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Abstract. Specification of the prior distribution for a Bayesian model is a cen-
tral part of the Bayesian workflow for data analysis, but it is often difficult even
for statistical experts. In principle, prior elicitation transforms domain knowl-
edge of various kinds into well-defined prior distributions, and offers a solution to
the prior specification problem. In practice, however, we are still fairly far from
having usable prior elicitation tools that could significantly influence the way we
build probabilistic models in academia and industry. We lack elicitation methods
that integrate well into the Bayesian workflow and perform elicitation efficiently
in terms of costs of time and effort. We even lack a comprehensive theoretical
framework for understanding different facets of the prior elicitation problem.

Why are we not widely using prior elicitation? We analyse the state of the art
by identifying a range of key aspects of prior knowledge elicitation, from properties
of the modelling task and the nature of the priors to the form of interaction with
the expert. The existing prior elicitation literature is reviewed and categorized in
these terms. This allows recognizing under-studied directions in prior elicitation
research, finally leading to a proposal of several new avenues to improve prior
elicitation methodology.
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workflow, domain knowledge.

1 Introduction
Bayesian statistics uses probabilistic models, formalized as a set of interconnected ran-
dom variables following some assumed probability distributions, for describing observa-
tions. Designing a suitable model for a given data analysis task requires both significant
statistical expertise and domain knowledge, and is typically carried out as an iterative
process that involves repeated testing and refinement. This process can be formulated
as the Bayesian workflow to aid the modeller work in a more reproducible and docu-
mentable manner; see Gelman et al. (2020) for a recent detailed formalization partition-
ing the process into numerous sub-workflows focusing on different facets of the process,
such as model specification, inference and model validation.

We focus on one central part of that Bayesian workflow: the choice of prior distribu-
tions for the parameters of the model. In particular, we discuss approaches to eliciting
knowledge from a domain expert to be converted into prior distributions suitable for use
in a probabilistic model, rather than assuming the analyst can specify the priors directly.
The fundamental goal of this expert knowledge or prior elicitation process (defined in
Section 2.1) is to help practitioners design models that better capture the essential
properties of the system or process under study. Good elicitation tools could also help
in the additional goal of fostering wide-spread adoption of probabilistic modelling by
reducing the required statistical expertise. An ideal prior elicitation approach would
simultaneously make model specification faster, easier, and better at representing the
knowledge of the expert. It is hoped that availability of good prior elicitation tools would
qualitatively transform the process of prior specification within the Bayesian modelling
workflow, analogously to what probabilistic programming languages and their efficient
model-agnostic algorithms have done for model specification and inference (e.g. Stan
Development Team, 2021; Salvatier et al., 2016; Ge et al., 2018).

Prior elicitation has a long history dating back to the 1960s (Winkler, 1967), and
excellent textbook accounts (O’Hagan et al., 2006), surveys and reviews (Garthwaite
et al., 2005; O’Hagan, 2019) are available. Despite the established problem formulation
and broad scientific literature on methods for eliciting priors in different special cases –
often for some particular model family – we are still lacking practical tools that would
routinely be used as part of the modelling workflow. While a few actively developed
tools for interactive prior elicitation exist and are used in selected domains, exemplified
by SHELF (Oakley and O’Hagan, 2019) and makemyprior (Hem et al., 2021), their ac-
tive user-base remains a tiny fraction of people regularly applying probabilistic models.
Instead, practitioners often use rather ad hoc procedures to specify and modify the pri-
ors (e.g. Sarma and Kay, 2020), building on personal expertise and experience, ideally
learned by following literature on prior recommendations – for instance by Stan Devel-
opment Team (2021), on logistic regression (Gelman et al., 2008; Ghosh et al., 2018),
on hierarchical models (Gelman, 2006; Simpson et al., 2017; Chung et al., 2015), on
Gaussian random fields (Fuglstad et al., 2019), or on autoregressive processes (Sørbye
and Rue, 2017).
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We discuss reasons for the still limited impact of prior elicitation research on prior
specification in practice, and propose a range of research directions that need to be pur-
sued to change the situation. Our main claim is that we are still fairly far from having
practical prior elicitation tools that could significantly influence the way probabilistic
models are built in academia and industry. To improve over the current state, coor-
dinated research involving expertise from multiple disciplines is needed. This paper is
both our call for experts to join these efforts, and a concrete guide for future research.
Consequently, the paper is written both for people already developing prior elicitation
techniques and for people working on specific complementary problems, who we are en-
couraging to contribute to the common goal. For people looking for practical methods
for prior elicitation in their own modelling problems, we unfortunately cannot yet pro-
vide very concrete solutions, but we are looking for your feedback on the requirements
and desired goals.

As will be clarified later, several interconnected elements hinder the uptake of prior
elicitation methods. Some of these are purely technical properties of the elicitation
algorithms, relating to limited scope in terms of models that prevents their use in general
probabilistic programming, or ability to only address univariate priors, sequentially,
rather than jointly eliciting all priors of a model. Some are more practical, such as
many of the approaches still being too difficult for non-statistical experts to use, and
lack of good open source software that integrates well with the current probabilistic
programming tools used for other parts of the modelling workflow. Finally, some aspects
are more societal: The concrete value of prior elicitation has not yet been adequately
demonstrated in highly visible case studies, and hence end-users do not know to request
better approaches, and decision-makers have not invested resources for them.

Critically, these issues are highly interconnected. For building large-scale demonstra-
tions of the practical value of prior elicitation in visible applications, we would already
need to have high-quality software that integrates with existing modelling workflows,
as well as elicitation methods capable of efficiently eliciting priors for models of suffi-
cient complexity. Given that the field is currently falling short of achieving any of these
aspects, we argue that significant coordinated effort is needed before we can make con-
crete recommendations on best practices for elicitation in any given instance. We can
largely work in parallel towards mitigating these issues, but it is important to do this
in a coordinated manner, typically so that researchers with complementary scientific
expertise work together to address the most closely connected elements. For instance,
an ideal team for designing the software tools would combine at least computer engi-
neers, statisticians, interface designers and cognitive scientists, to guarantee that the
most important aspects for all dimensions are accounted for.

To proceed towards practical recommendations, we start by identifying seven key
dimensions that characterize the prior elicitation challenge and possible solutions for
it, to provide a coherent framework for discussing the matter. We inspect prior elic-
itation from the perspectives of (1) properties of the prior distribution itself, (2) the
model family and the prior elicitation method’s dependence on it, (3) the underlying
elicitation space, (4) how the method interprets the information provided by the ex-
pert, (5) computation, (6) the form and quantity of interaction with the expert(s), and
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(7) the assumed capability of the expert, both in terms of their domain knowledge and
statistical understanding. We discuss all of these fundamental dimensions in detail (Sec-
tion 2.3), identifying several practical guidelines on how specific characteristics for each
of them influence the desired properties for the elicitation method. We also provide
a review of existing elicitation methods to highlight gaps in the available literature,
but for more comprehensive reviews at earlier stages of the literature, we recommend
consulting O’Hagan et al. (2006) and Garthwaite et al. (2005).

Building on this framework, we proceed to make recommendations for future re-
search, by characterizing in more detail the current blockers listed above, and outlining
our current suggestions on what kind of research is needed to resolve the issues. These
recommendations are necessarily on a relatively high abstraction level, but we hope
they still provide a tangible starting point for people coming from outside the current
prior elicitation research community. In particular, we discuss easy-to-use software that
integrates with open probabilistic programming platforms as a necessary requirement
for practical impact, already outlining a possible architecture and key components for
such a system. We emphasize the need for considerably extended user evaluation for
verifying that the methods have practical value.

