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The Secret Life of I. J. Good
Sandy Zabell

Abstract. I. J. (“Jack”) Good was a leading Bayesian statistician for more
than half a century after World War II, playing an important role in the post-
war Bayesian revival. But his graduate training had been in pure mathematics
rather than statistics (one of his doctoral advisors at Cambridge had been the
famous G. H. Hardy). What was responsible for this metamorphosis from
pure mathematician to applied and theoretical statistician? As Good himself
only revealed in 1976, during the war he had initially served as an assistant to
Alan Turing at Bletchley Park, working on the cryptanalysis of the German
Naval Enigma, and it was from Turing that he acquired his life-long Bayesian
philosophy. Declassified and other documents now permit us to understand
in some detail how this came about, and indeed how many of the ideas Good
explored and papers he wrote in the initial decades after the war, in fact, gave
in sanitized form, results that had their origins in his wartime work. Drawing
on these sources, this paper discusses the daily and very real use of Bayesian
methods Turing and Good employed, and how this was gradually revealed by
Good over the course of his life (including his return to classified work in the
1950s).

Key words and phrases: I. J. Good, Alan Turing, Bayesian statistics,
Bletchley Park, cryptanalysis, Enigma machine, Banburismus, deciban,
weight of evidence, Tunny.

Irving John (I. J., “Jack”) Good (December 9, 1916–
April 5, 2009) was one of the most prominent Bayesian
statisticians during the second half of the 20th century.1

His many contributions to statistics include a seminal
book, Probability and the Weighing of Evidence (1950),
the “Turing-Good estimator” for the sampling of species
(Good, 1953), many papers in statistical journals such as
the Annals of Statistics, Statistical Science, the Journal of
the American Statistical Association, the Journal of the
Royal Statistical Society and Biometrika, as well as hun-
dreds of additional papers in the philosophical, comput-
ing, and scientific literatures. But he became a Bayesian
precisely when it was in a state of near total eclipse thanks
to attacks by statistical giants such as R. A. Fisher and
Jerzy Neyman. Why?

The answer is closely connected with his “secret life,”
the work he did on cryptanalysis at Bletchley Park during
World War II (and, as it turns out, afterwards as well). At
Bletchley, Good initially worked under the famous Alan
Turing (1912–1954) and this had a decisive impact on his
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1Born Isadore Jacob Gudak, he began to use the anglicized version
of his name by the time he published his first paper (Good, 1940).

career: his Bayesian approach to statistics, his interest in
data, his ready adoption of the use of computers. Good
only began to reveal this three decades later, and even
then he only gradually divulged over a period of several
decades specific details about exactly what he did. The
structure of this paper parallels this: the first part discusses
what Good did and said up to 1976, and how this might
have appeared to someone on the outside; the second part
what Good and others revealed starting in 1976.

1. THE CAREER OF I. J. GOOD

Here is a short version of what Good’s curriculum vitae
might have looked like in the early 1970s:

Good, Irving John (Born London, December 9, 1916)

1938: BA Cambridge (Jesus College)
1941: PhD University of Cambridge (Mathematics)
1941–45: Foreign Office
1945–48: Lecturer, University of Manchester
1948–59: Government Communications Headquarters
1959–62: Admiralty Research Laboratory
1962–64: Consultant, Institute for Defense Analyses
1964–67: Senior Research Fellow, Oxford (Trinity)
1967–: Professor, Virginia Polytechnic Institute

As can be seen, there are several intriguing aspects of
Good’s career that are already evident even in so simple
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a document. Good received his doctorate in mathematics
at Cambridge (under the joint supervision of G. H. Hardy
and A. S. Besicovitch, two of the purest of pure math-
ematicians); he did no graduate work at all in statistics.
Nor did he start out as a typical academic: 20 of the first
26 years after he received his PhD were spent outside of
academia, in a succession of mostly defense-related estab-
lishments. It was only in 1967, when he was 50, that he
settled down at Virginia Polytechnic Institute (now known
as Virginia Tech), where he remained for the rest of his
life.

2. BLETCHLEY PARK YEARS

Good was an undergraduate at Jesus College, Cam-
bridge from 1934 to 1938. Continuing on at Cambridge
as a graduate student under Hardy and Besicovitch, he
received the prestigious Smith’s Prize in mathematics in
1940, and was awarded his PhD in 1941.

When Good received his PhD, Britain was at war with
Germany. What did he do during the war? If asked, he
would have said he worked in the Foreign Office. This
was his first secret.

2.1 “I Worked in the Foreign Office . . . ”

Shortly before Good began his his wartime work in
1941, he met Stuart Milner-Barry at a chess match and
indiscreetly asked him if he was working on German ci-
phers. Milner-Barry replied “No, my address is Room 47,
Foreign Office” (Banks, 1996, p. 8). Milner-Barry was in
fact then working at Bletchley Park on the cryptanalysis
of German Army and Luftwaffe messages.

There was a reason for this evasion. During the war
(and long after), anyone who worked at Bletchley Park,
then the center of British wartime signals intelligence,
was strictly forbidden to say anything about the nature
of the highly sensitive work done there. The officially
approved euphemism instead was that they “worked in
the Foreign Office.”2 When Sarah Turing, Alan Turing’s
mother, wrote a biography of her son in 1959 after his
death, all she knew of her son’s wartime work was that
he was a “Temporary Civil Servant in the Foreign Office,
in the Department of Communications” (Turing, 1959, p.
67).3 Of course to the initiated, such a bland statement is
itself a strong hint. 4

2Strictly speaking, this was actually true: Bletchley Park was part of
GC&CS, the Government Code and Cypher School, which since the
end of World War I had been administratively housed in the Foreign
Office. For the arcane reason this came to be, see Budiansky (2000,
pp. 51–52).

3She did know his work was of considerable importance, that at one
point he supervised 100 women who worked under him, had traveled
to the US during the war and was afterwards awarded the OBE (Order
of the British Empire) in recognition of his wartime work.

4Two examples are J. H. Plumb’s 1950 England in the Eighteenth
Century, and A. T. Hatto’s 1965 translation of the German epic saga

2.2 Good Reports to Bletchley

Good reported to Bletchley Park on May 27, 1941 (co-
incidentally, the day the Bismarck was sunk). He was a tal-
ented chess player (the 1939 Cambridgeshire chess cham-
pion) and this may have played some role in his ending
up at Bletchley—one of the three people who interviewed
him as a potential recruit was C. H. O’D. (Conel Hugh
O’Donel, “Hugh”) Alexander (1909–1974), twice British
Chess Champion and the best player in England before the
war. Alexander at that point was working under Turing at
Bletchley Park and played a key role in the cryptanaly-
sis of the Naval Enigma. Good and Alexander knew each
other from the chess world, and Alexander met Good at
the train station the day Good first reported to work.

Good was fortunate in his wartime assignment: he spent
his first two years (1941–1943) at Bletchley Park work-
ing in Hut 8 (Naval cryptanalysis) under Alan Turing,
from whom he learned the practical Bayesian approach
to statistics;5 and his last two years (1943–1945) working
in the Newmanry (one of two sections devoted to crypt-
analysis of the SZ 40/42, an online teleprinter system),
working under the Cambridge mathematician M. H. A.
(“Max”) Newman (1897–1984), using an attack centered
on the use of the “Colossus.” These were very different
experiences.

2.2.1 Hut 8. Hut 8 was the section at Bletchley Park
devoted to the cryptanalysis of German Naval Enigma
messages. Employed throughout the Kriegsmarine (Ger-
man Navy), the Naval Enigma was used to communicate
with the Kriegsmarine’s ships and U-boat (submarine)
fleet. The ability of the Allies to read Naval Enigma traf-
fic starting in the summer of 1941 was ultimately a sig-
nificant factor in the Battle of the Atlantic, enabling the
Allies to locate and sink many U-boats, as well as steer
Allied convoys and other ships away from them.6

The Nibelungenlied: in both cases. the short author biographies at the
beginning say that the authors worked in the Foreign Office during the
war. In fact, both spent the war at Bletchley Park. Plumb worked there
from December 1940 to 1945: he was Head of German, Italian and
(later) Japanese Signals Intelligence, and later Head of the Japanese
Naval Traffic Analysis subsection. Hatto was at Bletchley Park from
September 1939 to 1945; he worked on Abwehr (German military in-
telligence), Gestapo and weather ciphers; see Flood (2011, pp. 177–
178).

5Earlier influences, more mathematical and philosophical rather than
practical, included Hall and Knight’s Higher Algebra (1891), John
Maynard Keynes, Frank Plumpton Ramsey and Harold Jeffreys; see
Good (1983, p. x). My thanks to Glenn Shafer for pointing out this
passage to me.

6First documented in Patrick Beesly’s Very Special Intelligence
(Beesly (1977)). During World War II, Beesly worked in the Opera-
tional Intelligence Centre of the Admiralty’s Naval Intelligence Divi-
sion, and so had first-hand knowledge of the utility of naval signals
intelligence. In 1977, the technical aspects of this were not yet public
knowledge; Ralph Erskine’s “Afterword” in the 2000 edition brought
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The section was headed by the brilliant Alan Turing.
Turing had arrived at Bletchley Park on September 4,
1939, one day after England declared war on Germany.
Although the Naval Enigma was then regarded as un-
breakable, within a just few months (December 1939)
Turing had worked out the theoretical basis of a statis-
tical attack on the Naval Enigma; as a result, Hut 8 was
set up in January 1940, initially staffed by Turing, Peter
Twinn (in Naval Intelligence) and two clerical assistants.
By the summer of 1941, Hut 8 had become fully oper-
ational and able to read some messages quickly enough
(within days, sometimes less) to provide actionable intel-
ligence. It eventually employed more than a hundred peo-
ple, including the mathematicians Peter Hilton and Shaun
Wylie (later the authors of a well-known book on homol-
ogy, Hilton and Wylie, 1967), and the famous English his-
torian, J. H. Plumb.

