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Abstract

The Hierarchical Dirichlet process is a discrete random measure serving as an im-
portant prior in Bayesian non-parametrics. It is motivated with the study of groups
of clustered data. Each group is modelled through a level two Dirichlet process and
all groups share the same base distribution which itself is a drawn from a level one
Dirichlet process. It has two concentration parameters with one at each level. The
main results of the paper are the law of large numbers and large deviations for the
hierarchical Dirichlet process and its mass when both concentration parameters con-
verge to infinity. The large deviation rate functions are identified explicitly. The rate
function for the hierarchical Dirichlet process consists of two terms corresponding to
the relative entropies at each level. It is less than the rate function for the Dirichlet
process, which reflects the fact that the number of clusters under the hierarchical
Dirichlet process has a slower growth rate than under the Dirichlet process.
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1 Introduction

The Dirichlet process introduced in [12] is a random discrete probability that serves
as a fundamental prior in Bayesian nonparametrics. It has two parameters, a concentra-
tion parameter α and a base probability distribution ν0. The base distribution is the prior
mean, and the concentration parameter is inversely proportional to the prior variance.
Due to its discrete nature the Dirichlet process is an effective prior in inferences for
clustering data. The Dirichlet process with infinite concentration parameter is simply ν0,
which corresponds to the classical parametric setting.

In [16], the authors introduced the Hierarchical Dirichlet process (henceforth HDP).
It is motivated for the study of groups of clustered data where each group is modelled
through a Dirichlet process and all groups share the same base distribution which itself
is a drawn from another Dirichlet process. The special sharing mechanism makes the
model an ideal prior for data with more concentrated clusters ([1], [9]). The HDP has
three parameters, the level one and level two concentration parameters, and the base
distribution.

In addition to Bayesian statistics, hierarchical models are also natural and fundamen-
tal in many other areas. One notable situation is in statistical mechanics where it is used

*Supported by the Natural Sciences and Engineering Research Council of Canada.
†McMaster University, Canada. E-mail: shuifeng@mcmaster.ca

https://doi.org/10.1214/23-ECP511
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
https://ams.org/mathscinet/msc/msc2020.html
mailto:shuifeng@mcmaster.ca


Hierarchical Dirichlet process

to describe interactions at different scales in a physical system ([2], [5], [3]). Various
studies on asymptotic behaviours have led to deep understandings of the scale specific
interactions and interactions between different scales ([5], [6]). In the same spirit, we
investigate the asymptotic behaviours of the HBP. The limiting procedures involve large
concentration parameters at both levels.

The asymptotic behaviour of the Dirichlet process has been studied extensively in the
last thirty years ([11], [13] and references therein). The hierarchical structure in HBP
presents new challenges. The mathematical framework is similar to random systems
in a random environment. Our results will reveal explicitly the level-specific and cross
level impact of the corresponding randomness.

The basic setting will be presented in Section 2. This will include necessary notation,
the relative entropy, the Dirichlet process, the HDP, and the related asymptotic results.
The main results will be discussed in Section 3 including the law of large numbers and
large deviations.

2 Preliminaries

Let (Ω,F , P ) be a probability space, E = [0, 1], and E be the σ-algebra of Borel
subsets of E. Let C(E) and B(E) denote the spaces of continuous functions and bounded
measurable functions on E, respectively. Let M1(E) denote the space of probability
measures equipped with the weak topology and the metric

ρ(µ, ν) =

∞∑
i=1

|〈µ− ν, fi〉| ∧ 1

2i

where {fi : i ≥ 1} is a dense subset of C(E).
For any ν0 in M1(E) and α > 0, let ξ1, ξ2, . . . be i.i.d. with common distribution ν0, and

independently U1, U2, . . . be i.i.d. with Beta(1, α) distribution. Set

V1 = U1, Vn = (1− U1) · · · (1− Un−1)Un, n ≥ 2 (2.1)

and

Vα = (V1, V2, . . .).

The Dirichlet process with concentration parameter α and base distribution ν0 is
given by

Ξα,ν0 =

∞∑
i=1

Viδξi . (2.2)

The Hierarchical Dirichlet process introduced in [16] is a non-parametric model for
the study of groups of data. The prior for each group is a (level two) Dirichlet process and
all groups share the same base measure which itself is a draw from another (level one)
Dirichlet process (hence the hierarchical structure). Given the common base measure,
the Dirichlet processes for different groups are independent and identically distributed.
Since all Dirichlet processes for different groups share the same types as the level one
Dirichlet process, a stick breaking representation is also obtained in [16].

