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Abstract.

Though the notion of exchangeability has been discussed in the

causal inference literature under various guises, it has rarely taken its orig-
inal meaning as a symmetry property of probability distributions. As this
property is a standard component of Bayesian inference, we argue that in
Bayesian causal inference it is natural to link the causal model, including
the notion of confounding and definition of causal contrasts of interest, to
the concept of exchangeability. Here, we propose a probabilistic between-
group exchangeability property as an identifying condition for causal effects,
relate it to alternative conditions for unconfounded inferences (commonly
stated using potential outcomes) and define causal contrasts in the presence
of exchangeability in terms of posterior predictive expectations for further
exchangeable units. While our main focus is on a point treatment setting, we
also investigate how this reasoning carries over to longitudinal settings.
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1. INTRODUCTION

The concept of exchangeability has profound philo-
sophical meaning in Bayesian statistics. Recall that an in-
finite sequence of observable random variables (¥;)7°, is
exchangeable if, for all finite n,

Pr(Yl Z)’IayYn:yn)

(1.1)

=Pr(Y1=yp01),--» Yn =Ypm))»

or (Y1,...,Y,) 4 Y1) --+» Ypm)), for any permutation
p(-) of the indices. This simple probabilistic definition
plays a central, even totemic, role in Bayesian inference;
it leads to the definition of “parameters” as functions
of infinite sequences of observable quantities through de
Finetti’s representation theorem (de Finetti, 1929; a re-
view of the original work is provided, e.g., by von Plato,
1989). This further facilitates probability statements on
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future, unobserved quantities based on information con-
tained in observed data, and justifies the use of the poste-
rior distribution as the basis for statistical inference (e.g.,
Bernardo and Smith, 1994, p. 173). In recent years, the
term “exchangeability”, or “conditional exchangeability”,
has been increasingly used in the field of causal infer-
ence. However, it has acquired a specific meaning synony-
mous with part of the ignorability assumption as stated
by Rosenbaum and Rubin (1983), that is, a certain con-
ditional independence relationship between exposure (or
treatment), potential outcomes and possible confounding
variables. In this paper, we study the links between the
two usages of the term and point out their common un-
derlying probabilistic arguments. Furthermore, we pro-
pose a fully Bayesian formulation of causal inference that
is based on exchangeable representations and includes
Bayesian definitions of causal estimands. Our central the-
sis is that de Finetti’s formulation of exchangeability is
entirely sufficient to give a coherent basis for causal in-
ference, without the need to introduce special constructs
(such as potential outcomes), mathematical machinery
(such as the do-operator) or additional conditional inde-
pendence assumptions.

1.1 Review of the de Finetti Representation for
Exchangeable Sequences and the Problem Setup

The de Finetti representation theorem for exchangeable
sequences is a key mathematical result, which underpins
all Bayesian inference methodology. The original version
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for binary sequences was generalized to any real-valued
random quantities by Hewitt and Savage (1955), and the
generalized version has been restated, for example, as
Proposition 4.3 of Bernardo and Smith (1994). This states
that if (¥;)72, is an infinite exchangeable sequence of
random variables with probability law Pr, there exists a
random probability measure, P, such that conditionally
on P, the Y, are independent and identically distributed
(i.1.d.) with common distribution P. Moreover, with prob-
ability one, such a P is the weak limit of the sequence
of empirical distributions P,(B) = % i Liy,es), where
B C R. In Bayesian learning under exchangeability, the
random probability measure P can be interpreted as an
infinite-dimensional “parameter,” with probability law,
say Q, interpreted as the “prior” belief distribution. Hi-
erarchically, this means that ¥; | P ~jjq. P and P ~
Q. In the notation that follows, we distinguish between
the “marginal” measure, Pr, and the random “‘parameter-
conditional” measure, P, as the latter’s existence is im-
plied by the exchangeability property on the marginal dis-
tribution.

To characterize the conditional probability structures
that appear in causal settings, we need the notion of par-
tial exchangeability originally introduced by de Finetti
(1938) and reviewed, for example, by Diaconis (1988).
Partial exchangeability characterizes the comparability of
units within subpopulations that are formed, for exam-
ple, by a (categorical) covariate. In our most basic set-
ting, we have W; = (Y;, Z;, X;) where Y; is an observ-
able outcome, Z; is an observable treatment/exposure
and X; represents (typically a vector of) possible con-
founding variables. For simplicity, we consider the case
where all variables take a finite number of possible values,
possibly after discretizing continuous variables, so that
Yiey={0,1,...,¢}, Z; € Z2={0,1,...,m} and X; €
X={0,1,..., p}. However, we note that it is straightfor-
ward to generalize everything that follows to continuous
outcomes Y; (see, e.g., Definition 4.14 of Bernardo and
Smith, 1994, for a generalization based on unrestricted
exchangeability for sequences with predictive sufficient
statistics).

For the joint distribution, for any n > 1 and combina-
tion of values z; € Z, x; € X with a positive probability,
we have the factorization

n
Pr(ﬂ(Yi =yi, Zi =2z, Xi =Xi)>

i=1

= Pr(ﬂ(Yl- = (Zi =z Xi :xi)>

i=1 i=1

X Pr(ﬂ(Zi =2z)| m(Xi =Xi)>

i=1 i=l

X Pr(ﬁ(X,' = xi)>.
i=1

Assuming exchangeability of the random vectors W; over
the individual indices i, identity (1.1) becomes

n
Pr(ﬁ(Y,- =yi,Zi =2, Xi =x,->)

i=1

n

= Pr(ﬂ(Yi =Yoai), Zi = 2p(i)s Xi = xp(i))>,
i=1

where p permutes the individual indices. By considering

permutations p that preserve the values of Z and X (so

that z,;) = z; and x,(;) = x;), the exchangeability over i

also implies that

Pr(ﬂ(Yi = i)

i=1

(\(Zi =z, Xi in))
i=1
(1.2) =Pr(ﬂ ) Y =yp.)

Z,X Z.EIZHX

n
(\(Zi =z, Xi in)),
i=1

where (z, x) € Z x X and p,, permutes the indices within
the index set I'. = {1,...,n}N{i : Z; =z, X; = x}. Iden-
tity (1.2) corresponds to de Finetti’s definition of partial
exchangeability and, for example, in the case of £ =1,
implies the joint representation

Pr(m(Yi =) m(Zi =2z, X; in))
i=1

i=1

(1.3) =f7,1_l [ PYi=vyilZi=z,

stl‘elglx
Xi =x§¢zx)dQ(¢)»
where ¢ = (¢00, ... ¢mp), P(Yi = yi | Zi = 2,X; =
X5 Qo) = e (1 — )17,

|
7, i=1 HZi=z,X;=x}
and
. Z?:l Liy,=1,2,=z,x;=x)
¢ = lim .
n—-o0

n
i=1 l{Zz:Z,Xi:x}

The interpretation of (1.3) is that within each treat-
ment/covariate stratum the outcomes are conditionally in-
dependent and distributed as Y; | (Z; =z, X; = X; ¢zx) ~
Bernoulli(¢,), and Q, which is a multivariate cumulative
distribution function, is the prior belief distribution on the
long-run, stratum-specific relative frequencies. Another
interpretation is that the stratum-specific event counts
are sufficient statistics with binomial distributions. The
model specification would be completed by the specifi-
cation of Q; a full discussion of the prior specification
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is beyond our scope here, but we note two special cases.
Assuming ¢op = - -- = ¢ would imply the exchange-
ability of the entire sequence (no difference between the
groups), whereas assuming the group-specific parameters
¢.x s themselves to be exchangeable would imply a hierar-
chical form for the representation (see, e.g., Section 4.6.5
of Bernardo and Smith, 1994). We note that the latter
property is different from the between-group exchange-
ability that we introduce in Section 3 for causal consider-
ations.

While representations such as (1.3) enable statistical in-
ferences on the unobservable characteristics of the infi-
nite sequences based on observable finite sequences, fur-
ther assumptions are needed for causal interpretations.
Consider, for example, the case of m = 1, with Z; =
1 and Z; = 0O representing the intervention and control
groups, respectively. Here, the covariate stratum-specific
risk differences ¢ — ¢ox or risk ratios ¢iy/¢dox, Or
their marginal counterparts based on standardized risks
> ¢ P(X; = x), would not be causal contrasts without
further assumptions on the treatment assignment mecha-
nism. We will argue that ruling out unmeasured confound-
ing requires a specific kind of between-group exchange-
ability in addition to the within-group property stated in
(1.2).