The key to Turing’s attack was Banburismus, a statis-
tical method for determining the right-most wheel out of
three used in the encrypting of Naval Enigma messages.7

These were selected from a set of eight (for a total of
8 · 7 · 6 = 336 orders), making impractical an attack by
the Bombe (a special purpose electromechanical device
constructed to attack Army and Luftwaffe traffic, which
only selected the three wheels of the Enigma from a set
of five rather than eight, and which therefore only had 60
wheel orders to search, a factor of more than five less).
Banburismus was the basic method used to attack Naval
Enigma traffic for more than two years.

When Good joined Hut 8 the basic attack on the Naval
Enigma had already been worked out, and was just then
being employed operationally. Despite this, Good soon
made several important contributions to improving the ef-
ficiency of the attack, and was “responsible for a consid-
erable amount of the most valuable statistical work done
in the hut” (Alexander, 1945, p. 63); some specifics of this
are discussed below in Section 5. It was only half a cen-
tury later that detailed information about the work in Hut
8 began to be released.

2.2.2 Transfer to the Newmanry. In the spring of 1943,
the United States and Britain started producing new and
more powerful Bombes, which could be used in the attack
against the Naval Enigma without the need for the short-
cut of Banburismus, and so the use of Banburismus was
discontinued in September 1943.8 As a result, Good was
transferred in September from Hut 8 to the Newmanry,

the book up to date in this regard as well as updating the book’s bibli-
ography.

7Named after the English town of Banbury, where the sheets of paper
used to carry out part of the process were printed.

8See Alexander (1945, Chapter 6, Section 10) and Mahon (1945,
Chapter 10, “The abandonment of Banburismus”). The fact that the
US Bombes were in the US did not present a problem for the British.
Bletchley Park and OP-20-G (the US Navy’s cryptologic organization)

one of two sections at Bletchley Park devoted to the crypt-
analysis of the SZ 40/42.9

The SZ 40/42 was a German Army machine used to
encrypt teleprinter traffic. It was an online device (mean-
ing that it could simultaneously encrypt and send a mes-
sage, unlike the Enigma, in which these two operations
had to be performed separately), and was used to send
messages typically much longer than those of the Enigma
(thousands of characters as opposed to the imposed max-
imum of 200 for Enigma messages). Its contents were
often strategic in nature rather than the tactical content
found in many Army and Luftwaffe Enigma messages,
and often gave valuable insights into German intentions,
order of battle and so on. (So, e.g., it is possible Hitler’s
infamous message to the Commandant of Paris shortly be-
fore the city fell to the Allies in August 1944, instructing
it be destroyed rather than let it fall into enemy hands, was
sent in encrypted form using this device.)

Messages encrypted by the SZ 40/42 were transmitted
using the Baudot code, in which characters were repre-
sented by a sequence of five impulses (think of these as
0s and 1s), which were then subjected by the machine
to two successive layers of encryption. Thanks to a de-
fect in the encryption process, Bletchley Park discovered
these two layers of encryption could in fact be succes-
sively stripped off. The Newmanry, named after its head,
Max Newman, removed one layer of encryption primarily
by statistical means, using the Colossus, a complex device
capable of compiling various statistical summaries at very
high speed. The result was then passed on to the Testery,
named after its head, Major Ralph Tester (1902–1998),
which then removed the second layer of encryption, pri-
marily by classical linguistic means.

Good and Wylie, being mathematicians, were naturally
assigned to the Newmanry. Good stayed there for the re-
mainder of the war, leaving in September 1945. Just as
in Hut 8, he made many practical and theoretical contri-
butions to the operation of the section, including bringing
over Turing’s Bayesian approach. He also gained valuable
experience in machine computation, experience which
was to serve him well after the war. The details of the
attack on Tunny (the codename for the SZ 40/42) will be
discussed in Section 6.

were able to communicate rapidly and securely by sending enciphered
messages via cable. If urgent, a message “would take under an hour
from the time we began to write the signal out in Hut 8 to the comple-
tion of its decyphering in Op. 20 G. As a result of this, we were able to
use the Op. 20 G bombes almost as conveniently as if they had been at
one of our outstations 20 or 30 miles away” (Alexander, 1945, p. 90).

9For the month of Good’s transfer, see Alexander (1945, p. 63).
Good, looking back decades later, first gave the month as October but
afterwards changed his mind, saying it was April (1993, p. 160, 2006,
p. 208), but Alexander’s 1945 internal history, written by the head of
the section at the time of the transfer, is clearly to be preferred.
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3. POSTWAR YEARS UP TO 1976

After the war Good spent several years at the Univer-
sity of Manchester (1945–1948), working on statistics and
computing,10 after which he returned to GCHQ (Govern-
ment Communications Headquarters, the postwar succes-
sor to GC&CS), where he remained for the next 11 years
(1948–1959). Much later, he said he returned to intelli-
gence work because (apart from a dislike for teaching)
“the Cold War was heating up and I thought I could do
more good in government service” (Banks, 1996, p. 13).

Even now there is essentially no information about
what Good did during his GCHQ years. When asked by
David Banks in a 1993 interview “can you give me any
sense as to what types of mathematics or what types of
things you were thinking about” at GCHQ, Good dodged
the question, saying “I think it’s better that I don’t say any-
thing” and immediately changed the topic (Banks, 1996,
p. 13). The only hint appears to be that at one point he
worked on VENONA, a top-secret US–UK project de-
voted to deciphering Soviet messages (Budiansky, 2006,
p. 61).

Good resigned from GCHQ in the late 1950s in order
to accept a full professorship at the University of Chicago,
but changed his mind at the last moment for “personal rea-
sons” and stayed in England.11 (This may have been due
to the illness of his mother.) After visiting several insti-
tutions for two- to three-year stints (Admiralty Research
Laboratory, 1959–1962; Institute for Defense Analyses,
1962–1964; Trinity College, Oxford, 1964–1967), he be-
came a Professor at Virginia Polytechnic Institute, where
he remained for the rest of his life.

With the benefit of hindsight, the influence of his
wartime work on much of his published postwar statis-
tical research is apparent and easily traced.

3.1 Probability and the Weighing of Evidence (1950)

Immediately after the war, Good wrote his classic book
Probability and the Weighing of Evidence (1950), espous-
ing the subjective, Bayesian viewpoint (but with a strong
pragmatic streak running throughout).12 In retrospect, it
is clear the book advances a view of the subject shaped by
his Bletchley Park experiences. In his preface Good wrote
(p. vi):

10Good was hired by Newman, who became head of the Manchester
mathematics department at the end of the war. For further information
on Newman, see Adams (1985).

11Some of the details of this episode are documented in the archives
of the Department of Statistics at the University of Chicago.

12Ironically, the book was rejected when initially submitted to the
Cambridge University Press. Discouraged, Good did not pursue publi-
cation further until urged to do so by his Bletchley colleague, Donald
Michie, in 1948.

Dr. A. M. Turing, Professor M. H. A. Newman
and Mr. D. Michie were good enough to read
the first draft (written in 1946) and I am most
grateful for their numerous suggestions.

Apart from the date of its first draft, and the fact that Tur-
ing, Newman and Donald Michie had been respectively
his two bosses at Bletchley and his closest collaborator in
the Newmanry, there is also direct internal evidence in the
book of the Bletchley Park influence.

3.1.1 Likelihood ratios and the weight of evidence. In
the Bayesian attack on a cryptosystem (as envisaged by
Turing), the evidence E at one’s disposal typically con-
sisted of the contents of an encrypted message, and the
goal was to identify the correct setting of the machine (or
system) H , versus one or more alternative settings H̄ , by
computing their likelihood ratio. Central to Turing’s ap-
proach was the use of the Bayes factor

P(E | H)

P (E | H̄ )
.

To ease computing, Turing introduced the deciban:

10 · log10
P(E | H)

P (E | H̄ )
.

There were two reasons for this:

• the log converted products into sums (which were eas-
ier to compute);

• the factor of 10 was used to simplify the arithmetic.

In his 1950 book, Good devoted an entire chapter
(Chapter 6, “Weighing evidence”) to exploring the log-
likelihood, describing it as “the weight of evidence or
amount of information for H given E.” This was a topic
he returned to many times in his later work, for example,
Good (1960, 1968a, 1975) and Good and Toulmin (1968).
Good was always careful to acknowledge Turing in this,
albeit cautiously. The deciban was a multiple of the ban,
so called because it was used in Banburismus; but in his
book Good (1950, p. 63) avoided this sensitive connec-
tion, writing instead:

Turing suggested further that it would be con-
venient to take over from acoustics and electri-
cal engineering the notation of bels and deci-
bels (db).

3.1.2 Sequential analysis. Turing’s Banburismus was
part of a sequential cryptanalytic process using decibans
as inputs in a Baysian sequential probability ratio test he
had developed (Banks, 1996, pp. 9–11), independently of
both Abraham Wald and George Barnard (who had also



THE SECRET LIFE OF I. J. GOOD 289

come up with the idea for wartime applications).13 Good’s
1950 book treats sequential analysis in Section 6.2 (pp.
64–66). He did not have to worry about having this par-
ticular discussion in his book cleared, because he could
simply point to both Barnard (1946) and Wald’s papers
(1945a and 1945b) and 1947 book, but he could not resist
ending however with the cryptic comment:

The sequential technique is clearly not re-
stricted to the quality control of goods. It can
be used for deciding between any two “simple
statistical hypotheses”,

clearly having Banburismus in mind.

