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Defining a Credible Interval Is Not Always
Possible with “Point-Null” Priors:
A Lesser-Known Correlate of the

Jeffreys-Lindley Paradox

Harlan Campbell∗ and Paul Gustafson†

Abstract. In many common situations, a Bayesian credible interval will be, given
the same data, very similar to a frequentist confidence interval, and researchers
will interpret these intervals in a similar fashion. However, no predictable similar-
ity exists when credible intervals are based on model-averaged posteriors whenever
one of the two nested models under consideration is a so called “point-null”. Not
only can this model-averaged credible interval be quite different than the frequen-
tist confidence interval, in some cases it may be undefined. This is a lesser-known
correlate of the Jeffreys-Lindley paradox and is of particular interest given the
popularity of the Bayes factor for testing point-null hypotheses.

1 Introduction
Recently, Bayesian tests using Bayes factors have been proposed as alternatives to fre-
quentist hypothesis testing; see Heck et al. (2023) for a review. When using the Bayes
factor (or the posterior model odds) for testing, it is often recommended that researchers
also report parameter estimates and their credible intervals (e.g., Keysers et al. (2020)).
Indeed, following a controversial debate about the strict binary nature of statistical
tests, many now call for an additional focus on parameter estimation with appropriate
uncertainty estimation; see Wasserstein and Lazar (2016).

In Campbell and Gustafson (2022), we considered how Bayesian testing and estima-
tion can be done in a complimentary manner and concluded that if one reports a Bayes
factor comparing two models, then one should also report a model-averaged credible
interval (i.e., one based on the posterior averaged over the two models under con-
sideration). Researchers who follow this recommendation can obtain credible intervals
congruent with their Bayes factor, thereby obtaining suitable uncertainty estimation.

In many familiar situations, a posterior credible interval will be, given the same
data, very similar to a frequentist confidence interval and researchers will interpret
these intervals in a similar fashion; see Albers et al. (2018). However, when comparing
two models, one of which involves a so-called “point-null”, it is less clear whether or not
such similarity can be assumed.
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2 A Lesser-Known Correlate of the Jeffreys-Lindley Paradox

Previous work has examined the properties of Bayesian credible intervals and how
they relate to frequentist confidence intervals under various prior specifications (e.g.,
Casella and Berger (1987), Datta and Ghosh (1995), Greenland and Poole (2013), Held
(2020)). In this paper, on the basis of a few simple examples, we will examine proper-
ties specific to model-averaged credible intervals. We will show that, when one of the
two models under consideration is a point-null model, not only can the model-averaged
credible interval be quite different than the confidence interval, oftentimes, for a de-
sired probability level, it may be undefined. This is perhaps an unexpected correlate
of the Jeffreys-Lindley paradox, the most well known example of the rift between fre-
quentist and Bayesian statistical philosophies; see Wagenmakers and Ly (2021). The
limitations/particularities of working with point-null models are of particular interest
given the recent popularity of the Bayes factor for testing point-null hypotheses.

We begin in Section 2 by re-visiting an example of two Normal models considered
previously by Wagenmakers and Ly (2021) in their discussion of the Jeffreys-Lindley
paradox. In Section 3, we extend this example to consider the consequences of specifying
a point-null model. We conclude in Section 4 with thoughts on the consequences, with
respect to parameter estimation, of specifying point-null models.

2 A mixture of two normals
Let θ be the parameter of interest for which there are two a priori probable models: M0
and M1, defined by two different priors π0(θ) and π1(θ). The posterior density which
appropriately acknowledges the uncertainty with regards to which of the two models is
correct is the mixture density:

π(θ|data) =Pr(M0|data)π0(θ|data) + Pr(M1|data)π1(θ|data), (1)

where the model-specific posteriors, π0(θ|data) and π1(θ|data), are weighted by their
posterior model probabilities, Pr(M0|data) and Pr(M1|data); see, for instance, Campbell
and Gustafson (2022). Note that this “mixture” posterior is obtained as a result of
specifying the “mixture” prior:

π(θ) = Pr(M0)π0(θ) + Pr(M1)π1(θ), (2)

where Pr(M0) and Pr(M1) are the a priori model probabilities.

As an example, consider two a priori equally probable Normal models, M0 : θ ∼
N(0, g0) and M1 : θ ∼ N(0, g1), such that Pr(M0) = Pr(M1) = 0.5. The prior density
functions for the two models are defined as:

π0(θ) = fNormal(θ, 0, g0), (3)

and

π1(θ) = fNormal(θ, 0, g1),

where fNormal(x, μ, σ2) is the Normal probability density function evaluated at x, with
mean parameter μ and variance parameter σ2. Let yi be the i-th data-point, for i =
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1, . . . , n; let ȳ =
∑n

i=1 yi/n be the sample mean; and suppose these data are normally
distributed with known unit variance such that:

Pr(data|θ) =
n∏

i=1
fNormal(yi, θ, 1).

