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Abstract

We prove the existence and uniqueness of solutions of SDEs with Lipschitz coefficients,
driven by continuous, model-free martingales. The main tool in our reasoning is
Picard’s iterative procedure and a model-free version of the Burkholder-Davis-Gundy
inequality for integrals driven by model-free, continuous martingales. We work with a
new outer measure which assigns zero value exactly to those properties which are
instantly blockable.
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1 Introduction

The main purpose of this paper is to prove the existence and uniqueness of solutions
of differential equations driven by continuous, model-free martingales. Continuous,
model-free martingales were introduced in a recent book by Glenn Schafer and Vladimir
Vovk [9]. Roughly speaking, model-free martingales are processes representing evolution
of values of a dynamic portfolio consisting of several financial assets; they are related to
model-free price paths. Typical, model-free price paths represent evolution of prices of
financial assets which do not allow to obtain infinite wealth during finite time by risking
small amount and trading these assets. From pioneering works of Vovk [10], [11], [12],
[13] it is well known that typical model-free price paths reveal many properties of local
martingales. The case of continuous price paths is understood much better than the case
of càdlàg paths.

However, even in the case of continuous, model-free price paths there are still many
topics which need to be understood better. One of such topics is the existence and
uniqueness of solutions of differential equations driven by such paths. The first results
in this direction are proven in [1], even for Hilbert space-valued processes. In [1] the
authors assume, similarly as we do here, that the coefficients of the differential equations
are Lipschitz continuous, but they additionally assume some growth condition on the
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On SDEs driven by model-free martingales

quadratic variation process of the coordinate process, see [1, Sect. 2, Remark 2.7].
Another related paper is [5], where existence and uniqueness result for one-dimensional
differential equations, driven by typical paths, with non-Lipschitz continuous coefficients
in the spirit of Yamada-Watanabe as well as an approximation result in the spirit of
Doss-Sussmann were proven.

Our approach is different. First, the driving processes of our equations are more
general processes – model-free, continuous martingales. Second, we work with the
properties which hold with instant enforcement. Roughly speaking, they are such
properties (subsets of Ω× [0,+∞)) consisting of pairs of ω ∈ Ω (which may be interpreted
as an elementary event or outcome of reality) and t ∈ [0,+∞) (time) that a trader (skeptic)
is able to become infinitely rich as soon as they cease to hold, see [9, Chapt. 14] and
the next section. Typical paths are on the other hand the trajectories of the canonical
process St(ω) = ω(t) for such properties (subsets) of Ω 3 ω that a trader (skeptic) is able
to become infinitely rich when they do not hold, but it may take some time until a given
time horizon T ∈ (0,+∞) that she/he becomes infinitely rich, see for example [6].

In this paper we consider the following differential equation (or rather integral
equation) driven by model-free, continuous martingales X1, X2, . . . Xd ∈M (the family
M is defined in subsection 2.1):

Yt (ω) = Y0 (ω) +

∫ t

0

K (s,Y (ω) , ω) dAs +

∫ t

0

F (s,Y (ω) , ω) dXs (ω), (1.1)

where A : [0,+∞) × Ω → Rd is a continuous, adapted, finite-variation process, X is a
d-dimensional process with coordinates X1, X2, . . . Xd, X = (X1, X2, . . . Xd), and K,F :

[0,+∞)×
(
[−∞,+∞]d

)[0,+∞)×Ω→ Rd×d (for formal reasons we allow X and Y to attain
values from [−∞,+∞]d) are non-anticipating, matrix-valued and Lipschitz in the sense
that there exists L ∈ (0,+∞) such that for all t ∈ [0,+∞), x,y : [0,+∞) → [−∞,+∞]d

and ω ∈ Ω

|K (t,x, ω)−K (t,y, ω)|+ |F (t,x, ω)− F (t,y, ω)| ≤ L sup
s∈[0,t]

|x(s)− y(s)| , (1.2)

where | · | denotes the Euclidean norm in Rn with n = d × d on the left side of (1.2)
and n = d on the the right side of (1.2), for example: |K (t,x, ω)−K (t,y, ω)| =(∑d

i,j=1

(
Ki,j (t,x, ω)−Ki,j (t,y, ω)

)2)1/2
, with the convention that +∞ − (+∞) = 0

and −∞− (−∞) = 0. The definition of non-anticipating functionals and formal statement
of all assumptions is given in Sect. 3.

