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Abstract

A competition process on Zd is considered, where two species compete to color
the sites. The entities are driven by branching random walks. Specifically red
(blue) particles reproduce in discrete time and place offspring according to a given
reproduction law, which may be different for the two types. When a red (blue) particle
is placed at a site that has not been occupied by any particle before, the site is colored
red (blue) and keeps this color forever. The types interact in that, when a particle
is placed at a site of opposite color, the particle adopts the color of the site with
probability p ∈ [0, 1]. Can a given type color infinitely many sites? Can both types color
infinitely many sites simultaneously? Partial answers are given to these questions and
many open problems are formulated.
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1 Introduction

We consider a competition model on Zd driven by branching random walk (BRW). Let
n = (n, 0, . . . , 0) ∈ Zd. At time 0, a red particle is placed at the origin and a blue particle
is placed at the neighboring site 1. The origin is also colored red and 1 is colored blue,
while all other sites are initially uncolored. The red (blue) particles then reproduce
according to BRW in discrete time with offspring law Rr and Rb, respectively, where Rr
and Rb are described in more detail below. When a particle is placed at an uncolored
site, the site is assigned the same color as the particle and then keeps this color forever.
If two particles of different color are placed at an uncolored site in the same time step,
an arbitrary local tie-breaker is applied to decide the color of the site.

According to the above description, the two types compete to reach the sites of Zd

first, but evolve independently of each other. We generalize the model by introducing an
interaction parameter p. Specifically, if a particle is placed at a site of opposite color, the
particle switches color with probability p ∈ [0, 1]. The case p = 0 hence corresponds to a
situation where the BRWs evolve independently and the coloring of the grid is nothing
more than a bookkeeping of their success. The case p = 1 on the other hand corresponds
to a situation where the particles switch color when placed at a site of opposite color,
thereby giving an extra advantage to a type that has been successful in invading many
sites. This phenomenon is qualitatively related to the latin phrase ‘cuius regio, eius
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Competition on Zd driven by branching random walk

religio’ referring to the principle that the ruler of the land dictated the religion of the
inhabitants, in force in many European countries in the 16th and 17th century. We will
sometimes use this phrase as a metaphor for the case p = 1.

Before proceeding, we describe the reproduction of the types. Let µr and µb be
probability distributions with support on non-negative integers, Kr and Kb arbitrary
finite subsets of Zd, and νr and νb probability measures on Kr and Kb. We may assume
that each site in Kr (Kb) is assigned positive mass by νr (νb), since otherwise the site may
be removed from the set. A particle that is born at time t produces offspring at time t+ 1.
The number of children of a red (blue) particle is determined by an independent draw
from µr (µb), and the children of a red (blue) particle at x are placed at sites determined
by repeated independent draws from νr (νb) translated by x. Write Rr = (µr, νr) and
Rb = (µb, νb) for the measures specifying the reproduction of the red and blue type,
respectively. We will throughout make the following assumptions on Rr and Rb:

• The measures µr and µb put mass only on strictly positive integers and have means
mr := E[µr] and mb := E[µb], respectively, both finite and strictly larger than 1. This
means that each particle gives rise to at least one child, with a positive probability
of two or more children, and implies that none of the processes dies out.

• The sets Kr and Kb contain all neighbors of the origin. This is a simple way to
ensure that any site can be reached by a particle after a finite number of steps. In
order to make our questions non-trivial for p = 1 in dimension d = 1, we will in that
case also assume that Kr (Kb) contains at least one site in each direction that is
not a neighbor of the origin.

Let Pp(·) denote the probability law of the process with parameter value p. Also,
denote by Gr and Gb the events that infinitely many sites are colored red and blue,
respectively, and define C = Gr ∩Gb. We are interested in the following questions:

(i) When are Pp(Gr) and Pp(Gb) strictly positive? When is one or both of them equal to
1? The answer may depend on the parameter p and on the underlying reproduction
laws Rr and Rb.

(ii) When do we have that Pp(C) > 0? Obviously this requires that both Pp(Gr) and
Pp(Gb) are strictly positive.

We will primarily give partial answers to (i), but along the way we also make some
observations in the direction of (ii). First we consider the extremal cases p = 1 and p = 0.
When p = 1, a given type can strangle the other by surrounding it with an impenetrable
layer of sites of its own color (as the sets Kr, Kb are finite), implying that the surrounded
type cannot color any more sites.

