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Abstract

In [1] we considered periodic trees in which the number of children in successive
generations is (n, a1, . . . , ak) with maxi ai ≤ Cn1−δ and (log ai)/ logn→ bi as n→∞.
Our proof contained an error. In this note we correct the proof. The theorem has
changed: the critical value for local survival is asymptotically

√
c̄k(logn)/n where

lk = max{i : 0 ≤ i ≤ k, ai 6= 1} and c̄k = min{k + 1 − lk − blk , (k − b)/2}, where
b = limn→∞ log(a1a2 · · · ak)/ logn.
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It has been pointed out to us that in our paper [1] published in Electronic Commu-
nications in Probability volume 23, paper no. 24 the proof of Lemma 3.1 is not correct.
The problem is that on the periodic (n, a1, . . . , ak) rooted at ρ, the k-neighborhood of a
site with degree n on level k + 1 is not isomorphic to the k-neighborhood of the root. For
instance, when ak > 1, the k-neighborhood of a site on level k + 1 can contain other sites
with degree n. Not only is the proof not correct but the result changes from the previous
paper.

Old Theorem 1.2. Consider the (n, a1, a2, . . . , ak) periodic tree where k is a fixed integer,
and maxi ai ≤ Cn1−δ for some C, δ > 0. Suppose b = limn→∞ log(a1a2 · · · ak)/ log n. As
n→∞ the critical value

λ2 ∼
√
ck log n/n

where ck = (k − b)/2.

New Theorem 1.2. Consider the (n, a1, a2, . . . , ak) periodic tree where k is a fixed
integer, Let bi = limn→∞(log ai)/(log n) and b =

∑k
i=1 bi. Suppose maxi bi ≤ 1 − δ for

some δ > 0. Let a0 = n and define lk = max{i : 0 ≤ i ≤ k, ai 6= 1}. As n→∞ the critical
value

λ2 ∼
√
c̄k log n/n

where c̄k = min{k + 1− lk − blk , (k − b)/2}.

*Corrected article: https://doi.org/10.1214/20-ECP305.
†Department of Statistics & Operations Research, University of North Carolina at Chapel Hill, Chapel Hill,

NC 27599
E-mail: zoehuang@unc.edu

‡Dept. of Math, Duke University, Box 90320, Durham NC 27708-0320
E-mail: rtd@math.duke.edu

https://doi.org/10.1214/23-ECP518
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
https://ams.org/mathscinet/msc/msc2020.html
https://doi.org/10.1214/20-ECP305
mailto:zoehuang@unc.edu
mailto:rtd@math.duke.edu


Corrigendum

Old Theorem 1.3. Under the assumptions of Theorem 1.2. Let γk = (k + 1)/2− (b+ 1).

(i) If γk > 0 then as n→∞ the critical value λ1 ∼
√
γk log n/n.

(ii) If γk < 0 then (log λ1)/ log n→ −(b+ 1)/(k + 1).

New Theorem 1.3. Under the assumptions of Theorem 1.2. Let γk = (k+ 1)/2− (b+ 1).

(i) If γk > 0 then as n→∞ the critical value

λ1 ∼
√
γ̄k log n

n
where γ̄k = min{γk, k + 1− lk − blk}.

(ii) If γk < 0 then (log λ1)/ log n→ −(b+ 1)/(k + 1).

Notations. We will introduce a function ` : (n, a1, . . . , ak) → Z that assigns a level to
every vertex in the tree. Let `(ρ) = 0. Now each vertex can be assigned a level according
to their position relative to the root ρ. Specifically, for each x, `(y) = `(x)− 1 for exactly
one neighbor y of x, and `(y) = `(x) + 1 for the other d(x) neighbors of x, where d(x)

represents the number of children of x’s. Let Li = {y : `(y) = i} denote level i. Let
yk+1 ∈ Lk+1 be a vertex on level k + 1. We will denote by yi ∈ Li the vertex lying on the
path between ρ and yk+1.

