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Large Sample Asymptotic Analysis for
Normalized Random Measures with

Independent Increments

Junxi Zhang∗ and Yaozhong Hu†,‡

Abstract. Normalized random measures with independent increments (NRMIs)
represent a large class of Bayesian nonparametric priors and are widely used in
the Bayesian nonparametric framework. In this paper, we provide the posterior
consistency analysis for these NRMIs through their characterizing Lévy intensi-
ties. Assumptions are introduced on the Lévy intensities to analyse the posterior
consistency and are verified with multiple interesting examples. Another focus of
the paper is the Bernstein-von Mises theorem for a particular subclass of NR-
MIs, namely the normalized generalized gamma processes (NGGP). When the
Bernstein-von Mises theorem is applied to construct credible sets, in addition to
the usual form, there will be an additional bias term on the left endpoint closely
related to the number of atoms of the true distribution in the discrete case. We
also discuss the effect of the estimators for the model parameters of the NGGP
under the Bernstein-von Mises convergence. Finally, to further illustrate the im-
pact of the bias correction term in the construction of credible sets, we present
a numerical example to demonstrate numerically how the bias correction affects
the coverage of the true value.
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1 Introduction
Bayesian nonparametrics has been undergone major investigation due to its various ap-
plications to diverse areas, such as biology, economics, machine learning and more. As
a rich class of Bayesian nonparametric priors, normalized random measures with inde-
pendent increments (NRMIs), introduced by Regazzini et al. (2003), include the famous
Dirichlet process (Ferguson, 1973), the σ-stable NRMIs (Kingman, 1975), the normal-
ized inverse Gaussian process (Lijoi et al., 2005b), the normalized generalized gamma
process (Lijoi and Prünster, 2003; Lijoi et al., 2007b), and the generalized Dirichlet
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process (Lijoi et al., 2005a). We refer to Müller and Quintana (2004); Lijoi and Prün-
ster (2010); Zhang and Hu (2021) for reviews of these processes with some important
properties and applications.

In Bayesian nonparametric statistics, samples are drawn from a random probability
measure with a prior distribution. To be more precise, let (Ω,F ,P) be any probability
space, let X be a complete, separable metric space whose σ-algebra is denoted by X
and let (MX,MX) be the space of all probability measures on X with the σ-algebra
generated by the topology of weak convergence. A sample X = (X1, . . . , Xn) that takes
values in X

n is drawn iid (we use “iid” acronym to represent “independent and identically
distributed” throughout the paper) from a random probability measure P conditional
on P , which follows a prior distribution Q on (MX,MX). That is to say,

X1, . . . , Xn|P iid∼ P ; P ∼ Q. (1.1)

Two natural questions in the literature are raised as follows.

(i) A frequentist analysis of Bayesian consistency (Freedman and Diaconis, 1983):
by assuming the “true” distribution of X is P0, we are interested in whether the
posterior law, that is the conditional law of P |X, denoted by Qn, converges to
δP0 , the Dirac measure with point mass at the “true” distribution, as n → ∞.

(ii) What is the limiting distribution of centered and rescaled P |X? In particular, are
there Bernstein-von Mises like theorem and central limit theorem for P? If so,
what are the limiting processes of

√
n(P − Pn)|X and

√
n(P |X − E[P |X])?

The above two questions play important roles in statistics. For question (i), posterior
consistency is to guarantee that the model behaves “good” when the sample size is large.
Here, the model behaves “good” means consistency, namely, under the assumption that
X iid∼ P0, the posterior distribution of P |X converges weakly to δP0 a.s.-P∞

0 . That
said, P |X will converge to P0 in distribution and this provides the validation of the
Bayesian nonparametric procedure. For question (ii), the limiting distribution of the
posterior process is the key ingredient to construct Bayesian credible sets and to conduct
hypothesis tests.

Many inspiring works related to the above questions have been done. Regarding ques-
tion (i), James (2008) obtains the posterior consistency analysis of the two-parameter
Poisson-Dirichlet process, which is not an NRMI, but closely related to NRMIs (Pitman
and Yor, 1997; Perman et al., 1992; Ghosal and Van der Vaart, 2017). The posterior
consistency of species sampling priors (Pitman, 1996; Aldous, 1985) and Gibbs-type
priors (De Blasi et al., 2015; Gnedin and Pitman, 2006) are discussed in Ho Jang et al.
(2010) and De Blasi et al. (2013). It is worth to point out that there are overlaps among
species sampling priors, Gibbs-type priors and the homogeneous NRMIs. Whereas, non-
homogeneous NRMIs are different from species sampling priors and Gibbs-type priors.
As for question (ii), Bernstein-von Mises results have been established for the Dirichlet
process (Lo, 1983, 1986; Ray and van der Vaart, 2021; Hu and Zhang, 2022) and for
the two-parameter Poisson-Dirichlet process (James, 2008; Franssen and van der Vaart,
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2022). Along the same line, we would like to answer the two questions when P is an
NRMI.

Since NRMIs are constructed by the normalization of completely random measures
(Kingman, 1967, 1993) associated with their Lévy intensities (see e.g., Section 2), it is
quite natural to study their properties based on the corresponding Lévy intensities. In
this work, we discuss the posterior consistency of non-homogeneous NRMIs (including
the homogeneous case as a particular case) and provide a simple condition to guar-
antee the posterior consistency of non-homogeneous NRMIs. As a result, when P0 is
continuous, posterior consistency does not generally hold for NRMIs, and when P0 is
discrete, posterior consistency holds as long as our proposed condition is satisfied. To
compare our work with the studies in Ho Jang et al. (2010); De Blasi et al. (2013),
our posterior consistency analysis is valid for non-homogeneous NRMIs, which are not
covered in Ho Jang et al. (2010); De Blasi et al. (2013). For example, the posterior con-
sistency analysis of this work covers a larger class of the Bayesian nonparametric priors,
including the extended gamma NRMI (James et al., 2009, 2010) and the generalized
extended gamma NRMI (defined in Section 3). On the other hand, the assumptions
given in Ho Jang et al. (2010); De Blasi et al. (2013) for posterior consistency analysis
depend on the associated random partition structure, which are not easy to verify as
they are not always given explicitly. Our assumption (see Assumption 4) is simple and
is based on the Lévy intensities used to define NRMIs, which are then always available
explicitly. This assumption is very easy to verify, as we will explain and illustrate in
Examples 12, 13, 14, 15 below for some interesting NRMIs, which makes our results
immediately applicable.