More specifically, for β > 0 and any n ≥ 1, let Wn be a Beta(βVn, β(1 −
∑n
k=1 Vk))

random variable. The random variables W1,W2, . . . are conditionally independent given
Vα. Define

Z1 = W1, Zn = (1−W1) · · · (1−Wn−1)Wn, n ≥ 2 (2.3)

and

Zα,β = (Z1, Z2, . . .).
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Hierarchical Dirichlet process

The HDP with level two concentration parameter β, level one concentration parameter
α, and base distribution ν0 is the random measure

Ξα,β,ν0
d
= Ξβ,Ξα,ν0

d
=

∞∑
i=1

Ziδξi , (2.4)

where
d
= denotes equality in distribution. The first equality is by definition (Dirichlet

with Dirichlet base) and the second equality is the stick breaking representation.
Let Qα and Qα,β denote the respective distributions of Vα and Zα,β . The distributions

of Ξα,ν0 and Ξα,β,ν0 will be denoted by Πα,ν0 and Πα,β,ν0 respectively. When the concen-
tration parameters tend to infinity, the prior will concentrate on the base distribution ν0

and the nonparametric model becomes parametric model. To understand the microscopic
transition between these two types of models, it is natural to investigate the asymptotic
behaviour associated with these limiting procedures. This includes the law of large
numbers and the large deviations.

The family of probability measures {Pλ : λ > 0} on a Polish space S satisfies a large
deviation principle with speed a(λ) and good rate function I(·) as λ tends to infinity if

{s ∈ S : I(s) ≤ c} is compact for all finite c ≥ 0

and

− inf
s∈G◦

I(s) ≤ lim inf
λ→∞

1

a(λ)
logPλ(G) ≤ lim sup

λ→∞

1

a(λ)
logPλ(G) ≤ − inf

s∈Ḡ
I(s)

where a(λ) converges to infinity, G◦ and Ḡ denote the interior and closure of the
measurable set G ⊂ S respectively.

The large deviations obtained in this paper will be for the families {Qα,β : α > 0, β >

0} and {Πα,β : α > 0, β > 0}. It turns out that the large deviation results depend on the
relative growth magnitude of the concentration parameters. To capture and to compare
the impact of both levels of randomness on large deviations we will focus on the limiting
procedure:

α→∞, β →∞, α
β
→ c ∈ (0,∞). (2.5)

A main quantity for our large deviation results is the relative entropy or the Kullback-
Leibler divergence. More specifically, for any two probabilities µ and ν in M1(E) the
relative entropy of µ with respect to ν is defined and denoted by

H(µ|ν) =

{ ∫
E

log d µ
d ν µ(d x) µ� ν

∞ else
(2.6)

where µ � ν denotes that µ is absolutely continuous with respect to ν. For any f in
B(E), let 〈µ, f〉 denote the integration of f with respect to µ. It is known ([8]) that

H(µ|ν) = sup
f∈B(E)

{〈µ, f〉 − log〈ν, ef 〉} = sup
f∈C(E)

{〈µ, f〉 − log〈ν, ef 〉}. (2.7)

For any m ≥ 1, set

Em = E × · · · × E︸ ︷︷ ︸
m

and

4m = {pm = (p1, . . . , pm) ∈ Em :

m∑
i=1

pi ≤ 1}.
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Hierarchical Dirichlet process

Define

E∞ = E × · · · × E︸ ︷︷ ︸
∞

4∞ = {p = (p1, p2, . . .) ∈ E∞ :

∞∑
i=1

pi ≤ 1}.

Both 4m and 4∞ are equipped with the respective subspace topologies of Em and
E∞. We will use the following metrics that generate these topologies.

dm(um,vm) = max{|ui − vi| : i = 1, . . . ,m}, um,vm ∈ Em

d(u,v) =

∞∑
i=1

|ui − vi| ∧ 1

2i
, u,v ∈ E∞.

3 Asymptotic results

In this section, we establish the law of large numbers and the large deviation princi-
ples.