1.2 Literature Review: Exchangeability and Causal
Inference

A connection between the original probabilistic con-
cept of exchangeability and causal inference was first sug-
gested by Lindley and Novick (1981, p. 51); however,
the authors did not pursue this further. This connection
was pointed out later by Greenland and Robins (1986)
in the context of nonidentifiability of causal parame-
ters due to confounding. However, in the causal infer-
ence literature (e.g., Greenland, Robins and Pearl, 1999,
Hernan and Robins, 2006, Greenland and Robins, 2009),
exchangeability has been interpreted in terms of poten-
tial outcomes (instead of observable quantities), and the
connection of this concept to its Bayesian interpretation
appears to have been lost. In this paper, we highlight the
similarities between causal reasoning based on unit-level
exchangeability and the now more common formulation
based on potential outcomes.

We aim to provide a sequel to the classic account of
Lindley and Novick (1981) that takes into account the nu-
merous developments that have taken place in causal in-
ference theory and methodology since. The utility of the
concept of exchangeability and the account of Lindley
and Novick (1981) have been disputed by Pearl (2009,
pp- 177-180) (see also Lindley, 2002), who argued that
probability theory alone is not adequate for providing a
comprehensive framework for causal reasoning (which,
in fact, Lindley and Novick never attempted). Rather than

enter this debate, we concentrate on clarifying the connec-
tion between the probabilistic notion of exchangeability
and causal inference, using exchangeability as the basis
of the causal model. A causal model is necessary to de-
fine the causal contrast of interest, as well as to define the
notion of confounding and to state the identifying condi-
tions required for unconfounded inferences.

We follow the key insight of Lindley and Novick (1981,
p- 45) that “inference is a process whereby one passes
from data on a set of units to statements about a fur-
ther unit.” Because we can only ever observe outcomes
for any individual unit under a single exposure pattern,
it seems reasonable to base statistical inferences about
causal effects on an explicit assumption of “similarity”
(or more precisely, indistinguishability) of the individual
instances. To assume an exchangeable structure is always
appropriate after sufficient relevant information has been
included (Gelman et al., 2004, p. 6); however, what con-
stitutes sufficient relevant information in causal inference
settings often has to be decided based on prior informa-
tion alone, as noted by Greenland and Robins (2009). That
is, causal inferences from observational settings necessar-
ily rely on prior information regarding the causal mecha-
nisms involved; the role of prior information can be made
explicit in Bayesian inference.

Several other authors have attempted to make con-
nections between classical statistical models and causal
models. In particular, Dawid (2000), Arjas and Parner
(2004) and Chib (2007) have suggested that the poten-
tial outcomes notation is redundant in formulating causal
models, and similar arguments have been made both in
Bayesian and frequentist settings. Baker (2013) gave a
probabilistic interpretation to confounding and collider
biases. Many of the formulations put forth as alterna-
tives to potential outcomes are based on introducing a
hypothetical “randomized” or “experimental” probabil-
ity measure that is used to formulate the causal quantity
of interest (Dawid and Didelez, 2010, Rgysland, 2011,
Arjas, 2012, Saarela et al., 2015, Commenges, 2019).
Inference then becomes a matter of linking the experi-
mental measure to the observational one thought to have
generated the data, which involves assumptions about
the absence of unmeasured confounding. Other formula-
tions are based on structural definitions, where a deter-
ministic relationship is assumed between observed and
latent variables (Commenges and Gégout-Petit, 2015,
Ferreira, 2019).

The “no confounding” assumption required for identi-
fication of the causal effect under these formulations is
usually expressed in terms of latent variables, or equiv-
alence of certain components of the experimental and
observational joint distributions, termed by Dawid and
Didelez (2010) as the stability assumption. Biihlmann
(2020) termed a similar property “invariance” and for-
mulated causal inference in terms of a risk minimization
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problem. Ferreira (2015) framed an exchangeability prop-
erty concerning the treatment assignment mechanism as
a “no confounding” type assumption, but they did not
connect it to Bayesian inference. We are not aware of
exchangeability (in its original meaning as a symmetry
property of probability distributions) otherwise used as
a causal assumption; Dawid, Musio and Fienberg (2016)
used it as an inferential assumption needed in addition to
a “no confounding” type assumption. Dawid (2021) made
a distinction between post-treatment and pretreatment ex-
changeability, where the latter is closely related to the no-
tion of partial exchangeability of outcomes within treat-
ment and control groups separately, while the former in-
volves a judgment of similarity of the groups being com-
pared before they received treatment. A further ignorabil-
ity condition concerning the treatment assignment mech-
anism is needed for causal inferences based on the ob-
served responses in the treatment and control groups.

Like Dawid (2021), we consider partial exchangeabil-
ity, as defined above, as a starting point, suggesting para-
metric inferences based on the representation theorem.
However, while this within-group exchangeability is suf-
ficient for predicting the outcome for a further exchange-
able unit, causal inferences require a judgment on ex-
changeability between groups, that is, between treated
and untreated units, reflecting the absence of confound-
ing due to the group characteristics. In this work, our pri-
mary objective is to formulate the required condition as
a probabilistic symmetry property. Furthermore, we show
that this property indeed is an identifiability condition for
causal effects as it implies ignorability of the treatment
assignment mechanism. Under this condition, the parame-
ters suggested by the representation theorem have a causal
interpretation, which provides a link to Bayesian causal
inferences. We further extend this reasoning to longitudi-
nal settings, where in addition to biases due to confound-
ing, we can encounter biases related to conditioning on in-
termediate variables. Similar to Ferreira (2019), we adopt
a structural model notation as this allows us to draw con-
nections between the different causal models but with a
focus on Bayesian causal inference.

1.3 Manuscript Outline

The paper proceeds as follows. In Section 2, we intro-
duce the necessary notation and concepts. In Section 3, we
propose a definition of conditional exchangeability to be
used as an identifying condition for estimating causal ef-
fects. We show that this condition implies ignorability of
the treatment assignment mechanism and relate it to alter-
native conditions based on causal diagrams and potential
outcomes. In Section 4, we give a Bayesian definition of
a marginal causal contrast and consider inference under
observational settings. In Section 5, we consider extend-
ing the proposed framework to longitudinal settings. We
conclude with a discussion in Section 6.

2. NOTATION AND FOUNDATIONS
2.1 Structural Assumption

It is convenient for our derivations to assume that the
outcome random variable, Y;, is determined by the struc-
tural rule Y; = f(Z;, X;, U;), where Z; represents treat-
ment assignment, X; observed potential confounders and
U; unobserved factors that may be determinants of ¥; and
may or may not also be confounders. This structural as-
sumption is quite general as the model can be readily
modified to include further stochastic elements such as
additive “residual” errors. Note that in the structural def-
inition, we may consider specific interventions on treat-
ment and write f(z, X;, U;), as if random variable Z; has
a degenerate distribution at z, and so that the intervention
is independent of (X;, U;). Note also that the structural
definition is essentially identical to the potential outcome
construction; in the conventional notation, the potential
outcome is given by Y;(z) = f(z, X;, U;). In what fol-
lows, we always assume ‘“general” infinite exchangeabil-
ity of the sequence ((Z;, X;, U;))72, (and consequently
(Y;){2, as it is determined by the former) over the indi-
vidual indices i, which also implies exchangeability of
the sequence (Wi)?il of the observable random vectors
W; = (Y;, Z;, X;). For finite sequences of these, in places
we use vector notation (W;)!_, = (Wy,..., Wy).

2.2 Experimental and Observational Designs

The objective of causal inference is to quantify the ef-
fect of assigning a treatment level, z, (relative to an alter-
native level z) on the outcome, independent of any other
determinants of the outcome. Such an allocation mecha-
nism is commonly termed experimental. We label the cor-
responding probability distributions of observations under
such a setting by £. If the independence is not known to be
present, the mechanism is termed observational, or non-
experimental. The corresponding distributions are labeled
by O. The independence requirement may be expressed
as the factorization

n
Pr((\(Zi =zi. Xi = x;, U € du;; €)
i=1

Q2.1 =Pr<ﬂ(Zi =7); 8)

i=1

n
X Pr(ﬂ(X,- =x;, U; € du;); 6’),
i=1

for any n > 1, where each of the factors on the right-hand
side has a representation of the form of (1.3). From this,
it also follows that Z; 1L (Xx, Uy) for all j, k, where we
use L to denote statistical independence. This expression
could be generalized to allow the treatment assignment
to depend on the observed characteristics X;, but in what
follows we proceed with (2.1).
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N

FI1G. 1. Left-hand panel: DAG depicting a randomized setting la-
beled £. The dotted arrow Z; —> Y; is absent if there is no treatment
effect. Right-hand panel: DAG depicting an observational setting la-
beled O. The arrow X; —> Z; is the distinguishing feature of O com-
pared to E; conditioning on Z; would open a confounding “backdoor”
path from Z; to Y;.

