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Abstract

We present a very simple bijective proof of Cayley’s formula due to Foata and Fuchs
(1970). This bijection turns out to be very useful when seen through a probabilistic
lens; we explain some of the ways in which it can be used to derive probabilistic iden-
tities, bounds, and growth procedures for random trees with given degrees, including
random d-ary trees. We also introduce a partial order on the degree sequences of
rooted trees, and conjecture that it induces a stochastic partial order on heights of
random rooted trees with given degrees.
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1 Introduction

A rooted tree is a triple t = (V,E, ρ), where (V,E) is a finite connected graph without
cycles and where ρ ∈ V ; we call ρ the root of t. By “tree” we always mean “rooted tree”
unless otherwise specified. We write

Tn = {t = (V,E, ρ) : t is a tree with V = [n]}

for the set of trees with vertices labelled by [n] := {1, . . . , n}. Cayley’s formula (which to
the best of current knowledge was first established by Borchardt [11]) provides a very
simple formula for |Tn|.
Theorem 1.1 (Cayley’s formula). |Tn| = nn−1.

There are numerous proofs of Cayley’s formula in the literature. The 1967 survey by
Moon [34] presents ten such proofs, including the proof via so-called Prüfer codes, which
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Figure 1: A tree t and the corresponding sequence v(t).

is probably the one most frequently presented in undergraduate texts. More recent
proofs include those discovered by Joyal [29, Section 2.2], which considers doubly-rooted
trees; by Pitman [38], which analyzes a coalescent process for building trees; and by
van der Hofstad [45, Section 3.6], which uses the connection between random plane
trees and conditioned Poisson branching processes.

In this work, we present a proof of Cayley’s formula due to Foata and Fuchs [23], via
a so-called line-breaking construction. We believe this is the simplest proof of Cayley’s
formula yet discovered, but it is not well-known. (In fact, in the first version of this
manuscript we believed it to be new; we thank Adrien Segovia for pointing out the work
[23] to us.) The reason it has been overlooked may be because the focus of the paper [23]
is on a bijection between the set of sequences {(x1, . . . , xn) : xi ∈ [n], 1 ≤ i ≤ n} and the
set of functions f : [n]→ [n]. The Foata–Fuchs bijection map yields a bijection between
sequences with x1 = x2 and Tn: given such a sequence (x1, . . . , xn), if f : [n] → [n]

is the resulting function, then the corresponding tree in Tn has root x1 and edge set
{(i, f(i)), i ∈ [n] \ {x1}}. For an English-language presentation of the full Foata–Fuchs
bijection, see [13].

We discuss related constructions for unrooted trees, rooted trees with marked vertices
and rooted forests in Section 2. The bijection is extremely useful for the analysis of
random combinatorial trees; Section 3 of this paper discusses some of its probabilistic
implications. In that section, we also define an algorithm for growing random trees with
given vertex degrees. When applied to regular trees, the algorithm yields a sequence
(Tm,m ≥ 1), where for each m ≥ 1, Tm is a uniformly random, leaf-labelled d-ary tree
with m internal nodes, and Tm+1 is generated from Tm by local regrafting. Our algorithm
is somewhat similar in spirit to Rémy’s algorithm [41], which generates a sequence of
uniform binary leaf-labelled trees.

Before giving the proof of Cayley’s formula, we introduce some terminology. Suppose
t is a tree, S is a connected subset of its vertices, and x is a vertex. The path from S to x
in t is the unique path in t which starts at a vertex of S, does not visit any other vertex of
S, and ends at x. If P is a path, we may also write P to denote the set of vertices of the
path. Finally, a leaf of t is a non-root vertex of t with degree 1.

Proof of Cayley’s formula. The term nn−1 counts sequences v = (v1, . . . , vn−1) ∈ [n]n−1.
We prove the theorem by introducing a bijection between Tn and [n]n−1.

Bijection

For a tree t on [n] with root ρ:

• Let `1 < `2 < · · · < `k be the leaves of t.

