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Bayesian Semiparametric Hidden Markov
Tensor Models for Time Varying Random
Partitions with Local Variable Selection∗

Giorgio Paulon†, Peter Müller‡, and Abhra Sarkar§,¶

Abstract. We present a flexible Bayesian semiparametric mixed model for lon-
gitudinal data analysis in the presence of potentially high-dimensional categorical
covariates. Building on a novel hidden Markov tensor decomposition technique,
our proposed method allows the fixed effects components to vary between de-
pendent random partitions of the covariate space at different time points. The
mechanism not only allows different sets of covariates to be included in the model
at different time points but also allows the selected predictors’ influences to vary
flexibly over time. Smooth time-varying additive random effects are used to cap-
ture subject specific heterogeneity. We establish posterior convergence guarantees
for both function estimation and variable selection. We design a Markov chain
Monte Carlo algorithm for posterior computation. We evaluate the method’s em-
pirical performances through synthetic experiments and demonstrate its practical
utility through real world applications.

Keywords: B-splines, factorial hidden Markov models (fHMM), higher order
singular value decomposition (HOSVD), local variable selection, longitudinal
data, partition models.

1 Introduction
We propose a novel statistical framework for modeling longitudinally varying continu-
ous response trajectories in the presence of categorical covariates. The main innovations
include a parsimonious dynamic random partition model for the covariate space using
a two-layer construction that builds on a novel hidden Markov tensor decomposition
mechanism. This allows for time-varying variable selection while also parsimoniously
representing higher order interactions between the selected predictors. Adapting the
model further in a novel way to mix with B-spline bases then allows us to flexibly char-
acterize the longitudinal evolution of the associated parameter trajectories, including
their data-adaptive forking and merging over time.
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2 Bayesian Semiparametric Hidden Markov Tensor Partition Models

The settings analyzed here may be viewed as longitudinal adaptations of static
analysis of variance (ANOVA) designs and hence are very generic and almost ubiqui-
tously encountered in modern scientific research in many diverse fields, examples from
recent statistics literature including pharmacodynamics (De Iorio et al., 2004), mass
spectroscopy (Morris and Carroll, 2006), early pregnancy loss studies (MacLehose and
Dunson, 2009), etc. In such scenarios, assessing the local variations in the response
profiles, including especially how the associated predictors might influence the response
differently in different stages of the longitudinal process, can provide valuable insights
into the underlying data generating mechanisms. Figure 1 shows a synthetic illustrative
example where the mean profiles of a continuous response y vary smoothly over time.
Two associated covariates, x1 and x3, from a set of ten total available {x1, . . . , x10} are
important and they jointly influence the response means differently in different longitu-
dinal stages. The goal of this article is to understand such complex dynamics from data
on response and covariate values.

Figure 1: A synthetic scenario with ten covariates (x1, . . . , x10). No covariate is globally
important but (x1, x3) are locally important: They have no influence on y for t ∈ [1, 4]
but have a complex pattern of joint influence on y for t ∈ (4, 20]. The response values
yi,�,t are represented here as slightly jittered points for all combination of the levels of
the significant predictors (x1, x3). The true underlying mean functions are superimposed
(black lines).

Existing Methods The literature on longitudinal data analysis is really vast (see, e.g.,
books by Diggle et al., 2002; Singer et al., 2003; Fitzmaurice et al., 2008, and the ref-
erences therein). Bayesian methods for longitudinal data have also been extensively
developed (Daniels and Pourahmadi, 2002; Chib and Hamilton, 2002; Li et al., 2010;
Müller et al., 2013; Quintana et al., 2016, etc.). However, the problem of characterizing
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dynamically varying variable importance in such settings has not received much atten-
tion. This article presents a novel Bayesian semiparametric method that addresses such
needs.

Our work in this direction was inspired by the existing sparse literature on local clus-
tering in functional data (Duan et al., 2007; Petrone et al., 2009; Nguyen, 2010; Nguyen
and Gelfand, 2011). These Bayesian nonparametric approaches assume that the mean
functions can be represented by a smaller set of canonical curves that are in turn mod-
eled, for instance, as independently and identically distributed (i.i.d.) realizations from
a stationary Gaussian process. Gelfand et al. (2005) specify an infinite mixture of these
global functional atoms in which each observation is a noisy realization around a draw
from a set of canonical curves. Such approaches however only allow for curves that are
either completely different or completely identical across the entire functional domain,
capturing only their global difference patterns. Many applications, however, involve data
exhibiting local heterogeneity. Local clustering in such cases could greatly improve es-
timation and prediction, borrowing information across locally homogenous regions, as
well as interpretability and inference, providing potentially interesting insights into the
underlying causes of local heterogeneity. Toward this goal, Duan et al. (2007) proposed
a solution by defining a stick-breaking construction at each location, which allows for
local selection of curves. Petrone et al. (2009) assumed that the individual curves can be
obtained as hybrid species defined as recombinations of different portions of the canoni-
cal curves. Both these approaches define the local allocation rules using a single hidden
labeling process that indicates which canonical curve is chosen at each time stamp.
Additional challenges are represented by the choice of functional dependence in the la-
beling process, whose theoretical properties have been studied by Nguyen and Gelfand
(2011). Suarez and Ghosal (2016) proposed an alternative approach, using independent
priors at different time points to cluster wavelet basis coefficients first, but then using
these local features to find global functional clusters as the final inference goal.

The approaches mentioned above have limitations that deserve attention. First,
defining the mean functions as recombinations of canonical curves implies that these
curves are discontinuous, which can be an impractical assumption in most applications.
Continuous curves may be desired, for instance, in dose-response relationships (De Iorio
et al., 2004). Second, the inclusion of covariates in these models has only been accom-
plished via an additive term in the mean function. Even when flexible random effects
are used, the linearity assumption of the covariate effects can be quite restrictive in
practice. Furthermore, the problem of dynamically characterizing variable importance
in these settings has not been addressed.

Alternative approaches to model time-varying predictor effects and interactions
in longitudinal data include tree based methods. Bayesian additive regression trees
(BART) (Chipman et al., 2010) perform well when the regression function consists of
low order nonlinear interactions. With time as an additional covariate, these models
can be adapted to capture longitudinally varying influences of the predictors (Spara-
pani et al., 2016). Separate ideas involving a single tree have also been proposed (Taddy
et al., 2011; Gramacy et al., 2013) where the tree structure evolves when new data
streams become available. Linero and Yang (2018) and Starling et al. (2020) proposed
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smoothing the covariate effects which yields more appropriate results when the outcome
is expected to vary smoothly over time. These models, albeit flexible, do not directly
assess the local influence of each individual predictor but measure variable importance
by calculating their contributions to reducing the in-sample mean squared error. With
such heavy emphasis on prediction, they often include many weakly informative or even
spurious predictors in the ensembles and lack parsimony and interpretability as a result
(Breiman, 2001; Efron, 2020).

Yet another related strategy comprises varying coefficients (VC) models where the
regression coefficients are allowed to smoothly vary over a set of chosen modifiers (Hastie
and Tibshirani, 1993). VC models have been adapted to longitudinal data by considering
time as the only modifier (Hoover et al., 1998). More recently BART priors (Deshpande
et al., 2020) and variable selection techniques (Koslovsky et al., 2020) have also been
adapted to VC settings. While VC models allow for an easy assessment of the predictors’
importance, they are restricted in their ability to accommodate interactions between
predictors. For example, for p categorical predictors xj ∈ {1, . . . , xj,max}, j = 1, . . . , p,
it is necessary to include

∑p
j=1(xj,max − 1) dummy variables for the main effects,∑

j1 �=j2
(xj1,max − 1)(xj2,max − 1) for the first order interactions, and so on.

Our Proposed Approach We propose a longitudinal functional mixed effects model
that combines predictive power and interpretability by addressing the limitations of the
local clustering approaches cited above. Most existing methods imply a tension between
the main goals of statistical analysis (Breiman, 2001), namely estimation, attribution
and prediction (Efron, 2020). Our proposed approach tries to strike a balance – it
is highly flexible, being able to accommodate higher order interactions between the
predictors, but also favors parsimony, modeling these complex effects implicitly and
compactly, while also allowing some ease of interpretation, including explicitly encoding
each predictor’s varying overall significance at different time points. Our method also
comes with theoretical guarantees for both function estimation and variable selection.