3.1 Law of large numbers

Theorem 3.1. Let 0 = (0, 0, . . .) denote the origin in 4∞. As α and β tend to infinity,
Zα,β and Ξα,β,ν0 converge in probability to 0 and ν0 respectively.

Proof. For any p,q in 4∞, we have

d(p,q) =

∞∑
i=1

|pi − qi|
2i

.

By direct calculation,

E[Zi] = E[E[Zi|V1, . . . , Vi]]

= E

[( i−1∏
k=1

E[(1−Wk)|V1, . . . , Vi]

)
E[Wi|V1, . . . , Vi]

]

= E

[
(1− V1) · 1− V1 − V2

1− V1
· · ·

1−
∑i−1
k=1 Vk

1−
∑i−2
k=1 Vk

· Vi

1−
∑i−1
k=1 Vk

]
= E[Vi] =

(
α

1 + α

)i−1
1

1 + α

= O(
1

α
)

For any δ > 0, let nδ be an integer such that 2−nδ < δ. Then we have that for any
ε > 0,

P{d(Zα,β ,0) ≥ ε} ≤ ε−1

[
nδ∑
i=1

E[Zi] + δ

]

= O(
1

α
) + ε−1δ

which converges to zero by taking the limit of α going to infinity followed by δ going to
zero.
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Next we turn to the limit of Ξα,β,ν0 . For each f in C(E), we have

〈Ξα,β,ν0 , f〉 =

∞∑
i=1

Zif(ξi),

and

E[〈Ξα,β,ν0 , f〉] = 〈ν0, f〉

E[〈Ξα,β,ν0 , f〉2] = E[

∞∑
i=1

Z2
i ]〈ν0, f

2〉+ E[

∞∑
i6=j

ZiZj ]〈ν0, f〉2

= E[

∞∑
i=1

Z2
i ][〈ν0, f

2〉 − 〈ν0, f〉2] + 〈ν0, f〉2.

Similarly, by exploring the conditional beta structure, we have that for each i ≥ 1,

E[Z2
i ] = E[E[Z2

i |V1, . . . , Vi]]

= E

[( i−1∏
k=1

E[(1−Wk)2|V1, . . . , Vi]

)
E[W 2

i |V1, . . . , Vi]

]
= E

[
[β(1− V1) + 1]β(1− V1)

β(1 + β)
· [β(1− V1 − V2) + 1]β(1− V1 − V2)

[β(1− V1) + 1]β(1− V1)

· · ·
[β(1−

∑i−1
k=1 Vk) + 1]β(1−

∑i−1
k=1 Vk)

[β(1−
∑i−2
k=1 Vk) + 1]β(1−

∑i−2
k=1 Vk)

· (βVi + 1)βVi

[β(1−
∑i−1
k=1 Vk) + 1]β(1−

∑i−1
k=1 Vk)

]
=

1

1 + β
E[Vi] +

β

1 + β
E[V 2

i ]

=
1

1 + β

(
α

1 + α

)i−1
1

1 + α
+

β

1 + β

(
α

α+ 2

)i−1
2

(α+ 2)(α+ 1)

]
.

It follows that

Var[〈Ξα,β,ν0 , f〉] =

[
1

1 + β
+

β

1 + β

1

α+ 1

]
[〈ν0, f

2〉 − 〈ν0, f〉2]

which converges to zero as α and β tend to infinity. Let nδ be defined as above. Then

P{ρ(Ξα,β,ν0 , ν0) > 2δ} ≤
nδ∑
i=1

P{|〈Ξα,β,ν0 − ν0, fi〉| >
2nδδ

nδ
}

≤ n2
δ

2nδ+1δ2

nδ∑
i=1

Var[〈Ξα,β,ν0 , fi〉]→ 0, α→∞, β →∞

which leads to the law of large numbers for Ξα,β,ν0 .

3.2 Large deviations

The focus of this subsection will be on the large deviations for Qα,β and Πα,β,ν0 . Due
to the different topological structures, we prove the results separately by exploring the
corresponding local structures.
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Theorem 3.2. Assume that (2.5) holds. Then the family {Qα,β : α > 0, β > 0} satisfies a
large deviation principle on space 4∞ with speed γ = max{α, β} and good rate function

I(z) = sup
m≥1

Im(z1, · · · , zm) (3.1)

where

Im(z1, · · · , zm) = inf

{ m∑
i=1

(
a log

1

1− ui
+ b

i−1∏
j=1

(1− uj)h(ui, wi)

)
: (3.2)

ui, wi ∈ E, ui < 1, i ≥ 1, (w1, · · · , (1− w1) · · · (1− wm−1)wm) = (z1, · · · , zm)

}
and

h(u,w) = u log
u

w
+ (1− u) log

1− u
1− w

,

i−1∏
j=1

(1− uj) = 1 for i = 1.

