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Dynamic Graphical Models with Variable
Selection for Effective Connectivity∗

Rebecca Souza†, Lilia Costa‡, Marina Paez§ João Sato¶, and Candida Barreto‖

Abstract. This paper proposes a novel approach that combines dynamic linear
models applied to graph data and variable selection through spike-and-slab pri-
ors. The new class of models, called Dynamic Graphical Variable Selection, is used
to infer effective connectivity in certain brain regions allowing both connectivity
weights and graphical structure to vary over time. One advantage of our method
is that as the graphical structure is estimated inferentially, the computational cost
is reduced. That way our methodology can accommodate high-dimensional data,
such as large networks observed through long periods of time. We illustrate our
methodology via numerical experiments with simulated and synthetic data, and
then applied to fNIRS real data. The obtained results showed that the static ver-
sion of our model is competitive against previous methodologies and demands a
lower computational cost. Our model is more flexible than the previous method-
ologies by allowing the graphical structure to vary over time.

Keywords: dynamic variable selection, dynamic graphical models, effective
connectivity, brain network, dynamic spike-and-slab priors, time series, network
data.

1 Introduction
The neuroscience community has been developing studies about brain mapping tech-
niques. Medical imaging methods such as functional magnetic resonance imaging (fMRI)
(Glover, 2011) and functional near-infrared spectroscopy (fNIRS) (Ferrari and Quares-
ima, 2012) are widely employed in cognition research. Although these non-invasive neu-
roimaging techniques are notably widespread and have important clinical applicability,
there is still much to learn about anatomical and functional relations between brain
regions, known as brain connectivity. The identification of different types of brain con-
nectivity, anatomical (structural), functional (correlational), and effective (causal) con-
nections, is crucial to understand the complexity of the human brain (Rykhlevskaia
et al., 2008). For this purpose, two recurring topics in the neuroscience literature are
the occurrence of brain activity in a resting state (non-task condition), and the oc-
currence of brain activity when receiving stimulus (task condition). Fluctuations in
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2 Dynamic Graphical Models with Variable Selection

non-task conditions are not random (Damoiseaux et al., 2006) and abnormalities in
the resting state connections may be associated with pathologies. Recent researches
demonstrate alterations in functional connectivity associated with diseases, for exam-
ple, chronic schizophrenia (Yanagi et al., 2020), attention-deficit and autism spectrum
disorders (Ray et al., 2014), dementia or Alzheimer (Chabran et al., 2020; Filippi et al.,
2020). On the other hand, there is an interest in discovering which brain regions are
more activated or connected when performing a specific task such as continuous finger-
tapping (Vergotte et al., 2017), solving the tangram puzzle (Hu et al., 2019), and a
group of people beating drum simultaneously (Liu et al., 2021).

The study of graphs (networks) is strongly used to represent effective connectivity.
Connections or links between two or more brain regions (nodes) can be estimated re-
garding strength and directionality, i.e. which region influences (parent node), which is
influenced (child node), and the connection strength. For full details on graph theory
see Diestel et al. (2010). Previous works are based mainly on Granger causality (GC)
(Granger, 1969; Nakajima and West, 2015; Hu et al., 2019). Granger represents the
causal influence as being the connectivity between the past with lag l and current ob-
servation. However Smith et al. (2011) show that lag-based approaches perform very
poorly when estimating effective connections. This is because the sampling time of the
measured signal is usually much slower than the underlying neuronal process. The au-
thors indicate that successful lag-based causality estimations for brain activity data add
to their simulations long lags for the majority of neural connections, with unrealistic lags
of tens of seconds. Studies suggest that lag-based methods can yield reasonable results in
relatively rare situations where neural connections have an effective lag greater than 100
ms, absence of hemodynamic response function (HRF) variability, high field strength
and low repetition time (eg, 250 ms) (Rogers et al., 2010; Smith et al., 2011). Therefore,
although these methods are regularly used in brain mapping analysis, their applications
are very restricted and are usually accompanied by inappropriate simulations.

Instantaneous connectivity occurs at faster timescales than image processing can
capture. In light of this, authors propose the application of Dynamic Linear Mod-
els (DLM) considering instantaneous connections. Besides not considering lagged re-
lationships to estimate connectivity, dynamic networks allow time-varying connection
strength. For instance, Costa et al. (2015) propose the Multiregression Dynamic Model
(MDM) which builds a DLM for each child node associating a pre-established set of
parent nodes as covariates. Furthermore, MDM is restricted to directed acyclic graphs
(DAG). Such restriction is relaxed in the Dynamic Graphical Models (DGM) proposed
by Schwab et al. (2018). MDM and DGM proposals present good estimates in realis-
tic simulations of fMRI. Both have high sensitivity rates to identify active connections
and perform well in identifying the directionality of connections, showing better results
when compared to other lag-based methods. Nevertheless these proposals estimate the
network topology through an exhaustive search, which can be challenging in very large
networks, as the number of possible graphics increases exponentially as a function of
the number of nodes. These proposals are unfeasible even with modern computational
resources.

In the present study, we use Dynamic Graphical Variable Selection (DGVS) to es-
timate effective connectivity (considering instantaneous connections) in certain brain
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regions. We propose a novel approach that combines DLM applied to graph data and
variable selection through spike-and-slab priors. The main idea of DGVS is to assume a
prior that all nodes belong to the set of parent nodes for each child node (except itself)
and to impose sparsity for that set over time. Variable shrinkage strategy for the context
of dynamic neural networks brings two major advantages: (1) the graphical structure
is estimated inferentially, without a search engine, which reduces the computational
cost even for large networks and long sampling times; (2) it allows for a time-varying
graphical structure, which can be attractive when applied to task data. It should also
be emphasized that DGVS accommodates both resting state and task networks.

We validate our methodology from simulated data. Furthermore, we investigate the
accuracy of DGVS to identify the true graphical structure in synthetic data that have
similar properties to real fMRI data. For the synthetic data, we use the data available
in Schwab et al. (2018) and compare the DGVS’s performance to DGM’s. Finally,
we applied our methodology to fNIRS data in which participants listened to musical
stimuli of positive and negative emotional valences. We aimed to evaluate the effects
of the stimulus on brain networks and compare the two styles of music regarding the
differences caused in the graphic structures. Before discussing our proposal, we briefly
expose some general characteristics of the data that the proposed model can handle.