• Let S0 = {ρ}.
• Recursively, for i = 1, . . . , k, let Pi be the path in t from Si−1 to `i, and let
Si = Si−1 ∪ Pi. Let P ∗i be Pi omitting its final point.

• Let v(t) be the concatenation of P ∗1 , P ∗2 , . . . , P
∗
k .
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We claim that v(t) ∈ [n]n−1. Indeed, by definition, for each i, P ∗i ⊂ [n]. Moreover,
note that the edge sets of P1, P2, . . . , Pk form a partition of the edge set of t, and for each
i, |P ∗i | equals the number of edges in Pi. This implies that the length of v(t) is equal to
the number of edges in t, which equals n− 1.

To show that the above construction is a bijection, we describe its inverse. For a
sequence v = v1, v2, . . . , vm, we say that j ∈ {2, . . . ,m} is the location of a repeat of v if
vj = vi for some i < j.

Inverse of the bijection

Given a sequence v = (v1, v2, . . . , vn−1) ∈ [n]n−1:

• Let j(0) = 1, let j(1) < j(2) < · · · < j(k − 1) be the locations of the repeats
of the sequence v, and let j(k) = n.

• Let `1 < `2 < · · · < `k be the elements of [n] not occurring in v.

• For i = 1, . . . , k, let Pi be the path (vj(i−1), . . . , vj(i)−1, `i) with j(i)− j(i− 1)

edges.

• Let t(v) be the graph with vertex set [n], with root v1 and with edge set
given by the union of the edges of the paths P1, P2, . . . , Pk.

We claim that t(v) is a tree with vertex set [n]. By construction, for i = 2, . . . , k, the
set of vertices ∪m<iPm and the path Pi intersect at a single point (namely vji−1

, the first
point of Pi). Hence, by induction, for each i the union of the edges of the paths P1, . . . , Pi

is a tree, and in particular taking i = k we have that t(v) is a tree. Since for i = 1, . . . , k,
the final point of Pi is `i, and since no element `i appears as the first point of any other
path Pm, we have that the leaves of t(v) are `1, . . . , `k.

We will argue that if v ∈ [n]n−1, then v(t(v)) = v. Let k, P1, . . . , Pk, `1, . . . , `k, and
v1, vj1 , . . . , vjk be defined as in the inverse of the bijection applied to v. By definition,
v1 is the root in t(v). Note that P1 is a path contained in t(v) with endpoints v1 and
`1. The fact that t(v) is a tree implies that P1 is the unique path from v1 to `1 in t(v).
Similarly, for 1 < i ≤ k, Pi is a path contained in t(v) with endpoints vji−1

and `i, and with
Pi ∩∪m<iPm = {vji−1

}, so that Pi is the unique path in t(v) from the union of P1, . . . , Pi−1
to `i. Hence v(t(v)) is the concatenation of P ∗1 , . . . , P

∗
k , giving v(t(v)) = v as desired.

2 Extensions and related constructions

Trees with given degrees

The bijection has the property that for a given tree t, in the associated sequence v

the number of times a given integer k appears is precisely the number of children of the
vertex with label k in t.

The type of a tree t is the vector n = (nc, c ≥ 0), where nc is the number of vertices of
t with exactly c children. Writing n =

∑
c≥0 nc and

T (n) = {t ∈ Tn : t has type n} ,

then

|T (n)| =
(

n

nc, c ≥ 0

)
· (n− 1)!∏

c≥0(c!)
nc
.

This identity (also found in [37, Theorem 1.5] and [43, Corollary 3.5]) follows from the
specializations of the bijection to trees of a given type: the right-hand side counts the
number of ways to first choose the labels of the vertices with c children for each c ≥ 0,
then choose a sequence of length n− 1 in which the label of each vertex with c children
appears exactly c times.
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Unrooted trees

A simple trick allows us to directly study unrooted trees with this bijection by
considering vertex 1 as the root and removing the leading 1 of the corresponding coding
sequence. This gives a proof of the more well-known form of Cayley’s formula which
states that there are nn−2 unrooted trees of size n.