Then the Bayes factor is:

BF01 =
√

1 + ng1

1 + ng0
× exp

( (g0 − g1)nz2

2(1 + ng0)(1 + ng1)

)
,

where z =
√
nȳ. The posterior model probabilities can be calculated from the Bayes

factor as:

Pr(M0|data) = Pr(M0)
Pr(M1)/BF01 + Pr(M0)

and Pr(M1|data) = 1 − Pr(M0|data). (4)

Finally, the model specific posteriors are defined as:

πj(θ|data) =fNormal

(
θ,

zgj√
n( 1

n + gj)
,

gj
1 + gjn

)
,

for j = 0, 1.

Having established all the components of (1), let us now consider how to define a
credible interval based on the model-averaged posterior. An upper one-sided (1 − α)%
credible interval is defined as:

one-sided (1 − α)%CrI = [θ∗,∞),

where θ∗ satisfies the following equality:

Pr(θ < θ∗|data) = α. (5)

Let us define an equal-tailed two-sided (1 − α)% credible interval from a combination
of two upper one-sided intervals as:

two-sided (1 − α)%CrI = [θl∗, θu∗),

where θl∗ and θu∗ satisfy: Pr(θ < θl∗|data) = α/2 and Pr(θ < θu∗|data) = 1 − α/2.
Note that, in our example of two Normal models, these posterior values are calculated
as:

Pr(θ < θ∗|data) =
∫ θ∗

−∞
π(θ|data)dθ =

∫ θ∗

−∞

(
fNorm((z − θ

√
n), 0, 1) × π(θ)

)
dθ∫∞

−∞

(
fNorm((z − θ

√
n), 0, 1) × π(θ)

)
dθ

,

where π(θ) is defined as in (2), and the integral in the denominator ensures that the
posterior density integrates to one.
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Figure 1: For the “mixture of two normals” example (g0 = 0.02 and g1 = 1), panels
A, B, and C, plot the M0 prior, the M1 prior, and the mixture-prior, respectively. For
data with ȳ = 0.520 and n = 10, panels D, E, and F, plot the M0 posterior, the M1
posterior, and the model-averaged posterior, respectively.

Now suppose g0 = 0.02, g1 = 1 and that we observe data for which ȳ = 1.645/
√
n

which corresponds to a p-value of p = 0.05 when using these data to test against the null
hypothesis H0 : θ < 0. See Figure 1 which plots priors and posteriors for this scenario
with n = 10. The lower bound of an upper one-sided (1 − A)% confidence interval
(CI) will be equal to CIA = ȳ − QNorm(1−A)√

n
, where QNorm() is the Normal quantile

function. For instance, for the observed data with ȳ = 1.645/
√
n, we have CI0.10 =

(1.645 − 1.282)/
√
n, such that an upper one-sided 90% CI will be = [0.363/

√
n,∞).

An upper one-sided 95% CI for these data will be [0,∞), since CI0.05 = 0. How do
these frequentist intervals compare to model-averaged Bayesian credible intervals? While
most literature describing the asymptotic agreement of Bayes and frequentist inferences
considers the regime of a fixed true parameter value as n increases, for our purposes it
is useful to consider the regime of a fixed p-value for a particular point null hypothesis.
Consider two observations.

First, setting θ∗ = 0 in (5), we see that as n increases (and p = 0.05 remains fixed),
the corresponding value of α approaches p = 0.05: For n = 10, we obtain α = 0.160,
whereas for n = 10000, we obtain α = 0.050; see how the Pr(θ < CI0.05|data) curve
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Figure 2: Let CIA be the lower bound of a frequentist upper one-sided (1-A)% confidence
interval. We consider Pr(θ < CIA|data) = α and data corresponding to (n, p), where n
is the sample size and p is the frequentist p-value obtained when testing the data against
the null hypothesis H0 : θ < 0. While only six specific values of n are highlighted in
the plot, the curves are the result of linearly interpolating across 200 different n values
equally spaced (on the logarithmic scale) between 1 and 90000. For the normal mixture
example with g0 = 0.02 and g1 = 1, and p = 0.05, we have CI0.05 = 0 and see that, as
n increases, α approaches A for A = 0.05, 0.10, 0.20 and 0.3. The non-monotonicity of
the curves (especially for A = 0.30) is notable.

approaches 0.05 as n increases in Figure 2. Second, setting θ∗ = CIA in (5), we see that
as n increases (and p = 0.05 remains fixed), the corresponding value of α approaches A.
In Figure 2, we plot values of α corresponding to A = 0.05, 0.10, 0.20, and 0.30. One can
clearly see that each Pr(θ < CIA|data) curve tends asymptotically towards A. One can
verify this asymptotic behavior by re-expressing posterior expectations arising from the
specified prior as posterior expectations arising under an improper uniform prior. For
completeness, we give the necessary details in the Supplemental Material (Campbell
and Gustafson, 2023).

