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Inexact Laplace Approximation and the Use of
Posterior Mean in Bayesian Inference∗

Vladimir Spokoiny†

Abstract. The prominent Bernstein – von Mises (BvM) Theorem claims a kind
of approximation of the posterior distribution by a Gaussian one with the covari-
ance close to the inverse of the total Fisher information matrix. A more general
Laplace approximation result states a similar Gaussian approximation of the pos-
terior with the parameters depending on the prior. These two results build a
basis for Bayesian inference and uncertainty quantification in a rather general
situation. Spokoiny and Panov (2021) offered a new look at this problem which
allows to state rather strong results on the quality of Gaussian approximation
in non-asymptotic and dimension free form assuming linearity and concavity of
log-likelihood function which can be misspecified. The established results provide
explicit non-asymptotic bounds on the quality of a Gaussian approximation of
the posterior distribution in total variation distance in terms of the so called ef-
fective dimension pG defined as interplay between information contained in the
data and in the prior distribution. This paper substantially improves and further
develops the results from Spokoiny and Panov (2021) using the recent progress on
high dimensional Laplace approximation. We address the question of effective and
critical dimension in Bayesian inference, the relations between Laplace approxi-
mation and Bernstein–von Mises Theorem, and, particularly, the use of posterior
mean instead of Maximum A Posteriori Probability estimator in Bayesian infer-
ence. The results are illustrated for the case of log-density estimation.
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1 Introduction
The prominent Bernstein – von Mises (BvM) Theorem is one of the most fundamental
and most mysterious results in Bayesian inference stating asymptotic normality of the
posterior distribution. It is often considered as a Bayesian counterpart of the Fisher
Theorem claiming asymptotic normality of the maximum likelihood estimator (MLE).
The inverse of the Fisher information matrix describes the variance of the MLE in
the Fisher Theorem and the variance of the posterior in the BvM Theorem. These
two results build the basis for statistical inference and uncertainty quantification of
majority of statistical procedures. Parametric BvM theory is well-understood Van der
Vaart (2000). One of corollaries of the BvM result is the fact that the choice of the prior
is unimportant, it does not show up in the limiting distribution and washes out of the
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posterior distribution as the sample size increases. The situation changes dramatically
when modern statistical problems with a high dimensional parameter space and limited
sample size are considered. The prior becomes crucial, its choice is an important issue
as for inference problems as for uncertainty quantification; see e.g. Knapik et al. (2016),
Szabó et al. (2015), Rousseau and Szabo (2020) and references therein. Lu (2017) studied
a parametric BvM theorem for nonlinear Bayesian inverse problems with an increasing
number of parameters.

Consider a Bayesian inference problem for a pseudo log-likelihood function L(υ) =
L(Y ,υ) with data Y , a parameter υ ∈ Rp , and a prior π on Rp . This paper focuses
on the case of a Gaussian prior πG ∼ N (υ0, G

−2) with a symmetric positive definite
covariance matrix G−2 . An extension to non-Gaussian priors is commented in Section D
in the Supplement (Spokoiny (2023)); later (S2023). The posterior density πG(·) of υ
given Y can be written in the form

υG

∣∣Y ∼ πG(υ) ∝ exp
{
L(υ) − ‖G(υ − υ0)‖2/2

}
,

where the sign ∝ means equality up to a normalizing multiplicative constant. Assume
that the penalized maximum likelihood estimator (pMLE) υ̃G is well defined:

υ̃G = argmax
υ

{
L(υ) − ‖G(υ − υ0)‖2/2

}
. (1.1)

Clearly υ̃G is maximizer of πG(υ) and it is often referred to as maximum a posteriori
probability (MAP) estimator. Define also the penalized Fisher information matrix

FG(υ) = −∇2EL(υ) + G2,

where E means the expectation w.r.t. the underlying data distribution P . An impor-
tant step in understanding the impact of the prior is made by the results on Laplace’s
approximation claiming that the posterior distribution πG is close to the Gaussian
distribution N (υ̃G,F

−1
G (υ̃G)) . The Bernstein–von Mises phenomenon formally cor-

responds to the non-penalized case G2 = 0 . A number of papers discuss the BvM
phenomenon for nonlinear inverse problems; see e.g. Nickl (2020); Monard et al. (2019);
Giordano and Kekkonen (2020), where the convergence is quantified in a distance that
metrizes the weak convergence. Schillings et al. (2020) showed that the Laplace approx-
imation error in Hellinger distance converges to zero in the order of the noise level. The
recent paper Helin and Kretschmann (2022) provides a finite sample error of Laplace
approximation for the total variation (TV) distance with an explicit dependence on
the dimension and on the nonlinearity of the forward mapping for Bayesian inverse
problems. A common drawback of all these and similar results is that the error bounds
depend implicitly or explicitly of the dimension of the parameter space. If the dimension
grows this dependence may become crucial, thus questioning the range of applicabil-
ity of Laplace approximation and of BvM Theorem. Spokoiny (2017) discussed general
properties of the pMLE υ̃G in terms of the so called effective dimension which can be
small or moderate even if the true parameter dimension is large. Spokoiny and Panov
(2021) established similar and even stronger results under an additional assumption of
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linearity of the stochastic term L(υ)−EL(υ) in υ . Spokoiny (2019) explained how a
non-linear inverse problem can be reduced to the stochastically linear case by extending
the parameter space without significant increase of the effective dimension.

Another challenge of applying the BvM-type results is that the parameters of the
approximating Gaussian distribution are defined through the pMLE υ̃G from (1.1).
This is a high dimensional optimization problem for a random objective function. A
closed form analytic solution is available only in very special and simple situations, oth-
erwise it can only be obtained by high-tech optimization methods with some error. This
leads to an open problem of justifying a Laplace approximation of the posterior with
inexact parameters for Bayesian inference, Durmus and Moulines (2019). Finding υ̃G

could be especially difficult if computing L(υ) and its gradient is costly. This leads to
gradient free methods Nesterov and Spokoiny (2017) or Bayesian optimization approach
Mockus (1989), Frazier (2018). Ma et al. (2019) argued that Monte Carlo Markov Chain
(MCMC) sampling can be more efficient than high dimensional optimization. A partic-
ular issue for applying MCMC type methods for Bayesian inference is to justify the use
of posterior mean instead of posterior mode.

This paper aims at addressing the mentioned challenges. Below the list of the most
important achievements in the paper.

Effective dimension and dimension free guarantees for penalized MLE υ̃G .
The effective dimension pG is defined by an interplay between the information delivered
by the data and information contained in the penalty; see Spokoiny and Panov (2021)
or Section 2.4 for more details. Section 2 establishes explicit non-asymptotic and dimen-
sion free results on the accuracy of the pMLE υ̃G including concentration, Fisher and
Wilks expansions, loss and risk bounds under assumptions of stochastic linearity and
concavity of the log-likelihood function. The bounds apply well under model misspeci-
fication and are stated under the same critical dimension condition pG � n , where n
is the effective sample size. The use of self-concordance type conditions from Section A
of the Supplement (S2023) on f(υ) = EL(υ) allows to obtain sharper and more trans-
parent results than in Spokoiny and Panov (2021). Section C of the Supplement (S2023)
explains a rate optimal choice of penalty/prior and derives usual minimax rate results
over Sobolev smoothness classes from the obtained bounds.

Laplace’s approximation of the posterior. Section 3 of the paper presents new
results on concentration and Gaussian approximation of the posterior. It is important
to note that the analysis of the posterior distribution requires very different analytic
tools than used for the pMLE study. We make use of the recent progress in high dimen-
sional Laplace approximation from Section E of the Supplement (S2023). It appears
that some rather sharp bounds on posterior concentration and contraction can be ob-
tained under the critical dimension condition pG � n similar to the case of pMLE;
see Proposition 3.1. This is a substantial improvement over Spokoiny and Panov (2021)
where p3

G � n was assumed. The main results of Theorem 3.4 provide some bounds
on the accuracy of Gaussian approximation of the posterior. These results still require
p3
G � n . For the total variation distance, the accuracy of approximation is of order√
p3
G/n . It can be improved to p3

G/n if we limit ourselves to the class of centrally
symmetric sets.
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The use of posterior mean in place of MAP. The result on Gaussian approximation
of the posterior justifies the use of elliptic credible set centered at the MAP υ̃G . The
possibility of using the posterior mean υG in place of the MAP (1.1) is an important
challenging question answered by Theorem 3.10: this use is justified under the same
condition p3

G � n , however, only after restricting to the class of elliptic credible sets.
The proof involves some recent advances in Gaussian comparison Götze et al. (2019).

Log-density estimation. Section 4 specifies the general results to the case of log-
density estimation. In particular, we provide finite sample explicit and sharp bounds on
posterior concentration and contraction under the condition s0 > 0 on the smoothness
degree of the density while Rousseau and Szabo (2017) required s0 > 1/2 .

2 Properties of the pMLE υ̃G

This section collects general results about concentration and expansion of the pMLE
which substantially improve the bounds from Spokoiny and Panov (2021). We assume
to be given a pseudo log-likelihood random function L(υ) , υ ∈ Υ ⊆ Rp , p < ∞ .
Given a quadratic penalty ‖Gυ‖2/2 , define

LG(υ) = L(υ) − ‖Gυ‖2/2.

