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Statistical Challenges in Tracking the
Evolution of SARS-CoV-2
Lorenzo Cappello, Jaehee Kim, Sifan Liu and Julia A. Palacios

Abstract. Genomic surveillance of SARS-CoV-2 has been instrumental in
tracking the spread and evolution of the virus during the pandemic. The avail-
ability of SARS-CoV-2 molecular sequences isolated from infected individ-
uals, coupled with phylodynamic methods, have provided insights into the
origin of the virus, its evolutionary rate, the timing of introductions, the pat-
terns of transmission, and the rise of novel variants that have spread through
populations. Despite enormous global efforts of governments, laboratories,
and researchers to collect and sequence molecular data, many challenges re-
main in analyzing and interpreting the data collected. Here, we describe the
models and methods currently used to monitor the spread of SARS-CoV-2,
discuss long-standing and new statistical challenges, and propose a method
for tracking the rise of novel variants during the epidemic.
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1. INTRODUCTION

In the last couple of years, we have witnessed an un-
precedented global effort to collect and share SARS-
CoV-2 molecular data and sequences. This effort has re-
sulted in more than ten million molecular sequences be-
ing available for download in public repositories such as
GISAID (Shu and McCauley, 2017) and GenBank today.
These viral RNA sequences are consensus1 sequences of
about 30,000 nucleotides isolated from biological sam-
ples, such as nasal swabs, from infected individuals. Anal-
yses of viral molecular sequences provide evidence of
human-to-human transmission and allow the investiga-
tions of SARS-CoV-2 origins (Andersen et al., 2020,
Boni et al., 2020). Moreover, they are routinely used to in-
vestigate outbreaks (MacCannell et al., 2021, Deng et al.,
2020), track the speed and spread of viral transmission
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1A glossary in the appendix explains the terms in italics that not all
statisticians may be familiar with.

across the world (Hadfield et al., 2018), and monitor the
evolution of new variants (Volz et al., 2021a).

The field of phylodynamics of infectious diseases, also
referred to as molecular epidemiology, aims to under-
stand disease dynamics by joint modeling of evolutionary,
immunological, and epidemiological processes (Grenfell
et al., 2004, Volz, Koelle and Bedford, 2013). It is as-
sumed that these processes shape the underlying viral
phylogeny of a sample of molecular sequences at a lo-
cus. Under models of neutral evolution, it is assumed
that a process of substitutions is superimposed along the
branches of the phylogeny, generating the observed varia-
tion in the sample of molecular sequences. More complex
evolutionary models consider the effects of other types of
mutations and sources of variation, such as recombination
and selection (Wakeley, 2009).

A viral phylogeny is a timed bifurcating tree that rep-
resents the ancestral history of a sample at a locus (Fig-
ure 2(A)). This viral phylogeny can be obtained by maxi-
mum parsimony methods or by maximum likelihood from
observed molecular sequences (Felsenstein, 2004). In the
case of maximum likelihood, a model of substitutions (or
mutations) is required. In phylodynamics, however, the
study usually does not end at a single phylogeny. The
aim is to understand the evolutionary and epidemiologi-
cal forces that shape the phylogeny. To this end, the phy-
logeny is typically assumed to be the realization of either
a birth–death-sampling process (BDSP) (Stadler and Bon-
hoeffer, 2013) or a coalescent process (CP) (Kingman,
1982a, Rodrigo and Felsenstein, 1999). In the context
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FIG. 1. Phylodynamic analysis of SARS-CoV-2 sequences in Cali-
fornia in 2020. (A) 10-days cumulative sum of the daily number of new
cases in California. (B) Posterior median of the effective population
size (black line) and 95% credible region (gray area). Model and data
details appear in the Appendix.

of disease dynamics, the BDSP is parameterized by the
transmission rate (λ(t))t≥0 and recovery rate (μ(t))t≥0,
all of which are parameters of interest in epidemiology
and public health. The CP is parameterized by the ef-
fective population size (Ne(t))t≥0, a measure of relative
genetic diversity over time that serves as a proxy of the
growth and decline in the number of infections over time.
For example, Figure 1(B) shows the estimated effective
population size of SARS-CoV-2 in California in the first
nine months of 2020, together with panel (A) that shows
the 10-day cumulative number of new cases; this quantity
is a proxy to the number of active cases at each day.

It is possible to link epidemiological compartmental
models, such as the susceptible-infected-recovered (SIR)
model, to phylogenies via the CP (Volz and Frost, 2014,
Boskova, Bonhoeffer and Stadler, 2014). With the sim-
plest SIR model, the coalescent effective population size
(Ne(t))t≥0 is expressed in terms of the number of infec-
tions over time, transmission rate, and the number of sus-
ceptible individuals. More complex population dynamics
and compartmental models can also be incorporated into
the CP framework (Volz and Siveroni, 2018). We refer to
the general class of such models as the CP–EPI. In this
paper, we survey current methods and challenges for es-
timating epidemiological parameters from the BDSP and
the CP–EPI frameworks and their applications in studying
the evolution and epidemic spread of SARS-CoV-2.

1.1 Motivations

Although the field of phylodynamics has advanced in
recent years, it has been recognized that there are still
many challenges in using sequence data to infer dis-
ease dynamics. In Frost et al. (2015), the authors stated
the following challenges: (1) modeling of more com-
plex evolutionary processes such as recombination, se-
lection, within-host evolution, population structure, and
stochastic population dynamics; (2) modeling that ac-
counts for the sequences sampling design and/or the lack
of a well-designed sampling strategy, (3) joint model-
ing of phenotypic and genetic data, and (4) computation.
We have subsequently seen advances in solving some

of these challenges, such as modeling of recombination
(Müller, Kistler and Bedford, 2022) and stochastic popu-
lation dynamics (Stadler et al., 2013, Volz and Siveroni,
2018), incorporation of more complex sampling scenar-
ios (Karcher et al., 2016, 2020, Parag, du Plessis and Py-
bus, 2020, Cappello and Palacios, 2021), and joint mod-
eling of epidemiological and genetic data (Li, Grassly
and Fraser, 2017, Tang et al., 2019, Zarebski et al., 2021,
Featherstone et al., 2021). However, even in the simplest
evolutionary model, inference involves integration over
the high dimensional space of phylogenies. This is usu-
ally achieved via Markov chain Monte Carlo (MCMC)
methods, making inference computationally intractable
for large sample sizes.

Apart from the existing challenges, the pandemic pre-
sented us with new statistical challenges. Here, we focus
our discussion on four challenges: (1) scalability, (2) phy-
lodynamic hypotheses testing, (3) adaptive modeling of
the sampling process and (4) interpretability of model pa-
rameters.

Current phylodynamic implementations are computa-
tionally incapable of analyzing the amount of SARS-
CoV-2 sequences available; researchers are forced to sub-
sample available data and to sacrifice model complexity.
In Section 3, we focus on the scalability of Bayesian phy-
lodynamic methods. We provide an overview of current
practices for analyzing SARS-CoV-2, recent advances in
Bayesian computation and the particular challenges in ap-
plying such advances in phylodynamics.

The continual rise of new SARS-CoV-2 variants with
putative higher transmissibility, demands for novel strate-
gies for statistical hypotheses tests that not only rely on
molecular data but also on the sampling process of se-
quences and phenotypic information from the host and the
pathogen. In Section 4, we provide an overview of current
practices for testing higher transmissibility of variants of
concern and provide a new semi-parametric model that
allows for this testing.

Increasing the interpretability of model parameters is
becoming one of the most important challenges in phylo-
dynamic inference. Meaningful parameterization often re-
quires more complex modeling and inferential challenges.
In Section 5, we provide an overview of phylodynamic
methods that aim to infer prevalence and other epidemio-
logical parameters from molecular sequences and count
data, and highlight some future directions in the field.
Finally, heterogeneous strategies of molecular sequence
collection demands for adaptive phylodynamic methods
that properly account for this heterogeneity. In Section 6,
we discuss recent advances in temporal modeling of the
sampling process of molecular sequences. Section 7 con-
cludes with a discussion of encompassing themes that
have emerged in the paper.