1.1 Data Typology

There are some types of techniques to measure brain activity present in neuroscience.
We pay special attention to two: fMRI and fNIRS. Both are non-invasive techniques
that can dynamically measure brain activity in different brain regions, that is, they
provide a time series for each volume element or voxel (cube of a few millimeters).

FMRI is a safe technique for measuring and tracing brain activities during resting
state and task design. It measures the changes in blood circulation in the brain that
happen with brain activity. Increased neural activity raises the blood oxygen level due
to an increased energy demand that subsequently calls for more oxygen. The oxygen-
binding hemoglobin concentration in the blood has different magnetic properties for
oxygen-rich blood and oxygen-deficient blood. When the blood is more oxygenated, the
signal is stronger, and vice versa. This phenomenon gives rise to the blood oxygenation
level-dependent signal (BOLD), the time series variable measured by fMRI.

fNIRS is a tool composed of a light source that is coupled to the participant’s head
via either light-emitting diodes (LEDs) or through fiber-optical bundles (the optode)
and with a light detector that receives the light after it has interacted with the tissue.
FNIRS indirectly measures cortical activation based on changes in concentrations of
oxygenated (oxyHb) and deoxygenated (deoxy-Hb) hemoglobin. The most commonly
used method measures changes in the ratio of oxy-Hb to blood volume. fNIRS has
advantages and disadvantages compared to fMRI. While fMRI has become the gold
standard for human brain imaging, fNIRS stands out for its portability, ease to handle,
robustness to noise, cost-effectiveness compared to other neuroimaging modalities, and
bring functional imaging to more realistic environments. However, it is limited by its
spatial resolution and depth of range.
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Several statistical methods have been proposed to infer causal relationships from
brain activity data. Applications for fMRI signals include commonly used methods
such as Dynamic Causal Modeling (DCM; Friston et al. (2003); Li et al. (2011)) and
Bayesian Networks (BN; Mumford and Ramsey (2014); Li et al. (2008)). The first is
committed to constructing a realistic neuronal model and the second uses the concept of
conditional independence among variables to define causal relationships. The article by
Tak and Ye (2014) contains a detailed review of some statistical methods for the analysis
of the fNIRS signal, which include signal processing methods: such as correlation-based
methods (Cooper et al., 2012) and Principal Component Analysis (PCA)/Independent
Component Analysis (ICA) (Wilcox et al., 2008; Patel et al., 2011); as well as statistical
analysis methods: such as Analysis Of Variance (ANOVA) (Okamoto et al., 2004) and
Statistical Parameter Mapping (SPM) (Friston et al., 1994). Recent applications use
regression models to measure human social interaction, as in Barreto et al. (2021) where
the authors propose a student fNIRS signal prediction model using the teachers’ signal as
predictors. Another example is the study developed in Nguyen et al. (2021) that analyzes
the interpersonal neural synchrony between mothers and children in the problem-solving
task from Generalized Linear Mixed Models (GLMM).

The remainder of the paper is organized as follows. We describe the DGVS models
in Section 2 and review the Dynamic Spike-and-Slab priors in Section 3. The Inferential
Procedure is developed in Section 4. Section 5 contains the numerical results for the
simulated, synthetic, and real data. Finally, the discussion is drawn in Section 6.

2 Dynamic Graphical Variable Selection
In this section, we present the Dynamic Graphical Variable Selection models (DGVS)
which can be regarded as an extension of the DGM of Schwab et al. (2018), with the
inclusion of variable selection. The DGVS models node activity in a specific region of
interest (ROI1) by considering time-varying connectivity weights. Such weights are the
regression coefficients that reflect the effect of all other regions as covariates in a child
node. The use of a shrinkage prior allows the selection of parent nodes for each child
node at every period of time, specifying a sparse time-varying graphical structure.

We now define effective connectivity in the context of dynamic linear models (West
and Harrison, 2006). Our model assumes conditional independence among brain ac-
tivities of the regions, given the activities of their parent regions for each time step.
This allows decomposing the n-dimensional model into n separate conditional models,
where for each region we have a univariate DLM. Let Yt(r) be a scalar response (or the
measured BOLD response) from region r at time t that is linked to a set of p known
regressors Ft(r) = (1,Y′

t(−r))′ through the relation
Yt(r) = F′

t(r)βt(r) + εt(r), εt(r) ∼ N (0, vt(r)) , (2.1)
where we denote X ′ as the transpose of X, r = 1, . . . , n, t = 1, . . . , T and p corre-
sponds to the maximum number of parents of the region r (all but itself) plus one

1The ROI concept is a common practice in neuroimaging studies. It consists of defining, previously
to the study, the brain region to be investigated. For instance, if a person receives a visual stimulus it
is expected that the occipital cortex should be activated.
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for the intercept. The set of all possible parents of Yt(r) is represented by Yt(−r) =
(Yt(1), . . . , Yt(r − 1), Yt(r + 1), . . . , Yt(n))′. The time-varying regression coefficients
βt(r) = (βt1(r), . . . , βtp(r))′ measure the effective connectivity strength for each parent
of region r, with βt1(r) being the intercept. The observational error εt(r) is taken to be
independent over t and comes from a normal distribution with mean zero and variance
vt(r). The observational variances vt(r) are unknown and the precisions νt(r) = 1/vt(r)
are specified according to the following Markov evolution model (West and Harrison,
2006):

νt(r) = τt(r)νt−1(r)/δ, where τt(r) ∼ B (δηt−1(r)/2, (1 − δ)ηt−1(r)/2)
and ηt(r) = δηt−1(r) + 1,

(2.2)

where δ ∈ (0, 1] is a discount factor, B(a, b) denotes a beta distribution with shape pa-
rameters a and b and the observation precision sequence νt(r) evolves stochastically from
independent random results τt(r)/δ. This allows for closed-form updates of the prior
and posterior distributions to νt(r) at each time, with minor changes to ηt−1(r) which
is discounted between successive updates. The discount factor δ controls the random
fluctuation of observational precision with smaller values leading to greater variation
in νt(r), and values near unity representing smoother estimates of the precision. The
value δ = 1 implies static variance for all t. Assuming that the observational variance
is time-dependent supports the hypothesis that brain activity is subject to randomness
over the time interval t− 1 and t.