Typical examples of choosing G2 are given in Section B.1 of the Supplement (S2023).
Consider the penalized MLE υ̃G and its population counterpart υ∗

G

υ̃G = argmax
υ

LG(υ), υ∗
G = argmax

υ
ELG(υ).

The corresponding Fisher information matrix FG(υ) is given by

F(υ) = −∇2EL(υ), FG(υ) = −∇2ELG(υ) = F(υ) + G2.

We assume FG(υ) to be positive definite for all considered υ . By DG(υ) we denote
a positive symmetric matrix with D2

G(υ) = FG(υ) , and FG = FG(υ∗
G) , DG = F

1/2
G .

2.1 Conditions

Now we present our conditions. The most important one is about linearity of the stochas-
tic component ζ(υ) = L(υ) −EL(υ) = LG(υ) −ELG(υ) .

(ζ) The stochastic component ζ(υ) = L(υ)−EL(υ) of the process L(υ) is linear in
υ . We denote by ∇ζ ≡ ∇ζ(υ) ∈ Rp its gradient .

Below we assume some concentration properties of the stochastic vector ∇ζ ; see
(F.43) of Theorem F.15 of the Supplement (S2023).
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(∇ζ) Let V 2 = Var(∇ζ) and D2
G = D2

G(υ∗
G) . Then for any considered x > 0

P
(
‖D−1

G ∇ζ‖ ≥ rG(x)
)
≤ 3e−x, (2.1)

where for pG = tr(D−2
G V 2) and λG = ‖D−1

G V 2D−1
G ‖

rG(x) def= √
pG +

√
2xλG . (2.2)

This condition can be effectively checked if the errors in the data exhibit sub-
Gaussian or sub-exponential behaviour; see Section F.3 of the Supplement (S2023). The
important value pG = tr(D−2

G V 2) can be called the effective dimension; see Spokoiny
(2017).

We also assume that the deterministic part ELG(υ) of the penalized log-likelihood
is a concave function. It can be relaxed using localization; see Spokoiny (2019).

(CG) Υ is an open and convex set in Rp . The function ELG(υ) is concave on Υ .

In Section 3.1 we consider a stronger condition of semi-concavity of EL(υ) . Further
we will also need some smoothness conditions on the function f(υ) = EL(υ) . The
class of models satisfying the conditions (ζ) , (∇ζ) with a smooth function f(υ) =
EL(υ) will be referred to as stochastically linear smooth (SLS). This class includes linear
regression, generalized linear models (GLM) and log-density models; see Spokoiny and
Panov (2021). However, this class is much larger. For instance, nonlinear regression and
nonlinear inverse problems can be adapted to the SLS framework by an extension of
the parameter space; see Spokoiny (2019).

2.2 Concentration of the pMLE υ̃G

This section discusses some concentration properties of the pMLE υ̃G=argmaxυ LG(υ) .

Given x and rG = rG(x) from (2.2), define for some ν < 1 the set UG by

UG
def=

{
u : ‖DGu‖ ≤ ν−1rG

}
. (2.3)

The result of this section states the concentration properties of the pMLE υ̃G in the
local vicinity AG of υ∗

G of the form

AG
def= υ∗

G + UG =
{
υ = υ∗

G + u : u ∈ UG

}
⊆ Υ ◦.

Local Gateaux-regularity of f(υ) = EL(υ) within AG will be measured by the error
of the second order Taylor approximation

δ3(υ,u) = f(υ + u) − f(υ) − 〈∇f(υ),u〉 − 1
2 〈∇

2f(υ),u⊗2〉,

δ′3(υ,u) = 〈∇f(υ + u),u〉 − 〈∇f(υ),u〉 − 〈∇2f(υ),u⊗2〉 .
(2.4)
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More precisely, define

ωG
def= sup

u∈UG

2|δ3(υ∗
G,u)|

‖DGu‖2 , ω′
G

def= sup
u∈UG

2|δ′3(υ∗
G,u)|

‖DGu‖2 . (2.5)

The quantities ωG and ω′
G can be effectively bounded under smoothness conditions

(T3) or (S3) given in Section A of the Supplement (S2023). Under (T3) at υ = υ∗
G

with D2(υ∗
G) = D2

G and r = rG , by Lemma A.1 of the Supplement (S2023), it holds
for a small constant τ3

ω′
G ≤ τ3 ν

−1rG , ωG ≤ τ3 ν
−1rG/3.

Furthermore, under (S3) , the same bounds apply with τ3 = c3n
−1/2 ; see Lemma A.2

of the Supplement (S2023).

Proposition 2.1. Suppose (ζ) , (∇ζ) , and (CG) . Let also

1 − ν − ω′
G ≥ 0; (2.6)

see (2.5) and (2.3). Then υ̃G ∈ AG on a set Ω(x) with P
(
Ω(x)

)
≥ 1 − 3e−x , i.e.

‖DG(υ̃G − υ∗
G)‖ ≤ ν−1rG . (2.7)

Proof. By (∇ζ) , on a the random set Ω(x) with P(Ω(x)) ≥ 1 − 3e−x , it holds
‖D−1

G ∇ζ‖ ≤ rG . Now the result follows from Proposition A.7 with f(υ) = ELG(υ) ,
g(υ) = LG(υ) , r = ν−1rG , and A = ∇ζ .

Remark 2.1. The result (2.7) continues to apply with any matrix 𝔻 in place of DG

provided that 𝔻 ≤ DG and (∇ζ) as well as (2.5), (2.6) hold after this change.

2.3 Fisher and Wilks expansions

This section presents some finite sample results about the behavior of the penalized
MLE υ̃G and the excess LG(υ̃G) − LG(υ∗

G) . Proposition 2.1 states the concentration
properties of υ̃G around υ∗

G . Now we show that this concentration can be used to
establish a version of the Fisher expansion for the estimation error υ̃G − υ∗

G and the
Wilks expansion for the excess LG(υ̃G) − LG(υ∗

G) .

Theorem 2.2. Assume the conditions of Proposition 2.1 with ν = 2/3 . Then on Ω(x)

2LG(υ̃G) − 2LG(υ∗
G) −

∥∥D−1
G ∇ζ

∥∥2 ≤ ωG

1 − ωG

∥∥D−1
G ∇ζ

∥∥2
,

2LG(υ̃G) − 2LG(υ∗
G) −

∥∥D−1
G ∇ζ

∥∥2 ≥ −ωG

∥∥D−1
G ∇ζ

∥∥2
.
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Also

∥∥DG

(
υ̃G − υ∗

G

)
−D−1

G ∇ζ
∥∥2 ≤ 3ωG

(1 − ωG)2
∥∥D−1

G ∇ζ
∥∥2

,

∥∥DG

(
υ̃G − υ∗

G

)∥∥ ≤ 1 +
√

2ωG

1 − ωG

∥∥D−1
G ∇ζ

∥∥ .
(2.8)

Proof. The result follows from Proposition A.8 of the Supplement (S2023) similarly to
Proposition 2.1.

2.4 Effective sample size and critical dimension in pMLE
This section discusses the important question of the critical parameter dimension still
ensuring the validity of the presented results. A very important feature of our results
is their dimension free and coordinate free form. The true parametric dimension p can
be very large, it does not show up in the error terms. Neither do we use any spectral
decomposition or sequence space structure, in particular, we do not require that the
Fisher information matrix F and the penalty matrix G2 are diagonal or can be jointly
diagonalized. The results are stated for the general data Y and a quasi log-likelihood
function. In particular, we do not assume independent or progressively dependent ob-
servations and additive structure of the log-likelihood. The effective sample size n can
be defined via the smallest eigenvalue of the matrix FG = D2

G = −∇2ELG(υ∗
G) :

n−1 def= ‖F−1
G ‖.

Our results apply as long as this value is sufficiently small. In typical examples like
regression or density modeling such defined value is closely related to the sample size
of the data.

For the concentration result of Proposition 2.1 we need the basic conditions (ζ)
and (CG) . Further, (∇ζ) identifies the radius rG of the local vicinity AG . The final
critical condition is given by (2.6). Essentially it says that the values ωG and ω′

G are
significantly smaller than 1. Under (S3) , ω′

G ≤ c3 ν
−1rG n−1/2 ; see Lemma A.2 of

the Supplement (S2023). So, (2.6) means r2
G � n . Moreover, definition (2.1) of rG

yields that r2
G � tr(D−2

G V 2) = pG , where pG is the effective dimension of the problem.
We conclude that the main properties of the pMLE υ̃G are valid under the condition
pG � n meaning sufficiently many observations per effective number of parameters.

2.5 The use of D̃2
G instead of D2

G

The penalized information matrix D2
G = D2

G(υ∗
G) = −∇2ELG(υ∗

G) plays an important
role in our results. In particular, DG describes the shape of the concentration set
AG = υ∗

G + UG . However, this matrix is not available as it involves the unknown point
υ∗
G . If the matrix function F(υ) is locally constant in AG , one can replace υ∗

G with
its estimate υ̃G . Variability of F(υ) , or, equivalently, FG(υ) = F(υ) + G2 can be
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measured under the Fréchet smoothness of f(υ) = ELG(υ) by the value ω+
G from

(A.4) of the Supplement (S2023) with υ = υ∗
G , D(υ) = DG , and r = ν−1rG .