164 CAPPELLO, KIM, LIU AND PALACIOS

2. BACKGROUND

Neutral models of evolution typically assume that the
tree topology and the branching times (or coalescent
times) are independent. In the next two sections, we will
summarize the two most popular models on phylogenies
used in phylodynamics.

2.1 Coalescent process (CP)

A retrospective probability model on phylogenies is the
standard coalescent. The standard coalescent was initially
proposed as the limiting stochastic process of the ances-
try of n samples chosen uniformly from a large popula-
tion of N � n individuals undergoing simple forward dy-
namics (Kingman, 1982a, 1982b). It was later extended
to variable population sizes (Slatkin and Hudson, 1991,
Griffiths and Tavare, 1994) and heterochronous sampling
(Felsenstein and Rodrigo, 1999). Here, we consider these
extensions, and assume that samples are obtained at times
y = (y1, . . . , yn), with yi denoting the sampling time of
the ith sample. Coalescent models have been reviewed ex-
tensively (Rosenberg and Nordborg, 2002, Marjoram and
Tavaré, 2006, Tavaré, 2004, Berestycki, 2009, Wakeley,
2009, 2020) and we refer the reader to those references
for further details.

The space of phylogenies is the product space Gn =
Tn × R

n−1 of discrete ranked and labeled tree topolo-
gies Tn and of vectors of coalescent times t = (t2, . . . , tn),
where tk indicates the (n − k + 1)th time two lineages
have a common ancestor, when proceeding backwards in
time from the tips to the root (Figure 2(A)). The coales-
cent density of the phylogeny is:

(1) p
(
g | Ne(t)

) = exp
(
−

∫ ∞
0

C(t)

Ne(t)
dt

) n∏
k=2

1

Ne(tk)
,

where C(t) = A(t)(A(t)−1)
2 , termed the coalescent factor,

is a combinatorial factor of the number of extant lineages
A(t) = ∑n

i=1 I (yi > t) − ∑n
k=2 I (tk > t). Here, the den-

sity is parameterized by (Ne(t))t≥0 := Ne that denotes the
effective population size (EPS). In the CP, the rate of coa-
lescence, which is when two lineages meet a common an-
cestor, is inversely proportional to the EPS. That is, going
backwards in time, a long waiting time for the first coa-
lescence indicates large EPS during that period of time.
Under population dynamics following a Wright–Fisher
model, at time t , Ne(t) = N(t)/N(0) is the relative cen-
sus population size (Tavaré, 2004). Under more general
population dynamics, the EPS is usually interpreted as a
relative measure of genetic diversity as it might not de-
pend linearly on the census population size (Wakeley and
Sargsyan, 2009).

2.2 Birth-Death-Sampling Process (BDSP)

In the BDSP (Stadler et al., 2013), the population dy-
namics follows an inhomogeneous birth-death Markov
process forward in time in which a birth represents a
transmission event, and a death represents the event in
which the individual either recovers, becoming noninfec-
tious, or dies. The process starts with a single infected
individual at time t = 0. At time t , a transmission occurs
with rate λ(t) and an individual becomes noninfectious
with rate μ(t). Given that we observed a fraction of the
population, BDSP requires the definition of a sampling
process. The sampling process selects single lineages ac-
cording to a Poisson process with rate ψ(t), and/or in bulk
at predetermined fixed time points with a sampling prob-
ability ρ(t) of each lineage. That is, a fraction ρ(t) of
the pool of infected individuals at time t is selected uni-
formly at random to be in the sample. Figure 2(B) depicts
a full realization of the process in which only black tips
are sampled to form the sampled phylogeny.

Current implementations of the BDSP (Stadler et al.,
2013, Bouckaert et al., 2019) assume all rates are piece-
wise constant functions with jumps at u1 < · · · < up−1
(marked by green dotted lines in Figure 2(B)) and denoted
in vector form by λ, μ, ψ , and ρ, where the ith element
corresponds to the rate during [ui−1, ui) (i = 1, . . . , p).
Further, s tips are sequentially sampled at y1 < · · · < ys

(marked by red dotted lines in Figure 2(B)), and addi-
tionally, mi lineages are sampled in bulk at each time ui

with the sampling probability ρi per lineage, resulting in
n = s + ∑p

i=1 mi total samples. In the example of Fig-
ure 2(B), no sequences are sampled in bulk at time u1
(m1 = 0), while two sequences are sampled in bulk at time
u2 (m2 = 2). The n − 1 branching times of the n samples
are denoted by x1 < · · · < xn−1 (marked by blue dotted
lines in Figure 2(B)), and let ni be the number of infected

FIG. 2. Example of a phylogeny. (A) Example of a phylogeny realiza-
tion from the CP with n = 5. ti ’s and yi ’s indicate coalescent times and
sampling times, respectively. For details, see Section 2.1. (B) An exam-
ple phylogeny from the BDSP that started at t = u0 and ended at u2.
The filled circles represent sampled lineages and the crosses indicate
extinct lineages. At each time interval [ui−1, ui ), the rate parameters
are assumed to be constant. The branching times are denoted by xk .
The lineages are sampled under two sampling schemes: sequentially
at times yk or in bulk at times ui . For details, see Section 2.2.
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individuals in the sampled phylogeny at time ui exclud-
ing newly sampled lineages in bulk at ui . For example,
in Figure 2(B), n1 = 4 and n2 = 0. The likelihood of the
sampled phylogeny is

p(g | λ,μ,ψ,ρ, t)

= q1(0)︸ ︷︷ ︸
trans. at the root

n−1∏
i=1

λI (xi)qI (xi )(xi)

︸ ︷︷ ︸
trans. at internal nodes

s∏
i=1

ψI(yi)

qI (yi )(yi)︸ ︷︷ ︸
seq. sampling trans.

(2)

×
p∏

i=1

(
ρi

qi(ui)

)mi

︸ ︷︷ ︸
bulk. sampling trans.

p−1∏
i=1

(
(1 − ρi)qi+1(ui)

)ni

︸ ︷︷ ︸
no trans. among ni extant lineages

,

where I (t) = i (i = 1, . . . , p) for t ∈ [ui−1, ui) and 0
otherwise. qi(t) denotes the density of the per-lineage
dwelling time in [ui−1, ui), that is, the density that a lin-
eage at time t ∈ [ui−1, ui) evolves as observed in the
tree, with qi(ui) = 1. The explicit expression for qi(t) is
parametrized in terms of λ, μ, ψ , and ρ, and it appears
in the Supplementary Material of Stadler et al. (2013).
We further note that Equation (2) assumes the two types
of sampling schemes. When sequences are sequentially
sampled, it is assumed that sequences become noninfec-
tious immediately after and hence, their contribution to

the likelihood becomes
ψI(yi )

qI (yi )
(yi )

at each sampling time yi .

Similarly, sequences sampled in bulk become noninfec-
tious and hence their contribution to the likelihood be-
comes ρi

qi (ui)
at each bulk sampling effort at time ui . How-

ever, sequences that are not sampled in bulk at time ui

(with probability 1 −ρi ) remain infectious in the sampled
phylogeny and contribute to the likelihood with factors
qi+1(ui).

Equation (2) is the result of a series of papers.
Thompson (1975) showed that in the case of constant
birth and death rates, the branching times of the tree
with tips consisting of only present-day individuals, con-
ditioned on the time at the root, are i.i.d. Nee, May and
Harvey (1994) and Gernhard (2008) showed that the same
result can be obtained when conditioning on the number
of tips. The fact that Equation (2) can be obtained as a
completely observed Markovian process is the result of
Stadler (2009, 2010), who showed that the BDSP can be
interpreted as a birth-death process with reduced rates and
complete sampling. Finally, Stadler et al. (2013) extended
the result under piece-wise constant birth, death and sam-
pling rates. Here, branching times are no longer i.i.d. but
remain independent. We note however that increasing the
number of parameters increases the risk of model non-
identifiability and runaway behavior of parameter esti-
mates.

Extensions to the BDSP include the flexibility of mod-
eling the probability r(t) of a sampled lineage to become

effectively noninfectious immediately following the sam-
pling event, and the modeling of multi-type birth and
death events, accounting for population structure (Scire
et al., 2020). A more general framework unifying existing
BDSP models has been recently proposed by MacPherson
et al. (2021).

