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The paper investigates properties of mean-square solutions to the Airy equation with
random initial data given by stationary processes. The result on the modulus of
continuity of the solution is stated and properties of the covariance function are
described. Bounds for the distributions of the suprema of solutions under ϕ-sub-
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1 Introduction

Dispersive partial differential equations have been the topic of intensive studies
for centuries, starting from the classical physics and going widely beyond. These
equations serve to model various vibrating media such as waves on string, in liquids
or in air. Probably the most familiar problems in which dispersive effects appear
are the classical problems of water waves descriptions and one of the most famous
equations is the Korteweg–de Vries (KdV) equation derived to model the propagation
of low amplitude long water waves in a shallow canal. Nowadays many versions and
higher order generalizations of the KdV equation are of use in different areas including
hydrodynamics, plasma physics, electrodynamics, in studies of electromagnetic and
acoustic waves, waves in elastic media, traffic flows, chemical processes and others.

In the present paper we consider the Airy equation or linear Korteweg–de Vries
equation

∂u

∂t
= −∂

3u

∂3x
, t > 0, x ∈ R, (1.1)

subject to the random initial condition

u(0, x) = η(x), x ∈ R, (1.2)

with η being a stationary stochastic process.
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Investigation of Airy equations with random initial conditions

Initial value problem (1.1)-(1.2) was treated in [5], namely, the asymptotic behavior
was analyzed for the rescaled solutions under weakly dependent stationary initial data.
Note that in the recent literature such approach has been widely applied to study rescaled
solutions to the heat, fractional heat, Burgers and other equations with Gaussian and
non-Gaussian initial conditions possessing weak or strong dependence (see, for example,
papers [3, 22] among many others).

The purpose of the present paper is to establish the upper bounds for the distribution
of the supremum of solution to (1.1)-(1.2) under the assumption that the initial condition
is given by a ϕ-sub-Gaussian process. These processes provide a natural generalization
of Gaussian and sub-Gaussian ones and possess well described properties, which is
important for applications. Theory developed for these processes allows to derive many
useful bounds for the distribution of various functionals of these processes (see, [7]).
The present paper is close to the papers [6, 15, 16, 10] where higher order dispersive
equations and the heat equation were studied under ϕ-sub-Gaussian initial conditions.

Following [5], we consider the solution to the random initial value problem (1.1)-(1.2)
in the mean square sense and write its representation in a form of stochastic integral,
and corresponding representation for its covariance function. The solution field is a
stationary (of the second order) both in time and space variables.

We state the result on the modulus of continuity of solution and reveal several
interesting properties of the covariance function of solution. We show that the covariance
function itself is a solution to a particular deterministic Airy equation and as such, it
inherits well known properties of solutions to Airy equations. In particular, many useful
bounds can be written for the covariance function.

It is important to note that from the statistical point of view, the covariance of the
solution presents an example of non-separable space-time covariance function. So, we
reveal a convenient way to construct a space-time stationary covariance with the use of
another covariance model, which will possess a very transparent physical interpretation
and a lot of well described properties due to its representation as an oscillatory integral.

From the probabilistic consideration, we also deduce such a general fact that if the
Airy equation (1.1) is considered with a (nonrandom) initial condition u(0, x) = u0(x),
x ∈ R, given by a real positive-definite kernel, then the solution u(t, x), (t, x) ∈ R+ ×R,
is a positive definite kernel as well. To the best of our knowledge, this interesting fact
was not reflected before in the literature on the Airy equations.

Next, using the methods developed for ϕ-sub-Gaussian processes, the bounds are
obtained for the tails of the distribution of supremum of solution to (1.1)-(1.2). Bounds
are presented in such a closed form which is convenient for possible applications.

The main condition for the bounds to hold is stated in terms of the spectral measure
of the initial data η in (1.2). It is shown that this condition is satisfied for several models
where the initial data process η is itself a solution to a stochastic differential equation.
In particular, Matérn model, Ornstein-Uhlenbeck and fractional Ornstein-Uhlenbeck
processes can be considered to model random initial data.

The paper is organized as follows. In Section 2, following [5], we give the expression
in the form of a stochastic integral for the mean square solution to the initial value
problem (1.1)–(1.2). In Section 3 the result on the modulus of continuity of solution
is stated. Section 4 describes properties of the covariance function of the solution.
Section 5 collects definitions and properties of ϕ-sub-Gaussian processes as a preparation
for the study of the distribution of suprema of solutions to (1.1)–(1.2) under ϕ-sub-
Gaussian initial conditions, which is done in Section 6. To illustrate the results stated, in
Section 7 several examples of random initial data are given, for which assumptions for
the stated results hold and all the constants involved can be calculated explicitly. Possible
extensions of the results are discussed, in particular, to higher order and fractional Airy
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equations.