Proposition 2.3. Assume the conditions of Proposition 2.1 and let ω+
G ≤ 1/2 ; see

(A.4). The random matrix D̃2
G = FG(υ̃G) fulfills on Ω(x) for any u ∈ Rp

∥∥D−1
G D̃2

G D−1
G − IIp

∥∥ ≤ ω+
G ,

∥∥DG D̃−2
G DG − IIp

∥∥ ≤ ω+
G

1 − ω+
G

,

(1 − ω+
G) ‖DGu‖2 ≤ ‖D̃Gu‖2 ≤ (1 + ω+

G) ‖DGu‖2.

(2.9)

Proof. The value υ̃G − υ∗
G belongs to UG on Ω(x) and (2.9) follows from (A.5).

2.6 Smoothness and bias

Due to Proposition 2.1, the penalized MLE υ̃G is in fact an estimator of the vector
υ∗
G . However, υ∗

G depends on penalization which introduces some bias. This section
discusses whether one can use υ̃G for estimating the underlying truth υ∗ defined as
the maximizer of the expected log-likelihood: υ∗ = argmaxυ EL(υ) . First we describe
the bias bG = υ∗

G − υ∗ induced by penalization. It is important to mention that the
previous results about the properties of the pMLE υ̃G require strong concavity of
the expected log-likelihood function ELG(υ) at least in a vicinity of the point υ∗

G .
In some sense, this strong concavity is automatically forced by the penalizing term
in the definition of υ∗

G . However, the underlying truth υ∗ = argmaxυ EL(υ) is the
maximizer of the non-penalized expected log-likelihood, and the corresponding Hessian
F(υ∗) = −∇2EL(υ∗) can degenerate. This makes evaluation of the bias more involved.
To bypass this situation, we assume later in this section that the Hessian ∇2ELG(υ)
cannot change much in a reasonably large vicinity of υ∗ . This allows to establish an
accurate quadratic approximation of f(υ) and to evaluate the bias bG = υ∗

G − υ∗ .

Define DG by D2
G = FG(υ∗) ; cf. D2

G = FG(υ∗
G) . Let also Q be a symmetric

matrix satisfying Q2 ≤ D2
G . Typical examples include Q = DG , Q = DG , and

Q2 = nIIp . Later we bound the norm ‖QbG‖ . Denote with ν = 2/3

bG
def= ‖QD−2

G G2υ∗‖,

ω∗
G

def= sup
u : ‖Qu‖≤ν−1bG

‖D−1
G FG(υ∗ + u)D−1

G − IIp‖;
(2.10)

cf. (A.4) and (A.5) of the Supplement (S2023) for f(υ) = ELG(υ) . Note that the def-
inition of ω+

G in Proposition 2.3 uses another r = ν−1rG , therefore, different notation.
Proposition A.11 of the Supplement (S2023) yields the following result.

Proposition 2.4. Let D2
G = FG(υ∗) , ν ≤ 2/3 , and bG = ‖QD−2

G G2υ∗‖ . Let also
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ω∗
G ≤ 1/3 ; see (2.10). Then the bias bG = υ∗

G − υ∗ fulfills

‖Q bG‖ ≤ bG
1 − ω∗

G

= 1
1 − ω∗

G

‖QD−2
G G2υ∗‖ , (2.11)

‖Q(bG + D−2
G G2υ∗)‖ ≤ ω∗

G

1 − ω∗
G

bG = ω∗
G

1 − ω∗
G

‖QD−2
G G2υ∗‖.

Corollary 2.5. Assume the conditions of Proposition 2.4. Then

‖DG bG‖ ≤ 1
1 − ω∗

G

‖D−1
G G2υ∗‖, ‖bG‖ ≤ 1

1 − ω∗
G

‖D−2
G G2υ∗‖. (2.12)

The same bounds apply with D2
G = FG(υ∗

G) in place of D2
G = FG(υ∗) .

This is a special cases of (2.11) with Q = DG and Q = IIp . The last statement is
due to Remark A.1 of the Supplement (S2023).

2.7 Loss and risk of the pMLE

Now we combine the previous results about the stochastic term υ̃G − υ∗
G and the bias

term bG = υ∗
G −υ∗ to obtain the sharp bounds on the loss and risk of the pMLE υ̃G .

Theorem 2.6. Assume the conditions of Proposition 2.1 and 2.4. Then on Ω(x) with
P
(
Ω(x)

)
≥ 1 − 3e−x , it holds with ξG = D−1

G ∇ζ , rG from (2.2), and n−1 = ‖D−2
G ‖

‖DG (υ̃G−υ∗)‖≤ 1+
√

2ωG

1 − ωG
‖ξG‖+ ‖D−1

G G2υ∗‖
1 − ω∗

G

≤1+
√

2ωG

1 − ωG
rG + ‖D−1

G G2υ∗‖
1 − ω∗

G

,

(2.13)

‖υ̃G − υ∗‖≤ 1 +
√

2ωG√
n (1 − ωG)

‖ξG‖ + ‖D−2
G G2υ∗‖
1 − ω∗

G

≤ 3 rG√
n

+ 3 ‖D−2
G G2υ∗‖ . (2.14)

Proof. Let Ω(x) be the random set from (∇ζ) on which with ‖ξG‖ ≤ rG . It follows
from (2.8) of Theorem 2.2 that on Ω(x) with bG = υ∗

G − υ∗

∥∥DG

(
υ̃G − υ∗) + DGbG

∥∥ ≤ 1 +
√

2ωG

1 − ωG

∥∥ξG∥∥ .
This and (2.12) imply (2.13).

Now we state the results about the risk of the pMLE υ̃G . To avoid technical bur-
den, we fix a large x , rG = rG(x) , and exclude an event

{
‖ξG‖ > rG

}
having an

exponentially small probability; see condition (2.1) of Proposition 2.1.
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Theorem 2.7. Assume the conditions of Proposition 2.1 and Proposition 2.4. Then for
a set Ω(x) with P

(
Ω(x)

)
≥ 1 − 3e−x , it holds with pG = tr(D−2

G V 2)

∥∥E {
DG(υ̃G − υ∗) 𝟙

(
Ω(x)

)}∥∥ ≤ 1
1 − ω∗

G

‖D−1
G G2υ∗‖ +

√
3ωG

1 − ωG
E‖ξG‖ + C1e−x

≤ 1
1 − ω∗

G

‖D−1
G G2υ∗‖ +

√
3ωG

1 − ωG

√
pG + C1e−x , (2.15)

and

E
{
‖DG (υ̃G − υ∗)‖2 𝟙

(
Ω(x)

)}
≤

(
1 +

√
2ωG

1 − ωG

)2

pG +
(

1
1 − ω∗

G

‖D−1
G G2υ∗‖ +

√
3ωG

1 − ωG

√
pG + C1e−x

)2

.

(2.16)

Remark 2.2. For ω∗
G , ωG small, (2.16) yields classical bias-variance decomposition:

E
{
‖DG (υ̃G − υ∗)‖2 𝟙

(
Ω(x)

)}
≤

(
pG + ‖D−1

G G2υ∗‖2){1 + o(1)
}
. (2.17)

With n−1 = ‖D−2
G ‖ , we also obtain

E
{
n‖υ̃G − υ∗‖2 𝟙

(
Ω(x)

)}
≤

(
pG + n‖D−2

G G2υ∗‖2){1 + o(1)
}
.

Moreover, under the small bias condition ‖D−2
G G2υ∗‖2 � pG/n , the impact of the

bias induced by penalization is negligible. The relation ‖D−2
G G2υ∗‖2 � pG/n is usually

referred to as “bias-variance trade-off”. Our bound is sharp in the sense that even for
the special case of a linear models, (2.17) becomes equality.

Proof. Below we denote Exη = E
{
η 𝟙

(
Ω(x)

)}
for any r.v. η . As EξG = 0 , we derive

Ex
{
DG(υ̃G − υ∗)

}
= ExDG(υ̃G − υ∗ − ξG) −EξG 𝟙

(
Ωc(x)

)
.

For the first term we apply (2.8) and (2.12) yielding

‖ExDG(υ̃G − υ∗ − ξG)‖ ≤ ‖D−1
G G2υ∗‖
1 − ω∗

G

+
√

3ωG pG
1 − ωG

.

To show (2.15), we also have to bound the tail moments of ‖ξG‖ :
∥∥EξG 𝟙

(
Ωc(x)

)∥∥ ≤ E‖ξG‖ 𝟙
(
Ωc(x)

)
≤ e−x/2.

This can be easily done using deviation bounds for the quadratic form ‖ξG‖2 ; see The-
orem F.9 of the Supplement (S2023). Similarly one can bound the variance of DG υ̃G .



V. Spokoiny 11

With BG = D−1
G V 2D−1

G

Varx
(
DG υ̃G

)
≤ Ex

{
DG (υ̃G − υ∗

G)
}{

DG (υ̃G − υ∗
G)

}	

≤
(

1 +
√

2ωG

1 − ωG

)2

E
(
ξG ξ	G

)
=

(
1 +

√
2ωG

1 − ωG

)2

BG .