2 Prior elicitation
2.1 What is prior elicitation?
Specifying prior probability distributions over variables of interest (such as model’s
parameters) is an essential part of Bayesian inference. These distributions represent
available information regarding values of the variables prior to considering the current
data at hand. Prior elicitation is one way to specify priors and refers to the process
of eliciting the subjective knowledge of domain experts in a structured manner and
expressing this knowledge as prior probability distributions (Garthwaite et al., 2005;
O’Hagan et al., 2006). This involves not only actually gathering the information from
an expert, but also any computational methods that may be needed to transform the
collected information into well-defined prior probability distributions.

While prior elicitation is the focus of our article, it is only one of many ways to
specify informative priors. Alternatively, analysts may directly specify priors based on
a variety of other information sources including relevant literature or databases when
the parameters have fairly concrete real-world referents (Gelman and Shalizi, 2013).
For instance, in medicine, data-based priors have been widely adopted (Bartoš et al.,
2021), while there are situations where prior elicitation is preferred, such as with param-
eter settings that are unverifiable from the data to hand (Dallow et al., 2018). When
historical data are available, priors can be specified by ‘borrowing’ from that data,
known as historical borrowing (Viele et al., 2014), using hierarchical modelling (Pocock,
1976; Spiegelhalter et al., 2004; Neuenschwander et al., 2010, 2016; Hobbs et al., 2011;
Schmidli et al., 2014) or through power priors (Ibrahim and Chen, 2000; Ibrahim et al.,
2015; Psioda and Ibrahim, 2019).

Besides encoding domain knowledge, there are other grounds for specifying priors.
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For instance, priors can be chosen such that they affect the information in the likelihood
as weakly as possible (noninformative priors), yield smoother and more stable inferences
(regularizing priors), or yield ‘asymptotically acceptable’ posterior inference (reference
priors) (Gelman et al., 2017; Kass and Wasserman, 1996). In particular, one may require
a prior to ensure posterior consistency (Rousseau, 2016; Moreno et al., 2015). While
we acknowledge the validity of these approaches as well, we do not discuss them in
more detail in this article due to our specific goal of investigating the state of prior
elicitation, not prior specification in general. However, we repeat the general observation
that practically flat priors, such as normal(0, 106), sometimes used by practitioners
should be avoided, due to problems in posterior inference (Carlin, 2000; van Dongen,
2006; Gelman, 2006; Gelman et al., 2013, 2017; Gelman and Yao, 2020; Smid and Winter,
2020).

Most parameters of theory-driven, physics-based models have a clear meaning out-
side the model itself. For example, the weight of a star has meaning outside the statistical
model that is used for weight estimation from astronomical data. However, for less pre-
cise theories and corresponding models, say, in the social sciences, parameters often only
have meaning within the context of the model they are part of (Gelman et al., 2017).
Accordingly, for the latter kind of models, prior elicitation procedures need to take into
account that the distribution being elicited is part of a model and cannot simply be
viewed in isolation. The Bayes rule connects the prior p(θ) to the posterior p(θ|y) within
the context of the likelihood p(y|θ),

p(θ|y) = p(y|θ)p(θ)
p(y) , (2.1)

where the observables and the parameters are denoted by y and θ, respectively. The
goal of prior elicitation is to elicit p(θ) from an expert. In line with Gelman et al.
(2017), we note that the likelihood p(y|θ) partially determines the scale and the range
of reasonable values for θ. In that respect, prior elicitation differs from the elicitation for
evidence-based decision-making (e.g. Kennedy et al., 2008; Brownstein et al., 2019) or
expert systems (e.g. Studer et al., 1998; Wilson and Corlett, 2005), where the objective
is to elicit a probability distribution (not paired with any likelihood) that represents
uncertainty on the parameters of a decision model (Grigore et al., 2016) or the node
probability tables of a Bayesian network (Nunes et al., 2018). We note, however, that
whether prior elicitation should depend on the (sampling) model is still under commu-
nity debate and there is no universally accepted answer yet.

A common elicitation process involves two persons, called expert and analyst. We
follow the convention that the expert is referred to as a female and the analyst as a
male (Oakley and O’Hagan, 2007), and use the term analyst instead of facilitator to
emphasize that the analyst can play many roles simultaneously (O’Hagan et al., 2006,
Section 2.2.1), for instance, as a statistician and a facilitator. The facilitator is an
expert in the process of elicitation. He can take an active role such as manage dialogue
between the expert(s) or a more passive role such as assisting in the elicitation between
the expert and an elicitation algorithm. Not all elicitation methods require a human
facilitator, but instead he/it is built into the elicitation software (see an interesting
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alternative definition by Kahle et al., 2016). The expert refers to the domain expert,
who is also called a substantive expert. She has relevant knowledge about the uncertain
quantities of interest, such as the model parameters or observables. For more about the
definition and recruitment of the experts, see Bolger (2018).

2.2 Why isn’t the use of prior elicitation widespread (yet)?

Priors can have significant effect on the outcome of the whole modelling process and
support is clearly needed for their specification (Robert, 2007; O’Hagan, 2019), yet prior
elicitation techniques are not routinely used within practical Bayesian workflows. The
most natural explanation for this is that the current solutions are simply not sufficient
for the needs of the people building statistical models and doing practical data analysis.
We are not aware of structured literature looking into these aspects systematically, and
hence we provide here our evaluation of the main reasons why prior elicitation has
not yet entered daily use in the statistical modelling community. The goal here is to
provide a high-level overview of the main issues we have identified based on both the
scientific literature and our experiences while interacting with the modelling community,
in particular the user bases of Stan (Stan Development Team, 2021), brms (Bürkner,
2017), PyMC (Salvatier et al., 2016) and Bambi (Capretto et al., 2020). Not all claims of
this subsection are supported by direct scientific evidence.

As briefly mentioned in the Introduction, we believe the reasons for limited use
of prior elicitation are multifaceted and highly interconnected. We believe the three
primary reasons, all of approximately equal importance, are:

• Technical: We do not know how to design accurate, computationally efficient,
and general methods for eliciting priors for arbitrary models.

• Practical: We lack good tools for elicitation that would integrate seamlessly to
the modelling workflow, and the cost of evaluating elicitation methods is high.

• Societal: We lack convincing examples of prior elicitation success stories, needed
for attracting more researchers and resources.

By the technical dimension we refer to the quality and applicability of the prior elic-
itation methods and interfaces, for instance in terms of what kinds of models and priors
are supported, and how accurate and efficient the algorithms are. An ideal solution
would work in general cases, provide an easy interface for the expert to provide infor-
mation, accurately reproduce the true knowledge of an expert, and be computationally
efficient and reliable to be incorporated into the modelling workflow. In Section 2.4 we
will summarize the current literature and discuss the limitations of the current technical
solutions, effectively concluding that we do not yet have prior elicitation techniques that
would reach a sufficient level of technical quality in general cases.