2.3 Directed Acyclic Graphs

In subsequent sections, our explanations are assisted
by the use of directed acyclic graphs (DAGs) to illus-
trate the underlying relationships between the variables.
In the Bayesian framework, we can regard a posited DAG
as encapsulating structural prior knowledge related to the
observable quantities, and they may be considered ei-
ther conditional on or marginalized over parameters in
models. In this paper, we use the terms “knowledge,”
“information” and “opinion” interchangeably to describe
the a priori-held subjective beliefs—both qualitative and
quantitative—of the experimenter. As a notational device,
we will use structural definitions to illustrate the link be-
tween the information encoded in a DAG and the corre-
sponding probability statements.

The DAG in the left-hand panel of Figure 1 illustrates
the relationship between variables as described in Sec-
tion 2.1 and where Z is assigned experimentally. Figure 1
relates to a single individual i; by convention, in the fre-
quentist setting, the nodes on a single DAG are interpreted
to indicate probabilistic relationships for random vari-
ables relating to an archetypal individual present in a ran-
dom sample, with the graph replicated identically across
the independent draws i =1, ..., n. As indicated by equa-
tion (1.3), however, under an assumption of exchangeabil-
ity, the collections of variables W;,i = 1,...,n are not
marginally independent, but instead are conditionally in-
dependent given parameter P. Under the assumption of
exchangeability of the W;, the most general DAG would
have an additional node containing P from which ar-
rows into the complete collection of variables would em-
anate (Figure A1 in Supplementary Appendix A; Saarela,
Stephens and Moodie, 2023).

3. EXCHANGEABILITY AND IGNORABILITY
3.1 Exchangeability Under Randomization

Under the randomized setting &, factorization (2.1) and
the general exchangeability of (X;, U;) imply an addi-
tional exchangeability property that we can give a causal

interpretation. A similar property can then be considered
as an identifying assumption for causal effects in an ob-
servational setting O, where this property is not implied
by design. Now, taking A = {Z; =z, Zx =z} to be the
observed treatment assignment,

Pr(Y; =y, Y=y | A )
=Pr(f(z. X;.Up) =y, f(Z. Xp. Ur) =y | As €)
G.1) =Pr(f(z. X;,Up) =y, f(z, X, U) = ¥'; €)
)=y

:Pr(f(ZvXkaUk):yy f(Z/, Xj, Uj):y/|A,g)

for all (y, y") and (z, z'). Here, the first equality followed
from the functional definition, third from exchangeabil-
ity and second and fourth from independence of the as-
signment mechanism. In particular, (3.1) states that un-
der the experimental setting, the joint distribution of the
two outcomes is the same under a hypothetical switch
of the interventions. Thus, taking z =1 and z’ = 0 and
A={Z; =1, Z; =0}, the property

Pr(f(L,X;,Up) =y, f(0, Xz, Up)=y'| A; )
=Pr(f(1, X, U =y, f(0,X;,U)) =y'| A; )

suggests a causal interpretation; the joint distribution of
the outcomes does not depend on which individual was
actually assigned treatment z = 1. In other words, the
known treatment assignment A is not informative of the
other determinants of the outcomes. This property does
not follow from the previously assumed exchangeability
over i,

Pr(Yi=y,Yk=y1Z;j=1,Z=0; &)
=Pr(Yy=y,Y;j=y1Z;=0,Zr=1¢&),
that is, even under the experimental setting, the statement
Pr(Yj=y,Yi=y1Z;=1,Z=0;€)
=Pr(Yk=y,Y;j=y'1Z;=1,Zr=0;&)

would only be true if there were no treatment effect.
While we could consider such “under the null” causal ex-
changeability statements, the structural model allows us
to make explicit the hypothetical switching of the treat-
ments without this restriction.

Statement (3.1) can be extended to any finite sequence
of observations, conditional on a sequence of treatment
assignments, as

Pr(ﬂ(f(zi, Xi, U =y) | ((Zi =) 5)
i=1

i=1

32 = Pf(ﬂ(f(Zi’ Xp(i): Up@) = i)

i=1

((Z =Zi);5>

i=I
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for any permutation p(-) of the indices. In the remain-
der of this section, we show that under property (3.2),
the parameters implied by representation (1.3), such as
contrasts of treatment group specific outcome frequen-
cies/risks, have a causal interpretation. We note first
that by (3.2), considering permutations only within the
treatment groups, the sequences of “treated” random
variables f (1, X;, U;) and “untreated” random variables
f(0, X;, U;) are partially exchangeable. Thus, the within-
group exchangeability of outcome sequences (1.2) is a
special case of (3.2), the interpretation being that the
stronger condition extends partial exchangeability to cer-
tain kinds of between-group comparisons. Essentially,
(3.2) states that the remaining determinants, observed and
unobserved, of the outcomes are exchangeable between
the treatment groups. We note that (3.2) would follow
from assuming X; and U; to be similarly exchangeable,
but this would be an unnecessarily strong assumption, as
in (3.2) this is only required for the aspects of X; and U;
that are determinants of the outcome.

We term property (3.1) and its extension (3.2) as con-
ditional exchangeability to distinguish them from the pre-
viously assumed partial exchangeability. While under the
experimental setting these were implied by the latter and
the known properties of the treatment assignment mech-
anism, under observational settings considered in Sec-
tion 3.2, a similar property will have to be assumed a pri-
ori. When the assignment mechanism is unknown, this is
a strong assumption, but one that is needed for the iden-
tifiability of causal effects based on observational studies.
It then becomes important that the conditional exchange-
ability statements imply properties of the treatment as-
signment mechanism. To see this, from (3.1) it follows
that

YPr(f(L X, U=y, fO, Xk, U) =)'| A; )
y/
= Pr(f(L Xe, U =y, f(0.X;, Up) =)' | A €)
y/
= Pr(f(1,X;,U)=y|A€)
=Pr(f(1, Xk, Ux) =y | A; €),

thatis, £(1,X;, U | (Zj =1,Zx =0) < (1, X¢. Up) |
(Zj =1, Z; =0) under £. If we further assume that the
treatment assignment of individual & is not informative of
the outcome of individual j and vice versa (corresponding
to the common assumption of “no interference between
units,” cf. Rubin, 1978; Lindley and Novick, 1981, p. 58)
we have that

d
AL X Up 1 (Z;j=1) = f(, Xk, Up) | (Zk = 0).
Further, by general exchangeability we have that

FUX,UDIZi= D& F(L X, U | (Ze= 1),

and combining this with the previous, that (1, X;, U;) 1L
Z; under £. By a symmetrical argument, we can show that
[0, X;,U;) L Z;,and finally that f(z, X;,U;) L Z;, z €
{0, 1} in the Pr distribution. This independence property
was implied by (3.1) and the “no interference between
units” assumption.

While the previous applies marginally, symmetry prop-
erty (3.2) holds true also conditional on the parameters
implied by the de Finetti representation, following the ar-
guments in the Appendix. We also note that in the P dis-
tribution, the “no interference between units” property is
implied by the general exchangeability due to the result-
ing i.i.d. structure. Thus, we also have f(z, X;, U;) 1L Z;
in the P distribution, which is equivalent to the ignor-
ability condition Y;(z) L Z; commonly stated in terms
of potential outcomes. We return to this connection in
Section 3.6 but note that under the randomized setting,
we have demonstrated that exchangeability and ignora-
bility both express a similar “no confounding™ property.
This property allows for unconfounded comparisons of
the treatment arms in terms of long-run outcome frequen-
cies. Expressing this as a probabilistic symmetry state-
ment allows us to make use of Bayesian concepts in out-
lining a causal modeling framework. A perceived strength
of the potential outcomes framework is being able to ex-
press causal contrasts of interest directly in terms of the
average potential outcomes, such as E[Y (1)] — E[Y (0)]
and E[Y(1)]/E[Y(0)] for risk difference and ratio, re-
spectively, without referring to parameters in statistical
models. Similar constructs are also possible in the present
framework, which we will address in Section 4.