This yields for the quadratic risk E‖DG (υ̃G − υ∗)‖2

Ex ‖DG (υ̃G − υ∗)‖2 ≤ tr Varx
{
DG (υ̃G − υ∗)

}
+
∥∥ExDG(υ̃G − υ∗)

∥∥2

and (2.16) follows.

3 Laplace approximation of the posterior
This section studies the properties of the posterior υG

∣∣Y . Our main result states
Gaussian approximation of the posterior by N (υ̃G, D̃

−2
G ) . More specifically, our aim

is, for any bounded measurable function g , to compare the conditional moments of
g(υG − υ̃G) and of g(D̃−1

G γ) , where γ is standard normal conditionally on Y . The
use of ∇LG(υ̃G) = 0 yields

E
{
g(υG − υ̃G)

∣∣Y }
=

∫
g(u− υ̃G) eLG(u) du∫

eLG(u) du
=

∫
g(u) eLG(υ̃G+u)−LG(υ̃G)du∫

eLG(υ̃G+u)−LG(υ̃G)du

=
∫
g(u) exp

{
LG(υ̃G + u) − LG(υ̃G) −

〈
∇LG(υ̃G),u

〉}
du∫

exp
{
LG(υ̃G + u) − LG(υ̃G) −

〈
∇LG(υ̃G),u

〉}
du

. (3.1)

Now consider the Bregman divergence of the expected log-likelihood fG(υ) = ELG(υ)

fG(υ;u) = fG(υ + u) − fG(υ) −
〈
∇fG(υ),u

〉
, u ∈ Rp .

As the stochastic term of L(υ) and thus, of LG(υ) is linear in υ , it holds for any υ,u

LG(υ + u) − LG(υ) −
〈
∇LG(υ),u

〉
= fG(υ + u) − fG(u) −

〈
∇fG(υ),u

〉
= fG(υ;u).

Given υ̃G = υ , we derive from (3.1)

E
{
g(υG − υ̃G)

∣∣Y }
= E

{
g(υG − υ̃G)

∣∣ υ̃G = υ
}

=
∫
g(u) efG(υ;u) du∫

efG(υ;u) du
. (3.2)

This basic identity will be systematically used below. Laplace’s approximation means
nothing but the use of the second order Taylor approximation of the function fG(·) at
υ . Namely, fG(υ;u) ≈ −‖DG(υ)u‖2/2 and

∫
g(u) efG(υ;u) du∫

efG(υ;u) du
≈

∫
g(u) e−‖DG(υ)u‖2/2 du∫

e−‖DG(υ)u‖2/2 du
.
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The analysis includes two major steps: posterior concentration and a Gaussian approx-
imation of the posterior distribution.

3.1 Posterior concentration

We start with the important technical result describing the concentration sets of the
posterior. In all our result, the value x is fixed to ensure that e−x is negligible.

Proposition 2.1 enables us to restrict the study to the case with υ̃G ∈ AG . To de-
scribe the concentration properties of the posterior we need a slightly stronger concavity
condition on EL(υ) , concavity of ELG(υ) is not sufficient.

(C) The function EL(υ) is concave.
This condition can be relaxed to weak concavity.

(C◦) There exists G2
◦ ≤ G2 such that for any υ ∈ AG , the function 2EL(υ + u) −

‖G◦u‖2 is concave in u .

(C) is a special case of (C◦) with G◦ = 0 . In what follow we assume (C) . However,
all the results apply under (C◦) after replacing D2 with D2

◦ = D2 + G2
◦ . Define

p(υ) def= tr
{
D2(υ)D−2

G (υ)
}
, r(υ) def= 2

√
p(υ) +

√
2x ; (3.3)

cf. (2.2) for pG and rG . This ensures with γ standard normal

P
(
‖D(υ)D−1

G (υ)γ‖ > r(υ)
)
≤ e−x,

see (F.11) of Corollary F.6 of the Supplement (S2023). With some fixed ν ≤ 1 , e.g.
ν = 2/3 , define for any υ ∈ AG

U(υ) =
{
u : ‖D(υ)u‖ ≤ ν−1r(υ)

}
. (3.4)

With f(υ) = EL(υ) and δ3(υ,u) from (2.4), local smoothness of f(·) at υ will be
measured by the value ω(υ) :

ω(υ) def= sup
u∈U(υ)

1
‖Du‖2/2

∣∣δ3(υ,u)
∣∣; (3.5)

cf. (2.5). Under (S3) , it holds ω(υ) ≤ ν−1c3 r(υ)n−1/2/3 ; see Lemma A.2 of the
Supplement (S2023).

Proposition 3.1. Suppose (ζ) , (∇ζ) , and (C) . Let also p(υ) and r(υ) be defined
by (3.3) and U(υ) by (3.4). If ω(υ) from (3.5) satisfies

ω(υ) ≤ 1/3, υ ∈ AG , (3.6)



V. Spokoiny 13

then on Ω(x) , it holds with D̃ = D(υ̃G) and r̃ = r(υ̃G)

P
(
υG − υ̃G �∈ Ũ

∣∣∣Y )
= P

(
‖D̃(υG − υ̃G)‖ > r̃

∣∣∣Y )
≤ e−x. (3.7)

Proof. Let us fix υ̃G = υ and apply (3.2) with g(u) = 𝟙
(
‖D(υ)u‖ �∈ U(υ)

)
. Then it

suffices to bound uniformly in υ ∈ AG the ratio

ρ(υ) def=
∫
𝟙
(
D(υ)u �∈ U(υ)

)
efG(υ;u)du∫

efG(υ;u)du
.

Now (E.9) of Theorem E.1 of the Supplement (S2023) yields the result.

3.2 Posterior contraction

Now we bring together all the previous results to bound the posterior deviations υG −
υ∗ . The difference υG − υ∗ can be decomposed as

υG − υ∗ =
(
υG − υ̃G

)
+
(
υ̃G − υ∗). (3.8)

Result (2.14) of Theorem 2.6 provides a deviation bound for ‖υ̃G − υ∗‖ while Propo-
sition 3.1 claims concentration of the posterior on the set

{
‖D̃(υG − υ̃G)‖ ≤ r̃

}
. We

conclude by the following result.

Proposition 3.2. Assume the conditions of Theorem 2.6 and Proposition 3.1 and let
‖D−2(υ)‖ ≤ n−1 for υ ∈ AG . It holds on Ω(x)

P
(
‖υG − υ∗‖ ≥ ‖υ̃G − υ∗‖ + ν−1r̃ /

√
n
∣∣Y )

≤ 2e−x, (3.9)

and ‖υ̃G − υ∗‖ satisfies (2.14), while r̃ ≤ (1 − ω+
G)−1/2 r(υ∗

G) .

Proof. Bound (3.9) follows from decomposition (3.8) and Proposition 3.1. Further, the
use of (2.9) of Proposition 2.3 yields r̃ ≤ (1 − ω+

G)−1/2 r(υ∗
G) .

The use of (2.14) of Theorem 2.6 implies that most of posterior mass is concentrated
in the root-n vicinity of υ∗ :

P
(
‖υG − υ∗‖ ≥ 3‖D−2

G G2υ∗‖ + 3√
n

(
rG + r̃

) ∣∣Y )
≤ 2e−x.

A prior ensuring the bias-variance trade-off leads to the optimal contraction rate which
corresponds to the optimal penalty choice in penalized maximum likelihood estimation.
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3.3 Gaussian approximation of the posterior
This section presents our main results about the accuracy of Gaussian approximation
of the posterior υG

∣∣Y in the total variation distance. The use of self-concordance
type conditions from Section A helps to obtain very accurate and precise finite sample
guarantees, which gradually improve the bounds from Spokoiny and Panov (2021).

Let B(Rp) be the σ -field of all Borel sets in Rp , while Bs(Rp) stands for all
centrally symmetric sets from B(Rp) .
Theorem 3.3. Assume (ζ) , (∇ζ) , and (C) . Furthermore, let

ω(υ) p(υ) ≤ 2/3, υ ∈ AG ;

cf. (3.6). Then with

♦2(υ) = 0.75ω(υ) p(υ)
1 − ω(υ)

and ♦̃ = ♦2(υ̃G) , it holds on Ω(x) with

sup
A∈B(Rp)

∣∣∣P(
υG − υ̃G ∈ A

∣∣Y )
−P′(D̃−1

G γ ∈ A
)∣∣∣ ≤ 2(♦̃ + e−x)

1 − ♦̃ − e−x
≤ 4(♦̃ + e−x). (3.10)

Here P′ means a standard Gaussian distribution of γ given Y .

Now we present more advanced bounds on the error of Gaussian approximation un-
der conditions (S3) and (S4) (resp. (T3) and (T4) ) from Section A of the Supplement
(S2023)for Υ ◦ = AG .
Theorem 3.4. Assume (ζ) , (∇ζ) , (C) , (T3) , and let τ3 ν

−1r(υ) ≤ 3/4 for r(υ)
from (3.3) and all υ ∈ AG . Then the concentration bound (3.7) holds. Moreover, let

τ3 ν
−1r(υ) p(υ) ≤ 2, υ ∈ AG . (3.11)

With ω(υ) def= τ3 r(υ)/3 ≤ 1/4 , define

♦3(υ) def= τ3
4{1 − ω(υ)}3/2 {p(υ) + 1}3/2 .