The coefficients a and b are given by

(a, b) =


(c, 1) c < 1

(1, c−1) c > 1

(1, 1) c = 1

Proof. Since the space 4∞ can be identified as the projective limit of 4m,m ≥ 1, by
the Dawson-Gärtner theorem ([7]), it suffices to show that for each m ≥ 1 the law of
(Z1, . . . , Zm) satisfies a large deviation principle with speed γ and good rate function Im(·).
To do this we start with the large deviations for (Um,Wm) = (U1, · · · , Um,W1, · · · ,Wm)

and then apply the contraction principle. Since the state space of (Um,Wm) is compact,
it follows from Theorem P in [15] that we only need to show the existence, and to obtain
the expression of the limit

lim
δ→0

lim inf
γ→∞

1

γ
logP{(Um,Wm) ∈ B(um,wm; δ)} (3.3)

= lim
δ→0

lim sup
γ→∞

1

γ
logP{(Um,Wm) ∈ B̄(um,wm; δ)}

for any um,wm in Em, where

B(um,wm; δ) = {xm,ym ∈ Em : dm(xm,um) < δ, dm(ym,wm) < δ}
B̄(um,wm; δ) = {xm,ym ∈ Em : dm(xm,um) ≤ δ, dm(ym,wm) ≤ δ}

Since the function log x− log y is not continuous at the origin, we need to divide the
discussion into several cases.

Case 1: ui = 1 for some i = 1, . . . ,m.
By direct calculation, we have that

lim
δ→0

lim sup
γ→∞

1

γ
logP{(Um,Wm) ∈ B̄(um,wm; δ)}

≤ lim
δ→∞

lim sup
γ→∞

1

γ
logP{|Ui − ui| ≤ δ}

≤ lim
δ→∞

lim sup
γ→∞

1

γ
logP{1− δ ≤ Ui ≤ 1}

= lim
δ→0

lim sup
γ→∞

1

γ
log δα = −∞
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which implies that (3.3) holds with limit −∞.
Case 2: uk < 1 for all 1 ≤ k ≤ m and uj = wj = 0 for some j.
For any i = 1, . . . ,m and xm in Em, set vi = (1− x1) · · · (1− xi−1)xi with x0 = 0 and

gi(xi, yi;x1, . . . , xi−1) = (1− xi)α−1 Γ(β(1−
∑i−1
k=1 vk))

Γ(βvi)Γ(β(1−
∑i
k=1 vk))

yβvi−1
i (1− yi)β(1−

∑i
k=1 vk)−1.

It follows from the definition that

P{B̄(um,wm; δ)}

= αm
∫
· · ·
∫

B̄(um,wm;δ)

m∏
i=1

gi(xi, yi;x1, . . . , xi−1)d xid yi (3.4)

= αm
∫
· · ·
∫

B̄(um,wm;δ)

exp{−γ
m∑
i=1

1

γ
log g−1

i (xi, yi;x1, . . . , xi−1)}d x1 · · · d xmd y1 · · · d ym.

It is clear from the definition that∫ δ

0

∫ δ

0

gj(xj , yj ;x1, . . . , xj−1)d xjd yj ≤ 1 (3.5)

uniformly for all x1, . . . , xj−1.
By Stirling’s formula we have that for β ≥ 2∫ δ

0

∫ δ

0

gj(xj , yj ;x1, . . . , xj−1)d xjd yj

≥ (1− δ)α+β−2

∫ δ

0

∫ δ

0

Γ(β(1−
∑j−1
k=1 vk))

Γ(βvj)Γ(β(1−
∑j
k=1 vk))

y
βvj−1
j d xjd yj

(3.6)

= (1− δ)α+β−2

∫ δ

0

Γ(β(1−
∑j−1
k=1 vk))

Γ(βvj + 1)Γ(β(1−
∑j
k=1 vk))

δβvjd xj

≥ c0(1− δ)β−1δβδ+1

√
1− δ
βδ + 1

eβrδ

uniformly for all x1, . . . , xj−1, where c0 denotes a generic positive constant and

rδ = inf{v log
v

v + 1/2
: 0 ≤ v ≤ δ} → 0 as δ → 0.

