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Seven Principles for Rapid-Response Data
Science: Lessons Learned from Covid-19
Forecasting
Bin Yu and Chandan Singh

Abstract. In this article, we take a step back to distill seven principles out
of our experience in the spring of 2020, when our 12-person rapid-response
team used skills of data science and beyond to help distribute 340,000+ units
of Covid PPE. This process included tapping into domain knowledge of epi-
demiology and medical logistics chains, curating a relevant data repository,
developing models for short-term county-level death forecasting in the US,
and building a website for sharing visualization (an automated AI machine).
The principles are described in the context of working with Response4Life,
a then-new nonprofit organization, to illustrate their necessity. Many of these
principles overlap with those in standard data-science teams, but an emphasis
is put on dealing with problems that require rapid response, often resembling
agile software development. The technical work from this rapid response
project resulted in a paper (Altieri et al. (2021)); see also this interview for
more background (Yu and Meng (2021)).
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1. THE DECISION TO ENGAGE: PREPAREDNESS
AND WILLINGNESS

It was the evening of Friday, March 20, 2020, when
one of the authors (Yu) saw an email from a colleague
at Berkeley engineering asking for data-science help for
a new nonprofit organization called Response4Life that
aimed to distribute PPE (personal protection equipment)
to Covid hot-spots in the US. At this time, the burgeoning
epidemic was taking hold in the US, and media outlets
were crowded by reports on the huge shortage of PPEs
such as masks, even for medical doctors and healthcare
workers.

Within minutes, Yu replied to the email to get con-
nected with Response4Life. She also knew that her group,
consisting of both statistics and EECS students/postdocs,
was well-prepared to jump on this opportunity; they col-
lectively held a research goal of solving real-world prob-
lems, possessed the necessary statistics/machine learning
and computing skills, and had a collaborative culture in
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place, all tools necessary in order to move very fast as a
team. The group had good communication channels for
resolving differences, a fair credit-sharing habit, and all
members were already working together in overlapping
teams of 2–5 people.

By Saturday, several group members had been con-
tacted, including the other author (Singh), a PhD stu-
dent from computer science. All signed up without hes-
itation for a warlike two-month engagement with Re-
sponse4Life. Singh, a super-organizer, also agreed to be
the deputy for the project with PI Yu. In a few days, a
team of 12 formed from other group members who joined
voluntarily: Nick Altieri (who delayed finishing his the-
sis), James Duncan, Raaz Dwivedi, Karl Kumbier (former
group member), Xiao Li, Robert Netzorg, Briton Park,
Yan Shuo Tan, Tiffany Tang, and Yu (Hue) Wang.

After discussing with the Response4Life team, it be-
came clear that this was a very unusual data-science
project, with no data in hand or plans on how to find it.
Forecasts were needed to inform which hot-spot hospi-
tals to send PPE, but this would require first finding rel-
evant data, developing short-term (e.g., five days ahead)
forecasting models, and integrating forecasts into a Re-
sponse4Life Salesforce for use. As a matter of fact, Re-
sponse4Life was founded only a week before by Rick
Brennan (founder of Airtime Aviation Holdings, LLC,
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engineer/entrepreneur, pilot) with mostly rotating short-
term volunteers (e.g., with availability of two weeks).
Don Landwirth (angel investor, board member of Maker
Nexus, advisor and mentor to dozens of entrepreneurs and
executives) was the lead on connecting with makers and
the Salesforce logistics platform.

2. EFFECTIVE HUMAN ORGANIZATION: DIVIDE AND
CONQUER

Since time was running very short, it was crucial to ef-
ficiently split up different aspects of the project among
various people.

Specifically, the team had two short weeks to come up
with daily forecasts, at least five days ahead, for each of
the 7000+ hospitals in the US and put them on the Sales-
force platform for PPE distribution. With a team of 12
people, we naturally had to divide and conquer. Subteams
were formed: a data team (Tang and Wang), a model-
ing team (Altieri and Li), a logistics/visualization team
(Singh and Duncan) to transport our prediction results to
the Salesforce platform/website, and a PR team (Dwivedi,
Netzorg, and Tan) to help organize many volunteers to Re-
sponse4Life, scout media reports to qualitatively validate
our predictions, and call hospitals to find out whether they
would be interested in receiving PPE.

The teams were orchestrated following principles sim-
ilar to agile development [2]. Short frequent large-group
meetings were held to set goals for each team and evalu-
ate progress. These large meetings with the entire team’s
input helped to bridge the fast pace nature of the project
with the more familiar academic environment of critique
and iteration. Google Docs was used as the primary soft-
ware to organize the teams, with each team having a pri-
oritized list of action items that were updated as goals
evolved.