Equation (1.1) may be written as the system of integral equations: for j = 1, 2, . . . , d,

Y jt (ω) = Y j0 (ω) +

d∑
i=1

∫ t

0

Ki,j (s,Y (ω) , ω) dAis +

d∑
i=1

∫ t

0

F i,j (s,Y (ω) , ω) dXi
s (ω) (1.3)

or, equivalently,

Y jt (ω) = Y j0 (ω) +

∫ t

0

Kj (s,Y (ω) , ω) dAs +

∫ t

0

F j (s,Y (ω) , ω) dXs (ω),

where
∫ t
0
Kj (s,Y (ω) , ω) dAs =

∑d
i=1

∫ t
0
Ki,j (s,Y (ω) , ω) dAis, K

j (s,Y (ω) , ω) =(
Ki,j (s,Y (ω) , ω)

)
i=1,2,...,d

and a similar notation is used for F . The integrals appearing
in the first sum in (1.3) are understood as the standard Lebesgue-Stieltjes integrals,
while integrals appearing in the second sum as model-free Itô integrals introduced in
the next section.
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On SDEs driven by model-free martingales

Condition (1.2) is sufficient for our purpose. The same condition is used in [7, Chapt.
IX, Sect. 2] but it differs from that used in [1].

This paper is organized as follows. In the next section we introduce necessary
definitions, notations and tools (like the model-free BDG inequality). In the last section
we apply these tools and Picard’s iterative procedure (used in a similar way as in [2]) to
prove the existence and uniqueness of the solution of (1.1).

2 Definitions, notation and auxiliary results

First we outline a general setting in which we will work and which follows closely [9,
Chapt. 14] and [3]. N = {0, 1, 2, . . .} is the set of non-negative integers and b, d ∈ N \ {0}.
We will work with a martingale space which is a quintuple(

Ω,F ,F =(Ft)t≥0, J = {1, 2, . . . , b}, {Sj , j ∈ J}
)

of the following objects: Ω is a space of possible outcomes of reality, F is a σ-field
of the subsets of Ω which we call events, F = (Ft)t≥0 is a filtration and {Sj , j ∈ J} =

{S1, S2, . . . Sb} is a family of basic continuous martingales, that is for any t ∈ [0,+∞)

and j ∈ J , Sjt is a (Ft,B(R))-measurable real variable Sjt : Ω → R such that for each
ω ∈ Ω the trajectory [0,+∞) 3 t 7→ Sjt (ω) is continuous (B(R) denotes the σ-field of Borel
subsets of R).

The financial interpretation of the introduced objects is that J is a set of securities
and Sjt is the price of security j at time t, see also [9, Sect. 14.1]. In the case of one
security (J = {1}), S1 is often assumed to be the coordinate process S1

t (ω) = ω(t) defined
on the space Ω of all continuous functions ω : [0,+∞)→ R.

Throughout the paper the filtration F is fixed, moreover, we assume that F0 is
trivial, F0 = {∅,Ω}, thus all (F0,B(R))-measurable variables Sj0, j ∈ J , are deterministic.
Moreover, we assume that the filtration F is such that all random times we define in this
paper are indeed stopping times with respect to F. This holds for example if we assume
that for any t ≥ 0 and any instantly blockable set B ⊆ [0,+∞) × Ω (blockable sets are
defined later) the projection of B ∩ ([0, t]×Ω) onto Ω belongs to Ft (such assumption has
a natural interpretation – that at the moment t ≥ 0 we are able to say if there was any
trading strategy making us infinitely rich (after investing a small positive amount at the
moment 0); see also [3]).

2.1 Definitions and auxiliary results

A real process X : [0,+∞) × Ω → R is a collection of real variables Xt : Ω → R,
t ∈ [0,+∞), such that Xt is (Ft,B(R))-measurable, thus all processes which we consider
are adapted to F.

A d-dimensional real process Y is a d-tuple
(
Y 1, Y 2, . . . , Y d

)
of real processes Y 1,

Y 2, . . ., Y d.
A process Y : [0,+∞)× Ω→ R ∪ {−∞,+∞} = [−∞,+∞], is a collection of extended

variables Yt : Ω→ [−∞,+∞], t ∈ [0,+∞), such that Yt is (Ft,B([−∞,+∞]))-measurable
(any set in B([−∞,+∞]) is of the form A, A∪{−∞}, A∪{+∞} or A∪{−∞,+∞}, where
A ∈ B(R)).

A d-dimensional process Y is a d-tuple
(
Y 1, Y 2, . . . , Y d

)
of processes Y 1, Y 2, . . . , Y d.

For any function Y : [0,+∞)× Ω→ [−∞,+∞] we define its supremum Y ∗ as

Y ∗t (ω) := sup
0≤s≤t

|Yt(ω)| ,

where we denote Yt(ω) := Y (t, ω). Y is globally bounded iff |Yt(ω)| < +∞ for all
(t, ω) ∈ [0,+∞)× Ω.
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Throughout the whole paper we apply the following convention. A sequence of real
numbers an, where n = 0, 1, 2, . . ., is denoted by (an) or (an)n and a sequence of real
numbers an, where n = 0, 1, 2, . . ., is denoted by (an) or (an)n (without indication that n
ranges over the set of nonnegative integers N). A similar convention will be applied to
infinite sequences of stopping times, variables etc.