For each time we have np regression coefficients, and a set of T × np coefficients
to be estimated. With the number of parameters increasing with the number of nodes,
this regression model is vulnerable to overfitting with the increase in the number of
regions. This can be particularly problematic here where the nodes are dynamically in-
terconnected providing representations with poor out-of-sample predictive performance.
In addition, it is known that not all regions are parents of the others and we need to
select which coefficients shrink toward zero. A variable selection allows us to indicate
which regions are relevant for the outcome at any given time. This returns the subjacent
structure of the graph which is also dynamic since the regressors are allowed to enter
and leave the model as time progresses.

In the context of Bayesian inference, there are some attractive alternatives to shrink-
age priors. Among the most common are two component discrete mixture priors known
as the spike-and-slab and continuous shrinkage priors. A particular example of con-
tinuous shrinkage priors is the horseshoe prior, where the coefficients follow a normal
distribution with zero mean and variance composed of two global-local hyperparame-
ters. The global hyperparameter allows all parameters to shrink to zero, while the local
hyperparameter assumes a heavy-tailed half-Cauchy prior that allows some coefficients
not to be shrunk (Piironen and Vehtari, 2017). Recent work expands horseshoe priors
to dynamic models (Kowal et al., 2019; Molinari et al., 2022), and this can be easily
adapted for estimating effective connections. On the other side, spike-and-slab priors are
intuitively attractive, as it has parameters that are easily interpretable in practice. We
adopt the Dynamic Spike-and-Slab (DSS) priors introduced by Rockova and McAlinn
(2021). These priors use a mixture of stationary time series for each coefficient (as will
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be seen in Section 3) driven by a binary latent indicator γt(r) = (γt1(r), . . . , γtp(r))′
which signals the active and negligible coefficients. This way, Spike-and-Slab priors allow
separating the regression coefficients into two groups: active and inactive. This grants
flexibility and plausible interpretations in the context of graph models since active coef-
ficients can be interpreted as relevant connectivity strengths. Additionally, experts can
add their beliefs to the mixture weights indicating whether a region is naturally more
influenced without necessarily interfering with the variance of the prior distributions of
the coefficients.

3 Dynamic Spike-and-Slab Prior
In this section, we review the DSS priors for selection/shrinkage developed by Rockova
and McAlinn (2021) and suggest some small changes to accommodate dynamic graphs
in order to recover a graphical structure. Here we assume that regression coefficients
{βtj(r)}Tt=1, j = 1, . . . , p, follow independent and identical Gaussian DSS priors.

Given βt−1,j(r) and a binary indicator γtj(r) ∈ {0, 1} (which signals the spike/slab
membership in region r at time t), then βtj(r) assumes a mixture of the form

P (βtj(r)|βt−1,j(r), γtj(r)) = (1 − γtj(r))P0(βtj |cλ(r)) + γtj(r)P1(βtj |μtj(r), λ(r)),
(3.1)

where
μtj(r) = φ(r)βt−1,j(r) with |φ(r)| < 1 (3.2)

and
γtj(r)|βt−1,j(r) ∼ Bernoulli (θtj(r)) . (3.3)

From now on we suppress the index r for notational simplicity. The readers must keep
in mind that all parameters for each region are estimated independently, as mentioned
in the latter section. We assume the spike density P0(βtj |cλ) ≡ N (βtj |0, cλ), i.e. it is
equal to a Gaussian density concentrated at zero with low variability, obtained as c → 0,
which allows the inert coefficients to shrink to zero. The slab density P1(βtj |μtj , λ) ≡
N (βtj |μtj , λ) is a Gaussian density with its mean defined as an autoregressive first-order
lag polynomial and sufficiently large variance (λ � cλ). The variance of the regression
coefficients distribution represents the oscillation of the connectivity strength. For the
set of active coefficients, it is expected that the variance is far enough from zero to
indicate a given brain activity. Furthermore, the time-varying indicator parameter γtj
follows a Bernoulli distribution with success θtj , which controls the stability in the
change between spike and slab distributions. Parameters φ and λ will be considered
unknown and will be estimated.

This definition of the DSS induces the separation of the regression coefficients into
two groups: the inactive ones centered in zero (when γtj = 0 and P (βtj |βt−1,j , γtj) =
N (βtj |0, cλ)) and the active ones that follow an autoregressive path (when γtj = 1 and
P (βtj |βt−1,j , γtj) = N (βtj |μtj , λ)) (Rockova and McAlinn, 2021). In terms of graphs,
the set of active coefficients represents the connectivity strength of the parents. As there
will always be some independent brain activity, it is natural to assume that the intercept
βt1 will be under the slab distribution, so that the first position of vector γt(r) is equal to



R. Souza, L. Costa, M. Paez, J. Sato, and C. Barreto 7

one. Thus, the active coefficients and the intercept follow a stationary Gaussian AR(1)
process

βtj = φβt−1,j + wtj , |φ| < 1, wtj
iid∼ N (0, λ) (3.4)

whose stationary distribution is characterized by

PST
1 (βtj |φ, λ) ≡ N

(
βtj

∣∣∣∣0, λ

1 − φ2

)
. (3.5)

The tractable stationary distribution above is an appeal of the conditional Gaussian
slab distribution (Rockova and McAlinn, 2021).

An alternative to the autoregressive process is to consider that the connectivity
strength follows a traditional random walk model, βtj = βt−1,j + wtj , as performed in
the works of Schwab et al. (2018) and Costa et al. (2015) for computational convenience.
Bhattacharya and Maitra (2011), in their studies, argues that the random walk model
can be too restrictive, failing to identify its parameters where the model is not so
clearly distinguished from nonstationarity (φ = 0.95 or φ = 0.999). From the study
of simulations, the authors confirm the effectiveness of the AR(1) model against the
random walk model. Authors such as Nakajima and West (2015) and Bhattacharya and
Maitra (2011) use AR(1) in applications to fMRI and electroencephalography (EEG)
signals dataset respectively and get good fits.