2 Solution to the Airy equation with initial condition given by a
stationary stochastic process

Consider the Airy equation

∂u

∂t
= −∂

3u

∂3x
, t > 0, x ∈ R, (2.1)

subject to the random initial condition

u(0, x) = η(x), x ∈ R, (2.2)

where η is a stochastic process satisfying the condition below.

A. η(x), x ∈ R, is a real, measurable, mean-square continuous stationary (of the second
order, that is, in a weak sense) centered stochastic process defined on a complete
probability space (Ω,F ,P).

Let Bη(x), x ∈ R, be a covariance function of the process η(x), x ∈ R, with the spectral
representation

Bη(x) =

∫
R

eiλxdF (λ), (2.3)

where F (λ), λ ∈ R, is a spectral measure, and for the process itself we can write the
spectral representation

η(x) =

∫
R

eiλxZ(dλ). (2.4)

The stochastic integral (2.4) is considered as L2(Ω) integral. The orthogonal complex-
valued random measure Z is such that E|Z(dλ)|2 = F (dλ).

Following [5], we can write the representation of the mean square solution to the
problem (2.1)–(2.2) and the expression for its covariance function.

Consider the field u(t, x), t > 0, x ∈ R, defined by

u(t, x) =

∫
R

g(t, x− y)η(y)dy, (2.5)

where the function g is the fundamental solution to equation (2.1):

g(t, x) =
1

2π

∫
R

e−iαx−iα
3t dα =

1

π

∫ ∞
0

cos(αx+ α3t) dα =
1

3
√

3t
Ai
( x

3
√

3t

)
, t > 0, x ∈ R,

(2.6)
and

Ai(x) =
1

π

∫ ∞
0

cos
(
αx+

α3

3

)
dα, x ∈ R,

is the Airy function of the first kind. Properties of the Airy function are well studied due
to numerous applications in various areas. In particular, this function has the following
asymptotic behavior:

Ai(x) ∼ 1

2
√
πx1/4

exp
{
− 2

3
x3/2

}
, x→ +∞; Ai(x) ∼ 1√

π|x|1/4
cos
{2

3
|x|3/2−π

4

}
, x→ −∞.

The asymptotic expansions can be obtained, in particular, as a reflection of the well-
known ones for the Bessel functions, since the Airy function can be expressed in terms
of the Bessel function of order 1

3 : Ai(x) = 1
π

√
x
3K1/3

(
2
3x

3/2
)
. We refer, for example, to

[20], [24], [26], [27].
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In view of (2.4), the field (2.5) can be written in the following form

u(t, x) =

∫
R

exp
{
iλx+ iλ3t

}
Z(dλ). (2.7)

The random field (2.7) can be interpreted as the mean-square or L2(Ω) solution to the
Cauchy problem (2.1)–(2.2) (see [5]).

From the representation (2.7) the covariance of the field u can be calculated:

Cov
(
u(t, x), u(s, y)

)
=

∫
R

exp(iλ(x− y) + iλ3(t− s))dF (λ)

=

∫
R

cos(λ(x− y) + λ3(t− s))dF (λ) (2.8)

:= B(t− s, x− y).

From the expression (2.8) one can see that the random field u is stationary with
respect to time and space variables. For a fixed t we have:

Cov
(
u(t, x), u(t, y)

)
=

∫
R

exp(iλ(x− y))dF (λ) = Bη(x− y),

that is, the covariance of the solution u(t, ·) considered at any fixed time t coincides with
the covariance function of the initial process η.

Note that one of the commonly used approaches of studying PDEs with stationary
initial conditions is via the second order analysis, that is, by considering their mean
square solutions represented by stochastic integrals. Such approach takes its origins in
the paper by Rosenblatt [21] where the heat equation with stationary initial condition
was treated and the mean square representation for the solution was given. In the recent
literature this approach is widely used for various classes of PDEs with random initial
conditions, in particular, for studying their rescaled solutions, see, e.g., [3, 5, 10, 22], to
mention only few, see also references therein.

3 Modulus of continuity of the solution

In this section we state the general result on the modulus of continuity in the
mean square of the field (2.7). This result is of interest by itself, but will also be used
further in Section 6 for evaluation of the distribution of suprema of solutions. Denote
K = [a, b]× [c, d] for arbitrary a ≥ 0, b, c, d ∈ R.