Our rapid-response team also met, first daily and later a
couple of times a week, as a team and sub-teams to plan
and sync-up at a very fast pace. The authors attended daily
Response4Life meetings (Yu for the 8 am leadership team
meeting and Singh for the 3 pm logistics meeting). After
a couple of weeks, the meetings became less regular, but
still multiple times a week.

3. GATHERING DATA AND CONTEXT: SCRAPING,
HUMAN CONTACTS, AND MEDIA REPORTS

Gathering data was an immediate challenge; it turned
out that web scraping, human contacts, and monitoring
media reports were all a crucial part of gathering data.

The first challenge was deciding which quantity to
model. We quickly found from media reports Covid-19
death-count data at the county level from USAFacts (and
later NYT), but very little other information at the county
level. As a result, we decided to predict death-counts for

each county. We did not want to predict case numbers
believing that (accumulated) death counts were more re-
liable and relevant to hospitalization than case numbers;
this was particularly true at the beginning of the pandemic
when case numbers were not uniformly reported.

Next, these county-level predictions were translated
into an actionable hospital-level severity index. At the
time, hospital-level Covid-19 information was not avail-
able, so in order to impute hospital-level counts, we
searched for information on individual hospitals through
open sources, contacts and emails.

We then use the size of each hospital (measured by the
total number of employees), to impute the death count for
the hospital from each county, (relative to the total number
of hospital employees in the county). Then we combined
features such as current (imputed) death counts, predicted
(imputed) death counts, and ICU beds to assign each hos-
pital a severity index, taking on values low, medium, and
high.

Many other static relevant datasets with information on
useful factors for predicting Covid-19 mortality were also
collected, such as demographics and health risk factors.
Later on, more diverse dynamic data was added, such as
social mobility data collected from many different sources
such as Google and Apple maps, mask-wearing survey
data, and safegraph social-distancing data. This list con-
tinued to grow throughout the evolution of the pandemic
to include data such as interventions that different coun-
ties/states made to spread gatherings. We spoke to friends
and colleagues who were practicing or studying medi-
cal doctors and researchers to understand what factors
(health, social, economic) might impact death count in
addition to past death counts. Everyone we contacted was
incredibly helpful.

4. DATA QUALITY CONTROL: IN-HOUSE DATA
CLEANING AND CURATION

Data quality control was critical for dealing with an in-
flux of messy data. It was important to vet the newly in-
coming data and set up a pipeline to easily adapt to unex-
pected changes from incurring data sources.

The data team responded quickly to any lead from the
team and contacts to scrape, clean, and curate before de-
positing in our repository (details in [1]). The dynamic
data such as death and case counts were curated by differ-
ent sources which used different data collection protocols,
requiring cleaning for downstream tasks such as forecast-
ing. To efficiently gather and preprocess the data, the data
team put an automatic scraping and cleaning procedure
in place after some trial-and-error days. This procedure
required a large amount of maintenance, as the incom-
ing data from different sources would sometimes change
without warning (e.g., including previously-missed case
counts or changing the code interface required to gather



268 B. YU AND C. SINGH

data). Since the beginning of the project, many Ph.D.
students in Yu-group teams, as well as external volun-
teers, helped with the data team in terms of finding use-
ful datasets to be added as well as cleaning the data.
Eventually, two Ph.D. students kept on maintaining the
pipeline and adding new datasets. Their skills of setting
up periodic jobs on AWS EC2 instances, data cleaning
via the Python Pandas package, and web-scraping were
very handy.

Though information was desired at the hospital level,
most data was available at different levels of granularity,
for example, death-counts at the county level and testing
data at the state level. Thus, human judgement calls were
made on how best to impute between the different levels
of granularity; for example, as mentioned earlier, county-
level deaths were assigned to different hospitals propor-
tional to each hospital’s size.

5. SPEEDY DEVELOPMENT AND VALIDATION OF
MANY PREDICTION ALGORITHMS

After a quick examination of early death-counts, it be-
came clear that standard epidemiological models were not
yet doing a precise job at forecasting county-level Covid-
19 deaths. As a result, we turned to data-driven meth-
ods for forecasting, that would adapt to the data at hand.
With a pressing time demand and a rapidly evolving pan-
demic, we decided to build on past work of one author that
weighs and combines multiple prediction schemes (with
a forgetting factor) developed successfully for audio com-
pression at Bell Labs 20 years ago [4]. This is due to a
recognition of the similar dynamic nature in audio and
pandemic data and the proven dynamic adaptivity of the
weighted combination strategy to good predictors.

We first began by developing five extremely simple
models to use as baselines for forecasting county-level
deaths. For each county, these predictors used the past
time-series of death and case counts, along with the de-
mographic, social, economic, and health factors from the
county and its neighboring counties. In the end, trend-
following, simple and transparent linear and exponential
predictors stood out in terms of prediction performance
(under three different reasonable loss functions) on future
data (which arrives every day for 3000+ counties). The
best-predicting models used only past and neighboring
county-level Covid death-counts to forecast future death-
counts.