Based on the asymptotic behavior of the posterior in this example, one might rea-
sonably conclude that, with a sufficiently large sample size, the model-averaged credible
interval will approximate the frequentist’s confidence interval for any A probability level.
However, Wagenmakers and Ly (2021) argue that, in this scenario, “the Jeffreys-Lindley
paradox still applies” indicating that there is indeed a conflict between Bayesian and
frequentist interpretations of the data.
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Figure 3: For the normal mixture model example with g0 = 0.02 and g1 = 1, the
Pr(M0|data) (blue curve) increases towards 0.876 with increasing n, while the value of
Pr(θ < 0|data) (grey line) approaches 0.05 (dashed black line). While only six specific
values of n are highlighted in the plot, the curves are the result of linearly interpolating
across 100 different n values equally spaced (on the logarithmic scale) between 1 and
10000.

Wagenmakers and Ly (2021) explain their reasoning as follows. From (4), we calcu-
late limn→∞Pr(M1|data) = (1 +

√
g1/g0)−1 = (1 + 1/

√
0.02)−1 = 0.124 and

limn→∞Pr(M0|data) = 0.876. Therefore, with sufficiently large n, we have that
Pr(M1|data) < Pr(M0|data) regardless of the data (i.e., regardless of the fixed value of
z =

√
nȳ); see Figure 3.

In this scenario, model selection (i.e., evaluating the relative values of Pr(M0|data)
and Pr(M1|data)) is not addressing the same question as estimation (i.e., evaluating
Pr(θ|data) to determine which values of θ are a posteriori most likely). The posterior
density of θ describes one’s belief in the probability of different possible values of θ,
whereas the posterior model probabilities describe the probability of different data gen-
erating processes (DGP) (including the generation of θ). As such, while it is perhaps
true that the Jeffreys-Lindley paradox still applies with regards to model selection (i.e.,
with a sufficiently large sample size and fixed z, the Bayesian will inevitably select M0)
(but do see arguments for and against this in Gray et al. (2023)), the paradox certainly
does not apply when it comes to parameter estimation (i.e., with a sufficiently large
sample size and fixed z, the Bayesian will inevitably agree with the frequentist when it
comes to estimating θ, with their credible interval approximately equal to the frequen-
tist’s confidence interval). One way to think about this is to consider the diminishing
influence of the prior as the sample size increases and to recall that the confidence inter-
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Figure 4: For the “point-null” example, panels A, B, and C, plot the M0 prior, the M1
prior, and the mixture-prior, respectively. For data with ȳ = 0.520 and n = 10, panels
D, E, and F, plot the M0 posterior, the M1 posterior, and the model-averaged posterior,
respectively.

val and the credible interval will agree exactly if one specifies the flat (albeit improper)
reference prior, π(θ) ∝ 1; see the worked examples in Held (2020).

In order for the Jeffreys-Lindley paradox to apply to parameter estimation, a point-
mass in the prior is required. We consider this situation in the next Section.

3 Parameter estimation with a point null
Consider the same scenario as above but with the null model, M0, defined as a so-called
“point-null” such that the prior density function under M0 is:

π0(θ) = δ0(θ), (6)

where δ0() is the Dirac delta function at 0 which can be informally thought of as setting
g0 = 0 in (3), or alternatively thought of as a probability density function which is
zero everywhere except at 0, where it is infinite. Note that these are merely informal,
intuitive interpretations.

We now have that Pr(θ = 0|data) = Pr(M0|data), or equivalently, Pr(θ �= 0|data) =
Pr(M1|data). As such, model selection (selecting between M0 and M1) and null hy-
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pothesis testing (selecting between H0 : θ = 0 and H1 : θ �= 0) are equivalent in this
scenario.

With the “point-null” prior for M0 as defined in (6), and with g1 = 1, as defined
previously, the “mixture” prior, π(θ), is recognizable as a “spike-and-slab” prior (see
van den Bergh et al. (2021)) and the Bayes factor is equal to:

BF01 =
√

1 + n× exp
( −nz2

2(1 + n)

)
.

The posterior density is nonatomic with a spike (i.e., a discontinuity with infinite den-
sity) at 0:

π(θ|data) = Pr(M0|data)δ0(θ) + Pr(M1|data)fNormal

(
θ,

z√
n( 1

n + 1)
,

1
1 + n

)
,

where the posterior model probabilities, Pr(M0|data) and Pr(M1|data), can be calcu-
lated from the Bayes factor as in (4).