There is another way to adapt the bijection to encode unrooted trees of size n by
sequences in [n]n−2. It consists of letting P ∗1 be the path between the first and second-
lowest-labelled vertices of degree 1 (excluding both endpoints) and continuing as in the
bijection for rooted trees.

Rooted trees with marked vertices

The bijection can also be modified to encode rooted trees with r ≥ 1 distinguishable
marks on the vertices, (t,m1, . . . ,mr) ∈ Tn × [n]r, by sequences in [n]n+r−1. The mod-
ification consists of changing the definition of P ∗i in the recursive step slightly when
constructing the sequence from the tree: for i = 1, ..., r, P ∗i is the path from Si−1 to the
i-th marked point (including the final point of this path), and for i = 1, . . . , k, P ∗r+i is the
path from Sr+i−1 to the i-th unmarked leaf `i (excluding its final point). Here the number
of appearances of a vertex in the coding sequence is the sum of its number of children
and its number of marks.

By taking the r → ∞ limit of this bijection and applying it to an i.i.d. sequence of
elements of [n], one recovers the construction of the so-called p-trees from [15]. (Briefly,
p-trees may be seen as random trees with fixed but random types, where the type
distribution has a product structure.)

Rooted forests

The bijection above also extends to rooted forests. Given a set S ⊂ [n], write FS
n for

the set of forests F with vertex set [n] and root set S. Setting s = |S|, we describe a
bijection between FS

n and the set

{v = (v1, . . . , vn−s) ∈ [n]n−s : v1 ∈ S} ,

which has cardinality snn−s−1. The analogue of the “inverse bijection” is the easiest to
describe, so we begin with that. To construct a sequence (v1, . . . , vn−s) from F ∈ FS

n ,
proceed just as in the above proof of Cayley’s formula, but start from the s-vertex forest
F0 containing only the root vertices S, and at each step append the vertex labels along
the path to the smallest labelled leaf not already in the current forest (excluding the leaf
itself).

Conversely, here is how to construct a forest in FS
n from a sequence v = (v1, . . . , vn−s)

with v1 ∈ S. Say that i is the location of a repeat if i > 1 and either vi ∈ S or there is
1 ≤ j < i such that vi = vj . Denote the locations of repeats of v by j(1), . . . , j(k − 1) in
increasing order, and let j(k) = n − s + 1. List the integers from [n] \ S which do not
appear in v as `1, . . . , `k in increasing order.

Form a graph FS = FS(v) with vertices [n], root set S, and edge set{
vivi+1 : i ∈ [n− s− 1], i+ 1 6∈ {j(1), . . . , j(k)}

}
∪ {vj(i)−1`i, 1 ≤ i ≤ k}.

Essentially the same argument as in the proof of Cayley’s formula shows that the
connected components of FS are trees and that there are s components of FS , each
containing exactly one vertex of S. Thus, rooting each component of FS at its unique
element of S turns FS into an element of FS

n .
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Since the construction is bijective, this yields the following extension of Cayley’s
formula (which is in fact stated by both Borchardt [11] and Cayley [16]):

|FS
n | = |{v = (v1, . . . , vn−s) ∈ [n]n−s : v1 ∈ S}| = snn−s−1 .

This extension of the bijection can also be specialized to count forests with fixed types.

Other coding sequences of trees

A variant of Prüfer codes for rooted trees, first described by Neville [35], gives
another bijection between Tn and [n]n−1. It coincides with the original Prüfer code
if one sees vertex n as the root and then removes the resulting trailing n. Deo and
Micikevicius [19] found that reading the rooted Prüfer code in reverse leads to a simpler
description of the bijection, which shares some features of the bijection presented in this
paper. This bijection was independently discovered by Seo and Shin [42] under the name
Reverse-Prüfer codes to study leader vertices in trees, and also by Fleiner [21], who
remarked that it can be used to describe the law of the height of a uniformly sampled
vertex in a random tree (see Proposition 3.2, below).