Putting together (3.5) and (3.6) we conclude that for uj = wj = 0 the integration of
the density gj(xj , yj ;x1, . . . , xj−1) makes zero contribution to the limits

lim
δ→0

lim inf
γ→∞

1

γ
logP{B(um,wm; δ)} and lim

δ→0
lim sup
γ→∞

1

γ
logP{B̄(um,wm; δ)}. (3.7)

Case 3: For all 1 ≤ k ≤ m, uk < 1, and uk and wk are not equal to zero at the same
time.

We choose δ small enough so that uk + δ < 1 for all k, and wr − δ > 0, ul − δ > 0 for
ul > 0, wr > 0. For any 1 ≤ i ≤ m, we have that

− 1

γ
log gi(xi, yi;x1, . . . , xi−1) = Li,α,β(xm,ym) +

βvi + 1

γ
log(1 + 1/βvi) + o(1/γ).
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where

Li,α,β(xm,ym) =
α− 1

γ
log

1

1− xi
+

1

γ
log[yi(1− yi)]

+
β

γ
(1−

i−1∑
k=1

vk)

[
xi log

xi
yi

+ (1− xi) log
1− xi
1− yi

]
The term βvi+1

γ log(1 + 1/βvi) is clearly non-negative and finite for xm satisfying
dm(xm,um) < δ. On the other hand, on the set {xm : dm(xm,um) < δ, ui + δ/2 ≤ xi ≤
ui + δ} we have

βvi + 1

γ
log(1 + 1/βvi) ≤

βvi + 1

γ
log(1 + 2/βδ),

which converges to zero as γ tends to infinity. Set

C(um,wm; δ) = {(xm,ym) ∈ B̄(um,wm; δ) : ui + δ/2 ≤ xi ≤ ui + δ}.

Controlling P{B̄(um,wm; δ)} from below by P{C(um,wm; δ)}, it follows that the
limit (3.7) receives zero contribution from the term βvi+1

γ log(1 + 1/βvi). The function
Li,α,β(xm,ym) converges to infinity if ui > wi = 0 or ui < wi = 1. Otherwise it is
continuous at (um,wm) with a finite value. Thus the equality (3.3) holds with limit

m∑
i=1

[
a log

1

1− ui
+ b

i−1∏
j=1

(1− uj)h(ui, wi)

]
and the theorem follows.

Remark 3.3. Under the assumption (2.5), α and β converge to infinity at the same
magnitude. The representation in (3.2) seems to indicate that the impact of level one
becomes stronger when c increases. In particular, one would expect that if we let c
going to infinity, then the rate function I(z) will converge to − log(1−

∑∞
i=1 zi), the large

deviation rate function for the mass Vα of the Dirichlet process (Theorem 2.2 in [10]).
But this is not true. In fact, by choosing ui = 0 for all i, we obtain

I(z) ≤ −b log(1−
∞∑
i=1

zi).

Choosing ui = wi for all i in (3.2), we obtain

I(z) ≤ −a log(1−
∞∑
i=1

zi).

If we choose u1 = w1 = z1, ui = 0, i > 1, then it follows that

I(z) ≤ −[a log(1− w1) + b(1− w1)

∞∑
k=2

log(1− wk)].

Putting all these together, we obtain that for
∑∞
i=1 zi < 1

I(z) < − log(1−
∞∑
i=1

zi).

Thus I(z) is in general strictly less than the large deviation rate function for Vα. The
gap is large for c near zero or infinity. This gap represents the impact of the hierarchical
structure. It is easier for HDP to make large deviations than the Dirichlet process from
the limit.
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Next we turn to the large deviations for Πα,β,ν0 .

Theorem 3.4. The family {Πα,β,ν0 : α > 0, β > 0} satisfies a large deviation principle on
space M1(E) with speed γ and good rate function

J(µ) =

{
infν∈M1(E),supp(ν)⊂supp(ν0){aH(ν0|ν)}+ bH(ν|µ)} supp(µ) ⊂ supp(ν0)

+∞ else

where a, b are the same as in Theorem 3.2, and supp(·) denotes the topological support
of element in M1(E).