3.1.3 The theorem of the weighted average of (partial)
factors. In considering a message, one usually knew the
sender and recipient. These might influence the statisti-
cal characteristics of a message in a known way. In addi-
tion, based on prior experience one might also know that
a certain fraction of the time one of several different dis-
tributions occurred (depending, e.g., on the operator and
the type of message being sent, such as a weather report)
although one did not know which type beforehand. (For
example, two-thirds of the time one might encounter one
type of message and one-third of the time another.) Such
information was incorporated into an attack using the the-
orem of the weighted average of (partial) factors.

Good’s 1950 book gives a clear statement and proof of
this result (p. 68). Suppose H = H1 ∪ · · · ∪ Hn is a com-
posite hypothesis (so that the Hi are mutually exclusive),
H the negation of H and E evidence. Then if

pi = P(Hi | H), fi = P(E | Hi)

P (E | H)
,

the theorem states that the factor in favor of H given E is

P(E | H)

P (E | H)
= ∑

i

P (Hi | H)
P (E | Hi)

P (E | H)
= ∑

i

pifi .

3.2 Postwar Papers

But Good’s Bletchley Park-inspired contributions to
statistics in the years immediately after the war were not
confined to just a general advocacy of the Bayesian view-
point. He proceeded to publish (always carefully credit-
ing Turing) refinements of a number of technical advances
Turing had developed during the war. As Good later ex-
plained:

Turing did not publish these wartime statis-
tical ideas because after the war he was too

13Good briefly discussed the method with Barnard at some point in
1941–1942, not mentioning its cryptanalytic application, a conversa-
tion he remembered vividly decades later because at the time he was
concerned about avoiding a potential breach of security (Good, 1992a,
pp. 219–220).

busy working on the ground floor of com-
puter science and artificial intelligence. I was
impressed by the importance of his statisti-
cal ideas, for other applications, and developed
and published some of them in various places.
Much of my delay was caused by the wartime
attitude that everything was classified, from
Hollerith cards to sequential statistics, to em-
pirical Bayes, to Markov chains, to decision
theory, to electronic computers. These extreme
standards of secrecy only gradually abated af-
ter the war. [Good, 1992a, p. 211]

Good instead waited “until it was clear that Turing’s inter-
ests lay elsewhere,” and “statistics was no longer regarded
as a classified topic” (Good, 2000, p. 106). The resulting
papers touched on a variety of topics:

• the sampling of species problem (Good, 1953 and
1956), used in the attack on the Naval Enigma;

• the variance of the weight of evidence (Good, 1961),
which Turing had analyzed in the normal case, and
which Good extended to other cases;

• a scoring method for repeats (Good, 1973), which ex-
tended the method Turing used in Banburismus;

• the discrete Fourier transform (Good, 1951, 1958,
1962), which Good had learned about from Turing dur-
ing the war.

A frequent clue throughout these papers is an acknowl-
edgement to Turing. See also Banks (1996, pp. 10–11).

3.2.1 The sampling of species problem. As part of the
process of encryption when using the Naval Enigma, a
three letter trigram was chosen from a book and enci-
phered using one of nine tables, which were eventually
known to the British. Determining which table was in use
on a given day was an important step in the process of
decryption.

Different users had different copies of the book, and ex-
perience over time revealed the trigrams were not being
chosen at random.14 This provided the basis for an attack:
each of the nine possible tables were used to determine
an underlying candidate trigram, and these were scored
on the basis of whether they were more or less common.
Inasmuch as there were 263 = 17,576 possible trigrams,
this presented a statistical challenge: estimating the prob-
abilities of a large number of “species” (trigrams), each of
which necessarily had a small probability, based on rela-
tively limited data.

14“The popular ones turned out to be at the top of the blocks of 25,
particularly those on the central pages, as captures observed.” Letter
from Joan Clark Murray to I. J. Good, September 26, 1993; quoted in
Good (2000, p. 110).
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Turing’s solution to this challenge was to devise what is
today called the “Turing-Good estimator.” Suppose a par-
ticular trigram has been observed a total of r times in a
sample of N trigrams. Turing’s insight was that in order
to estimate the probability of seeing the trigram again in
the future there was, in addition to r and N , valuable in-
formation to be gleaned from the “frequencies of the fre-
quencies”; that is, for each r , 1 ≤ r ≤ N , the number nr

of distinct trigrams each occurring r times in the sample.
Evidently,

N∑
r=1

rnr = N.

Turing’s proposed estimator for the frequency of the tri-
gram was

nr+1

nr

(
r + 1

N

)
.

It is apparent that the interest and utility of such an
estimator goes far beyond its original cryptanalytic use,
and—with Turing’s permission—Good wrote a paper in
Biometrika (Good, 1953) which, using Turing’s formula
as a starting point, considerably expanded on its theory,
discussed improvements in its practical application in-
volving smoothing of the observed nr and gave many il-
lustrations of its utility. Good’s paper was the starting for
a now considerable body of literature about this estimator,
which performs well in a broad variety of circumstances
and which typically represents a considerable improve-
ment on the MLE r/N .

Good was careful to hide the cryptanalytic origins
of Turing’s estimator. Contrary to the usual practice
of Biometrika, the author’s affiliation (GCHQ) was not
given. And regarding Turing, Good carefully says (p,
237):

The formula was first suggested to me, to-
gether with an intuitive demonstration, by Dr.
A. M. Turing several years ago. Hence. a very
large part of the credit for the present paper
should be given to him, and I am most grateful
to him for allowing me to publish this work.

Good returned to this subject later in a follow-up paper,
Good and Toulmin (1956).15

3.2.2 The discrete Fourier transform. The DFT (the
discrete Fourier transform) was used in the Newmanry
to calculate discrete convolutions (Reeds et al., 2015, p.
583). Turing first drew Good’s attention to it during the

15Also published in Biometrika. Once again, no affiliation is given,
but in a later paper on a different subject, Good and Toulmin
(1968), submitted February 17, 1967, Toulmin’s affiliation is listed as
“Government Communications Headquarters, Cheltenham, Glouces-
tershire, England.”

war; after the war, Good made good use of it, employing
it in some 20 publications, covering at least 10 distinct
areas; see Banks (1996, p. 10), Reeds et al. (2015, pp.
583–584). These postwar papers sometimes reflected ear-
lier wartime conversations.16

4. THE LIFTING OF THE EMBARGO

Up until 1976, Good remained entirely silent about his
actual wartime work. It can be hard today to appreciate
just how complete the silence was regarding Allied suc-
cesses in attacking German encryption devices. One in-
structive example is provided by David Kahn’s pathbreak-
ing book The Codebreakers (Kahn (1967)): although it
contains an entire chapter on the US success in reading
the Japanese “Purple” cipher, and several chapters on Ger-
man signals intelligence, it is entirely silent about Bletch-
ley Park and Ultra.17

All this changed in 1973, when General Gustave
Bertrand (1896–1976) wrote Enigma, ou la plus grande
énigme de la guerre 1939–1945 (“Enigma, or the Great-
est Enigma of the War of 1939–1945”). This revealed
that since 1932 the Poles had been reading the Enigma,
as well as the Polish-French collaboration in the years
leading up to and after the outbreak of the war. The pub-
lication of Bertrand’s book apparently served as an in-
ducement to the British to lift their embargo a year later
(1974) on any discussion of their cryptologic successes
during the war; the first beneficiary of this change in pol-
icy was F. W. Winterbotham’s The Ultra Secret (1974).
After this, the floodgates open and an ever-increasing suc-
cession of books and papers appeared, including notably
Good (1976 and 1979), Hinsley (1979–1990), Rejewski
(1981), Welchman (1982), Hinsley and Stripp (1993),
Good (2000), Copeland (2006) and Reeds et al. (2015).

Good’s silence prior to 1976 was certainly well ad-
vised. The history of signals intelligence contains a num-
ber of celebrated instances of old hands feeling free to
publish without prior approval accounts of their wartime
successes, only to suffer serious consequences after.
A cautionary tale here is that of Gordon Welchman
(1906–1985), one highly relevant to Good. Welchman
had headed Hut 6 (Army and Luftwaffe cryptanalysis)
at Bletchley Park, and was responsible for many impor-
tant advances during the war. (He was also the moving

16In a paper using the discrete Fourier transform to derive the Poisson
summation formula, Good wrote: “I am indebted to Dr. S. Wylie, Pro-
fessor D. Rees and Professor M. H. A. Newman for stimulating discus-
sions sixteen years ago” (Good, 1962, p. 259). Presumably submitted
in 1961, 16 years earlier would be 1945, when Good was still at Bletch-
ley Park. (Besides Newman and Wylie, David Rees, 1918–2013, was
another a colleague of Good in the Newmanry. Later a distinguished
mathematician, he is well known for the “Artin-Rees theorem” in alge-
bra.)