3 Random trees

The bijection above has numerous consequences for random trees. This section
first explains how the bijection can be used to study typical and extreme distances in
random trees, then discusses how it can be used to define growth procedures for random
trees, somewhat in the spirit of Rémy’s algorithm [41] for growing uniformly random
leaf-labelled binary trees.

For a finite set S, we will write X ∈u S to mean that X is chosen uniformly at random
from the set S.

Distances in random trees

For a tree t = (V,E, ρ) and a vertex v ∈ V , write |v| = |v|t for the graph distance from
ρ to v.

Proposition 3.1. Let T ∈u Tn and let L be a uniformly random leaf of T. Also, let
V = (Vi, i ≥ 1) be a sequence of independent uniformly random elements of [n] and let
I = min(i ≥ 2 : Vi ∈ {V1, . . . , Vi−1}) be the index of the first repeated element of V. Then

|L|+ 1
d
= min(I, n).

Proof. Write V = (V1, . . . , Vn−1) ∈u [n]n−1. Then T = t(V) ∈u Tn. Moreover, recalling
that the repeated entries of (V1, . . . , Vn−1) are j(1), . . . , j(k − 1) and that j(k) = n, we
have min(I, n) = j(1). The first leaf `1(T) is a child of Vj(1)−1, so

|`1(T)| = |Vj(1)−1|+ 1 = j(1)− 1 = min(I, n)− 1.

But since T is a uniformly random tree, randomly permuting its leaf labels does not
change its distribution, so |`1(T)| has the same distribution as |L| for L a uniformly
random leaf of T.

One can also use the version of the bijection for rooted trees with one marked vertex
to show the following similar result, whose proof is left to the reader.

Proposition 3.2. Let T ∈u Tn and let U ∈u [n] be independent of T. Then |U | d
= I − 2,

where I is as in Proposition 3.1.
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These propositions in particular imply that if Dn is the distance from the root to a

uniformly random vertex (or leaf) in Tn ∈u Tn, then n−1/2Dn
d→ R, where R is Rayleigh

distributed: P {R ≥ x} = e−(x
2/2)1[x≥0] . It is not hard to build on these statements in

order to precisely characterize the joint distribution of the lengths of the branches to
the k smallest labelled leaves (using the bijection) or to k uniform vertices (using its
extension to trees with k marked vertices). The latter recovers the asymptotic line-
breaking construction of uniformly random trees, proposed by Aldous [5]. In his work,
Aldous used a discrete version of the line-breaking construction based on the so-called
Aldous-Broder algorithm [7, 12], a procedure for efficiently sampling a uniformly random
spanning tree of a fixed connected graph. In the setting of the complete graph Kn,
the Aldous-Broder algorithm is a close cousin of the sampling procedure obtained by
applying our bijection to a sequence (U1, . . . , Un−1) of independent, uniformly random
elements of [n], though the two are not equivalent.

These distributional identities also make it possible to compare the distributions
of typical distances in different trees. Define a partial order ≺ on type sequences
n = (nc, c ≥ 0) with

∑
c≥0 nc = n and

∑
c≥0 cnc = n − 1 by the following covering1

relation: m = (mc, c ≥ 0) covers (nc, c ≥ 0) if there are positive integers a, b such that
ma = na + 1,mb = nb + 1 and m0 = n0 − 1,ma+b = na+b − 1. (In words, to obtain m from
n we replace one vertex with a+ b children by two vertices, one with a children and one
with b children, and reduce the number of leaves accordingly; then n ≺ m.)