The construction of our proposed model proceeds by characterizing the longitudinal
evolution of both the predictor dependent fixed effects and the subject specific random
effects as flexible functions of time (Ramsay and Silverman, 2007; Morris, 2015; Wang
et al., 2016) modeled by mixtures of locally supported spline bases (de Boor, 1978;
Eilers and Marx, 1996). The fixed effects model spline coefficients are allowed to vary
with the associated predictors’ level combinations, thereby accommodating all order
interactions between them. Structuring these coefficients as multi-way tensors and ap-
plying a novel higher order singular value (HOSVD) type decomposition (Tucker, 1966;
De Lathauwer et al., 2000; Kolda and Bader, 2009), we reduce the high-dimensional
problem of modeling the complex joint influence of many different predictors to that of
estimating much smaller-dimensional core coefficients. In effect, this induces a local par-
titioning of the joint covariate space such that the different predictor level combinations
belonging to the same partition set will have a similar effect on the response variable.
The local partitions constructed this way can in fact be indexed by combinations of
separate latent allocation indicators, one for each level of the associated categorical
predictors, facilitating separate assessment of the influences of each individual covariate
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(Sarkar and Dunson, 2016). To induce dependence between adjacent local partitions,
we allow the latent allocation indicators evolve according to a factorial hidden Markov
model (fHMM) (Ghahramani and Jordan, 1997). In constructing the model this way,
we break free from the assumption of separate canonical curves of the previously ex-
isting Bayesian nonparametric literature cited above but allow the dependencies across
adjacent temporal locations be further informed by the local partition configurations
through a novel conditionally Markov prior on the core spline coefficients, conditional on
the partition structure, improving model interpretability and estimation efficiency. The
proposed functional approach also has the important advantage of avoiding to have to
impute missing data when they are missing under simple mechanisms (Little and Rubin,
2019). We establish theoretical results on posterior consistency of the proposed method
for both function estimation and variable selection. We evaluate its numerical perfor-
mance in simulation experiments where it significantly outperformed its competitors
not just on average but also uniformly in all simulation instances. Finally, we illustrate
the method’s practical performance in real data applications from diverse domains.

The methodology presented here is highly generic and broadly adaptable to diverse
problems. For instance, the special case with a single categorical predictor x with a
small number of levels was previously adapted to a drift-diffusion model in Paulon
et al. (2021). The focus of this article, however, is on developing a general methodology
with an emphasis on the multivariate case (x1, . . . , xp) which presents significant and
unique additional modeling and computational challenges. Note here that redefining
the

∏p
j=1 xj,max level combinations of (x1, . . . , xp) as the levels of a new single pre-

dictor x, while conceptually straightforward, does not provide a practically effective
solution as it does not allow separate characterization of the local importances of the
different predictors and, with

∏p
j=1 xj,max increasing exponentially fast with p, quickly

becomes computationally inefficient even in small to moderate dimensional problems.
The strategy is practically useless, for instance, in a real data applications we discuss
in Section 6, where

∏p
j=1 xj,max = 580,608. Our proposed formulation based on tensors

and their dynamic data adaptive HOSVD, in contrast, not only provides a flexible and
highly efficient tool for dimension reduction and simultaneous variable selection but
also does this locally at each time point while borrowing information across a number
of levels.

Our proposed approach does not partition the response values directly, which has
been considered by many in the static setting (Hartigan, 1990; Denison et al., 2002;
Quintana and Iglesias, 2003) and some in the dynamic setting (Barry and Hartigan,
1992; Page et al., 2020). Instead, we partition the covariate space according to their
influences on the response. Separately, the literature on HMMs and fHMMs is also vast
(Rabiner, 1989; Scott, 2002; Frühwirth-Schnatter, 2006; Zucchini et al., 2017). To our
knowledge, however, they have never been adapted in the novel ways proposed in this
article to dynamic variable selection problems. There is also a growing body of literature
on regression methods for tensor valued predictors with tensor factorization techniques
used as a dimension reduction tool. These methods, however, apply tensor factoriza-
tions with all continuous components, where the general Tucker decomposition runs into
identifiability and interpretability problems. To avoid these issues, the literature has fo-
cused on parallel factor (PARAFAC) type decomposition (see, e.g., Guhaniyogi et al.
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2017; Papadogeorgou et al. 2019, etc.), a much simpler but also much restrictive special
case of the Tucker. Aside from the development of sophisticated dependence models for
the tensor components in a longitudinal setting, our proposal is also novel in that we
employ a compact HOSVD, a flexible but interpretable version of the Tucker decompo-
sition, where the core tensors take continuous values but the mode matrices comprise
specially structured binary elements, resulting in interpretable partition structures that
allow dynamic variable selection.

Outline of the Article The rest of this article is organized as follows. Section 2 devel-
ops the generic longitudinal mixed model framework. Section 3 develops Markov chain
Monte Carlo (MCMC) algorithms for posterior computation. Section 4 establishes pos-
terior convergence guarantees for the proposed model, for both function estimation and
variable selection. Section 5 presents the results of simulation experiments. Section 6
presents real data applications. Section 7 contains concluding remarks. Substantive ad-
ditional details are presented in the supplementary materials (Paulon et al., 2023a,b).

2 Longitudinal Functional Mixed Model
In this section, we develop a novel generic statistical framework for longitudinal func-
tional mixed model (LFMM), where a response y is generated under the influence of
p categorical predictors xj ∈ {1, . . . , xj,max} = Xj , j = 1, . . . , p longitudinally over
time. To be precise, data yi,�,ti , available for individuals i ∈ {1, . . . , n} and trials
� ∈ {1, . . . , Li,ti} at time points ti ∈ {ti,1, . . . , ti,T }, are generated under the influence of
the predictors xj , j = 1, . . . , p. Importantly, we are not only interested in assessing the
overall global influences of the predictors but also how they affect the responses locally
at various times of the longitudinal studies.

We consider the following generic class of LFMMs

{yi,�,t | xj,i,�,t = xj , j = 1, . . . , p} = fx1,...,xp(t) + ui(t) + εi,�,t, εi,�,t ∼ fε, (2.1)

where fx1,...,xp(t) denotes time-varying fixed effects due to associated predictors x =
(x1, . . . , xp) ∈ X1 ×· · ·×Xp = X , ui(t) are time-varying subject specific random effects,
and εi,�,t are random errors, i.i.d. from fε, satisfying Efε(εi,�,t) = 0. We assume that
fx1,...,xp(t) and ui(t) evolve continuously with time. In this article, we focus on normally
distributed errors with an inverse-Gamma prior on the error variance as

fε = Normal(0, σ2
ε), σ2

ε ∼ Inv-Ga(aσ, bσ).

For ease of exposition, we assume in (2.1) and henceforth that the data points
are measured at a common set of equidistant time points {t1, . . . , tT }, denoted simply
as {1, . . . , T}. With some abuse of notation, generic values taken by the response y,
the predictors xj are also denoted by y, xj , etc. Without loss of generality, we also
assume henceforth the same number of replicates Li,t = L for all i, t. To further simplify
notation, generic data recording time stamps in {1, . . . , T} as well as other generic time
points in [1, T ] will both be denoted by t.
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For longitudinal data observed on a regular time grid, continuous functional pa-
rameter trajectories may still be more appealing and interpretable to a practitioner.
A functional approach to modeling longitudinal data also does not require to impute
missing data when they are missing at random (Little and Rubin, 2019).

The focus of this article is on continuous responses with categorical predictors. In
many applications, the covariates are exogenous, that is, for each i, the xj,i,�,t’s equal
some fixed level xj for all �, t. When they are time-varying, we assume that all levels of
xj are present in the sample at each t for each j. An easy, highly robust and practically
useful approach to include continuous and ordinal predictors in model (2.1) would be
to categorize them by binning their values into intervals (e.g., using their quantiles)
or by ignoring their order. Non-continuous responses of various types can likewise be
conveniently analyzed via latent continuous variable augmentations (Albert and Chib,
1993; Dunson, 2000; Polson et al., 2013).