17As Kahn (2010, p. 16) himself wryly noted several decades later.
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force behind a famous letter to Prime Minister Winston
Churchill, personally delivered to Churchill’s principal
private secretary on October 21, 1942, complaining about
a lack of sufficient resources, as a result of which Hut 6
and Hut 8 were immediately given virtual carte blanche in
obtaining personnel and materiel.) Welchman emigrated
to the US in 1948, and spent the rest of his life work-
ing primarily for the US defense establishment. He kept
scrupulously quiet about his outstanding contributions to
the Allied war effort for more than 35 years, but in the late
1970s, as revelations about the work at Bletchley Park
began to emerge, Welchman concluded silence was no
longer required. And so he came to write his highly in-
formative book The Hut Six Story (1982), which detailed
the many successes in the attack on the Enigma, the de-
vices (such as the Bombe and diagonal board) used in its
attack, and Alan Turing’s crucial role in all this. But he
made a fatal error, not submitting his book beforehand
for prepublication review. He was promptly stripped of
his security clearance, forbidden to speak to the press and
remained under a cloud for the remainder of his life.18

4.1 The Dance of the Seven Veils

Good first publicly disclosed he had worked at Bletch-
ley Park in a lecture at the National Physical Laboratory,
Teddington, on April 28, 1976 (Good, 1976). The result-
ing NPL report foreshadows just how carefully Good was
to approach the subject over the next several decades: a
footnote on the first page notes “This paper was cleared
by the British Cabinet Office in June 1976” (p. 31 of the
1980 reprint). As its title (“Early Work on Computers at
Bletchley”) suggests, the paper discusses the role of hard-
ware but says nothing whatever about cryptanalysis, for,
as Good explains, “I have not been told that I can refer
to the cryptanalytic techniques” (p. 38). Good obviously
thought the paper important for, besides its initial release
as an NPL report, in 1979–80 it was reprinted in two
journals and a book with a much wider circulation. Good
also discussed computing at Bletchley Park in a few other
places at this time, but without adding anything further of
substance (see, e.g., Good, 1982, pp. 53–59).

The paper also recounts a number of Good’s personal
experiences at Bletchley, including some of the most in-
teresting people he met there, starting with Turing. (This
may in fact have been the first public mention of the nature
of Turing’s work during the war.) Among those mentioned
were the chess masters Hugh Alexander, Stuart Milner-
Barry and Harry Golombek, who worked in Huts 6 and 8;
his mathematicial colleagues, M. H. A. Newman, J. H. C.
Whitehead, David Rees, Shaun Wylie and Peter Hilton,
who worked in the Newmanry; and public figures such
as Roy Jenkins (later a prominent member of the Labor

18For an excellent biography of Welchman, see Greenberg (2014).

Party and Chancellor of the Exchequer) and Peter Benen-
son (the founder of Amnesty International), both of whom
worked in the Testery.

It was only later that Good first began to reveal (in a
very limited way) some of the technical statistical aspects
of the attacks on the Enigma and Tunny. One might de-
scribe this as the “the dance of the seven veils,” some of
the highlights include:

• 1976: Lecture at the National Physical Laboratory
• 1979: Biometrika paper on Turing’s wartime work
• 1993: “Enigma and Fish” chapter in Codebreakers
• 1996: David Banks Statistical Science interview
• 2000: Use of the Turing–Good estimator in attack on

the Naval Enigma revealed (Good, 2000)
• 2006: “From Hut 8 to the Newmanry” (in Copeland

volume)
• 2015: The General Report on Tunny (written in 1945,

500 pages, declassified in 2004, scholarly edition pub-
lished in 2015)

4.2 A. M. Turing’s Statistical Work in World War II

This was the title of a brief paper Good published
in Biometrika in 1979 describing Turing’s “unpublished
contributions to statistics” at Bletchley Park during WWII.
At first glance, the paper seems like a curiosity: a jumble
of simple results and techniques in statistical inference.
In fact, it is clear in retrospect that what the paper actu-
ally does is lay out the sequence of steps in the statistical
attack on the Enigma, each step being an integral part in
that attack:

• Bayes factors
• Sequential analysis and log factors
• The deciban
• Weighted averages of Bayes factors
• Design of experiments and expected weight of evidence
• The variance of the weight of evidence
• Expected values of Bayes factors
• Search trees
• Repeat rates
• Empirical Bayes

Here, the link with Good’s book and some of his pa-
pers (Good, 1950, 1953, 1956, 1961, 1969, and Good
and Toulmin, 1956 and 1968), not merely to Turing but
to Bletchley Park and cryptanalysis, was revealed, but no
detail given. The deciban, for example, is described as be-
ing used as part of “an important classified process called
Banburismus” (but we are not actually told what Ban-
burismus is), and that the main application of the deciban
“was to sequential analysis, not for quality control but for
discriminating between hypotheses” (but we are not told
what those hypotheses were).

Good’s 1979 Biometrika paper was later reprinted in
the volume on pure mathematics in the Collected Works
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of A. M. Turing (Britton, 1992), together with an accom-
panying commentary (Good, 1992a). That commentary,
in addition to providing background on the Enigma, gives
a detailed description of the linkages between Turing’s
wartime results and no fewer than seventeen papers writ-
ten by Good between 1960 and 1989 (several of them hav-
ing to do with the philosophical implications of the weight
of evidence).

Even more interesting is a paper Good wrote 14 years
earlier (Good, 1965a), which appeared in the NSA Tech-
nical Journal. The paper, “A list of properties of Bayes-
Turing factors”, although marked “Unclassified”, was
not publicly available and only approved for release by
the NSA in 2011.19 It provides a useful complement to
Good’s 1979 paper because it is more specific and gives
more mathematical detail about how Good’s later work
expanded on Turing’s earlier efforts.

4.2.1 The central role of Bayes factors. The Bayes fac-
tor played a central role in Turing’s overall philosophy of
cryptanalysis. This was not confined to the special case
of the attack on the Enigma, as became clear several
decades later in 2012 (the centenary of Turing’s birth),
when GCHQ declassified and released a paper Turing had
written during the war, “The Applications of Probabil-
ity to Cryptography” (Turing, 2012a). In this remarkable
document (intended for newcomers to Bletchley or at least
the Bayesian approach), Turing illustrated how Bayesian
methods could be applied to four distinct classical crypt-
analytic problems (the Vigenère cipher, a letter subtractor
problem, the theory of repeats and transposition ciphers).
In each case, an attack based on Bayes factors was de-
scribed, together with a discussion of how the computa-
tions needed for the attack could be carried out in practice.
(This wedding of the theoretical and the practical was a
key reason for Turing’s spectacular success at Bletchley.)
For a commentary on the essay, see Zabell (2012). One of
the reasons for Good’s transfer to the Newmanry in 1943
appears to have been in part to bring over the Bayesian
approach.

4.2.2 The cryptanalytic use of the weight of evidence.
In several sections of his 1979 paper (3, 6–9), Good dis-
cussed a number of properties of the Bayes factor, weight
of evidence and expected weight of evidence. In a paper
from this same period, while discussing Harold Jeffreys’s
contributions to statistics Good (1980, p. 27) elaborated
on the wartime use of the concept of weight of evidence:

19Curiously, even then it was only released after a FOIA appeal, de-
spite the fact that the technical results in it appear to have been in the
public domain for more than three decades.

Turing pointed out that, when expected weight
of evidence per observation is small:

∫
f (x) log

f (x)

g(x)
dx and

∫
g(x) log

g(x)

f (x)
dx

are approximately equal and opposite. I there-
fore found it natural to use as a quasi-utility, in
some classified applications during World War
II, their sum∫ [

f (x) − g(x)
]
log

[
f (x)/g(x)

]
dx,

which is now often called the divergence be-
tween two probability densities.

Good added that Solomon Kullback (of Kullback–Leibler
fame, who worked in the US Army’s Signal Intelligence
Service during the war and retired as a senior member of
the NSA in 1962), was also an “intensive user” of both
expected weight of evidence and the divergence.20

In later years, Good wrote extensively in the outside lit-
erature about the weight of evidence as a central element
in his statistical philosophy.

In the next two sections, we discuss some of the details
of the specific statistical contributions Jack Good made in
the attacks on the Enigma and the SZ 40/42. In each case,
this requires a preliminary discussion of the operation of
the machine.

5. THE ENIGMA

The Enigma was a commercial German cryptographic
device invented by Arthur Scherbius in 1918. The core of

20People working on classified research sometimes encounter the
frustration that an important result published by someone else in the
outside literature had in fact been discovered by themselves earlier,
but in a classified setting, and for precisely this reason were unable to
publish it. (One well-known example is the discovery of the RSA and
Diffie–Hellman public key encryption methods at GCHQ several years
before their outside publication; see Singh, 1999, pp. 279–292.) It is
natural to speculate that this comment by Good was intended to stake
a claim to his priority in recognizing the divergence as a statistically
useful quantity. It was important for him to state this occurred during
the war because, as he notes, Jeffreys had made use of the divergence
shortly after in 1946. Indeed, Good even goes so far as to speculate
that Bletchley Park may have been the indirect source for Jeffreys!

It seems possible that [Jeffreys] thought of this inte-
gral through familiarity with Gibb’s work, or perhaps its
unsymmetrical form was mentioned to him by Turing.
I know that John Wishart and G.H. Hardy, also both Cam-
bridge men, were told top secret facts about the work
at Bletchley, so certainly Jeffreys should have been ini-
tiated.
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the machine involved three wheels, each effecting a per-
mutation of the alphabet; as part of initially setting up the
device the three wheels were arranged in one of 3! = 6
possible orders (the Walzenlage). Each wheel had a set of
electrical contacts along its rim numbered from 1 to 26;
prior to each message being sent the three wheels were ro-
tated so that a specific contact was in the upmost position
(the message setting). Each time a letter of the message
was encrypted one or more of the wheels moved, result-
ing in a new permutation of the alphabet, thus avoiding the
weaknesses inherent in a classical monoalphabetic substi-
tution cipher such as those discussed in Edgar Allan Poe’s
The Gold-Bug, or Sir Arthur Conan Doyle’s The Adven-
ture of the Dancing Men.21

5.1 The German Army Enigma

The Enigma was adopted by the German military in the
late 1920s (by the Navy in 1926, the Army in 1928), but
modified to increase its security. The Germans added a
plugboard (the Steckerbrett) through which the electric
current generated during encryption first entered and later
exited the machine. The plugboard interchanged several
pairs of letters and left others unchanged. By 1939, ten
pairs of letters were selected each day, giving rise to a
total of 150,738,274,937,250 possible settings for the
plugboard connections.