Given types n, m related as in the previous paragraph, we may couple the construc-
tions of random trees with types n and m as follows. Let Vn = (V1, . . . , Vn−1) be a
uniformly random sequence of elements of [n] subject to the constraint that for each
c ≥ 0, the number of values from [n] which occur precisely c times in the sequence is
nc. Conditionally on Vn, choose X ∈ [n] uniformly at random from among those integers
in [n] which appear exactly a+ b times in Vn, and independently choose Y uniformly at
random from among those integers in [n] which do not appear in Vn. Choose a of the
instances where X appears in Vn, uniformly at random, and replace each of them by
the integer Y ; call the resulting sequence Vm. Then the trees Tn and Tm corresponding
to Vn and Vm under the bijection are uniformly random elements of T (n) and T (m),
respectively. Moreover, the index of the first repeated element of Vn is at most that of
the first repeated element of Vm, so the distance from the root to the smallest labelled
leaf in Tn is at most the corresponding distance in Tm.

It follows from this coupling that for any types n and m with n � m, if Tn ∈u T (n) and
Tm ∈u T (m), and Ln and Lm are uniformly random leaves of Tn and Tm, respectively,
then |Ln| = |Ln|Tn is stochastically dominated by |Lm| = |Lm|Tm, by which we mean that
P {|Ln| ≤ t} ≥ P {|Lm| ≤ t} for all t ∈ R; we denote this relation by |Ln| �st |Lm|. We
conjecture that this stochastic relation also holds for the heights of the trees: writing
ht(t) := max(|v|, v is a vertex of t), then

ht(Tn) �st ht(Tm),

whenever Tn ∈u T (n) and Tm ∈u T (m) and n � m.
The above coupling may also be extended to the construction of trees with a marked

vertex, using the version of the bijection for rooted trees with a marked vertex presented
in Section 2, and it follows that for Tn and Tm as in the preceding paragraph, if U ∈u [n]

then |U |Tn
�st |U |Tm

. This stochastic inequality may also be proven using Proposition 3.2.

Some of the most valuable probabilistic consequences of the bijection arise when
studying distances in trees with given degrees, using the variant of the bijection that

1For a partially ordered set (P,≺), y ∈ P covers x ∈ P if x ≺ y and for all z ∈ P, if x � z � y then
z ∈ {x, y}.
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we introduce at the start of Section 2. In particular, in recent work, Blanc-Renaudie
[9] uses the version of the bijection for trees with given degrees to prove convergence
toward inhomogeneous continuum random trees for random combinatorial trees with
a fixed type, in great generality, thereby resolving a conjecture from [6] on Lévy trees
being a ‘mixture’ of inhomogeneous continuum random trees; he also proved exponential
upper tail bounds for the heights of such random trees, which are tight up to constant
factors in many cases. In other recent work, Addario-Berry and Donderwinkel [3] use the
bijection in order to prove several conjectures from [1], [4], [28] and [33] regarding the
asymptotic behaviour of the height of random trees and tree-like structures; the work
[3] in particular shows that all random combinatorial trees with n nodes have typical
height O(n1/2), unless they are extremely “path-like”, possessing n − o(n) nodes with
exactly one child.

The bijection can also be adapted to study the structure of random graphs which
are not trees (see [2, Chapter 1]), and we expect that it will prove useful in proving
convergence results in such settings as well; a first example is found in [10].

Growth procedures for trees with a given degree sequence

In this section, we present a growth procedure for trees with a given degree sequence
— and in particular for d-ary trees — which is built from a version of the inverse bijection
presented in the proof of Theorem 1.1. To the best of our knowledge, this is the first
growth procedure for uniformly random trees with a given degree sequence. Other
growth procedures for uniform d-ary trees have appeared in the literature, but we believe
that the procedure obtained by specializing our general method to d-ary trees is the
simplest one known so far. We briefly describe the two other growth procedures for
uniform d-ary trees that we are aware of at the end of this section.

Fix an abstract set {`i, i ≥ 1} of leaf labels. Let d = (d1, . . . , dm) be a sequence of
positive integers, and let Ld = 1 +

∑m
i=1(di − 1) ≥ 1. Let Td denote the set of trees t

with vertex set [m] ∪ {`1, . . . , `Ld
} such that for each i ∈ [m], i has di children in t (and

`1, . . . , `Ld
are leaves of t). Also, write

Sd := {(v1, . . . , vm+Ld−1) : |{k : vk = i}| = di for all i ∈ [m]} .