Returning to our hypothetical data with z = 1.645, we see that for θ∗ = 0, as n
increases, α (such that Pr(θ < θ∗|data) = α) does not approach p = 0.05 and instead
approaches 0: For n = 10, we obtain α = 0.03, and for n = 1000, we obtain α = 0.005; see
trajectory of the grey curve in Figure 5. What’s more, as n increases and ȳ = 1.645/

√
n

remains fixed, the posterior probability on the “spike” at 0 increases towards infinity
such that: limn→∞Pr(M0|data) = 1; as famously emphasized by Lindley (1957) and
originally demonstrated by Jeffreys (1935).

Perhaps even more puzzling is that, for fixed α = 0.05, there is simply no corre-
sponding value of θ∗ (such that α = Pr(θ < θ∗|data)) for any n > 2. For n = 2 we
can define θ∗ = −0.0163, such that Pr(θ < −0.0163|data) = 0.05. However, for n = 3,
a precise value of θ∗ cannot be defined since, due to the discontinuity in the posterior,
we have: Pr(θ < 0|data) = 0.045 < α, and Pr(θ ≤ 0|data) = 0.465 > α. For n = 10
the gap is even wider: Pr(θ < 0|data) = 0.030 < α and Pr(θ ≤ 0|data) = 0.522 > α.
Figure 5 plots these numbers for increasing values of n. As a consequence, it is no longer
the case that, with a sufficiently large sample size, a Bayesian’s credible interval will
approximate a frequentist’s confidence interval. In fact, for certain values of α and n,
calculating a credible interval is not even possible.

In general, determining a specific value of θ∗ for a given value of α (such that
α = Pr(θ < θ∗|data)) is only possible for values of α outside of the “incredibility
interval”:[(

Pr(θ < 0|data,M1)Pr(M1|data)
)
,
(
Pr(θ < 0|data,M1)Pr(M1|data)+Pr(M0|data)

)]
.

The bounds of the “incredibility interval” are the limits of the “jump” in the cumulative
distribution function of the posterior, i.e., the values ranging between Pr(θ < 0|data)
and Pr(θ ≤ 0|data). In Figure 6, we plot the cumulative distribution function of
the posterior for hypothetical data with z = 1.645 and n = 10. In this situation,
the “incredibility interval” equals [Pr(θ < 0|data),Pr(θ ≤ 0|data)] = [0.03, 0.522].
In Figure 5, the lower grey curve corresponds to the lower bound of the incredibil-
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Figure 5: For the hypothetical data with z = 1.645, as n increases along the horizontal
axis, values of α such that Pr(θ < 0|data) = α (grey line) and Pr(θ ≤ 0|data) = α (red
line) are plotted on the vertical axis. While only five specific values of n are highlighted
in the plot, the curves are the result of linearly interpolating across 100 different n
values equally spaced (on the logarithmic scale) between 1 and 10000.

ity interval and the upper red curve corresponds to the upper bound. Notably, since
limn→∞Pr(M0|data) = 1 and limn→∞Pr(M1|data) = 0, the width of the incredibility
interval increases as n increases. As a result, determining a precisely α-level value of
θ∗ such that α = Pr(θ < θ∗|data), becomes increasingly impossible as n grows large.
This is true regardless of the data; see Figure 7 for values of the lower bound obtained
with data where ȳ = 2.575/

√
n (data for which one obtains a p-value of p = 0.005 when

testing against H0 : θ < θ0).

When α is inside the incredibility interval, there remains an unconventional way for
defining a (1 − α)% credible interval. In order to establish a correct value for θ∗ such
that Pr(θ < θ∗|data) = α (over repeated samples) one defines θ∗ stochastically such
that

θ∗ =
{

0, with probability γ; and
0 + ε, with probability 1 − γ,

(7)

where:

γ = α− Pr(θ ≤ 0|data)
Pr(θ < 0|data) − Pr(θ ≤ 0|data) ,

and ε is an arbitrarily small number.
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Figure 6: For the hypothetical data with z = 1.645 and n = 10, the plotted line corre-
sponds to the cumulative distribution function of the posterior (i.e., Pr(θ < θ∗|data))
for increasing values of θ∗.

Returning to our example data with ȳ = 1.645/
√
n, we note that, for n = 10,

Pr(θ < 0|data) = 0.030 and Pr(θ ≤ 0|data) = 0.522. As such, for α = 0.05 (which is
inside the incredibility interval of [0.030, 0.522]), we define θ∗ as:

θ∗ =
{

0, with probability γ = 0.959; and
0 + ε, with probability (1 − γ) = 0.041.