A simple trading strategy is a triplet G = (c, (τn), (gn)) which consists of the initial
capital c ∈ R, a sequence of F-stopping times (τn) and a sequence of (Fτn ,B(R))-
measurable real variables gn : Ω→ R, n ∈ N, such that gn(ω) = 0 whenever τn(ω) = +∞.
The stopping times are assumed to be non-decreasing (for all n ∈ N and each ω ∈ Ω,
τn+1(ω) ≥ τn(ω)) and such that τ0 ≡ 0, and for each ω ∈ Ω the sequence (τn(ω)) is
divergent to +∞ or there exists some n ∈ N such that τn(ω) = τn+1(ω) = . . . ∈ [0,+∞].

For a simple trading strategyG = (c, (τn), (gn)) and a real processX : [0,+∞)×Ω→ R

we define

(G ·X)t(ω) := c+

+∞∑
n=1

gn−1(ω)
(
Xτn(ω)∧t −Xτn−1(ω)∧t

)
. (2.1)

(For s, t ∈ [−∞,+∞] we define s ∧ t = min{s, t}.) Let us note that by the assumptions
about the sequence (τn), there is only finite number of non-zero summands in the sum∑+∞
n=1 gn−1(ω)

(
Xτn(ω)∧t −Xτn−1(ω)∧t

)
appearing in the definition of (G ·X)t(ω).

We define the simple capital process corresponding to the vector G =
(
Gj
)
j∈J of

simple trading strategies Gj , j ∈ J , as

(G · S)t(ω) :=
∑
j∈J

(Gj · Sj)t(ω). (2.2)

The simple capital process has a very natural interpretation – it is the capital accumulated
till time t by the application of the simple trading strategy Gj to the asset whose price is
equal to the basic martingale Sj , j ∈ J .

The class C of nonnegative supermartingales is defined as the smallest class with the
following properties

• C contains all simple capital processes which are nonnegative;

• whenever X ∈ C, Y is a simple capital process and X + Y is nonnegative then
X + Y ∈ C;

• for any sequence (Xn) such thatXn ∈ C for n∈N, we have thatX :=lim infn→+∞Xn

also belongs to C.

The class C may also be described using transfinite induction on the countable ordinals
α: C =

⋃
α Cα, where

• C0 contains all simple capital processes which are nonnegative;

• for α > 0, whenever X ∈ C<α :=
⋃
β<α Cβ , Y is a simple capital process and X + Y

is nonnegative then X + Y ∈ Cα;

• for α > 0 and for any sequence (Xn) such that Xn ∈ C<α for n ∈ N, we have that
X := lim infn→+∞Xn belongs to Cα.

A property E ⊆ [0,+∞)×Ω is instantly enforceable, or holds with instant enforcement,
w.i.e. in short, if there exists a nonnegative supermartingale X such that X0 = 1 and

(t, ω) /∈ E =⇒ Xt(ω) = +∞.

Complements of instantly enforceable properties (sets) are called instantly blockable.
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For Y : [0,+∞)× Ω → [−∞,+∞] we define its upper expectation (or cost of super-
hedging or super-replication) in the following way

EY := inf {λ ∈ R : ∃X ∈ C such that ∀(t, ω) ∈ [0,+∞)× Ω, X0(ω) ≤ λ
and Xt(ω) ≥ Yt(ω)}

and for A ⊆ [0,+∞) × Ω we define its outer measure as P(A) = E1A. We have the
following result (see [3, Lemma 2.3]).

Proposition 2.1. The set B ⊆ [0,+∞)× Ω is instantly blockable iff P(B) = 0.

Next to the class of nonnegative supermartingales, other important class of processes
which we will work with is the family of martingales. The class of martingales M is
defined as the smallest lim-closed class of real (w.i.e.) processes such than it contains
all simple capital processes. By the fact thatM is lim-closed we mean that whenever
Xn ∈M, n ∈ N, and X is a real (w.i.e.) process such that for any (t, ω) ∈ [0,+∞)× Ω,

lim
n→+∞

sup
s∈[0,t]

|Xs(ω)−Xn
s (ω)| = 0 w.i.e. (2.3)

then also X ∈ M. Condition (2.3) guarantees that the limit process X is real and
continuous w.i.e., see [3, Fact 2.9].