Proposition 1.1 (Cuius regio, eius religio). For all choices of Rr and Rb, we have that
P1(Gr ∩Gcb) > 0 and P1(Gcr ∩Gb) > 0.

When p = 0, the asymptotic growth of the corresponding single type BRWs will
ultimately determine the outcome. It is well known that the set of sites where particles
have been placed in a BRW grows linearly in time and converges to a deterministic
asymptotic shape when scaled by time. Specifically, let D(n) denote the set of sites
where particles have been placed up to time n in a BRW started with a single particle at
the origin at time 0 and with reproduction R = (µ, ν), satisfying the above assumptions.
Let D̄(n) = {x+ (1/2, 1/2]d : x ∈ D(n)} denote its embedding in Rd. Then there exists a
convex compact set A with non-empty interior containing the origin such that almost
surely, for any ε ∈ (0, 1), we have that

(1− ε)A ⊂ D̄(n)

n
⊂ (1 + ε)A (1.1)
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for large n; see [8, Theorem 1.10]. For arbitrary x ∈ Rd\{0}, we write τx for the distance
from the origin to the boundary of A in direction x, that is, τx is the asymptotic speed of
the growth of a single type process in direction x. Note that the inverse of τx is commonly
called the time constant in direction x. Its existence follows from the subadditive ergodic
theorem and is an integral part in proving the existence of an asymptotic shape.

Now consider a two-type process with p = 0. The types then evolve according to their
single type dynamics and it should come as no surprise that a type which is asymptotically
faster in a given direction will prevail in that direction. As a consequence, if there are
different directions in which the power relationship between the types is opposite, then
they will both be able to color infinitely many sites by dominating in different directions.
If, on the other hand, one of the types is faster in all directions, it will defeat the other in
the sense that it will ultimately color all but a finite number of sites.

To state this formally, for i ∈ {r, b}, write Ai for the asymptotic shape generated by a
single type BRW with reproduction Ri, and τxi for the associated speed in direction x.
We say that blue is stronger than red, and red is weaker than blue, if τxr < τxb for all x.
Let Lx be the half-line through x starting at the origin and define Lxt = {y ∈ Lx : |y| ≥ t}.
Finally, write Si for the set of sites ultimately colored by type i ∈ {r, b} in the two-type
process and S̄i = {y + (1/2, 1/2]d : y ∈ Si} for its embedding.

Proposition 1.2 (Independent BRWs). Consider a process with p = 0.

(a) If there exists a direction x ∈ Rd \ {0} such that τxr < τxb , then P0(Gb) = 1.
Specifically, almost surely S̄b ⊃ Lxt for large t.

(b) If there exist directions x and y with τxr < τxb and τyr > τyb , then P0(C) = 1.

(c) If blue is stronger than red, then P0(Gcr ∩Gb) = 1.

When p = 0, the asymptotic growth of the single-type BRWs hence determines the
outcome. In particular, a stronger type will defeat a weaker one by coloring all but a
finite number of sites. For p = 1, on the other hand, both types always have a possibility
of outcompeting the other due to randomness in the beginning of the growth. One might
ask which effect dominates for non-trivial p ∈ (0, 1).

For p < 1, but close to 1, we can show that both types still have the possibility of
defeating the other, given that the types place their offspring according to the same
spatial law (and hence differ only in the distribution of the number of offspring). We
believe that the result is true also without this restriction; see the discussion around
Lemma 2.2.

Theorem 1.3. If p is sufficiently close to 1 and νr = νb, then Pp(Gr ∩ Gcb) > 0 and
Pp(G

c
r ∩Gb) > 0.

For p strictly positive but close to 0, a type having a sufficiently big advantage will
still almost surely color infinitely many sites, but the other type might do so as well. On
top of that, the concept of having an advantage in this setting is stronger than for p = 0.
To specify what we need, let us first define the reach of an offspring displacement in a
given direction. For arbitrary x ∈ Rd \ {0}, let ρr(x) := max{〈x, y〉; y ∈ supp(νr)}, where
〈·, ·〉 denotes the scalar product. Furthermore, define the open set Ar(x) := {y ∈ Zd;
〈x, y〉 > ρr(x)}, see Figure 1 for an illustration. Note that while ρr(x) depends both on
the direction and norm of x, the set Ar(x) depends only on its direction. Also note that,
for all directions x ∈ Rd \ {0}, we have νr(Ar(x)) = 0 by definition. Finally, for any set
A ⊆ Zd, write nr(A) for the expected number of offspring placed in A by a red particle
at the origin, i.e. nr(A) := νr(A) ·mr. Define ρb(x), Ab(x) and nb(A) analogously for the
blue type. We now say that blue has a supercritical advantage over red in direction
x ∈ Rd \ {0}, if nb(Ar(x)) > 1, that is the expected number of blue offspring placed
further in direction x than red offspring can reach is larger than 1.
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Ar(x)

x

0

supp(νr)