Theorem 3.1. Let u(t, x), t > 0, x ∈ R, be the random field given by (2.7) and assumption
A hold. Suppose that for some β ∈ (0, 1]∫

R

λ6βF (dλ) <∞, (3.1)

then

σ(h) := sup
(t,x),(s,y)∈K:
|t−s|≤h,|x−y|≤h

(
E(u(t, x)− u(s, y))2

)1/2

≤ c(β)hβ , (3.2)

where

c(β) = 21−β
(∫

R

(λ+ λ3)2βF (dλ)
)1/2

. (3.3)

If
∫
R
|λ|3F (dλ) <∞, then

σ(h1, h2) := sup
(t,x),(s,y)∈K:

|t−s|≤h1,|x−y|≤h2

(
E(u(t, x)− u(s, y))2

)1/2

≤ (c1h1 + c2h2)1/2, (3.4)

where c1 = 2
∫
R
|λ|3F (dλ) and c2 = 2

∫
R
|λ|F (dλ).
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Proof. We have

E
(
u(t, x)− u(s, y)

)2

=

∫
R

|b(λ)|2F (dλ), (3.5)

where

b(λ) = ei(λx+λ3t) − ei(λy+λ3s).

By the direct calculations we obtain:

|b(λ)|2 = 4 sin2

(
λ(x− y) + λ3(t− s)

2

)
.

For |t− s| ≤ h and |x− y| ≤ h we can write for any β ∈ (0, 1]:

4 sin2

(
1

2
(λ(x− y) + λ3(t− s))

)
≤ 4 min

(h
2
|λ+ λ3|, 1

)2

≤ 4
(h(λ+ λ3))2β

22β
(3.6)

which implies the estimate(∫
R

|b(λ)|2F (dλ)
)1/2

≤ 21−βhβ
(∫

R

(λ+ λ3)2βF (dλ)
)1/2

. (3.7)

Therefore, under condition (3.1) we can write the bound (3.2).

Taking |t−s| ≤ h1 and |x−y| ≤ h2, analogously to the above we can write the estimate
|b(λ)|2 ≤ 2(h1|λ|3 + h2|λ|) which implies (3.4).

4 Closer look at the covariance function of the solution

In this section we discuss the covariance function of the solution and reveal several
interesting facts and properties coming from its representation.

Firstly, we note that the covariance function B(t, x) of the random solution field u(t, x)

to the initial value problem (2.1)–(2.2) is itself a solution to the deterministic initial value
problem for the Airy equation and as such, it possesses all the properties pertaining to
the solution.

Theorem 4.1. Let u(t, x), t > 0, x ∈ R, be the random field (2.7) representing the mean
square solution to the initial value problem (2.1)–(2.2), assumption A hold, and the
covariance function of the field η be such that Bη ∈ L1 ∩ L2.

Then the covariance function B(t, x) of the field u(t, x) is a solution to the initial value
problem

∂B

∂t
= −∂

3B

∂3x
, t > 0, x ∈ R, (4.1)

B(0, x) = Bη(x), x ∈ R (4.2)

and, therefore, it can be represented as

B(t, x) =

∫
R

Bη(z)
1

3
√

3t
Ai
(x− z

3
√

3t

)
dz, (4.3)

and the following estimates hold:

‖B(t, x)‖L∞x ≤ c|t|
−1/3‖Bη‖L1 , (4.4)

‖B(t, x)‖L8
t,x
≤ c‖Bη‖L2 , (4.5)

‖∂xB(t, x)‖L∞x L2
t
≤ c‖Bη‖L2 . (4.6)
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Proof. Under the conditions of theorem, there exists the spectral density f(λ), λ ∈ R,
f ∈ L1, of the initial value process η, therefore, the covariance Bη can be written in the
form

Bη(x) =

∫
R

eiλxf(λ) dλ,

and f itself can be represented as f(λ) = 1
2π

∫
R
e−iλxBη(x) dx = B̃η(λ) (denoting with

tilde the Fourier transform). Formula (2.8) gives in such case the expression for the
covariance B in the form

B(t, x) =

∫
R

eiλx+iλ3tf(λ) dλ. (4.7)

Consider the problem (4.1)–(4.2) and apply the standard methods (see, e.g. [24]). Taking
the space Fourier transform, we obtain

B̃(t, ξ) = eitξ
3

B̃η(ξ), (4.8)

that is, B̃(t, ξ) = eitξ
3

f(ξ), and by applying the inverse transform we conclude that the
solution is represented by the right hand side of formula (4.7), and thus, coincides
with the covariance. On the other hand, once we found the Fourier transform in the
form (4.8), we can use the convolution theorem for Fourier transform to recover B as
Bη convoluted with the Airy function, that is, we come to formula (4.3). Now, having
stated that the covariance B is the solution to the Airy equation, we use the known
results on the properties of the solution to write the bounds (4.4)–(4.6). In particular,
the bound (4.4) can be deduced directly from the representation (4.3) and the fact that
the Airy function is uniformly bounded (see, e.g., [24, Chapter 8], as well as for (4.5)).
Bounds (4.5)–(4.6) follow as particular cases of the general result stated in [11, Theorem
2.1].