To finish the formulation of DSS, we need to define the mixing weights θtj in (3.3). It
is important that the choice between spike and slab distributions is stable and includes
the information of previous values θt−1,j and βt−1,j . The main idea is to obtain a
sequence of slab probabilities that evolve smoothly over time without erratic switching.
We resort to a stationary distribution to construct θtj .

Given (Θ, c, λ, φ), we define the conditional inclusion probability as Rockova and
McAlinn (2021)

θtj = ΘPST
1 (βt−1,j |φ, λ)

ΘPST
1 (βt−1,j |φ, λ) + (1 − Θ)P0 (βt−1,j |c, λ)

, (3.6)

where the scalar 0 < Θ < 1 is a tuning parameter that balances between the spike and
slab distributions. Smaller values of Θ return greater shrinkage of coefficients. Note that
if the module of the past value |βt−1,j | was large, then θtj will be close to one and it is
more likely that the current value βtj has a slab distribution, otherwise it will be more
susceptible to the spike distribution. This way, θtj can be interpreted as the posterior
probability of classifying the past coefficient βt−1,j into the stationary slab distribution.

Returning to the non-stationary slab distribution in (3.1), we can obtain the condi-
tional probability

P ∗(βtj) ≡
θtjP1 (βtj |μtj , λ)

θtjP1 (βtj |μtj , λ) + (1 − θtj)P0 (βtj |c, λ) , (3.7)

where P ∗(βtj) = P (γtj = 1|βtj , βt−1,j , θtj), and it can be interpreted as the posterior
probability of classifying βtj into the slab distribution. Recall that if |βt−1,j | is large
then θtj will be close to one and βtj is likely to be a slab. Then, if |βtj | is in fact large,
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P ∗(βtj) will be close to one and βtj will shrink towards μtj . On the other hand, if |βtj |
is small enough, P ∗(βtj) will shrink towards zero.

As an illustration, consider a graph with 3 nodes. The observation equations of the
model are written as

Yt(1) = βt1(1) + Yt(2)βt2(1) + Yt(3)βt3(1) + εt(1);
Yt(2) = βt1(2) + Yt(1)βt2(2) + Yt(3)βt3(2) + εt(2);
Yt(3) = βt1(3) + Yt(1)βt2(3) + Yt(2)βt3(3) + εt(3),

where εt(r) ∼ N (0, vt(r)) for r = 1, 2, 3. If the binary indicators were estimated as
γt(1) = (1, 0, 0)′, γt(2) = (1, 1, 0)′ and γt(3) = (1, 1, 1)′, the evolution equations for
region r = 1 would be

βt1(1) = φ(1)βt−1,1(1) + wt1(1), wt1(1) ∼ N (0, λ(1)) ;
βt2(1) = wt2(1), βt3(1) = wt3(1), wt2(1), wt3(1) ∼ N (0, cλ(1)) ,

where only the intercept has a slab distribution, indicating that this region has no
parents. For region r = 2, the evolution equations would be:

βt1(2) = φ(2)βt−1,1(2) + wt1(2), wt1(2) ∼ N (0, λ(2)) ;
βt2(2) = φ(2)βt−1,2(2) + wt2(2), wt2(2) ∼ N (0, λ(2)) ;
βt3(2) = wt3(2), wt3(2) ∼ N (0, cλ(2)) ,

where the intercept and the second coefficient have slab distribution, indicating that
region r = 1 is a parent of the region r = 2. Finally, for region r = 3, we would have

βt1(3) = φ(3)βt−1,1(3) + wt1(3), wt1(3) ∼ N (0, λ(3)) ;
βt2(3) = φ(3)βt−1,2(3) + wt2(3), wt2(3) ∼ N (0, λ(3)) ;
βt3(3) = φ(3)βt−1,3(3) + wt3(3), wt3(3) ∼ N (0, λ(3)) ,

where all the coefficients have slab distribution, being regions r = 1 and r = 2 parents
of region r = 3. The graphical structure of this example can be represented in Figure 1.

Figure 1: Example of a graphical structure considering 3 nodes, with node Y (1) being
the parent of nodes Y (2) and Y (3), and node Y (2) being the parent of node Y (3).
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4 The Inferential Procedure
It is essential to develop efficient and fast estimation methods in the context of brain
networks, as the number of nodes may increase considerably and make the inference
unfeasible. Rather than using tools that generate posterior samples like the Markov
chain Monte Carlo (MCMC) method (Kundu et al., 2019; Nakajima and West, 2015),
in this paper, we propose estimation based on optimization. We focus on finding the
maximum a posteriori probability (MAP) β̂1:T = arg maxP (β1:T |Y1:T ) based on the
dynamic expectation–maximization variable selection (EMVS) procedure of Rockova
and McAlinn (2021) and Ročková and George (2014).

As in dynamic EMVS, we treat the binary indicators γ0:T = {γt}T
t=0 and the

precision parameters ν1:T = {νt}Tt=1 as missing. The initial vector β0 = {β0j}pj=1 is
estimated jointly with the remaining coefficients β1:T . Also, we have introduced two
extra estimation steps for the autoregressive parameter φ and the slab the variance λ.
To simplify the algorithm, we factorize the prior distribution as

P (β0:T , γ0:T , ν1:T , φ, λ) = P (β0|γ0, φ, λ)P (γ0)P (φ)P (λ)

×
T∏

t=1

⎡
⎣P (νt|νt−1)

p∏
j=1

P (βtj |βt−1j , γtj , φ, λ)P (γtj |βt−1j)

⎤
⎦ ,

where P (βtj |βt−1j , γtj , φ, λ) and P (γtj |βt−1j) are defined in (3.1) and (3.3), respec-
tively. Previous works such as Rockova and McAlinn (2021) and Koop and Korobilis
(2018) assume that the evolution variances are fixed and known. However, Narisetty
et al. (2014) shows that this technique can lead to inconsistency in the selection as T
and p grow. In light of this, based on the specifications of Koop and Korobilis (2020),
we assume that λ has an non-informative Inverse Gamma prior, i.e.