Showing truly remarkable foresight, in 1932 Polish
intelligence hired three young mathematicians—Marian
Rejewski (1905–1980), Jerzy Różycki (1909–1942) and
Henryk Zygalski (1908–1978)—to attack the Enigma.
Although in principle relatively secure, thanks to both
a blunder in its use (a three-letter message setting was
sent to the message recipient by encrypting it twice—the
blunder—using a Grundstellung (an initial setting used
throughout the day), as well as brilliant cryptanalysis by
the Polish mathematicians, the Poles were in fact able
to read a majority of the Enigma messages (some 75%,
closer to 90% had they been given additional personnel)
for much of the decade. Over time, the Germans made
successive improvements in their use of the machine,
but until the end of 1938 the Poles were always able to
meet these new challenges; see Rejewski (1981), Turing
(2021).

21Each time a letter was encrypted the wheels advanced in approx-
imate odometric fashion: the right-most wheel advanced every step,
the middle wheel advanced once every twenty-six steps, and each
time the middle wheel advanced to a particular (“turnover”) position,
both it and the left wheel advanced in unison on the next step. (This
meant the machine cycled through all possible settings of the wheels
in 25 · 262 = 16,900 steps, not 263 = 17,576 steps.) A lettered ring
attached to the left side of a wheel established a correspondence be-
tween letters and contacts. In order to use the machine one needed to
know both the order of the wheels (the Walzenlage) and how the rings
were attached (the Ringstellungen). These were part of the daily set-
ting, shared by all machines in a particular network.

This happy state of affairs changed in the winter of
1938. On December 15, 1938, two additional wheels were
added to the original set of three, and the three wheels in
the machine were now selected from this set of five, so
that there were now 5 · 4 · 3 = 60 different possible ar-
rangements, resulting in a ten-fold increase in the work
necessary for decrypting messages, well beyond the ca-
pacity of Rejewski’s team. In July 1939, the Poles, sensing
the inevitable, met with their French and English counter-
parts in Pyry, just south of Warsaw, and passed on to them
the fruits of their nearly decade-long exploitation of the
device, including replicas of the machine together with
the internal wiring of the five wheels; see Turing (2021).

When Turing arrived at Bletchley Park in September
1939, he set to work constructing a special purpose de-
vice, the Bombe, which substantially improved on the me-
chanical devices employed by the Poles. This, together
with a further modification due to Gordon Welchman (the
diagonal board) permitted the British to begin reading
some Army and Luftwaffe Enigma traffic by the begin-
ning of 1940. This is a well-known story; excellent ac-
counts include Welchman (1982) and Budiansky (2000).
The cryptanalysis of Army and Luftwaffe Enigma traffic
was the responsibility of Hut 6, headed by Welchman.

5.2 The Naval Enigma

The Enigma used by the Kriegsmarine (German Navy)
was a much more secure device than the one used by the
Heer (Army) and Luftwaffe. As noted earlier, instead of
five wheels, the three wheels of the Naval Enigma were
chosen from a set of eight, increasing the number of wheel
orders from 60 to 336. Not even Turing’s 1940 Bombe
could handle this.22 Furthermore, the Kriegsmarine used
a much more complex (and initially unknown) method
of sending the three-letter message setting using a set of
bigram tables. So when Turing arrived at Bletchley the
Naval Enigma was considered unbreakable, and no one
was working on it. But (characteristically) Turing viewed
this as a challenge and an opportunity rather than a deter-
rent (he later said he started to work on it because he could
“have it all to myself”). By the beginning of 1940, Turing
had invented Banburismus, a paper-and-pencil method of
determining (under favorable circumstances) the right-
most of the three wheels, which meant the work of de-
termining the wheel order would be narrowed down to
7 ·6 = 42 possible orders, well within the capability of the
Bombes then being constructed. The same evening Turing
was also able to deduce the method by which the mes-
sage setting was being encrypted. When a set of Enigma

22This was a practical rather than theoretical issue. A single wheel
order took about 20 minutes to test on the 3-wheel Bombe, so testing
all 336 wheel orders would take about 112 hours on one machine, or
11 hours on ten. (And if the crib—the conjectured plaintext the process
required—was wrong one had to start over again from scratch.)
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keys were captured from a German trawler (the Krebs) on
March 4, 1941, it was possible to reconstruct the bigram
tables being used to perform the encryption and this, to-
gether with a statistical attack on their use devised by Tur-
ing, enabled one to decrypt the message setting. Within a
few months Bletchley Park was able to read Naval Enigma
traffic with regularity; see Kahn (1991).23 It is hard to
overstate the central role that Turing played in all this.
Shortly after the war Hugh Alexander, who had succeeded
Turing as the head of the section, wrote in his classified
internal history of Hut 8:

There should be no question in anyone’s mind
that Turing’s work was the biggest factor in
Hut 8’s success. In the early days, he was the
only cryptographer who thought the problem
worth tackling and not only was he primar-
ily responsible for the main theoretical work
within the Hut (particularly the developing of a
satisfactory scoring technique for dealing with
Banburismus) but he also shared with Welch-
man and Keen the chief credit for the inven-
tion of the Bombe. It is always difficult to say
that anyone is absolutely indispensable but if
anyone was indispensable to Hut 8 it was Tur-
ing. The pioneer work always tends to be for-
gotten when experience and routine later make
everything seem easy and many of us in Hut 8
felt that the magnitude of Turing’s contribution
was never fully realized by the outside world.
[Alexander, 1945, pp. 42–43.]

When Good joined Hut 8 in May 1941, a systematic
attack was up and running, and so there was no question of
him making fundamental contributions to the basic attack.
Nevertheless, he almost immediately played an important
role in increasing the efficiency of the attack in several
ways, both practical and theoretical. Several of these will
now be discussed.

5.2.1 Refining the deciban. As noted earlier, to facili-
tate computing, Turing had introduced the deciban:

10 · log10
P(E | H)

P (E | H̄ )
,

which in Banburismus was computed to one decimal
place of accuracy. Soon after arriving at Bletchley, Good

23This oversimplifies a more complex reality. One complication was
that various materials such as key lists and short signal books (useful as
a source of cribs) were changed from time to time, and it considerably
simplified matters if these could be “pinched” from a captured German
vessel; see Budiansky (2000, pp. 191–196, 283–285). This could be a
dangerous business: on one occasion two men (Lieutenant Anthony
Fasson and Able Seaman Colin Grazier) were lost when they were
unable to get off a scuttled U-boat in time.

advocated using a factor of 20 instead of 10, and round-
ing to the nearest integer. He made this suggestion both
because it turned out most of the individual scores would
then be single digits (and so easier to add), as well as
having computed how much information (in terms of ex-
pected weight of evidence) would lost by this additional
rounding and found it was relatively minor. Although this
change sounds relatively minor, it ended up saving half
the time needed for Banburismus (Good, 1993, p. 158,
Banks, 1996, p. 9).

This contribution illustrates both Good’s practical turn
of mind (despite his training being exclusively in pure
mathematics), one which made him such a useful a mem-
ber of Bletchley Park, as well as the sometimes surprising
utility of having a fresh pair of eyes take a second look at
a problem.

5.2.2 Attacking the bigram tables. In addition to the
general daily setting (Walzenlage, Ringstellungen, and
Steckerverbindungen) known ahead of time to everyone in
a network, the recipient of a message also had to know the
specific message setting (in terms of rotating the wheels
so that specific contacts were pointing up) in order to de-
crypt it. In the case of the Naval Enigma, this was done
by choosing a trigram from a book, encrypting it using
one of nine fixed bigram tables, and then appending the
resulting encrypted trigram to the beginning of the mes-
sage. The recipient would then reverse this process and
read off the trigram.24

Here is an example. The Kenngruppenbuch was a book
containing all 17,576 possible trigrams in a scrambled or-
der. The sender would:

• choose two trigrams, say LQR, CPY , from the Ken-
ngruppenbuch;

• choose an additional pair of “haphazard” letters, say G

and O;
• Use these to form a rectangle and then encrypt each

column of the rectangle using the bigram table in force
for that day. For example:

G L Q R → T A L I

C P Y O U H S U

(So the bigram table told the sender to replace GC by T U ,
and so on.) The resulting eight letters (the message indi-
cator) were then appended to the start of the message. The
receiver would then reverse this process, and use CPY to
decrypt the message.

24Strictly speaking there was another step: both the sender and re-
ceiver would encrypt this trigram using a common daily setting—the
Grundstellung—and it was this encrypted trigram that was actually
used as the message setting. Successfully dealing with this additional
complication was the genius behind Turing’s method of Banburismus.
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This apparently impressive procedure however had two
fatal weaknesses, due to the presence of two sources of
supposed randomness introduced by the sender. The first
was that the trigrams were not selected in genuinely ran-
dom fashion by the operators from the Kenngruppenbuch:
there was a tendency, for example, to pick trigrams from
the tops of pages. When an operator chose a trigram from
the Kenngruppenbuch, he crossed it out, but since differ-
ent operators used different copies of the book, as time
went on knowledge of which trigrams had previously
been used by the operators gave information about which
trigrams were more likely to be used in the future by other
operators. Turing devised an attack that exploited this (the
“sampling of species” approach described earlier). This
was the attack in use when Good came on the scene. It
was effective, but it required a fair amount of data and be-
came less and less useful as more and more trigrams were
crossed out.