3.2 Exchangeability in the Observational Setting

While it was helpful to demonstrate the ideal properties
of the experimental setting, we are actually interested in
inferences under observational settings, where we do not
choose the treatment assignment mechanism and the ex-
changeability of the subpopulations being compared does
not follow from the study design. We consider a hypo-
thetical study of the effect of initiation of antiretroviral
therapy on CD4 cell counts, based on a cohort of n HIV
patients. Specifically, fori =1, ..., n, let random variable
X; represent a baseline CD4 cell count measurement for
HIV-positive individual i, Z; represent the decision to ini-
tiate antiretroviral therapy at the baseline time point, and
Y; the CD4 cell count measurement after a fixed time has
passed since baseline. Further, let U; be a latent variable
representing the underlying immune status of individual i,
some facet of which could possibly be captured by X;. We
know that individuals with lower CD4 cell counts, X;, are
more likely to initiate treatment; the correlation between
U; and X; further implies that those with weakened un-
derlying immune function are more likely to initiate treat-
ment. Thus, the factorization in (2.1) likely does not hold.
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Such dependencies are illustrated in the right-hand DAG
in Figure 1.

If we are interested in the causal effect of treatment
initiation, it seems appropriate to formulate the causal
estimand of interest in terms of a hypothetical random-
ized trial that otherwise resembles the observational set-
ting but where (2.1) holds. The structural assumption
Y; = f(Z;, X;, U;) can be taken to apply under both set-
tings, and the distribution of (X;, U;) can also be assumed
to be the same as we don’t actually observe any data under
£. The problem of causal inference then involves making
probability statements about the estimand specified under
& based on data collected under O. Based on the con-
text, a simple comparison in terms of the summary statis-
tics of the outcomes among those observed to be treated
and those observed not would be confounded; a numer-
ical example demonstrating this is presented in Supple-
mentary Appendix B. We formalize this concept in Sec-
tion 4, where we introduce an explicit causal estimand
and its estimator. Before that, we attempt to understand
this noncomparability of the groups through a probabilis-
tic exchangeability statement between individuals repre-
sentative of those groups and propose this statement as an
identifying condition for causal effects.

Consider a comparison of two individuals, j and k, with
observed treatment assignments Z; = 1 and Z; = 0, re-
spectively, but with the outcome yet to be observed. As in
Section 3.1, we consider whether the outcomes of these
two individuals are exchangeable (pairwise) under a hy-
pothetical intervention to reverse their treatments; if so,
a comparison of their outcomes under the actual treat-
ment assignments would be informative of the causal
effect of the treatment. We again take the outcome to
be determined by a structural model, in which case the
required exchangeability property conditional on A =
{Z; =1, Z; =0} can be expressed as

Pr(Y; =y, Vi =)'| A; O)
(33) =Pr(f(1,X;,U) =y, f0, Xk, Up) =y | A; O)
=Pr(f(0,X;,Up) =y, f(1, X, Up) =y | A; O)

for all (y,y’"), which mirrors the property obtained un-
der £. We emphasize that a statement such as (3.3) could
usually only be made on a subjective basis, conditional on
information concerning the study design and data generat-
ing mechanism; it represents a strong assumption requir-
ing no unmeasured confounding. In addition, the causal
question of interest, including the role of the variables in
the data generating mechanism, must be stated a priori;
without this knowledge, we would not know which ex-
changeability judgment is relevant for drawing causal in-
ferences. Identity (3.3) could be extended to any finite se-
quence similar to (3.2). If this property holds under O, and
we additionally assume no interference between units, we
would obtain Z; 1L f(z, X;, U;) under O.

Central to (3.3) for causal considerations is the extent to
which group assignment can tell us about the other char-
acteristics of the groups through the a priori knowledge of
the relationships between the variables. If statement (3.3)
was true, the treatment and reference groups, and individ-
uals j and k, would be directly comparable, implying that
a comparison of the two groups through a suitable sum-
mary statistic, for instance,

Yiciziyi iz (I —zi)yi

Z?zl Zi ,r'l:] 1—-1z)
would be free from confounding. However, exchangeabil-
ity of the units of inference implies that the labels of the
units do not carry relevant information (e.g., Bernardo
and Smith, 1994, p. 168; Gelman et al., 2004, p. 6), which
is now clearly not the case because of how the compari-
son was constructed: a priori we would expect individual
Jj to have lower baseline CD4 count than k based on the
treatment assignments.

3.3 Restoring Exchangeability Through Conditioning

The strong assumption in (3.3) can be weakened us-
ing conditioning. In the example above, if the baseline
CD4 count sufficiently represents the indication to initiate
treatment, we can stratify on this variable to achieve bet-
ter comparability. Let now j and k index treated (Z; = 1)
and untreated (Z; = 0) individuals matched on the condi-
tion X ; = X = x. Now, we could assume conditional on
Ax=1{Z;=1,7Z;=0,X; = X; = x} that

Pr(Y;=y,Yi=)y"| Ay; O)
(B4) =Pr(f(1,x,Uj))=y, fO0,x,Up) =y | As; O)
=Pr(f0,x,Up) =y, f(l,x,Ux) =y | As; O)

for all (y, y’). Similar to the discussion in Section 3.1,
(3.4) implies that f(z,x,U;) | (Z; =1,Z; =0,X; =
Xe=0)2 fx.U)|(Zj=1,Zt=0,X; =X =x)
under O. And further, under the assumption of no interfer-
ence between the units, Z; L f(z,x,U;) | X; = x under
O. Condition (3.4) can be extended to any finite sequence
matched on x, similar to (3.2). Because (3.4) applies also
under the experimental setting £ and we assume the dis-
tribution of the baseline characteristics (X;, U;) to be the
same in both O and &, we also have that

Pr(Yi | Zi=z, Xi =x;&)
=Pr(f(z,x,U) | Zi=z,Xi =x;&)
=Pr(f(z,x,Ui) | Xi =x; &)
=Pr(f(z,x,U)) | Xi =x; 0)
=Pr(f(z,x,U) | Zi=2z,Xi =x;0)
=Pr(Yi | Zi =z, Xi =x; O).
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Following the arguments in the Appendix, the same prop-
erty would also apply in the i.i.d. distribution implied by
the infinite exchangeability. The corresponding equiva-
lence

PY;i|Zi, Xi;E)=PY; | Zi, X;i; O)

is the “no confounding” condition termed stability by
Dawid and Didelez (2010). Here, exchangeability implies
stability for the conditional outcome distribution, which is
one of the required identifying conditions for inferences
on marginal causal contrasts (Section 4.2).

3.4 Connection to Posterior Predictive Inferences

Comparison (3.4) involved two individuals with an op-
posite treatment assignment and is the relevant compar-
ison for causal considerations. For predictive considera-
tions, the general infinite exchangeability is sufficient, im-
plying the partial exchangeability of the outcomes within
subgroups with the same characteristics, that is,

Pr(Yj:y,Yk:y/|Zj:Zk:Z,Xj:Xk:x;O)
(3.5) =Pr(Yj=y/,Yk=y|Zj=Zk=Z,
Xj=Xr=x;0).

The pairwise exchangeability statement (3.5) extends
from observed units i = 1,...,n to further similarly
matched units j and k, j, k > n, which motivates the
use of posterior predictive inferences within the treatment
groups. The further conditional exchangeability consider-
ation (3.4) suggests that the predictions can be compared
across the treatment groups as

Y (EWY;1Zj=1,X;=x,Dix; O]
X
1 n
— E[Yi| Zk =0, X =, Do: O))~ 3 1ix;=x)
=1
(3.6) . l
- (Zi:l Lix;=x)2iyi
X

i—1 L(x;=x)zi

B 2731 Lix = (1 — Z")yi)lfl{x,:x},
Yiclxi=x(1—z) JniH

where D, = {W; :i € I} denotes the observed data
on the matched groups and where the last form follows
by approximating the within-stratum posterior predictive
means by the sample means (cf. Lindley and Novick,
1981, p. 47). Thus, the above recovers the classical direct
standardization formula for the marginal treatment effect
(Keiding and Clayton, 2014, also known as the backdoor
adjustment formula, Pearl, 2009).