By the practical dimension we refer to concrete tools ready to be used by practition-
ers. On a rough level, a prior elicitation method consists of some interface for interacting
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with the expert and the computational algorithm for forming the prior. Often the in-
terfaces proposed for the task have been fairly general, but the majority of the research
on the computational algorithms has been dedicated to methods that are only applica-
ble for specific models or forms of priors. Their practical value remains limited. Even
though some examples of model-agnostic elicitation methods exist and some initiatives
have been developed for extended periods of time, we are still nowhere near a point
where prior elicitation tools would routinely be used as a part of the modelling process.
Besides the technical reasons mentioned above, one major reason is that the tools have
not been integrated as parts of the broadly used modelling ecosystems, but rather as
isolated tools with their own interface conventions, modelling languages, and internal
data formats. To put it briefly, a person building a model e.g. in Stan cannot launch
an elicitation interface to elicit priors for their specific model, and in the extreme case
there might not even exist any tools applicable to their model. In Section 3.5, we will
outline directions for overcoming this practical challenge.

Another practical issue concerns evaluation of prior elicitation methods. Even though
the basis of evaluating the elicitation methodologies is well established (see Section 3.4),
the practical value of prior elicitation is extremely difficult and costly to evaluate. Al-
ready isolated studies demonstrating e.g. improved task completion time, compared to
manual prior specification, for some prototypical model require careful empirical ex-
perimentation with human users. While this is a common practice in human computer
interaction research, for statisticians it requires quite notable additional effort and ex-
pertise. More importantly, for the real cases of interest the evaluation setup is unusually
complex because the modelling process itself is a highly complex iterative process that
requires statistical expertise and takes a long time, possibly weeks or months. Any em-
pirical evaluation of the value of prior elicitation requires enrolling high-level experts
who are tasked to carry out complex operations with systems that are unfamiliar to
them, and possible significant individual differences in the way models are built neces-
sitate large user bases for conclusive evidence. This can only be done once the practical
software is sufficiently mature, and even then is both difficult and expensive. The prob-
lem is naturally not unique to prior elicitation, but instead resembles e.g. the cost of
evaluating the effect of new medical practices that require medical professionals testing
new procedures that may also result in worse treatments, or evaluation of new educa-
tional policies and practices. However, justifying the cost is often easier for these tasks
that are considered critically important for the society.

Following the above discussion on cost of evaluation, we believe that there is a sig-
nificant societal argument explaining the limited use of prior elicitation. As detailed
in this article, the task is challenging and consequently requires significant resources
spanning several scientific fields, combining fundamental statistical and algorithmic re-
search with cognitive science and human-computer interaction for forming the solid
basis with high-quality software integration and costly evaluation. This requires signif-
icant resources, yet the current research is driven solely by academia and the field has
remained somewhat small.

To some extent this can be attributed to the long history of avoiding strong subjective
priors in quest for objective scientific knowledge or fair and transparent decision-making.
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Audiences struggling to accept subjective priors in the first place are best convinced by
maximally clear examples that leave no room for additional layers of complexity, such
as prior elicitation procedures. Follow-up research encouraged by these examples is
likely to follow similar practices even when they could benefit from improved processes
for prior specification. We hence argue that lack of broad interest more specifically
on prior elicitation is largely because the value of prior elicitation has not been con-
cretely demonstrated in breakthrough applications of societal importance. Without such
demonstrations, the level of interest for these tools will remain low outside the statistics
research community. However, already isolated examples of significant scientific or eco-
nomical breakthroughs building on explicit use of prior elicitation could lead to increase
in both research funding (e.g. in the form of public-private partnerships for applying
the technology) and in particular in interest for open source software development. To
some extent these efforts are shared with the general task of convincing researchers
and decision-makers that use of subjective priors is scientifically valid and valuable, but
additional effort is needed in demonstrating the value of prior elicitation, in the form
of examples where it results in improved models or offers a more cost-efficient, reliable
and reproducible process.

This argumentation, unfortunately, is very circular in nature. To boost interest in
developing better prior elicitation methods, we would need a high-profile demonstration
of their value, but establishing that demonstration would require access to high-quality
solutions that integrate well with the modelling tools. However, it is important to realize
that the demonstrator can likely be done well before having a robust general-purpose
solution. Instead, it is sufficient to have proper software and interface integration of prior
elicitation with one modelling ecosystem that is already used for addressing societally
important modelling questions, combined with elicitation algorithms that work for the
specific types of models needed and can later be extended for even more general models
without changing the interfaces. For instance, Bayesian models developed within the
Stan ecosystem played a significant role in modelling the effect of various interventions
had on the spread of COVID-19 (Flaxman et al., 2020), and demonstrating the value
of prior elicitation in such a context would likely have been sufficient for raising the
awareness of this research direction.

2.3 Prior elicitation hypercube

The interdisciplinary nature of the prior elicitation problem, and therefore scattered
coverage of the topic, makes it difficult to obtain an overall perspective to the current
state of research. To provide a frame of reference, we identify seven key dimensions
that characterize the prior elicitation problem. Together the dimensions form a prior
elicitation hypercube, depicted in Figure 1, that both helps discuss the current litera-
ture in a more structured manner and enables identifying understudied directions. The
first two dimensions (D1–D2) cover the Bayesian model itself (prior and likelihood).
Dimensions D3–D5 specify key proprieties of an elicitation algorithm, such as in which
space the elicitation is conducted (D3), how the expert’s input is modelled (D4), and
how to deal with the computational issues (D5). The last dimensions D6–D7 cover
what is assumed about the expert(s) and the interaction with them. The current prior
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Figure 1: Prior Elicitation Hypercube. The seven dimensions (D1-D7) of the hy-
percube.

elicitation literature is reviewed and categorized in terms of these dimensions in the
Supplement (Mikkola et al., 2023). For convenience, the section numbers of the supple-
mentary material are preceded by S, so that e.g. Section S1 refers to the first section of
the Supplement.

D1: Properties of the prior distribution itself . Two properties of the prior
distribution have attained considerable attention in the literature: dimensionality and
parametric vs nonparametric nature. Dimensionality is about the number of parameters:
is the prior univariate or multivariate? Eliciting multivariate (joint) distributions is a
more complex task than eliciting univariate (marginal) distributions (O’Hagan et al.,
2006). It is not enough to elicit the prior in a parameter-by-parameter manner because
it is the joint behaviour that affects inferences, and hence it is the joint distribution
that must be considered (Gelman et al., 2017). Maybe because of the challenge of
eliciting multivariate priors, univariate elicitation has been studied more, even though
most models have more than one parameter and hence multiparameter prior elicitation
is really needed (Gelman et al., 2020, Section 7.3).

The second property is about whether the prior comes from some parametric family
or is nonparametric. The main strand of the prior elicitation literature is about the
elicitation of parametric prior distributions, in which case the follow-up question is to
which parametric family the prior belongs. The family is determined by the choice of
the analyst rather than as a result of the elicitation, although it is often chosen so that it
does not conflict with the elicitation data. The choice of the family is closely connected
to the likelihood/model (see Section S4), since the natural conjugate family is often
considered. On the other end, there is an important line of research on nonparametric
prior elicitation that has been built upon Gaussian processes (Oakley and O’Hagan,
2007).

D2: The model family and the method’s dependence on it. The underlying
probabilistic model and the data analysis task in which it is applied, significantly impact
the choice of the prior elicitation method. A bulk of the prior elicitation research ad-
dresses the elicitation of parameters of some specific model or model class. We call these
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types of methods model-specific, and they are reviewed in Section S4. In contrast, in our
literature review we found a relatively small number of model-agnostic prior elicitation
methods, but to name some, we refer the reader to Gelfand et al. (1995); Oakley and
O’Hagan (2007); Hartmann et al. (2020). To promote adoption of prior elicitation in
applications, it is highly desirable that a prior elicitation method is not model-specific,
or at least is applicable to a wide range of models, and we strongly encourage research
in this direction as acknowledged earlier by Kadane and Wolfson (1998). Furthermore,
the underlying data analysis task may indicate which parameters are of interest, and
thus need to be elicited (in the context of a chosen Bayesian model), and which may be
less relevant (Clemen and Reilly 2001, p.292; Stefan et al. 2020).