Figure 1: Maximum range of the red offspring displacement νr in a given direction
x ∈ Rd \ {0}.

It turns out that, if a type has a supercritical advantage in some direction, it will
almost surely color infinitely many sites. The macroscopic assumption of a larger
asymptotic speed in Proposition 1.2(a) is hence replaced by a microscopic assumption
on the reproduction laws. The idea is that, if a type has a supercritical advantage over
the other, a branching process can be defined that is supercritical for p sufficiently small
and where survival of the process implies that the favored type reaches untouched land
in each time step after finitely many steps.

Theorem 1.4. If there exists x ∈ Rd \ {0} such that nb(Ar(x)) > 1, then Pp(Gb) = 1 for

p ∈
[
0, nb(Ar(x))−1nb(Ar(x))

)
. If, in addition, there exists y ∈ Rd \ {0} such that nr(Ab(x)) > 1, then

Pp(C) = 1 for p > 0 sufficiently small.

We also note that having a supercritical advantage is a stronger assumption than
having a larger speed in some direction, in the sense that the former implies the latter.

Proposition 1.5. If there exists x ∈ Rd \ {0} such that nb(Ar(x)) > 1, then there exists
a direction x′ ∈ Rd \ {0} such that τx

′

b > τx
′

r .

The rest of the paper is organized so that the remainder of this section consists of
some suggestions for further work and a short overview of related work. The proofs are
then given in two separate sections, one for p = 1 and p / 1, and one for p = 0 and p ' 0.

1.1 Open problems

Several aspects of our questions (i) and (ii) are left open. Here we elaborate on some
of them and describe possible extensions of the model.

Behavior for p close to 0. Our result for p ' 0 states that a type having a supercrit-
ical advantage almost surely colors infinitely many sites. Does the other type capture
only a finite number, or can it also grow indefinitely? Does the statement remain true
if the advantage is only in terms of the asymptotic shape, as for p = 0? A weaker type
(in terms of the shape) cannot occupy infinitely many sites when p = 0, but when p = 1
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it can. It would be interesting to understand if this possibility arises abruptly when p

becomes positive.
Behavior for p ∈ (0, 1). How does the process behave for p that is not close to

neither 0 nor 1? For p = 0 and p ' 0, a type that has some type of advantage will almost
surely color infinitely many sites, while for p = 1 and p / 1 there is a positive probability
that it colors only finitely many sites. When does this change and what explains the
change?

Coexistence in the extremal cases. As for question (ii) concerning coexistence,
our only result so far is that coexistence has positive probability when p is near 0 and
the types dominate in different directions; see Proposition 1.2(c) and Theorem 1.4. Is
coexistence possible in the independent case (p = 0) even for Ar = Ab? We believe the
answer is yes, at least in the completely symmetric case when the types have the same
reproduction law. One might guess that coexistence then happens with probability 1,
but randomness in the beginning of the growth could potentially give one of the types
an impregnable lead. This however needs to be further investigated. When p = 1, we
believe that coexistence in a similar fashion is possible in the totally symmetric case and
when the types dominate in different directions, while it is impossible when one of the
types is stronger than the other.

If our suggestions are correct, the possibility of coexistence behaves similarly in the
two extremal cases. We stress however that the geometric properties of the set of sites
colored by the respective types is presumably very different. In the symmetric case
for instance, coexistence when p = 1 most likely occurs in that the types dominate in
different regions, while for p = 0 coexistence occurs in that both types color sites close
to the boundary of their joint asymptotic shape, resulting in a mix of both colors.