P (λ) ∝ λ−(aλ+1)exp

(
−bλ

λ

)
with aλ = 3 and bλ = 200 (4.1)

implying a prior mean of bλ/(aλ− 1) = 100. For spike variance, we set c ∈ {0.01, 0.001}
which minimizes the mean squared one-step-ahead forecast errors (MSFE) to ensure
that the spike distribution has a small variance. For the autoregressive parameter, we
assume a reparametrized Beta prior (even as Rockova and McAlinn (2021) and Kim
et al. (1998))

P (φ) ∝
(

1 + φ

2

)aλ−1 (1 − φ

2

)bφ−1

I(|φ| < 1) with aφ = 20 and bφ = 1.5, (4.2)

with a prior mean of 2aφ/(aφ + bφ)− 1 = 0.86. This proposal of an informative prior is
in agreement with the studies carried out by Phillips (1991) which show that flat priors
on the autoregressive coefficients are informative in time series models, and indeed
downweight large values and might result in instability in the estimates. Authors such
as Nakajima and West (2013, 2015), Lopes et al. (2022) and Rockova and McAlinn
(2021) also use a non-informative prior peaked around one. The latter updates φ with
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a Metropolis step, using an uniform proposal on the interval [0.8, 1). Here, we consider
a grid of possible values for φ.

We consider a stationary distribution for β0 (as in Rockova and McAlinn (2021))

P (β0|γ0, φ, λ) =
p∏

j=1

[
γ0jP

ST
1 (β0j |φ, λ) + (1 − γ0j)P0 (β0j |cλ)

]
, (4.3)

whereas P (γ0j = 1) = Θ, for each 1 ≤ j ≤ p, being γ0 = (γ01, . . . , γ0p)′ independent.
The optimization method adopted here starts the estimation of the parameters from
pre-established initial values that are updated at each iteration. The choice of these
values is fundamental for the proper functioning of the algorithm. We assume for the
initial values of β0:T random samples taken from an uniform distribution on the interval
[0, 2] and we admit a sequence of decaying values Θ ∈ {0.9, 0.5, 0.1}, similarly to what
was suggested by Rockova and McAlinn (2021). Specifically, the initialization of the
parameters is systematized as follows: (1) we assume values for β0:T randomly sampled
from an uniform distribution and update these values considering the highest value of
Θ in the sequence, Θ = 0.9; (2) the results obtained considering Θ = 0.9 are used as
initial values for the estimations considering the next value of Θ in the sequence, which
is Θ = 0.5; (3) analogously to the previous step, the estimates obtained with Θ = 0.5
are updated considering Θ = 0.1. In so doing, in addition to decreasing the number of
iterations needed for convergence, we also increase the chances of reaching appropriate
modes.

Then, we have that the logarithm of the posterior distribution is as follows

logP (β0:T , γ0:T , ν1:T , φ, λ|Y1:T ) = C(v1:T ) +
T∑

t=1

{
logP (νt|νt−1) + (Yt − F ′

tβt)2

2vt

}

+(aφ − 1) log(1 + φ) + (bφ − 1) log(1 − φ) − (aλ + 1) log λ− bλ
λ

−
p∑

j=1

{
γ0j

[
1
2 log

(
λ

1 − φ2

)
+

(1 − φ2)β2
0j

2λ

]
+ (1 − γ0j)

(
log(cλ)

2 +
β2

0j

2cλ

)}
(4.4)

−
T∑

t=1

p∑
j=1

{
γtj

[
1
2 log λ + (βtj − φβt−1j)2

2λ

]
+ (1 − γtj)

(
log(cλ)

2 +
β2
tj

2cλ

)}

+
p∑

j=1
[γ0j log Θ + (1 − γ0j) log(1 − Θ)] +

T∑
t=1

p∑
j=1

[γtj log θtj + (1 − γtj) log(1 − θtj)] .

The proposed expectation maximization (EM) algorithm is implemented following
two steps. In the E-step, we calculate the expectation of the logarithm of the posterior
distribution in (4.4) with respect to the current conditional distribution of [γ0:T , ν1:T ]
given Y1:T and the current estimates of the parameters β

(m)
0:T , i.e,

E
γ0:T ,ν1:T |Y1:T ,β

(m)
0:T

[logP (β0:T , γ0:T , ν1:T , φ, λ|Y1:T )] .
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This expectation can be obtained from the posterior defined in (4.4) by replacing each
γtj with P ∗

tj = P ∗(βtj) from (3.7), when t > 0, and P ∗
0j = θ0j from (3.6). Besides

that, we exchange 1/vt by the conditional expectation E(νt|β(m)
0:T , Y1:T ) using a discount

factor δ (established in West and Harrison (2006)). We have that:

E(νt|β(m)
0:T , Y1:T ) = (1 − δ)ηt/dt + δE(νt+1|β(m)

0:T , Y1:T ) for 1 ≤ t < T,

where E(νT |β(m)
0:T , Y1:T ) = ηT /dT , ηt = δηt−1 + 1 and dt = δdt−1 + (Yt − F ′

tβt)2. In
the M-step, we maximize the conditional expectation of the E-step with respect to
β0:T . We assume the discount stochastic volatility model with δ = 0.9 and η0 = d0 =
1. In Section 5.2, we briefly discuss the sensitivity of the results for different choices
of the discount factor. Additionally, we can update the autoregressive parameter φ
and the evolution variance λ at each iteration taking the values that maximize the
expected log-complete posterior. For parameter φ the maximum value was computed
from the grid of values φ ∈ {0.5, 0.8, 0.85, 0.90, 0.95, 0.99}. The choice of these values
meets the expectations of a more informative prior for φ that ensures the stability of
the estimation, avoiding abrupt changes in the estimates of β0:T . The algorithm was
implemented in the statistical software R (R Core Team, 2020) using C++ via the
“Rcpp” (Eddelbuettel et al., 2011) and “RcppArmadillo” (Eddelbuettel and Sanderson,
2014) packages. The computation of estimation and simulation results are available in
open source on Github.