2.1 Fixed Effects Model
We propose a novel approach to model the latent functions fx1,...,xp(t) using basis
decomposition methods that allow them to flexibly vary with time t while also locally
depending on the predictor combinations (x1, . . . , xp). Specifically, we let

fx1,...,xp(t) =
∑K

k=1 βk,x1,...,xpbk(t), (2.2)

where b(t) = {b1(t), . . . , bK(t)}T are a set of known locally supported basis functions
and βx1,...,xp

= {β1,x1,...,xp , . . . , βK,x1,...,xp : (x1, . . . , xp) ∈ X} are unknown coefficients
to be estimated from the data. We use B-spline bases (de Boor, 1978) which are non-
negative, continuous and have desirable local support properties (Figure 2). Allowing
the βk,x1,...,xp ’s to vary with all predictor combinations (x1, . . . , xp), the model also
accommodates all order interactions among the predictors.

While other higher order B-splines can also be used, in this work we use linear
B-splines whose local support properties result in locally linear approximations of the
fixed effects function (Figure 2). In the following, we use knots at the observed locations,
hence K = T . This allows local clustering at the set of all observable time points. In the
case of irregularly spaced data, a suitable fine grid can be chosen where such inference
is desired. As shown in Ruppert (2002), when smoothing is controlled by data adaptive
penalty parameters, the number of knots K is not a crucial parameter as long as it is
larger than a minimum threshold.

For most practical applications, the size K
∏p

j=1 xj,max of the unstructured model
(2.2) may be too big to allow efficient model estimation. It is also difficult to assess local
influences of the predictors using such unstructured models. A potentially efficient solu-
tion that can greatly reduce dimensions while also facilitating the assessment of predic-
tors’ importance is to cluster the parameters by allowing them to have common shared
values across different predictor combinations. If, e.g., βx1,...,xj,1,...,xp

= βx1,...,xj,2,...,xp

for all combinations of (x1, . . . , xj−1, xj+1, . . . , xp), then not only have we reduced the
number of parameters to be modeled but have also established that the two levels xj,1
and xj,2 of xj have no differential effect on the data generating mechanism.
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Figure 2: Top left panel: Plot of 7 linear B-splines on an interval [A,B] defined by
9 equidistant knot points that divide [A,B] into K = 6 equal subintervals. Top
right panel: Example of global clustering of two curves with shared spline coefficients
βx1,...,xp

= βx′
1,...,x

′
p

= (5, 5, 5, 5.5, 6.25, 7.5, 8.25)T; the solid lines represent the es-
timated functions, the dashed lines represent the weighted B-spline bases. Bottom
left panel: Example of splitting of two curves with partially shared spline coefficients
βx1,...,xp

= (5, 5, 5, 5.5, 6.25, 7.5, 8.25)T, βx′
1,...,x

′
p

= (5, 5, 5, 4.5, 3.75, 2.5, 1.75)T. Bottom
right panel: Example of merging of two curves with partially shared spline coefficients
βx1,...,xp

= (8.25, 7.5, 6.25, 5.5, 5, 5, 5)T, βx′
1,...,x

′
p

= (1.75, 2.5, 3.75, 4.5, 5, 5, 5)T.

Such global clustering of all elements of βx1,...,xp
together will still be highly restric-

tive in most practical applications. More realistically, the elements of βx1,...,xp
should

be allowed to cluster locally. In the following, we exploit the local support properties
of B-splines in a novel way to achieve this desirable property. In principle, other basis
decomposition methods whose bases have compact local support can also be used in a
similar way.

Dimension Reduction and Local Clustering via HOSVD To achieve simultaneous
dimensionality reduction and local clustering, we structure the parameters for different
predictor combinations at each location k as a x1,max × · · · × xp,max dimensional tensor
βk = {βk,x1,...,xp : (x1, . . . , xp) ∈ X} and then apply an HOSVD-type (Tucker, 1966;
De Lathauwer et al., 2000) factorization, arriving at

{βk,x1,...,xp | z(xj)
j,k = zj,k, j = 1, . . . , p} = β�

k,z1,k,...,zp,k
, (2.3)

where z
(xj)
j,k ’s are cluster indicator variables associated with each covariate j for its

specific value xj at the knot-location k, and the β�
k,z1,k,...,zp,k

’s are the associated unique
cluster specific spline coefficients. Our construction using locally supported linear B-
splines then implies

{fk,x1,...,xp | z(xj)
j,k = zj,k, j = 1, . . . , p} = β�

k,z1,k,...,zp,k
,
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allowing simple interpretations for the allocation variables z
(xj)
j,k ’s and also easier theo-

retical treatment and posterior computation.

Let the z
(xj)
j,k ’s take values in Zj,k = {1, . . . , �j,k} for different possible values xj ∈

Xj = {1, . . . , xj,max}.1 Separately, z(xj)
j,k ∈ Zj,k therefore forms �j,k ≤ xj,max marginal

clusters of the predictor levels xj ∈ Xj , while jointly, (z(x1)
1,k , . . . , z

(xp)
p,k ) ∈ Zk = Z1,k×· · ·×

Zp,k forms
∏p

j=1 �j,k ≤
∏p

j=1 xj,max joint clusters of the predictor level combinations
(x1, . . . , xp) ∈ X = X1 × · · · × Xp.

To see the HOSVD formulation behind this, note that (2.3) can be rewritten as

{βk,x1,...,xp | z(xj)
j,k , j = 1, . . . , p} =

∑
z1,k

· · ·
∑
zp,k

β�
k,z1,k,...,zp,k

∏p
j=1 1{z(xj)

j,k = zj,k}, (2.4)

where β�
k = {β�

k,z1,k,...,zp,k
: (z1,k, . . . , zp,k) ∈ Zk} is a �1,k × · · · × �p,k dimensional core

tensor, zj,k = {1{z(xj)
j,k =zj,k} : xj ∈ Xj , zj,k ∈ Zj,k} are xj,max × �j,k dimensional mode

matrices (Figure 3).

The allocation variables are assigned probability models supported on Xj , so that
the number of distinct values taken on by the z

(xj)
j,k ’s, namely �j,k, lies between 1 and

|Xj | = xj,max. If �j,k = xj,max, the z
(xj)
j,k ’s take on different values for different levels

of xj , implying that the spline coefficients are all different for different levels of xj at
location k. In this case, all levels of xj differently influence the response generating
mechanism at location k. If �j,k ≤ xj,max, local clustering of the predictor’s effects is
performed and the problem of modeling the original parameter tensors βk is effectively
reduced to that of modeling the smaller-dimensional core tensors β�

k. For instance, when
z
(xj,1)
j,k = z

(xj,2)
j,k = zj,k for two different levels xj,1 and xj,2 of the jth predictor xj , the

spline coefficients at location k do not differ between xj,1 and xj,2, i.e., βk,x1,...,xj,1,...,xp =
βk,x1,...,xj,2,...,xp = β�

k,z1,k,...,zj,k,...,zp,k
. There is thus no significant difference between

how the two levels xj,1 and xj,2 influence the response y at location k. Importantly, when

1For notational simplicity, here we assumed that the values taken by the cluster allocation variables
z
(xj)
j,k ’s for different values of xj ∈ Xj = {1, . . . , xj,max} are sequentially ordered without gaps, i.e.,

Zj,k = {1, . . . , �j,k}. In what follows, we allow other general configurations of z
(xj)
j,k ’s that induce the

same equivalent partition of Xj .
For example, consider some xj ∈ Xj = {1, 2, 3} with xj,max = 3 partitioned into {{1, 3}, {2}} at

location k. Here our notation allows the configurations (1, 2, 1) or (2, 1, 2) of the corresponding cluster
allocation variables (z(1)

j,k , z
(2)
j,k , z

(3)
j,k ) with Zj,k = {1, �j,k} = {1, 2}. Going forward, we also allow other

general configurations (1, 3, 1) or (3, 1, 3) with Zj,k = {1, 3}, or (2, 3, 2) or (3, 2, 3) with Zj,k = {2, 3}
which induce the same partition {{1, 3}, {2}} of Xj with �j,k =

∣∣Zj,k

∣∣ = 2. In this example, the effects
of xj = 1 and xj = 3 on the response curve are the same and hence these levels are clustered together,
but these effects are different from the effect of xj = 2 which therefore forms its own cluster. The
predictor xj therefore is important at location k.