Then the result (3.10) applies on Ω(x) with ♦̃ = ♦3(υ̃G) . Moreover, under (T4)

sup
A∈Bs(Rp)

∣∣∣P(
υG − υ̃G ∈ A

∣∣Y )
−P′(D̃−1

G γ ∈ A
)∣∣∣ ≤ 2(♦̃4 + e−x)

1 − ♦̃4 − e−x
≤ 4(♦̃4 + e−x)

with ♦̃4 = ♦4(υ̃G) and

♦4(υ) def= 1
16{1 − ω(υ)}2

[
τ2
3
{
p(υ) + 2

}3 + 2τ4
{
p(υ) + 1

}2
]
.
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The results continue to apply with (S3) (resp. (S4) ) in place of (T3) (resp. (T4) ) and
c3 n

−1/2 (resp. c4 n
−1 ) in place of τ3 (resp. τ4 ).

Proof of Theorem 3.3 (resp. Theorem 3.4). Similarly to the proof of Proposition 3.1,
we restrict ourselves to the event υ̃G ∈ AG . Then we fix any possible value υ ∈ AG

of υ̃G and use (3.2) to represent the posterior probability of a set A in the form

P
(
υG − υ̃G ∈ A

∣∣Y )
=

∫
A

efG(υ;u) du∫
efG(υ;u) du

.

Now the result follows by Theorem E.1 (resp. Theorem E.2).

Under self-concordance conditions (S3) and (S4) , constraint (3.11) reads as

sup
υ∈AG

c3 ν
−1r(υ) p(υ)
n1/2 ≤ 2.

As ω(υ) ≤ 1/4 , Theorem 3.4 yields on Ω(x) with p̃ = p(υ̃G)

sup
A∈B(Rp)

∣∣∣P(
υG − υ̃G ∈ A

∣∣Y )
−P′(D̃−1

G γ ∈ A
)∣∣∣ ≤ 2 c3

√
(p̃ + 1)3

n
+ 4e−x ,

sup
A∈Bs(Rp)

∣∣∣P(
υG − υ̃G ∈ A

∣∣Y )
−P′(D̃−1

G γ ∈ A
)∣∣∣ ≤ c2

3 (p̃ + 2)3 + 2c4(p̃ + 1)2

2n + 4e−x .

3.4 Critical dimension in Bayesian inference

Posterior concentration in Proposition 3.1 only requires ω(υ) � 1 for all υ ∈ AG .
Under (S3) , one can bound ω(υ) �

√
p(υ)/n yielding the condition p(υ) � n on

the critical dimension which is essentially the same as the condition pG � n for the
pMLE. This is an important finding and an essential improvement of Spokoiny and
Panov (2021). The main result of Theorem 3.3 requires ω(υ) p(υ) � 1 which is much
stronger because of the multiplicative factor p(υ) . Under (S3) , the remainder ♦3 is
of order

√
p3(υ)/n while under (S4) , ♦4 � p3(υ)/n , still requiring p3(υ) � n . In

some cases, e.g. for additive structure of the log-likelihood, it can be relaxed. However, it
seems that the p3(υ) � n condition is inherent in the problem and cannot be relaxed in
general situation. We guess that in the region n1/3 � p(υ) � n , another non-Gaussian
type of limiting behavior of the posterior is well possible.

3.5 Laplace approximation with inexact parameters

Our main result of Theorem 3.3 states an approximation of the posterior distribu-
tion by the Gaussian measure with parameters υ̃G and D̃−2

G . However, the vector
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υ̃G = argmaxυ LG(υ) is typically hard to compute, because it solves a high dimen-
sional optimization problem. If υ̃G and thus D̃G = DG(υ̃G) are not available, one
would be interested to use something more simple in place of υ̃G . Suppose to be given
a vector υ̂G close to υ̃G and a matrix D̆2

G close to D̃2
G . A typical example to keep

in mind corresponds to υ̂ being the numerically evaluated posterior mean and H2

being the posterior covariance, also evaluated numerically. Below we aim at presenting
some sufficient conditions that ensure a reasonable approximation of the posterior by
N (υ̂, H−2) using general results on Gaussian comparison; see Section G of the Supple-
ment (S2023). For this result we need all the conditions of Theorem 3.3 corresponding
to the special case with υ̂ = υ̃G and H2 = D̃2

G . We write D̂ = D(υ̂) . Also we restrict
ourselves to the class Bel(Rp) of elliptic sets A in Rp of the form

A =
{
υ ∈ Rp : ‖Q(υ − υ̂)‖ ≤ r

}
for some linear mapping Q : Rp → Rq and r > 0 . Given two symmetric q -matrices
Σ1, Σ2 and a vector a ∈ Rq , define

d(Σ1, Σ2,a) def=
(

1
‖Σ1‖Fr

+ 1
‖Σ2‖Fr

)(
‖Σ1 −Σ2‖1 + ‖a‖2

)
; (3.12)

see Section G. Obviously, if Σ1 ≥ Σ2 , then ‖Σ1 −Σ2‖1 = tr(Σ1 −Σ2) .

Theorem 3.5. Suppose the conditions of Theorem 3.3 to be fulfilled. Let also υ̂ ∈ AG .
Given Q : Rp → Rq , define Σ1 = QD̃−2

G Q	 , Σ2 = QH−2Q	 , a = Q(υ̂ − υ̃G) and
suppose ‖Σj‖2 ≤ 3‖Σj‖2

Fr for j = 1, 2 . Then

sup
r>0

∣∣P(
‖Q(υG − υ̂)‖ ≤ r

∣∣Y )
−P′(‖QH−1γ‖ ≤ r

)∣∣ ≤ 2(♦ + e−x)
1 −♦− e−x + Cd(Σ1, Σ2,a) ,

where ♦ is from Theorem 3.3, d(·) from (3.12), and C is an absolute constant.

Proof. Use Theorem E.9 with f(υ) = ELG(υ) , x∗ = υ̃G , x = υ̂ , and D = D̃G .

The result is particularly transparent if H = D̃G or, if these two matrices are
sufficiently close. Theorem E.10 yields the following bound.

Corollary 3.6. Under the conditions of Theorem 3.5, it holds on Ω(x)

sup
r>0

∣∣∣P(
‖Q(υG−υ̂)‖ ≤ r

∣∣Y )
−P′(‖QD̃−1

G γ‖≤r
)∣∣∣ ≤ 2(♦ + e−x)

1 −♦− e−x + C‖Q(υ̂ − υ̃G)‖2

‖QD̃−2
G Q	‖Fr

.

3.6 Laplace approximation and Bernstein–von Mises Theorem
The prominent Bernstein–von Mises (BvM) Theorem claims asymptotic normality of
the posterior distribution with the mean corresponding to the standard MLE υ̃ =
argmaxυ L(υ) and the variance D̃−2 = D−2(υ̃) . In particular, the prior does not
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show up in this result, its impact on the posterior distribution becomes negligible as
the sample size n grows. In our setup, the situation is different. The main results of
Theorems 3.3 through 3.4 state another Gaussian approximation of the posterior with
the mean υ̃G and the variance D̃−2

G both depending on the prior covariance G−2 .
This dependence is important because the accuracy of approximation is given in terms
of p̃ = p(υ̃G) also depending on G−2 . It is of interest to describe a kind of phase
transition from the classical BvM approximation by N (υ̃, D̃−2) to the prior-dependent
Laplace approximation by N (υ̃G, D̃

−2
G ) . Intuitively it is clear that the prior impact can

be measured by the relation between the model-based Fisher information matrix D2

and the prior precision matrix G2 . The main result below confirms this intuitive guess,
however, the result is not trivial and requires a careful treatment based on Theorem 3.3
and the Gaussian comparison technique mentioned in Section 3.5. Implicitly we assume
that the conditions ensuring concentration of the MLE υ̃ corresponding to G2 = 0
to be fulfilled. In particular, we need that D2(υ) is sufficiently large for all υ in the
vicinity of υ∗ . The radius of this vicinity is given by the value rx =

√
tr(D−2V 2)+

√
2x ;

see (2.2) of (∇ζ) . Under correct model specification, it holds V 2 ≤ CD2 and r2
x ≤ Cp .

Theorem 3.7. Under the conditions of Theorem 3.3, it holds on Ω(x)

sup
r>0

∣∣∣P(
‖Q(υG − υ̃)‖ ≤ r

∣∣Y )
−P′(‖QD̃−1γ‖ ≤ r

)∣∣∣
≤ 2(♦ + e−x)

1 −♦− e−x + C‖Q(υ̃ − υ̃G)‖2

‖QD̃−2Q	‖Fr
+ C‖D̃−1

G G2D̃−1
G ‖ tr(QD̃−2Q	)

‖QD̃−2Q	‖Fr
.

Moreover, with Q = D̃ , rx =
√

tr(D−2V 2) +
√

2x ≤ C
√
p ,

sup
r>0

∣∣∣P(
‖D̃(υG − υ̃)‖ ≤ r

∣∣Y )
−P′(‖γ‖ ≤ r

)∣∣∣
� ♦ + e−x + ‖Gυ∗‖2/

√
p + ‖D−1

G G2D−1
G ‖2√p .