More general reproduction. In our setup, the types place their offspring indepen-
dently on given finite sets. This could be generalized to allow for infinite spatial range,
and for dependence in the placement of the children of a given particle. Also the number
of children and their placement could be allowed to be dependent. Such more general
reproduction laws would make our proofs longer and more technical, but the results
should generally still be valid. However, some assumptions controlling the spatial growth
of the process will be needed, for instance to ensure that there exists an asymptotic
shape.

1.2 Related work

Models for competition on Zd have been studied for approximately two decades.
One of the first examples is a two-type version of first passage percolation introduced
in [12], where the competition is driven by i.i.d passage times on the edges, with
potentially different distributions for the two types. The case with exponential passage
times is known as the Richardson model and has received particular attention. It is
clear that each type has a positive probability of occupying infinitely many sites by
strangling the other, thereby preventing it from growing any further. The main question
is whether coexistence is possible. For the Richardson model the answer is believed to
be yes if and only if the infections have the same intensity; see [9] for an overview and
further references. Versions of the two-type Richardson model have been considered for
instance in [15], where sites recover after some time, in [2], where a site with at least
two neighbors of the same type is immediately occupied by that type, and in [17], where
sites reached by a one-type process may mutate into a different species. Our model with
p = 1 is qualitatively similar to competing first passage percolation in that one of the
types may win by surrounding the other.

Another type of competition models is provided by two-type versions of growth models
driven by moving particles. Here the type is not associated with the sites, but with
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particles moving on the sites. The growth typically starts from an i.i.d. configuration of
inactive particles and when a particle is activated it starts moving according to simple
random walk. If particles are inactive until they are hit by active particles the model is
known as the frog model, while a version where all particles are active from the start
is referred to as the diffusive epidemic model. Two-type version of these models are
analyzed in [10] and [13, 14], respectively. Our model shares some features of these
models, but differ in that particles are not present initially, but arise as a result of the
growth, and in that type is assigned to both particles and sites.

BRW has been a very active topic in contemporary probability the last two decades;
see [16] for a survey covering mainly the one-dimensional case. BRW in higher dimen-
sions is less well understood, but shape theorems can be found in [4, 8]. The model is
well suited to describe spatial evolution of biological populations and versions of the
model incorporating competition have been analyzed in this context; see e.g. [1, 6, 7, 11].
The competition in these models however amounts to a single type of particles competing
with each other in that there are constraints on the particle density or mass. An example
of a two-type competition model is provided by [5], where the number of particles in
bounded regions is limited. In our model, there are no limitations on the particle density,
but competition arises in that the first type to reach a site is given a perpetual local
advantage. It thus combines aspects of all of the above model types.

2 ‘Cuius regio, eius religio’ and p close to 1

We begin with the simple proof of Proposition 1.1.

Proof of Proposition 1.1. To show that P1(Gcr ∩Gb) > 0, consider a scenario where the
red type (starting at the origin) places all its offspring at 1 in the first time step, while the
blue type (starting at 1) does not place any offspring at the origin. Since 1 is colored blue
from the start and p = 1, this means that there will be no red particles immediately after
the first time step, but the only presence of red is that the origin is colored red. Blue
then proceeds to color all sites in Kr without ever placing any offspring at the origin.
This entails that no further sites can be colored red, since no uncolored sites are within
reach for red particles placed at the origin (arising when blue particles place offspring
there). By the assumptions on Rr and Rb – in particular the fact that Kr is finite and
νr and νb put positive mass on all nearest neighbors of the origin – this scenario has
positive probability, which proves the claim. In d = 1, we here also need the assumption
that offspring is not placed only at nearest neighbors. That P1(Gr ∩Gcb) > 0 is proved
analogously with the roles of red and blue interchanged.

To deal with the case when p / 1, we will need two auxiliary results. The first one
states that a one-type process where particles are removed with probability p is unlikely
to reach sites far from the origin if p is large.

Lemma 2.1. Consider a one-type process, starting with one (red) particle at the origin
and where each new particle is removed during branching independently with probability
p. For c > 0 and n ∈ N, the probability of any offspring reaching a site at distance cn from

the origin is bounded from above by
(
(1− p)mr

) cn
ρr , where ρr = max{ρr(x); ‖x‖ = 1}.