For Bayesian inference, if the strata are too small for
the use of the direct standardization formula, one would
instead have to pool the observed data and connect them

to the predictions through parametric probability mod-
els. We will formalize this in the following section but
note here that the modeling approach requires the exis-
tence of parameter vectors ® and W given which Y; I
Wi_, 1 (Zj,X;,¢) and X; 1L (X;)?_, | ¥ under O,
forall j =n+1,.... As outlined in Section 1, the exis-
tence of such parameters is implied by the partial or unre-
stricted exchangeability assumptions. Given an observed
realization (w;)7_,, a parametric counterpart to (3.6) can
be given as

/(be(E[leijl,XJ-:x,qb;O]

(37 —EYk|Zk=0,X;=x,¢;0])
X P(Xj=x|¢;0)d0(¢, ¥ | (w)i_;; O).

It is apparent from (3.7) that drawing causal inferences is
possible if the stability property of Section 3.3 applies to
the pairwise comparisons

E[Yj|Zj:1,Xj:X,¢;O]
—EY | Zr =0,X =x,¢; O],

with ¢ parametrizing the causal effect of Z; on Y; when
controlling for X; as in this case, the inferences would
be the same as under the experimental design. However,
parametrizing causal effects directly would be reliant on
statistical models, whereas the convention in causal in-
ference literature, especially in potential outcome formu-
lations, is to define the causal contrasts of interest first
without reference to models. We address model-free def-
initions of causal contrasts in the present framework in
Section 4.1, where parametric models may then be uti-
lized to obtain estimators for such contrasts.

3.5 Connection to Other Latent Variable Formulations

Under the point treatment setting, the implications of
the infinite extension of criterion (3.4) are equivalent to
other conditions for unconfounded inferences stated in
terms of conceptual latent variables representing general
confounding. For instance, Definition 1 of Arjas (2012)
connects unconfounded inferences to the conditional in-
dependence property Z; L U; | X;. This in turn directly
implies that Z; 1 f(z,x,U;) | X; = x, and further the
stability property similar to Section 3.3.

Although formulations in terms of latent variables need
not rely on causal graphs, the absence of unmeasured
confounders can be stated equivalently in terms of the
backdoor criterion of Pearl (2009, p. 79); in the absence
of a direct arrow U; — Z; in the right-hand panel of
Figure 1, X; blocks every path between Z; and Y; that
contains an arrow into Z; (and is not a descendant of
Z;), which implies that X; is sufficient to control for
confounding. Alternatively, the conditional independence
property Z; L U; | X; can be read directly from the graph
of Figure 1 using, for example, the moralization criterion
of Lauritzen et al. (1989).
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3.6 Connection to the Potential Outcomes Notation

Under the structural definition of the outcome, we can
take the potential outcomes of individual i to be deter-
mined by Y;(z) = f(z, X;, U;) (cf. Pearl, 2009, p. 98),
with the observed outcome given by Y; = Y;(Z;) (the lat-
ter is known as the consistency assumption, e.g., Cole
and Frangakis, 2009, VanderWeele, 2009a, Pearl, 2010).
As discussed in the previous two sections, the infinite
extension of the symmetry property (3.4) implies that
Zi L f(z,x,U;) | X;i =x under O. This is equivalent to
the statement

(3.8) Yi(z) L Z; | Xi,

which is in fact the probabilistic conditional exchange-
ability condition as defined by Hernan and Robins (2006,
p- 579), or a consequence of the first part of the strongly
ignorable treatment assignment condition, as defined by
Rosenbaum and Rubin (1983, p. 43). We note that mak-
ing statements about the joint distribution of the poten-
tial outcomes (as in strong ignorability) is not necessary
for identification of causal contrasts; the weak version in-
volving (3.8) suffices. Although Rubin (1978, p. 41) uses
the term exchangeability in the usual Bayesian sense to
justify an i.i.d. model construction, as far as we know,
the connection between the Bayesian notion of exchange-
ability and the condition stated in terms of potential out-
comes has not been made or studied within the framework
of Rubin’s causal model (as termed by Holland, 1986).
In contrast, this connection is implied in Greenland and
Robins (1986), Greenland, Robins and Pearl (1999) and
Greenland and Robins (2009).

We note that, under the probabilistic exchangeability
condition (3.4), we had that f(z,x,U;) | (Z; =1, Z; =

0.X,=Xs=x)= fz.x.U) | (Zj=1,Zx =0,X; =
Xy = x), that is, the remaining determinants of the out-
come under the structural model have the same population
distribution between the treatment groups. Requiring that
these determinants also have the same empirical distri-
bution between the groups being compared would corre-
spond to the deterministic exchangeability condition laid
out by Greenland and Robins (1986, p. 415). This is un-
necessarily strong for unconfounded inferences; it rules
out both confounding and imbalance (e.g., the chance im-
balances that could arise even under complete random-
ization). If we could condition on all of the determinants
of the outcome, the symmetry property conditional on
A ={Z; =12 =0,X; =Xy =x,Uj = Uy = u}
could be written as

Pr(Y; =y, Y=y Axu; O)
=Pr(f(L,X;,UpD=y, fO, X, U) =y | Axu; O)
=Pr(f(0, Xja UJ) :y/’ f(lanv Uk) :y | Axu§ O)

1, when (y,y)=(f(1,x,u), f(0,x,u)),
0, when (y,y") # (f(1,x,u), f(O0, x,u)).

Thus, with this conditioning, the outcome is a determin-
istic function of the treatment assignment, and exchange-
ability applies trivially. This level of conditioning would
be required for identifying individual level causal ef-
fects, which is impossible in practice (the “fundamental
problem of causal inference” as discussed by Holland,
1986). The probabilistic condition is sufficient for iden-
tifying population-level effects. In the following section,
we connect our concept of conditional exchangeability to
Bayesian causal inference.

4. DEFINITION AND ESTIMATION OF CAUSAL
CONTRASTS

4.1 Causal Contrasts Defined in Terms of Posterior
Predictive Expectations

As noted by Greenland (2012), causal inference can
alternatively be formulated as a prediction problem or a
missing data problem; the potential outcomes notation
corresponds to the latter formulation. In the Bayesian
framework, a causal contrast of interest may be naturally
defined in terms of posterior predictive expectations for
further exchangeable individuals under the hypothetical
experimental setting already introduced above. We define
the causal contrast of interest under the randomized set-
ting in terms of the limits

lim E[Y;|Zj=z, (wi)j=; €]

n—o0

4.1) _ . ;
- ngnooE[Yk | Zy =2, (wi),':1§ 5],

where j # k > n and (w;)}_, is a hypothetical exchange-
able sequence under £. We may consider such a contrast
for arbitrary settings of the treatment indicators z and
7/, thus mimicking the classical “intervention” formula-
tion of the causal contrast. Note, however, that no special
mathematical definitions or tools, other than those asso-
ciated with fundamental exchangeability concepts, are re-
quired in this definition.

By de Finetti’s representation theorem, the joint distri-
bution of the data may be written

Pr((Wi)!_y: €)

=/9 [TPwi16:€)d0®; &)
i=l

(4.2) =fwl_[[P(Yi | zi, xi, ¢; )
=1
x P(X; | ¥;6)]dQ(g, ¥ E)
< [ [1P@1vieraow:e),
Vi=1

where 6 = (¢, y, ¥) represents a partition of the joint pa-
rameter vector corresponding to the above factorization
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of the joint parameter-conditional distribution of W; =
(Yi, Zi, X;) in the second line, provided parameter I' is a
priori independent of the parameters (®, ) (cf. Gelman
etal., 2004, pp. 354-355). Because all of these parameters
are defined under &, this independence follows from the
factorization (2.1), understanding the parameters as long-
run summaries of the observable sequences. Now for any
J > n the expectations in (4.1) may be written as

E[Y;|zj, (wi)i_;; €]

= Z yiPr(yj, xjlzj, (w)i_i; €)
@3
X Yidpy e,y Li(@,¥) dQ($, Y3 €)

Sy s Sy Ticttom gy L1, ) A0, 3 €)
-y yj/;w L. 9)dQ(é. ¥ | (wi)_y: &),

YjXj

where Li (¢, ¥) = P(yi | zi, xi, ¢; E)P(x; | ¥; E). Here,
the terms involving parameters I" cancel out because
Z; 1L X; under € (and T" L (®, ¥)); note that this would
not hold under the observational setting O.