In addition to the posterior consistency analysis, we further obtain the Bernstein-
von Mises theorem for the normalized generalized gamma process (NGGP), which is a
flexible subclass of NRMIs that includes the Dirichlet process, the normalized inverse-
Gaussian process and the σ-stable process as special cases. Through the posterior con-
sistency analysis, the NGGP is posterior consistent when the true distribution P0 is
discrete or when the true distribution P0 is continuous and the parameter σ of the
NGGP goes to 0. The parameter σ is one of the model parameters of the NGGP, it is a
variance related parameter that controls the growth of the number of clusters induced
by a sample of the NGGP as the sample size increases. The case when σ → 0 would re-
duce the NGGP to the Dirichlet process. Thus, we should emphasize the case when the
true distribution P0 is discrete. However, there will be a bias term on the left hand side
of the Bernstein-von Mises theorem for the NGGP when P0 is discrete. It turns out that
the bias term may not go to 0 when n → ∞. Thus, in order to construct the “correct”
Bayesian credible sets that cover the true parameter value, we suggest a bias correction
to mitigate the bias term. The comparison of credible intervals with bias correction and
without bias correction is illustrated in the numerical experiment. In application, the
model parameters of the NGGP are chosen by some data driven estimators and we show
that the Bayesian estimator or maximum likelihood estimators of the model parame-
ters of the NGGP will not affect the convergences in the Bernstein-von Mises results.
The Bernstein-von Mises results in this work cover the findings in Lo (1983, 1986); Ray
and van der Vaart (2021); Hu and Zhang (2022) for the Dirichlet process, which is a
special case of the NGGP. However, the two-parameter Poisson-Dirichlet process is not



4 Large Sample Asymptotic Analysis for NRMIs

included in the NGGP, thus our Bernstein-von Mises results fill the gap of frequentist
theoretical understanding of the NGGP and complement the works in James (2008);
Franssen and van der Vaart (2022).

The outline of this paper is as follows. In Section 2, we recall the construction of
NRMIs, their Lévy intensity, and their posterior distributions. In Section 3, we analyse
posterior consistency of the homogeneous and non-homogeneous NRMIs under a simple
assumption on the corresponding Lévy intensities. Verification of the introduced as-
sumption is carried out for several well-known Bayesian nonparametric priors to demon-
strate its applicability and advantage. In Section 4, we derive the Bernstein-von Mises
theorem for the NGGP and provide an analysis of the bias correction, together with a
numerical illustration. Finally, in Section 5, we provide a discussion of our results and
some ideas that can be studied in the future. In order to ease the flow of the ideas, we
delay the proofs to the Supplementary Materials (Zhang and Hu, 2024).

2 Normalized random measures with independent
increments

2.1 Constructions of NRMIs

We start by recalling the notions of completely random measures (see e.g., (Kingman,
1967, 1993) and references therein for more details), which play an important role in
the construction of NRMIs.

Let BX be the space of boundedly finite measures on (X,X ), in the sense that for
any μ ∈ BX and any bounded set A ∈ X one has μ(A) < ∞. Let BX be endowed with a
suitable topology so that the associated Borel σ-algebra BX can be introduced (Daley
and Vere-Jones, 2008).

Definition 1. Let μ̃ be a measurable function defined on (Ω,F ,P) that takes values in
(BX,BX). We say that μ̃ is a completely random measure (CRM) if the random variables
μ̃(A1), . . . , μ̃(Ad) are mutually independent, for any pairwise disjoint sets A1, . . . , Ad in
X , where d ≥ 2 is a finite integer.

Completely random measures play an important role in Bayesian nonparametric
priors and we refer to Regazzini et al. (2003); Lijoi and Prünster (2010) for more detailed
discussion.

One way to construct NRMIs is through Poisson random measures explained as
follows. Denote S = R+ × X and denote its Borel σ-algebra by S. A Poisson random
measure Ñ on S with finite mean measure ν(ds, dx) is a random measure from Ω × S

to R+ satisfying:

(i) Ñ(B) ∼ Poisson(ν(B)) for any B in S such that ν(B) < +∞;

(ii) for any pairwise disjoint sets B1, . . . , Bm in S, the random variables Ñ(B1), . . . ,
Ñ(Bm) are mutually independent.
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The Poisson mean measure ν satisfies the condition (see (Daley and Vere-Jones, 2008)
for details of Poisson random measures) that

∫ ∞

0

∫
X

min(s, 1)ν(ds, dx) < ∞.

Let μ̃ be a random measure defined on (Ω,F ,P) that takes values in (BX,BX) defined
as follows,

μ̃(A) :=
∫ ∞

0

∫
A

sÑ(ds, dx), ∀A ∈ X . (2.1)

It is trivial to verify that μ̃ is a completely random measure. It is also well-known that
for any A ∈ X , μ̃(A) is discrete and is uniquely characterized by its Laplace transform
as follows:

E

[
e−λμ̃(A)

]
= exp

{
−
∫ ∞

0

∫
A

[
1 − e−λs

]
ν(ds, dx)

}
. (2.2)

The measure ν is called the Lévy intensity of μ̃ and we denote the Laplace exponent by

ψA(λ) =
∫ ∞

0

∫
A

[
1 − e−λs

]
ν(ds, dx). (2.3)

From the Laplace transform in (2.2), we are aware that the completely random measure
μ̃ is characterized completely by its Lévy intensity ν, which usually takes the following
forms in the literature.

(a) ν(ds, dx) = ρ(ds|x)α(dx), where α is a non-atomic measure on (X,X ) so that
α(X) = a < ∞ and ρ is defined on B(R+)×X such that for any x ∈ X, ρ(·|x) is a
σ-finite measure on B(R+) and for any A ∈ X , ρ(A|·) is B(R+) measurable. The
corresponding μ̃ is called non-homogeneous completely random measure.

(b) If the above ρ(ds|x) is independent of x, namely, ν(ds, dx) = ρ(ds)α(dx), where
α is a non-atomic measure on (X,X ) so that α(X) = a < ∞ and ρ : B(R+) → R

+

is some measure on R
+. The corresponding μ̃ is called homogeneous completely

random measure.

To avoid confusion, it is worth to point out that case (b) is a special case of case (a).
We single out case (b) since it is an important particular case (that is used to construct
homogeneous NRMIs) that is frequently used. Usually, we assume that α is a finite
measure so we may write α(dx) = aH(dx) for some probability measure H and some
constant a = α(X) ∈ (0,∞).

To construct NRMIs, the completely random measures will be normalized, and thus
one needs the total mass μ̃(X) to be finite and positive almost surely. This happens
under the condition that ρ(R+) = ∞ in homogeneous case and that ρ(R+|x) = ∞ for
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all x ∈ X in non-homogeneous case (Regazzini et al., 2003). Under the above conditions,
an NRMI P on (X,X ) is a random probability measure defined by

P (·) = μ̃(·)
μ̃(X) . (2.4)

P is discrete almost surely due to the discreteness of μ̃. For notional simplicity, we let
T = μ̃(X) and let fT (t) be the density of T throughout this paper.