Proof. We prove the theorem in the case supp(ν0) = E. The proof for general cases
requires only minor adjustment.

Since Ξα,β,ν0 is the image of (Ξα,ν0 ,Ξα,β,ν0) under the continuous projection, the
theorem follows from the contraction principle and the large deviation result for
(Ξα,ν0 ,Ξα,β,ν0). Applying Theorem P in [15] again the latter holds if we can show that for
any µ, ν in M1(E)

lim
δ→0

lim inf
γ→∞

1

γ
logP{(Ξα,ν0 ,Ξα,β,ν0) ∈ B(ν, µ; δ)} (3.8)

= lim
δ→0

lim sup
γ→∞

1

γ
logP{(Ξα,ν0 ,Ξα,β,ν0) ∈ B̄(ν, µ; δ)}

where

B(ν, µ; δ) = {(τ, ς) ∈M1(E)×M1(E) : ρ(τ, ν) < δ, ρ(ς, µ) < δ}
B̄(ν, µ; δ) = {(τ, ς) ∈M1(E)×M1(E) : ρ(τ, ν) < δ, ρ(ς, µ) ≤ δ}.

Fix µ, ν in M1(E) and Set

Pν,µ = {π = (t1, . . . , tm−1) : m ≥ 2, 0 < t1 < . . . < tm−1 < 1, µ({ti}) = ν({ti}) = 0 for all i}.

Each π in Pν,µ corresponds to the partition [0, t1), . . . , [tm−1, 1] of E and the total number
of intervals in the partition will be denoted by |π|. For a given partition π with |π| = m,
we write

π(µ) = (µ([0, t1)), . . . , µ([tm−1, 1])) ∈ 4m.

It follows from the variational formula (2.7) that

aH(ν0|ν) + bH(ν|µ) = sup{aH(π(ν0)|π(ν)) + bH(π(ν)|π(µ)) : π ∈ Pν,µ}

Since the support of ν0 is E, it follows that

J(µ) = inf
ν∈M1(E)

{aH(ν0|ν) + bH(ν|µ)}

= inf
ν∈M1(E)

sup
π∈Pν,µ

{aH(π(ν0)|π(ν)) + bH(π(ν)|π(µ))}.

For each π in Pν,µ with |π| = m and δ > 0, define

Bπ(ν, µ; δ) = {(τ, ς) ∈M1(E)×M1(E) : dm(π(τ), π(ν)) < δ, dm(π(ς), π(µ)) < δ}
B̄π(ν, µ; δ) = {(τ, ς) ∈M1(E)×M1(E) : dm(π(τ), π(ν)) ≤ δ, dm(π(ς), π(µ)) ≤ δ}.

Since the function (π(τ), π(ς)) is continuous at (ν, µ), it follows that for any δ1 > 0

there exists δ > such that
B̄(ν, µ; δ) ⊂ B̄π(ν, µ; δ1).
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On the other hand, for the given δ there exists M ≥ 1 such that

{(τ, ς) ∈M1(E)×M1(E) : sup
1≤i≤M

{|〈τ − ν, fi〉| ∨ |〈ς − µ, fi〉|} <
δ

2M
}

is a subset of B(ν, µ; δ). Since fi is continuous for all i, it follows that there exists a
partition π̃ and δ2 > 0 such that

Bπ̃(ν, µ; δ2) ⊂ B(ν, µ; δ).

Putting all these together it follows that (3.8) will hold if for each π in Pν,µ

lim
δ→0

lim inf
γ→∞

1

γ
logP{(π(Ξα,ν0), π(Ξα,β,ν0)) ∈ Bπ(ν, µ; δ)}

= lim
δ→0

lim sup
γ→∞

1

γ
logP{(π(Ξα,ν0), π(Ξα,β,ν0)) ∈ B̄π(ν, µ; δ)} (3.9)

= −[aH(π(ν0)|π(ν)) + bH(π(ν)|π(µ))].