1 Proof of Theorem 1.2

1.1 Proof of the new lower bound

Lemma 1.1. Let c̄k = min{k + 1 − lk − blk , (k − b)/2} and ε > 0. When n is sufficiently
large,

λ2 ≥

√
c̄k log n

(1 + ε)n
.

Proof. Let S(yk+1) be the maximum connected subgraph that contains yk+1 and vertices
with degree smaller than n, see Figure 1.1. Suppose λ =

√
(c log n)/n. The proof of

Theorem 1.4 in [1] yields that for any η > 0, starting with yk+1 initially occupied the
survival time on S(yk+1) is upper bounded by Bn := C0(log n)nc(1+η) for some C0 > 0

when n is sufficiently large. Starting from yk+1 initially occupied, we run the contact
process on ∪2k+1

i=1 Li and allow particles to be born at ρ and L2k+2. Meanwhile we freeze
any particle when it is born at ρ or L2k+2. To upper bound the number of frozen particles
at any x ∈ {ρ} ∪ L2k+2 during this time, we will use the following comparison process.

Let S(y) denote the subgraph rooted at y ∈ Lk+1 that is isomorphic to S(yk+1). Since
∪2k+1
i=1 Li = ∪y∈Lk+1

S(y), the contact process on ∪2k+1
i=1 Li can be upper bounded by a

collection of independent contact processes on S(y)’s. To do that we first run the contact

process ζ(0)t on S(yk+1) starting with yk+1 initially occupied and allow particles to be
born (and frozen simultaneously) at Lk+1, L2k+2 and ρ. For the j-th frozen particle at

some y ∈ Lk+1, we start a new independent contact process ζ(j)t on S(y) and freeze
any particles born at Lk+1, L2k+2 and ρ. Again, each particle frozen at Lk+1 is assigned
an index according to its birth time. We continue this process until there is no more
particle frozen at Lk+1. This comparison process dominates the original contact process
on ∪2k+1

i=1 Li so it suffices to give an upper bound on the number of particles frozen at
x ∈ {ρ} ∪ L2k+2 in the comparison process.

We begin by estimating the number of particles born at Lk+1 during the process

ζ
(0)
t on S(yk+1). For y ∈ Lk+1, let Γ(yk+1, y) denote the path between yk+1 and y, and
d(yk+1, y) denote the length of Γ(yk+1, y). If a particle is born at y, then there is a
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path leading from yk+1 to y. If this path has length d(yk+1, y) + 2m, then there are
d(yk+1, y) + m steps towards y and m steps towards yk+1. Let (z0, z1, . . . , zd(yk+1,y)+2m)

denote a path from yk+1 to y with z0 = yk+1 and zd(yk+1,y)+2m = y. To produce a particle
at ρ, we need a birth from zj to zj+1 to occur before the particle at zj dies for all
j = 0, . . . d(yk+1, y) + 2m− 1. So the expected number of particles produced at y by this
path is

(λ/(1 + λ))d(yk+1,y)+2m ≤ λd(yk+1,y)+2m.

If we let d = Cn1−δ so that every vertex in S(yk+1) has degree bounded by d, then the
expected number of particles Nyk+1,y that reaches y has

ENyk+1,y ≤
∞∑
m=0

(
d(yk+1, y) + 2m

m

)
λd(yk+1,y)+2mdm

≤ λd(yk+1,y)(1 +

∞∑
m=1

2d(yk+1,y)+2mλ2mdm)

= λd(yk+1,y)(1 + 2d(yk+1,y)
∞∑
m=1

(4λ2d)m) ≤ (1 + η)λd(yk+1,y). (1.1)

Note this is exactly the calcualtion in (2.1) of [1]. Let B(S(yk+1), y) be the total number

of particles frozen at y in ζ
(0)
t . The expected survival time on S(yk+1) is bounded by

Bn when n is sufficiently large. If during this whole time yk+1 is occupied and pushing
particles towards y, then the same calculation as in (3.1) in [1] shows

EB(S(yk+1), y) ≤ Bn(1 + η)λd(yk+1,y).