2.2 Posterior of NRMIs

We will recall the posterior analysis (James et al., 2009) of NRMIs, which is a key
topic in Bayesian nonparametric analysis. As commonly assumed in Bayesian mod-
els and throughout the paper, we shall also assume that our sample is exchangeable.
We briefly recall the concept of exchangeable sequence (see e.g., (De Finetti, 1937;
Aldous, 1985; Kallenberg, 2005)). Let us consider an infinite sequence of random vari-
ables X∞ = (Xi)i≥1 on some probability space (Ω,F ,P) with each Xi taking values
in X. The infinite sequence X∞ is called exchangeable if the probability distribution of
(X1, . . . , Xn) coincides with the probability distribution of (X�(1), . . . , X�(n)) for any
n ≥ 1 and any permutation 	 of (1, . . . , n). The exchangeability assumption is usually
formulated in terms of conditional iid as introduced in (1.1) and is given in its following
equivalent form:

P[X1 ∈ A1, . . . , Xn ∈ An|P ] =
n∏

i=1
P (Ai), (2.5)

for any n ≥ 1 and any measurable A1, . . . , An in X .

Let P be an NRMI on X. Due to the almost surely discreteness of P as mentioned
in (2.4), it is possible that P(Xi = Xj) > 0 for i 	= j and hence there is a random
partition structure associated with the exchangeable random sequence. To represent
the associated random partition, for any n ≥ 1, let Y = (Y1, . . . , Yn(π)) be the distinct
observations of the exchangeable sequence X = (X1, . . . , Xn), where n(π) is the number
of distinct values of X. This gives a partition π = (i1, . . . , in1 , . . . , inn(π)−1 , . . . , inn(π))
of indices (1, . . . , n) of size n(π), so that

∑n(π)
j=1 nj = n, and Y1 := Xi1 = · · · =

Xin1
, . . . , Yn(π) := Xinn(π)−1+1 = · · · = Xinn(π)

. To state the posterior analysis result we
let

τk(u, Y ) =
∫ ∞

0
ske−usρ(ds|Y ) for any positive integer k and Y ∈ X. (2.6)

With these notations, the posterior distribution of P conditional on the observations
of the sample (X1, . . . , Xn) is given by the following theorem.

Theorem 2 (James et al., 2009). Let P be an NRMI with intensity ν(ds, dx) =
ρ(ds|x)α(dx). The posterior distribution of P , given a latent random variable Un, is
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an NRMI that coincides in distribution with the random measure

κn

μ̃(Un)

T(Un)
+ (1 − κn)

n(π)∑
j=1

JjδYj∑n(π)
j=1 Jj

, (2.7)

where

(i) the random variable Un has density

fUn(u) = un−1

Γ(n)

∫ ∞

0
tne−utfT (t)dt; (2.8)

(ii) given Un, μ̃(Un) is the conditional completely random measure of μ̃ with the Lévy
intensity ν(Un) = e−Unsρ(ds|x)α(dx);

(iii) {J1, . . . , Jn(π)} are random variables depending on Un and Yj and having density

fJj (s|Un = u,X) = snje−usρ(ds|Yj)∫∞
0 snje−usρ(ds|Yj)

; (2.9)

(iv) the random elements μ̃(Un) and Jj, j ∈ {1, . . . , n(π)} are independent;

(v) T(Un) = μ̃(Un)(X) and κn = T(Un)

T(Un)+
∑n(π)

j=1 Jj

;

(vi) the conditional distribution of Un given X admits a density function coinciding
with

fUn|X(u|X) ∝ un−1e−ψ(u)
n(π)∏
j=1

τnj (u, Yj). (2.10)

The above theorem shows that, given the latent variable Un, the posterior of P

is a weighted sum of another NRMI μ̃(Un)
T(Un)

and the normalization of Dirac measure
δYj of distinct observations Yj , multiplied by its corresponding jumps Jj . This gives a
rather complete description of the posterior distribution of NRMIs. More details of the
posterior analysis of μ̃ and P can be found in James et al. (2009).

3 Posterior consistency analysis for the NRMIs
In this section, we discuss the posterior consistency for NRMIs as pointed out in question
(i) in the introduction. Recall that MX is the space of probability measures on X and MX

is the corresponding σ-algebra generated by the topology of weak convergence. Assume
that X = (X1, . . . , Xn) is a sample from the “true” distribution P0 in MX. Namely,
X is iid P0- distributed. Let Qn denote the probability law of the posterior random
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probability measure P |X. The posterior distribution is said to be weakly consistent if
for any neighbourhood O ∈ MX of P0 one has

Qn(O) → 1 a.s.-P∞
0 ,

as n → ∞. Here and throughout the paper, P∞
0 = P0 × P0 · · · is the infinite product

measure on X
∞, that makes the random variables X1, X2, . . . independent with common

true distribution P0.

Before presenting the main result, we shall give the following lemma, which provides
the moments of the posterior P . The lemma plays an important role in the proof of the
main theorem. By recalling ψA in (2.3), we denote

V
(k)
α(A)(y) = (−1)keψA(y) dk

dyk
e−ψA(y), (3.1)

for any A ∈ X .

Lemma 3. Let X = (X1, . . . , Xn) be a random sample from an NRMI P . The moments
and the mixed moments of the posterior of P given X are given as follows.

(i) For any A ∈ X and m ∈ N, the posterior m-th moment of P is given by

E[(P (A))m|X)] = Γ(n)
Γ(m + n)

m∑
0≤l1+···+ln(π)≤m

(
m

l1, . . . , ln(π)

)∫ ∞

0
umfUn|X(u|X)

× V
(m−(l1+···+ln(π)))
α(A) (u)

⎛
⎝n(π)∏

j=1

τnj+lj (u, Yj)
τnj (u, Yj)

δYj (A)

⎞
⎠ du. (3.2)

(ii) For any family of pairwise disjoint subsets {A1, . . . , Aq} of X and any integers
(m1, . . . ,mq), we have

E [P (A1)m1 · · ·P (Aq)mq |X] = Γ(n)
Γ(m + n)

∫ ∞

0
umfUn|X(u|X)

×
q+1∏
i=1

{
mi∑

0≤l1+···+l#(λi)≤mi

(
mi

l1, . . . , l#(λi)

)

× V
(mi−(l1+···+l#(λi)))
α(Ai) (u)

(∏
j∈λi

τnj+lj (u, Yj)
τnj (u, Yj)

)}
du,

(3.3)

where m =
∑q

i=1 mi, Aq+1 = (∪q
i=1Ai)c, mq+1 = 0, λi = {j : Yj ∈ Ai} is the set

of the index of Yj’s that are in Ai, and #(λi) is the number of components in λi.

The above lemma provides the posterior moments of NRMIs. Such results can be
reduced to the moments of NRMIs by letting the sample size n = 0. The proof of
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Lemma 3 is inspired by the idea in James et al. (2006) and the details are given in the
Supplementary Materials. To apply the above lemma, one needs to deal with the term
V

(k)
α(A)(y) defined by (3.1). We give the following recursion formula for this quantity:

V
(k)
α(A)(y) =

k−1∑
i=0

(
k − 1
i

)
ξk−i(y)V (i)

α(A)(y),

where ξi(y) =
∫
A
τi(y, x)α(dx).

To answer question (i) mentioned in the introduction, we shall introduce the follow-
ing assumption that is the key to analyse the posterior consistency of NRMIs.