Proof. In order to reach a site at distance cn from the origin, the process has to survive
for at least d cnρr e generations, since the displacement in each branching is bounded by
ρr = max{ρr(x); ‖x‖ = 1}. If Xk denotes the number of particles in generation k, its

expectation is E[Xk] =
(
(1− p)mr

)k
. A simple first moment method argument then gives

that P(Xk > 0) ≤ E[Xk], which proves the claim.
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In the second auxiliary result, we want to establish that (a version of) the two-type
process grows linearly in time in the sense that (the embedding of) the set of visited sites
contains a linearly growing ball. Note that this is not an immediate consequence of the
more general version of the shape theorem in [8], which allows for random environment
in the branching, since our environment is not i.i.d. but arises from the evolution of the
process. Furthermore, the branching is based on particle type rather than the color
of the site. Although the statement might appear obvious, we have found it difficult to
establish rigorously, and have settled for the special case when the types have the same
spatial reproduction law, where it immediately follows from the one-type shape theorem.
Here, let B(s) denote a ball in Rd with radius s centered at the origin.

Lemma 2.2. Consider one (blue) particle located at the origin in the two-type process
at a given time t > 0. Write D∗(n) for the set of sites visited by offspring of this single
particle (irrespectively of their color) until time t+ n, and D̄∗(n) for the corresponding
embedding in Rd. If νr = νb, then the set of sites visited by this subprocess grows linearly.
To be more precise, there exists c > 0 such that, for any ε > 0, there exists n0 = n0(c, ε)

for which P
(
D̄∗(n) ⊃ B(cn) for all n ≥ n0

)
≥ 1− ε, where the constants c and n0 may be

chosen independently of t and all particles not belonging to the considered subprocess.

Proof. Let µmin denote the probability measure arising from taking the minimum of a
draw from µr and an independent draw from µb, and note that µmin inherits the properties
(from µr and µb) that it puts positive mass only on strictly positive integers and has mean
strictly larger than 1. Consider a one-type process with reproduction law R = (µmin, ν),
where ν := νr = νb denotes the common spatial law of the types, and let Dmin(n) denote
the set of visited sites at time n. It is straightforward to confirm that the subprocess
(of the original two-type process) stemming from the considered blue particle located
at the origin at time t can be coupled to this one-type process in such a way that
D∗(n) ⊃ Dmin(n), regardless of the remaining process. The one-type process fulfills the
assumptions of the shape theorem from [8] and the claim hence follows from the lower
bound in (1.1).

Remark. We remark that there are other assumptions on the reproduction laws that
also guarantee that the two-type process can be bounded from below by a one-type
process that fulfills the assumptions of the shape theorem. A particle could for instance
always place a copy of itself at its birth location and, with a strictly positive probability,
produce at least one additional offspring placed independently in the bounded (possibly
different) sets Kr and Kb, respectively, containing all neighbors of the origin. Different
sets Kr and Kb can also be allowed under the assumption that the reproduction laws
are ordered in that, for each site z ∈ Zd, the number of particles placed at z by νr is
stochastically smaller than for νb (or vice versa).

With Lemma 2.1 and 2.2 at hand, we now proceed to prove Theorem 1.3.

Proof of Theorem 1.3. We show that P(Gcr ∩Gb) > 0. Given a fixed time t > 0, consider
the following scenario: At first, the entire offspring of the initial red particle lands on the
initially blue site 1 and gets recolored there, all (blue) particles that land on the origin
until time t avoid being recolored (i.e. stay blue) and in each branching up to time t no
more than κ children are produced, where κ = min

{
k ∈ N;µr([1, k]) > 0, µb([1, k]) > 0)

)
.

Note that this scenario happens with positive probability for any finite t. Furthermore,
given an arbitrary number h > 0 and choosing t = t(κ, h) large enough, it has positive
probability that the scenario depicted above occurs, all sites within distance h from the
origin get visited (by blue particles) up to time t and at time t we find at least one blue
particle at the origin. Let us refer to the latter event as I = I(t, κ, h), where t and h
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will be specified below. On the event I, the only occurrence of red at time t is the red
origin site, which is surrounded by a layer of blue sites. However, red particles can
arise through recoloring when blue particles land at the origin. We will show that it is
unlikely for such particles to give rise to red offspring placed at uncolored sites (thereby
coloring the sites red), since the blue region surrounding the origin grows linearly and
the offspring will have to avoid getting recolored throughout this region, see Figure 2.