D3: Elicitation space. Prior elicitation is about eliciting expert knowledge to form
a prior distribution for model parameters. Hence, it is not surprising that the majority
of prior elicitation research is focused on querying values of parameters, or quantities
directly related to parameters, from the experts. In this case, we say that the underly-
ing elicitation space is the parameter space. This implies that the expert has to have at
least some intuition about the meaning of the parameters (interpretability) and about
their natural scales. However, this cannot be assumed in all cases. The elicitation of
parameters of Bayesian neural networks serves as an extreme example. Models of this
type can have thousands of parameters without any interpretation attached to them.
In many cases it may be more beneficial to query the expert about something else, such
as model observables. In this case we say that the underlying elicitation space is the
observable space. The model observables are variables (e.g. model outcomes) that can be
observed and directly measured, in contrast to latent variables (e.g. model parameters)
that only exist within the context of the model and are not directly observed. Kadane
and Wolfson (1998) made a similar dichotomy where they called elicitation in the pa-
rameter space structural elicitation, and elicitation where the expert makes judgments
about “the dependent variable given various values of the predictor variables”, predictive
elicitation. Predictive elicitation is a type of elicitation in the observable space. In gen-
eral, elicitation in observable space does not require the model to have both dependent
and independent variables (e.g. Coolen, 1992; Hughes and Madden, 2002; Gaoini et al.,
2009), the existence of a “regression likelihood” (Kadane and Wolfson, 1998, p.5), nor
the prior predictive distribution (S2.1). For instance, an ‘elicitation likelihood’ can be
used for connecting the expert’s knowledge on observables to the parameters of interest
(see Section 3.1).

D4: Elicitation model. There are fundamental differences between elicitation
methods in terms of how the information provided by the expert is interpreted. Since
early prior elicitation research (Winkler, 1967; Bunn, 1978), the dominant approach
has been “fitting a simple and convenient distribution to match the elicited summaries”
(O’Hagan et al., 2006). This ‘fitting approach’ does not assume any specific mechanism
on how the expert data are generated, and for instance, inconsistencies in the data are
reconciled by least-square minimization. Overfitting in elicitation means eliciting more
summaries than needed to fit a parametric distribution (O’Hagan et al., 2006; Hosack
et al., 2017), in which case inconsistencies may appear. Overfitting itself is desirable
because it allows for imprecision in the elicited summaries, and the fitted compromise
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prior may be expected in practice to yield a more faithful representation of the expert’s
knowledge (O’Hagan et al., 2006).

There is an alternative to the fitting approach, and how inconsistencies are dealt
with. The elicitation of an expert’s knowledge can be treated as any other Bayesian
inference problem where the analyst’s posterior belief about the expert’s knowledge is
updated in the light of received expert data (Lindley et al., 1979; Gelfand et al., 1995;
O’Hagan and Oakley, 2004; Gosling, 2005; Oakley and O’Hagan, 2007; Daneshkhah
et al., 2006; Gosling et al., 2007; Oakley et al., 2010; Moala and O’Hagan, 2010; Micallef
et al., 2017; Hartmann et al., 2020). The analyst has his own prior over the expert belief,
and there is an elicitation likelihood that allows the analyst’s posterior, which would be
the elicited expert’s prior, to be inferred from the elicitation data. This standpoint is
similar to supra-Bayesian pooling found in the literature of aggregating knowledge of
multiple experts (Section S6). We follow the latter terminology, even if there is only a
single expert to be elicited, and say that such an elicitation method follows the supra-
Bayesian approach. In this approach, inconsistencies in the elicited data are accounted
for by a noise mechanism built into the elicitation likelihood.

D5: Computation. Computation is needed in many parts of an elicitation algo-
rithm, such as in constructing prior from the elicited data and in active elicitation
(Section S5), and the computational aspects need to be accounted for in practical tools.
One-shot (D6) elicitation methods that follow the fitting approach (D4) and solely
operate in the parameter space are often computationally efficient and can easily be
incorporated into a practical workflow. In contrast, iterative (D6) predictive (D3) elic-
itation methods that operate in both spaces and require repeated computation of the
prior predictive distribution require considerably more attention in terms of computa-
tional efficiency, both because of increased computational cost and the need for fast
response time for convenient user experience.

D6: The form and quantity of interaction with the expert(s). The sixth
dimension is about the interaction between the expert(s) and the analyst. On the one
hand, the form of assessment tasks that an expert performs (and similar aspects relating
to the interaction modality with a single expert) is important. On the other hand, if there
is more than one expert, the format in which the experts interact is also important. For
instance, the behavioural aggregation method used in the SHELF protocol (Oakley and
O’Hagan, 2019) encourages the experts to discuss their opinions, and to settle upon
group consensus judgments, to which a single prior distribution is fitted (O’Hagan,
2019). Eliciting the knowledge of a group of experts, and how to combine the elicited
information into a single aggregate distribution, is a well established topic.

Concerning a single expert, there are choices to be made about the interaction modal-
ity of the elicitation. The expert can be either queried in a one-shot manner (one-shot
elicitation), or iteratively where the expert’s input affects what is queried next (itera-
tive elicitation). For instance, a prior elicitation algorithm that exploits active elicitation
(Section S5) is iterative. We distinguish iterative elicitation from interactive elicitation
that entails interaction with the elicitation system (Kadane et al., 1980), such as the sys-
tem updating a visualization of a prior distribution based on a slider position controlled
by the expert (Jones and Johnson, 2014). It is not obvious at all in which form the
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information should be elicited from the expert. Several things need to be taken simulta-
neously into account, such as what assessment tasks are informative, computationally
feasible, and, most importantly, encourage “a thoughtful, auditable and relevant answer
that is not affected or biased in some way by the giver’s psychology” (Hanea et al.,
2021). Thus, the design of the assessment tasks is key, as mathematically equivalent
assessment tasks are not necessarily psychologically equivalent (O’Hagan et al., 2006).
For instance, the impact of the visualization of assessment tasks on elicitation has been
studied by Hullman et al. (2018), Kim et al. (2019, 2020), and Sarma and Kay (2020).
Research on different assessment tasks is reviewed in Section S1. Since the assessment
task should also consider psychological and cognitive aspects of a person being elicited
(O’Hagan, 2019), this topic is also related to the next dimension.

D7: Capability of the expert in terms of their domain knowledge and
statistical understanding.

Perhaps the most challenging and researched issue in prior elicitation is that most
people are unable to express their prior knowledge in terms of probabilities, although
they will do so if asked, but their answers may be based on very superficial thinking.
(Hanea et al., 2021; Kahneman, 2011). If the expert has no solid statistical training,
she may not be able to provide reliable probabilistic assessments. In that case, we can
resort to assessment tasks that do not require probabilistic input, such as querying
likely hypothetical samples (Casement and Kahle, 2018). If the expert has only vague
domain knowledge, the elicitation algorithm should validate the provided information,
for instance, by using ‘seed variables’ as in Cooke’s method (Cooke, 1991). Even if the
expert has both excellent statistical and domain knowledge, she may be inclined to
commit to popular cognitive biases and to use cognitive shortcuts (heuristics) in her
reasoning, as well documented by Tversky and Kahneman (1974). This line of research
is known as heuristics and biases in prior elicitation, and it is intrinsically connected
to psychology (Hogarth, 1975). We provide only entry-points to this broad researched
field in Section S7.