Assumption 4. Let τk(u, x) be defined by (2.6) and assume that for each k ∈ Z
+ and

x ∈ X, u τk+1(u,x)
τk(u,x) is nondecreasing in u and satisfying

k − 1 < sup
u>0

u
τk+1(u, x)
τk(u, x) ≤ k. (3.4)

Remark 5. Condition (3.4) is equivalent to assuming that for each k ∈ Z
+ the function

Ck(x) = k − sup
u>0

u
τk+1(u, x)
τk(u, x) (3.5)

takes values in [0, 1).

We shall need C1(x) to represent the bias in the following posterior consistent anal-
ysis. In the examples of application, we shall find Ck(x) from the Lévy intensities.

Theorem 6. Let P be an NRMI with Lévy intensity ν(ds, dx) = ρ(ds|x)α(dx), where
ρ(ds|x) satisfies Assumption 4. Recall that H(·) = α(·)

α(X) . Then

(i) If P0 is continuous, then the posterior of P converges weakly to a point mass at
C̄1H(·) + (1 − C̄1)P0(·) a.s.-P∞

0 , where C̄1 = limn→∞
∑n

i=1 C1(Xi)
n .

(ii) If P0 is discrete with limn→∞
n(π)
n = 0 almost surely, then P is weakly consistent,

i.e., the posterior of P converges weakly to a point mass at P0(·) a.s.-P∞
0 .

With the help of the moment results in Lemma 3, Assumption 4 plays the key role
to make the posterior variance of NRMIs go to 0 when n → ∞. Thus, the posterior
distribution of P will converge to the point mass at the posterior expectation of P
(more details with explanation are given in the proof of Theorem 6 in the Supplemen-
tary Materials). Although Assumption 4 looks complicated, it is quite easy to check
as long as ρ(ds|x) is given. For instance, the intensities ρ(ds|x) for almost all popular
NRMIs are gamma type, the corresponding τk(u, x) are gamma integrals, thus can be
calculated directly. We shall check Assumption 4 for some popular specific NRMIs in
Examples 12, 13, 14 and 15 to show how Assumption 4 works for these processes. This
demonstrates the wide applicability of Theorem 6.
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As a comparison between Theorem 6 and the results in Ho Jang et al. (2010) for
the species sampling priors and in De Blasi et al. (2013) for the Gibbs-type priors, The-
orem 6 considers the consistency results for the non-homogeneous NRMIs, which is a
very general class of Bayesian nonparametric priors that are not covered by the species
sampling priors and the Gibbs-type priors. For instance, the posterior consistency anal-
ysis of some non-homogeneous NRMIs, like the extended gamma NRMI (James et al.,
2009, 2010) and the generalized extended gamma NRMI (defined in Example 15), are
not included in Ho Jang et al. (2010) and De Blasi et al. (2013), however, they are
covered by our Theorem 6. It is worth noting that Bayesian nonparametric priors based
on non-homogeneous CRMs, for example the extended gamma NRMI, play important
role in Bayesian nonparametric inference for modelling survival data and spatial phe-
nomena (Ferguson, 1974; Hjort, 1990; James et al., 2010; Lijoi and Prünster, 2010). On
the other hand, although the predictive distributions for homogeneous NRMIs are given
(Pitman, 2003; James et al., 2006), the conditions in Ho Jang et al. (2010) and De Blasi
et al. (2013) are not trivial to verify, however, our Assumption 4 is quite easy to verify
as long as ρ(ds|x) is given.

In Theorem 6, we require limn→∞
n(π)
n = 0 a.s. as a condition to guarantee the

posterior consistency result when P0 is discrete. This condition is always true by the
following proposition (which coincides with the results in Lemma 2 in Ho Jang et al.
(2010)).

Proposition 7. When P0 is discrete, we have limn→∞
n(π)
n = 0, almost surely. When

P0 is continuous, we have limn→∞
n(π)
n = 1, almost surely.

By the identity that d
duτk(u, x) = d

du

∫∞
0 ske−usρ(ds|x) = −τk+1(u, x), the following

assumption is equivalent to Assumption 4.

Assumption 8. Let τk(u, x) be defined by (2.6) and assume that for each k ∈ Z
+ and

x ∈ X, u d
du ln (τk(u, x)) is nonincreasing in u and satisfying

− k ≤ inf
u>0

u
d

du
ln (τk(u, x)) < −k + 1. (3.6)

Remark 9. Condition (3.6) is equivalent to assuming that for each k ∈ Z
+ the function

Ck(x) = k + inf
u>0

u
d

du
ln (τk(u, x)) (3.7)

takes values in [0, 1).

Remark 10. There are more general NRMIs. For example, James (2002) introduced the
h-biased random measures μ̃ by

∫
Y×X

g(s)Ñ(ds, dx), where g : Y → R+ is an integrable
function on any complete and separable metric space Y. Theorem 6 can be extended to
this type of NRMIs.

One interesting quantity to be considered is n(π), the number of distinct observa-
tions of the sample (X1, . . . , Xn) from a Bayesian nonparametric model. In Bayesian
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nonparametric mixture models, n(π) is the number of clusters in the sample observa-
tions and thus is studied in a number of works that are concerned with the clustering
problems and so on. Among the literature let us mention that the distribution of n(π)
is obtained in Korwar and Hollander (1973) when (X1, . . . , Xn) is a sample from the
Dirichlet process; in Antoniak (1974) when (X1, . . . , Xn) is a sample from the mix-
ture of Dirichlet process; in Pitman (2003) when (X1, . . . , Xn) is a sample from the
two-parameter Poisson-Dirichlet process. It is interesting to point out that the referred
distributions of n(π) are priors of the number of clusters. When (X1, . . . , Xn) is a sample
from the general NRMIs, we have by a result of James et al. (2009):
Proposition 11. For any positive integer n, the distribution of n(π) is

P(n(π) = k)

=
∫ ∞

0

nun−1

k! e−
∫
X

∫∞
0 (1−e−us)ρ(ds|x)α(dx)

∑
(n1,...,nk)

k∏
j=1

∫
X
τnj (u, x)α(dx)

nj !
du, (3.8)

where k = 1, . . . , n, and the summation is over all vectors of positive integers (n1, . . . , nk)
such that

∑k
j=1 nj = n.

As we mentioned above, Assumption 4 is in fact quite easy to verify. We provide in
the following examples to see the applicability of Theorem 6.
Example 12. The normalized generalized gamma process NGGP(a, σ, θ,H) (Lijoi and
Prünster, 2003; Lijoi et al., 2007b) is an NRMI with the following homogeneous Lévy
intensity

ν(ds, dx) = 1
Γ(1 − σ)s

−1−σe−θsdsα(dx), (3.9)

where the parameters σ ∈ (0, 1) and θ > 0. It is easy to see that the Laplace transform
for μ̃(A) is

E

[
e−λμ̃(A)

]
= exp

{
−α(A)

σ
[(λ + θ)σ − θσ]

}
.