Note that the representation of the covariance in the form (4.3) was obtained in [5]
by direct calculations based on the representation of the solution field (2.5). Here we
show that this representation follows immediately since the covariance appears to be
the solution to the corresponding initial value problem for the Airy equation.

Remark 4.2. Theory of dispersive equations and, in particular, KdV and linear KdV
equations, is well developed and presents many interesting and important results on the
solutions (see, e.g., [25]). Basing on results for solutions to deterministic Airy equations
one can deduce properties of the covariance function. Some of them are collected in
the above theorem. As the solution to the Airy equation, B(t, x) “disperses” as t→∞ in
the form (4.4). In the recent literature, a whole direction of research is devoted to the
general Airy–Strichartz inequalities, that is, mixed Lebesgue norms LptL

q
x estimates, of

which we present here the simplest dispersive estimates (4.5)–(4.6). In particular, (4.6)
is called the Kato smoothing effect. Giving space-time integrability of solutions, the
Strichartz estimates are the fundamental tools to obtain well-posedness for nonlinear
dispersive equations, and as such they have been intensively studied. For more detail,
more estimates of this kind and historical background see, for instance, the seminal
papers [11], [12]. On the other hand, we note that along with the “dispersive” behavior,
B(t, x) possesses some conserved quantities, namely,

∫
R
B(t, x) dx is constant in time, or

conserved:
∫
R
B(t, x) dx =

∫
R
Bη(x) dx, and B(t, x) also preserves the L2 norm, that is,∫

R
B2(t, x) dx is constant in time: ‖B(t, x)‖L2

x
= ‖Bη‖L2 .

Remark 4.3. Considering B(t, x) from the statistical point of view, we see that it gives
an example of nonseparable space-time covariance function, constructed with the use of
another covariance model, and possessing a very transparent physical interpretation
and a lot of well described properties due to its representation as an oscillatory integral.
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We state in the next theorem one more interesting fact coming as a feedback from
the probabilistic consideration of the Airy equation. To the best of our knowledge, this
fact was not reflected before in the literature on the Airy equations.

Theorem 4.4. Consider the Airy equation ∂tu(t, x) = −∂xxxu(t, x) with initial condition
u(0, x) = u0(x), x ∈ R, given by a real positive-definite kernel, that is,

∑n
i=1 cicju0(xi −

xj) ≥ 0 for all n ∈ N , ci ∈ R, xi ∈ R, and suppose u0 ∈ L1 ∩ L2.
Then the solution u(t, x), (t, x) ∈ R+ × R, is a positive definite kernel as well:∑n
i=1 cicju(ti − tj , xi − xj) ≥ 0 for all n ∈ N , ci ∈ R, (ti, xi) ∈ R+ ×R.

Proof. We recall the result due to Loève that the class of covariance functions of second
order stochastic processes coincides with the class of positive definite functions. In view
of Theorem 4.1, the solution u(t, x) can be seen as a covariance function of the stationary
random field representing the solution to the random initial value problem for the Airy
equation with the stationary random initial condition having the covariance function u0.
Therefore, as a covariance function, u(t, x) is a positive definite kernel.

5 ϕ-sub-Gaussian stochastic processes to be used as initial con-
ditions

We further aim to state results on the solution to initial value problem (2.1)–(2.2)
under a ϕ-sub-Gaussian initial condition. To make the paper self-contained, we present
in this section definitions and facts needed in our study. The main theory for the spaces
of ϕ-sub-Gaussian random variables and stochastic processes was presented in [7, 9, 17]
and has been developed in numerous recent studies. Such spaces can be considered
as exponential type Orlicz spaces of random variables and provide generalizations of
Gaussian and sub-Gaussian random variables and processes (see, [7, Ch.2]).

Definition 5.1. [9, 17] A continuous even convex function ϕ is called an Orlicz N-function
if ϕ(0) = 0, ϕ(x) > 0 as x 6= 0 and lim

x→0

ϕ(x)
x = 0, lim

x→∞
ϕ(x)
x =∞.

Condition Q. Let ϕ be an N-function which satisfies lim inf
x→0

ϕ(x)
x2 = c > 0, where the case

c =∞ is possible.

Definition 5.2. [9, 17] Let ϕ be an N -function satisfying condition Q and {Ω, L,P} be a
standard probability space. The random variable ζ is ϕ-sub-Gaussian, or belongs to the
space Subϕ(Ω), if Eζ = 0, E exp{λζ} exists for all λ ∈ R and there exists a constant a > 0

such that the following inequality holds for all λ ∈ R

E exp{λζ} ≤ exp{ϕ(λa)}.

The random process X(t), t ∈ T , is called ϕ-sub-Gaussian if the random variables
{X(t), t ∈ T} are ϕ-sub-Gaussian.