2.4 Overview on past literature

We reviewed the current main lines of research in prior elicitation through the lens of
the prior elicitation hypercube (Section 2.3). The literature review can be found in the
Supplement, with sections referenced to using S1, S2 and so on, and a summary of the
main findings is presented here.

We observed that there are regions in the prior elicitation hypercube that are well
understood. Elicitation of a univariate parametric prior is an extensively studied topic.
Certain descriptive elements of the prior distribution, known as summaries, such as
quantiles, are typically queried from the expert. These univariate elicitation methods
commonly differ in the type of elicited summary, the order the summaries are elicited in,
and the framing of the corresponding assessment tasks (visual, gamble, etc.). The leading
principle in thinking of the aforementioned aspects and designing elicitation methods in
general, has been to minimize cognitive biases and so-called heuristics (Section S7) which
expert probabilistic judgments may be subject to (O’Hagan, 2019). There are widely
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accepted protocols on how to deal with these biases, and how to conduct elicitation
with single (Section S1) and multiple experts (Section S6). However, not all methods
take them properly into account.

The research on elicitation in the space of observables is abundant (Section S2), but
with a serious limitation. Namely, almost all the research is model-specific. Some prior
and model families have been studied extensively (Section S4), with significant atten-
tion e.g. on elicitation of priors for generalized linear models. From the perspective of
priors, there have been several works on the specific cases of Beta and Dirichlet distri-
butions (Section S1.3). When these priors are considered together with their conjugate
likelihood, which allows for a complete sampling model, the assessment tasks are often
in the space of observables. If this is not the case, then the assessment tasks are in the
space of parameters.

There are also distinct research lines on scoring rules (Section S1.4), nonparametric
elicitation (Section S3), and active elicitation (Section S5). Active elicitation research
refers to several articles on how active learning (Cohn et al., 1994) can be applied in
prior elicitation to help make most out of the limited elicitation budget due to costly
human effort. Nonparametric prior elicitation research is mostly built upon a supra-
Bayesian elicitation framework, where the expert’s subjective density is assumed to
follow a Gaussian process (Oakley and O’Hagan, 2007). Scoring rules are a class of
devices for eliciting and evaluating probabilities (Murphy and Winkler, 1970). They
encourage the expert to make careful assessments.

Despite the fact that multivariate prior elicitation has been studied from many per-
spectives, many of these methods are difficult to apply beyond text book examples.
In particular, the methods do not scale well to high-dimensional parameter spaces.
Copula-based elicitation requires assessment of parameter dependencies, which is cog-
nitively challenging (Garthwaite et al., 2005, Sec. 2.3) and scales poorly (e.g. Gaussian
copula requires specification of a covariance matrix, Clemen and Reilly, 1999, with
dim(θ)(dim(θ) + 1)/2 elements). Nonparametric Gaussian process elicitation that in
principle could work with higher dimensions has been empirically demonstrated only
for two parameters (Moala and O’Hagan, 2010). Predictive elicitation with generalized
linear models (Kadane et al., 1980; Bedrick et al., 1996) does not help either. Although
the original method by Kadane et al. (1980) can handle linear regression on at least
four covariates, scaling the method to hundreds of covariates is out of question due to
the increasing number of elicitation queries. Furthermore, the independence assumption
of covariates is troublesome in some predictive methods (Garthwaite and Dickey, 1988;
Bedrick et al., 1996). The fundamental challenge for these methods, and for multivariate
methods in general, is how to find assessment tasks that are both feasible for the expert
and informative enough to identify the complex joint prior distribution of parameters.
Moreover, an inference algorithm is needed that can form a prior from the elicited data.

3 Where should we be going?
We have discussed some limitations of the current prior elicitation research (Sections 2.2
and 2.4). In this section, we discuss possible solutions. We propose five promising avenues
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(Sections 3.1-3.5) to help in solving the technical, practical, and societal challenges
described in Section 2.2; we believe research on these avenues will increase the adoption
of prior elicitation techniques.

Technical solutions: We believe that an elicitation method should support elicitation
both in the parameter and observable space, should be model-agnostic, and should be
sample-efficient since human effort is costly. In Section 3.1, we propose an approach for
prior elicitation that takes these objectives into account. We also believe that elicitation
is easier when the prior is globally joint. These globally joint priors are discussed in
Section 3.3, but essentially, they let elicitation be reduced to just a few interpretable
hyperparameters.

Practical solutions: To help make model building easier, faster and better in reflecting
expert knowledge, we need to integrate prior elicitation into the Bayesian workflow (Sec-
tion 3.2). And this requires software able to inter-operate with already existing tools for
Bayesian modelling, including probabilistic programming languages (Section 3.5). The
software needs to support model-agnostic elicitation, otherwise there will be problems
with integration into the Bayesian workflow, because a change in the model specification
could preclude prior elicitation.

Societal solutions: We emphasize the need for considerably extended user evaluation,
required for verifying that the methods have practical value (Section 3.4), and the need
of case studies showing the advantages that a careful prior elicitation process can bring
to the modelling process.

3.1 Bayesian treatment of the expert in prior elicitation
In this section, we propose a unified approach to prior elicitation that brings together
several elicitation methods. The approach allows the expert to provide her response in
both the parameter and observable space (D3), and supports sample-efficient elicitation
(D6) by treating the expert in a Bayesian fashion.

In the supra-Bayesian approach, elicitation of an expert’s knowledge is treated as
any other Bayesian inference problem where the analyst’s posterior belief about the
expert’s knowledge is updated in the light of received expert data (see the discussion
in D4). We propose viewing the prior elicitation event itself as an interplay of the expert
and the analyst with the following characteristics:

Analyst Poses queries to the expert and gathers the expert’s input into a dataset
D. The analyst’s goal is to infer the expert’s distribution of the parameters θ,
conditional on the expert’s input data, p(θ|D).

Expert Based on her domain expertise, the expert answers to the analyst’s queries. The
expert’s input is modelled through the user model p(z|q) that is the conditional
probability of the expert’s input z given the analyst’s query q. That is, D consists
of N samples (zi, qi)Ni=1, and all the qi are treated as fixed.

Expert data can be provided in multiple elicitation spaces, all of which can be combined
to derive a single prior within the user model. For example, we can elicit expert data in
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both the observable space (data DY) and in the parameter space (data DΘ). The ana-
lyst’s goal is then to infer the distribution of the parameters conditional on the expert’s
input data, that is p(θ|DY ,DΘ). We assume that the analyst updates his knowledge
according to Bayes’ rule. Hence, he treats elicitation as a posterior inference problem,

p(θ|DY ,DΘ) = p(DY |θ)p(DΘ|θ)p(θ)
p(DY ,DΘ) , (3.1)

given the elicitation likelihoods p(DY |θ) and p(DΘ|θ), and the analyst’s prior belief
on the expert’s knowledge p(θ). In Equation 3.1, we have assumed DY and DΘ to be
conditionally independent given θ. The likelihoods p(DY |θ) and p(DΘ|θ) account for
the uncertainty inherent to the elicitation process due to the mechanism how the ex-
pert quantifies her knowledge on θ. Hence, the conditional independence assumption
essentially states that: given that there exists a fixed parameter vector θ that the ex-
pert thinks to be ‘true’, the mechanism how the expert reveals her knowledge on θ is
independent between the two elicitation spaces.