When θ → 0, this NRMI yields the homogeneous σ-stable NRMI introduced by Kingman
(1975). Letting σ → 0, this NRMI becomes the Dirichlet process (Ferguson, 1973). If
we let σ = θ = 1

2 , this NRMI becomes the normalized inverse-Gaussian process (Lijoi
et al., 2005b).

It is easy to check that for any nonnegative integer k,

τk(u, x) = τk(u) = 1
Γ(1 − σ)

∫ ∞

0
sk−σ−1e−(u+θ)sds = Γ(k − σ)

Γ(1 − σ)(u + θ)k−σ
.

It is obvious that u τk+1(u,x)
τk(u,x) = uk−σ

u+θ is increasing in u with the supremum k − σ that
belongs to (k − 1, k]. In this case, the sequence of functions {Ck(x)} is a sequence of
constants σ, namely, Ck(x) = σ for any k ∈ Z

+ and x ∈ X. Thus, Assumption 4 is
verified and Theorem 6 implies the normalized generalized gamma process is posterior
consistent when σ → 0 (i.e. the Dirichlet process), or when P0 is discrete.
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Example 13. The generalized Dirichlet process GDP(a, γ,H) (Lijoi et al., 2005a) is
an NRMI with the following homogeneous Lévy intensity

ν(ds, dx) =
γ∑

j=1

e−js

s
dsα(dx), (3.10)

where γ is a positive integer. The corresponding Laplace transform of μ̃(A) is

E

[
e−λμ̃(A)

]
=

(
(γ!)

(λ + 1)γ

)α(A)
,

where for c > 0, (c)k = Γ(c+k)
Γ(c) is the ascending factorial of c for any positive integer k.

When γ = 1, the generalized Dirichlet process is reduced to the Dirichlet process.

It is trivial to obtain for any nonnegative integer k,

τk(u, x) = τk(u) =
γ∑

j=1

k

(u + j)k .

It follows τk+1(u,x)
τk(u,x) = k

∑γ
j=1(u+j)−k−1∑γ
j=1(u+j)−k ∈ ( k

u+γ ,
k

u+1 ), which implies u
τk+1(u,x)
τk(u,x) = u k

u+c(γ)

with some constant c(γ) ∈ (1, γ). Therefore, u τk+1(u,x)
τk(u,x) is increasing in u with the supre-

mum k. In this case, Ck(x) = 0 for any z ∈ Z+ and x ∈ X. Theorem 6 can then be used
to conclude that the generalized Dirichlet process is posterior consistent.

Example 14. As a non-homogeneous example, we consider the extended gamma NRMI
whose non-homogeneous Lévy intensity is given by

ν(ds, dx) = e−β(x)s

s
dsα(dx), (3.11)

where β(x) : X → R
+ is an integrable function (with respect to α(dx)). Such NRMI

is constructed by the normalization of the extended gamma process on R introduced
by Dykstra and Laud (1981). More generally, Lo (1982) studied the extended Gamma
process, called weighted Gamma process on abstract spaces.

By a trivial computation, for any nonnegative integer k, τk(u, x) = Γ(k)
(u+β(x))k and

thus u
τk+1(u,x)
τk(u,x) = u k

u+β(x) , which is increasing in u with the supremum k. Therefore,
Ck(x) = 0 for any k ∈ Z

+ and x ∈ X, Assumption 4 is satisfied. Theorem 6 implies that
the extended gamma NRMI is posterior consistent when β(x) is integrable with respect
to α(dx).

Our theorem can also be applied to more general NRMIs which have not been
investigated in previous works. In the next example, we naturally define a new non-
homogeneous NRMI that is called the generalized extended gamma NRMI.
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Example 15. We say that the non-homogeneous NRMI P in (2.4) is the generalized
extended gamma NRMI, if the corresponding Lévy intensity is

ν(ds, dx) =
r∑

i=1

e−βi(x)s

s
dsα(dx),

where r ∈ Z
+ and βi(x) : X → R

+ are integrable functions (with respect to α(dx)).

A similar argument to that of Example 13 and that of Example 14 implies that the
generalized extended gamma NRMI is posterior consistent when βi(x) is integrable (with
respect to α(dx)) for all i ∈ {1, . . . , r}.

To summarize the previous discussion up to now we have answered the question (i)
raised in the introduction. The posterior distribution of NRMIs when P0 is continuous
is consistent only in the case when C̄1 = 0 or H = P0(Pn). However, it is rare to choose
H to be the “true” distribution P0 and it is not possible to let H = Pn before a sample is
observed. Therefore, the assumption C̄1 = 0 should be made to guarantee the posterior
consistency for NRMIs when P0 is continuous. Furthermore, whenever ρ(ds|x) is gamma
type, C̄1 = 0 would reduce the corresponding P to the Dirichlet process, the extended
gamma NRMI, the generalized Dirichlet process or the generalized extended gamma
NRMI. However, posterior inconsistency of P when P0 is continuous is not a big issue,
as P is discrete and it is hardly used as a prior for the distribution of continuous data.
On the other hand, posterior consistency of P when P0 is discrete is more important.

4 Bernstein-von Mises theorem for the generalized
normalized gamma process

The celebrate Bernstein-von Mises theorem links Bayesian inference with frequentist
inference. The Bernstein-von Mises theorem plays important role in Bayesian paramet-
ric model (Vaart, 1998; Le Cam, 2012). To better explain this theorem let us consider
a parametric model (pθ : θ ∈ Θ), where Θ is finite dimensional and the parameter is
assumed to follow a prior distribution, θ ∼ Π. Suppose we have iid observations X
from pθ0 . The Bernstein-von Mises theorem states that, under some mild and universal
assumptions on the prior, the conditional distribution of

√
n(θ− θ̂)|X is asymptotically

N(0, V 2), where θ̂ is an efficient estimator (for example, the maximum likelihood es-
timator) with a variance V 2 that attains the Cramér–Rao bound. As a consequence,
posterior-based inference asymptotically coincides with inference based on frequentist
standard efficient, 1√

n
-consistent estimators θ̂, giving asymptotic efficiency of Bayesian

methods.

In Bayesian nonparametric framework, it is natural to ask whether the Bernstein-
von Mises theorem still holds true, as it would give a further justification for the use of
Bayesian nonparametric models, for example, in the construction of credible sets. The
nonparametric maximum likelihood estimator of P0 is well-known to be the empirical
process Pn =

∑n
i=1 δXi

n (van der Vaart and Wellner, 1996; Vaart, 1998; Shao, 2003), and
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the limit law of
√
n(Pn−P0) is normal distribution. The Bernstein-von Mises theorem in

this setting is to give the limit law of the posterior distribution of
√
n(P −Pn) given X

by the normal distribution obtained as the limit law of
√
n(Pn−P0). More generally, we

temporarily let P ∈ MX be any random probability measure and define the functional
as follows:

Pf =
∫

fdP, P0f =
∫

fdP0, Pnf =
∫

fdPn =
∑n

i=1 f(Xi)
n

,

where f : X → R is any measurable function.