Summing over all y ∈ Lk+1 according to their relative distance to yk+1 gives the expected

number of particles frozen at Lk+1 during the contact process ζ(0)t on S(yk+1):∑
y∈Lk+1

EB(S(yk+1), y)

≤ Bn · (1 + η)
(
λ2(k−lk+1)alk + λ2(k−lk+2)alk−1alk + · · ·+ λ2ka1 · · · alk

)
= (1 + η)Bnλ

2(k−lk+1)alk

(
1 + λ2alk−1 + (λ2alk−1)(λ2alk−2) + · · ·+

alk−1∏
i=1

λ2ai

)
≤ 2Bnλ

2(k−lk+1)alk ≤ nc(1+2η)n−(k−lk+1)nblk = nc(1+2η)−(k+1−lk−blk ). (1.2)

where the last line follows from the fact that λ2ai < 1/2 for 1 ≤ i ≤ k when n is large.
Since c < k + 1− lk − blk , we can choose η sufficiently small and n sufficiently large so
that (1.2) < 1/2. Let R be the total rounds of independent contact processes run on the
subgraphs isomorphic to S(yk+1). Given that the expected number of frozen particles at

Lk+1 produced in ζ(0)t is less than 1/2,

ER ≤
∞∑
i=0

(
1

2

)i
= 2.

In the process ζ(0)t on S(yk+1), a calculation similar to (3.1) in [1] shows the expected
number of particles frozen at the root is ≤ Bn(1 + η)λk+1. Therefore, during the
comparison process the expected number of particles frozen at the root at most

ER ·Bn(1 + η)λk+1 ≤ λk+1nc(1+2η). (1.3)
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The same calculation shows that for each vertex in L2k+2 the expected number of
particles frozen there is also ≤ λk+1nc(1+2η). Thus we have established that starting with
yk+1 occupied, during the contact process on ∪2k+1

i=1 Li, the expected number of particles
frozen at any x ∈ {ρ} ∪ L2k+2 is upper bounded by λk+1nc(1+2η).

Now we can use the original argument in the proof of Lemma 3.1 in [1] to show
when we also have c < (k − b)/2 there is no strong survival. That is, for any ε > 0, if
c = c̄k/(1 + ε) < c̄k and λ =

√
c(log n)/n, the process does not survive strongly when n is

large.
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Figure 1: A picture of S(yk+1) in the (n, 3, 2, 4, 1) periodic tree (not containing the black
dots). The ∗ marks yk+1. The triangle above it is a copy of the tree of height k rooted at
ρ (not containing the children of a4).

1.2 Proof of the new upper bound

Lemma 1.2. Let c̄k = min{k − lk + 1− blk , k−b2 } and ε > 0. When n is sufficiently large,

λ2 ≤

√
c̄k log n

(1− ε)n
.

The proof of the upper bound on λ2 in [1] is not wrong. However since the lower
upper bound is smaller we have to improve the upper bound too. There are two parts to
the proof. Step 2: pushing the particles back to the root, which is based on a second
moment calculation and an application of the Cauchy-Schwarz inequality, is almost the
same as before. However, the first step changes considerably. We present Step 1 in
detail and give a sketch of Step 2 for completeness.

Step 1: Pushing the particles out to distance (k + 1)m. We need to estimate the
probability of successfully pushing a particle from yk+1 ∈ Lk+1 to ρ and to L2k+2. When
lk = 0, i.e., when the tree looks like (n, 1, . . . , 1), our proof in [1] is correct and hence we
consider only the case lk ≥ 1.

Let Tlk be a subtree rooted at ylk with degree sequence (alk , 1, . . . , 1, n) (or (alk , n)

when lk = k). Note that Tlk contains the vertex yk+1. In [1], the term “ignition” of a star
graph refers to the event that starting from only the central vertex of a degree n star
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graph occupied, the number of occupied leaves increase to L = (1− 4δ)λn by time nc/4,
see Section 5 in [1].