The other weakness was that humans are also very poor
at selecting individual letters of the alphabet in a gen-
uinely random way. As Good later related:

I noticed on one night shift that about twenty
messages were enough to identify which di-
graph table was in use, because the “haphaz-
ard” letters (G and O in the example) were not
“flat-random.” This discovery then provided
the routine method for identifying the table.
[Good, 2000, p. 109]

Curiously, looking back half a century later Good ini-
tially did not think “this discovery was of much impor-
tance” (Hinsley and Stripp, 1993, p. 156), but later that
year Joan Murray, a colleague in Hut 8, wrote to tell him
“your discovery . . . was more valuable than you said, pro-
viding the regular method of quickly identifying which
digraph table was then in use. Originally, it had been pos-
sible to determine that by the occurrence of popular start-
ing positions, but that method had soon become unsatis-
factory” since the popular trigrams had been used up by
the German operators (Good, 2000, p. 110).

5.2.3 “Depth-finding” and the repeat rate. Turing’s
Banburismus was a hand method for finding the right-
wheel in favorable situations, cutting down the number
of wheels orders from 336 to 42, which made use of
the Bombe practical. (More generally, it could sometimes
identify both the right and middle wheels, although not
with certainty.) It became fully operational in the sum-
mer of 1941, was in use for the next two years, and was a
key element in the attack on the Naval Enigma during this
time.

Banburismus required finding depths, sections of two
or more Enigma messages enciphered using the same set-
ting on the Enigma. Enigma depths were identified using
a strengthened version of a classical cryptanalytic tool,

the repeat rate (or index of coincidence, Friedman, 1922),
the strengthened version initially due to Turing and later
refined by Good. (Alexander jokingly referred to Good’s
improvement as “ROMSING,” the Resources Of Modern
Science.) How depth-finding was used in Banburismus is
outlined below in Section 5.2.4; here, we discuss the nar-
rower statistical task of finding depths.

Suppose two strings of letters are juxtaposed, one above
the other. The empirical repeat rate is the fraction of pairs
of letters, one above the other, that coincide. Consider, for
example,

I M E T A T R A V E L L E R F R O M A
N A N T I Q U E L A N D W
W H E N A P R I L W I T H I T S S H O
W E R S S W E E T T H E D

The empirical repeat rate is 4/32 = 1/8, since there is a
pair of E’s in both the 3rd and 27th places, a pair of A’s in
the 5th place and a pair of R’s in the 7th place.

If letters are output in uniform random fashion, then the
probability two letters in two juxtaposed strings match at
a given place is 26(1/26)2 = 1/26. If however the let-
ters consist of meaningful text (e.g., journalistic English
or German naval communications) then they do not occur
with equal frequency. If pj ,1 ≤ j ≤ 26, is the frequency
of the j th letter in the language under consideration, then
the theoretical repeat rate, the frequency of two letters
matching, is

ρ =
26∑

j=1

p2
j .

The repeat rate of English is about 1/15 and in the case of
Naval Enigma messages, about 1/17.

Note the repeat rate is invariant under permutations of
the alphabet. That is, if one had two messages encrypted
by the Naval Enigma using the same setting, then the two
plaintexts would not only exhibit a repeat rate of 1/17 in
a sufficiently long stretch of text, but so would their cor-
responding ciphertexts. This is because if at a given step
in the message the Enigma permutation is k = σ(j) (the
j th letter in the alphabet of the plaintext is encrypted by
the kth letter in the ciphertext), and qk is the resulting fre-
quency of the kth letter of ciphertext, then the repeat rate
for the ciphertext is

ρcipher =
26∑

k=1

q2
k =

26∑
j=1

qσ(j)2 =
26∑

j=1

p2
j = ρplain.

This provides a test for when two messages—suitably
aligned—are in depth: one slides one message relative to
the other and at each offset counts the number of repeated
letter pairs. When the offset messages are not in depth,
the expected repeat rate is that of random text (1/26); but
when they are properly offset so as to be in depth, then
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the observed repeat rate will increase from 1/26 to to 1/17
provided the message is long enough.

Enigma messages were short, however, no more than
200 letters, too short for the crude classical method. The
key to overcoming this difficulty was, as Turing realized,
to recognize that in actual text one not only expects in-
dividual letters to match at a higher rate than flat ran-
dom, but also multiletter strings. For example, if a com-
mon word like “the” occurs at the same place in a pair
of aligned messages, then a three letter repeat will be ob-
served, even though our oversimplified model of language
assigns this a probability of only (1/17)3, or about 1 in
4913. To exploit this, Turing developed a method of scor-
ing multiletter repeats which was highly effective in iden-
tifying depths resulting from correctly offsetting two mes-
sages. For a discussion of the details of Turing’s scoring
system, see Turing (2012a, Section 2.3), Turing (2012b),
Zabell (2012, pp. 202–207).25

5.2.4 Banburismus. The use of depths in Banburismus
exploited the process by which the wheels in the machine
turned. The ring of each wheel had a turnover notch (and
in the case of the Naval Enigma, sometimes two).26 For
example, the ring for wheel 1 had a notch between letters
Q and R. If wheel 1 was set to Q (its “turnover position”)
and there was a wheel to its left (i.e., it was in either the
right or middle position), then when the next letter was
encrypted both wheel 1 as well as the one to its left would
simultaneously step. For example, if the initial message
setting were ADL and the right wheel was wheel 1, then
the successive settings of the machine as the letters were
encrypted would be

ADL
ADM
ADN
ADO
ADP
ADQ
AER
AES
AET

and so on. The turnover process for the wheels can be
summarized thus:

25Alexander (1945, p. 54) also briefly mentions a success by Good
shortly before he left Hut 8 that although of limited operational value
was technically impressive. (“The other coup was Good’s success in
breaking into a recalcitrant Limpet (Shark Offizier) day. All our previ-
ous successes in discovering Offizier steckers had been when the mes-
sage set-up was known; by use of Hollerith machinery Good succeeded
in making a break with over 20 possible alternative set-ups from which
to choose. This was not an intrinsically important result but it was an
achievement of some technical interest.”)

26The three additional wheels employed by the Naval Enigma, wheels
6, 7 and 8, had two notches, at Z and M.

• The right wheel advanced each time.
• If either the right or middle wheel was in turnover po-

sition, then on the next step both it and the wheel to its
left advanced by one.

• Because there was no wheel to the left of the left wheel,
whether or not the left wheel was in turnover position
had no effect on the turning of the wheels.

The turnover positions for wheels 1 to 5 were in differ-
ent locations, corresponding to the letters Q, E, V , J ,
Z. (So after the turnover, the wheels were in positions
R, F , W , K , A; the Bletchley Park mnemonic for this
was “Royal Flags Wave Kings Above.”) Because of this,
finding the turnover pattern for a wheel meant one knew
which wheel was in use. This was the weakness that Ban-
burismus exploited.27

But how did Banburismus determine when a turnover
occurred? Suppose a pair of intercepted messages have
message settings AAA and AAH. After typing the first
seven letters of the AAA message, the right wheel will ad-
vance to the H position and the setting will then be either
ABH or AAH, depending on whether or not the middle
wheel has advanced. This in turn will depend on which
wheel is in the right-most position. If, for example, the
right wheel is wheel 2 (whose turnover position is E), then
a turnover will occur and the setting will be ABH; while
if the right wheel were any of the others (1, 3, 4 or 5), then
a turnover will not occur during the passage from A to H,
and the setting will be AAH.

How can one distinguish between these two cases? The
answer is simple: if the right wheel is not wheel 2, then
the machine starting out at the AAA setting will be at the
AAH setting seven letters later, so from this point on the
setting of the first machine will be the same as the setting
of the other machine (starting out at AAH) at the start of
its message; appropriately shifted, the two messages will
be in depth. On the other hand, because a turnover has to
occur somewhere during a full circuit of the wheel, if one
starts at AAH in the second machine and types 19 letters
(so that the right wheel advances from H to A), a turnover
will necessarily occur at some point in the transition from
H to A, and the machine setting will be ABA, not AAA;
the two messages will not be in depth. So all you had to
do was look at two “slides.”

For the Poles, this was a relatively straightforward mat-
ter, because—thanks to the German blunder of doubly en-
crypting the message setting using a Grundstellung—they
were able to easily determine the message setting given
enough messages (for a clear description of why, see
Singh, 1999, Chapter 4). For Turing and Hut 8, though,

27There was some irony here: presumably the five different
turnover positions were chosen under the mistaken impression this
would improve the security of the device. In reality, this was a
Schlimmbesserung (German for “bad improvement”).
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matters were much less straightforward: in the case of the
Naval Enigma, after stripping off the bigram level of en-
cryption of the message indicator to obtain a trigram, you
still did not know the message setting: you still had to
encrypt the trigram using the (still unknown) Grundstel-
lung in order to obtain the message setting. If you only
knew at this stage that the trigrams for the two messages
were AAA and AAH then, although you knew the left
and middle wheels had started out in the same position
for both messages, all you knew about the right wheels
was that they were in different positions, but not how far
apart the third letters in the two message settings were.
To determine this, you had to look at 50 slides, ±k for
1 ≤ k ≤ 25, not just two, in order to determine when a
turnover occurred. This was why a much more accurate
scoring system was essential.

Given enough trigrams, this enabled one to work out
the relative positions of the letters in the cipher alphabet.
In our AAA, AAH example, for instance, if the two mes-
sages were in depth four letters into the AAA message
then A and H, when enciphered using the Grundstellung,
were four apart: either A and D, or B and E, or C and F
and so on.