Defining θ∗ in this way will guarantee that Pr(θ < θ∗|data) = 0.05. One way to think
about this is to consider the various values of θ that, over a researcher’s lifetime give
rise to the various datasets they analyse. Across all of these studies, the average poste-
rior probability content of the [θ∗,∞) interval will be 0.95. Thinking about hypothet-
ical replications in this way has an admittedly frequentist character. However, these
are replications across studies arising from different parameter values. If the model-
averaged prior does in fact correspond to the true data generating mechanism, we can
be assured that, amongst all of the researcher’s studies for which z = 1.645, 95% of
these were the result of a θ value from inside of their interval. Furthermore, since this
is true for any arbitrary value of z and any arbitrary value of α, then we have that
Pr

(
θj ∈ [θ∗,∞)

∣∣zj) = 1 − α, where θj and zj are values obtained from a joint draw
from the amalgamation of the prior and statistical model (i.e., the data generating
mechanism).
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Figure 7: With data where ȳ = 2.575/
√
n, as n increases, the lower bound of the incred-

ibility interval (the solid line) decreases towards zero. As a consequence, determining a
value of θ∗ such that Pr(θ < θ∗|data) = α, when α = 0.005 (the dotted line) is only
possible for n < 20. While only six specific values of n are highlighted in the plot, the
curve is the result of linearly interpolating across 100 different n values equally spaced
(on the logarithmic scale) between 1 and 10000.

As another example, suppose n = 100 and ȳ = 2.054/
√
n = 0.2054 which corre-

sponds to a p-value of p = 0.04 when using the data to test against the null hypothesis
H0 : θ = 0, and a p-value of p = 0.02 when using the data to test against the null
hypothesis H0 : θ < 0. One can easily calculate an upper one-sided frequentist 95% con-
fidence interval for these data equal to: [ȳ − 1.645/

√
n,∞) = [0.040,∞), which clearly

excludes 0. However, one cannot calculate an upper one-sided 95% credible interval since
α = 0.05 is within the incredibility interval for this data: [0.009, 0.564]. The closest one
can do is to calculate an upper one-sided 99.1% credible equal to: [0,∞) which includes
0, or calculate an upper one-sided 43.6% credible interval equal to (0,∞) which excludes
0. The only way to define an upper one-sided interval with exactly 95% probability of
including the true value of θ (over repeated samples) is to do so stochastically as equal
to: [θ∗,∞), where θ∗ = 0 with probability γ = (0.050− 0.564)/(0.009− 0.564) = 0.926,
and θ∗ = 0 + ε with probability 1 − γ = 0.074.

We are not seriously suggesting that researchers define credible intervals in this
bizarre stochastic way. We simply wish to demonstrate that this is the only way one
can correctly define the credible interval from a posterior with point masses. When
model-averaged posteriors involve point-null models, credible intervals must therefore
be approached and interpreted with the utmost caution. The issue only gets thornier
as the sample size increases.
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For a very very large n it is possible that both α/2 and (1 − α/2) are within the
incredibility interval. In this case, the equal-tailed two-sided (1 − α)% credible interval
must be defined in an even more bizarre way. When both α/2 and (1 − α/2) are in
the incredibility interval, the credible interval must be defined stochastically as either
a single point or as an entirely empty interval:

(1 − α)%CrI =
{

[0], with probability ψ; and
∅, with probability (1 − ψ),

(8)

where

ψ = Pr(θ = 0|data) − α

2 × Pr(θ = 0|data) − 1 .

To be clear, the “stochastic credible interval” is not defined in (7) and (8) to ensure
that it has a certain (asymptotic) coverage. Rather it is defined in the only possible way
such that (over repeated samples) the boundaries of the interval contain the correct
amount of posterior mass (as required by the definition in (5)). As such, it may not be
immediately obvious that, when we look at the asymptotic behavior of these stochastic
credible intervals, we see that the Jeffreys-Lindley paradox reduces the data to be en-
tirely inconsequential (at least when assuming a fixed p-value). Indeed, as n increases,
both γ and ψ approach 1 − α since:

limn→∞γ = limn→∞
( α− Pr(θ ≤ θ0|data)

Pr(θ < θ0|data) − Pr(θ ≤ θ0|data)
)

=
(α− 1

−1

)
= 1 − α,

and:

limn→∞ψ = limn→∞
( Pr(θ = 0|data) − α

2 × Pr(θ = 0|data) − 1

)

=
(1 − α

2 − 1

)
= 1 − α.

Therefore, for sufficiently large n and z remaining constant, the probability that one
will exclude 0 from a (1 − α)%credible interval will equal α regardless of the data;
see Figure 8. While this may strike one as paradoxical, it is entirely congruent with
the widely-known consequence of the Jeffreys-Lindley paradox: As n increases and z is
fixed, the probability of selecting M0 will go to 1.