If we further assume regularity conditions that allow
interchanging the order of limit and integration, the limit
of the above expectation becomes

lim E[Y; ]z, (w)ly: €]

- E[Y; |27, %j. ¢, EIP(x; | 9 €
;/M [Yjlzj,xj, ¢ EIP(xj | 3 E)
“4.4) !
X 8 (@)8y, (¥) dp dyr

=Y E[Yj|zj,xj,¢0; EIP(xj | ¥0: E),
Xj

assuming that the posterior distribution converges to a de-
generate distribution at the true parameter values (¢o, ¥o)
(cf. van der Vaart, 1998, p. 139). The right-hand side here
corresponds to the direct standardization/backdoor for-
mula, which was previously obtained informally as equa-
tion (3.6). Because we interpret parameters as (unknown)
functions of infinite sequences of observables (following
Bernardo and Smith, 1994, p. 173, and as per the defi-
nitions in Section 1), identity (4.4) motivates definition
(4.1) as the causal parameter of interest, as (4.4) does not
depend on the prior Q (¢, V¥; £).

4.2 Estimation Under the Observational Setting

Identification. To estimate the causal contrast (4.1) de-
fined under the experimental setting £ based on data col-
lected under the observational setting O, in (4.3) we have
to make the substitutions P(Y; | zj, xi, ¢; E) = P(Y; |
Zi,Xi, ¢; O) and P(X; | ¥;E) = P(X; | ¢; O); the for-
mer corresponds to the stability assumption, which in turn
is implied by the infinite extension of the conditional ex-
changeability property (3.4). The latter can be taken to be

true by definition, that is, the standard population is cho-
sen according to the observed covariate distribution. Un-
der these assumptions, parameters ¢ and i have the same
interpretation under both settings £ and O. With a given
observed realization (w;)}_,, this gives an estimator for
(4.4) as

ElY:|zi,x;,¢; OlP(x; ;O
@5) xzj/tﬁ,'l/ j|Z] Xj ] (lelﬁ )

x dQ(¢, ¥ | (w)}—y; O).

We may also wish to state an identifiability condi-
tion in frequency-based terms. Because (4.5) is taken to
be the estimator of parameter (4.4), it is natural to re-
quire consistency, which we have if lim,,__, o dQ (¢, V¥ |
(w15 O) = 8¢y )8y, (¥). In other words, the infer-
ences will be unconfounded if

> E[Yj|zj.xj, ¢o; O1P(x; | Y05 O)

Xj
- ngnooE[Yj | Zjs (wi)?zl; 5]

A causal contrast could be defined alternatively in terms
of potential outcome variables as E[Y;(1)] — E[Y;(0)].
For unconfounded inferences, we could then require that

(4.6) > ELYi|Zi =z x; O1P(x;; O) = E[Yi(2)],

Xi

which follows from (3.8) (e.g., Herndn and Robins,
2006, p. 579), and makes no explicit reference to the
parametrization of the problem.

Positivity. To ensure that the conditional distributions
above are well defined, we need an additional assump-
tion known as positivity, that is, absolute continuity of the
two measures under £ and O (cf. Dawid and Didelez,
2010, p. 196), stated as P(Z; | xj, ;&) K P(Z; |
xi,v; O), which is equivalent to P(Z; | x;,y; 0O) =0 =
P(Zi | xi,7: &) =00r P(Zi | xi,y;E) £0 = P(Z; |
xi,v; O) # 0. In particular, if the treatment Z; depends
deterministically on the covariates X;, inference across
the observational and experimental settings would not be
possible.

Estimation of expectations (4.3) may be carried out us-
ing Monte Carlo integration by sampling from the pos-
terior distribution of (®, V). Because the distributions
P(Y; | zi,xi,¢; O) and P(X; | ¥; O) implied by the rep-
resentation theorem are unknown, these have to be re-
placed with statistical models in practice. These mod-
els do not necessarily have to be parametric (i.e., hav-
ing finite-dimensional ® and W¥; cf. Bernardo and Smith,
1994, p. 228), for instance, we would usually model
P(X; | ¥; O) with the empirical distribution of X;; how-
ever, in practice, the curse of dimensionality limits the use
of nonparametric specifications for the outcome model,
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and dimension-reducing modeling assumptions will be-
come a necessity. When finite-dimensional parametriza-
tions are used, model misspecification becomes a poten-
tial issue. In particular, one may lose the important prop-
erty of valid inferences under the null hypothesis of no
treatment effect, which will be elaborated on in the fol-
lowing section.

5. LONGITUDINAL SETTING: EXCHANGEABILITY
AND SEQUENTIAL RANDOMIZATION

Having established the Bayesian formulation of causal
inference in point treatment settings, we now seek to ex-
tend this reasoning to the longitudinal case, where con-
founding structures may be more complex. For simplic-
ity, we consider the two time-point case and contend that
the extension to multiple time-points follows straightfor-
wardly. Consider now the slightly more complicated set-
ting in the DAG in the bottom panel of Figure 2, labeled
by O, adapted from Robins and Wasserman (1997), where
the design variables Z1; and Zj; represent the treatment
assignment to initiate or receive a particular dose of an-
tiretroviral medication starting at baseline and at a sub-
sequent reexamination, respectively, for individual i. Fur-
ther, let X; represent observed anemia status at the reex-
amination, and Y; an HIV viral load outcome, measured at
the end of follow-up after sufficient time has passed from
the reexamination. Latent variable U; again represents the
underlying immune function of individual i, which is ex-
pected to be a determinant of both X; and Y;. Here, X; be-
ing influenced by earlier treatment introduces treatment-
confounder feedback (Robins, Herndn and Brumback,
2000, p. 550), which makes the judgment of exchange-
ability somewhat more involved. For the causal exchange-
ability considerations, we take the intermediate variable
and outcome to be determined by structural models X; =
g(Z1i,Up) and Y; = f(Z1i, Zai, Xi, Uj).

The principal source of difficulty is represented by the
latent variable U;. To consider its implications for infer-
ence, we first define the causal contrast of interest in terms
of a randomized setting labeled by £ depicted in the top
panel of Figure 2. We may now define the causal contrast
of interest as

n@ooE[Yj | Z1j =215, Z2j = 22j, (wi):'l:1§5]
— lim E[Yk | Z1k = 21k Lok = 22k (wi)?:p 5],
n—-oQ

where j # k > n. The expectations here can be repre-
sented alternatively as

lim E[Y; | z1i, z2i, (wi)]—y: &]

n—-o0

= E[Y; | 21, 22i, 90; €]

5.1

FIG. 2. Top panel: DAG depicting the randomized longitudinal set-
ting labeled by E. The dashed arrows are absent under the null hy-
pothesis of no treatment effect in the presence of treatment-confounder
feedback. Note that the null hypothesis also holds under an alternative
DAG, where the arrow Z1; —> X; is omitted, and the dotted arrow
X; —> Y; may be present. Bottom panel: DAG depicting the observa-
tional longitudinal setting labeled by O. This DAG differs from that on
the top panel by the arrow X; — Z»;.

or
lim E[Y; | 210, 220, (wi)izy: €]
(5.2) =ZE[Yi | z1is 221, Xi, 95 €]
x;
x P(xi | z1i, 35 )
or finally

lim E[Y;|z1, z2i, (wi)i—y; €]

n—-uo0
(53) :Z/ E[Yl |Z1i’Z2i7xiv uhd)g’g]
x; YU

x P(xi | z1is i, W ) P(du; | ) €).

Note the different parameters ¢, (¢*, ¥*) and (¢T, w%,
n') in the three representations. The parametrization in
(5.3) corresponds to the data generating mechanism, the
parameters of which are determined by the representa-
tion for infinitely exchangeable random vectors (Y;, Zy;,
Z»i, Xi, U;), whereas the parameters that appear in (5.1)
and (5.2) are consequences of the joint model obtained by
marginalization.

As was done in Section 3.2, we consider for simplic-
ity binary or dichotomized treatments and consider the
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comparability of groups selected to have a given treat-
ment assignment configuration. The exchangeability with
respect to the intermediate variable X; can be established
as before. For the outcome Y;, we consider exchangeabil-
ity separately at the time of each treatment. The groups
being compared have the treatment assignments (Z1; =
1,2y =1), (Z1;=1,2Z2 =0), (Z1;, =0,Z; = 1) and
(Z1; = 0,Zy; = 0). We note that the parameters ¢ in
the outcome model P (Y; | z1i, z2i, ¢; €) corresponding to
parametrization (5.1) would not be estimatable under the
observational setting O. For instance, at the second time
point, the outcomes of individuals j and k& with opposite
treatment assignments would not be exchangeable (those
assigned to treatment at the second interval are likely to
have better underlying immune function status than those
not assigned to treatment, with the second assignment de-
pending on X;), that is, we do not have that

Pr(Y;=y,Yi=y"|A;O)
=Pr(f(1, 1,g(1,Uj), Uj) =y,
F(L,0,8(1,Up), Ux) =y | A; O)
:Pr(f(l, LX;,Uj)=y,
F(L,0, Xk, U) =y | A; O)
=Pr(f(1,0,X;.Uj) =",
f, L X, U =y | A O),

where A={Z 1 =Zx=1,22; =1, Zy =0}.

