the normal distribution shows that (4.5)
holds with sup`∈Z≥0

replaced by sup`∈Z≥0,`/∈Cn . The proof of Proposition 2.2 is complete.

5 Auxiliary results

Proposition 5.1. Assume that two sequences of integer-valued random variables
(Q

(1)
N )N∈N and (Q

(2)
N )N∈N satisfy the local limit theorems

lim
N→∞

√
N sup

`∈Z

∣∣∣P(Q
(i)
N = `)− ϕ(`;Nm, Nv2i )

∣∣∣ = 0, i = 1, 2, (5.1)

with the same mean m and arbitrary variances v21 and v22. Then

lim
N→∞

dTV (L(Q
(1)
N ),L(Q

(2)
N )) = D(v21, v

2
2),

where the right-hand side was defined in (1.11). In particular, if v21 = v22, then

lim
N→∞

dTV (L(Q
(1)
N ),L(Q

(2)
N )) = 0.

Proof. Without loss of generality assume that m = 0. Fix ε > 0 and M > 0. Then, there
exists N0(ε) such that∣∣∣P(Q

(i)
N = `)− ϕ(`; 0, Nv2i )

∣∣∣ ≤ ε√
N
, i = 1, 2, N ≥ N0(ε), −M

√
N ≤ ` ≤M

√
N.

Using (3.3) we infer∣∣∣∣∣∣2dTV (L(Q
(1)
N ),L(Q

(2)
N ))−

∑
`: |`|≤M

√
N

∣∣ϕ(`; 0, Nv21)− ϕ(`; 0, Nv22)
∣∣∣∣∣∣∣∣

≤ P(|Q(1)
N | > M

√
N) + P(|Q(2)

N | > M
√
N) + 4Mε

+
∑

`: |`|>M
√
N

ϕ(`; 0, Nv21) +
∑

`: |`|>M
√
N

ϕ(`; 0, Nv22).
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Note that

lim
N→∞

∑
`: |`|≤M

√
N

∣∣ϕ(`; 0, Nv21)− ϕ(`; 0, Nv22)
∣∣ (5.2)

= lim
N→∞

1√
N

∑
`: |`|≤M

√
N

∣∣∣ϕ(N−1/2`; 0, v21)− ϕ(N−1/2`; 0, v22)
∣∣∣

=

∫ M

−M

∣∣ϕ(t; 0, v21)− ϕ(t; 0, v22)
∣∣dt, (5.3)

since the sum on the left-hand side is a Riemann sum of a Riemann integrable function
on [−M,M ]. Thus,

lim sup
N→∞

∣∣∣∣∣2dTV (L(Q(1)
n ),L(Q(2)

n ))−
∫ M

−M

∣∣ϕ(t; 0, v21)− ϕ(t; 0, v22)
∣∣ dt∣∣∣∣∣

≤
∫
|t|>M

ϕ(t; 0, v21)dt+

∫
|t|>M

ϕ(t; 0, v22)dt+ 4Mε

+ lim sup
N→∞

N−1/2
∑

`: |`|>M
√
N

ϕ(N−1/2`; 0, Nv21)

+ lim sup
N→∞

N−1/2
∑

`: |`|>M
√
N

ϕ(N−1/2`; 0, v22)

= 2

∫
|t|>M

ϕ(t; 0, v21)dt+ 2

∫
|t|>M

ϕ(t; 0, v22)dt+ 4Mε,

where for the last equality we used that t 7→ ϕ(t; 0, v2i ), i = 1, 2, are directly Riemann
integrable on R. Sending ε→ 0 and then M →∞ completes the proof.

For the mixtures of normal densities we have the following generalization of Proposi-
tion 5.1.

Proposition 5.2. If we replace (5.1) by

lim
N→∞

√
N sup

`∈Z

∣∣∣∣∣∣P(Q
(i)
N = `)−

K∑
j=1

pjϕ(`;Nmj , Nv2i,j)

∣∣∣∣∣∣ = 0, i = 1, 2, (5.4)

for some K ∈ N, a collection of positive weights p1, . . . , pK satisfying
∑K
j=1 pj = 1, mj ∈ R

such that mi 6= mj , i 6= j, and v2i,j > 0, j = 1, . . . ,K, then

lim
N→∞

dTV (L(Q
(1)
N ),L(Q

(2)
N )) =

K∑
j=1

pjD(v21,j , v
2
2,j).

Proof. We shall sketch the proof omitting details which are similar to those used in the
proof of Proposition 5.1. Fix large positive constants M1, . . . ,MK . Split the range of
summation on the right-hand side of equality

dTV (L(Q
(1)
N ),L(Q

(2)
N )) =

1

2

∑
`∈Z

∣∣∣P(Q
(1)
N = `)− P(Q

(2)
N = `)

∣∣∣
into K + 1 sets

Aj(N) := {` ∈ Z : |`− mjN | ≤Mj

√
N}, j = 1, . . . ,K, AK+1(N) := Z \

(
∪Kj=1Aj(N)

)
.
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These sets are pairwise disjoint for all large enough N , since mj ’s are pairwise different.
In view of (5.4) and by the standard tail estimate for the normal law, for every j =

1, . . . ,K,

1

2

∑
`∈Aj(N)

∣∣∣P(Q
(1)
N = `)− P(Q

(2)
N = `)

∣∣∣
=
pj
2

∑
`∈Aj(N)

∣∣ϕ(`;Nmj , Nv21,j)− ϕ(`;Nmj , Nv22,j)
∣∣+ rj(N,Mj),

where the remainders satisfy limMj→∞ lim supN→∞ |rj(N,Mj)| = 0, j = 1, . . . ,K. Fur-
thermore,

lim
minj Mj→∞

lim sup
N→∞

∑
`∈AK+1(N)

∣∣∣P(Q
(1)
N = `)− P(Q

(2)
N = `)

∣∣∣
≤ lim

minj Mj→∞
lim sup
N→∞

(
P(Q

(1)
N ∈ AK+1(N)) + P(Q

(2)
N ∈ AK+1(N))

)
= 0.

It remains to note that (5.2) yields

lim
Mj→∞

lim
N→∞

1

2

∑
`∈Aj(N)

∣∣ϕ(`;Nmj , Nv21,j)− ϕ(`;Nmj , Nv22,j)
∣∣ = D(v21,j , v

2
2,j), j = 1, . . . ,K.
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