The space Subϕ(Ω) is a Banach space with respect to the norm (see [9, 17]):

τϕ(ζ) = inf{a > 0 : E exp{λζ} ≤ exp{ϕ(aλ)}.

Definition 5.3. [9, 17] The function ϕ∗ defined by ϕ∗(x) = supy∈R(xy − ϕ(y)) is called
the Young-Fenchel transform (or convex conjugate) of the function ϕ.

The function ϕ∗ (known also as the Legendre or Legendre-Fenchel transform) plays
an important role in the theory of ϕ-sub-Gaussian random variables and processes
and involved in estimates for ‘tail’ probabilities, distributions of suprema and other
functionals of these processes. If ζ is a ϕ-sub-Gaussian random variable, then for all
u > 0 we have

P{|ζ| > u} ≤ 2 exp

{
−ϕ∗

(
u

τϕ(ζ)

)}
. (5.1)
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Moreover, it is stated in [7] (see, Corollary 4.1, p. 68) that a random variable ζ is a
ϕ-sub-Gaussian if and only if Eζ = 0 and there exist constants C > 0, D > 0 such that

P{|ζ| > u} ≤ C exp
{
−ϕ∗

( u
D

)}
. (5.2)

As one can see, the property of ϕ-sub-Gaussianity can be characterized in a double
way: by introducing a bound on the exponential moment of a random variable as
prescribed by Definition 5.2, or by the tail behavior of the form (5.1) or (5.2), which is
even more essential from the practical point of view.

The class of ϕ-sub-Gaussian random variables is rather wide and comprises, for
example, centered compactly supported distributions, reflected Weibull distributions,
centered bounded distributions, Gaussian, Poisson distributions. In the case when ϕ = x2

2 ,
the notion of ϕ-sub-Gaussianity reduces to the classical sub-Gaussianity. Various classes
of ϕ-sub-Gaussian processes and fields were studied, in particular, in [10, 14, 15, 16]
(see also references therein).

Let us consider the metric space (T, ρ), T = {ai ≤ ti ≤ bi, i = 1, 2}, ρ(t, s) =

maxi=1,2 |ti − si|. Denote Ti = bi − ai, i = 1, 2. For a ϕ-sub-Gaussian process X(t), t ∈ T,
introduce the following conditions.

B.1. ε0 = supt∈T τϕ(X(t)) <∞.
B.2. The process X is separable on the space (T, ρ).
B.3. For c > 0 and 0 < β ≤ 1 the estimate holds: supρ(t,s)<h τϕ(X(t)−X(s)) ≤ chβ .

We state the result which will be used in the next section.

Theorem 5.4. Let for a ϕ-sub-Gaussian process X(t), t ∈ T, conditions B.1–B.3 hold.
Then for all θ ∈ (0, 1) such that θε0 < c(min(T1, T2)/2)β and u > 0

P
{

sup
t∈T
|X(t)| ≥ u

}
≤ 2 exp

{
− ϕ∗

(u(1− θ)
ε0

)}
κ(ce)2/β(θε0)−2/β , (5.3)

where κ = 1
2 min(T1, T2)(T1 + T2).

Theorem 5.4 gives the improved bound in comparison with the analogous results
stated in [16] (Corollary 3.1) and [10] (Corollary 2).

Proof. Theorem is obtained as a corollary of the more general result from [16]. Namely,
according to Theorem 3.1 [16] the following estimate holds:

P
{

sup
t∈T
|X(t)| ≥ u

}
≤ 2 exp

{
− ϕ∗

(u(1− θ)
ε0

)}
r(−1)

(
Ir(min(θε0, γ0)

θε0

)
, (5.4)

where it is supposed

Ir(δ) :=

∫ δ

0

r
( ∏
i=1,2

( Ti
2σ(−1)(v)

+ 1
))

dv <∞, (5.5)

for 0 < δ ≤ γ0 := σ(max(T1, T2)), σ(h), h > 0, is a monotonically increasing continuous
function such that σ(h) → 0 as h → 0 and supρ(t,s)<h τϕ(X(t)−X(s)) ≤ σ(h), and r(x),
x ≥ 1, is a non-negative, monotone increasing function such that r(ex), x ≥ 0, is convex.