Then the following modification of the inverse bijection from Theorem 1.1 gives a
bijection between Sd and Td. Fix v = (v1, . . . , vm+Ld−1) ∈ Sd.

Bijection between Sd and Td.

• Let j(0) = 1, let j(1) < j(2) < · · · < j(Ld − 1) be the locations of the repeats
of the sequence v, and let j(Ld) = m+ Ld.

• For i = 1, . . . , Ld, let Pi be the path (vj(i−1), . . . , vj(i)−1, `i).

• Let t(v) ∈ Td have root v1 and edge set given by the union of the edges of
the paths P1, P2, . . . , PLd

.

In the above bijection, the path Pi ends with the leaf `i. However, any other fixed
ordering of `1, . . . , `Ld

would also yield a bijective correspondence. In fact, this is even
true if the choice of leaf ordering depends on the sequence v, provided that the leaf-
ordering rule still has the property that different sequences result in different trees. We
exploit this flexibility below, in order to design a simple growth procedure.

Write � for the total ordering of the vertices of t(v) which is the order the vertices
first appear along the paths P1, . . . , PLd

.
For d ∈ N and d′ := (d1, . . . , dm, d), note that we can construct an element S′ ∈ Sd′

starting from an element S ∈ Sd by inserting d repeats of the integer m+ 1. (Later, we
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also write d′ = (d1, . . . , dm, dm+1), so dm+1 = d.) This corresponds to choosing S ∈ Sd and
a multiset of size d with elements in [m+ Ld]; one then constructs S′ ∈ Sd′ by inserting
the i’th repeat of m+1 immediately before the j’th entry of S, where j is the i’th element
of the multiset (unless j = m+ Ld, in which case we insert the i’th repeat of m+ 1 at
the end of S). Equivalently, we may construct an element of Sd′ starting from a tree
T ∈ Td and a multiset of d vertices of T , where we use the convention that i ∈ [m+ Ld]

corresponds to the ith vertex in the total ordering � of the vertices of T defined above.
The following growth procedure provides a way to use this correspondence to sample
a uniform random element of Td′ given T ∈u Td and an independent uniform random
multiset of size d of vertices of T. It yields the same shape of tree that one would obtain
starting from T by first transforming the sequence S corresponding to T under the
above bijection as just described, then applying the bijection to the resulting sequence.
However, it yields a different labelling of the leaves.

Constructing a tree T ′ ∈ Td′ from a tree T ∈ Td and a multiset of d vertices of T

Denote the multiset as {w1, . . . , wd}, where w1 � w2 � . . . � wd. Then T ′ is
obtained from T by adding vertices m+ 1, `Ld+1, . . . , `Ld+d−1 and modifying the
edge-set as follows.

1. If w1 was the root of T , connect m + 1 to w1 and re-root the tree at m + 1.
Otherwise, replace the edge vw1 that connects w1 to its parent v with two
edges v(m+ 1) and (m+ 1)w1.

2. For j = 2, . . . , d,

(a) if wj = wj−1, add an edge from m+ 1 to `Ld+j−1,
(b) if wj 6= wj−1, remove the edge from wj to its parent v, then add edges

from v to `Ld+j−1 and from m+ 1 to wj .

1

4

2

3

ℓ4 ℓ5 ℓ7 ℓ12

ℓ3 ℓ9 ℓ11

ℓ1 ℓ6

ℓ2 ℓ8 ℓ10 ℓ13 ℓ14 ℓ4ℓ15

ℓ2 ℓ8 ℓ10 ℓ13 ℓ16 ℓ5 ℓ7 ℓ12

ℓ1 ℓ6

ℓ3 ℓ9 ℓ11

13

4

2

5

T T ′

Figure 2: The growth procedure is used to add one internal vertex to the quarternary
tree T . Here, (w1, w2, w3, w4) = (3, 3, 1, `4).