Instead, we can adopt parametrization (5.2) and model
the conditional distributions P(Y; | z1i, 22i, Xi, $*; O)
and P(X; | z1;, ¥*; £). Now based on Figure 2 we have
that Zy; I U; and Zy; 1L U; | (Zy;, X;) under O, which
together imply the sequential randomization condition
discussed by, for example, Dawid and Didelez (2010,
p- 200), or stability P(Y; | Z1i, Z2i, Xi;E) = P(Y; |
Z1i, 22, Xi; O0) and P(X; | Z1;;8) = P(X; | Z1;; O).
Stability would be sufficient to ensure nonparametric
identification of the marginal causal contrast because

P(Yi|zii, 22i5 &)
_Z/ P(Yi, Z\i = z1i, Zoi = 22i, Xi, du;i; )
x; YU

P(Zyi =z1i, Z2i = 2215 €)
=Z/ P(Yi | z1is 22is i uis ) P(xi | 210, ui; €)
x; Ui

x P(du; | z1i; &)
=Z/ P(Yi | z1is z2is i uis ) P(xi | 2155 E)
x; YU

x P(du; | z1i, 221, xi; €)

=Y [ PO du 21z € PG |21 ©)
x; YU

=Y P(Yi|z1i. 220, % E)P(xi | 2135 €)

Xi

=>"P(Y; | z1i, 221, %3 O)P(x; | 2153 O).

Xi

However, under the longitudinal setting introducing
stratification by X; does not restore the conditional ex-
changeability of all the groups being compared. We now
do have exchangeability between individuals j and k£ with
opposing treatment assignments at the second time point,
that is,

Pr(Yj=y,Yi=y"|As; O)
=Pr(f(1,1,x,Uj) =y,

(5.4) f(1L,0,x,Up) =y | Ay; O)
=Pr(f(1,0,x,Uj) =,

F(LLx, U=yl A 0),

where Ay ={Zj =Ziy=1,22j =1,2%=0,X; =
X = x}. However, when comparing individuals with op-
posite treatment assignments at the first time point, the
conditional exchangeability condition

Pr(Yj =y, Yi=y'| As; O)
=Pr(f(1,0,x,Uj) =y,

(5.5) £0,0,x,Un) =y | Ay; O)
=Pr(£(0,0,x,U;) =y,

f(1,0,x,Up) =y | Ay; O),

where Ay ={Z1; =1,Z1x =0,2Z2; = 2 =0,X; =
Xy = x}, does not hold because the prior information
we have on the relationships between the variables in-
dicates, for example, that those without anemia and as-
signed to treatment at the first interval are likely to have
better immune function status than those without ane-
mia and no treatment at the first interval because initia-
tion of the treatment is in itself a cause of anemia. This
would be the case also if the groups being compared had
been formed under the completely randomized setting &,
even though the groups would be exchangeable without
the stratification. In the causal inference literature, this
phenomenon has been called collider stratification bias
(e.g., Greenland, 2003), Berkson’s bias or merely selec-
tion bias; as demonstrated, it can equally well be under-
stood as lack of conditional exchangeability of the groups
being compared in terms of their pretreatment character-
istics. Exchangeability does hold matching on the initial
treatment assignment Z;1, but this would not allow esti-
mation of the effect of Z;;. The nonexchangeability of
the groups not matched with respect to the initial treat-
ment assignment is illustrated in the numerical example
presented in Supplementary Appendix B.



EXCHANGEABILITY IN CAUSAL INFERENCE 381

The lack of conditional exchangeability corresponding
to (5.5) implies that the parameters ¢* in the conditional
probability model P(Y; | z1;, 22i, Xi, ¢*; O) characteriz-
ing the association between Y; and Z; would not have a
causal interpretation, and thus a modeling strategy based
on finite-dimensional parametrization (¢*, ¥*) might not
be successful; without an appropriate parametrization of
the problem, we may lose the important property of valid
inferences under the null hypothesis of no treatment ef-
fect, which gives rise to the so-called null paradox (e.g.,
Robins and Wasserman, 1997, pp. 411-412, Vansteelandt,
Bekaert and Claeskens, 2012, p. 11; Dawid and Didelez,
2010, p. 224).

The conditional exchangeability condition (5.5) re-
lates to the stronger conditional independence condition
(Z1i, Zoi) L U; | X; required for identification of con-
trolled direct effects (e.g., Robins and Greenland, 1992,
VanderWeele, 2009b). This does not hold under the set-
ting of Figure 2, but exchangeability could be restored
by introducing further conditioning on U;, which im-
plies that (5.3) would be the correct causal parametriza-
tion. However, because U; is unobserved, the use of such
parametrization in practice would introduce new identifi-
ability problems. The null-robust reparametrization of the
problem, as suggested by Robins and Wasserman (1997,
pp. 415-416) might be one way to proceed.

Regardless of the issues related to finite-dimensional
parametrizations, we note that a connection between con-
ditional exchangeability statements and the stability prop-
erty is still preserved in the longitudinal setting. As we
have noted above, sequential randomization is sufficient
for stability, and assuming conditional exchangeability
under permutations of both treatment assignments Zi;
and Z»; is unnecessarily strong for nonparametric iden-
tifiability of the problem. If we assume the infinite ex-
tension of exchangeability property (5.4) with respect to
permutations Zy; at fixed levels of Z;;, we note that at the
second time point Z1; has the same role as the observed
confounders X;. We can then use the same arguments as
in Sections 3.1 and 3.2 to find that Zy; 1L f(z1, z2, x, U;) |
(Z1; = z1, X; = x) under both £ and O. This corre-
sponds to the second condition of sequential random-
ization and can be used to further obtain Pr(Y; = y |
Zin =z1,Zi2 = 22, Xi = x;&) = Pr(f(z1,22,x, Up) =
vy Zi=z21.Zi2 = 22, Xi = x;&) = Pr(f (21,22, %,
U=yl Zi1=z1,Xi=x;&). Here,

Pr(f(z1,22,x,U) =y | Zit =21, Xi = x;€)
_ Pr(f iz, x, U) =y, 81, Ui) =x | Zijn =215 €)
Pr(g(z1,Up)=x|Zi1 =215 &) '

Thus, if we have (f(z1,z2,8(z1,Ui),Ui), g(z1,U;)) L
Z1; (which in turn implies that g(z1, U;) L Zy;), under

the usual assumption that the distribution of the baseline
characteristics is the same under £ and O, we can get that

Pr(f(z1,22, %, U=y | Zii=z21, Xi =x; )
—Pr(f(Zl 2,x, U | Ziv =71, Xi = x; O)
=Pr(f(z1,20,x, Up) | Zin =21, Zin =22, X;
=Pr(Y; | Zii =21, Zin=122, Xi = x; O).

Using similar arguments as before, these properties also
apply in the i.i.d. distribution, implying the stability prop-
erty for the outcome distribution. The first sequential ran-
domization condition Zi; 1 U; would be sufficient for
the required independence, but it can also be obtained
from the infinite joint exchangeability property for se-
quences of f(z1,z2, g(z1,U;), U;) and g(z1, U;) condi-
tional on Zj;. Thus, we contend that while obtaining
identifying conditions for causal effects based on con-
ditional exchangeability statements is more cumbersome
in the presence of treatment-confounder feedback, it ap-
pears to be possible. We also note that the required iden-
tifying conditions correspond to (Y;(z1,z2), Xi(z1)) 1L
Zy; and Yi(z1,22) L Zo; | (Z1;, X;) expressed in terms
of potential outcome variables if we take Y;(z1,22) =
f(z1,22,8(z1,U;), Uj) and X;(z1) = g(z1, U;), that is,
the treatment assignments are independent of future po-
tential outcomes and intermediate variables conditional
on observed past (e.g., Chakraborty and Murphy, 2014).