In our case σ(u) = cuβ, σ(−1)(u) = (u/c)1/β. Choose r(v) = vα − 1, 0 < α < β/2, then
r(−1)(v) = (v + 1)1/α. For such r(v) we estimate Ir(δ). Consider δ ∈ (0, θε0), and choose

θ ∈
(
0, cε0

(min(T1,T2

2

)β)
. Then we can write:

Ir(δ) =

δ∫
0

[ ∏
i=1,2

(Tic1/β
2u1/β

+ 1
)α
− 1
]
du ≤

δ∫
0

[(min(T1, T2)c1/β

u1/β

)α( (T1 + T2)c1/β

2u1/β

)α
− 1
]
du

= καc2α/β
(

1− 2α

β

)−1

δ1−2α/β − δ,
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denoting κ = 1
2 min(T1, T2)(T1 + T2), and

r(−1)

(
Ir(θε0)

θε0

)
≤ κc2/β

(
1− 2α

β

)−1/α

(θε0)−2/β . (5.6)

Now letting α→ 0 we have
(

1− 2α
β

)−1/α

→ e2/β , and the right hand side of (5.6) becomes

κ(ce)2/β(θε0)−2/β . Inserting this expression to (5.4) we obtain (5.3).

Remark 5.5. Analogues to Theorem 5.4, with different bounds on the increments in
assumption B.3, were applied in the literature in various contexts, in particular, in [14]
for developing uniform approximation schemes for ϕ-sub-Gaussian processes, in [10, 16]
for studying partial differential equations with random initial data, in [23] for evaluation
of suprema of spherical random fields. Such theorems allow to calculate bounds for the
distribution of suprema of ϕ-sub-Gaussian processes in the closed form.

We will need some further properties of ϕ-sub-Gaussian variables.

Definition 5.6. [13] A family ∆ of ϕ-sub-Gaussian random variables is called strictly
ϕ-sub-Gaussian if there exists a constant C∆ such that for all countable sets I of random

variables ζi ∈ ∆, i ∈ I, the inequality holds: τϕ
(∑

i∈I λiζi
)
≤ C∆

(
E
(∑

i∈I λiζi
)2 )1/2

.
Random process ζ(t), t ∈ T , is called strictly ϕ-sub-Gaussian if the family of random
variables {ζ(t), t ∈ T} is strictly ϕ-sub-Gaussian.

Example 5.7. [13] Let ξk, k = 1,∞ be independent ϕ-sub-Gaussian random variables
and ϕ be such that ϕ(

√
x) is convex. If there exists C > 0 such that τϕ(ξn) ≤ C(Eξ2

k)1/2

for any k ≥ 1, and for a sequence of nonrandom functions fk(t), t ∈ T , k ≥ 1, the

series
∞∑
k=1

Eξ2
kf

2
k (t) converges for all t ∈ T , then the series

∞∑
k=1

ξkfk(t), t ∈ T , is strictly

ϕ-sub-Gaussian random process with determining constant C.

Example 5.8. [13] Let K be a deterministic kernel and X(t) =
∫
T
K(t, s) dξ(s), where

ξ(t), t ∈ T , is a strictly ϕ-sub-Gaussian process and the integral is defined in the mean-
square sense. Then X(t), t ∈ T , is strictly ϕ-sub-Gaussian process with the same
determining constant.

6 Distribution of suprema of solutions under stationary ϕ-sub-
Gaussian initial conditions

Consider the initial value problem (2.1)–(2.2), where the process η is strictly ϕ-sub-
Gaussian and satisfies condition A. Suppose that the solution u(t, x) is considered in the
domain K = {(t, x) : a ≤ t ≤ b, c ≤ x ≤ d}.

Denote ε̃0 = sup(t,x)∈K τϕ(u(t, x)), T1 = b− a, T2 = d− c, κ = 1
2 min(T1, T2)(T1 + T2).

Theorem 6.1. Let u(t, x), (t, x) ∈ K, be a separable modification of the stochastic pro-
cess given by (2.7), the process η be strictly ϕ-sub-Gaussian with the determining
constant cη and assumption A hold. Suppose that for for some β ∈ (0, 1] condition (3.1)
holds.

Then:
1)

sup
|t−s|≤h,|x−y|≤h

τϕ(u(t, x)− u(s, y)) ≤ cηc(β)hβ , (6.1)

where c(β) is given by formula (3.3); if
∫
R
|λ|3F (dλ) <∞, then

sup
|t−s|≤h1,|x−y|≤h2

τϕ(u(t, x)− u(s, y)) ≤ (c1h1 + c2h2)1/2, (6.2)
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where c1 = 2cη
∫
R
|λ|3F (dλ) and c2 = 2cη

∫
R
|λ|F (dλ);

2) for all θ ∈ (0, 1) such that θε0 < cηc(min(T1, T2)/2)β and v > 0 it holds:

P
{

sup
(t,x)∈K

|u(t, x)| > v
}
≤ 2 exp

{
− ϕ∗

(v(1− θ)
ε̃0

)}
κ(cηc(β)e)2/β(θε̃0)−2/β ; (6.3)

3) for any p ∈ (0, 1), any h > 0 and κ̂ = max(T1, T2) the following bond holds:

P
{

sup
|t−s|≤h,
|x−y|≤h

|u(t, x)− u(s, y)| > v
}
≤ 24/β exp

{
− ϕ∗

( v(1− p)2

cηc(β)hβ(3− p)

)}[24/β−2κ̂2

ph2
+ 1
]
.