For each y ∈ Lk+1, define the event

G∗(y) = {the star at y will become ignited by time nc/4}
∩ {there will be at least ηL occupied leaves during I = [nc/4, 3nc/4]}
∩ {the center y is occupied for at least one unit of time before nc/4}.

If G∗(y) occurs for some y ∈ Lk+1, we will say the star at y is fully ignited.

Lemma 1.3. Starting with y ∈ Lk+1 initially occupied, P (G∗(y))→ 1 as n→∞.

Proof. The first two events in G∗(y) occurs with high probability according to Lemma
4.2 and Lemma 5.1 in [1]. For the last event, we first observe that by Lemma 5.1,
P (TL < T0,0, TL < nc/8) → 1 as n → ∞, where T0,0 is the extinction time on the star
and TL is the first time when there are L occupied leaves. By Lemma 4.2, with high
probability there are always at least ηL occupied leaves during time I ′ = [nc/8, nc/4].
Then the proof of Lemma 6.1 in [1] shows that with high probability there is no interval
of length ≥ t∗ ≡ 2/(1 − 4δ)η in I ′ during which the center yk+1 is always vacant. We
can divide I ′ into ≥ b nc

8(t∗+2)c intervals. In each interval the center yk+1 will become
occupied before time t∗ and try to stay occupied for one unit of time with success
probability e−1. Since yk+1 can try O(nc) many times, there is at least one success with
high probability.

For 1 ≤ i ≤ k + 1, let

ti = λ−δ · λ−(1+δ)(k+1−i). (1.4)

Recall that we use y1, . . . , yk to denote the vertices lying on the path between ρ and yk+1

where the index i represents the corresponding level. Define, for 1 ≤ i ≤ k + 1,

Gi = {there is no interval of length ≥ ti in I during which yi is vacant}.

Lemma 1.4. Suppose G∗(yk+1) occurs. P (Gclk) ≤ C exp(−nε) for some C > 0, ε > 0.

Proof. We use an induction on the index i from k + 1 to lk. When i = k + 1, tk+1 = λ−δ.
Using large deviations for a rate 1 Poisson process, the probability that there are more
than nc arrivals in the interval I of length nc/2 is ≤ exp(−γnc) for some γ > 0. On event
G∗(yk+1), the number of occupied leaves of yk+1 is always ≥ ηL. Once yk+1 is vacant,
the time Rk+1 needed for yk+1 to be occupied again satisfies

P (Rk+1 > tk+1) ≤ exp(−ληLtk+1) = exp(−O(nδ/2)).

Hence

P (Gck+1) ≤ exp(−γnc) + ncP (Rk+1 > tk+1) ≤ Ck+1 exp(−nε)

for some ε < δ/2 and some constant Ck+1.
Suppose for i = l + 1 the conclusion holds. We want to prove the result for i = l.

Notice that tl = λ−(1+δ)tl+1. Suppose Gl+1 occurs. Then an interval of length tl can
be partitioned into at least λ−(1+δ)/2 intervals of length tl+1 + 1, within which yl+1 will
become occupied at some time s < tl+1 and try to infect yl within the next one unit of
time. The probability of success on one trial is ≥ e−1(1 − e−λ), so the probability of
failing during the interval of length tl is at most

(1− e−1(1− e−λ))λ
−(1+δ)/2 ≤ exp(−Cλ−δ)
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since 1− e−λ ≥ λ/2 when λ > 0 is small. That is, once yl is vacant, the time Rl needed
for yl to be occupied again satisfies

P (Rl > tl) ≤ exp(−Cλ−δ).

Again using large deviations for a rate 1 Poisson process, the probability that there are
more than nc arrivals in the interval I of length nc/2 is ≤ exp(−γnc). Therefore, when
Gl+1 occurs the probability that Gl fails to occur is

P (Gcl ∩Gl+1) ≤ exp(−γnc) + ncP (Rl > tl) ≤ exp(−γnc) + nc exp(−Cλ−δ).