2.3 Bayesian Phylodynamic Inference

Phylogenies are usually not observed; the CP or the
BDSP density is used as prior on the phylogeny in order
to infer phylodynamic parameters, denoted by θ , such as
Ne or transmission rate (λ(t))t≥0. Let D denote the ob-
served molecular sequences sampled at times y. In the
phylodynamic generative model, phylodynamic param-
eters stochastically dictate the shape of the phylogeny;
given a phylogeny, a process of substitutions is superim-
posed along the branches of the phylogeny that generates
observed data. The target posterior distribution is the aug-
mented posterior P(g, θ,Q | D,y), where Q denotes sub-
stitution parameters, such as the global mutation rate and
transition and transversion substitution rates between nu-
cleotide bases. The number of substitution parameters of
different substitution models can vary extensively. Yang
(2014) provides a comprehensive reference of different
mutation models used in phylodynamics.

3. SCALABILITY

The posterior distribution P(g, θ ,Q | D,y) is usually
approximated via Markov chain Monte Carlo (MCMC).
Mixing of Markov chains in the high dimensional space
of phylogenetic trees and model parameters is challeng-
ing, mostly because the posterior distributions on these
discrete-continuous state spaces are highly multimodal
(Whidden and Matsen IV, 2015). State-of-the-art algo-
rithms, such as those implemented in BEAST (Suchard
et al., 2018) and BEAST2 (Bouckaert et al., 2019), ex-
ploit GPUs (Ayres et al., 2012) and multi-core CPUs to
run multiple MCMC chains in parallel, and carefully de-
signed transition kernels to improve the mixing.

A parallel tempering method proposed by Altekar
et al. (2004) apply the Metropolis-coupled MCMC (MC3)
method in which multiple chains are run in parallel and
“heated”. Here, the posterior term in the acceptance ratio
is raised to a power (temperature). After a certain number
of iterations, two chains are selected to swap states, en-
couraging them to explore the parameter space and pre-
vent them from getting stuck in a peak. Müller and Bouck-
aert (2020) improve upon this MC3 method by choosing
the temperatures adaptively.

Despite these efforts, current methods can only be ap-
plied to hundreds or few thousands of samples and thus
have limited applicability to pandemic-size datasets. The
main bottleneck in these algorithms is the exploration
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of the space of phylogenetic trees. Under the substitu-
tion models typically used for phylodynamic inference,
all phylogenies with n tips have nonzero likelihood, and
Markov chains on the space of phylogenetic tree topolo-
gies are known to mix in polynomial time (Simper and
Palacios, 2020).

In the rest of this section, we first summarize some
of the most popular pipelines recently used for phylody-
namic analyses of SARS-CoV-2 sequences. Then we re-
view some of the recent advances towards scalable phylo-
dynamic inference.

3.1 Practices in Analyzing SARS-CoV-2 Data

Lacking a method or software capable of dealing with
the number of available sequences, researchers usually
resort to different types of approximations: (1) partition
available data into subsets and analyze each subset inde-
pendently (Lemey et al., 2020, Volz et al., 2021a), or (2)
analyze a subsample selected at random from the set of
available sequences (Choi, 2020, Müller et al., 2021), or
(3) estimate a single MLE phylogeny from subsampled
sequences, for example, the phylogeny available and pe-
riodically updated in Nextstrain (Hadfield et al., 2018),
or obtain an MLE phylogeny directly with fast imple-
mentations such as TreeTime (Sagulenko, Puller and Ne-
her, 2018) and IQ-TREE (Minh et al., 2020); phylody-
namic parameters are then inferred from the fixed phy-
logeny (van Dorp et al., 2020, Maurano et al., 2020,
Dellicour et al., 2021). However, these approaches have
their limitations. Conducting analyses with only a subset
of the data may increase estimates uncertainty and reduce
the time interval of estimation. The lattter occurs because
larger sample sizes will take longer to meet a common an-
cestor in expectation (Wakeley, 2009). Estimation of evo-
lutionary parameters from a fixed estimated genealogy is
also known to underestimate uncertainty (Palacios et al.,
2014).

Examples of the largest scale analyses have been Volz
et al. (2021a), who include approximately 27,000 se-
quences and du Plessis et al. (2021), who study 50,887
SARS-CoV-2 genomes in the UK. du Plessis et al. (2021)
divide the full dataset into five smaller datasets accord-
ing to whether the samples carry one of five groups of
mutations. The authors then estimate the five phylogenies
with an approximate MLE method, where they employ
an approximate likelihood in lieu of an exact one. The
five MLE phylogenies are then analyzed separately. Phy-
logenies obtained with MLE methods cannot be readily
used to infer evolutionary parameters in a CP framework
if they are multifurcating trees. The MLE phylogeny re-
sults in a multifurcating tree—a tree with nodes that di-
rectly subtend more than two children—when multiple
lineages have the same likelihood of descending from
the same parent. This is a common situation in SARS-
CoV-2 applications. To infer EPS and to sample from

the phylogenetic posterior distribution, the authors sam-
ple over the set of binary trees compatible with a given
multifurcating tree. Here, a binary phylogeny is com-
patible with a multifurcating phylogeny if the latter can
be obtained by removing internal nodes from the binary
phylogeny. Let gMLE denote the estimated MLE phy-
logeny. The authors then approximate the posterior dis-
tribution P(g ≺ gMLE,Ne,Q | D,gMLE) while constrain-
ing the posterior exploration to binary phylogenies that
are compatible with the MLE phylogeny. Although this
method does not account for all phylogenetic uncertainty,
it does stochastically resolve multifurcating into bifurcat-
ing events. In du Plessis et al. (2021), the authors identi-
fied the eight largest transmission lineages (from the five
empirical posterior phylogenetic distributions) and com-
pared sequence frequencies over time across the eight lin-
eages and their geographic dispersion in order to under-
stand the different patterns of transmissions. Here, a trans-
mission lineage corresponds to a subtree whose inferred
origin occurred out of UK but with subsequent inferred
local transmission within the UK. The authors showed
that lineages introduced prior to their national lockdown
tended to be larger and more dispersed. Volz et al. (2021a)
first estimate the MLE phylogeny, then identify on the
MLE phylogeny several clades (clusters) of interest. Fi-
nally, phylodynamic analyses are conducted on each clus-
ter of samples independently.

3.2 Recent Advances

In the following, we review some computationally effi-
cient approaches for Bayesian phylogenetic inference, in-
cluding approximate MCMC, online algorithms, and par-
allel algorithms. While some of the described attempts are
promising, they are not yet readily applicable to the type
of questions researchers have tried to address in the pan-
demic. We expect to see many statistical developments in
this area in the years to come.

3.2.1 Sequential Monte Carlo. Sequential Monte
Carlo (SMC) methods (also called particle filters) are a set
of algorithms used to approximate posterior distributions;
See Chopin and Papaspiliopoulos (2020) for an introduc-
tion. SMC-based algorithms have been used to approxi-
mate the posterior of phylogenies and mutation parame-
ters through particle MCMC (Bouchard-Côté, Sankarara-
man and Jordan, 2012, Wang, Bouchard-Côté and Doucet,
2015).

Recently, Wang, Wang and Bouchard-Côté (2020) pro-
posed to approximate the joint posterior of phylogeny and
mutation parameters with a fully SMC approach based
on annealed importance sampling (Neal, 2001). Here, at
each iteration, the SMC algorithm maintains k phyloge-
netic trees and substitution parameters (particles) with
their corresponding weights. The k particles are updated
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according to traditional Markov chain moves, and accep-
tance probabilities are based on a likelihood raised to
a power (temperature) according to a fixed temperature
schedule. A great promise of SMC methods is the possi-
bility to be naturally extended to the online setting. We
discuss some proposals in the following subsection.

3.2.2 Online methods. During an outbreak or epi-
demic, sequencing data often come in sequentially. Redo-
ing the analysis whenever a new sequence becomes avail-
able is time-consuming. Thus, it is desirable to have an
online algorithm that can update the inference using new
sequences without having to start the analysis from the be-
ginning. Both Dinh, Darling and Iv (2018) and Fourment
et al. (2018), propose online SMC algorithms, which up-
dates the particles and weights when a new sample is
added. Again, these methods target phylogeny and mu-
tation parameters and requires further work in order to
incorporate the SMC approach in phylodynamics.