Consider also the example when the levels Xj = {1, . . . , 3} are partitioned into a single cluster at
location k. Here our notation only allows the configuration (1, 1, 1) of (z(1)

j,k , z
(2)
j,k , z

(3)
j,k ) with Zj,k =

{�j,k} = {1}. Going forward, we also allow the configurations (2, 2, 2) or (3, 3, 3) with Zj,k = {2} and
Zj,k = {3} respectively which induce the same partition {{1, 2, 3}} of Xj with �j,k =

∣∣Zj,k

∣∣ = 1. In this
example, the effects of all three levels are the same on the response curve. The predictor xj therefore
is unimportant at location k.
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Figure 3: Model (2.4) with three covariates viewed as a dynamic HOSVD. Three-way
parameter tensors βk associated with the covariates (x1, x2, x3) at each knot location
k are first decomposed via HOSVD into smaller core tensors β�

k and associated bi-
nary mode matrices zj,k’s. Markov dependence structures are later imposed on these
components to characterize their temporal dynamics across k = 1, . . . ,K.

�j,k = 1, the z
(xj)
j,k ’s all take on the same value for all different levels of xj , characterizing

the scenario when xj has no influence on y at location k and local variable selection is
achieved. The set of important predictors at location k is thus {j : �j,k > 1}. Significant
reduction in model size is achieved at the location k when

∏p
j=1 �j,k �

∏p
j=1 xj,max,

i.e., when the size of the core tensors is much smaller than the original coefficient tensor
(Figure 3). The varying side lengths �j,k of the core tensors β�

k at different locations k
(Figure 3) also crucially allow the model to identify different sets of important predictors
at different locations k.

In effect, our HOSVD formulation of the continuous coefficient tensors βk in (2.4)
into a continuous core but binary mode matrices thus induces local random partitions
of the joint covariate space X into �k =

∏p
j=1 �j,k sets at each knot location k. This

is different from traditional PARAFAC decompositions of continuous tensors into all
continuous components as in Guhaniyogi et al. (2017); Papadogeorgou et al. (2019),
etc. Section S.3 in the supplementary materials provides some additional discussions on
the novelty and advantages our formulation over these other existing approaches.

Second-Layer Clustering We note, however, that the partitions of the joint covariate
space X = X1 × · · · × Xp induced by the HOSVD in (2.4) may still lead to some
overparametrization as they are constructed as the product of p marginal partitions of
Xj into �j,k sets (Figure 4, left panel). To obtain an unrestricted partition, say ρk =
{Sk,1, . . . , Sk,mk

}, we thus further cluster the elements of the core tensors using a second
layer of latent variables z

(z1,k,...,zp,k)
k ∈ {1, . . . , �k} such that

β�
k,z1,k,...,zp,k

=
∑�k

zk=1 β
��
k,zk

1{z(z1,k,...,zp,k)
k = zk}.
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Such clustering further refines the model (Figure 4, right panel), making the final par-
tition structure of the covariate space fully flexible.2

Figure 4: Illustration of the two layers of latent variables that induce the partition of
the covariate space at a fixed location k in the case with two categorical predictors
x1, x2 with x1,max = x2,max = 2 levels each. In this example, Sk,1 = {(1, 1)}, Sk,2 =
{(1, 2), (2, 1)}, Sk,3 = {(2, 2)}, �k = 4, mk = 2.

Our two clustering layers thus play different roles in achieving parsimonious parti-
tions of the covariate space in high dimensions – efficiently exploring and partitioning X
in high dimensions is an extremely challenging task – we break this into two parts – the
HOSVD first reduces the dimensions by creating a product of marginal partitions while
also efficiently removing the unimportant covariates – the second layer then refines this
smaller space to arrive at a fully flexible model.

In summary, we achieve the challenging task of creating and representing arbitrary
clusters of p-dimensional categorical covariates by a 2-step construction; first marginal
partitions for each covariate (represented by the z

(xj)
j,k ’s), creating the cross product of

these p partitions; and then merging these cross-product clusters to finally form arbi-
trary p-dimensional clusters (represented by the z

(z1,...,zp)
k ’s). The first and second level

cluster-membership indicators, namely z
(xj)
j,k and z

(z1,...,zp)
k , are only used for construct-

ing the partitions, but are not an inference target themselves, and hence do not give
rise to concerns about label-switching.

2Consider, e.g., two drugs A and B, each with two dosage levels XA = XB = {1, 2}. Further let the
two levels of each drug have different marginal effects, i.e., for both of them the effect of dosage level
1 is significantly different from that of dosage level 2. The basic idea of our approach to cluster the
levels of the predictors (here drugs) according to their effects therefore would produce a clustering of
{{1}, {2}} for both drugs. The tensor product of these sets then gets us to the joint clustering

{{1}, {2}} × {{1}, {2}} = {{(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}} (four clusters).
It may be possible, however, that there are significant interactions between the levels of A and B, so
that the effects of the dose combinations (1, 2) and (2, 1) are in fact the same. The correct final joint
cluster configuration therefore should be

{{(1, 1)}, {(1, 2), (2, 1)}, {(2, 2)}} (three clusters).
The second layer, which further clusters (1, 2) and (2, 1) together, allows us to perform such inference.
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So far, we have developed the HOSVD model separately for each knot location
k. Next, we focus on introducing time-varying dependency structures between these
building blocks appropriate for longitudinal settings. We do this by assuming fHMM
dynamics on the allocation variables zj,k that introduce dependencies between the local
partitions at adjacent knot locations, and then assigning novel Markovian priors on the
coefficients β��

k that make these coefficients vary smoothly over time.

Dynamically Evolving Partition Structures We first consider the problem of specifying
probability models for the allocation variables z

(xj)
j,k that allow them to be temporally

dependent across k. We model the temporal evolution of the z(xj)
j,k ’s using hidden Markov

models (HMMs). For each predictor combination (x1, . . . , xp), the collection z(x1,...,xp) =
{z(xj)

j,k , k = 1, . . . ,K, j = 1, . . . , p} then defines a factorial HMM (Ghahramani and
Jordan, 1997) (Figure 6). We characterize the dynamics of the fHMM component chains
as

(z(xj)
j,k | z(xj)

j,k−1 = zk−1) ∼ Mult(π(j)
zk−1,1, . . . , π

(j)
zk−1,zj,max

) for j = 1, . . . , p.

We assign Dirichlet priors on the transition probabilities

π
(j)
z = (π(j)

z,1, . . . , π
(j)
z,zj,max)T ∼ Dir(α(j)/zj,max, . . . , α

(j)/zj,max), α(j) ∼ Ga(aα, bα).

In general, the maximum number of distinct values of the z
(xj)
j,k ’s is xj,max. However, in

most applications, |Zj,k| will be much smaller than xj,max uniformly for all k and the
restricted support z

(xj)
j,k ∈ {1, . . . , zj,max}, zj,max < xj,max will suffice. We impose par-

simony by assigning exponentially decaying priors with finite support on the partition
sizes |Zj,k| = �j,k, favoring smaller partitions as

�j,k ∝ exp(−ϕj�j,k), ϕj ∼ Ga(aϕ,j , bϕ,j), j = 1, . . . , p, k = 1, . . . ,K.

Larger values of ϕj here induce faster decay and hence smaller model sizes. Gamma
hyper-priors on the ϕj ’s further make these shrinkage strengths data adaptive. Being
shared across k, the ϕj ’s also allow to share information on partition sizes across k for
each predictor j separately. This is desirable since it is expected that for most predictors,
especially the unimportant ones, the influence will be similar across all locations k.

The second layer latent allocation variables z
(z1,k,...,zp,k)
k are assigned multinomial

distributions with Dirichlet priors on the probability parameters as

(z(z1,k,...,zp,k)
k | π�

k) ∼ Mult(π�
k,1, . . . , π

�
k,�k

),
π�

k = (π�
k,1, . . . , π

�
k,�k

)T ∼ Dir(α�/�k, . . . , α
�/�k) with α� ∼ Ga(aα� , bα�).

When the z
(xj)
j,k ’s corresponding to two different categories of xj are equal in a temporal

region, the local support properties of B-splines then cause the underlying curves to be
the same in that region. Conversely, if the z

(xj)
j,k ’s corresponding to two different values

of xj are different, the underlying curves will be distinct unless the second layer of latent
variables maps them to the same joint partition element.
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Figure 5: Illustration of the prior distribution on the partition sizes for the categorical
predictor xj with xj,max = 5 levels. Each panel corresponds to different fixed values of
the parameter ϕj . As ϕj increases, the prior goes from discrete uniform (ϕj = 0) to a
point mass at 1 (ϕj → +∞).