By assumption P (Gcl+1) ≤ Cl+1 exp(−nε) for some Cl+1 > 0. It follows that

P (Gcl ) ≤ P (Gcl ∩Gl+1) + P (Gcl+1)

≤ exp(−γnc) + nc exp(−Cλ−δ) + Cl+1 exp(−nε) ≤ Cl exp(−nε)

for some constant Cl > 0. The induction is thus completed.

Lemma 1.5. Consider the contact process ξt on Tlk starting with yk+1 initially occupied.
Let σ := |{t : ξt(y) = 1 for some y ∈ Lk+1}|. Then there exists ε > 0, so that

P (σ > exp(nε/2))→ 1 as n→∞.

Proof. On event G∗(yk+1) ∩Glk , we will partition the time interval I = [nc/4, 3nc/4] into

Mδ =

⌊
nc

2λ−δ(tlk + k)

⌋
subintervals {Ii : 1 ≤ i ≤ Mδ} of length λ−δ(tlk + k) and write Ii = [si, ri). We further
partition Ii into subintervals {Ii,j : 1 ≤ j ≤ bλ−δc} of equal length tlk + k. On the event
Glk in each Ii,j the vertex ylk becomes occupied before time tlk and has an independent
probability e−1 of being occupied for at least one unit of time. Hence

P (ylk stays occupied for some [s, s+ 1] ⊆ Ii where s ≤ ri − k) ≥ 1− (1− e−1)bλ
−δc.

Define event A = ∩Mδ
i=1{ylk stays occupied for some [s, s+ 1] ⊆ Ii where s ≤ ri − k}. It

follows that

P (A|Glk ∩G∗(yk+1)) ≥ 1−Mδ · (1− e−1)bλ
−δc

≥ 1−
⌊

nc

2λ−δ(tlk + k)

⌋
· exp(−e−1bλ−δc) ≥ 1− C exp(−nε) (1.5)

for some ε < δ/2.
On the event A, in each Ii there exists an interval of length 1 when ylk stays occupied.

In this interval ylk can try to ignite the stars in D = {y ∈ Lk+1 : y is a descendant of ylk}
independently. For any y ∈ D, the probability that the star at y will be fully ignited is at
least

(1− e−λ)(e−1(1− e−λ))k−lkP (G∗(y)) ≥ Cλk+1−lk , (1.6)

where we have P (G∗(y))→ 1 as n→∞ by Lemma 1.3. So for each Ii (1 ≤ i ≤ Mδ) we
can start a trial as following. For each y ∈ D we flip a coin with success probability
Cλk+1−lk . If there is a success then we say the trial succeeds and stop. Otherwise we
say the trial fails and wait for the next trial. The probability that all the trials fail is less
than

Mδ∏
i=1

(1− Cλk+1−lk)alk = (1− Cλk+1−lk)alkMδ ≤ exp(−Cλk+1−lkalkMδ)

≤ exp(−Cncλ2δ+(2+δ)(k+1−lk)alk) ≡ q.
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Therefore, on the event A ∩Glk ∩G∗(yk+1), the star at yk+1 can get another star in D to
be fully ignited with probability at least 1− q. That is to say, the probability that a fully
ignited star at yk+1 fails to get another star in D to be fully ignited is at most

q ·P (A|G∗(yk+1)∩Glk)P (Glk |G∗(yk+1)) +P (Ac|G∗(yk+1)∩Glk) +P (Gclk |G∗(yk+1)) (1.7)

Recalling the definition of bi we see that if c > k− lk + 1− blk we can choose δ sufficiently
small so that q ≤ exp(−nε) for some ε > 0. Together with Lemma 1.4 and (1.5), we have
(1.7) ≤ C exp(−nε) ≡ q1.

We will flip coins with probability 1− q1 to get a head. The process will continue as
long as we are getting heads and will stop once we get a tail. Let X be the number of
flips before we get a tail. Then

P (X ≥ exp(nε/2)) ≥ P (X ≥
√

1/q1) = (1− q1)
√

1/q1 → 1 as n→∞.