An example is provided in Figure 2. In the example, the coding sequence of T under
the bijection presented above is (2, 2, 3, 2, 4, 4, 1, 1, 2, 1, 3, 4, 3, 4, 1, 3). The total ordering
� of vertices of T is

2 ≺ `1 ≺ 3 ≺ `2 ≺ 4 ≺ `3 ≺ 1 ≺ `4 ≺ `5 ≺ `6 ≺ . . . ≺ `13 .

The chosen multiset (3, 3, 1, `4) of vertices of T corresponds to the multiset (3, 3, 7, 8), of
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elements of [17] = {1, 2, . . . , 17}, and thence to transforming the coding sequence into

(2, 2,5,5, 3, 2, 4, 4,5, 1,5, 1, 2, 1, 3, 4, 3, 4, 1, 3).

The new sequence gives T ′ if we modify the bijection so that the new leaves `14, `15, `16
are inserted when the repeats of 5 occur, and the other leaves are inserted according
to their original ordering. In general, the growth procedure yields a modified bijection
which reads as follows. With d′ as above, fix v′ = (v′1, . . . , v

′
m+Ld′

) ∈ Sd′ , and note that
Ld′ = Ld + d− 1.

Modified bijection between Sd′ and Td′ .

• Let j(0) = 1, let j(1) < j(2) < · · · < j(Ld′ − 1) be the locations of the repeats
of the sequence v′, and let j(Ld′) = m+ 1 + Ld′ .

• Reorder `1, . . . , `Ld′ as ˆ̀
1, . . . , ˆ̀Ld′ as follows. For 1 ≤ i ≤ Ld′ − 1:

– If v′j(i) is the (k + 1)’st appearance of (m+ 1) then let ˆ̀
i = `Ld+k.

– If v′j(i) is the k’th repeated entry which is not equal to (m+ 1) then let
ˆ̀
i = `k.

Let ˆ̀
Ld′ = `Ld

.

• For i = 1, . . . , Ld′ , let P ′i be the path (vj(i−1), . . . , vj(i)−1, ˆ̀i).

• Let t′(v′) ∈ Td′ have root v′1 and edge set given by the union of the edges of
the paths P ′1, P

′
2, . . . , P

′
Ld′

.

We now describe the inverse of the modified bijection, which takes as input a tree
t′ ∈ Td′ — i.e., a tree t′ with vertex set [m + 1] ∪ {`1, . . . , `Ld′} such that for each
i ∈ [m + 1], i has di children, and `1, . . . , `Ld′ are leaves — and outputs a sequence
v′ = (v′1, . . . , v

′
m+Ld′

) ∈ Sd′ . We leave it to the reader to verify that the two procedures
are indeed inverses. This justifies the fact that the above growth procedure takes the
uniform distribution on Td to the uniform distribution on Td′ .

Inverse of the modified bijection

• Let v′m+Ld′
be equal to the parent of `Ld

in t′. Say that `Ld
is used, and that

`1, . . . , `Ld−1 and `Ld+1, . . . , `Ld′ are unused.

• For j = m+ Ld′ − 1, . . . , 2, 1:

– If the number of occurrences of v′j+1 in
(
v′j+1, . . . , v

′
m+Ld′

)
is equal to

the number of children of v′j+1 in t′, then let v′j be equal to the parent
of v′j+1 in t′.

– Otherwise, define v′j as follows.

* If v′j+1 = m+ 1, let i∗ be the maximum Ld + 1 ≤ i ≤ Ld′ such that
`i is unused.

* If v′j+1 6= m+ 1, let i∗ be the maximum 1 ≤ i ≤ Ld − 1 such that `i
is unused.

Let v′j be equal to the parent of `i∗ in t′. Say that `i∗ is used.