Gill et al. (2020) propose a distance-based method that
adds a new sample to the current sampled phylogeny in
the last iteration, simultaneously updating the phylogeny,
phylodynamic and evolutionary parameters. The Markov
chain is then resumed with the newly added sample. This
method is applicable to phylodynamic analysis and is im-
plemented in BEAST. Lemey et al. (2020) recently ap-
plied this method to update a previous analysis of SARS-
CoV-2 sequence data with newly acquired samples.

3.2.3 Variational Bayes (VB). VB (Jordan et al., 1999,
Hoffman et al., 2013, Blei, Kucukelbir and McAuliffe,
2017) is a popular alternative to MCMC methods for ap-
proximating posterior distributions. Given a class of para-
metric distributions, VB finds the distribution in the class
closest to the target posterior distribution in the sense of
Kullback–Leibler (KL) divergence. So the problem of ap-
proximating the posterior distribution is recast as an op-
timization problem, which tends to be faster than clas-
sic MCMC. The challenge of applying variational meth-
ods to phylogenetics is to choose a sufficiently flexi-
ble class of distributions for the tree topologies. Zhang
and Matsen IV (2019) introduce the variational distribu-
tion Qφ,ψ(T , q) = Qφ(T )Qψ(q | T ) for phylogenetics,
where Qφ is the distribution over tree topologies and Qψ

is the distribution over branch lengths. They take Qφ to
be the subsplit Bayesian network, which is defined as
the product of conditional probabilities at each internal
node (split) from the root to the leaves, and in such a
way that the transition probabilities only depend on the
parent-child pair, and not on the particular node in the
tree. The branch lengths distributions Qψ are chosen to
be independent log-normal distributions. The number of
parameters grows with the number of samples and it can
potentially be computationally expensive for large sam-
ple sizes. We note that both the SMC and VB methods

are only designed for inferring the phylogeny and muta-
tion parameters. It demands further work to apply them to
estimate the phylodynamic parameters like effective pop-
ulation size.

3.2.4 Divide-and-conquer. Divide-and-conquer
MCMC is an attractive strategy in which the full dataset
is partitioned into several subsets; each subposterior—
posterior given the subset—is then approximated by run-
ning independent MCMC chains, and the subposteriors
are then combined to estimate the full posterior (Huang
and Gelman, 2005, Neiswanger, Wang and Xing, 2013,
Srivastava et al., 2015). However, most of these algo-
rithms rely on the crucial assumption that the subsets
are mutually independent. This assumption is violated
because molecular sequences share ancestral history (or
transmission), modeled by the phylogeny.

4. TESTING IN PHYLODYNAMICS

In the previous section, we described a challenge re-
searchers face while inferring the phylogeny and phylo-
dynamic (coalescent or birth-death) parameters. Inference
of these parameters is commonly an intermediate step to
address other scientific questions.

In the current pandemic, we have witnessed a surge
of novel variants that have caused public health concern
(Volz et al., 2021b, Davies et al., 2021). A significant
focus of SARS-CoV-2 research has been the study of
whether specific mutations (variants) impact viral prop-
erties, such as transmissibility, virulence, and the ability
to increase disease severity. While it is often possible to
study cell infectivity in animal models and to study in
vitro whether a mutation is associated with changes in vi-
ral phenotypes, determining whether it leads to significant
differences in viral transmission or disease response relies
on observational data from both, the pathogens and the
hosts. These data often consist of molecular sequences,
epidemiological and clinical data. These types of statisti-
cal analyses are challenging because although an increase
in frequency is a signal of selective advantage, observed
increase can also be the product of many other factors
such as multiple introductions and human behaviors. In
this section, we restrict our attention to two types of anal-
yses designed to test whether there are significant dif-
ferences in transmissibility between a variant of concern
(VOC) and a non-VOC. The first type is solely based on
molecular data, and the second type utilizes molecular
data paired with phenotypic traits and clinical data.

4.1 Detecting Higher Transmissibility Relying Solely
on Molecular Data

4.1.1 Practices in analyzing SARS-CoV-2 data. A sim-
ple and popular strategy for estimating the growth rate of
the VOC and non-VOC populations consists of modeling
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the sampling times of sequences solely (ignoring molec-
ular data) (Volz et al., 2021a, 2021b, Davies et al., 2021,
Trucchi et al., 2021). This is commonly done through a
logistic growth model which assumes that after a phase of
initial growth, the growth rate decreases as the population
size approaches its maximum size. Data, in this case, con-
sists of counts of genomes belonging to the VOC and the
non-VOC over time, with counts binned into weeks. This
type of analysis simply models the proportion of VOC se-
quences over the total number of collected sequences over
time, rather than estimating the EPS.

Phylodynamic models have been applied to estimate
the effective population size (EPS) of several VOCs and
non-VOCs from molecular samples. It is assumed that the
non-VOC spread through the population and accumulated
variation before the VOC appeared in the population. If
the VOC confers higher transmissibility, its population
should increase at a faster rate than that of the non-VOC
in multiple locations around the world. Moreover, com-
parisons between the two growth rates should be based
on VOC and non-VOC samples sharing the same envi-
ronmental factors, such as public policies and temporal
seasons, to control for possible confounders.

Volz et al. (2021a) stress the need to observe repeated
independent introductions of each variant and follow their
trajectories. The authors analyzed molecular data col-
lected in the UK during the first six months of 2020 to
test whether the VOC (D614G substitution) had selective
advantages. The authors first obtained a global MLE phy-
logeny, together with inferred location of phylogenetic
branches, in order to identify UK clusters. Then, each UK
cluster was labeled VOC (sequences carrying 614G) and
non-VOC (sequences carrying 614D). These clusters in-
cluded one or a small number of introductions of the virus
in the UK. The authors then estimated EPS growth rates
for each cluster and compared the empirical distributions
of the point estimates of the clusters of VOC and non-
VOC growth rates and found no significant difference.

Other studies have also identified multiple introduc-
tions for estimating VOC growth rates. For example,
Davies et al. (2021) considered introductions across dif-
ferent countries. A challenge with this type of analyses
lies in the detection of independent introductions. It is un-
clear how ignoring phylogenetic uncertainty affects the
definition of introductions and estimation of EPS, and
whether introductions in different locations can be treated
as independent. Volz et al. (2021b) performed a phylody-
namic case-control study which consisted in selecting 100
random samples of 1000 sequences with the VOC (alpha
variant) paired with another 1000 non-VOC sequences.
Those sequences were matched by the week and the loca-
tion of the collection. The random samples were selected
with weights proportional to the number of reported cases

per week and local authority in the UK and hence, ex-
pected to be representative of the UK. The 200 phyloge-
nies were estimated via MLE, and 200 EPS trajectories
were inferred from each tree in order to obtain two boot-
strap distributions of VOC and non-VOC EPSs. In their
study, the comparison of the two EPS distributions sup-
ported an increase in the transmissibility of the VOC.

In the two phylodynamic studies discussed, the EPSs
are estimated independently for the two populations. We
argue that this approach might be suboptimal because the
two trajectories may be correlated. In addition, both meth-
ods assume piece-wise constant growth rates and report
averages across time, that is, the variation over time of the
growth rate and their uncertainty quantification are com-
pletely lost in the comparison between the two popula-
tions. In the next section, we discuss a simple hierarchical
model that jointly models the two lineages so that the dif-
ference in growth rates is easily interpretable.

4.1.2 A simple model to test for population growth.
Assume that we are provided with the two phylogenies
g0 and g1 of the non-VOC and the VOC, respectively. We
can model the two phylogenies as conditionally indepen-
dent given a shared baseline EPS denoted by Ne. More
specifically, we assume g0 is a realization of a CP with
parameter Ne and g1 is a realization of a CP with param-
eter αN

β
e . The model is parsimonious, describing the rel-

ative rate of growth of the non-VOC population to that of
the VOC-population with a single parameter β: β = 1 in-
dicates that the growth rate of the EPS in the two groups
is identical, β > 1 indicates that the growth in genetic di-
versity of the VOC is larger than the non-VOC. Note that
β can also take negative values. The parameter α > 0 is
a scaling parameter that allows to adjust for the fact that
VOC and non-VOC EPSs could have different absolute
sizes. However, it is not time-varying, so different values
of α are not informative for how the growth rate between
the two populations differ: for a fixed β , 0 < α < 1 indi-
cates that the VOC EPS is smaller than that of the non-
VOC, a value of α > 1 indicates the opposite.