For a given partition π = (t1, . . . , tm−1) in Pν,µ, denote π(µ) and π(ν) by um and vm
respectively, and let rm = (r1, . . . , rm) = π(ν0). Since supp(ν0) = E, it follows that ri > 0

for all i. The joint density function of (π(Ξα,ν0), π(Ξα,β,ν0)) is

F (qm,pm) =
Γ(α)

Γ(αr1) · · ·Γ(αrm)

Γ(β)

Γ(βq1) · · ·Γ(βqm)

×
m∏
i=1

qαri−1
i pβqi−1

i ,qm,pm ∈ 4m.

If m = 2 and u1 = 0 (the case u1 = 1 is similar), then by Stirling’s formula we have

P{(π(Ξα,ν0), π(Ξα,β,ν0)) ∈ B̄π(ν, µ; δ)}

=

∫
· · ·
∫

B̄π(ν,µ;δ)

F (q2,p2)d q1d p1

=
Γ(α)

Γ(αr1)Γ(αr2)

∫ (v1+δ)∧1

(v1−δ)∨0

qαr1−1
1 (1− q1)αr2−1d q1

×
∫ δ

0

Γ(β)

Γ(βq1)Γ(βq2)
pβq1−1

1 (1− p1)βq2−1d p1

≤ Γ(α)

Γ(αr1)Γ(αr2)

∫ (v1+δ)∧1

(v1−δ)∨0

βδβq1(1− δ)βq2Γ(β)

(1− δ)βq2+1Γ(βq1 + 1)Γ(βq2 + 1)
qαr1−1
1 (1− q1)αr2d q1

≤
∫ (v1+δ)∧1

(v1−δ)∨0

exp{−γ[α/γH(r2|q2) + β/γH(q2|δ2) + o(1/γ)]}d q1

where δ2 = (δ, 1− δ). If 0 < v1 < 1, then H(q2|δ2) converges to infinity as δ tends to zero.
If v1 = 0 or 1, then H(r2|q2) converges to infinity as δ tends to zero. Thus

lim
δ→0

lim sup
γ→∞

1

γ
logP{(π(Ξα,ν0), π(Ξα,β,ν0)) ∈ B̄π(ν, µ; δ)} = −∞ (3.10)

and (3.9) holds.
If m > 2 and there exists 1 ≤ i ≤ m such that ui = 0, then by the partition property

of the Dirichlet process we can separately amalgamate all zero terms, and all non-zero
terms to get a partition with m = 2 and use the above argument to show that (3.9) holds.
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It remains to prove the result for the case m ≥ 2, ui > 0 for all i. By Stirling’s formula,
we have

log
Γ(α)

Γ(αr1) · · ·Γ(αrm)
= log

m∏
i=1

r−αrii + o(α) (3.11)

and

log
Γ(β)

Γ(βq1) · · ·Γ(βqm)
= log

βm
∏m
i=1 qiΓ(β)

Γ(βq1 + 1) · · ·Γ(βqm + 1)
(3.12)

= log

m∏
i=1

q−βqii +

m∑
i=1

(βqi + 1) log
βqi

βqi + 1
+ o(β).

Putting these together we obtain

logF (qm,pm) = −γ[α/γH(rm|qm) + β/γH(qm|pm)

−β/γ
m∑
i=1

qi log
qi

qi + 1/β
+ γ−1

m∑
i=1

log pi + o(1/γ)].

Since ui > 0 for all i, both the term β/γ
∑m
i=1 qi log qi

qi+1/β and the term γ−1
∑m
i=1 log pi

converge to zero as γ goes to infinity followed by δ going to zero. The result then follows
from the fact that the term α/γH(rm|qm) +β/γH(qm|pm) converges to aH(π(ν0)|π(ν)) +

bH(π(ν)|π(µ)).

Remark 3.5. It is known ( [14], [4]) that the large deviation rate function for the Dirichlet
process Ξα,ν0 is given by H(ν0|µ). Choosing ν = µ or ν0 we obtain that

aH(ν0|ν) + bH(ν|µ) = aH(ν0|µ) or bH(ν0|µ)

which implies that

J(µ) ≤ min{aH(ν0|µ), bH(ν0|µ)}.

Thus the rate function for the HDP is less than the rate function for the Dirichlet
process, which is consistent with the fact that the number of clusters under HDP has a
slower growth rate than under the Dirichlet process. It is not clear how to get a more
explicit and simpler form for J(µ) even for concrete ν0.

Remark 3.6. Generalization to HDP with more than two levels will lead to a similar rate
function involving the relative entropies of all levels.
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