Each time a star at y ∈ Lk+1 becomes fully ignited, the central vertex is occupied for
at least one unit of time before it starts to ignite other stars. Recalling that σ := |{t :

ξt(y) = 1 for some y ∈ Lk+1}| we have

P (σ ≥ exp(nε/2)|G∗(yk+1)) ≥ P (X ≥ exp(nε/2))→ 1. (1.8)

Combining (1.8) with Lemma 1.3 completes the proof.

The set {t : ξt(y) = 1 for some y ∈ Lk+1} consists of disjoint intervals. We will
partition this set into time blocks, each of total length k + 1. At the start of each time
block, choose one vertex y ∈ Lk+1 such that y is occupied at the time. The probability of
successfully pushing a particle to the root within time k + 1 is at least

(e−1(1− e−λ))k+1 ≥ C ′λk+1.

In every time block of σ we can try the push independently. Hence the probability of
igniting the root is

≥ P (σ > exp(nε/2)) ·
(

1− (1− C ′λk+1)exp(n
ε/2)/(k+1)

)
· P (G∗(ρ))→ 1 as n→∞.

Notice that this estimate is also true for pushing a particle from level k+ 1 to level 2k+ 2.
This is to say, if c > k − lk + 1 − blk , an open site can make an adjacent site open with
arbitrarily large probability in the comparison oriented percolation.

Step 2: Bringing a particle back to the root. Let N = n · (a1 · · · ak) and let TN
denote the N -regular tree. We will compare the contact process on (n, a1, . . . , ak) with a
2-dependent oriented percolation in TN ×Z+, where Z+ represents time. There exists a
one to one map f : (n, a1, . . . , ak)→ TN that takes each vertex in Lm(k+1) for m ∈ N to a
vertex on level m in TN . By the discussion in Step 1, the pushing events from yk+1 to ρ
could involve another star y ∈ Lk+1. The graph distance between f(yk+1) and f(y) is 2
in TN . That is why the oriented percolation is 2-dependent.

Let p denote the probability of successfully pushing a particle to a neighbor on TN .
By Step 1 we see that p can be arbitrarily close to 1 if c > k − lk + 1 − blk . Since
Z×Z+ is embedded in TN ×Z+ and the 2-dependent oriented percolation on Z×Z+

has critical probability smaller than 1, if p is sufficiently large then a particle returns to
the root at arbitrarily large times in the oriented percolation on TN ×Z+. Hence when
c > k − lk + 1− blk the contact process has strong survival.

The original proof in [1] shows that if c > k−b
2 there is also strong survival. Therefore,

λ2 ≤

√
ck log n

(1− ε)n
where ck = min{k − lk + 1− blk ,

k − b
2
}.
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2 Proof of Theorem 1.3

Case 1: γk > 0. Let α1 = min{γk, k + 1 − lk − blk} − ε and λ =
√
α(log n)/n. The same

calculation that yields (1.3) shows that starting from yk+1 initially occupied, the total
number of frozen particles on {ρ} ∪ L2k+2 is

≤ (1 + n1+b)λk+1nα(1+2η).

From this we see that if η is small then the expected number of particles that escape
from ∪2k+1

i=1 Li is < 1 and comparing with a branching process implies that the process
dies out.

Turning to the upper bound, let α2 = min{γk, k+1− lk−blk}+ε and λ =
√
α2(log n)/n.

If α2 = k + 1− lk − blk + ε, then the same argument as in Step 2 in Section 1.2 implies
survival of the process. If α2 = γk + ε, then the original proof can be applied to prove
survival of the process.

Case 2: γk < 0. Suppose λ = n−β with β > 1/2. In this case, Theorem 1.4 in [1] implies
that the contact process survives for O(log n) on the graph S(yk+1). Using (1.2) and (1.3)
again, the expected number of particles that escape from ∪2k+1

i=1 Li is

≤ C(log n)(1 + η)λk+1(1 + nb+1) = C ′(log n)nb+1−β(k+1)

for some positive constant C,C ′. If β > b+1
k+1 the above is < 1 when n is large. Comparing

with a branching process implies the the process dies out.
The proof of the lower bound is the same as before and thus omitted here.
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