For any X ∈ M there exists its quadratic variation process denoted by [X] (see [3,
Proposition 4.3]), which is non-decreasing, real and continuous w.i.e. (and one may take
a version which is non-decreasing, real and continuous for all ω ∈ Ω), and for any p ≥ 1

the following BDG inequalities hold (see [3, Proposition 4.8]):

cpE[X]p/2 ≤ E((X −X0)∗)p ≤ CpE[X]p/2.

In the case p > 1 one may take Cp = 6p(p− 1)p−1 and cp = 1/Cp, while in the case p = 1

one may take Cp = 6 and cp = 1/3.

2.2 Stochastic integrals

Until now we have not defined integrals appearing in (1.3). Integrals with respect
to model-free, typical paths as integrators were defined in several papers. The case
of continuous, model-free typical paths as integrators was considered first in [6], see
also [14]. In [14], integrals with more general, typical, model-free càdlàg integrators
were also considered; see also [4]. Integrals with respect to model-free, continuous
martingales were introduced in [8], [9], see also [3]. In [8], [9], [3], it was proven that
the property that such integrals exist holds with instant enforcement.

Although the mentioned integrals may be useful, now we will define integrals suiting
our needs better. Let X be a d-dimensional process with coordinates X1, X2, . . . Xd,
(X = (X1, X2, . . . Xd)), which are martingales. To do this, let us introduce the spaces
G0 = G0X and H = HX of (equivalence classes of) d-dimensional processes and processes
respectively, equipped with the norms:

‖Y‖G∞,X,loc :=

∞∑
N=1

2−NE|Y|∗·∧σ(X,N), ‖Z‖
H
∞,X,loc :=

∞∑
N=1

2−NN−2E|Z|∗·∧σ(X,N)

where Y : [0,+∞)× Ω→ [−∞,+∞]d, |Y| =
√∑d

i=1(Y j)2 and we define

σ(X, N) := σ
(
[X1], N

)
∧ σ

(
[X2], N

)
∧ . . . ∧ σ

([
Xd
]
, N
)
,

where for the martingale X,

σ ([X], N) = inf{t ≥ 0 : [X]t ≥ N}.
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To deal with the values +∞ and −∞ which may be attained by some components of (a
representative of) some element Y of G0 we recall the convention that +∞− (+∞) = 0

and −∞− (−∞) = 0. Our definitions seemingly restrict the space of possible solutions
Y of Eq. (1.1) (they can not grow to fast on the intervals [0, σ(X, N)]), but it is not the
case thanks to the Definition 3.1 of a solution of (1.1).

Further, let G = GX be a closure of the linear subspace of G0 spanned by càdlàg
d-dimensional step processes of the form G =

(
Gi
)
i=1,2,...,d

, where

Git(ω) :=

+∞∑
n=1

gin−1(ω)1[τ i
n−1(ω),τ

i
n(ω))

(t),

and Gi = (0, (τ in), (gin)), i = 1, 2, . . . , d, are simple trading strategies. For the càdlàg
d-dimensional step process G we define the simple integral process as

G ·X =

d∑
i=1

Gi ·Xi,

where Gi ·Xi are defined by (2.1). Instead of Gi ·Xi we will also write
∫ ·
0
Gis dXi

s and

instead of
(
Gi ·Xi

)
t

we will also write
∫ t
0
Gis dXi

s.

Remark 2.2. More appropriate notation (consistent with the Stieltjes integral) to denote
simple capital processes defined in (2.2) and just defined simple integrals, would be
G− · S and G− ·X respectively. Similarly, more appropriate notation in (1.1) would be∫
(0,t]

K (s−,Y (ω) , ω) dAs and
∫
(0,t]

F (s−,Y (ω) , ω) dXs (ω), but we will not use it to be
consistent with the notation used in [9] and [3].

In the sequel we will also use the fact that for a simple trading strategy G and a
continuous martingale X, [G ·X] =

∫ ·
0

(Gs)
2

d[X]s w.i.e., see [3, Fact 5.1].

Proposition 2.3. The spaces G and H are Banach spaces. Two processes Y1 and Y2

are representatives of the same classes in G iff Y1 = Y2 w.i.e., which is equivalent with
E|Y1 −Y2| = 0. A similar statement holds for processes in H. For any G ∈ G which is
the limit of d-dimensional step processes Gn in G, there exists the limit of Gn ·X in H
and we define G ·X as this limit. Moreover, G ·X has a representative in H which is a
martingale, which implies that any representative of G ·X in H is a martingale.