Finally, given enough pairs of messages in depth, one
could decide between the twenty-six possible alignments
by exploiting the special characteristics of the Enigma.
One of these was basic, the reciprocal nature of the
Enigma permutation: the same setting used to encrypt the
message was also used to decrypt it. If A was sent to Q,
then Q was sent to A, since if the electrical path followed
by the current led from A to Q, then equally it led from
Q to A. (Mathematically, the Enigma permutation was a
product of two cycles.) So you could rule out any candi-
date alignment in which both A was encrypted by Q and
Q by K, say. For similar reasons, the Enigma permutation
also enjoyed a second important property: no letter could
encrypt to itself (because otherwise the entering and exit-
ing current would collide). So in our example above, you
could immediately rule out the first alignment (A and H
with A and D), because this would mean that A had been
enciphered by A.

There are several accounts that can be consulted for the
technical details of Banburismus. First, there are the two
internal classified histories written immediately after the
war, Alexander (1945, pp. 94–109) and Mahon (1945, pp.
16–20). Alexander was Turing’s immediate successor as
the head of Hut 8, and Mahon was in turn Alexander’s
successor, serving until the end of war; these two accounts
are the primary source documents for the wartime history
of the organization. But Budiansky (2006, Appendix B)
may be a gentler place to start.

6. 1943: GOOD MOVES TO THE NEWMANRY

Good left Hut 8 in September 1943, to join Hut F (the
Newmanry), the section at Bletchley Park working on a
machine attack on Tunny, the codename for the SZ 40/42.

The Poles were familiar with the basic structure of
the Enigma, in part because it was a modified version
of a commercially available device, and thanks in part
to an informant inside the Reichswehr’s Cipher Bureau,
Hans Thilo Schmidt (see Sebag-Montefiore, 2000, Kahn,
2010). The SZ 40/42, in contrast, had been designed by
the German military, and so there was no corresponding
commercial model to work from.

Despite this, in a remarkable tour-de-force of cryptana-
lytical skill the cryptanalysts of Bletchley Park (in partic-
ular the mathematician William Tutte, 1917–2002) were
able to deduce the entire structure of the machine thanks
to a single operational slip on the part of the German op-
erators, who had once sent two long and almost identical
messages at the same setting.28

6.1 The Design of Tunny

This was no mean feat, given the complexity of the de-
vice. Letters were represented in it using the then stan-
dard five impulse Baudot code (so, e.g., A = 00011, B =
11001, . . . ). The encryption used

• five “chi” wheels (employing regular motion)
• five “psi” wheels (employing irregular motion)
• two “mu” wheels (determining when irregular motion

occurs)

(Here, “irregular” means that sometimes the wheels
moved, and sometimes did not.)

Despite its apparent complexity, the process of encryp-
tion may be simply and schematically represented as

P → P + ψ → P + ψ + χ = C

(P denoting “plaintext,” C “ciphertext”). There were two
stages of the attack, handled by two separate organiza-
tions:

• The Newmanry: striped off the χ layer of encryption
using primarily statistical methods;

• The Testery: which then stripped off the ψ layer of en-
cryption using primarily linguistic methods.

6.2 The Attack on Tunny

Despite its impressive appearance, Tunny suffered from
a serious design flaw: when the five psi (irregularly mov-
ing) wheels did move, they did so simultaneously. As a re-
sult, a crafty combination of the output of a pair of wheels
(in the initial stage of the attack, the ψ1 and ψ2 wheels)
resulted in a biased stream of 0-1 bits.29 This could be

28Lieutenant Colonel, later Brigadier John Tiltman, 1894–1982,
played a particularly vital role at the start in exploiting the gaffe, using
it to strip off the encryption, and determine the key the machine had
generated in encrypting the two messages.

29The fact that this is the case is referred to by Friedrich Bauer as
“Newman’s theorem” (Copeland, 2006, pp. 393–395).
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used as a test for the correct setting of the chi wheels
for the given message. Because there were 41 · 31 = 1271
possible settings for the χ1 and χ2 wheels, if the correct
setting for these was used to remove the chi layer of en-
cryption from the crafty combination, then the resulting
decrypted stream of bits would reveal the underlying bi-
ased sequence of 0s and 1s, whereas if one of the other
1270 (and incorrect settings) were used to decrypt the test
stream, the resulting 0-1 stream would remain and ap-
pear as unbiased. Thus, the task of setting the first two
chi wheels was converted into the purely statistical task
of finding a single biased stream among a total of 1271.

This required a vast amount of computing, and for this
the Colossus was constructed (see Copeland, 2006 for a
detailed discussion of this device from a variety of view-
points). It has been argued that in many ways the Colos-
sus was the first programmable computer, not because it
could store a program in memory, but because it could
be rewired to perform other tasks. (This was in contrast
with the Bombe, which was a special purpose device, con-
structed for the sole task of attacking the Enigma in a very
specific way.)

Once a pair of chi wheels had been set in this way, other
pairs of chi wheels could then be set by a similar process,
eventually resulting in setting all five. This work was per-
formed in the Newmanry and after the chi wheels had
been set there, the message and settings were then sent
on to the Testery to strip off the additional psi layer of
encryption.

The intelligence supplied by reading Tunny intercepts
was of enormous importance to the Allies, but qualita-
tively different from that of the Enigma. The Enigma of-
ten contributed immediate, actionable intelligence relat-
ing primarily to the Kriegsmarine and Luftwaffe, whereas
Tunny supplied vital strategic information regarding the
Army, throwing light “on the intentions and the condition
of the German Army and on the thinking and planning
of the whole of the German High Command” (Hinsley
and Stripp, 1993, p. 144). Thus, the attack on Tunny com-
bined technology, mathematics and linguistics, and rooms
of complex equipment, but was most certainly worth it;
see Reeds et al. (2015) and Zabell (2015).30

We know a great deal about the work in the Newmanry
because in the months immediately after Germany surren-
dered to the Allies on May 7/8, 1945, Good wrote a long
(500+ pages) classified report on the attack on the SZ
40/42, The General Report on Tunny.31 During his time
in the Newmanry, Good made many contributions to its

30The importance of the section may be gauged in part by its size at
the end of the war: 26 cryptographers, 28 engineers and 273 “Wrens”
(WRNS, Women’s Royal Naval Service, women who performed a va-
riety of clerical functions); see Copeland (2006, p. 158).

31Newman left Bletchley Park in May 1945, immediately after the
war in Europe ended, but directed Good, who remained on for several

successful operation, but because the General Report on
Tunny does not in general attribute specific advances or
techniques in the Newmanry to specific individuals, it is
difficult to determine which of these were due to Good
(although it seems likely that many of the more advanced
statistical innovations in the Newmanry were in fact due
to him).32

In the following, we single out two statistical issues
of interest to which Good will unquestionably have con-
tributed substantially.

6.2.1 The need for Bayesian statistics. Let us go back
to the setting of a pair of wheels, say the χ1 and χ2
wheels. At this point, an interesting statistical issue arose.
If a message was short enough, then there would not be
enough information to identify the right setting from the
competing 1270 other, incorrect settings. Conversely, if
a message were very long, then the right setting would
be obvious. But in the intermediate case, although there
might be a clear candidate for the right setting, this might
not be certain.

Recall the model is that the stream of 0-1 bits (resulting
from a crafty combination of the five impulses) is biased
if the chi wheels are correctly set (the probability of a 1 is
p �= 1/2), or unbiased if the wheels are not correctly set
(p = 1/2). This was scored by just adding up the number
of 1s. The General Report on Tunny describes the statisti-
cal approach initially used:

Suppose the best score is 4σ (i.e., four stan-
dard deviations) without serious rivals. 4σ or
better occurs at random once in 30,000 experi-
ments so it would be natural to imagine that the
odds of the setting given are 30,000 divided by
1271 or 23 : 1 on.
In fact they are more like 3 : 1 on, (i.e., even
after a factor has been set against all the other
settings due to the existence of no serious ri-
val), though the odds depend to a reasonable

months, to prepare a comprehensive report on the activities of the sec-
tion. A similar report on the operations of the Testery was prepared
at the same time by Michie, who after completing the Testery report
joined Good to work on the Newmanry report. (It appears not to be
known when a third author, Geoffrey Timms, joined this effort.) De-
classified in June 2000, the Newmanry report is now available in a re-
set, scholarly edition, Reeds et al. (2015). Curiously, the Testery report
was only declassified much later (“opened” on August 3, 2018).

32It is only occasionally the current record permits us to point to spe-
cific instances. One of these is that in February 1944 Good and Michie
“found a way of using Colossus to discover the Tunny wheel patterns”
(Copeland, 2006, p. 76). Even after the war Good’s experience with
Colossus proved useful: at some point the NSA planned to construct a
special purpose device for some unidentified purpose but decided not
to do so when Good demonstrated that a surviving Colossus (most had
been destroyed after the war at the direction of Churchill) could be
reprogrammed to accomplish the same task (Copeland, 2006, p. 173).



THE SECRET LIFE OF I. J. GOOD 299

extent on the particular link and length of tape
and d . [Reeds et al., 2015, p. 49]

This was important because, even given a promising
candidate for the chi wheels, you did not know if you were
right, because after stripping off the chi layer of encryp-
tion, you were still looking at P +ψ (i.e., encrypted text).
This could give rise to problems:

In the very early days of the section, there
was a tendency to continue with a message for
some time if it gave a 4σ , since it was not be-
lieved that the odds could be much below 20 : 1
on.
This was before the deciban had been brought
over from Hut 8 [by Jack Good of course. . .].