4 Conclusion
We demonstrated that when one of the two models under consideration is a point-
null model, not only can a model-averaged credible interval be rather different than
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Figure 8: Each line corresponds to observing data corresponding to a p-value of p when
testing against H0 : θ < 0.

the frequentist confidence interval, oftentimes it will be simply undefined (at least in
a conventional sense). As a consequence, it may be tempting to compare (e.g., using
the Bayes factor) two a priori probable models, M0 and M1, for the purpose of model
selection, but then simply report the uncertainty about θ, conditional on M1 being
unquestionably true. We caution that this strategy, while seemingly straightforward, will
lead to unavoidable inconsistencies between one’s priors and posteriors. Campbell and
Gustafson (2022) explain in detail why disregarding M0 “for the purpose of parameter
estimation” (Wagenmakers and Gronau, 2020) is inadvisable; see also Tendeiro and
Kiers (2019). Frequentists encounter related issues when it comes to obtaining post-
selection uncertainty intervals with regularization approaches such as the lasso; see Lu
et al. (2017) and the references therein.

Some researchers may be happy to avoid model selection entirely and may see no
reason to entertain point-null priors (e.g., Gelman and Rubin (1995): “realistic prior
distributions in social science do not have a mass of probability at zero” [...] “we be-
lieve model selection to be relatively unimportant compared to the task of constructing
realistic models that agree with both theory and data.”). However, if researchers truly
believe that there is a non-zero prior probability that the parameter of interest is pre-
cisely zero (and this prior probability is equal to the value assigned to Pr(M0)), Bayesian
testing with a point-null will be optimal in the sense of minimizing the expected loss
(with respect to a joint distribution of the data and parameters); see Berger (1985).
These researchers should be aware that, while perhaps optimal, Bayesian testing with a
point-null can lead to rather unexpected asymptotic behavior. There will still be credi-
ble intervals; it is just that, as a consequence of the discontinuity in the model averaged
posterior, certain specific credible intervals do not exist. Some researchers might there-
fore wish to explore alternative means of conveying the uncertainty surrounding the
parameter of interest (e.g., Wagenmakers et al. (2022), Rice and Ye (2022)).
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One limitation of this work is that we only considered univariate models where one
wishes to define a credible interval for a single parameter of interest. However, the ideas
we discussed also apply to multivariate settings where one wishes to define credible
sets and where there may be several different nested models under consideration. For
instance, researchers using Bayes factors in multiple regression models (Rouder and
Morey, 2012) should be aware that it may be impossible to define certain model-averaged
credible intervals/sets for the regression coefficients.

A second limitation is that we did not consider how the undefinability of specific
credible intervals will also occur in discrete parameter models. In such cases, specific
confidence intervals will also be undefined (Tingley and Li, 1993; Berger, 1985) (it is
impossible to define a continuous interval on the real line as the parameter can only
have countably many, discrete values), so while they may both be puzzled, Bayesians
and frequentists should at least agree in their inability to define an uncertainty interval!
Instead of uncertainty intervals, one should consider uncertainty sets in such a scenario.
This distinction is at the core of the issue that arises when model averaging with a
point-null prior and the stochastic credible intervals that include both a discrete value
(i.e., zero) and a continuous interval.

Finally, we note that the consequences of the Jeffreys-Lindley paradox on model
selection (and null hypothesis testing) are often understood as “intuitive” and not nec-
essarily unfavorable: When sample sizes are very large, researchers might indeed prefer
to sacrifice some power in order to lower the probability of a type I error, a trade-off
that occurs necessarily when testing a point-null hypothesis with the Bayes factor; see
Pericchi and Pereira (2016) and Wagenmakers and Ly (2021). Indeed, the benefits of
such a trade-off are routinely discussed by frequentists and Bayesians alike (e.g., Leamer
(1978): “from every reasonable viewpoint the significance level should be a decreasing
function of sample size”; and recently, Wulff and Taylor (2023): “From a Neyman-
Pearson perspective, it is logical that α should be a decreasing function of the sample
size.”). However, the consequences of the Jeffreys-Lindley paradox on parameter esti-
mation –specifically with regards to model-averaged credible intervals and the inability
to define these for certain probability levels– were previously less well understood, and
certainly strike us as less intuitive.

Supplementary Material
Supplemental Material. Defining a Credible Interval Is Not Always Possible with “Point-
Null” Priors: A Lesser-Known Correlate of the Jeffreys-Lindley Paradox
(DOI: 10.1214/23-BA1397SUPP; .pdf).