Consider the subprocess started from a single blue particle at the origin at time t
and write E∗n0

for the event that, for all n ≥ n0, all sites in B(cn) have been visited by
its offspring at time t + n, where c and n0 are chosen such that P(E∗n0

) > 1/2 – which
is possible by Lemma 2.2. Then set h = cn0 and choose t accordingly big such that the
initial event I described above happens with positive probability. Finally, for n ∈ N,
consider each red particle at the origin at time t + n in our original two-type process
as a seed of a new subprocess as in Lemma 2.1 (i.e. thinned in the sense that each
descendant is independently removed with probability p). We write Rn for the event that
at least one of these thinned subprocesses (started at time t+ n) produces offspring that
reach a site at distance cn from the origin and let R = ∪∞n=1Rn.

0

B(cn0)

Figure 2: Given E∗n0
∩ I, the distance for red particles to overcome in order to reach

unmarked territory grows linearly with time.
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We claim that, on I = I(t, κ, cn0), the event E∗n0
∩Rc guarantees that no site except

for the origin will be colored red in the two-type process, which implies

P(Gcr ∩Gb) ≥ P(E∗n0
∩Rc) on I. (2.1)

To see this, first note that given I, the event Rc guarantees that no red particle located
at the origin at time t+ 1 ≤ s ≤ t+ n0 produces red offspring at an uncolored site, since
all sites in B(cn0) are blue already at time t and all red particles placed at sites in B(cn0)

are hence recolored blue with probability p, see Figure 2 for an illustration.
Assume inductively that no red particle placed at the origin at any time s < t+n gives

rise to red offspring at an uncolored site, where n ≥ n0. The event E∗n0
then guarantees

that all sites in B(cn) \ {0} have been visited and hence colored blue at time t+ n in our
two-type process. Red particles placed at sites in B(cn) are therefore recolored with
probability p (which makes the offspring that keeps the red color within B(cn) behave
like a thinned subprocess as above). Consequently, Rcn then guarantees that red particles
located at the origin at time t+ n do note give rise to red offspring at uncolored sites
either. The claim then follows by induction.

By (2.1), we are done if we show that P(Rc) > 1/2 on I for p sufficiently close to 1,
since then P(E∗n0

) + P(Rc) > 1, implying that P(E∗n0
∩Rc) > 0. To estimate P(Rc), write

Mn for the number of red particles at the origin at time t + n in the two-type process
and note that, by union bound and Lemma 2.1, we have that

P(R) ≤
∞∑
n=1

P(Rn) ≤
∞∑
n=1

E[Mn]
(
(1− p)mr

) cn
ρr . (2.2)

Next, let us crudely bound E[Mn] on I: First, note that on I, the total number of
particles at time t is at most 2κt, since each particle produces at most κ children. With
m = max{mr,mb} and conditioning on currently having k particles in the process, the
expected number in the next time step is at most km, which gives E[Mn] ≤ 2κtmn on I.

Now choosing p sufficiently close to 1 will make m ·
(
(1− p) ·mr

) c
ρr smaller than 1,

ensuring that the sum in (2.2) is convergent. By choosing p even larger we can make the
sum smaller than 1/2, completing the proof.

3 Independent BRWs and p close to 0

We first prove Proposition 1.2, which essentially follows from the one-type shape
theorem.

Proof of Proposition 1.2. To show (a), fix ε ∈ (0, 1) such that (1 − ε)τxb > (1 + ε)τxr , and
define tb(n) = (1− ε)nτxb and tr(n) = (1 + ε)nτxr . For i ∈ {r, b}, let Di(n) denote the set of
sites visited by particles of type i up to time n and set D̄i(n) = {y+(1/2, 1/2] : y ∈ Di(n)}.
By (1.1), we have that D̄r(n)∩Lxtb(n) = ∅ for n > Nr where Nr <∞ almost surely, that is,
the red type does not reach further than tr(n) in direction x for large n. However (1.1)
also implies that Lx \ Lxtr(n) ⊂ D̄b(n) for n > Nb, that is, blue has covered everything
up to tb(n) in direction x for large n. Recall that Sb denotes the set of sites that are
ultimately colored red. Since a site is colored by type i if type i is the first one to place
offspring there, it follows that Lxt ⊂ S̄b for t > tb(N), where N = max{Nr, Nb}.