The analyst’s prior p(θ) can be taken to be one of the ‘objective’ priors mentioned
in Section 2.1. Besides the prior, the framework only requires specifying p(z|q, θ) which
describes, at individual query q level, how the expert would respond if she thinks that
θ is true. This p(z|q, θ) is also the likelihood for a single data-point (z, q), since q is
treated as fixed without a probability distribution assigned to it. The user model can
be obtained by marginalization, p(z|q) =

∫
p(z|q, θ)p(θ)dθ.

The proposed approach can be readily extended to support both sample-efficient
elicitation (via active elicitation) and AI-assisted elicitation.

Active elicitation. How to make the most out of the limited budget of N expert’s
inputs? In other words, what is an optimal strategy to select a sequence of queries
(qi)Ni=1? This is where the user model comes to play. When the analyst poses a query q,
he anticipates that the expert’s input z is distributed according to p(z|q). The analyst
applies the user model to choose the most informative queries. For instance, if the
analyst wants to maximize the expected information gain of p(θ|D) with respect to
a new query q, then the user model is needed for anticipating the corresponding yet
unseen response z, which involves taking expectation over p(z|q).

AI-assisted elicitation. One important thing to note is that the analyst (or here
facilitator) need not manually select the next queries, but the whole elicitation process
can be supervised by an ‘artificial facilitator’ – an AI-assistant. For instance, the AI-
assistant can be as simple as consisting only of a user model combined with an active
learning criterion for selecting next queries. However, in principle, it is possible to extend
the functionalities and capabilities of the AI-assistant to take into account, for instance,
the expert’s biases and incapabilities of providing informative input for some queries.

Through the following examples, we illustrate how the proposed approach brings
together prior elicitation methods found in the literature:

• Quantiles with mixture beta assumption (Gelfand et al., 1995). D is a set of quan-
tiles of the prior distribution of parameters. The elicitation space is the parameter
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space, D = DΘ. The likelihood p(DΘ|θ) equals Eq. (4) in Gelfand et al. (1995), and
it is derived from a few assumptions, one being that the expert’s input is a transfor-
mation of a mixture of beta-distributed random variables. The authors proposed
using Markov chain Monte Carlo for sampling from the posterior p(θ|DΘ).

• Judgements about plausible outcomes (Hartmann et al., 2020). D is a set of prior
predictive probabilities where the expert provides P(Ai|λ) for all i = 1, . . . , n,
given a partition A = {A1, . . . , An} of the observable space and hyperparame-
ter vector λ of a parametric prior p(θ|λ). The elicitation space is the observable
space, D = DY . Hartmann et al. (2020) assumed a Dirichlet likelihood and used
maximum likelihood estimation to estimate λ.

• Judgements about parameter values and relevance, using active elicitation (Daee
et al., 2017). The assumed model-specific setup considers a linear regression with
a sparsity-inducing spike-and-slab prior (George and McCulloch, 1993) on the
regression coefficients. D is a set of judgements on regression coefficient values and
relevance. The elicitation space is the parameter space, D = DΘ. The elicitation
likelihood p(DΘ|θ) and the analyst’s prior p(θ) can be written as a product of
Normal and Bernoulli distributions (Daee et al., 2017, Appendix A).
The active elicitation approach in the paper mixes the regression data and the
elicitation data. The proposed active elicitation criterion maximizes the informa-
tion gain between the posterior predictive distribution and the posterior predictive
distribution with a new expert’s data point (z, q). The posterior predictive distri-
bution is conditional to both the observational and elicitation data.

3.2 Bayesian modelling workflow
Having to choose a prior distribution can be portrayed both as a burden and a blessing.
We choose to affirm that it is a necessity. If you are not choosing your priors yourself,
then someone else is inevitably doing it for you, and the automatic assignment of flat
priors is not a good idea (Carlin, 2000; van Dongen, 2006; Gelman, 2006; Gelman et al.,
2013, 2017; Smid and Winter, 2020; Martin et al., 2021). Under some scenarios, we can
rely on default priors and default models. For instance, we may simply need to use
a given model for routine inference over new datasets. However, having the flexibility
to alter model assumptions could be advantageous, and priors are just one form of
assumptions. Thus, adopting a Bayesian workflow for prior elicitation should help to
reduce the burden and increase the blessing.

We need a Bayesian workflow, rather than mere Bayesian inference, for several rea-
sons (Gelman et al., 2020): Bayesian modelling can be challenging and generally requires
exploration and iteration over alternative models, including different priors, in order to
achieve inference that we can trust. Even more, for complex problems we typically do
not know ahead of time what model(s), that is, the combination of prior and likelihood,
we want to fit and even if so, we would still want to understand the fitted model(s) and
its relation to the data. Such understanding can often best be achieved by comparing
inferences from a series of related models and evaluating when and how conclusions are
similar or not.
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One common practical approach to modelling starts with a template model (see
discussion by Gelman et al., 2020) with default priors. A need for a more carefully de-
signed prior may be revealed only after careful analysis of the first models, and it may
be motivated by unrealistic results, computational problems, or the need for incorpo-
rating domain knowledge into a model. In other words, the choice of prior, as with other
modelling decisions, is often informed by iterative model exploration. Prior elicitation
is thus a central part of a Bayesian workflow, and is not restricted to happen only at
the beginning of the workflow.

A useful workflow does not just follow all pre-described steps, but also omits them
when they are unnecessary, in order to help allocate finite resources where they are most
needed. For example, for simple parametric models and informative data, the likelihood
can dominate the prior and the gain from prior elicitation could be negligible. Thus, in
many cases it may be sensible to start with some common default priors or priors weakly
informed by some summary statistics of the data (e.g. by centering and normalizing the
covariate and target values in regression), and then assess the need for more careful
prior elicitation using prior diagnostic tools (Kallioinen et al., 2021).

In that sense, knowing when to perform prior elicitation is central to a prior elic-
itation workflow. A good general heuristic is “in situations where prior information is
appreciable, and the data are limited” as O’Hagan et al. (2006) have put it. Then,
whether we should perform prior elicitation can be reformulated into: Is it worthwhile
to spend resources to incorporate domain knowledge? Or more nuanced: How much in-
formation do we need to gather, and how accurate should that information be? In many
instances, getting the order of magnitude right and/or obtaining a prior that works to
remove nonsensical outcomes may be sufficient. Furthermore, the level of accuracy does
not need to be the same for all the parameters in a model, as refining a few or even just
one prior can translate into considerably better inference.

Informative priors are useful for inducing strong regularization, namely shrinkage
priors such as horseshoe, regularized horseshoe, R2D2, spike-and-slab, and global-local-
shrinkage priors. These are applied, for example, in genetic association studies (Guan
and Stephens, 2011) where there are a lot of covariates of which only very few are actu-
ally relevant and comparably small data sets, making inference without regularization
very hard if not possible (p � n problems, see Peng et al. (2013)). Outside such shrink-
age priors and Bayesian trial design (since it is almost always a small-data scenario, see
Yuan et al. (2016)), there can be more nuanced scenarios where informative priors via
prior elicitation are crucial. For example, there can be gaps in time-series data in which
case the expert may provide structural information in a form of a prior distribution
that helps to fill gaps in the posterior distribution, or the expert knowledge may help
to extrapolate from one group in the data to another (e.g. see Siivola et al., 2021).