Figure 6: Left panel: The directed acyclic graph (DAG) of a conventional fHMM with
p latent layers. Right panel: DAG of our proposed fixed effects model (2.4) with p
categorical predictors x1:p = (x1, . . . , xp).

Conditionally Markov Core Coefficients We next consider priors for the unique core
tensors β��

k,zk
. Conditional on the z

(xj)
j,k ’s, z(z1,k,...,zp,k)

k ’s, and the coefficients at the pre-
vious locations, for k = 2, . . . ,K, we construct the priors sequentially as

β��
k,zk

∼
∏

h∈Z−
k,zk

Normal
(
β��
k−1,h, σ

2
β

)
, (2.5)

where Z−
k,zk

=
{
zk−1 : zk−1 = z

(z1,k−1,...,zp,k−1)
k−1 ; (z1,k−1, . . . , zp,k−1) = (z(x1)

1,k−1, . . . , z
(xp)
p,k−1);

(x1, . . . , xp) ∈ Sk,zk

}
and Sk,zk is the partition element comprising the covariates lev-

els (x1, . . . , xp) that, at location k, are assigned the label zk. Simply put, we center
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Figure 7: An illustration of the prior on the spline core coefficients β��
k,zk

at location
k (the dashed vertical lines) in the fixed effects model developed in Section 2.1 for a
scenario with two categorical covariates x1 ∈ {1, 2} and x2 ∈ {1, 2, 3}, where the curves
corresponding to all levels of (x1, x2) are initially equal, the curves for x2 = 1, 2 (in
blue) and x2 = 3 (in red) then diverge at t = 5, merging back again at t = 15.

the core coefficients around the ones that are ‘expressed’ at the previous location (Fig-
ure 7), thus effectively penalizing their differences. The initial coefficients are assigned
non-informative flat priors as β��

1,z1 ∼ 1. The smoothness of the curves is thus controlled
by the parameter σ2

β and is assigned a prior, allowing it to be informed by the data. We
let

σβ ∼ C+IG(0, sσ, cσ, dσ,Mσ),

where C+IG(a, b, c, d,M) denotes a prior constructed by combining a half-Cauchy dis-
tribution with location and scale parameters a and b, respectively, truncated to the
interval [0,M ] and an inverse-Gamma distribution with shape parameters c and d re-
stricted to (M,∞), thereby mimicking the behavior of the half-Cauchy near zero and
that of the inverse gamma in the tails. The half-Cauchy prior, having a higher proba-
bility mass near zero, is well equipped to induce strong smoothing on the β coefficients
and is also very appropriate for random effects variance parameters (Gelman, 2006;
Polson and Scott, 2012) discussed later in Section 2.2. The inverse gamma component,
on the other hand, stops the variances from becoming arbitrarily large (Piironen and
Vehtari, 2017) while also satisfying an exponentially decaying tail condition useful for
establishing posterior consistency of our model in Section 4. We expect, however, the
response error variance σ2

ε to neither be very close to zero nor be very large relative to
the overall response variance. A simple inverse-gamma prior thus suffices for it.

Characterization of Main and Interaction Effects As may be noted from our model
description above, the HOSVD characterizes each xj ’s overall significance explicitly and
their joint influences implicitly but very compactly, efficiently eliminating the redundant
variables and achieving significant reduction in dimensions, but avoids explicitly describ-
ing their main and lower-dimensional interaction effects which are often very useful to
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practitioners for their easy interpretation. These effects may, however, be meaningfully
defined (and easily estimated from the posterior samples) directly as

overall mean: f0(t) =
∑

x fx1,...,xp(t)
|X | , main effects: fxj (t) =

∑
x−j

fx1,...,xp(t)
|X−j |

− f0(t),

interactions: fxj1 ,xj2
(t) =

∑
x−j1,−j2

fx1,...,xp(t)
|X−j1,−j2 |

− fxj1
(t) − fxj2

(t) − f0(t), etc.,

(2.6)

where x−j = (x1, . . . , xj−1, xj+1, . . . , xp)T ∈ X1 × · · · × Xj−1 ×Xj+1 × · · · × Xp = X−j ,
and so on. Section S.4 in the supplementary materials provides additional details and
plots, a general recipe for testing these effects, etc.

Single Predictor Special Cases The HOSVD approach is relevant particularly for the
challenging multivariate predictor problem (x1, . . . , xp) but not for a single predictor x,
e.g., the adaptation considered in Paulon et al. (2021), in which case no tensor structure
arises, the fHMM (Figure 6, right panel) simplifies to an HMM with a single layer z(x)

k ,
the second layer clustering of the spline coefficients β�

k,z
(x)
k

(Figure 4) is not needed, the
smoothness inducing Markovian prior (2.5) greatly simplifies, and the interaction effects
discussed just above do not arise. As discussed in the Introduction, the focus of the
article is on the general multivariate case. Our implementation, however, is automated
to adjust to both scenarios.

2.2 Random Effects Model

We model the random effects components ui(t) as

ui(t) =
∑K

k=1 β
(u)
k,i bk(t),

β
(u)
i ∼ MVNK{0, (σ−2

u,aIK + σ−2
u,sPu)−1},

σu,s ∼ C+IG(0, sσ, cσ, dσ,M), σu,a ∼ C+IG(0, sσ, cσ, dσ,M),

(2.7)

where β
(u)
i = (β(u)

1,i , . . . , β
(u)
K,i)T are subject specific spline coefficients, MVNK(μ,Σ)

denotes a K dimensional multivariate normal distribution with mean μ and covariance
Σ. The zero mean of the random effects distribution ensures that the random effects
are separately nonparametrically identifiable (Guo, 2002; Morris and Carroll, 2006). We
choose Pu = DT

uDu, where the (K−1)×K matrix Du is such that Duβ
(u)
i computes the

first order differences in β
(u)
i . The model thus penalizes

∑K
k=1(∇β

(u)
k,i )2 = β

(u)T
i Puβ

(u)
i ,

the sum of squares of first order differences in β
(u)
i (Eilers and Marx, 1996). This induces

a first order Markov dynamics for the spline coefficients, evident from the tridiagonal
structure of the precision matrix in (2.7) that encodes their conditional dependence
relationships. The random effects variance parameter σ2

u,s models the smoothness of
the random effects curves, smaller σ2

u,s inducing smoother ui(t)’s. Additional variations
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from the constant zero curve are explained by σ2
u,a. The absence of random effects is

signified by the limiting case σ2
u,s = σ2

u,a = 0.

A similar model for functional random effects but with additional assumptions on
the covariance matrix has previously been developed in Guo (2002). If we ignore the
sharing of information through model hierarchies, the data for estimating an individual
level effect come from that individual alone whereas the data for estimating the fixed
effects come from many individuals with shared predictor levels. In the literature on
mixed models, the models for random effects are thus often kept much simpler compared
to fixed effects models. In similar vein, we have focused here on time-varying random
intercept type models. When categorical covariates, say x′

1, . . . , x
′
p′ , are desired to be

included in the random effects model, ui(t) can be modified as ux′
1,...,x

′
p′ ,i

(t) and the
strategies for modeling fixed effects, as described in Section 2.1, can potentially be used.

A summary of the proposed model components, all at one place, is provided in
Section S.10 in the supplementary materials.

3 Posterior Inference
Inference for the proposed LFMM is based on samples drawn from the posterior using
an MCMC algorithm. In our model, the values of �j,k’s are crucial in controlling the
model size since they act as local covariate importance indicators. Varying values of
�j,k’s, however, result in varying dimensional models, posing daunting computational
challenges. Dynamic message passing algorithms, such as the forward-backward sampler,
are popular strategies for inference in HMMs and fHMMs (Rabiner, 1989; Scott, 2002).
However, it is not clear how message passing strategies can be adapted to include
inferences about the �j,k’s.

We address these challenges by designing an efficient trans-dimensional transition
step which updates the partition structure and the corresponding local curves at every
location. First, for every location k, an update in the partition structure ρk is proposed.
Second, conditional on ρk, samples of the spline coefficients β��

k = {β��
k,h}

mk

h=1 are drawn
from their Gaussian full conditional distributions.

Specifically, the first step involves updating, for every predictor j at each location k,
the first layer of latent variables zj,k = (z(1)

j,k , . . . , z
(xj,max)
j,k ), the implied partition sizes

(�1,k, . . . , �p,k), and the corresponding second layer of latent variables zk = z
(z1,k,...,zp,k)
k .