(6.4)

Proof. The process u(t, x) is strictly ϕ-sub-Gaussian with the determining constant cη.
Therefore, in view of Theorem 3.1 we can write

sup
|t−s|≤h,|x−y|≤h

τϕ(u(t, x)−u(s, y)) ≤ cη sup
|t−s|≤h,|x−y|≤h

(
E(u(t, x)−u(s, y))2

)1/2

≤ cηc(β)hβ ,

and, analogously, (6.2) follows from (3.4). The assertion 2) of the theorem follows from
Theorem 5.4. Assertion 1) gives the validity of condition B.3. So, it is left to check that
ε̃0 = sup(t,x)∈K τϕ(u(t, x)) <∞. We have indeed

ε̃0 ≤ cη
(
E|u(t, x)|2

)1/2

= cη

(∫
R

F (dλ)
)1/2

<∞

Assertion 3) follows from Theorem 3 in [10].

Corollary 6.2. Let the process η be Gaussian. Then ε̃0 = (Bη(0))1/2 = (
∫
R
dF (λ))1/2 and

P
{

sup
(t,x)∈K

|u(t, x)| > v
}
≤ 2 exp

{
− v2(1− θ)2

2ε̃2
0

}
κ(c(β)e)2/β(θε̃0)−2/β . (6.5)

Example 6.3. An important natural generalization of Gaussian processes is obtained
with ϕ(x) = |x|α

α , 1 < α ≤ 2. For this case ϕ∗(x) = |x|γ
γ , where γ ≥ 2, and 1

α +
1
γ = 1. For such ϕ-sub-Gaussian initial data the exponential term in (6.3) takes

the form exp
{
− (uγ(1 − µ)γ)/(γε̃γ0)

}
. We can also conclude from assertion 3) of

Theorem 6.1 that the solution u is sample continuous with probability 1. Indeed,
in this case we have that the right hand side of the formula (6.4) tends to 0 for

h → 0, then P
{

sup|t−s|≤h,|x−y|≤h |u(t, x) − u(s, y)| > v
}
→ 0. Therefore, as h → 0,

sup|t−s|≤h,|x−y|≤h |u(t, x)− u(s, y)| → 0 in probability, but also (due to the monotonicity
of the supremum) with probability 1.

Remark 6.4. In [16] similar results on the distribution of suprema were obtained for
solutions to higher-order linear dispersive equations with harmonizable ϕ-sub-Gaussian
initial data. Solutions therein were considered as classical solutions, that is, satisfying
the corresponding equations with probability 1, under the appropriate set of conditions.
Considering in the present paper the simpler case of the Airy equation with stationary
initial conditions, we use the approach via second order analysis and treat the solutions
in the mean square sense. The bounds and conditions are presented in such an explicit
form, which is convenient for practical applications.
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7 Examples and discussion

In this section we present several examples of processes which can be used as initial
conditions. For these processes the condition (3.1) is satisfied, the constant c(β) can be
calculated in the closed form and the estimate (6.5) holds.

1. Consider the well-known and popular in various applications Matérn model.
Let η(x), x ∈ R be a Gaussian stochastic process with the spectral density

f(λ) =
σ2

(1 + λ2)2α
, λ ∈ R. (7.1)

The corresponding covariance function is of the form:

Bη(x) =
σ2

√
πΓ(2α)

( |x|
2

)2α−1/2

K2α−1/2(|x|), x ∈ R, (7.2)

where Kν is the modified Bessel function of the second kind, in particular, K1/2(x) =√
π
2xe
−x. Covariances (7.2) have a parameter ν = 2α − 1/2 > 0 that controls the level

of smoothness of the stochastic process. Matérn class comprises a broad range of
covariances, e.g., exponential covariance, which we consider in our next example.

The Gaussian stochastic process with the above covariance and spectral density can
be obtained as solution to the following stochastic fractional differential equation:(

1− d2

dx2

)α
η(x) = w(x), x ∈ R, (7.3)

with w being a white noise: Ew(x) = 0 and Ew(x)w(y) = σ2δ(x− y) (see, for example, [8,
Theorem 3.1]). Note that the relation between the Matérn covariance in Rd, d ≥ 1, and
the corresponding stochastic fractional equation was established by Whittle in 1963.