This simple model is highly interpretable, with a sin-
gle parameter, β , quantifying the change in transmissibil-
ity of the VOC relative to the non-VOC. One can choose
the preferred prior on Ne, such as a Gaussian Markov
random field (GMRF) (Minin, Bloomquist and Suchard,
2008), a Gaussian process (Palacios and Minin, 2013),
and the Horseshoe Markov random field (Faulkner et al.,
2020). While we would like to approximate the posterior
distribution P(Ne,α,β | g0,g1), this is computationally
very demanding with traditional sampling-based methods
like MCMC. The integrated nested Laplace approxima-
tion (INLA) (Rue, Martino and Chopin, 2009) is a highly
competitive approximation available for latent Gaussian
models, allowing us to approximate the marginal poste-
rior distributions within seconds. The accuracy of this ap-
proximation in phylodynamics has been studied in Lan
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et al. (2015). We provide a publicly available implemen-
tation of the following model in phylodyn available in
https://github.com/JuliaPalacios/phylodyn:

(3)

g0 | Ne,y0 ∼ Coalescent with EPS Ne,

g1 | Ne,α,β,y1 ∼ Coalescent with EPS αNβ
e ,

logNe|τ ∼ GMRF ,

τ |a0, b0 ∼ Gamma(a0, b0),

logα | σ 2
0 ∼ N

(
0, σ 2

0
)
,

β | σ 2
1 ∼ N

(
0, σ 2

1
)
.

For parsimony, we are ignoring the discretization of
logNe. Model (3) enforces a strict parametric relationship
between the two EPSs. While this may be too restrictive,
we argue that it is a reasonable price to pay for the sake of
interpretability and parsimony. We illustrate the method-
ology by applying the model to SARS-CoV-2 sequences
collected in Washington state at the beginning of the epi-
demic.

Application to SARS-CoV-2 sequences in Washington
state. We randomly selected 100 sequences with the D
codon (non-VOC) and 100 sequences with the G codon
(VOV) in position 614, from the 4356 publicly avail-
able sequences in GISAID (Shu and McCauley, 2017)
collected in Washington state between January 1, 2020
and June 30, 2020. We analyzed the two samples inde-
pendently and obtained the two phylogenies (Figure 3)
by summarizing the two corresponding posterior distri-
butions obtained with BEAST2 (Bouckaert et al., 2019).
Details of model and MCMC parameters are located in
the Appendix.

FIG. 3. Phylogenies of the G and D variants inferred in Washington
state. Phylogenies are the maximum clade credibility trees obtained
from posterior distributions estimated with BEAST (Appendix). Each
tree is generated from 100 sequences chosen at random among those
collected in Washington state between January 1, 2020 to June 30,
2020. The left tree includes sequences with G in the codon position 614
of the viral spike protein. The right tree includes sequences with D in
the codon position 614. By 2021, the G type dominated the pandemic.

FIG. 4. Effective population sizes of D and G variants in Washing-

ton State. Panels (A–B) depicts posterior mean of Ne and αN
β
e , the

effective population size trajectories of the D and the G variants re-
spectively. Shaded areas represent 95% BCIs. Panel (C) depicts esti-
mated posterior distribution of logα and panel (D) depicts estimated
posterior distribution of β . Red lines indicate the values of logα and
β under the hypothesis that both variants share the same effective pop-
ulation size trajectory.

Panels (A–B) of Figure 4 depict the posterior medi-
ans (solid lines) and 95% BCIs of Ne (shaded areas) ob-
tained by fitting model (3). Panel (C) depicts the estimated
posterior distribution of α and panel (D) depicts the es-
timated posterior distribution of β . We note that INLA
provides approximation to marginal posteriors of logα

and β but not jointly. In the random subsample consid-
ered, sequences with the D variant generally have ear-
lier collection dates than sequences with the G variant.
This is consistent with the general observation that the
G variant progressively replaced the D variant (Hadfield
et al., 2018). The main parameter of interest is β . The
posterior distribution has mean 2.08 and 95% credible re-
gion (1.35,2.97). It is well above 1, suggesting that EPS
growth is more pronounced among sequences having the
G variant. The impact of β ≈ 2 is evident in the first
two panels of Figure 4, where the EPS of G grows at a
higher rate than that of the control group. The posterior
median of α is 2.46, with 95% Bayesian credible region
(1.12,13.35). As mentioned above, this does not indicate
difference in growth rate, but a vertical shift of the base-
line EPS.

A benefit of the model described here is the flexible
nonparametric prior placed on Ne. Panels (A–B) of Fig-
ure 4 suggest that parametric models would not reason-
ably approximate the trajectory: for this dataset, our es-
timates indicate that Ne fluctuates in the period consid-
ered. The goal of the analysis is inferring the parameter
β . Hence, we argue that the best possible fit in modeling
Ne is necessary. A future development includes the infer-

https://github.com/JuliaPalacios/phylodyn
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ence of the proposed model parameters from molecular
data directly.

4.2 Combining Molecular Sequence Data and Other
Types of Data

We now examine the situation when viral molecular
data are matched with host clinical data and we are in-
terested in testing an association between clinical traits
such as disease severity and transmission history. For ex-
ample, does the variant of concern affect disease severity?
We first describe some current practices in testing for such
associations.

4.2.1 Practices in analyzing SARS-CoV-2 data. If one
is studying a VOC, the variant naturally partitions the
hosts into two groups: individuals carrying the VOC and
those carrying the non-VOC. Here, one can resort to
standard statistical tests for detecting changes in mean
or distribution (Volz et al., 2021a, Volz et al., 2021b,
Davies et al., 2021, Leung et al., 2021). For example, Volz
et al. (2021a) study the mutation in codon position 614 (D
and G mutations) and analyze the difference in several re-
sponse variables such as disease severity and age using a
Mann-Whitney U-test. One related approach that tests for
overall correlation between phenotypes and shared ances-
try (transmission structure) that accounts for phylogenetic
uncertainty is the BaTS test (Parker, Rambaut and Pybus,
2008). This method relies on simple statistics such as the
parsimony score (Fitch, 1971) and the association index
(Wang et al., 2001). In particular, the parsimony score
is the minimum number of trait value changes at inter-
nal nodes needed to be consistent with observed traits at
the tips. A strong trait-phylogeny association would im-
ply small number of changes. The parsimony score is then
calculated for every tree in the posterior distribution and
its posterior distribution reported. The association index
is calculated as a weighted average frequency of the least
common trait across all internal nodes in the phylogeny,
with low values indicating strong phylogeny-trait associ-
ation.

However, the situation is more challenging when the
candidate VOC has not yet been identified. For example,
Zhang et al. (2020) estimated a phylogeny and used it to
identify two major clades, the authors then characterized
these two clades, that is, they identified which mutations
differentiate them, and tested for association with clinical
data. Here the choice of which clades to pick and compare
is somewhat arbitrary.

4.2.2 Recent advances. Behr et al. (2020) recently pro-
posed treeSeg, a method for testing multiple hypothe-
ses of association between a response variable and the
phylogeny tree structure. A key feature in treeSeg is to
formulate the testing problem as a multiscale change-
point problem along the hierarchy defined by a given phy-

logeny. The test statistic is based on a sequence of likeli-
hood ratio values, and the change-point detection method-
ology is based on the SMUCE estimator (Frick, Munk
and Sieling, 2014). This method was recently applied to
test an association between the inferred phylogeny from
SARS-CoV-2 sequences collected in Santa Clara County,
California in 2020, and disease severity (Parikh et al.,
2021). The authors did not find any significant associa-
tion.

One statistical challenge in applying treeSeg to phylo-
dynamics is that it ignores uncertainty in the tree estima-
tion. If a subtree is found to have an association to the
response, we can assess uncertainty in the subtree forma-
tion (independent of treeSeg analysis) by an estimate of
the subtree posterior probability or the subtree bootstrap
support (Efron, Halloran and Holmes, 1996). A more in-
tegral approach is an open problem.