Designing an efficient such proposal is made challenging by the discrete and potentially
high-dimensional support of the latent variables zj,k and zk. However, the proposal
distribution can be defined sequentially as

q(�′j,k, z′j,k, z′k | �j,k, zj,k, zk) = q1(�′j,k, z′j,k | �j,k, zj,k)q2(z′k | �′j,k, z′j,k).

First, we perturb the current state zj,k to a new configuration z′j,k by sampling uniformly
in a Hamming ball of radius r around zj,k (Titsias and Yau, 2014), resulting in an
efficient first layer proposal that shares many of the old components as

q1(�′j,k, z′j,k | �j,k, zj,k) = Unif{z′j,k | Hm(zj,k)}1{�′j,k = |Z ′
j,k|}.
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Conditioning on the first layer of latent variables, we update the second layer as

q2(z′k | �′j,k, z′j,k) = Mult (1/�k, . . . , 1/�k) .

In terms of the implied marginal partition structure Zj,k, when r = 1, this corresponds
to (A) selecting a covariate level and either (Ba) merging it to one of the other existing
partition elements or (Bb) creating a singleton by separating it from its partition ele-
ment. Since the first layer proposal distribution is symmetric, the resulting acceptance
rate of the Metropolis-Hastings (M-H) step is

racc =
p(yk | ρ′k, σ2

ε , σ
2
β , ζ)

p(yk | ρk, σ2
ε , σ

2
β , ζ) ·

p(z′j,k)p(�′j,k)p(z′k)
p(zj,k)p(�j,k)p(zk)

·
q2(zk | �′j,k, z′j,k)
q2(z′k | �′j,k, z′j,k)

, (3.1)

where yk = {yi,�,k}i,�, and ζ denotes a generic variable that collects all other variables
not explicitly mentioned here, including the data points. Importantly, the spline co-
efficient parameters β��

k at each location k can be analytically integrated out of the
posterior of the corresponding partition structure. This allows for an efficient scheme
for sampling the random partition structures based on their marginal likelihood

p(yk | ρk, σ2
ε , σ

2
β , ζ) =

mk∏
h=1

∫
p(yk | β��

k,h, Sk,h, σ
2
ε)p(β��

k,h | σ2
β , ζ)dβ��

k,h.

The second term in the integral above is the conditional smoothing prior for the spline
coefficients

p(β��
k,h | σ2

β , ζ) ∝
∏

h′∈Z−
k,h

Normal
(
β��
k,h | β��

k−1,h′ , σ2
β

) ∏
h′′∈Z+

k,h

Normal
(
β��
k+1,h′′ | β��

k,h, σ
2
β

)

= Normal(μk,h, σ
2
k,h),

where Z−
k,h =

{
zk−1 : zk−1 = z

(z1,k−1,...,zp,k−1)
k−1 ; (z1,k−1, . . . , zp,k−1) = (z(x1)

1,k−1, . . . , z
(xp)
p,k−1);

(x1, . . . , xp) ∈ Sk,h

}
and Z+

k,h =
{
zk+1 : zk+1 = z

(z1,k+1,...,zp,k+1)
k+1 ; (z1,k+1, . . . , zp,k+1) =

(z(x1)
1,k+1, . . . , z

(xp)
p,k+1); (x1, . . . , xp) ∈ Sk,h

}
are the indexes of the coefficients expressed at

the previous and following locations, respectively, n−
k,h = |Z−

k,h| and n+
k,h = |Z+

k,h| are the
corresponding cardinalities, σ2

k,h = σ2
β(n−

k,h+n+
k,h)−1 and μk,h =

∑
h′ β

��
k−1,h′+

∑
h′′ β

��
k+1,h′′

n−
k,h+n+

k,h

are the resulting smoothing prior variance and mean parameters. First order Markov
priors we designed in (2.5), as opposed to second order differences considered in Eilers
and Marx (1996) and elsewhere, make these calculations much more tractable here.
Using this, we get

p(yk | ρk, σ2
ε , σ

2
β , ζ)

=
mk∏
h=1

∫ ∏
(i,�) s.t.

xi,�,t∈Sk,h

{
(2πσ2

ε)−
1
2 e

− 1
2σ2

ε
(r(m)

i,�,k−β��
k,h)2

}
(2πσ2

k,h)− 1
2 e

− 1
2σ2

k,h

(
β��
k,h−μk,h

)2

dβ��
k,h

=
mk∏
h=1

(2πσ2
ε)−

nk,h
2 (σ2

k,h)− 1
2 (σ�2

k,h) 1
2 e

− 1
2

(∑
i,� r

(m)2
i,�,k

σ2
ε

+
μ2
k,h

σ2
k,h

−
μ�2
k,h

σ�2
k,h

)
,
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where r(m) = {yi,�,t −ui(t)}i,�,t are the main effects residuals, nk,h = |{(i, l) s.t. xi,�,t ∈
Sk,h}| is the number of observations allocated to the spline coefficient β��

k,h, σ�2
k,h =(

σ−2
ε nk,h + σ−2

k,h

)−1
and μ�

k,h = σ�2
k,h

(
σ−2
ε

∑
i,� r

(m)
i,�,k + σ−2

k,hμk,h

)
.

Conditional on the partition structure ρk, the group specific curves are sampled from
their Gaussian full conditional distribution

p(β��
k,h | yk, Sk,h, σ

2
ε , σ

2
β , ζ) ∝ p(yk | β��

k,h, Sk,h, σ
2
ε)p(β��

k,h | σ2
β , ζ)

= Normal
{
μ�
k,h, σ

�2
k,h

}
.

(3.2)

The full conditionals for σβ , σ2
u,s and σ2

u,a under their C+IG priors do not have
tractable close forms. M-H steps are therefore used for updating these parameters.

The full MCMC sampler comprises the steps reported in Algorithm 1 in Section S.7.1
in the supplementary materials. Our software implementation in R and C++, available
as part of the online supplementary materials, is highly automated, requiring only the
available data points and the values of a few prior hyper-parameters as inputs. These
hyper-parameters appear deep inside the model hierarchy and inference is highly robust
to their choices. Additional details on the default choices of the hyper-parameters, the
runtime of the algorithm, etc. are provided in Sections S.6 and S.7.2 in the supplemen-
tary materials.

4 Posterior Consistency
This section presents some convergence results for our proposed longitudinal functional
mixed model. We focus on the case where n → ∞ but L, the number of replicates
per individual, and T , the number of data recording time points, are kept fixed, which
constitutes an appropriate asymptotic regime for the applications discussed later. Under
this framework, we focus mainly on the recovery of the fixed effects components. When
L → ∞, similar results can also be established for the individual specific effects. We
restrict ourselves to consistency at the knot points which coincide with the set of unique
data observing time points in the setting of this article. The functional domain remaining
fixed to a finite interval, say [A,B], when the number of data recording time points inside
the domain T → ∞ and some additional mild smoothness assumptions are made on the
true underlying functions, the results can also be extended to the entire domain.

Our proofs rely on some results and ideas from Ghosal et al. (1999) and Suarez and
Ghosal (2016) and are presented in Section S.5 in the supplementary materials. We first
show consistency for the functional fixed effects. Using this result, we then show that
our proposed model can also recover the underlying true local partitions of the covariate
space and hence perform consistent variable selection.

We let Π(·) denote the prior distribution induced by our model on the space of fixed
effects functions fx(t) and Π(·|data) denote the corresponding posterior. We let g(x)
denote the probability distribution of x. We consider the g-weighted local L2-norm of the
function fx(t), defined as ||f ||22,g,loc =

∑
x∈X g(x)

∑K
k=1 f

2
x(k). For the linear B-spline

mixtures used in this article, fx(k) = βk,x.
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Integrating out the random effects distribution (2.7) from model (2.1), we obtain

{yi,�,t | xj,i,�,t = xj , j = 1, . . . , p} ∼ Normal{fx(t), σ2
ε + σ2

u(t)}, (4.1)

where σ2
u(t) = {(σ−2

u,aIK + σ−2
u,sPu)−1}t,t. In our proof, we deviate slightly from our

stated model in assuming exponentially decaying tails for the priors on the variance
parameters σ2

u,a and σ2
u,s instead of the more non-informative half-Cauchy priors we

used in our implementation.