Let F be a collection of functions f , the Bernstein-von Mises theorem in the Bayesian
nonparametric case considers the distribution of {√n(Pf − Pnf)|X : f ∈ F} and
{√n(Pnf − P0f) : f ∈ F}. It is worth to point out that there have been many works
for the weak convergence of stochastic processes indexed by elements of Banach space
of functions, we refer the readers to van der Vaart and Wellner (1996); Vaart (1998)
for further reading. When the collection F is finite, both {√n(Pf − Pnf)|X : f ∈ F}
and {√n(Pnf − P0f) : f ∈ F} are random vectors in Euclidean space. Otherwise, it is
convenient to consider the F to be P0-Donsker. Here we recall that F is P0-Donsker if
the sequence

√
n(Pnf −P0f) converges to B

o
P0

in distribution in the metric space l∞(F)
of bounded functions g : F → R, equipped with the uniform norm ||g||F = supf∈F

|g(f)|.
Here and throughout the paper, Bo

P0
is a Brownian bridge with parameter P0 or P0-

Brownian bridge, namely, E[Bo
P0
f ] = 0 and E[Bo

P0
f1B

o
P0
f2] = P0(f1f2) − P0f1P0f2.

A notable result is that a finite set F is P0-Donsker if and only if P0f
2 < ∞ for every

f ∈ F. For the infinite P0-Donsker classes, one can find details and examples in van der
Vaart and Wellner (1996).

In order to define the weak convergence of
√
n(P − Pn) conditional on X to Bo

P0
,

we can use the conditional weak convergence in the bounded Lipschitz metric (van der
Vaart and Wellner, 1996) as follows:

sup
h∈BL1

∣∣E [
h(
√
n(P − Pn))|X

]
− E[h(Bo

P0
)]
∣∣ → 0, (4.1)

as n → ∞. The expectation in (4.1) is taken for the random probability measure P , and
thus the left side of (4.1) is a function of X. The convergence in (4.1) refers to the iid
sample X from P0 and can be in probability or almost surely. The supremum is taken
over the set BL1 of all functions h : l∞(F) → [0, 1] such that |h(f1)−h(f2)| ≤ ||f1−f2||F,
for all f1, f2 ∈ l∞(F). We denote the above convergence as

√
n(P − Pn)|X � B

o
P0
. (4.2)

Under the convergence criteria we explained above, we will present the Bernstein-
von Mises theorem when P ∼ NGGP(a, σ, θ,H). For simplicity of interpretation, let
P̃n =

∑n(π)
i=1 δYi

n(π) .

Theorem 16. Let X be a sample as defined in (1.1) with P ∼ NGGP(a, σ, θ,H). Let
F be the finite collection of functions such that P0f

2 < ∞ and Hf2 < ∞ for any f ∈ F.
We have the following convergences almost surely under P∞

0 .
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(i) If P0 is discrete,

√
n

(
P −

[
Pn + σn(π)

n
(H − P̃n)

])
|X � B

o
P0
, (4.3)

√
n (P − E[P |X]) |X � B

o
P0
. (4.4)

(ii) If P0 is continuous,
√
n (P − [(1 − σ)Pn + σH]) |X

�
√

1 − σBo
P0

+
√

σ(1 − σ)Bo
H +

√
σZ(P0 −H), (4.5)

√
n(P − E[P |X])|X

�
√

1 − σBo
P0

+
√

σ(1 − σ)Bo
H +

√
σZ(P0 −H). (4.6)

Here B
o
P0

, Bo
H are independent Brownian bridges, independent of the standard normal

random variable Z. Moreover, if F is any P0-Donsker class of functions, then the con-
vergences hold in probability in l∞(F). In this case, the convergence is also P∞

0 -almost
surely under an additional condition that P0||f − P0f ||2F < ∞.

We refer to Theorem 2.11.1 and 2.11.9 in van der Vaart and Wellner (1996) for more
details of the discussion for F such that the convergence holds in l∞(F). It is worth
noting that the Bernstein-von Mises results in Theorem 16 are not exactly in the form
of standard Bernstein-von Mises theorem in (4.2).

When P0 is continuous, there is a “bias” term σ(H − Pn) in the convergence re-
sult (4.5). Such “bias” term vanishes only when σ = 0, under which P becomes the
Dirichlet process, or when H = Pn (H = P0), which is unrealistic. Moreover, σ equals
C̄1 in Theorem 6. Thus, it suggests that one is not expected to use NGGP for continu-
ous P0.

On the other hand, when P0 is discrete, it is interesting to see that there is a “bias”
term σn(π)

n (H − P̃n) on the left hand side of the convergence result (4.3) to make the
limiting process to be B

o
P0

. That said, the convergence (4.3) is the usual form as in (4.2)
as long as

√
nσn(π)

n (H − P̃n) → 0. We can not drop this “bias” term directly, even if
limn→∞

n(π)
n = 0 a.s.. Apart from the case when σ = 0, the “bias” term can be dropped

when limn→∞
n(π)√

n
= 0, in the sense that the number of atoms {xj} in P0 should decrease

fast enough when n → ∞. For a formal condition of P0 to make limn→∞
n(π)√

n
= 0, we

have the following proposition.

Proposition 17. Under the conditions in Theorem 16, when P0 is discrete, we have
the following results.

(i) If P0({xj}) ≤ C
jα , for some positive constant C and α > 2 and F is the class of

uniformly bounded functions, then
√
n(P − Pn)|X � B

o
P0

in probability in l∞(F).
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(ii) If the function h(t) := #{x : P0({x}) ≥ 1
t } is regularly varying at ∞ of exponent

η with η < 1
2 and F is the class of uniformly bounded functions, then

√
n(P −

Pn)|X � B
o
P0

a.s. in l∞(F).

(iii) If F is a class of functions f such that f({xj})  jβ for some β > 0 and
P0({xj}) ≤ C

jα , for some positive constant C and α > 2 + 2β, then
√
n(P −

Pn)|X � B
o
P0

in probability in l∞(F).

The proof of Proposition 17 follows directly from Corollary 2 in Franssen and van der
Vaart (2022) and Theorem 9 in Karlin (1967). Here we recall that if h is regularly varying
at ∞ with exponent η ∈ (0, 1), then for any t > 0, we have limn→∞

h(nt)
h(n) = tη. Moreover,

for such regularly varying function h, we have n(π)
h(n) → Γ(1 − η) a.s., and h(n) is nη up

to a slowly varying factor. We refer to the appendix in Haan and Ferreira (2006) and
Bingham et al. (1987) for more details of the regularly varying function. The parameter
α in Proposition 17 is related to the number of clusters in the population, larger α means
less clusters in the population. In fact, it controls the order of n(π) (see Theorems 1, 9
and Example 4 in Karlin, 1967) relative to n. More precisely, limn→∞

n(π)
n1/α = C, where

C is some constant. With a large α, observations from P0 would concentrate to the
atoms with small indices, and n(π) would have a small order with respect to n.