5 Results
We applied the proposed methodology to a simulated dataset, a synthetic dataset that
emulates fMRI signals, and a real dataset collected with fNIRS. To evaluate the efficiency
of the model in recovering the true structure of the network in the simulated and
synthetic datasets, we used the concepts of accuracy, sensitivity, and specificity. For
this, we measured the number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN), where accuracy is the hit rate ((TP +TN)/(TP +TN+
FP +FN)), sensitivity is the rate of true positives (TP/(TP +FN)) and specificity is
the true negative rate (TN/(TN + FP )).

Before presenting the results, we analyzed the computational time according to the
number of nodes in the network and compare the performance of our proposal (DGVS)
to the performance of the DGM. The clear advantage of DGVS is that it does not
use the exhaustive search system to estimate the graphic structure, requiring at least
3 adjustments for each node (for the evaluation of the parameter Θ = {0.9, 0.5, 0.1}
and considering a fixed c value). Furthermore, the selection of a set of parent nodes for
each child node is done independently, allowing the models to be fitted in parallel and
further reducing computational time (see Figure 2).

As already pointed out, one important demand in the literature is for improving
methods that seek to optimize computational time when mapping numerous brain re-
gions through a long time series. In that vein, DGVS can get results in 25 minutes
(AMD Ryzen 5 3400G) for a 25-node network with 1000 periods of time, while the
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Figure 2: Average computational time for a single node considering a different number
of nodes from DGM model (gray bars) and DGVS model (orange bars), for a time series
of length 1000 using an AMD Ryzen 5 3400G processor.

DGM takes 25 days for the same assignment. The DGVS computational time grows
slowly and linearly with the number of nodes, which is an advantage compared to the
DGM whose computational time grows exponentially. As it can be seen by Figure 2, the
larger the number of nodes the more computationally efficient the DGVS is compared
to the DGM, with the average computational time for a single node, considering a series
of length 1000, being higher under the DGM for networks with more than 11 nodes.

5.1 Simulated Data

We aim to show the performance of the DGVS to detect the true structure of brain
connections analyzing the impact of sample size. To do this, we simulated three different
networks of 8-nodes (p = 8) and T = 220 periods of time generated from the model (2.1)
with φ = 0.9, λ = 1, c = 0.001 and vt = 0.25. The first simulation (Sim 1) has a constant
network structure over time, the second (Sim 2) has a change in structure at time 120
and the third (Sim 3) has two changes in times 75 and 150. For each simulation, we
generate samples of varying sizes N = (10, 30, 50, 100, 150, 200) and evaluate the effect of
the sample size on the proportion of active connections. We emphasize that the sample
size is an important element for the identification of active connections in the network
structure. For the following analysis, we are interested in the sample results that shape
the joint behavior of the structures. It is important to point out that we could estimate
different network structures for each brain (sample unit) even under the influence of
the same stimulus. For example, two people listening to the same music and their
brains responding in different ways. However, the goal here is to identify which brain
connections are most commonly activated in the population under study. All figures
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for the analysis of the simulated data can be found in Section 1 of the Supplementary
Material (Souza et al., 2023).

We classify a connection as active at time t when P ∗(βtj) ≥ 0.5 as suggested by
Rockova and McAlinn (2021). Furthermore, we analyze the proportion of active con-
nections at each time t and establish a graphical structure based on this proportion.
Plots of the estimated time-varying structure for all simulations are in Section 2 of
the Supplementary Material (Souza et al., 2023). To simplify the interpretations of the
plots, we summarize these results in Figures S1(B), S2(B, D), and S3(B, D, F), which
show the average of proportions over time according to the sample size. We measure ac-
curacy, sensitivity, and specificity based on relevant connections over time. We consider
that a connection is relevant at a certain time if at least 50% of the sample presented
an active connection at that time. These measurements are shown in Figures S1(C),
S2(E), and S3(G).

The results are satisfactory in recovering the true graphical structure, in simpler
cases as in Sim 1, even for a small sample of N = 10 subjects. As the graphical structure
becomes more complex, with an increasing number of changes over time, a larger sample
size may be required. This can be explained by the stationarity property imposed on
the coefficients of the dynamic model. Abrupt changes in the graphic structure are
not quickly identified, with a few time steps ahead being necessary to provide good
estimates. This becomes evident in the trajectory of time sensitivity in Figures S2(E)
and S3(G), where there is a drop close to the times when there is a change in the
graphical structure. On the other hand, we found that accuracy and specificity remained
above 75% for smaller samples (N ≤ 30) and above 85% for larger samples (N ≥ 50) in
all simulations. In addition, the sensitivity remains at 100% most of the time for almost
all sample sizes.

5.2 Synthetic Data

We evaluated the efficiency of DGVS to detect true connections in synthetic fMRI
datasets, that simulate BOLD signals. We chose to evaluate our model on fMRI datasets
because this technique is widely disseminated and consolidated by the neuroscience
community. Furthermore, the results found here can be extended to data from other
brain mapping techniques capable of measuring changes in oxy and deoxyhemoglobin
concentration, such as fNIRS. Synthetic data is available on the paper of Schwab et al.
(2018) and are simulated following the methodology of Smith et al. (2011), using a
forward model (Friston et al., 2003) and a nonlinear balloon model (Buxton et al.,
1998). The data corresponds to “Sim 22” (Figure 4(A)) from Smith et al. (2011) and
consists of a 5-nodes non-stationary dynamic network (N = 50 samples). In other words,
the connection strengths are time-dependent and modulated by random processes. The
sampling time was 10 minutes with a repetition time (TR) of 3 seconds, i.e. 600 seconds
of sampling with the interval of time between consecutive observations of 3 seconds. For
further details see Smith et al. (2011).

In order to assess the sensitivity of the volatility model, we verified the accuracy,
sensitivity, and specificity for the estimation of synthetic data at different values for
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the discount factor. Figure 3 shows the average of these measurements over time. Note
that there is a smooth curvature in the three lines and when the value of δ becomes
0.90 an inflection point occurs. This indicates that by assuming this value for δ we
guarantee sufficient sensitivity to identify the true connections without considerable
loss of specificity.