Assuming a fixed dimension p of x over time t, let F denote the space of all longi-
tudinal mean functions {f ≡ fx(t), x ∈ X} represented by the selected basis functions.
We assume the true longitudinal mean functions f0 ≡ f0,x(t) ∈ F .

Theorem 1 (function estimation). For any ε > 0, Π(||f − f0||2,g,loc < ε | data) → 1.

Details of the proof appear in Section S.5 in the supplementary material. The key
steps are to (i) show that f0 belongs to the Kullback-Leibler support of our prior, (ii)
exhibit a sequence of increasing subsets Fn ⊆ F , with exponentially decreasing prior
probability of Fc

n; (iii) establish an exponential bound for the δ-covering number for
Fn < enα with a specific α; (iv) then use a theorem from Ghosal et al. (1999) to
conclude convergence in L1 norm, which implies the desired result. Specifically, step (ii)
above makes use of the exponentially decaying tails of the priors on the β coefficients
and the variance parameters.

Without any loss of generality, we assume that g(x) > 0 for all x ∈ X . If not, we can
simply restrict ourselves to the set on which g(x) > 0. We then have nx → ∞ as n → ∞
for all x ∈ X . The asymptotic regime can then be understood as averaging over nx
replications for each x, thus replacing σ2

ε +σ2
u(t) by σ2

n,x = n−1
x {σ2

ε +σ2
u(t)}. Theorem 1

then implies that, for any x ∈ X and ε > 0, Π(||fx − fx,0||2,loc < ε | data) → 1, where
fx = (f1,x, . . . , fK,x)T with fk,x = fx(k) and ||fx||22,loc =

∑K
k=1 f

2
x(k).

For a given location k, let ρk = {Sk,1, . . . , Sk,mk
} be a random partition of X , the

space of vectors of length p whose individual entries have values in Xj , respectively. The
partition ρk is defined in the following way:

β��
k,x = β��

k,x′ ⇐⇒ x,x′ ∈ Sk,h for some h ∈ {1, . . . ,mk}.

Our hierarchical prior for the random partitions assigns a positive probability to each
possible configuration. Let ρk,0 be the partition generated by the true values of the
parameters at location k. Then the following theorem holds.

Theorem 2 (variable selection). Π(ρk = ρk,0 | data) → 1.

Details of the proof appear in Section S.5 in the supplementary material. The key
steps are to (i) argue that partitions that are not refinements of ρ0 must have vanishing
limiting posterior probability, lest it would violate Theorem 1; (ii) any partition ρ that
is a refinements of ρ0 represent the true f0,x with additional clusters and cluster-specific
parameters, but then, by Occam’s razor, the Bayes factor for any such less parsimonious
ρ relative to ρ0 goes to zero, implying again vanishing limiting posterior probability.
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The construction of our model in Section 2.1 is such that the influences of the pre-
dictors are encoded precisely by the model induced partition structures – the predictor
xj is important at location k if its levels belong to at least two different sets in the
partition ρk. Consistency in recovering the local partitions thus immediately implies
consistency in local variable selection.

5 Simulation Studies
In synthetic experiments, the proposed longitudinal framework achieved excellent em-
pirical performance in recovering the true fixed and random effect curves and associated
local cluster configurations from noisy subject level data. Figure 8 illustrates the sce-
nario used in the simulation studies. We considered T = 20 time points {1, . . . , T}.
We generated p = 10 predictors, x1, x2 ∈ {1, 2} and x3, . . . , x10 ∈ {1, 2, 3}. The total
number of possible level combinations of (x1, . . . , x10) across all time points to consider
in a fully flexible but completely unstructured model would thus be T

∏10
j=1 xj,max =

20 × 22 × 38 = 20 × 26,244 = 524,880. The true data generating mechanism is such
that x1 and x3 are locally important whereas all other covariates are redundant at all
time points. The fixed effects curves corresponding to the levels {1, 2} and {3} of x3
are initially equal, then diverge at t = 5 and finally merge back at t = 17, conditional
on x1 = 1. The fixed effects curves corresponding to the levels {1} and {2} of x1 are
initially equal and then diverge at t = 8. The true unique spline coefficients are

β��
1 = (5, 5, 5, 5, 6, 7.25, 8.5, 9, 9.25, 9.5, 9.5, 9.25, 9, 8.5, 7.25, 6, 5, 5, 5, 5)T,

β��
2 = (5, 5, 5, 5, 4, 2.75, 1.5, 1, 0.75, 0.5, 0.5, 0.75, 1, 1.5, 2.75, 4, 5, 5, 5, 5)T and

β��
3 = (5, 5, 5, 5, 6, 7.25, 8.5, 10.5, 12, 13.25, 13.75, 13.75, 13.5, 13,

12.5, 12, 11.25, 10.5, 9.5, 8.5)T.

We generated n = 25, 50, 100 individual specific curves with Li,t = 5 repeated measure-
ments at each time point. The residual variance was set at σ2

ε = 1, whereas the variance
and the smoothness of the random effects were σ2

u,s = 0.1 and σ2
u,a = 2, respectively.

Our method correctly recovers x1 and x3 as the only significant predictors. In fact,
the estimated number of groups �j,k (not shown here for brevity) associated with the
other predictors consistently equals to one. The posterior probabilities also correctly
estimate two groups for x1 starting from t = 8 and two groups for x3 starting from
t = 5. For x1, we find that the posterior probability p(�1,k = 1 | y) > 0.8 for k < 7, and
that p(�1,k = 2 | y) ≈ 1 for k ≥ 8. For x3, we find that p(�3,k = 2 | y) increases from 0.1
to 0.55 for k = 1 through k = 5, leveling off at p(�3,k = 2 | y) > 0.8 for k = 6 through
k = 20. Estimates of the fixed effects curves and a few individual level curves obtained
by our method are shown in Figure 8. Our model estimates the fixed (left panel) as well
as the individual specific (right panel) effects very precisely by borrowing information
whenever predictors are redundant or covariate levels are in the same cluster.

We compare the out-of-sample predictive performance of our proposed LFMM with
state-of-the-art parametric and nonparametric regression alternatives. We focus partic-
ularly on BART models by fitting both the original BART (Chipman et al., 2010) and
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Figure 8: Results for synthetic data: Scenario with ten covariates (x1, . . . , x10) where
only (x1, x3) are locally important, as described in Section 5. Left panel: Estimated
posterior means (colored lines) and 95% point wise credible intervals for the fixed effects,
superimposed on slightly jittered response values yi,�,t for all combination of the levels of
the significant predictors (x1, x3). The true fixed effects are superimposed (black lines).
Right panel: Estimated posterior means (colored lines) and 95% point wise credible
intervals for three individual specific curves, superimposed on the associated observed
individual response values yi,�,t. The figure here corresponds to the synthetic data set
that produced the median root mean squared error.

the smooth BART (Linero and Yang, 2018) to the synthetic data sets. In addition, we
apply a LASSO regression model independently at each time point, implemented using
the function glmnet in R. Since these other methods do not accommodate random ef-
fects, we are compelled to restrict ourselves to comparing only the fixed effects estimates
obtained by the different methods. Figure 9 compares the out-of-sample predictive per-
formance (left panel) and the lengths of the associated 95% prediction intervals (right
panel) for the different methods for 500 simulated data sets with 75%–25% training-test
splits. All methods produced prediction intervals with coverages probabilities close to
the nominal rate (not shown). Remarkably however, despite being very parsimonious,
at least compared to BART and soft-BART, and despite having to estimate many more
parameters constituting the random effects components, our proposed LFMM not only
had substantially smaller out-of-sample root mean squared errors (RMSEs), it actu-
ally performed uniformly better than all other approaches in all simulated data sets.
Furthermore, our method actually achieved this with uniformly smaller interval widths.

We present the results of some additional simulation experiments in Section S.8 of
the supplementary materials to assess the performance of our proposed model in the
special but unrealistic case when no individual specific information is available which
makes it even more favorable for our competitors that do not accommodate random
effects. Our findings are however similar.
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Figure 9: Results for synthetic data: The left panel shows the out-of-sample root mean
squared error for n = 25, 50 and 100. The right panel shows the widths of the prediction
intervals for n = 50. All measures reported are obtained over 500 75%-25% training-
test splits. The red points represent the averages across simulations, whereas the red
intervals represent the interquartile ranges across simulations.

6 Applications
In this section, we discuss the results of our method applied to two data sets. Three
more examples, including one with time-varying predictors, are presented in Section S.9
of the supplementary materials.