What is going on here? The question is not just how
unlikely it is for a random stream of 0s and 1s to result in
a 4σ result, but how strong the evidence is in favor of a
particular setting. Suppose:

• Hj,1 ≤ j ≤ 1271 denote the 1271 possible settings of
χ1 and χ2,

• Xj the score for Hj (the sum of 1s if Hj is used to strip
off χ ),

• p is the probability of getting a 1 in the 0-1 stream,
q = 1 − p.

Then, assuming all 1271 possible settings are equally
likely to occur (a not unreasonable assumption here), ap-
plying Bayes’s theorem gives

P(Hi | X1, . . . ,X1271) = (p/q)Xi∑1271
j=1 (p/q)Xj

.

(Note this depends not only on p, the bias, but also on N ,
the message length, via the Xj .)

Was the General Report right that the odds were “more
like 3 : 1 on”? To take a specific example: suppose N =
1080 and p = 0.55 (very natural values in this situation).
Then a “4σ ” result would be a score of 606 or greater.
Suppose Hi is a setting, and Xi = 606. The posterior
probability for Hi will depend on all 1271 observed Xj

scores, and is therefore random. Monte Carlo is our friend
here: in an experiment involving 1,000 trials, on aver-
age the posterior odds in favor of Hi based on a score
of Xi = 606, came out as 2.97—Good’s comment is spot
on.

6.2.2 Wheel breaking: Rectangling and flagging. The
patterns of 0s and 1s on the wheels were changed reg-
ularly, and so part of the attack on Tunny required
finding these new wheels configurations.33 This was

33Initially, the patterns on the μ wheels were changed daily, those on
the χ wheels monthly, and those on the ψ wheels first quarterly and
later (October 1942) also monthly (Copeland, 2006, pp. 48 and 381).

called wheel-breaking, and in turn involved rectangling, a
method related to the modern iterated proportional fitting
procedure.

To understand this, we need to say something about the
craft combination. Let ψt

i denote the output of wheel ψi

at time t . If the wheel does not step, then ψt
i = ψt+1

i , and
their mod two sum (or difference) is

�ψt
i := ψt

i + ψt+1
i = 0.

So, the irregular stepping introduced an inherent bias in
the first differences in favor of 0s, and it was natural for
the Newmanry to work at the level of these differences.
(This introduces a small ambiguity in terms of finding ψi ,
since �ψi only determines ψi up to parity, depending on
the value of its first component.)

The German designers of the machine were aware of
this issue, and took steps to ensure that not only the out-
put of ψi , but also �ψi would generate an apparently un-
biased stream of 0s and 1s. What they overlooked, how-
ever, was that because when the psi wheels did step, they
stepped in unison, their outputs were correlated and as a
result the output of a sum of first differences

�ψt
i,j := �ψt

i + �ψt
j

= ψt
i + ψt+1

i + ψt
j + ψt+1

j

would be biased. (It is easy to see this by a straightforward
calculation.)

This was fatal, permitting one to not only set the wheels
(as seen above), but to also “break” the wheels to deter-
mine new wheel patterns. As we have seen, the lengths
of chi wheels 1 and 2 (χ1 and χ2) were 41 and 31, re-
spectively. Because both chi wheels advanced each time a
character was encrypted, and their lengths were relatively
prime, the pair had an overall period of 1271 = 41 · 31:
so after 1271 steps the two chi wheels would again be in
the same position. The bias of the craft combination of
P + ψ , the output of encrypting the plaintext by just the
psi wheels, persisted if instead of looking at all outputs,
you restricted yourself to the 1/1271 fraction of the time
when χ1 and χ2 were in a common position such as i, j .
If the two chi wheels had the same parity (either both 0 or
both 1) at this point (so that their sum was 0), then when
the layer of chi encryption was added to that of the psi,
the bias in the crafty combination at the ψ level would
persist; while if the two chi wheels had opposite parity
(one 0 and one 1, so that the sum was 1), then the bias in
the crafty combination would reverse. Exploiting this fact
was the key to breaking the wheels.

Given a message, let aij record the difference in the
number of 1’s and 0’s that occur in the crafty combination

Beginning on August 1, 1944, however, the patterns on all three sets
of wheels were changed every day, and so efficient wheel breaking
became a matter of urgency.
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when χ1, χ2 are in position i, j . (So, e.g., if the message
length is 3 × 1271 = 3813, then every position i, j oc-
curs exactly 3 times, and −3 ≤ aij ≤ 3.) The mission is to
recover the two wheel configurations from (aij ), and the
attack exploits the fact that the bias in the crafty combi-
nation permits one to determine (with sufficient data) the
parity of the sum of the two chi wheel contributions when
χ1 and χ2 are in the i, j position.

Let x = (xi) and y = (yj ) denote the configurations of
the two wheels, where (for reasons that will become im-
mediately apparent), we will now denote the sequence of
1s and 0s on each wheel by a sequence of +1s and −1s.
Suppose that (xi) represents our current guess regarding
the configuration of the first wheel, and we are trying to
guess (yj ), the configuration of the second wheel. Then
each position i on the first wheel has a “vote” regarding
the sign of yj : namely aij xi . (For example, if aij < 0 and
xi < 0, then aij xi > 0; so the vote is for yj > 0, consistent
with the expectation that xi and yj have opposite parity
since aij < 0.) It is then natural to add up the votes and
decide on the basis of the sign of the sum:

yj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+1
∑
i

aij xi > 0;
0

∑
i

aij xi = 0;
−1

∑
i

aij xi < 0.

Now we iterate: using the computed values of yj , we
in turn “push them through the rectangle,” obtaining new
values for the xi , and then continue going back and forth
in “ping-pong” fashion. It can be shown this iterative pro-
cedure eventually terminates in an unchanging (xi), (yj )

configuration (as opposed to endlessly cycling through
different configurations), but in general the limiting con-
figuration will depend on the initial start or guess. So, it
was important to start off with a good initial guess in or-
der to arrive at the right answer; this was accomplished
by a separate, preliminary technique called flagging. For
rectangling and flagging, see Reeds et al. (2015, pp. 125–
127, 135–136, 185–186, 215–216), Zabell (2015, p. xcv),
and Copeland (2006, pp. 396–405).

Such iterative procedures were not unknown in statisti-
cal practice in 1940, but they were certainly uncommon.34

Rectangling is very close to a variant of the power method
in linear algebra used to find the eigenvectors and eigen-
values of a matrix, the variant using the singular value de-
composition of a matrix to find the left and right singular
vectors of the matrix. The variant is discussed by Good in
his 1965 book The Estimation of Probabilities: An Essay
on Modern Bayesian Methods (Good, 1965b), yet another
instance of his wartime activities informing his postwar
research and writings.

34For one example, see Deming and Stephan (1940).

7. I. J. GOOD, PHILOSOPHER OF SCIENCE

Good’s advocacy of the Bayesian position was not lim-
ited to the statistical profession. He had a life-long interest
in philosophy, and championed the use of subjective prob-
ability and the Bayesian approach in this literature, pub-
lishing extensively in it as well. This included twenty-two
papers in the British Journal for the Philosophy of Sci-
ence, seven papers in Philosophy of Science, three in Syn-
these and contributions to many conference proceedings,
as well as speaking at numerous conferences. Twenty-
three of these papers were later reprinted in a book, Good
Thinking (1983), together with an introduction drawing
the different threads together. It was, as Good wrote in the
introduction (p. ix), “a book about applicable philosophy,
and most of the articles contain all four of the ingredients
philosophy, probability, statistics, and mathematics.” For
a later paper specifically crafted for a statistical audience,
summarizing his work on the interconnections between
statistics and the philosophy of science; see Good (1988),
a paper in this journal.

One example of Good’s approach was a paper on
Rudolf Carnap’s principle of total evidence. Carnap had
constructed a formal logic of inductive inference, but as
A. J. Ayer pointed out, it was unclear in Carnap’s system
why there was any value in acquiring new information.
Proceeding from the Savage axioms for utilities, Good
was able to show in a short paper (Good, 1967) that un-
der natural assumptions the expected utility of acquiring
cost-free information is monotonically increasing thanks
to a simple minimax theorem. (This casting of a question
in philosophy in quantitative terms, in order to exhibit a
simple and often elegant answer to it, was characteristic
of much of Good’s work in the philosophy of inductive
inference.)

But Good’s advocacy of the Bayesian position had a
strong practical streak to it, and was never dogmatic.
He once wrote a short letter to the American Statistician
(Good, 1971) titled “46656 varieties of Bayesians,” the
point being there was no unique Bayesian position, but a
large number, depending on your take as to what kinds of
judgements were possible, how precise they had to be, if
you used utilities, whether or not you believed in the ex-
istence of physical (“objective”) probabilities, and so on.
Elsewhere (Good, 1992b) he wrote about a Bayes–non-
Bayes compromise, reflecting his Bletchley Park mindset
that in the end, if it worked and was efficient, you used it.

It must have been frustrating for him in the extreme dur-
ing the pre-1976 period to be unable to rebut attacks on
Bayesian methods as being merely theoretical in nature,
lacking genuine practical application. (This author once
witnessed such an attack during a conference in 1971,
when Good was asked a hostile question of this nature
by a member of the audience.)
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8. EPILOGUE

By now it will be abundantly clear the decisive im-
pact I. J. Good’s “secret life”—his wartime experiences—
played in his becoming a major advocate for the postwar
Bayesian approach. Let’s end by giving Jack Good the
last word. Many years later, looking back on his time at
Bletchley Park, he wrote (Good, 2006, p. 222):

Most of the cryptanalysts in the Newmanry
dispersed into the various universities and most
of us achieved some measure of success in our
unclassified work. But the success of our ef-
forts during the war, and the feeling that we
were helping substantially, and perhaps crit-
ically, to save much of the world (including
Germany) from heinous tyranny, was a hard
act to follow.
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