In line with the current literature, we have so far discussed prior elicitation with
regard to the choice of distributions and their parameters. This definition can be nat-
urally extended to prior elicitation over models, which could provide a new sub-field
for prior elicitation or a sister field of model elicitation. As evaluating over the entire
range of conceivable models is unfeasible, answering questions such as: “Is a linear model
adequate?”, “Do we need to extrapolate and perform predictions outside the observed
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domain?”, and similar ones would help us to narrow down options and save resources.
Restricting the search to a few options early on will help, even if we later choose to
expand the set of models.

Finally, a prior elicitation workflow should include one step to assess that the incor-
porated information is actually useful and an evaluation of the sensitivity of the results
to the prior choice, including possible prior-data conflicts (Depaoli et al., 2020; Gelman
et al., 2020; Lopes and Tobias, 2011; Al-Labadi and Evans, 2017; Evans and Moshonov,
2006; Reimherr et al., 2021; Berger, 1990; Berger et al., 1994; Canavos, 1975; Hill and
Spall, 1994; Skene et al., 1986; Jacobi et al., 2018; Roos et al., 2015; Pérez et al., 2006;
Giordano et al., 2018; Bornn et al., 2010; Ho, 2020; Kallioinen et al., 2021).

3.3 Developing better priors

One direction to improve prior elicitation is to develop priors for which elicitation is
easier per se. In this context, ‘easier’ can mean one of at least three perspectives: (a)
easier to understand for experts (D7), (b) computationally easier (D5), and/or (c) leav-
ing fewer degrees of freedom, that is, fewer hyperparameters to elicit. Perspective (a)
is especially relevant for direct elicitation in the parameter space, while perspective (b)
is mostly relevant for indirect elicitation in the observable space due to computational
requirements of the translation procedure to the parameter space ((D3); see Section
S2). Both of these perspectives tend to go hand in hand with the perspective (c) be-
cause fewer required choices often make the priors easier to understand for experts
due to reduced cognitive load, and reduce computational requirements due to a lower-
dimensional target space of the translation. Accordingly, if we focus on (c), we can have
the justified hope that other advantages will naturally follow in the process.

Reducing the number of hyperparameters comes with the initial (model-building)
choice of what matters to be elicited and what is acceptable to just fix to a constant
or forced to be of the same value (equality constraint). This line of reasoning leads to
the notion of joint hyperparameters where the individual priors all depend on a much
smaller (or highly structured) set of hyperparameters, jointly shared across parameters.
Any kind of hierarchical prior follows this logic by design (Bürkner, 2017). For example,
consider a simple hierarchical linear model across observations i with intercepts aj
varying across a total number of J groups:

yi ∼ normal(μi, σ)
μi = aj[i]

aj ∼ normal(a, τ)
a ∼ normal(μa, σa)
τ ∼ Gamma(ατ , βτ )

Focusing on the priors for aj , we have essentially reduced the problem of finding a total of
J priors, each with one or more hyperparameters, to just choosing four hyperparameters,
namely the location μa and scale σa of the normal prior on the joint mean a as well
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as the shape ατ and rate βτ of the Gamma prior on the joint standard deviation τ .1
However, such hierarchical priors are only locally joint in the sense that they do not
encompass all or even most parameters but only a subset. This becomes apparent if we
extend the above model by additional additive terms, for example,

μi = aj[i] + bi + ci + di,

with each term having their own mutually independent set of parameters and corre-
sponding hyperparameters.

It would be desirable to develop priors that are globally joint in that they span
most or even all parameters leaving just a few hyperparameters to choose. With the
purpose of preventing overfitting and facilitating variable selection in high-dimensional
linear regression models on comparably sparse data, several hierarchical shrinkage priors
have been developed that fulfil these properties (Bhattacharya et al., 2015; Piironen
et al., 2017; Zhang et al., 2020). However, they do not yet generalize much beyond
linear regression settings and their usefulness in the context of prior elicitation has not
been studied so far. If we can extend these priors to more complicated models and find
parameterizations with intuitive hyperparameters, such globally joint priors could prove
extremely valuable in making prior elicitation more practical and widely applicable.

3.4 Evaluating prior elicitation
When any new prior elicitation method is proposed, a natural question that arises is
whether it works as desired. Similarly, when a variety of prior elicitation methods are
available for a given context, the practitioner wonders which one is better. Such ques-
tions concern the evaluation of prior elicitation methods. There are multiple desiderata
for prior elicitation. Johnson et al. (2010a), for instance, categorize these into (i) va-
lidity – whether the elicitation captures the true belief of the expert, (ii) reliability –
whether repeated elicitations reproduce the same priors, (iii) responsiveness – whether
the elicitation is sensitive to changes in beliefs, and (iv) feasibility, which refers to the
costs or resources required for elicitation. Many of these desiderata may seem as being
at odds with each other, but they are all relevant for the eventual goal of supporting
the building of good models with available resources.

In an ideal scenario, any researcher or user of prior elicitation methods would easily
be able to compare the pros and cons of existing off-the-shelf methods for her prob-
lem, or even test new ones in small-scale user studies. So far, there have been very
few projects where multiple prior elicitation methods have been empirically compared
(Winkler, 1967; Johnson et al., 2010b; Grigore et al., 2016), and these have been in very
application specific contexts. There is a need for more general and standard valida-
tion paradigms for prior elicitation, and the prior elicitation field has no equivalents to
practices such as using benchmark datasets for comparing machine-learning algorithms,

1In hierarchical models, it is common to also call a and τ ‘hyperparameters’ although they are not
set by the analyst or expert but rather estimated from the data along with other model parameters.
To avoid confusion, we continue to restrict the use of ‘hyperparameters’ to parameters chosen in the
elicitation process, which are thus fixed during model fitting.
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e.g. Deng et al. (2009); LeCun et al. (2010). We think this is a particularly challenging
topic to work on because we also lack good metrics for evaluation. The simple metrics
that have been widely used in this context may not be valid measures of the quantities
we care about. For example, (i) an expert’s subjective feedback about elicited priors
may be subject to the kind of biases that also distort their priors, (ii) task completion
time is considered to be a proxy for cognitive effort, but the elicitation may be fin-
ished inaccurately and in a hurried manner due to the cognitive strain it produces, and
so on. Prior elicitation metrics can be potentially improved by incorporating research
from areas such as Psychology and Human-Computer Interaction. Improved metrics,
increased comparative work and the development of standardized validation paradigms
or platforms would be essential as the prior-elicitation field makes more progress. In
addition, many proposed evaluation metrics are model-specific, but we also need more
general methods that can be used across the board in a model-agnostic manner.

Among the different criteria for prior elicitation, assessing faithfulness, accuracy,
or validity may be the hardest. From this perspective, the aim of prior elicitation is
to accurately capture subjective knowledge of experts/users. However, there are many
sources of distortions in priors elicited by an expert including their cognitive biases while
making judgments in uncertain settings, and measurement noise introduced by the prior
elicitation method, for example, by eliciting probability distributions over discretized
intervals (Miller III and Rice, 1983; Parmar et al., 1994; Tan et al., 2003), especially
when there are a smaller number of intervals or bins. A promising empirical approach to
evaluating faithfulness of prior elicitation would involve validating elicited priors against
an expected ground truth. For instance, one could train participants on data produced
by a specified model with specified priors, and see how well the true parameter priors are
recovered by the elicitation methods. Such methods could be the basis for developing
test-beds for prior elicitation evaluation.