6.1 Progesterone Data

We describe here an application of our proposed approach to modeling progesterone data
(Brumback and Rice, 1998; Nguyen and Gelfand, 2011) that record the logarithm of
the progesterone levels of women during the course of their menstrual cycles, measured
by urinary hormone assay. Measurements of 51 female subjects occur during a monthly
cycle ranging from −8 to 15 (8 days pre-ovulation to 15 days post-ovulation). There
are a total of 91 cycles: the first 70 cycles belong to the non-conceptive group, the
remaining 21 cycles belong to the conceptive group. The type of cycle is the single
categorical predictor used in the analysis.

Figure 10 (left) shows the estimated posterior means and associated 95% point wise
credible intervals for the group specific curves. The population level curves for conceptive
and non-conceptive cycles are clustered together in the early part of the cycle but become
different in the late post ovulation period. In particular, the late conceptive cycles are
associated with higher levels of progesterone. Global clustering methods would not allow
clustering of the groups in the pre-ovulation period and would simply separate the two
groups across all time points. Figure 10 (right) shows the estimated posterior means
and associated 95% point wise credible intervals for the individual specific curves. These
estimates show how our model can flexibly recover the individual level variations.
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Figure 10: Results for the progesterone data: The left panel shows the estimated poste-
rior means and 95% point wise credible intervals for the fixed effects curves, superim-
posed on slightly jittered response values yi,�,t for different levels of x. Here x is found to
be only locally important: Its two levels have no effect on y for t ∈ [−8, 10] but influence
y significantly differently for t ∈ (10, 15]. The right panel shows three examples of indi-
vidual specific curves, their estimated posterior means (solid lines) and 95% point wise
credible intervals, superimposed on the associated observed individual response values
(dashed lines) yi,�,t.

6.2 Health and Retirement Study Data
We analyze publicly available data from a longitudinal survey of US adults, the Health
and Retirement Study (HRS). The HRS was established to assess the health implications
of aging at both individual and population levels and has been fielded biennially years
since 1992. Three levels of data – public, sensitive and restricted – can be accessed on
the HRS website or the RAND HRS longitudinal file. The HRS is sponsored by the
National Institute on Aging and the University of Michigan and has previously been
analyzed in Sonnega et al. (2014) and most recently in Deshpande et al. (2020).

The goal of the study is to understand how life course processes influence the tra-
jectories of cognitive health. Therefore, we focus on predicting each subject’s later-life
cognitive function over time using life course socio-economic position (SEP) indicators.
The p = 13 covariates include measures of SEP in childhood (SEP index), early adult-
hood (educational attainment), and later-life (household wealth) as well as measures
of later-life mental and physical health (binary indicators of physical activity, diabetes,
heart problems, high blood pressure, loneliness and stroke as well as body mass index
BMI, and depression index) and socio-demographic factors (race, gender). The size of
the unstructured model T

∏p
j=1 xj,max = 32×580,608 = 18,579,456 makes it impossible

to estimate the parameters without adopting a dimensionality reduction approach. The
outcome is cognitive function as measured by a series of listening and memory tests

https://hrsonline.isr.umich.edu
https://www.rand.org/well-being/social-and-behavioral-policy/centers/aging/dataprod/hrs-data.html
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that the HRS used to construct a score ranging from 0 to 35. We restricted our analysis
to subjects aged between 65 and 96 years with at least two cognitive scores recorded
between 2000 and 2016. This resulted in a sample of n = 4,167 subjects who were ad-
ministered a total of N = 27,820 surveys, each individual being recorded either at even
or at odd numbered ages but missing the intermediate values.

Figure 11: Results for the HRS: The estimated posterior probabilities for the number
of clusters of the predictors’ levels over time for x1 = education, x2 = gender, and
x3 = race. The predictors x1 and x3 were locally important. The remaining predictors,
including x2 shown here, were never included in the model since the number of clusters
of their levels was always 1.

Figure 11 shows the posterior probabilities for the number of groups �j,k associated
to three of the predictors (education, gender, race). The other predictors’ levels were
grouped together at each location k and therefore they did not affect the outcome. Fig-
ure 12 shows the effect of education and race, i.e., the two predictors that were selected
by the model. These results highlight the importance of educational attainment due to
its association with cognition. It appears that higher levels educational attainment are
associated with higher cognitive function across adulthood. This confirms that socioe-
conomic position in early adulthood as measured by education can have later life effects
on cognition. Conversely, it appears that the other SEP measures have no predictive
effect on later-life cognition. In middle aged individuals, three groups of educational
attainment seem to differently affect the outcome: 1–8, 9–12, 13+. In old aged individ-
uals, instead, only two groups of educational attainment are significant: 1–8, and 9+.
As far as race is concerned, it appears that after controlling for the other covariates
in this study, white and non-white individuals have significant differences in cognitive
scores during later-life. This finding also confirms the results in Deshpande et al. (2020),
who estimated that white people’s intercept parameter is larger than the one for other
races, and is consistent with previous literature (Wilson et al., 2015; Díaz-Venegas et al.,
2016). This result indicates that other factors that are unaccounted for (i.e., quality of
education or literacy) are affecting the estimated cognitive scores for each race/ethnic
group. Crucially, our model is able not only to flexibly estimate the cognitive score
functions, but also to pool information across different covariate subgroups. Borrowing
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Figure 12: Results for the HRS: The left panel shows the estimated posterior means and
95% point wise credible intervals for the fixed effects curves corresponding to different
education levels, superimposed on slightly jittered response values yi,�,t. The right panel
shows the estimated posterior means and 95% point wise credible intervals for the fixed
effects curves corresponding to different races, superimposed on slightly jittered response
values yi,�,t.

information across curves becomes especially important to estimate the cognitive score
of older aged individuals due to the decrease in sample size.

7 Discussion
In this article, we developed a flexible Bayesian semiparametric approach to longitudinal
functional mixed models in the presence of categorical covariates. Building on novel
fHMM infused mixtures of locally supported B-splines, our proposed method allows
the fixed effects components to vary flexibly with the associated covariates, allowing
potentially different sets of important covariates to be included in the model at different
time points. The mechanism allows different sets of covariates to be included in the
model at different time points while also allowing the selected predictors’ influences
to vary flexibly over time. Flexible time-varying additive random effects, modeled also
by Markovian mixtures of B-splines, are used to capture subject specific heterogeneity.
We established theoretical results on posterior consistency of the proposed method for
both function estimation and variable selection. In simulation experiments, the method
significantly outperformed the competitors. We illustrated the method’s practical utility
in real data applications.

The methodology presented here is broadly adaptable to diverse other problems.
While the focus of this article has been on dynamically varying longitudinal data mod-
els, the methodology could also be useful in static multiway mixed ANOVA designs.
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Methodological extensions we are pursuing as topics of separate research include dy-
namic partition models for observational units; models for spatial and spatiotemporal
settings; models for multivariate responses; principled approaches to accommodate cat-
egorical and ordinal responses and continuous, ordinal and mixed type covariates; etc.

Our approach involves dynamically varying partitions of potentially high-dimensional
covariate spaces. Achieving full posterior inference here is non-trivial. The critical com-
putational demand comes from the size of the two-level random partition and the sample
size. Our current implementation in R takes about 10 minutes for the progesterone data
set and about 8 hours for the large HRS data set discussed in Section 6. A compar-
ison of our computation times relative to the competitors considered in Section 5 is
presented in Section S.7.2 in the supplementary material. The development of more
efficient user-friendly software is in our future plans.

Supplementary Material
Supplementary Material. Bayesian Semiparametric Hidden Markov Tensor Partition
Models for Longitudinal Data with Local Variable Selection
(DOI: 10.1214/23-BA1383SUPPA; .pdf). The supplementary materials present brief re-
views of B-splines, fHMMs, and tensor factorization methods for easy reference. The
supplementary materials also include additional discussions on the characterization of
overall, main and interaction effects and associated tests; proofs of the theoretical re-
sults; choice of the prior hyper-parameters; additional details of the MCMC algorithm
used to sample from the posterior; MCMC diagnostics; results of some additional sim-
ulation experiments; additional real data applications; etc.

Supplementary Material. R programs
(DOI: 10.1214/23-BA1383SUPPB; .zip). R programs implementing the methods devel-
oped in this article and an accompanying ‘readme’ file are also included as separate
files.
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