Consider the initial value problem (2.1)–(2.2) with initial data η represented as
solution to equation (7.3). Due to the form of the spectral density (7.1), we are
able to calculate the constant c(β) which is given by (3.3) and appears in the esti-
mates (3.2), (6.1), (6.3). We have∫

R

λ2β(1 + λ2)2β−2α =

∫ ∞
0

tβ+1/2−1

(1 + t)β+1/2+2α−3β−1/2
dt = B(β + 1/2, 2α− 3β − 1/2),

where B is the Beta-function, β ∈ (0, 1], 2α − 3β − 1/2 > 0 and we used the formula∫∞
0

tµ−1

(1+t)µ+ν dt = B(µ, ν).

Therefore, in this case we obtain c(β) = 21−β(B(β + 1/2, 2α − 3β − 1/2))1/2. In
particular, having in (7.1) α > 1 and choosing β = 1/2 we get c(1/2) = 1/(α− 1).

2. Consider a stationary Gaussian Ornstein-Uhlenbeck process η defined by the equation

dη(x) = −η(x)dx+ γdW (x), x ∈ R, (7.4)

where W is a Brownian motion or Wiener process with EW (x) = 0, VarW (x) = |x|, x ∈ R.
Stationary Gaussian solution to (7.4) has the following covariance function and spectral
density:

Bη(x) =
γ2

2
e−|x|, x ∈ R, f(λ) =

γ2

2π(1 + λ2)
, λ ∈ R.

These covariance and spectral density are particular cases of those considered in the
previous example, and the calculations for c(β) are valid as well.
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3. Ornstein–Uhlenbeck equation driven by a fractional Brownian motion. Consider the
linear stochastic differential equation

dη(x) = −η(x)dx+ dWH(x), x ∈ R, (7.5)

where WH , 1
2 < H < 1, is a fractional Brownian motion, that is, a zero mean Gaussian

process with WH(0) = 0, stationary increments and covariance

Cov(WH(x),WH(y)) =
c

2

(
|x|2H + |y|2H − |x− y|2H

)
, x, y ∈ R,

where c = VarWH(1). One can show that there exists a unique continuous solution of
equation (7.5) in the form

η(x) =

∫ x

−∞
e−(x−y) dWH(y), x ∈ R,

which is a stationary Gaussian process with the spectral density

f(λ) =
σ2

1 + λ2
|λ|1−2H , λ ∈ R,

where σ2 = cΓ(2H + 1) sin(πH)/(2π) (see, e.g., [4]). Similar to example 1, we calculate∫
R

λ2β(1 + λ2)2β

1 + λ2
|λ|1−2H = B(β + 1−H,H − 3β),

where we should choose β < H/3. Therefore, c(β) = 21−β(σ2B(β + 1−H,H − 3β))1/2.

We discuss some possible extensions of the obtained results for further research.

Remark 7.1. The results obtained can be extended to higher-order and fractional Airy
equations. Namely, one can consider the equations

∂u

∂t
= (−1)n

∂2n+1u

∂2n+1x
, t > 0, x ∈ R, n ∈ N, and

∂u

∂t
= Dαxu, t > 0, x ∈ R, α > 1,

where Dαx represents the Riesz–Feller fractional derivative (see [19]). Formulas for the
fundamental solutions are available in the form (see, e.g., [19] and references therein):

gα(t, x) =
1

π

∫ ∞
0

cos(γx+ γαt) dγ =
1

(αt)1/α
Aiα

( x

(αt)1/α

)
, t > 0, x ∈ R,

with the generalized Airy function Aiα(x) = 1
π

∫∞
0

cos
(
γx + γα

α

)
dγ, x ∈ R, α > 1. The

derivations of previous sections can be adjusted for these equations.

Remark 7.2. One of the main classical tools in studying boundedness properties of
Gaussian processes is metric entropy integral estimates due to Dudley, which were
extended to wider classes of processes in the monograph [7] (see also references therein).
Results on the bounds for distribution of supremum for random fields in Sections 5, 6
were derived basing on this approach. A number of approaches and techniques have
been developed for deriving approximations for excursion probabilities (tail probabilities)
P
{

supt∈TX(t) ≥ u
}

for u→∞ (see, e.g., [1], [2] and references therein). An interesting
question for future research would be to compare the obtained in the present paper
bounds with corresponding asymptotic results, in particular, for the examples presented
above and using numerical methods.
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Remark 7.3. Another approach to the investigation of solutions of PDE subject to ϕ-
sub-Gaussian random initial conditions was developed in [13, 18] and some others. For
particular classes of equations, conditions were obtained under which solutions can be
given by series representations and methods of approximations of solutions by means
of partial sums of the corresponding series were presented, as well as conditions of
convergence of the approximations in different functional spaces. It would be useful
from the practical point of view to apply the mentioned methods for further research of
considered in the present paper equations and, in particular, to use for initial condition
a non-Gaussian process of the form presented in Example 5.7.
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