Another situation arises when we are interested in as-
sessing phenotypic correlations among traits (Felsenstein,
1985, Grafen, 1989, Pagel, 1994). Here, multiple traits
are modeled as stochastic processes evolving along the
branches of the phylogeny; for example, as Markov
chains (Pagel, 1994), or as multivariate Brownian mo-
tion (Felsenstein, 1985, Huelsenbeck and Rannala, 2003,
Felsenstein, 2005, Felsenstein, 2012, Cybis et al., 2015).
Despite their relevance in understanding viral evolution
and drug development, computation is the main limita-
tion preventing the widespread use of this methods’ class.
Zhang et al. (2021) is a recent attempt to make infer-
ence more scalable. They introduce an algorithm based
on recent advances in the MCMC literature (the Bouncy
particle sampler (Bouchard-Côté, Vollmer and Doucet,
2018a)). However, the implementation of the methodol-
ogy seems quite involved preventing broader applicabil-
ity.

5. PHYLODYNAMIC INFERENCE OF
EPIDEMIOLOGICAL PARAMETERS

Epidemiological parameters are often estimated from
case count time series; these estimates, however, can be
biased due to delays and errors in reporting. Sequence
data provide complementary information that can be used
for estimating critical epidemiological parameters within
a phylodynamic framework. Formal model integration of
the CP and epidemiological compartmental models estab-
lishes a link between the EPS of pathogens and the under-
lying number of infected individuals. Equivalently, in the
forward-in-time BDSP model, parameters such as the rate
of transmission and effective reproduction number can be
directly inferred from molecular data.

5.1 Phylodynamic Inference Relying Solely on
Molecular Data
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5.1.1 Phylodynamic inference with CP–EPI. While a
linear relationship between the viral EPS and the dis-
ease prevalence exists at endemic equilibrium, such sim-
ple correspondence is not valid in general (Koelle and
Rasmussen, 2012). The CP–EPI provides a probability
model of a phylogeny in terms of epidemiological param-
eters by linking the EPS trajectories to a mechanistic epi-
demic model (Volz et al., 2009). The infectious disease
population dynamics can be modeled as a CTMC whose
state space is the vector of occupancies in compartments
corresponding to disease states. However, the transition
probability becomes intractable even for the simplest SIR
model (Tang et al., 2019). One way to mitigate the com-
putational issue is to deterministically model the disease
dynamics (Kermack, McKendrick and Walker, 1927); we
term such model as a deterministic CP–EPI.

Volz et al. (2009) developed a theoretical basis for the
deterministic CP–EPI. In the particular case of SIR dy-
namics, the population is divided into compartments. At
time t , the state is {S(t), I (t),R(t)}, of susceptible, in-
fected and recovered individuals respectively. In this con-
text, the phylogeny represents the ancestry of a sample
of infected individuals in the population. Let A(t) denote
the number of lineages ancestral to the sample in the phy-
logeny at time t . The probability that a transmission event
at time t corresponds to a transmission event ancestral to
the sample is

(A(t)
2

)
/
(I (t)

2

)
, since out of all

(I (t)
2

)
infected

pairs, only
(A(t)

2

)
pairs occur within the ancestors of the

sample. Denoting the total number of new infections at
time t by f (t), the rate of coalescence is

(4) λA(t) = f (t)

(A(t)
2

)
(I (t)

2

) ≈
(
A(t)

2

)
2f (t)

I 2(t)
.

Assuming a per capita transmission rate β(t), f (t) =
β(t)S(t)I (t) is the number of transmissions per unit time
(the incidence of infection). The population dynamics of
compartments, {S(t), I (t),R(t)}, is governed by an ini-
tial state and a system of ordinary differential equations.
Recall that λA(t) = (A(t)

2

)
/Ne(t) is the coalescence rate in

the standard CP, we then get at time t

(5) Ne(t) = I 2(t)

2f (t)
= I (t)

2β(t)S(t)
.

The initial CP–EPI model has been extended to incor-
porate serial sampling, population structure, time- and
state-dependent rate parameters, and a large class of epi-
demic processes (Volz, 2012, Volz and Siveroni, 2018).
In Volz and Siveroni (2018), the authors assumed that
recovery rate and number of susceptible individuals are
known; the transmission rate is modeled as a straight line
with normal prior on the slope parameter and lognormal
prior on the intercept parameter. Inference is performed
via MCMC in BEAST2 (Bouckaert et al., 2019). We note

that in the SIR models, not all parameters are identifiable.
We usually need to assume known values of some param-
eters and very informative priors (See Louca et al., 2021
for further details).

The deterministic CP–EPI has provided a computation-
ally efficient framework for studying the evolution and
pathogenesis of SARS-CoV-2 via estimating R0(t) at the
beginning of the pandemic (Volz et al., 2020, Geidelberg
et al., 2021), fine-scale spatiotemporal community-level
transmission rate variation (Moreno et al., 2020), and the
effects of control measures on epidemic spread (Miller
et al., 2020, Ragonnet-Cronin et al., 2021).

So far, we have ignored within-host evolution, that is,
we have assumed that pathogen diversity within a host is
negligible. It can be shown that Equation (4) is a limit-
ing case of a more general model (Dearlove and Wilson,
2013, Volz, Romero-Severson and Leitner, 2017), which
relaxes many assumptions from the previous derivation,
such as negligible evolution within host. In the metapop-
ulation CP–EPI, which is based on the metapopulation CP
(Wakeley and Aliacar, 2001), each deme corresponds to a
single infected host and can be reinfected more than once.
Within each host, there is a nonnegligible pathogen pop-
ulation size, and the within-host coalescence does not oc-
cur immediately following an infection. Further, during
an inter-host transmission, nonnegligible genetic diversity
can be transmitted across hosts. Due to its complexity, the
current metapopulation CP–EPI model assumes constant
rate parameters and deterministic disease dynamics.

As empirical evidence of reinfection and of the effects
of within-host diversity on patient disease severity and
transmissibility mounts for SARS-CoV-2 (Tillett et al.,
2021, Al Khatib et al., 2020, San et al., 2021), it is becom-
ing apparent that developing computationally tractable
methods that incorporate both time-varying parameters
and stochasticity into the metapopulation CP–EPI frame-
work is an important future direction in the field.

While the deterministic CP–EPI is computationally ef-
ficient, epidemiological dynamics are inherently stochas-
tic, with both demographic and environmental stochastic-
ity playing important roles in disease dynamics. The de-
terministic epidemic model can lead to overconfident es-
timations when the disease prevalence is low or the pop-
ulation size is small, or when fitting models to long-term
data, as the effects of stochasticity accumulate over time
(Popinga et al., 2015). The CP–EPI with the stochastic
epidemic model, which we term as the stochastic CP–
EPI, is better suited for addressing important epidemio-
logical questions, such as the early-stage behavior of an
epidemic, the outbreak size distribution, and the extinc-
tion probability and expected duration of the epidemic,
while accounting for the uncertainties in the estimations
(Britton, 2010). We fitted the stochastic CP–EPI model
with SIR dynamics to the same data from California used
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FIG. 5. The stochastic CP–EPI analysis of SARS-CoV-2 sequences
in California in 2020. The stochastic CP–EPI implementation of Tang
et al. (2019) was used to infer the effective population size Ne (A) and
the basic reproduction number R0 (B) from the same molecular se-
quences of California of Figure 1(B). Posterior medians are indicated
by bold lines and 95% credible regions by shaded areas.

to generate Figure 1(B). We used the implementation of
Tang et al. (2019) to infer Ne and R0 depicted in Figure 5.
Details can be found in the Appendix.

5.1.2 Phylodynamic inference with BDSP. The BDSP
(Stadler et al., 2013) introduced in Section 2.2 has been
extended to incorporate population structure (Kühnert
et al., 2016) and it has been applied for inferring Re(t)

early in the SARS-CoV-2 pandemic in Europe (Nadeau
et al., 2021, Hodcroft et al., 2021). The BDSP, however,
requires specification of the sampling probabilities, and
its misspecification results in biased estimates, as demon-
strated in inferring R0 from the SARS-CoV-2 data in the
northwest USA (Featherstone et al., 2021). This is be-
cause, in the BDSP, sampling times provide information
about the whole population dynamics (Volz and Frost,
2014).