Proof. Theorem 3.5 yields in view of D̃−2 ≥ D̃−2
G

sup
r>0

∣∣∣P(
‖Q(υG − υ̃)‖ ≤ r

∣∣Y )
−P′(‖QD̃−1γ‖ ≤ r

)∣∣∣
≤ 2(♦ + e−x)

1 −♦− e−x + C‖Q(υ̃ − υ̃G)‖2

‖QD̃−2Q	‖Fr
+ C tr{Q(D̃−2 − D̃−2

G )Q	}
‖QD̃−2Q	‖Fr

.

The last term here can easily be bounded:

tr{Q(D̃−2 − D̃−2
G )Q	} = tr{QD̃−1(IIp − D̃D̃−2

G D̃)D̃−1Q	}

≤ ‖IIp − D̃D̃−2
G D̃‖ tr(QD̃−2Q	) = ‖D̃−1

G G2D̃−1
G ‖ tr(QD̃−2Q	).



18 Posterior Mean in Bayesian Inference

Here we used that

‖D̃−1
G G2D̃−1

G ‖ = ‖D̃−1
G (D̃2

G − D̃2)D̃−1
G ‖ = ‖IIp − D̃−1

G D̃2D̃−1
G ‖ = ‖IIp − D̃D̃−2

G D̃‖.

For Q = D̃ , we use that ‖QD̃−2Q	‖Fr = √
p , tr(QD̃−2Q	) = p , and apply the Fisher

expansion (2.8) of Theorem 2.2 to υ̃ and υ̃G . On Ω(x) , it holds ‖D−1∇‖ ≤ rx and
with ω from (2.5)

‖D(υ̃ − υ̃G)‖ ≤ ‖D(υ∗ − υ∗
G)‖ + ‖(IIp −DD−2

G D)D−1∇‖

+ ‖D(υ̃ − υ∗) −D−1∇‖ + ‖D(υ̃G − υ∗
G −D−2

G ∇)‖

≤ ‖D(υ∗ − υ∗
G)‖ + C‖D−1

G G2D−1
G ‖ rx + Cω rx .

By (2.11) of Proposition 2.4

‖D(υ∗ − υ∗
G)‖2 ≤ ‖DD−2

G D	‖ ‖Gυ∗‖2 ≤ ‖Gυ∗‖2.

As r2
x ≤ Cp , ω

√
p ≤ C♦3 , D̃2 ≤ 2D2 , and D̃−2

G ≤ 2D−2
G , the assertion follows.

Remark 3.1. The use of BvM requires rather strong bounds on the penalizing ma-
trix G2 and the related bias ‖Gυ∗‖ . We need the condition of “light penalization”
‖D−1

G G2D−1
G ‖ � p−1/2 which is much stronger than G2 � D2 . Similarly, the “light

bias” condition ‖Gυ∗‖2 � p1/2 is more restrictive than the “small bias” or “under-
smoothing” condition ‖Gυ∗‖2 � p .

3.7 Posterior mean

This section addresses an important question of using the posterior mean in place of the
MAP υ̃G for Bayesian inference. Our main result justifies the use of the posterior mean
in place of the MAP under the same critical dimension condition p(υ) � n1/3 which is
required for the Gaussian approximation result. First we quantify the deviation of the
posterior mean υG from υ̃G . Then we apply Corollary 3.6 to measure the impact of
using υG in place of υ̃G . By definition

υG − υ̃G
def= E

(
υG

∣∣Y )
− υ̃G =

∫
(υ − υ̃G) eLG(υ) dυ∫

eLG(υ) dυ
.

More precisely, we consider a linear mapping Q : Rp → Rq and evaluate the value∥∥Q(υG − υ̃G)
∥∥ . The choice of Q is important. In particular, we cannot take Q = DG

because this choice makes the bound dependent and linearly growing with p .

Theorem 3.8. Assume the conditions of Theorem 3.4 and let Q	Q ≤ D2(υ) for all
υ ∈ AG . Then it holds with some absolute constant C

‖Q(υG − υ̃G)‖ ≤ 2.4 c3 ‖QD̃−2Q	‖1/2 (p̃ + 1)3/2 n−1/2 + Ce−x.
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Proof. One can apply the same trick as before: by ∇LG(υ̃G) = 0

Q(υG − υ̃G) =
∫
Qu exp

{
LG(υ̃G + u) − LG(υ̃G) − 〈∇LG(υ̃G),u〉

}
du∫

exp
{
LG(υ̃G + u) − LG(υ̃G) − 〈∇LG(υ̃G),u〉

}
du

.

For any particular value υ̃G = υ , stochastic linearity allows to replace the Bregman
divergence of the log-likelihood LG(υ) by the similar one for the expected log-likelihood
fG(υ) = ELG(υ) . This yields

‖Q(υG − υ̃G)‖ ≤
∥∥∥∥
∫
Qu efG(υ;u) du∫

efG(υ;u) du

∥∥∥∥ .
Now we may apply (E.16) of Theorem E.6 of the Supplement (S2023) with D = DG(υ) .

Corollary 3.9. Assume the conditions of Theorem 3.4. Then

‖D̃(υG − υ̃G)‖ ≤ 2.4 c3 (p̃ + 1)3/2n−1/2 + Ce−x .

Now we put together the result of Theorem 3.8 and the accuracy bound from The-
orem 3.5. To make the result more transparent, assume Q = D̃ and H = D̃G .

Theorem 3.10. Assume the conditions of Theorem 3.4. Then on Ω(x)

sup
r>0

∣∣∣P(
‖D̃(υG − υG)‖ ≤ r

∣∣Y )
−P′(‖D̃D̃−1

G γ‖ ≤ r
)∣∣∣ ≤ C

( (p̃ + 1)3/2

n1/2 + e−x
)
.

We conclude that the use of posterior mean in place of posterior mode is possible
under the same condition p̃3 � n . This is a non-trivial result based on recent progress
in Gaussian probability from Götze et al. (2019).

4 Log-density estimation
Suppose we are given a random sample X1, . . . , Xn in Rd . The density model assumes
that all these random variables are independent identically distributed from some mea-
sure P with a density f(x) with respect to a σ -finite measure μ0 in Rd . This density
function is the target of estimation. By definition, the function f is non-negative, mea-
surable, and integrates to one:

∫
f(x) dμ0(x) = 1 . Here and below, the integral

∫
without limits means the integral over the whole space Rd . If f(·) has a smaller sup-
port X , one can restrict integration to this set. Below we parametrize the model by a
linear decomposition of the log-density function. Let

{
ψj(x), j = 1, . . . , p

}
with p ≤ ∞

be a collection of functions in Rd (a dictionary). For each υ = (υj) ∈ Rp , define

�(x,υ) def= υ1ψ1(x) + . . . + υpψp(x) − φ(υ) =
〈
Ψ (x),υ

〉
− φ(υ),
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where Ψ (x) is a vector with components ψj(x) and φ(υ) is given by

φ(υ) def= log
∫

e〈Ψ(x),υ〉 dμ0(x). (4.1)

It is worth stressing that the data point x only enters in the linear term
〈
Ψ(x),υ

〉
of the log-likelihood �(x,υ) . The function φ(υ) is entirely model-driven. Below we
restrict υ to a subset Υ in Rp such that φ(υ) is well defined and the integral of
e〈Ψ(x),υ〉 is finite. Linear log-density modeling assumes

log f(x) = �(x,υ∗) =
〈
Ψ (x),υ∗〉− φ(υ∗) (4.2)

for some υ∗ ∈ Υ ⊆ Rp . A nice feature of such representation is that the function
log f(x) in the contrary to the density itself does not need to be non-negative. One more
important benefit of using the log-density is that the stochastic part of the corresponding
log-likelihood is linear w.r.t. the parameter υ . With S =

∑n
i=1 Ψ (Xi) , for a given

penalty operator G2 , the penalized log-likelihood LG(υ) reads as

LG(υ) =
n∑

i=1

〈
Ψ(Xi),υ

〉
− nφ(υ) − 1

2‖Gυ‖2 = 〈S,υ〉 − nφ(υ) − 1
2‖Gυ‖2.

The penalized MLE υ̃G and its population counterpart υ∗
G are defined as

υ̃G = argmax
υ∈Υ

LG(υ), υ∗
G = argmax

υ∈Υ
ELG(υ).

4.1 Conditions
For applying the general results of Section 2 and Section 3, it suffices to check the general
conditions of Section 2 for the log-density model. First note that the generalized linear
structure of the model automatically yields conditions (C) and (ζ) . Indeed, convexity
of φ(·) implies that EL(υ) = 〈ES,υ〉 − nφ(υ) is concave. Further, for the stochastic
component ζ(υ) = L(υ) −EL(υ) , it holds

∇ζ(υ) = ∇ζ = S −ES =
n∑

i=1

[
Ψ (Xi) −E Ψ(Xi)

]
,

and (ζ) follows. Further, the representation EL(υ) = 〈ES,υ〉 − nφ(υ) implies

F(υ) = −∇2EL(υ) = −∇2L(υ) = n∇2φ(υ).