As one application of the Bernstein-von Mises results in Theorem 16, we may con-
struct Bayesian credible sets for Pf when n → ∞. The choices of f determine the
parameters, for which the credible sets are constructed. For example, if f(x) = x, the
credible interval is for the mean. Since the posterior consistency does not hold for the
case when P0 is continuous, the credible sets for Pf is not correct in this case, thus we
shall only give the credible sets for Pf when P0 is discrete.

Corollary 18. If P0 is discrete, under the conditions in Theorem 16, we have the
probability of P0f ∈ (Ln,αf − σn(π)

n (Hf − P̃nf), Ln,βf − σn(π)
n (Hf − P̃nf)) is β−α for

any f such that P0f
2 < ∞ and Hf2 < ∞. Here Ln,α is the α-quantile of the posterior

distribution of Pf |X and β > α.

The credible interval in Corollary 18 holds for any discrete P0. A straightforward con-
sequence of Proposition 17 is that if n(π)√

n
→ 0 in probability, then the “bias” term van-

ishes and therefore the credible interval for P0f becomes the usual form (Ln,αf, Ln,βf).
This is true under the restrictive assumptions of P0 in Proposition 17. However, these
assumptions of P0 are not realistic since the “true” distribution P0 is unknown. Thus,
one can always keep the correction term σn(π)

n (Hf − P̃nf) as a bias correction to con-
struct credible intervals as we state in Corollary 18. Furthermore, the bias correction
is necessary when the “bias” term does not vanish. We provide a numerical illustration
corresponding to this scenario in Section 4.1.

As we have mentioned, P0 is of course unknown in real application and we shall
consider Theorem 16 without the information from P0. In this case, one needs to pay
special attention to the parameter σ, which plays a remarkable role in determining the
number of clusters n(π) of a sample from the NGGP. As shown in Proposition 3 in
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Lijoi et al. (2007b), the number of clusters n(π) is of the type nσ asymptotically with
respect to the NGGP prior. That said, similarly as we explained for the parameter
α of P0 in Proposition 17, the larger σ the larger the growth rate of the number of
clusters n(π) with respect to the NGGP prior. It is easy to see from both Theorem 6
and Theorem 16 that if σ → 0, P is posterior consistent and the Bernstein-von Mises
results hold without the bias terms for any P0. But this corresponds to the case that P
becomes the Dirichlet process. Thus, one should at least expect the parameter σ to be
small. Usually, the model parameters are chosen by the empirical Bayesian method, and
people can estimate the model parameters by using the maximum likelihood estimators
conditional on the observations X. A well known conclusion in Bayesian nonparametric
framework is the observation X from NRMIs induces a random partition structure for
{1, . . . , n} as we introduced in Section 2.2. The random partition structure is character-
ized by the exchangeable partition probability function (EPPF) (Pitman, 1995), which
also plays the rule as the likelihood function of σ. The idea of using the EPPF as a likeli-
hood function for empirical Bayesian estimation of parameters of Gibbs-type priors has
been introduced in Lijoi et al. (2007a), in which the parameters of the two-parameter
Poisson-Dirichlet process are estimated in such procedure in the analysis of genomic
data. Similar use of EPPFs as likelihood functions can be found and interpreted in vari-
ous works (e.g., Favaro and Naulet, 2023; Ghosal and Van der Vaart, 2017; Franssen and
van der Vaart, 2022). An alternative way of obtaining empirical Bayesian estimation of
parameters of the two-parameter Poisson-Dirichlet process is to place a specific prior to
the parameters as introduced in Lijoi et al. (2008). The EPPF for the NGGP is given
as

Πσ(n1, . . . , nn(π)) =
∏n(π)

j=1 (1 − σ)(nj−1)

Γ(n)

∫ ∞

0
un−1(u + θ)n(π)σ−ne

a
σ ((u+θ)σ−θσ

du,

where (1−σ)(nj−1) = Γ(nj−σ)
Γ(1−σ) . From Theorem 1 in Favaro and Naulet (2023), the max-

imum likelihood estimator σ̂n exists uniquely. Furthermore, the results in Theorem 2 in
Favaro and Naulet (2023) implies that σ̂n → σ0 in probability with a rate

√
log(n)n−σ0

2 ,
when P0 is discrete with atoms x satisfying h(t) = #{x : P0({x}) ≥ 1

t } is a regularly
varying function of exponent σ0 ∈ [0, 1). In this case, the number of clusters of a sample
X from P0 is of type nσ0 asymptotically. If the sample X is assumed to be a sample from
the NGGP with parameter σ, the number of clusters n(π) is of type nσ asymptotically.
Thus, the coefficient of regular variation σ0 is the true value of σ, and the parameter σ
can be estimated by the maximum likelihood estimator σ̂n.
Theorem 19. Under the assumptions in Theorem 16, we have the following results.

(i) If σ̂n is an estimator based on X that converges to σ0 in probability, then the con-
vergences in Theorem 16 hold in probability by replacing σn with σ̂n and replacing
σ with σ0. In particular, this is true for the maximum likelihood estimator σ̂n, if P0
is discrete with atoms x satisfying the condition that h(t) = #{x : P0({x}) ≥ 1

t }
is a regularly varying function of exponent σ0 ∈ [0, 1).

(ii) If σ ∼ Lσ, where Lσ is a probability law on [0, 1] that plays the prior distribution
of σ, then the Bayesian model becomes

X|P, σ ∼ P ; P |σ ∼ NGGP(a, σ, θ,H)
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The convergences in Theorem 16 hold by replacing σn with σ on the left hand side,
and replacing σ with σ0 on the limiting processes. The σ on the left hand side is
the posterior random variable.

It is worth to point out that the parameter σ0 in the assumption of discrete P0 in (i)
of the last theorem controls the number of clusters of atoms of P0 as shown in Karlin
(1967). More precisely, the number of clusters n(π) of observations from P0 is of the
type nσ0 asymptotically (see Theorem 1 and 9 in Karlin, 1967). The proof of the above
theorem follows the same procedures as the proof in Section 4.2 of Franssen and van der
Vaart (2022). For the posterior consistency of σ̂n, we refer to the details with proofs in
Section 4.3 of Franssen and van der Vaart (2022). The maximum likelihood estimator is
not quite interesting as σ̂n → σ0 with σ0 = 1 when P0 is continuous, and σ0 	= 0 when
P0 is discrete (Favaro and Naulet, 2023).

Besides the parameter σ, the parameters a and θ do not appear in the asymptotic
results in Theorem 6 and Theorem 16, and thus estimators of a and θ based on prior dis-
tributions or maximum likelihood method will not affect the convergences when a � √

n
and θ � nσ. The cases when ân and θ̂n converge to ∞ as n → ∞ are not usual and
beyond the scope of this work and can be considered in the future works.

4.1 Numerical illustration
We present the credible intervals for P0f when P0 is discrete with different types of
the number of atoms. To be more precise, let P0f = P0([2,∞]) for P0 = P1, P2, P3, P4,
where we describe P1, P2, P3, P4 on Z

+ as follows.