An important distinction between BDSP models and
the CP–EPI models is that the BDSP model is parameter-
ized in terms of birth, death, and sampling rates, however
it does not directly model the number of infected individ-
uals and the number of recovered individuals over time.
The CP–EPI, instead, directly models the number of in-
dividuals in each compartment, together with birth and
death rates. We note that the BDSP has been extended to
infer the prevalence trajectory from molecular sequences
and case count data (Section 5.2.2).

5.2 Phylodynamic Inference Relying on Molecular
Data and Disease Count Data

When fitting mechanistic population dynamic models,
integrating multiple sources of information, particularly
time series surveillance data, with molecular sequence
data, can improve phylodynamic inference of epidemic
model parameters. This subsection describes extensions
of CP–EPI and BDSP to incorporate both data sources.

5.2.1 Phylodynamic inference with CP–EPI. Rasmus-
sen, Ratmann and Koelle (2011) employed PMCMC for
Bayesian inference under the stochastic CP–EPI, from

both a fixed phylogeny and time series incidence data. In
their implementation, they allow the transmission and re-
covery rates to vary in time. Unfortunately, inference is
computationally expensive due to the high-dimensional
parameter space. Other extensions to this framework in-
clude incorporation of overdispersion in secondary infec-
tions (Li, Grassly and Fraser, 2017). Recently, Tang et al.
(2019) proposed to bypass PMCMC and used a linear
noise approximation. The authors approximated the SIR
transition density with a Gaussian density and developed
an MCMC algorithm for this approximate inference.

Current implementations of the stochastic CP–EPI have
a few limitations, many of which stem from computa-
tional cost. This reduces their utility in SARS-CoV-2
analyses. First, most methods have adopted an epidemic
model with one infection compartment and ignore further
population structure, such as spatial distribution and age.
Second, statistical dependency between sampling times
and latent prevalence is ignored. If the sampling process
is known, we could incorporate sampling model directly
as in the preferential sampling (Karcher et al., 2016), for
improving parameter estimation; see Section 6. Finally,
to fully account for phylogenetic uncertainty, a compu-
tationally efficient method for directly fitting stochastic
epidemic models to genetic sequences will be needed.

5.2.2 Phylodynamic inference with birth-death pro-
cesses. There have been a few recent developments in
joint modeling of molecular data and case count records
under the birth-death population dynamics. Recently,
Gupta et al. (2020) extended the BDSP model (Stadler,
2010) to include case count data. The authors derive the
density of the phylogeny jointly with case count data in
terms of the BDSP rates. This work was later extended
to model prevalence (Manceau et al., 2021); building on
Gupta et al. (2020), the authors derived the density of
the prevalence trajectory conditioned on the phylogeny
and case count data. Finally, Andréoletti et al. (2020) ex-
tended this work to allow for piecewise constant rates and
used it to estimate Re and prevalence of the SARS-CoV-
2 Diamond Princess epidemic that occurred in Jan–Feb
2020.

Vaughan et al. (2019) recently proposed a method that
differs from the BDSP discussed in the previous para-
graph. The authors propose to estimate the posterior dis-
tribution of the full epidemic trajectory, together with
the phylogeny and model parameters from molecular se-
quence data and count data. Here, the authors express the
density of the phylogeny jointly with case counts, con-
ditionally on the full epidemic trajectory that consists of
the sequence of events (infection, sampling and recovery)
and their corresponding event times. The posterior distri-
bution is estimated with PMCMC.
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5.3 Phylodynamic Inference with Approximate
Bayesian Computation and Deep Learning

As SARS-CoV-2 continues to spread, the virus is sub-
ject to strong host and anthropogenic selective pressures
as has already been exemplified by the emergence of
the new variants exhibiting adaptive antigenic evolu-
tion (Zhou et al., 2021, Lopez Bernal et al., 2021). As
discussed in Section 3, however, the likelihood-based
Bayesian computation methods are computationally ex-
pensive, prohibiting the application of more complex and
realistic phylodynamic models such as those involving
structured populations, natural selection and recombina-
tion. To overcome this obstacle, likelihood-free rejec-
tion sampling methods based on approximate Bayesian
computation (ABC) (Beaumont, Zhang and Balding,
2002) have been developed for phylodynamic studies.
The phylodynamic ABC methods (Ratmann et al., 2012,
Poon, 2015, Saulnier, Gascuel and Alizon, 2017) first
simulate a large number of phylogenies under complex
epidemiological models with different parameter values,
then quantify the discrepancy between simulated and “ob-
served” phylogenies and accept the ones close to the
target to construct an approximate posterior distribution
of the model parameters. Here, the “true” phylogeny is
unknown and an estimated phylogeny from sequence
data is used as the “observed” phylogeny. The phyloge-
netic dissimilarity measure can be either a function of
summary statistics (Saulnier, Gascuel and Alizon, 2017),
where each extracts a specific feature of the phylogeny,
or a metric defined directly on the space of phylogenies
(Robinson and Foulds, 1981, Billera, Holmes and Vogt-
mann, 2001, Colijn and Plazzotta, 2017, Kim, Rosen-
berg and Palacios, 2020). To improve computational ef-
ficiency, Ratmann et al. (2012) and Poon (2015) used
ABC-MCMC (Marjoram et al., 2003), while Saulnier,
Gascuel and Alizon (2017) employed regression-based
ABC (Blum and François, 2010).

The ABC-based methods, however, are known to be
sensitive to the choice of summary statistics, similar-
ity measures, and match tolerance (Lintusaari et al.,
2016). As an alternative, Voznica et al. (2021) proposed
a rejection-free approach for estimating epidemiological
parameters and for model selection based on deep learn-
ing: feed-forward neural network (FFNN) with a large set
of summary statistics that were curated for phylodynamic
regression-ABC (Saulnier, Gascuel and Alizon, 2017) and
convolutional neural network (CNN). A key component in
their method is their proposed bijective encoding of (un-
labeled) phylogenetic trees as vectors, amenable to stan-
dard deep learning methods. As the framework assumes a
known phylogeny as an input, phylogenetic uncertainties
are not accounted for. While the computational burden
lies in simulating the training data and training the net-
work, once trained, the parameter estimation is very effi-
cient without having to retrain the model with new data.

They show comparable accuracy under the basic BDSP
model and better accuracy under more complex models,
which incorporate factors such as superspreader events,
when compared to the current popular likelihood-based
methods. As the number of SARS-CoV-2 sequences grow
exponentially and its disease dynamics varies across re-
gions, the deep learning framework can offer a fast alter-
native for monitoring the epidemic.

6. PREFERENTIAL SAMPLING

In the standard CP, the temporal sampling process of
sequences is assumed to be fixed and uninformative of
model parameters. However, the sampling process that
determines when sequences are collected can depend on
model parameters such as the EPS in some situations.
In spatial statistics, preferential sampling arises when the
process that determines the data locations and the pro-
cess under study are stochastically dependent (Diggle,
Menezes and Su, 2010). In coalescent-based inference,
this can be incorporated by modeling the sampling pro-
cess as an inhomogeneous Poisson process (iPP) with a
rate λ := (λ(t))t≥0 that depends on Ne. If the model is
correct, the sampling times can provide additional infor-
mation about the EPS Ne. The statistical challenge is that
when the model is misspecified, incorrectly accounting
for preferential sampling can bias the estimation of the
EPS. The same situation occurs in the BDSP in which
the sampling process depends on the death rate (Stadler,
2010, Volz and Frost, 2014, Cappello and Palacios, 2021).

6.0.1 Recent advances. Table 1 lists different mod-
els and implementations that account for preferential
sampling in phylodynamics. Among the parametric ap-
proaches, Volz and Frost (2014) model the EPS Ne as
an exponentially growing function and λ is linearly de-
pendent on the EPS. Karcher et al. (2016) assume that
Ne is a continuous function modeled nonparametrically
with Gaussian process priors, and at any time point t

λ(t) = exp(β0)Ne(t)
β1 , for β0, β1 ≥ 0, that is, the de-

pendence between the sampling process and the effective
sample size is described by a parametric model. While
this model is computationally appealing, the strict para-
metric relationship between the sampling and coalescent
rates can induce a bias if the sampling model is misspeci-
fied (see simulations in Cappello and Palacios, 2021).