We conclude the paper by justifying the assertion from Section 1 that the growth
procedure yields an algorithm for sampling a sequence of random d-ary leaf-labelled
trees. For this, let d(m) = (d, d, . . . , d) have length m. Starting from the unique tree
T(1) ∈u Td(1) , for each m ≥ 1 let T(m+1) be constructed from T(m) according to the above
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procedure. Now let Tm be obtained from T(m) by unlabelling the non-leaf vertices; then
Tm is a uniformly random leaf-labelled d-ary tree with m internal nodes, and (Tm,m ≥ 1)

is the random sequence alluded to in the introduction. (In fact, given a multiset of size
d of vertices of T(m), its ordering, as defined in the construction of T(m+1) from T(m),
does not depend on the labels of the internal vertices. Therefore, it is straightforward to
define the pushforward of the growth procedure directly on leaf-labelled trees.) Then,
given Tm+1, the non-leaf vertex that was added to obtain Tm+1 from Tm is a uniformly
random non-leaf vertex of Tm+1. In the binary case, this distinguishes the procedure
from Rémy’s algorithm, for which, given the shape of Tm+1, the non-leaf vertex that was
added is instead the parent of a uniformly random leaf of Tm+1.

The growth procedure for planar d-ary trees described in [32] is most comparable to
ours. Like our procedure, it is based on moving subtrees in the tree, but while we sample
a uniform multiset of vertices, the author of [32] samples a uniform set of edges (possibly
including ‘fake’ edges called buds) and an independently chosen uniform element in [d]

to define a step of the growth procedure. In the procedure in [32], the subtrees always
get attached to a new vertex below the old root, while our attachment point is distributed
as a uniformly random non-leaf vertex. The growth procedure in [32] is arguably more
complex, both to describe and to verify, but a single growth step takes constant time,
so the procedure yields a linear time algorithm for growing uniform d-ary trees. In our
procedure, the part of a growth step that we do not see how to execute in constant time
is determining the order under � of the elements in the selected multiset.

In [31], the authors show the existence of a local growth procedure for planar d-ary
trees, in which a random leaf is replaced by a new vertex with d children. However, the
probabilities with which the leaves are chosen are implicitly defined, which makes the
growth procedure more challenging to implement in practice.

Previous applications of the Foata–Fuchs bijection

This section provides a brief history of some of the previous applications of the
Foata–Fuchs bijection that have appeared in the literature. Though it is not exhaustive,
we believe it does include all references to the work of Foata and Fuchs [23] which in
papers which either have a probabilistic focus or have a connection to the study of trees
and forests.

• A number of papers [14, 25, 26, 26, 30, 39, 40, 44] mention the Foata–Fuchs bijec-
tion in connection with Abel–Cayley–Hurwitz identities and/or the forest volume
formula, ∑

{F :roots(F )=R}

∏
v∈[n]

x|cF (v)|
v =

(∑
r∈R

xr

)∑
v∈[n]

xv

n−|R|−1

,

where the sum is over rooted forests F with vertex set [n] and with a fixed set of
roots R ⊂ [n], and where cF (v) denotes the number of children of v in F . Most of
these works do not use the Foata–Fuchs bijection directly, but rather build on a
result of Françon [25], who showed how the Foata–Fuchs bijection can be used to
prove Abel’s identities.

In [39, 40], Pitman discusses some probabilistic interpretations and applications
of the forest volume formula, mostly in the context of coalescent processes, but
also in connection with the model of random trees called p-trees, mentioned in
Section 2.

• The paper [24] describes two bijections between acyclic mappings and parking
functions; this paper does not use the Foata–Fuchs bijection, but cites it as provid-
ing a tree encoding different from the Prüfer code. (The study of random parking
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functions, and parking functions on random trees, has seen a fairly recent surge of
activity; see, e.g., [8, 17, 18, 20, 27, 36].)

• The paper [22] uses the Foata–Fuchs bijection to enumerate k-trees (labelled
graphs that can be built starting from a clique of size k by repeatedly attaching
new vertices such that at each step, the neighbourhood of the added vertex is a
clique of size k).
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