References
Albers, C. J., Kiers, H. A. and van Ravenzwaaij, D. (2018), ‘Credible confidence: A prag-

matic view on the frequentist vs Bayesian debate’, Collabra: Psychology 4(1). 1

Berger, J. O. (1985), Statistical decision theory and Bayesian analysis, Springer Sci-

https://doi.org/10.1214/23-BA1397SUPP


H. Campbell and P. Gustafson 15

ence & Business Media. MR0804611. doi: https://doi.org/10.1007/978-1-4757-
4286-2. 13, 14

Campbell, H. and Gustafson, P. (2022), ‘Bayes factors and posterior estimation: Two
sides of the very same coin’, arXiv preprint arXiv:2204.06054. 1, 2, 13

Campbell, H. and Gustafson, P. (2023). ‘Supplemental Material. Defining a Credible
Interval Is Not Always Possible with “Point-Null” Priors: A Lesser-Known Correlate
of the Jeffreys-Lindley Paradox.’ Bayesian Analysis. doi: https://doi.org/10.1214/
23-BA1397SUPP. 5

Casella, G. and Berger, R. L. (1987), ‘Reconciling Bayesian and frequentist evidence
in the one-sided testing problem’, Journal of the American Statistical Association
82(397), 106–111. MR0883339. doi: https://doi.org/10.1080/01621459.1987.
10478396. 2

Datta, G. S. and Ghosh, J. K. (1995), ‘On priors providing frequentist validity for
Bayesian inference’, Biometrika 82(1), 37–45. MR1332838. doi: https://doi.org/
10.2307/2337625. 2

Gelman, A. and Rubin, D. B. (1995), ‘Avoiding model selection in Bayesian social
research’, Sociological Methodology 25, 165–173. doi: https://doi.org/10.2307/
271064. 13

Gray, J., Cherry, J. L., Wagenmakers, E.-J. and Ly, A. (2023), ‘The Jeffreys–Lindley
paradox: an exchange’, Archive for History of Exact Sciences 77, 443–449.
MR4604374. doi: https://doi.org/10.1007/s00407-023-00310-4. 6

Greenland, S. and Poole, C. (2013), ‘Living with p-values: Resurrecting a Bayesian
perspective on frequentist statistics’, Epidemiology 24(1), 62–68. 2

Heck, D. W., Boehm, U., Böing-Messing, F., Bürkner, P.-C., Derks, K., Dienes, Z., Fu,
Q., Gu, X., Karimova, D., Kiers, H. A. et al. (2023), ‘A review of applications of the
Bayes factor in psychological research’, Psychological Methods 28(3), 558–579. 1

Held, L. (2020), Bayesian tail probabilities for decision making, in ‘Bayesian Meth-
ods in Pharmaceutical Research’, CRC Press Taylor & Francis Group, pp. 53–73.
MR4599165. 2, 7

Jeffreys, H. (1935), Some tests of significance, treated by the theory of probability, in
‘Mathematical proceedings of the Cambridge philosophical society’, Vol. 31, Cam-
bridge University Press, pp. 203–222. 8

Keysers, C., Gazzola, V. and Wagenmakers, E.-J. (2020), ‘Using Bayes factor hypoth-
esis testing in neuroscience to establish evidence of absence’, Nature Neuroscience
23(7), 788–799. doi: https://doi.org/10.1038/s41593-020-0660-4. 1

Leamer, E. E. (1978), Specification searches: Ad hoc inference with nonexperimental
data, Vol. 53, John Wiley & Sons Incorporated. MR0471118. 14

Lindley, D. V. (1957), ‘A statistical paradox’, Biometrika 44(1/2), 187–192.
MR0087273. doi: https://doi.org/10.1093/biomet/44.1-2.187. 8

https://mathscinet.ams.org/mathscinet-getitem?mr=0804611
https://doi.org/10.1007/978-1-4757-4286-2
https://doi.org/10.1007/978-1-4757-4286-2
https://doi.org/10.1214/23-BA1397SUPP
https://doi.org/10.1214/23-BA1397SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=0883339
https://doi.org/10.1080/01621459.1987.10478396
https://doi.org/10.1080/01621459.1987.10478396
https://mathscinet.ams.org/mathscinet-getitem?mr=1332838
https://doi.org/10.2307/2337625
https://doi.org/10.2307/2337625
https://doi.org/10.2307/271064
https://doi.org/10.2307/271064
https://mathscinet.ams.org/mathscinet-getitem?mr=4604374
https://doi.org/10.1007/s00407-023-00310-4
https://mathscinet.ams.org/mathscinet-getitem?mr=4599165
https://doi.org/10.1038/s41593-020-0660-4
https://mathscinet.ams.org/mathscinet-getitem?mr=0471118
https://mathscinet.ams.org/mathscinet-getitem?mr=0087273
https://doi.org/10.1093/biomet/44.1-2.187