 =x;0)

6. DISCUSSION

We have demonstrated that the notion of exchangeabil-
ity as a probabilistic symmetry property can indeed serve
as as a basis of a causal model, as was originally sug-
gested by Lindley and Novick (1981). That exchangeabil-
ity can be formulated as an ignorability assumption, and
that marginal causal contrasts can be naturally defined in
terms of limits of posterior predictive expectations for fur-
ther, yet unobserved, exchangeable individuals, has not
been appreciated in the causal inference literature. We do
not claim that the interpretation of exchangeability as a
causal model would have important practical advantages
over alternative causal models; the preference for a par-
ticular causal model as the notational system is largely a
matter of taste and convention. In particular, the identify-
ing conditions required for inferences were equivalent to
corresponding conditions stated in terms of potential out-
comes. However, the proposed framework links causal-
ity more closely to model parameters and does enable a
more natural incorporation of causal reasoning into the
fully probabilistic Bayesian framework, in the sense that
no concepts external to de Finetti’s system are necessary.

We demonstrated a connection between conditional
exchangeability statements and causal interpretation of
parameters in statistical models. However, in the lon-
gitudinal setting of Section 5, the connection between
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the conditional exchangeability properties correspond-
ing to the model components and identifying conditions
for marginal causal contrasts defined without reference
to statistical models becomes less direct. In particular,
in situations where conditioning on intermediate vari-
ables opens backdoor paths between treatments and the
outcome, component models may not be interpretable,
while the marginal causal effects may still be identifi-
able. Alternative inference methods exist that can iden-
tify the causal contrast under the sequential random-
ization condition and with fewer parametric modeling
assumptions; consider, for example, marginal structural
models estimated using inverse probability of treatment
weighting (Robins, Herndn and Brumback, 2000, Hernén,
Brumback and Robins, 2001). Nonetheless, exchange-
ability judgments may warn us of a situation where null
paradox-type model misspecification issues are likely to
arise. Proper understanding of the problem and the pos-
sible solutions are especially important given the recent
renewed interest in the parametric g-computation for-
mula (e.g., Taubman et al., 2009, Westreich et al., 2012,
Keil et al., 2014, Jain et al., 2016, Bijlsma et al., 2017,
Neophytou et al., 2019, Shahn et al., 2019). The issues
related to finite-dimensional parametrizations also moti-
vate further research into semiparametric Bayesian infer-
ence procedures, which would allow direct parametriza-
tion of marginal causal effects while avoiding specifica-
tions of some of the likelihood components (cf. Saarela
et al., 2015, Saarela, Belzile and Stephens, 2016).

Throughout, we assumed a functional relationship be-
tween the outcome and its determinants, with the function
f(z, X;, U;) understood as the equivalent of the potential
outcome Y (z). This notation allows us to decouple the
observed, potentially informative, treatment assignment
from the intervention in the exchangeability judgments
when considering switching the treatment of the units.
The assumed deterministic relationship may not be a se-
rious limitation, as U; could always be thought to include
the remaining (unobserved) determinants of the outcome.
However, a reviewer points out that the present framework
could potentially be modified to allow for stochastic de-
pendency of Y on (Z, X, U) by introducing separate nota-
tion for the intended/assigned treatment Z and interven-
tion to administer treatment Z. One could then consider
exchangeability statements of the type

Pr(Yj=viYi=y |Zj=z2,Zk=21Zj=2,Z =7
=Pr(Y; =Y Yi=yIZ;=22Zx=12
Zj=7,Zr=2),

conditional on both the assignment and the intervention
(which may be different). This has a similar interpretation
as (3.1) but does not require introducing the functional
relationship for the outcome. We leave it as further work
to study whether the presented framework can be adapted
accordingly to obtain the same results.

APPENDIX: LIKELIHOOD CONSTRUCTION UNDER
DICHOTOMOUS OUTCOMES

Suppose that Y; € {0, 1} is an outcome event indica-
tor or dichotomized continuous or count outcome and the
subsequences of these indicator variables for treated units
Z; =1 and untreated units Z; = 0 are separately infinitely
exchangeable, that is, we have partial exchangeability

Pr( N Yi=y). ) (Yi=yi>|ﬂ(zi=z,-);5)

i:zi=1 i:z;j=0 i=1

:Pr( ) Yi=ypi)-

irzi=1
n
(N Vi =y ((Zi =z 5)
i:z;=0 i=1

for any permutations p; and pg of the subsequences. If
in addition, we assume that the treated event count and
untreated event count are sufficient statistics, by Proposi-
tion 4.18 of Bernardo and Smith (1994), for each pair of
treated and untreated units we have that

Pr(Y;=y, Y=y 1Z;=1,Z =0; &)
= Pr(Y; = ,Yk: ! Z~=1,Zk:0,
0.17 Yj=y y1Zj

é1, do; £) QO (#; )
- /[.0 12 911 - d)l)l_y‘pg/(l —¢0)' 7 dO(¢s E).

where ¢ = (0, ¢1),

Q(¢; &)
) 'fl_ Z'Y'
:”E)noopr<zjl+l" <1,
i=1%i
Z?—1(1 —2z;)Y; -
= < 7Z: =7
?zl(l_zi) < ¢o O( i =2i)
i=1
= lim Pr 2iz %/ Xi, U) <
n—>00 Z?:lzi - ’
n n
izt (1 =200, X;, Up) _
< Zi=2z) |,
Zyzl(l_zi) ¢0 IQ( i l)
and
¢1 — lim Z?zl Zi Y
n—> 00 Z?—l Zi
— lim Yz f(L X, U
T 50 ?—1Zi



EXCHANGEABILITY IN CAUSAL INFERENCE 383

and

i (1 —2)Y;
n—o0 3 1 (1—1z)
. i (1 —=z) (0, X;, Up)
lim - .

n—> 00 =1 (1 — Zi)

As noted before, for contrasts of the treated and un-
treated outcome event frequencies such as ¢; — ¢g or
¢1/¢o to have any causal interpretation, we need fur-

ther assumptions in addition to the partial exchangeabil-
ity. From the general exchangeability, it follows that

Pr(Yj=y, Y=y 1Z;j=1,Z; =0;¢)
PV =y, Y=y, Zj=1,Z=0;€)
Pr(Z;=1,7Z;,=0;&)
_ Pr(y; =y, YVk=y,Z2;=0,Z;=1;¢)
Pr(Z;=0,Z;=1;€)
=Pr(Yj=y.Yi=y|Z;=0,Zr=1¢).
Further, by the structural model and (3.1), we have that
Pr(Y; =y . Yi=y1Z;j=0,Zy=1;¢)
=Pr(f(1, Xx, Up) =y,
fO,X;, U=y 1Z;=0,Z=1;€)
=Pr(f(1,X;,Ujp) =,
fO, X, U)=y"1Z;=0,Zy =1; &),

so that
Pr(f(1,X;,Uj) =y,
fO. X, U)=y"1Z;=1,2;=0;€)
=Pr(f(1,X;,Uj) =y,
This indicates that under the added conditional exchange-
ability assumption, the joint distribution of f(1, X;, U;)
and f(0, X, Ux) does not depend on which one of j and

k was actually assigned the treatment. More generally, we
have that

n n
Pr(ﬂ(f(zi, Xi, Up) =) [ \(Zi =z); 5)
i=1 n i=1 "
=Pr<ﬂ(f(2i, Xi, Up) =) [V Zpiy =zi): 5)-
i=1 i=1
This indicates that the limiting distribution Q(¢; £) and

the limits ¢; and ¢ do not depend on the actual treatment
assignment. We also note that from (3.2) it follows that

Pr( ) (FA, Xi, U) =),

i:z;=1

() (£, Xi, U = yi) | [ (Zi = 22); 5)

i:zi=0 i=1

=Pr( () (L X0, UD) = yo,0))-

i:zi=1

() (fO. X, Up) = ypi))| [ \(Zi = 2); 5)

i12;=0 i=1

for any permutations p; and pg of the treated and un-
treated subsequences. This means that partial exchange-
ability still applies to the sequences of under treatment
random variables f(1, X;,U;) and without treatment
random variables f(0, X;, U;), enabling application of
Proposition 4.18 of Bernardo and Smith (1994) directly
to the joint distribution of these. Thus, we conclude that
the likelihood is given by

Pr(Yj=y.Yi=y'|Z;=1,Zr=0,¢1, ¢0: E)
=Pr(f(1,X;,Uj) =y,
FO X, U)=y'1Zj=1,Zx =0, 1, ¢0; €)
=Pr(f(1, Xg, Ux) =,
fO.X;,UD=y1Z;=1,Zr=0,¢1,0: E),

so symmetry property (3.1) is preserved conditional on
the parameters.
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