Proof. The proof that ‖·‖G∞,X,loc defines a norm and that two processes Y1 and Y2

are representatives of the same classes in G iff Y1 = Y2 w.i.e., which is equivalent
with E|Y1 − Y2| = 0, is omitted. To prove the completeness let (Y n) be a Cauchy
sequence with respect to the metric dG∞,X,loc induced by the norm ‖·‖G∞,X,loc. Let (dk) be

any sequence of positive reals such that
∑+∞
k=1 dk < +∞. There exists a subsequence

(Ynk) such that for n ≥ nk, n, k = 1, 2, . . . one has dG∞,X,loc (Yn,Ynk) ≤ dk. Taking
Y := lim inf l→+∞Ynl (lim inf is defined component-wise), for n ≥ nk we get

dG∞,X,loc (Yn,Y) ≤ dG∞,X,loc (Yn,Ynk) +

+∞∑
l=k

dG∞,X,loc (Ynl ,Ynl+1) ≤ dk +

+∞∑
l=k

dl,

thus Y is the limit of the sequence (Yn) (as a limit one can also take lim supl→+∞Ynl).
Similarly we prove the completeness of H.
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For two step processes Gm and Gn, using the BDG inequality for p = 1, we estimate

E|Gm ·X−Gn ·X|∗·∧σ(X,N) ≤
d∑
i=1

E|Gm,i ·Xi −Gn,i ·Xi|∗·∧σ(X,N)

≤ C1

d∑
i=1

E

(∫ ·∧σ(X,N)

0

(
Gm,i −Gn,i

)2
s

d[Xi]s

)1/2

≤C1

d∑
i=1

E
((
Gm,i−Gn,i

)∗
·∧σ(X,N)

N1/2
)

= C1N
1/2

d∑
i=1

E
(
Gm,i −Gn,i

)∗
·∧σ(X,N)

≤ C2N
1/2d · E (Gm −Gn)

∗
·∧σ(X,N)

≤ C1N
1/2d2N‖Gm −Gn‖G∞,X,loc.

From the last estimate it follows that (Gn ·X) is a Cauchy sequence in H, since

‖Gm ·X−Gn ·X‖H∞,X,loc =

∞∑
N=1

2−NN−2E|Gm ·X−Gn ·X|∗·∧σ(X,N)

≤
∞∑
N=1

2−NN−2C1N
1/2d2N‖Gm −Gn‖G∞,X,loc =

(
C1d

∞∑
N=1

N−3/2

)
‖Gm −Gn‖G∞,X,loc.

G · X is a limit in H of Gn · X, which are martingales. To prove that it has a
representative in H which is a martingale let (nk)k be any subsequence of the sequence
of all natural numbers such that M :=

∑+∞
k=1 ‖G · X −Gnk · X‖H∞,X,loc < +∞ and let

B ⊆ [0,+∞)×Ω be the set of (t, ω) where (G ·X−Gnk ·X)
∗
t (ω) 9 0. Let (t, ω) ∈ B and

N ∈ N be such that σ(X, N)(ω) ≥ t. We have

+∞∑
k=1

(G ·X−Gnk ·X)
∗
σ(X,N)(ω) (ω) ≥

+∞∑
k=1

(G ·X−Gnk ·X)
∗
t (ω) = +∞.

As a result, for any ε > 0

ε

+∞∑
k=1

+∞∑
N=1

2−NN−2 (G ·X−Gnk ·X)
∗
σ(X,N)(ω) (ω) = +∞.

On the other hand, since

E

+∞∑
k=1

+∞∑
N=1

2−NN−2 (G ·X−Gnk ·X)
∗
·∧σ(X,N)

≤
+∞∑
k=1

E

+∞∑
N=1

2−NN−2 (G ·X−Gnk ·X)
∗
·∧σ(X,N)

=

+∞∑
k=1

‖G ·X−Gnk ·X‖H∞,X,loc = M < +∞,

we know that there exist a non-negative supermartingale which starts from a capital
no greater than εM and attains value +∞ on B. Since ε is arbitrary positive real, B is
instantly blockable, which implies that G ·X is a martingale.

3 Theorem on existence and uniqueness of the solutions of SDEs
with Lipschitz coefficients, driven by continuous, model-free
martingales

In this section we prove the existence and uniqueness of the solution of SDE (1.1).
We will assume the following:
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On SDEs driven by model-free martingales

1. Aj = Aj,u − Aj,v, j = 1, 2, . . . , d, and |A|j = Aj,u + Aj,v, |A| =
(∑d

j=1

(
|A|j

)2)1/2
,

where Aj,u, Aj,v : [0,+∞) × Ω → R are continuous, non-decreasing, adapted pro-
cesses, starting from 0;

2. K,F : [0,+∞)×
(
[−∞,+∞]d

)[0,+∞)×Ω→ Rd×d, and K and F are non-anticipating,
by which we mean that

(a) for any t ∈ [0,+∞), ω ∈ Ω and two functions x,y : [0,+∞) → [ −∞,+∞]d,
K(t,x, ω) = K(t,y, ω) and F (t,x, ω) = F (t,y, ω) whenever x(s) = y(s) for all
s ∈ [0, t];

(b) for any adapted càdlàg process Y : [0,+∞)× Ω→ [−∞,+∞]d the processes
Kt(ω) := K(t,Y(ω), ω), Ft(ω) := F (t,Y(ω), ω) are adapted and càdlàg;

3. K and F satisfy condition (1.2).

For a process Y : [0,+∞)×Ω→ Rd instead of K (s,Y (ω) , ω) we will often write K (s,Y)

and instead of F (s,Y (ω) , ω) we will often write F (s,Y).