Figure 3: Average over time of accuracy, sensitivity, and specificity for Sim 22 considering
different values for δ.

We compare DGVS performance for synthetic data with the results of Dynamic
Graphical Models (DGM) from Schwab et al. (2018). DGM is also a dynamic graphical
model in which the connectivity strengths are the regression coefficients. This method
consists of applying a dynamic model to all possible sets of parent nodes for each child
node. Then the structure is selected from the joint log predictive likelihood (LPL) of
the best set of parent nodes for each child node. After estimating the parameters, the
authors suggest an optional pruning process to avoid spurious bidirectional connections.
The disadvantage of this method is the number of possible graphs that increases ex-
ponentially with the number of nodes, consequently increasing computational time. In
addition, DGM does not allow a time-varying graphical structure.

Figure 4(B) illustrates the average proportion over time of estimated active con-
nections for DGVS and the proportion of estimated active connections for DGM. The
results presented for the DGM model are the proportions after the pruning process. We
chose not to use this same procedure in the DGVS results because it did not lead to sig-
nificant changes under this model. Plots of the estimated time-varying structure via the
DGVS are provided in Section 2 of the Supplementary Material (Souza et al., 2023).
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Again we consider a connection to be active when P ∗(βtj) ≥ 0.5 for DGVS and for
measuring accuracy, sensitivity, and specificity we consider a connection to be relevant
when at least 50% of the sample had an active connection at each time step. DVGS
has a sensitivity of 100% at 14% of the time, with a median of 80%, against 100%
sensitivity of the DGM. Regarding specificity and accuracy, the DGVS has 73% and
74% (in median) against 93% and 95% of the DGM, see Figure 4(C). It is evident that
one of the advantages of DGVS is the inferential estimation of the graphical structure.
In contrast, resorting to exhaustive search methods, as in DGM, allows the exploration
and evaluation of the entire universe of possibilities through algorithms with simpler im-
plementations. The DGVS, by incorporating the treatment of graphical structures over
time, demands a more complex estimation method that adds model calibration steps,
which at the same time decrease the computational cost, and increase the estimation
cost.

Figure 4: (A) The true adjacency matrix for Sim 22. (B) Average proportion of estimated
active connections by method. (C) Accuracy, sensitivity, and specificity.

5.3 Real Data
This study concerns the analysis of network connectivities among recordings of fNIRS
signals. FNIRS indirectly measures cortical activation based on fluctuations of oxy-
genated (oxy-Hb) and deoxygenated (deoxy-Hb) hemoglobin at various scalp locations
of a human subject (León-Carrión and León-Domínguez, 2012). The most commonly
used method measures changes in the ratio of oxy-Hb to blood volume. This technique
is widely used to assess brain activity in subjects who are performing a task or receiving
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a stimulus (Balardin et al., 2017). Barreto et al. (2020) conducted an experiment on the
emotions conveyed by listening to music, in which they collected fNIRS data. Our main
statistical interest here is to explore relations across fNIRS channels (regions) obtained
in part of the experiment of Barreto et al. (2020) via DGVS modeling.

The fNIRS data consists of time series collected from 20 brain regions/channels
in 40 participants (40% females; mean age of 25 ± 5.1 years). Eight participants were
excluded from the data analysis due to the use of continuous medications that could
affect hemodynamic responses or signal quality, resulting in 32 subjects. The subjects
listened to instrumental musical segments of Richard Wagner’s operas classified with
positive and negative valences. Valence is defined as a positive/negative feature of the
emotion generated by the music. We selected two of these excerpts for our analysis: (1)
Siegfried’s Funeral March (FM) with a duration of the 62s and negative valence; (2)
The Rhine Gold Entrance of the Gods into Valhalla (RG) with a duration of the 60s
and positive valence.

The data are recorded from 8 sources and 7 detectors, located around and over
the participants’ scalp, specifically in the prefrontal cortex due to its relationship to
emotional processes (Moghimi et al., 2012). The data sampling rate was 7.81 Hz. To
record the hemodynamic response, eight near-infrared LED sources were positioned
at (F3, AF7, AF3, Fz, Fpz, AF4, F4, AF8) and seven light detectors were positioned
at (F5, F1, Fp1, AFz, F2, Fp2, F6), following the EEG 10–10 international system
(see Figure 5). It gives 20 channels positioned at the pre-frontal cortex (see Figure 5).
Data pre-processing was performed to ensure signal quality and minimize the effects
of systemic artifacts, such as cardiac and respiratory cycles; for full details see Barreto
et al. (2020).

Figure 5: Placement of the fNIRS optodes. Letters and numbers inside the circles rep-
resent equivalences on the EEG 10–20 system. Red and green circles represent sources
and detectors, respectively. The purple lines represent the fNIRS channels. (Modified
from Barreto et al. (2020).)

The analysis uses the DGVS model specified in Section 2 with the priors and in-
ferential procedure defined in Section 4. On average for each region, the computational
time for the excerpt FM took 172 seconds for Θ = 0.9, 201.8 seconds for Θ = 0.5, and
226 seconds for Θ = 0.1. While for the RG stretch, on average the computational time
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for each region took 206.3 seconds for Θ = 0.9, 203.5 seconds for Θ = 0.5, and 211.8
seconds for Θ = 0.1. As an illustration, we show in Figure 6 the proportion of active con-
nections estimated at three distinct periods of time under both excerpts of music. The
plots for the other times are found in Section 2 of the Supplementary Material (Souza
et al., 2023). As in the analyzes for simulated and synthetic data, we consider an active
connection when P ∗(βtj) ≥ 0.5 and a relevant connection if at least 50% of the sample
had such an active connection. It can be noticed by Figure 6 that the active connections
are more concentrated in certain regions for the excerpt with negative valence. On the
other hand, the connections related to the positive excerpt presented a more spread
pattern. It is evident that the model estimated a more complex graphical structure for
the RG excerpt, indicating that different stimuli provoke different organizations in the
effective connections of the brain.