16 A Lesser-Known Correlate of the Jeffreys-Lindley Paradox

Lu, S., Liu, Y., Yin, L. and Zhang, K. (2017), ‘Confidence intervals and regions for
the lasso by using stochastic variational inequality techniques in optimization’, Jour-
nal of the Royal Statistical Society. Series B (Statistical Methodology) pp. 589–611.
MR3611761. doi: https://doi.org/10.1111/rssb.12184. 13

Pericchi, L. and Pereira, C. (2016), ‘Adaptative significance levels using optimal decision
rules: balancing by weighting the error probabilities’, Brazilian Journal of Probabil-
ity and Statistics 30(1), 70–90. MR3453515. doi: https://doi.org/10.1214/14-
BJPS257. 14

Rice, K. and Ye, L. (2022), ‘Expressing regret: a unified view of credible intervals’, The
American Statistician 76(3), 248–256. MR4453527. doi: https://doi.org/10.1080/
00031305.2022.2039764. 13

Rouder, J. N. and Morey, R. D. (2012), ‘Default Bayes factors for model selection in
regression’, Multivariate Behavioral Research 47(6), 877–903. doi: https://doi.org/
10.1080/00273171.2012.734737. 14

Tendeiro, J. N. and Kiers, H. A. (2019), ‘A review of issues about null hypothe-
sis Bayesian testing.’, Psychological Methods 24(6), 774. doi: https://doi.org/10.
1037/met0000221. 13

Tingley, M. and Li, C. (1993), ‘A note on obtaining confidence intervals for discrete
parameters’, The American Statistician 47(1), 20–23. MR1207889. doi: https://
doi.org/10.2307/2684776. 14

van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N. and Wagenmakers, E.-J. (2021),
‘A cautionary note on estimating effect size’, Advances in Methods and Practices in
Psychological Science 4(1). doi: https://doi.org/10.1177/2515245921992035. 8

Wagenmakers, E.-J. and Gronau, Q. F. (2020), ‘Overwhelming evidence for vaccine
efficacy in the Pfizer trial: An interim Bayesian analysis’, PsyArXiv. doi: https://
doi.org/10.31234/osf.io/fs562. 13

Wagenmakers, E.-J., Gronau, Q. F., Dablander, F. and Etz, A. (2022), ‘The sup-
port interval’, Erkenntnis 87, 589–601. MR4396731. doi: https://doi.org/10.1007/
s10670-019-00209-z. 13

Wagenmakers, E.-J. and Ly, A. (2021), ‘History and nature of the Jeffreys-Lindley
paradox’, arXiv preprint arXiv:2111.10191. MR4532732. doi: https://doi.org/10.
1007/s00407-022-00298-3. 2, 5, 6, 14

Wasserstein, R. L. and Lazar, N. A. (2016), ‘The ASA statement on p-values: con-
text, process, and purpose’, The American Statistician 70(2), 129–133. MR3511040.
doi: https://doi.org/10.1080/00031305.2016.1154108. 1

Wulff, J. N. and Taylor, L. (2023), ‘How and why alpha should depend on sample size:
A Bayesian-frequentist compromise for significance testing’. doi: https://doi.org/
10.31234/osf.io/3cbh7. 14

https://mathscinet.ams.org/mathscinet-getitem?mr=3611761
https://doi.org/10.1111/rssb.12184
https://mathscinet.ams.org/mathscinet-getitem?mr=3453515
https://doi.org/10.1214/14-BJPS257
https://doi.org/10.1214/14-BJPS257
https://mathscinet.ams.org/mathscinet-getitem?mr=4453527
https://doi.org/10.1080/00031305.2022.2039764
https://doi.org/10.1080/00031305.2022.2039764
https://doi.org/10.1080/00273171.2012.734737
https://doi.org/10.1080/00273171.2012.734737
https://doi.org/10.1037/met0000221
https://doi.org/10.1037/met0000221
https://mathscinet.ams.org/mathscinet-getitem?mr=1207889
https://doi.org/10.2307/2684776
https://doi.org/10.2307/2684776
https://doi.org/10.1177/2515245921992035
https://doi.org/10.31234/osf.io/fs562
https://doi.org/10.31234/osf.io/fs562
https://mathscinet.ams.org/mathscinet-getitem?mr=4396731
https://doi.org/10.1007/s10670-019-00209-z
https://doi.org/10.1007/s10670-019-00209-z
https://mathscinet.ams.org/mathscinet-getitem?mr=4532732
https://doi.org/10.1007/s00407-022-00298-3
https://doi.org/10.1007/s00407-022-00298-3
https://mathscinet.ams.org/mathscinet-getitem?mr=3511040
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.31234/osf.io/3cbh7
https://doi.org/10.31234/osf.io/3cbh7

	Introduction
	A mixture of two normals
	Parameter estimation with a point null
	Conclusion
	Supplementary Material
	References