Now let us define what we will mean by the solution of (1.1).

Definition 3.1. Let X be a d-dimensional process with coordinates X1, X2, . . . Xd, (X =

(X1, X2, . . . Xd)), which are martingales. A solution of (1.1) is any d-dimensional process
Y such that there exist a sequence of non-decreasing F-stopping times (τn), which tend
to +∞ for all ω ∈ Ω and such that Y·∧τn (Y stopped at the time τn) is a representative
of some element of G and the following equalities for j = 1, 2, . . . , d, n ∈ N and any
t ∈ [0,+∞) hold:

Y jt∧τn − Y
j
0 −

∫ t

0

Kj (s,Yt∧τn)1[0,τn)(s) dAs =

∫ t

0

F j (s,Yt∧τn)1[0,τn)(s) dXs, (3.1)

where the integral on the left hand side of (3.1) is understood as the usual Lebesque-
Stieltjes integral while the integral on the right hand side of (3.1) as the integral defined
in Proposition 2.3 (by the Lipschitz assumption (1.2), the d-dimensional processes
F j (·,Y·∧τn), j = 1, 2, . . . , d, belong to (are representatives of some elements of) G and
the integrals

∫ t
0
F j (s,Yt∧τn)1[0,τn)(s) dXs are well defined). The equality in (3.1) is

understood as the fact that the process Y jt∧τn − Y j0 −
∫ t
0
Kj (s,Yt∧τn)1[0,τn)(s) dAs is

a representative of the same equivalence class in H which is on the right hand side
of (3.1).

We will use a model-free version of the BDG inequality for p = 1 and Picard’s iterative
procedure (used in a similar way as in [2]) to prove the following theorem.

Theorem 3.2. Under the assumptions 1.-3. stated above, integral equation (1.1) has a
solution in the sense of Definition 3.1 and this solution is unique in the sense that for
any two solutions G and H we have E (G−H)

∗
= 0, or, eqiuvalently, G = H w.i.e.

Remark 3.3. Theorem 3.2 implies the existence of a solution of (1.1) in the sense of
Definition 3.1. Naturally, for many equations, like for example the one-dimensional Black-
Scholes equation Yt = y0 +

∫ t
0
Ys dAs +σ

∫ t
0
Ys dXs (x0, σ - deterministic) we can write the

solution explicitly Yt = y0 exp
(
At − 1

2σ
2[X]t + σ(Xt −X0)

)
and verify that it satisfies the

Black-Scholes equation using the (model-free) Itô formula (see [13]). However, for more
general equations we often have no explicit solutions and the existence of a solution is
not obvious.
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On SDEs driven by model-free martingales

3.1 Proof of Theorem 3.2

3.1.1 Existence

Let us define q = 1/(3L), r = 1/(3C1d
2L),

ϑ0 := inf{t ≥ 0 : |A|t ≥ q}, σ0 := inf

{
t ≥ 0 : max

j=1,2,...,d
[Xj ]t ≥ r

}
,

θ0 = ϑ0 ∧ σ0
and for any G in G define

(
T 0G

)
t

= Y0 +

∫ t∧θ0

0

K (s,G) dAs +

∫ t∧θ0

0

F (s,G) dXs

= Y0 +

∫ t

0

K (s,G)1[0,θ0)(s) dAs +

∫ t

0

F (s,G) 1[0,θ0)(s) dXs.

Let us fix N ∈ N. By the inequality(∫ ·∧θ0∧σ(X,N)

0

F (s,G) dXs

)∗

≤
d∑
i=1

 d∑
j=1

∫ ·∧θ0∧σ(X,N)

0

{
F i,j (s,G)− F i,j (s,H)

}
dXj

s

∗

≤
d∑

i,j=1

(∫ ·∧θ0∧σ(X,N)

0

{
F i,j (s,G)− F i,j (s,H)

}
dXj

s

)∗

(which follows from the estimate
√∑d

i=1 a
2
i ≤

∑d
i=1 |ai|), the subadditivity of E, the

Lipschitz property and the BDG inequality, for any G,H ∈ G we estimate

E
(
T 0G− T 0H

)∗
·∧σ(X,N)

≤ E

(∫ ·∧θ0∧σ(X,N)