Model-specificity and training efforts in paradigms to evaluate faithfulness can also
be bypassed by comparing elicited results against a ‘gold standard’ model-agnostic
method, which is known to have higher accuracy. While the nature of such baseline
methods would be a topic of future research, there may be some viable candidates. A
very promising perspective in psychology treats human judgements as a result of sam-
pling from their subjective probabilities. This viewpoint has been successfully applied in
the Markov chain Monte Carlo with people (MCMCP) approach (Sanborn and Griffiths,
2008; Sanborn et al., 2010) and its variants (Hsu et al., 2012; León-Villagrá et al., 2020;
Harrison et al., 2020) to elicit beliefs about how stimuli from a multidimensional stim-
ulus space (e.g. n-dimensional stick figures) maps onto a target category (e.g. ‘shape of
a cat’). In MCMCP participants take the place of an MCMC acceptance function, and
repeatedly accept or reject proposals regarding the category membership of the sampled
stimuli. The adaptive nature of MCMC ensures that proposals are over time increas-
ingly sampled from parts of the stimulus space representing the participants’ subjective
representation of the category. The participants’ prior beliefs are then constructed as
the stationary distribution of the Markov chain that their judgments eventually con-
verge to. The performance of MCMCP and its variants, on natural categories as well as
trained artificial categories make us believe that similar sampling-based methods may
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have promise in the prior elicitation field both, for obtaining faithful priors, and for
acting as model-agnostic baseline methods in paradigms that assess faithfulness.

When evaluating the accuracy of prior elicitation, we may also want to consider the
effect of the elicited prior on the predictions or decisions made based on the model. In
some scenarios, it is possible that even coarse elicitation processes can obtain practically
useful information and further refinement of the elicitation may not bring additional
benefits. Also, even if there is a significant bias in the elicited prior, that bias may
have negligible effect on the end result. It can thus be useful to evaluate sensitivity and
robustness of inference with respect to the elicited prior and its potential aspects that
are difficult to elicit. For example, it is difficult for humans to estimate tiny probabilities,
which is reflected in the difficulties of determining the tail shape of the elicited prior.
A bias in the elicited prior and too thin tails can lead to strong prior sensitivity or
prior-data conflict (Al-Labadi and Evans, 2017; Evans and Moshonov, 2006; Kallioinen
et al., 2021; Bürkner, 2021). On the other hand, thick tailed priors may lead to ignoring
the otherwise correctly elicited prior information.

3.5 Software for prior elicitation
The absence of general software for prior elicitation that integrates well with existing
probabilistic programming languages and tools is hindering the adoption of Bayesian
methods outside our core community, and is thus eventually detrimental to their wider
development. As with other tools designed to help with the Bayesian workflow, a general
design guideline is to avoid automated solutions that could result in the user not paying
proper attention to their choices. Ideal software for prior elicitation should take into
account the strengths and weaknesses of both humans and computers. Numerical tasks
that are computationally demanding, error-prone or even tedious should be automatized
as much as possible, while allowing the user to retain control of important decisions and,
ideally, the user should be helped to take informed decisions and avoid mistakes. For
example, a prior elicitation tool should help users to incorporate domain knowledge
while preventing them to become overconfident about their own opinions, and it should
easily integrate with other tools to perform prior sensitive checks, for example.

In addition to these general guidelines, there are several desirable features that a
software for prior elicitation could have, such as being open source and having a simple
and intuitive interface suitable for non-specialists. At least one part of such interface
should be visual to enable better input from humans and to perform validation of the
proposed priors, and some level of interactive visualization capability would further help
to obtain information from experts. Furthermore, switching between different types of
visualization (kernel density estimates plots, quantile dotplots, histograms, etc.) would
also be valuable as would be the possibility to add user-defined transformations before
visualization. For example, Sarma and Kay (2020) describe how different visualizations
could lead to different strategies for prior elicitation, and that most participants in
their study primarily used a combination of strategies for determining their choice of
priors. In addition, research shows that even people with statistical training can have
problems correctly interpreting probability densities (Section S1.1), and so alternative
representations like quantile dotplots may be preferred (Kay et al., 2016).
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Prior elicitation software could be written agnostic of the underlying programming
language, or at least interoperable with as many languages as possible, in order to avoid
duplication of efforts. Building on top of already present open source libraries related
to Bayesian workflow and uncertainty visualization like ggdist (Kay, 2021), Bayesplot
(Gabry et al., 2019; Gabry and Mahr, 2021) and ArviZ (Kumar et al., 2019) would help
to achieve this goal. Moreover, working on top of such libraries could help to maintain
modularity, which is especially desirable at the present state of development of the
software for prior elicitation. Modularity would also help to reduce computational costs,
if experimentation with visualizations and transformations can be made independent
of the model. By specifying each task as distinctly as possible and dividing work, the
community can generate and maintain software more easily, while at the same time
encouraging research in prior elicitation on one or several dimensions of the research
hypercube.

Given that we still need more research to assert which elicitation space (D3) is
more appropriate for a given research problem, building software in a modular fashion
should allow users to switch between the parameter and the observable space as needed.
Similarly, the type of assessment task (D6) should be something that can be chosen by
the user (e.g. as in SHELF or MATCH). It is also important to develop software that
supports model-agnostic prior elicitation (D2), otherwise there will be problems with
integration into the Bayesian workflow (Section 3.2) because a change in the model
specification could preclude prior elicitation.

4 Conclusion
This paper covered the state of the prior elicitation today, focusing on discussing rea-
sons for the somewhat limited impact the research has had on practice. We identified
bottlenecks at different levels and argued that significant coordinated effort covering
several scientific disciplines will be needed to transform the current state and make
prior elicitation a routine part of the practical modelling workflow. In summary, we
make the following concrete calls to arms:

1. We need to focus on elicitation matters that answer to the needs of
practical modelling workflow. Compared to past research, the efforts should
be re-directed more towards (a) elicitation methods that are agnostic of the model
and prior, (b) elicitation strategies (e.g. active elicitation) that are efficient from
the perspective of the modeller and compatible with iterative model-building, and
(c) formulations that make elicitation of multivariate priors easier, for instance by
designing hierarchical priors that are simpler to elicit.

2. We need better open software that integrates seamlessly into the current
modelling workflow, and that is sufficiently modular so that new elicitation algo-
rithms can be quickly taken into use and evaluated in concrete modelling cases.
The elements not specific to elicitation algorithms (e.g. visualization of the priors,
the language used for specifying the models and desired prior families) should be
implemented using existing libraries whenever possible, and the tools should be
open source.
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3. We need cost-efficient and well-targeted evaluation techniques for sup-
porting development of new methods and validating their relative quality and
value in practical tasks. In ideal case, we would like to see a testbed for prior elic-
itation techniques that enable easy evaluation of alternative methods in varying
situations with feasible experimentation cost, as well as practical ways of collecting
information about efficiency of elicitation methods in real use cases.

4. We need spearhead examples that clearly demonstrate the value of prior elici-
tation in applications of societal interest to increase enthusiasm beyond the current
niche. These examples need to be ones where use of subjective prior knowledge
is useful without a doubt and additionally prior elicitation either improves the
value of the model over carefully crafted priors or results in clear cost reductions
or improved robustness via a more efficient process (e.g. for cases where the priors
need to be specified repeatedly or for several parallel cases).

For the first two we already outline concrete directions in Section 3. We hypothesize that
addressing all four foci will transform the status of prior elicitation, by providing the
required infrastructure, public interest and funding for speeding up future development.

Supplementary Material
Supplementary Material and Literature Review for “Prior knowledge elicitation: The
past, present, and future” (DOI: 10.1214/23-BA1381SUPP; .pdf). In this supplementary
material, we present the current main lines of research in prior elicitation through the
lens of the prior elicitation hypercube (Section 2.3).
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