To simplify our presentation, we assume that X1, . . . , Xn are indeed i.i.d. and the
density f(x) can be represented in the form (4.2) for some parameter vector υ∗ . This
can be easily extended to non i.i.d. case at cost of more complicated notations. Then

υ∗ = argmax
υ∈Υ

EL(υ) = argmax
υ∈Υ

{
〈ES,υ〉 − nφ(υ)

}
= argmax

υ∈Υ

{
〈Ψ,υ〉 − φ(υ)

}
, (4.3)
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where Ψ = E Ψ (X1) and ES = nΨ . This yields the identity

∇φ(υ∗) = Ψ.

Moreover, by (4.1), ∇2φ(υ∗) = Var
{
Ψ(X1)

}
and

V 2 = Var(∇ζ) = n∇2φ(υ∗) = F(υ∗). (4.4)

Here we present our conditions. For any υ ∈ Υ and � > 0 , define 𝕞(υ) by 𝕞2(υ) =
∇2φ(υ) and consider the corresponding balls in Rp

B�(υ) def=
{
u ∈ Rp : ‖𝕞(υ)u‖ ≤ �

}
=

{
u ∈ Rp : 〈∇2φ(υ),u⊗2〉 ≤ �2}.

(f) X1, . . . , Xn are i.i.d. from a density f satisfying log f(x) = Ψ (x)	υ∗ − φ(υ∗) .

(Υ ) The set Υ is open and convex, the value φ(υ) from (4.1) is finite for all υ ∈ Υ ,
υ∗ from (4.3) is an internal point in Υ such that B2�(υ∗) ⊂ Υ for a fixed � > 0 .

(φ) For the Bregman divergence φ(υ;u) def= φ(υ + u) − φ(υ) − 〈∇φ(υ),u〉 , it holds

sup
υ∈B�(υ∗)

sup
u∈B2�(υ)

expφ(υ;u) ≤ C� . (4.5)

Introduce a measure Pυ by the relation:

dPυ

dμ0
(x) = exp

{〈
Ψ (x),υ

〉
− φ(υ)

}
. (4.6)

Identity (4.1) ensures that Pυ is a probabilistic measure. Moreover, under (4.2), the
data generating measure P coincides with P⊗n

υ∗ .

(Ψ4) There are CΨ,3 ≥ 0 and CΨ,4 ≥ 3 such that for all υ ∈ B�(υ∗) and γ ∈ Rp

∣∣Eυ

〈
Ψ(X1) −EυΨ (X1),γ

〉3∣∣ ≤ CΨ,3 E
3/2
υ

〈
Ψ (X1) − EυΨ (X1),γ

〉2
,

Eυ

〈
Ψ (X1) − EυΨ (X1),γ

〉4 ≤ CΨ,4 E
2
υ

〈
Ψ (X1) − EυΨ (X1),γ

〉2
.

In fact, conditions (φ) and (Ψ4) follow from (Υ ) and can be considered as a
kind of definition of important quantities C� , CΨ,3 , and CΨ,4 which will be used for
describing the smoothness properties of φ(υ) . The matrix ∇2φ(υ) is supposed well
conditioned for υ ∈ B�(υ∗) .

(∇2φ) For the information matrix ∇2φ(υ) , it holds with some CF ≥ 1

C−1
F IIp ≤ ∇2φ(υ) ≤ CFIIp , υ ∈ B�(υ∗) . (4.7)

Later we show that it suffices to check (4.7) at υ∗ , then it will be fulfilled in B�(υ∗)
with a slightly larger constant CF .
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Check of conditions (S3) and (S4)

Let Pυ be defined by (4.6). It is straightforward to check that EυΨ (X1) = ∇φ(υ) and
Varυ(Ψ (X1)) = ∇2φ(υ) . Further, if u ∈ B�(υ) and υ + u ∈ Υ , then

φ(υ + u) = logE0 exp{〈Ψ (X1),υ + u〉} = logEυ exp
{〈

Ψ (X1),u
〉

+ φ(υ)
}
.

This yields in view of EυΨ (X1) = ∇φ(υ) that ε = Ψ (X1) −EυΨ(X1) fulfills

logEυ exp(〈ε,u〉) = φ(υ + u) − φ(υ) − 〈EυΨ(X1),u〉

= φ(υ + u) − φ(υ) − 〈∇φ(υ),u〉. (4.8)

Lemma 4.1. The function φ(υ) satisfies for any υ ∈ B�(υ∗) and γ ∈ Rp

|〈∇3φ(υ),γ⊗3〉| ≤ CΨ,3 〈∇2φ(υ),γ⊗2〉3/2 , (4.9)

|〈∇4φ(υ),γ⊗4〉| ≤ (CΨ,4 − 3) 〈∇2φ(υ),γ⊗2〉2. (4.10)

Moreover, for any γ1,γ ∈ Rp

|〈∇3φ(υ),γ1 ⊗ γ⊗2〉| ≤
√
CΨ,4 〈∇2φ(υ),γ⊗2

1 〉 〈∇2φ(υ),γ⊗2〉.

Proof. Denote ε = X1 − EυX1 . By (4.8) with u = tγ for t sufficiently small

χ(t) def= logEυ exp(t〈ε,γ〉) = φ(υ + tγ) − φ(υ) − 〈∇φ(υ), tγ〉,

and by (Ψ4) with CΨ,4 ≥ 3

∣∣χ(3)(0)
∣∣ =

∣∣Eυ〈ε,γ〉3
∣∣ ≤ CΨ,3 E

3/2
υ 〈ε,γ〉2 ,∣∣χ(4)(0)

∣∣ =
∣∣Eυ〈ε,γ〉4 − 3E2

υ〈ε,γ〉2
∣∣ ≤ (CΨ,4 − 3)E2

υ〈ε,γ〉2.

If γ1 �= γ then we may proceed in a similar way with the bivariate function χ(t1, t) =
logEυ exp

{
t1〈ε,γ1〉 + t〈ε,γ〉

}
. Its mixed derivative at zero satisfies

∣∣∣∣ ∂3

∂t1∂t2
χ(0, 0)

∣∣∣∣ =
∣∣Eυ 〈ε,γ1〉 〈ε,γ〉2

∣∣ ≤ {
Eυ〈ε,γ1〉2 Eυ〈ε,γ〉4

}1/2

and the result follows as well.

Lemma 4.2. If υ ∈ B�(υ∗) then with cφ = √
CΨ,4 C�

sup
u∈B�(υ)

sup
γ∈Rp

〈∇2φ(υ + u),γ⊗2〉
〈∇2φ(υ),γ⊗2〉 ≤ cφ . (4.11)
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Proof. Let 〈∇2φ(υ),u⊗2〉 ≤ �2 . By (4.8) with ε = X1 −EυX1

∇2φ(υ + u) = ∇2 logEυe〈ε,u〉 = Eυ{εε	e〈ε,u〉}
(Eυ e〈ε,u〉)2

− Eυ{ε e〈ε,u〉}Eυ{ε e〈ε,u〉}	
(Eυ e〈ε,u〉)2

and by (4.10) and (4.5) in view of Eυ e〈ε,u〉 ≥ 1

〈
∇2φ(υ + u),γ⊗2〉 ≤ Eυ

{
〈ε,γ〉2e〈ε,u〉}

≤ E1/2
υ 〈ε,γ〉4 E1/2

υ e2〈ε,u〉 ≤
√
CΨ,4 C�

〈
∇2φ(υ),γ⊗2〉

and the assertion follows.

Lemma 4.3. Let υ ∈ B�(υ∗) and r ≤ �
√
n . Then f(υ) = Eυ∗L(υ) satisfies

(S3) and (S4)with h(υ) = 〈∇φ(υ∗),υ〉 − φ(υ) , 𝕞2(υ) = ∇2φ(υ) , and constants
c3 and c4 depending on C� , CΨ,3 , and CΨ,4 only.

Proof. Let υ ∈ B�(υ∗) . For any u with ‖𝕞(υ)u‖ ≤ r/
√
n ≤ � , by (4.9) and (4.11)

|〈∇3φ(υ + tu),u⊗3〉|
‖𝕞(υ)u‖3 ≤ CΨ,3 ‖𝕞(υ + tu)u‖3

‖𝕞(υ)u‖3 ≤ CΨ,3 c3/2
φ ,

and (S3) follows with c3 = CΨ,3 c3/2
φ . The proof of (S4) is similar.

Check of (∇ζ)

Now we check the deviation bound for ∇ζ = S − ES under (f) and (Υ ) . I.i.d.
structure of S =

∑
i Xi and (4.4) yield Var(S) = V 2 = n∇2φ(υ∗) . Further, for any

u ∈ B�(υ∗) , again by the i.i.d. assumption and by (4.8)

n−1 logEυ∗ exp
{
〈∇ζ,u〉

}
= logEυ∗e〈ε,u〉 = φ(υ∗ + u) − φ(υ∗) − 〈∇φ(υ∗),u〉.