0

|K (s,G)−K (s,H) | d|A|s

)∗

+

d∑
i,j=1

E

(∫ ·∧θ0∧σ(X,N)

0

{
F i,j (s,G)− F i,j (s,H)

}
dXj

s

)∗

≤ E

(∫ ·∧θ0∧σ(X,N)

0

L (G−H)
∗
s d|A|s

)∗

+ C1

d∑
i,j=1

E

(∫ ·∧θ0∧σ(X,N)

0

L2
(
(G−H)

∗
s

)2
d[Xj ]s

)1/2

≤ E
(
L (G−H)

∗
·∧σ(X,N) |A|·∧θ0

)
+ C1

d∑
i,j=1

E
(
L (G−H)

∗
·∧σ(X,N)

(
[Xj ]·∧θ0

)1/2)

≤ E
(
L (G−H)

∗
·∧σ(X,N)

1

3L

)
+ C1

d∑
i,j=1

E

(
L (G−H)

∗
·∧σ(X,N)

1

3C1d2L

)
=

2

3
E (G−H)

∗
·∧σ(X,N) . (3.2)
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On SDEs driven by model-free martingales

We have also used the fact that for G ∈ G, i, j = 1, 2, . . . , d, Gi ·Xj is a martingale (which
follows from Proposition 2.3) and that

[
Gi ·Xj

]
=
∫ ·
0

(
Gis
)2

d[Xj ]s w.i.e., which follows
from [3, Fact 5.1] by simple approximation arguments (see also [3, Fact 5.4]).

From (3.2) we get

‖T 0G− T 0H‖G∞,X,loc ≤
2

3
‖G−H‖G∞,X,loc. (3.3)

By (3.3), ‖T 0G‖G∞,X,loc ≤
2
3‖G‖

G
∞,X,loc < +∞. We will now show that T 0G is a limit of

step processes in G from which it will follow that T 0G ∈ G (T 0G is a representative
of an element of G). First, notice that G ∈ G thus it is a limit (in G) of a sequence of
d-dimensional step processes Gn ∈ G, n ∈ N. By (3.3),

‖T 0Gn‖G∞,X,loc ≤
2

3
‖Gn‖G∞,X,loc ≤ ‖G‖

G
∞,X,loc

for sufficiently large n. For each step (thus càdlàg) process Gn, K (s,Gn) and F (s,Gn)

are again adapted càdlàg processes (assumption 2(b)) which may be uniformly approxi-
mated by step processes Kn and Fn with given accuracy ε > 0, respectively. For example
if we define τn,ε0 := 0, fn,ε0 := 0 and for m ∈ N \ {0}

τn,εm := inf
{
t > τn,εm−1 : |Fnt − f

n,ε
m−1| ≥ ε

}
, fn,εm = Fnτn,ε

m
,

then Fn,εt :=
∑+∞
m=1 f

n,ε
m−11[τn,ε

m−1,τ
n,ε
m )(t) approximates Fn uniformly on [0,+∞) with accu-

racy ε, that is supt∈[0,+∞) |F
n,ε
t − Fnt | ≤ ε. The integrals

∫ ·∧θ0
0

Kn dAs and
∫ ·∧θ0
0

Fn dXs

are continuous. We also have the estimate

E

(∫ ·∧θ0
0

K (s,Gn) dAs −
∫ ·∧θ0
0

Kn dAs

)∗
·∧σ(X,N)

≤ E

(∫ ·∧θ0∧σ(X,N)

0

ε d|A|s

)∗
≤ εq.

and by the BDG inequality we estimate

E

(∫ ·∧θ0
0

F (s,Gn) dXs −
∫ ·∧θ0
0

Fn dXs

)∗
·∧σ(X,N)

≤ C1

d∑
i,j=1

E

(∫ ·∧θ0∧σ(X,N)

0

ε2 d[Xj ]s

)1/2

≤ C1d
2εr.

From last two inequalities we infer that ‖T 0Gn−Y0−
∫ ·∧θ0
0

Kn dAs−
∫ ·∧θ0
0

Fn dXs‖G∞,X,loc
may be as small as we please, thus T 0Gn may be approximated with arbitrary accuracy
by continuous processes in G, thus the same holds for T 0G, thus T 0G ∈ G.