To improve upon these simple baseline models, we
combined and weighted them (with a forgetting factor)
to form the CLEP predictor in our paper [1], where CLEP
stands for Combined Linear and Exponential Predictor.
The weight on each predictor was higher if the predic-
tor did a better job fitting recent data. These weights pre-
dictors were interpretable because they corresponded well
with the linear regime or the exponential regime that the

pandemic fell in. That is, in a linear regime of the pan-
demic, the linear predictor received more weight and vice
versa.

The two members of the modeling team helped to im-
plement different predictors in parallel. Familiarity with
data analysis and python modeling packages such as
scikit-learn [3], statsmodels [5], and imod-
els [6] helped to develop models quickly and effectively.

6. UNCERTAINTY: MEASUREMENT AND EMPIRICAL
VALIDATION

Facing a dynamic future, it was important to assess
uncertainty through a prediction interval with a justified
level of confidence.

Prediction residuals are an obvious source to use for
such an interval. We used the prediction residuals of
our model to defined maximum absolute error predic-
tion intervals for predicted death-counts [1]. Specifically,
an interval was constructed using the maximum absolute
relative error to add and subtract from the predicted (ac-
cumulated) death count of the future 5th (or 7th or 14th)
day. This construction can be seen as a form of general-
ized conformal analysis [7]. With a theoretical argument,
we can see that the coverage of such intervals is around
80%; this was more or less validated by comparing with
the observed (accumulated) death counts (see [1] for de-
tails). Additionally, these intervals require that errors are
exchangeable across different days. We restrict our inter-
val construction to only use the previous five days; over
this time period, the residuals empirically appeared ex-
changeable.

These intervals around our predictions would help in-
form the time needed for physical distribution of PPE
from the makers (making sure the lower bound of the in-
terval was larger than the last observed accumulated death
count). The possibility of evaluating our predictions and
intervals with ever coming new data every day was really
the silver lining in an extremely challenging project and
gave us empirically validated confidence in what we do.

7. COMMUNICATING RESULTS: INTERACTIVE
VISUALIZATIONS, OPEN-SOURCE CODE,

AND A WEB INTERFACE

Quickly and effectively communicating results was ex-
tremely important in our rapid-response setting. We did
this through a combination of open-source code and visu-
alizations put onto our website.

From the beginning, all our work was open-source on
Github, making it easy for other groups to use our code
and processed data.1 Data was saved in both raw/pro-
cessed form and updated daily, allowing other groups

1https://github.com/Yu-Group/covid19-severity-prediction.
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to make use of any subset of the data repository they
found useful. All data was placed into a common table-
format which could then be easily distributed as a csv-file
(or compressed table formats). We also stored the daily-
updated forecasts numerically on github, making them
easy to access and compare against.

Moreover, we built interactive visualizations of the
data, along with our forecasts, into a website using Github
Pages.2 These visualizations enabled much better explo-
ration of the data, especially for specific counties and for
comparing geographic areas. Basic web skills, such as us-
ing HTML/Javascript were crucial for quickly setting up
this website, and adding basic elements to it. For actually
producing the visualizations, various python visualization
libraries such as Matplotlib and Plotly were useful, par-
ticularly their extensions for geographical-data visualiz-
ing. Setting up compute on AWS allowed for easily au-
tomating daily updates to these visualizations as well as
for hosting interactive visualizations which could not be
simply uploaded to a static site. The forecasts were also
integrated into the Covid-19 Atlas3 at the University of
Chicago.

Three grades of severity (high, medium, and low) based
on our five-day predictions were put on the Salesforce
platform for PPE distribution within 18 days of our en-
gagement, with nonstop long hours every day from core
team members and people at Response4Life. There were
no other county-level prediction models available in the
US until after our paper was submitted on May 16, 2020.
At the present date, we have taken down the realtime up-
dates due to the availability of other county-level sites and
our lack of sustainable resources for maintaining the web-
site to deal with changing incoming data formats.

CONCLUSION

To conclude, this project was an intense and reward-
ing experience for everyone on our rapid-response data-
science team, especially given the fact that our predic-
tions helped inform the shipment of at least 349,000 face
shields to doctors and healthcare workers (14,000 through
Response4Life and the rest through Maker Nexus), at a
time when they were direly needed. It would not have
been possible without the wonderful Response4Life peo-
ple, our combined skills in applied statistics, machine

2https://covidseverity.com/
3https://theuscovidatlas.org/

learning, signal processing and coding, and awesome and
timely support from friends, family, and colleagues.
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