Part (b) is an immediate consequence of (a). To prove (c), denote inf{τxb − τxr :

‖x‖ = 1} = λ′ and note that, since Ar and Ab are compact, we have that λ′ > 0.
Furthermore, denote λ = λ′/ sup{‖x‖ : x ∈ Ar ∪ Ab}. By the definition of λ, we have that
(1+λ/3)nAr ⊂ (1−λ/3)nAb. Furthermore, it follows from (1.1) that D̄b(n) ⊃ (1−λ/3)nAb
for n > Nb, while D̄r(n) ⊂ (1 + λ/3)nAr for n > Nr. Since a site is colored by the
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type that reaches it first, we conclude that red will not color any sites after time
N = max{Nr, Nb}.

We finally treat the case where p ' 0.

Proof of Theorem 1.4. To begin with, note that since site 1 is marked blue and the total
number of particles (joint red and blue) goes to infinity – which together with our
assumptions on the displacements make the joint process recurrent – the number of
blue particles ever seen at site 1 grows to infinity a.s. We are now going to consider a
thinning of the BRW originating from a blue particle at 1, by considering only offspring
keeping its blue color and having a displacement in Ar(x). Showing that the probability
of survival for any such subprocess is bounded from below by a positive number will
complete the line of argument.

So let Bj denote a thinned version of the blue BRW initiated by the jth blue particle at
1, in which we disregard all descendants that get recolored or have a displacement y /∈
Ar(x). Also consider a Galton-Walton process ξ = {ξ(t), t ∈ N0}, in which the offspring
distribution is µb, thinned out by (independently) keeping every newborn particle with
probability (1− p) νb

(
Ar(x)

)
. By our assumptions, the process ξ is supercritical, as its

mean number of offspring amounts to

mb(1− p) νb
(
Ar(x)

)
= nb

(
Ar(x)

)
(1− p) > 1.

By a simple coupling argument we can conclude that any Bj stochastically dominates ξ

in the sense that
ξ(t) � |Bj(t)|, for all t ∈ N0,

where |Bj(t)| denotes the number of particles in generation t of the process Bj . Hence,
any blue particle located at 1 has a positive probability to produce an infinite progeny
that all keep their color and have displacements in Ar(x).

Now since Kb is finite, all displacements y ∈ Kb ∩ Ar(x) of blue offspring actually
fulfill 〈x, y〉 ≥ ρr(x) + ε for some fixed ε > 0. As a consequence, provided it does not die
out, any such thinned blue BRW will outgrow both the initial BRW of red particles as well
as any (red) progeny of recolored blue particles (which have displacement at most ρr(x)

per generation) in direction x. Its advantage in this direction will therefore enable it to
visit infinitely many sites before any red particle does and this conclusion actually holds
true irrespectively of the time when the surviving thinned blue BRW emerges: Let us say
it originates at time t0 from site 1. Then there will be sites z visited by the progeny of
this thinned BRW at time t with 〈x, z〉 − 〈x,1〉 ≥ (ρr(x) + ε) · (t− t0) for all t ≥ t0. For a
red particle to reach such a site z earlier, there needs to be a chain of sites y0, y1, . . . , ys
(not necessarily all marked red) such that s ≤ t, y0 = 0, ys = z and 〈x, yi − yi−1〉 ≤ ρr(x)

for all 1 ≤ i ≤ s, hence 〈x, z〉 ≤ s · ρr(x) ≤ t · ρr(x). Choosing t large enough (with respect
to x, t0 and ε), this leads to a contradiction.

In order to conclude, we simply have to verify that there will a.s. emerge such a
thinned blue BRW that does not die out. But this follows from the stochastic domination
mentioned above together with the conditional Borel-Cantelli-Lemma.

We end by confirming that having a supercritical advantage in some direction implies
an advantage in terms of asymptotic speed in some (possibly different) direction.

Proof of Proposition 1.5. Assume that blue has a supercritical advantage in some direc-
tion x and consider the thinned blue BRW described in the proof of Proposition 1.4,
where only offspring with displacement in Ar(x) is considered. This BRW survives with
positive probability and, if it does, we have that Ab ∩Ar(x) 6= ∅, where Ab is the asymp-
totic shape of a blue one-type process. Since the convergence in the shape theorem is
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with probability 1, we conclude that Ab ∩ Ar(x) 6= ∅ almost surely. On the other hand,
we have by the definition of Ar(x) that Ar ∩Ar(x) = ∅. It follows that the blue shape Ab
must exceed the red shape Ar in some direction x′, which fulfills 〈x, x′〉 > 0.
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