P1(X = 1)=0.2, P1(X = 2)=0.2, P1(X = 3)=0.2, P1(X = 4)=0.3, P1(X = 5)=0.1,

P2(X = k) ∝ k−3, P3(X = k) ∝ k−2, P4(X = k) ∝ k−
3
2 .

Obviously, n(π) = 5 for P1. From the result (see e.g., Example 4) in Karlin (1967), we
have the regularly varying functions h(t) corresponding to P2, P3, P4 are proportional to
t

1
3 , t

1
2 , t

2
3 respectively. Moreover, when n → ∞, the distinct numbers n(π) of P2, P3, P4

are proportional to n
1
3 , n

1
2 , n

2
3 , respectively, from Theorem 1 in Karlin (1967). Thus,

the “bias” term for P1, P2, P3, P4 goes to 0, 0, some constant, ∞, respectively.

For the NGGP, we let P ∼ NGGP(1, σ = 0.5, 1, H) (namely, the normalized inverse-
Gaussian process), where H is standard normal distribution. We simulate P through
its stick-breaking representation (Favaro et al., 2012) with the generating algorithm
in Favaro et al. (2016). To make sure the simulation of P =

∑∞
i=1 wiδXi is accurate,

we truncate the infinite sum at some N such that the weight of the tail
∑∞

i=N wi <
1√
n
, where n is the sample size. We simulate 10000 replications of the sample X from

P1, P2, P3, P4 with the sample size n = 10, 100, 1000, 10000, 100000 respectively. For
each sample from P1, we construct one 95% credible interval for P1([2,∞)) with the
“bias” correction as stated in Corollary 18 and compute the proportion that the true
value P1([2,∞)) belongs to the intervals of 10000 replications. We also compute the
same proportion without the “bias” correction. The results of P1, P2, P3, P4 are given in
Tables 1 and 2.
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n 10 100 1000 10000 100000
P1 0.791 0.952 0.961 0.967 0.986
P2 0.695 0.857 0.928 0.917 0.931
P3 0.712 0.785 0.811 0.727 0.754
P4 0.601 0.292 0.078 0.000 0.000

Table 1: Proportion of coverage of the true value for the 95% credible interval without
“bias” correction.

n 10 100 1000 10000 100000
P1 0.977 0.989 0.991 0.995 0.997
P2 0.914 0.938 0.951 0.933 0.941
P3 0.863 0.931 0.962 0.960 0.978
P4 0.901 0.955 0.969 0.966 0.956

Table 2: Proportion of coverage of the true value for the 95% credible interval with
“bias” correction.

Since the “bias” terms for P1 and P2 vanish as n → ∞, the proportions of the cov-
erage of the true value are large for both with and without “bias” correction. However,
the 95% credible intervals for P3f and P4f are not performing good without “bias”
correction. Thus, the credible intervals with “bias” correction as stated in Corollary 18
work well for all types of discrete P0.

As for the normality convergence, we draw the marginal density plots in Figure 1
for P1([2,∞)) given sample X with size n = 10, 100, 1000, 10000, 100000 respectively.
Both plots are generated from 1000000 replicates, the true mean of P1([2,∞)) is 0.8
The marginal density for P1([2,∞)) is skewed when n = 10, 100, and symmetric when
n = 1000 and larger.

5 Discussion
To the best of our knowledge, the jump component of the Lévy intensities of the well-
studied NRMIs up-to-date are given in the form of the gamma density: s−σ−1e−βs. It
turns out that with the shape parameter σ = 0, the posterior consistency is always
guaranteed for any “true” distribution P0. Otherwise, the posterior consistency only
holds for discrete P0 but not for continuous P0. Such phenomenon does naturally make
sense due to the discreteness of NRMIs. If P0 is diffuse and the prior guess for the sample
distribution α 	= P0, the prior information will always contribute to the posterior, no
matter how large is the sample size. In such sense, the Bayesian nonparametric models
never behave “better” than the empirical models asymptomatically when P0 is diffuse.
As we have explained in the end of Section 3, with continuous data, one would hardly
use P as a prior of the data distribution and other nonparametric models should be
considered (e.g. mixture Bayesian nonparametric models (Lo, 1984; Escobar and West,
1995; Müller and Quintana, 2004; Gershman and Blei, 2012), Gaussian process models
(Gershman and Blei, 2012; Seeger, 2004; Williams and Rasmussen, 2006)). On the other
hand, we are not able to know the “true” distribution of a given sample with any size n,
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Figure 1: The marginal densities for P1([2,∞)) with sample size n = 10, 100, 1000, 10000,
100000 follow the order from top left to bottom right.

also the sample size n will never be ∞, a prior guess of the random probability measure
based on experience could make the model suitable. Furthermore, the mixture and
hierarchical Bayesian nonparametric models (Lo, 1984; Escobar and West, 1995) based
on NRMIs are showing great success in the applications and consistency behaviours
(Ghosal et al., 1999; Lijoi et al., 2005c).

Importantly, the posterior consistency result of NRMIs when P0 is discrete in this
work provides strong theoretical support of using NRMIs. The results in this work also
provide a guideline of choosing the proper intensity ρ(ds|x), for example, the general-
ized Dirichlet process and the generalized extended gamma NRMI are good choices in
Bayesian nonparametric applications and they both show some flexibilities. Besides, we
may let σ → 0 by assigning a randomness on σ, or one may construct α to depend on
ρ(ds|x) to deduct C̄1. Moreover, we shall develop other subclasses of NRMIs and other
NRMIs like classes that are both flexible and satisfying posterior consistency property
to make the Bayesian nonparametric class rich.

Bayesian nonparametric mixture models have been successfully applied in proba-
bilistic clustering and density estimation. One interesting open question is whether con-
sistency for the number of clusters of Bayesian nonparametric mixture models can be
ensured. Given the fact that the Dirichlet process mixture model and the two-parameter
Poisson-Dirichlet process mixture model are not consistent for the number of clusters
when the observed data are generated from a finite mixture and the concentration pa-
rameter a is fixed (Miller and Harrison, 2013, 2014), this query may be explored for the
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following two circumstances: 1) when the concentration parameter converges to 0 at an
appropriate rate as n goes to infinity; 2) when the concentration parameter is estimated
by Bayesian approaches.

Due to the complexity of the posterior of NRMIs, it is not easy to present a Bernstein-
von Mises like result to give the limiting process of the posterior of general NRMIs. The
result for the normalized generalized gamma process, along with the works in Lo (1983,
1986); Ray and van der Vaart (2021); Hu and Zhang (2022); James (2008); Franssen and
van der Vaart (2022), shed some light in discovering the Bernstein-von Mises theorem
for general NRMIs.

Supplementary Material
Supplementary Material of “Large Sample Asymptotic Analysis for Normalized Random
Measures with Independent Increments” contains all proofs of the results provided in
the main paper (DOI: 10.1214/23-BA1411SUPP; .pdf).
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