Fix r ≤ �n1/2 and consider all u with n〈∇2φ(υ∗),u⊗2〉 ≤ r2 . Then by (S3) and
(A.3) of Lemma A.2 of the Supplement (S2023)

φ(υ∗ + u) − φ(υ∗) − 〈∇φ(υ∗),u〉 ≤ 1 + c3 rn−1/2/3
2 〈∇2φ(υ∗),u⊗2〉 ≤ 〈∇2φ(υ∗),u⊗2〉

provided that c3 r ≤ 3n1/2 . This implies (F.37) with g = �
√
n and thus, the deviation

bound (F.43) of Theorem F.15 implies (∇ζ) for �
√
n sufficiently large.



24 Posterior Mean in Bayesian Inference

4.2 Smoothness constraints, bias-variance trade-off
To handle the bias term, we impose some smoothness conditions on the underlying
density parameter υ∗ ; see Section C of the Supplement (S2023). We also limit ourselves
to the penalty matrices G2 which ensure a kind of bias-variance trade-off.

(G0υ
∗) ‖G0υ

∗‖2 ≤ 1 for some fixed G2
0 .

Later we follow the suggestion of Section C and apply the penalizing matrix G2 =
wG2

0 . Set D2 = n∇2φ(υ∗) , D2
G = D2 + G2 . The particular value w = w∗ can be

selected by the bias-variance relation (C.3). First we evaluate the bias term. This is
important to ensure that the point υ∗

G is still in the local vicinity B�(υ∗) .

Proposition 4.4. Assume (f) , (φ) , (Ψ4) , (Υ ) , (G0υ
∗) . Let G2 = wG2

0 , D2
G =

n∇2φ(υ∗) + G2 , and ν−1w1/2 n−1/2 ≤ � . Then υ∗
G ∈ B�(υ∗) and

‖DG(υ∗
G − υ∗)‖ ≤ ν−1w1/2. (4.12)

Proof. We intend to apply Proposition 2.4 with Q = D and r◦ = ν−1‖D−1
G G2υ∗‖ for

ν = 2/3 . It holds by (G0υ
∗) in view of G2 ≤ D2

G and G2 = wG2
0

r◦ = ν−1‖D−1
G G2υ∗‖ ≤ ν−1w1/2‖G0υ

∗‖ = ν−1w1/2 .

Further, ν−1w1/2 n−1/2 ≤ � ensures that the set {υ : ‖D(υ − υ∗)‖ ≤ r◦} belongs to
the ball B�(υ∗) . Now Lemma 4.3 yields (S3) for all υ ∈ B�(υ∗) . By Lemma A.3,
it holds ω∗

G ≤ c3r◦ ≤ c3 ν
−1 w1/2 n−1/2 ≤ 1/3 for n ≥ n0 . Now Proposition 2.4

yields (4.12) and υ∗
G ∈ B�(υ∗) . Also by Lemma A.3, the matrix D2

G = D2
G(υ∗

G)
satisfies (1 − ω∗

G)D2
G ≤ D2

G ≤ (1 + ω∗
G)D2

G .

For G2 = wG2
0 , the effective dimension pG is given by (C.2):

pG = p(w) = tr(D2 D−2
G ) = tr

{
D2(D2 + wG2

0)−1}.
A particular value w∗ is defined by the bias-variance relation reads p(w) � w ; see
(C.3). Fix some x and consider

rG = r(w) =
√
p(w) +

√
2x.

Now expansion (2.13) of Theorem 2.6 applies provided that the concentration set
‖DG(υ−υ∗

G)‖ ≤ ν−1rG is contained in B�(υ∗
G) . Proposition 4.4 allows to use DG in

place of DG in this condition. In our results, C stands for a fixed constant depending
on the other constants in our conditions like s0 , CF , cφ , � , and CΨ,4 .

Theorem 4.5. Assume (f) , (φ) , (Ψ4) , (Υ ) , (G0υ
∗) , and let G2 = wG2

0 . If
ν−1w1/2 n−1/2 ≤ � with ν = 2/3 and r(w)n−1/2 ≤ � , then on Ω(x)

‖DG(υ̃G − υ∗)‖ ≤ 2ν−1r(w) + ν−1w1/2.
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If r(w∗) = C0w
1/2
∗ then it holds on Ω(x) for G2 = w∗G

2
0 and D2

w∗ = D2 + w∗G
2
0

‖Dw∗(υ̃w∗ − υ∗)‖ ≤ C C0 w
1/2
∗ .

Under the same conditions one can specify the results of Section 2 including the
Fisher–Wilks expansions of Theorem 2.2. Moreover, for a Gaussian prior N (0, G−2)
with G2 = wG2

0 , one can derive the results about concentration and contraction of
the posterior υG

∣∣X . Only Laplace’s approximation of the posterior in Theorem 3.4
requires a stronger condition on critical dimension: c3 ν

−1r(w) p(w) ≤ 2n1/2 .

4.3 Rate optimality under Sobolev smoothness
To state standard rate-optimal results and to compare our conclusions with the existing
results in the literature, we consider the univariate case d = 1 and introduce the
condition on Sobolev smoothness of the log-density log f(x) .

(s0, w0) υ∗ ∈ B(s0, w0) =
{
υ = (υj) :

∑
j υ

2
j j

2s0 ≤ w0
}

for s0 > 0 .

The assumption υ∗ ∈ B(s0, w0) is standard in log-density estimation; cf. Castillo and
Nickl (2014) or Spokoiny and Panov (2021) with s0 > 1 . Rousseau and Szabo (2017)
requires s0 > 1/2 while our results below are valid for s0 > 0 . The only exception is
the final Gaussian approximation result requiring s0 > 1 . We also assume that w0 � 1 .

Now we state the results under the smoothness condition (s0, w0) . The preci-
sion/penalization matrix G2 is taken of the (s, w) -form: G2 = diag(g2

1 , . . . , g
2
p) with

g2
j = j2s/w . One can take any degree s > 1/2 , s ≥ s0 , we recommend a large value like
s = 4 or s = 5 . Only the factor w should be fixed carefully to get the optimal accuracy
of estimation from the relation (wn)1/(2s) ≈ (w0n)1/(2s0+1) ; see (C.12) or (C.13). Under
(∇2φ) , the corresponding effective dimension pG and the Laplace effective dimension
p(υ) are determined by the index m for which g2

m ≈ n . Alternatively one can use a
m0 -truncation prior with m0 ≈ (w0n)1/(2s0+1) . Such a choice of the prior parameters is
frequently used for nonparametric rate optimal results about concentration of the pMLE
and posterior contraction; cf. Castillo and Nickl (2014), Castillo and Rousseau (2015),
Rousseau and Szabo (2017). Note that the mentioned results require at least s0 > 1/2 ,
while our concentration and contraction results apply under s0 > 0 . Theorem C.4 and
C.5 of the Supplement (S2023) yield the following results.

Theorem 4.6. Assume (f) , (Υ ) , (φ) , (Ψ4) , (∇2φ) and (s0, w0) . Fix s > 1/2 ,
s ≥ s0 and define g2

j = w−1j2s with w satisfying (wn)1/(2s) ≈ (w0n)1/(2s0+1) ; see
(C.12) or (C.13). Then on Ω(x) for n ≥ n0 ,

‖υ̃G − υ∗‖ ≤ Cn−s0/(2s0+1),

and the posterior measure υG

∣∣X satisfies

P
(
‖υG − υ̃G‖ > Cn−s0/(2s0+1)

∣∣∣X)
≤ e−x.
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Our main result about Gaussian approximation requires more smoothness of the
log-density log f(·) . Namely, we require (s0, w0) with s0 > 1 .

Theorem 4.7. Assume the conditions of Theorem 4.6 and (s0, w0) with s0 > 1 .
Define m0 = (w0n)1/(2s0+1) . For the m -truncation prior with m = m0 or for the
(s, w) -smooth prior with (wn)1/(2s) = (w0 n)1/(2s0+1) = m0 , on Ω(x) for n ≥ n0 ,

sup
A∈B(Rp)

∣∣∣P(
υG − υ̃G ∈ A

∣∣X)
−P′(D̃−1

G γ ∈ A
)∣∣∣ ≤ C n(1−s0)/(2s0+1) ,

sup
A∈Bs(Rp)

∣∣∣P(
υG − υ̃G ∈ A

∣∣X)
−P′(D̃−1

G γ ∈ A
)∣∣∣ ≤ C n(2−2s0)/(2s0+1) .

(4.13)

The error terms in (4.13) tend to zero as n → ∞ because s0 > 1 .

Supplementary Material
Supplement to “Laplace approximation and the use of posterior mean in Bayesian in-
ference” (DOI: 10.1214/23-BA1391SUPP; .pdf).
A. Local smoothness conditions. Introduces smoothness conditions used in the text and
their implications.
B. Examples of priors. Typical examples of priors such as truncation and smooth priors.
C. Smooth priors and rate over Sobolev classes. Classical rate results for smooth priors.
D. Non-Gaussian priors. Explains how the results extend to non-Gaussian priors.
E. Dimension free bounds for Laplace approximation. Presents further results and the
proofs of the results from Section 3 about Laplace approximation of the posterior.
F. Deviation bounds for quadratic forms. This section collects technical results about
Gaussian and non-Gaussian quadratic forms.
G. Gaussian comparison. This section presents an important result about Gaussian
comparison from Götze et al. (2019).
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