Now we know that T 0 may be viewed as a mapping T 0 : G → G, which by (3.3) is
a contraction. This contraction has a unique fixed point Y0 which for any t ∈ [0,+∞)

satisfies

Y0
t∧θ0 = Y0 +

∫ t∧θ0

0

K
(
s,Y0

)
dAs +

∫ t∧θ0

0

F
(
s,Y0

)
dXs,

Next, on the set {ω ∈ Ω : θ0(ω) < +∞} we define

ϑ1 := inf{t ≥ 0 : |A|t − |A|θ0 ≥ q}, σ1 := inf

{
t ≥ 0 : max

j=1,2,...,d

(
[Xj ]t − [Xj ]θ0

)
≥ r
}
,
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On SDEs driven by model-free martingales

otherwise we define θ1 = +∞. Next we set

θ1 := ϑ1 ∧ σ1,

and introduce the following operator T 1:,

(
T 1G

)
t

: = Y0
t∧θ0 +

∫ t∧θ1

t∧θ0
K (s,G) dAs +

∫ t∧θ1

t∧θ0
F (s,G) dXs.

Similarly as before, we prove that T 1 : G → G, T 1 is a contraction and has a fixed point
Y1 ∈ G. Moreover, Y0 and Y1 agree on the interval [0, θ0] \ {+∞} and thus Y1 for any
t ∈ [0,+∞) satisfies

Y1
t∧θ1 = Y0 +

∫ t∧θ1

0

K
(
s,Y1

)
dAs +

∫ t∧θ1

0

F
(
s,Y1

)
dXs.

Similarly, having defined θn, Tn : G → G, and its fixed point Yn, n = 0, 1, . . . we define
the stopping time θn+1 and introduce the operator Tn+1 : G → G,

(
Tn+1G

)
t

: = Yn
t∧θn +

∫ t∧θn+1

t∧θn
K (s,G) dAs +

∫ t∧θn+1

t∧θn
F (s,G) dXs

and its fixed point Yn+1, which agrees with Yn on the interval [0, θn] \ {+∞}.
Finally, setting

Y := lim
n→+∞

Yn

we get that for any t ∈ [0,+∞) and n ∈ N, Y satisfies

Yt∧θn = Y0 +

∫ t∧θn

0

K (s,Y) dAs +

∫ t∧θn

0

F (s,Y) dXs.

Now we will prove that limn→+∞ θn(ω) = +∞ for all ω ∈ Ω. Let us notice that for any
T > 0 from the inequality θn(ω) ≤ T , n ∈ N, it follows that |A|T (ω)+[X]T (ω) ≥ min(q, r)·n.
Since |A| and [X] are continuous for all ω ∈ Ω (we choose such version of [X]), thus
|A|T (ω) and [X]T (ω) are finite for all ω ∈ Ω and{

ω ∈ Ω : lim
n→+∞

θn(ω) < +∞
}

=

+∞⋃
N=1

{
ω ∈ Ω : lim

n→+∞
θn(ω) ≤ N

}

⊆
+∞⋃
N=1

(
+∞⋂
n=1

{ω ∈ Ω : |A|N (ω) + [X]N (ω) ≥ min(q, r)n}

)
= ∅.

3.1.2 Uniqueness

In general, we can not guarantee that Y ∈ G, because we do not control the growth
of the process A. However, we have just proved that it is a solution in the sense of
Definition 3.1. Now we will prove that any two such solutions must be equal w.i.e.

Let G and H be two solutions of (1.1) satisfying, together with sequences of stopping
times (γn) and (ηn) respectively, conditions of Definition 3.1. Let us define θ̃0 = θ0∧γ0∧η0
and (

T̃ 0G
)
t

= Y0 +

∫ t∧θ̃0

0

K (s,G) dAs +

∫ t∧θ̃0

0

F (s,G) dXs.
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Similarly as in (3.2) we prove that

E
(
T̃ 0G− T̃ 0H

)∗
·∧θ̃0
≤ 2

3
E (G−H)

∗
·∧θ̃0 . (3.4)

On the other hand, since G and H are solutions of (1.1), E
(
T̃ 0G·∧θ̃0 −G·∧θ̃0

)∗
= 0,

E
(
T̃ 0H·∧θ̃0 −H·∧θ̃0

)∗
= 0. From this and (3.4) we get E

(
G·∧θ̃0 −H·∧θ̃0

)∗
= 0.

Next, defining θ̃1 = θ1 ∧ γ1 ∧ η1,(
T̃ 1G

)
t

= Gt∧θ̃0 +

∫ t∧θ̃1

t∧θ̃0
K (s,G) dAs +

∫ t∧θ̃1

t∧θ̃0
F (s,G) dXs.

and reasoning similarly as before we get E
(
G·∧θ̃1 −H·∧θ̃1

)∗
= 0.

Similarly, for θ̃n = θn ∧ γn ∧ ηn we get E
(
G·∧θ̃n −H·∧θ̃n

)∗
= 0. Since θ̃n(ω)→ +∞ as

n→ +∞ for all ω ∈ Ω, we have

E (G−H)
∗ ≤

+∞∑
n=1

E
(
G·∧θ̃n −H·∧θ̃n

)∗
= 0.
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