Figure 6: The proportion of active connections estimated at time 100, 250, and 450 for
the excerpt Siegfried’s Funeral March (FM – first line) with negative valence, and the
excerpt Rhine Gold Entrance of the Gods into Valhalla (RG – second line) with positive
valence.

In addition to computing the adjacency matrix of the proportions of active connec-
tions, other useful measures to obtain are the degree in and degree out. The degree in
is the number of parents each node has, and the degree out is the number of children
of each node. We also measure the weighted degree in and out that we consider being
the mean of the absolute weights (|βtj |) of the parents and children respectively of each
node. Figure 7 shows the degree in over time, the mean and standard deviation of the
weighted degree in for the sample of participants. In Figure 8, we present these same
measures for the degree out.
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Figure 7: (Left) Degree in of each region over time. (Middle) Mean of weighted degree
in among participants. (Right) The standard deviation of weighted degree in among
participants. In the first line are the statistics for Siegfried’s Funeral March (FM) with
negative valence and in the second line are the Rhine Gold Entrance of the Gods into
Valhalla (RG) with positive valence.

We observed that both degree in and weighted degree in are higher for regions 12,
13, 14, and 16 (especially regions 14 and 16), for the negative valence. This indicates
that these regions are the most influenced by others. These results are in line with
the findings of Balconi et al. (2015) that point out that negative valences induce a
greater oxy-Hb increase, compared to positive stimuli, in the right hemisphere of the
prefrontal cortex. Similar results can also be seen in Barreto et al. (2020). The authors
show that oxy-Hb signals from regions 9, 10, and 12 may be better contributing to the
emotional valence associations. Such regions with significant results are located in the
right hemisphere close to the center of the brain and are relatively close to region 14
which stands out in our findings.

For the positive valence, the most influenced regions are more disseminated, high-
lighting regions 17 and 2 that are lateralized. On the other hand, we did not notice a
specific pattern in the degree out for both valences, that is, it seems that most regions
act as influencing regions. It is also possible to observe that influenced regions are not
very influential.

The results show that the signals from the medial prefrontal regions are more related
to negative valence stimuli and lateral regions are related to positive valence stimuli.
The recent study of Ozawa et al. (2019) corroborates these findings. The authors argue
that the anterior ventral medial prefrontal cortex (vmPFC), which is responsible for
the responses to emotional stimuli, is related to exposure to negative images, while the
lateral regions are responsible for the cognitive control of emotions.
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Figure 8: (Left) Degree out of each region over time. (Middle) Mean of weighted degree
out among participants. (Right) The standard deviation of weighted degree out among
participants. In the first line are the statistics for Siegfried’s Funeral March (FM) with
negative valence and in the second line are the Rhine Gold Entrance of the Gods into
Valhalla (RG) with positive valence.

6 Discussion
In this article, we illustrate the use of shrinkage priors in studies of dynamic networks
− the underlying connectivity structure emerges from time series models with dynami-
cally evolving sparsity. The spike and slab priors class makes the graphical model very
flexible and efficient and the indicator parameter enables adding sparsity in contempo-
raneous connections among variables, besides allowing the graphic structure to adapt to
time and data. The presented approach is competitive against previous methodologies
and demands a lower computational cost. The analysis based on optimization meth-
ods is essentially suitable for high-dimensional data. Furthermore, the assumption of
independence of nodes given its parents allows parallel univariate analysis.

DGVS can be applied to several data sources, such as fMRI, fNIRS, electroen-
cephalography, among others. It can also be used to estimate effective connectivity on
data in a task and resting state. We emphasize that the proposal has a greater appeal in
contributions for research purposes, in particular, with the objective of brain/cortical
mapping related to cognitive issues. We believe that the new approach can collabo-
rate with the interpretation of data from these techniques allowing an analysis of the
temporal evolution of the connections among different brain areas. For example, in a
behavioral study in which individuals are encouraged to press a button when viewing a
specific image or when hearing a certain sound (Fong et al., 2019; Costa et al., 2019),
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it would be interesting to compare the different structures formed with the evolution of
these tasks. In the same way, the DGVS can accommodate data from different contexts,
e.g. in the field of economics and financial markets.

Note that we suggested and used a sequence of values for the scalar Θ and showed
that the fitted models performed well for simulated, synthetic, and real data. However,
the user can benefit from the choice of other values and sequences, bearing in mind that
we can interpret it as a tuning parameter. That is, values of Θ closer to 1 return denser
graphs and values of Θ closer to 0 return more sparse graphs.

The study has some limitations that could be improved in future research. First,
the estimation method via the EM algorithm does not allow inference of the complete
posterior distribution, only point estimates are found. Strong inference techniques from
the perspective of optimization can be applied, such as the Variational Bayes (VB)
method which is an optimization method for the approximation of distributions. Second,
it is recommended to calibrate the model, regarding the initial points of the parameters
and hyperparameters of the priors, before its application to the real data. This point
specifically refers to the already known particularities of the optimization methods that
can be sensitive to initial points, and also the sensitivity of the prior spike and slab to
changes in parameterization. This procedure, when poorly performed, can compromise
the accuracy of the model, resulting in spurious connections. Lastly, no restrictions on
the graphical structure are imposed. A possible extension of the DGVS models is to
impose the DAG restriction at each time step. We are able to verify the presence of
cycles in the network at each time step and select the best DAG from the conditional
probability of classifying βtj . This approach is challenging as the models associated with
each node will no longer update independently. However, this enables the construction
of joint data distribution which is often of great interest in multivariate data analysis.
The results of these models are promising and should be explored in further studies.

Software Availability
The R code is available at https://github.com/RbeccaSouza/DGVS.

Supplementary Material
Supplementary material for paper Dynamic Graphical Models with Variable Selection
for Effective Connectivity (DOI: 10.1214/23-BA1377SUPP; .pdf). Supplementary ma-
terial available online includes the figures of the analysis of the simulated data and the
figures of the adjacency matrices estimated over time to simulated, synthetic, and real
datasets, as mentioned in Section 5.
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