Parag, du Plessis and Pybus (2020) propose an esti-
mator called Epoch skyline plot, that allows the depen-
dence between the rate of the sampling process and Ne to
vary over time. In Parag, du Plessis and Pybus (2020),
λ is a linear function of Ne within a given time inter-
val, but the linear coefficient changes across time inter-
vals. This framework allows practitioners to incorporate
heterogeneity in the sampling design over time. Cappello
and Palacios (2021) extends this approach, modeling both
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TABLE 1
Implementations of phylodynamic methods and their applications to SARS-CoV-2 studies (where available). The details of methods are discussed

in relevant sections, and their software availability can be found at Table 1 in the Supplementary Material (Cappello et al., 2022)

Method Implementation Author COVID Application Section

SMC annealedSMC Wang, Wang and Bouchard-Côté (2020) 3
Online Bayesian BEAST 1.10 Gill et al. (2020) Lemey et al. (2021);

phylodynamics Thornlow et al. (2021)
Variational bito Zhang and Matsen IV (2019)

BDSP BDSKY Stadler (2010); Stadler et al. (2013 ) Seemann et al. (2020); 5, 6

in BEAST2 Featherstone et al. (2021); 5
Hodcroft et al. (2021)

Structured BDSP bdmm Kühnert et al. (2016); Nadeau et al. (2021)
in BEAST2 Barido-Sottani, Vaughan

and Stadler (2020)
Coalescent PhyDyn Volz and Siveroni (2018) Miller et al. (2020);

in BEAST2 Geidelberg et al. (2021);
Ragonnet-Cronin et al. (2021);
Volz et al. (2021a)

Coalescent LNAphyloDyn Tang et al. (2019)
Parametric Ne and λ NA Volz and Frost (2014)

Nonparametric Ne and phylodyn in R Karcher et al. (2016) Cappello and Palacios (2021) 6

λ = exp(β0)N
β1
e

Epoch Skyline plot BESP in BEAST2 Parag, du Plessis and Pybus (2020)
(Nonparametric Ne and λ)

AdaPref adaPref in R Cappello and Palacios (2021) Cappello and Palacios (2021)
(Nonparametric Ne and λ = βNe)

Nonparametric Ne and BEAST Karcher et al. (2020)

λ = exp(β0)N
β1
e + (β ′X(t))t≥0

Ne and λ nonparametrically, employing Markov random
field priors on both Ne and a time-varying coefficient
β := (β(t))t≥0. Here, the dependence between the two
processes is modeled through λ(t) = β(t)Ne(t) for all
t ≥ 0. Cappello and Palacios (2021) show through sim-
ulations that the more flexible dependence between the
sampling and the coalescent processes the less the risk of
biasing the Ne estimate because of model misspecifica-
tion while still retaining the advantages of the paramet-
ric approaches (narrower credible regions). Karcher et al.
(2020) assume that λ(t) = exp(β0)N

β1
e +β ′X(t) for t ≥ 0,

where X is a vector of covariates and β ′ the correspond-
ing linear coefficients. Here, a covariate can be a dummy
variable indicating the implementation of lockdown mea-
sures. The covariate-dependent preferential sampling re-
quires the availability of information related to the sam-
pling design. Finally, the methodologies of Karcher et al.
(2016) and Cappello and Palacios (2021) rely on a known
phylogeny, while Stadler (2010), Parag, du Plessis and
Pybus (2020), and Karcher et al. (2020) account for un-
certainty in the phylogeny.

Application to SARS-CoV-2 sequences in Washington
state. We continue the analysis of the Washington molec-
ular sequences introduced in Section 4.1.2. We infer the

EPS of the two groups (sequences with 614G and se-
quences with 614D) from the phylogenies inferred with
BEAST2 and plotted in Figure 2. We compare three
different models: one that ignores preferential sampling
(Palacios and Minin, 2012), the parametric preferential
sampling model of Karcher et al. (2016), and the adaptive
preferential sampling of Cappello and Palacios (2021).
All three models share a GMRF prior on Ne.

Figure 6 depicts the EPS posterior distributions ob-
tained with the three methods applied to the two genealo-
gies. At the bottom of each panel, heat maps represent
the sampling times (intensity of the black color is propor-
tional to the number of samples collected). The estimates
of the two models accounting for preferential sampling
are pretty similar, while not modeling the sampling pro-
cess leads to a slightly different population size trajectory.

As expected, including a sampling process reduces the
credible region width: the mean width of the 95% credible
region is much wider for the model that ignores prefer-
ential sampling in the sequences with 614G with respect
to any of the models accounting for preferential sampling
(approximately 6 times large in the first two, and 3.5 times
in the second row).

Under the preferential sampling assumption, the more
sequences are collected, the higher the EPS is. The effect
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FIG. 6. Ne estimated from SARS-CoV-2 phylogenies of sequences
from Washington state. The first row (panels (A)-(C)) depicts EPS of
the G type in codon position 614 and the second row (panels (D)-(E))
depicts EPS of the D type in codon position 614. The first column es-
timates are obtained with model of Palacios and Minin (2012) that
ignores preferential sampling, the second column with the model of
Karcher et al. (2016) that parametrically models preferential sampling,
and the third column models with the adaptive preferential sampling
model of Cappello and Palacios (2021). In each panel, black lines de-
pict posterior medians and the gray areas the 95% credible regions
of Ne . Sampling times are depicted by the heat maps at the bottom of
each panel: the squares along the time axis depict the sampling time,
while the intensity of the black color depicts the number of samples.

is evident in Figure 6. For example, in the month of June,
we see that the EPS grows both for the sequences with
614G and 614D if we ignore sampling information. If we
account for preferential sampling, the EPS of sequences
with 614G “dips” because no sequences in the last week
were part of our dataset.

This application offers a cautionary tale on this class of
models. Modeling the sampling process not only reduces
the credible region width, it can also affect the estimates
heavily. This behavior signals that ignoring the sampling
process leads to a bias if the preferential model is cor-
rectly specified. The opposite is also true: we could be
biasing our estimates if the sampling model is incorrect
by including sampling times information.

7. DISCUSSION

Statistical methods in molecular epidemiology offer
powerful tools to help us understand and monitor a pan-
demic as it unfolds. Our paper has outlined some of
the statistical models used for tracking SARS-CoV-2 and
identified a few areas where state-of-the-art phylody-
namic approaches fell short of delivering their full poten-
tial.

The lack of scalable inference methods that can analyze
the unprecedented amount of molecular sequences avail-
able is a common theme among all SARS-CoV-2 analyses

FIG. 7. MDS plot of phylogenetic posterior distributions from
Canada, Sweden, and UK. Each dot represents a phylogeny from one of
the nine posterior distributions (three distributions per country). Each
posterior (cluster of phylogenies) is estimated from 100 samples ran-
domly chosen from November 2020 to February 2021. Metric on tree
spaces given by Kim, Rosenberg and Palacios (2020). The triangles
indicate the medoids of each distribution and the shaded regions cor-
responds to 50% credible convex hulls around the medoids.

discussed here. Popular strategies include subsampling,
inferring a fixed phylogeny and using a fixed phylogeny
for partitioning the data. It is generally missing how sta-
ble the results are to these choices. We chose to evaluate
the stability of phylogenetic posterior from subsampling.

Rajanala and Palacios (2021) proposed a visual inspec-
tion of several phylogenetic posteriors obtained from dif-
ferent samples, to investigate phylogenetic stability. If the
distributions overlap, then there is indication of phyloge-
netic stability. We followed the proposed methodology
to investigate the stability of the phylogenetic posteri-
ors of SARS-CoV-2 obtained from Canada, Sweden and
the UK. We took three samples, each containing 100 se-
quences chosen at random from each country available in
GISAID, from November 1, 2020 to February 1, 2021.
The nine posterior distributions are projected in two di-
mensions and depicted in the MDS plot of Figure 7. Here,
Sweden is the only country that shows phylogenetic sta-
bility. We recommend performing stability analyses when
choosing a small subset of samples.

We centered our scalability discussion on Bayesian al-
gorithms that either aim to replace MCMC by sequen-
tial Monte Carlo or variational inference, or to poten-
tially improve the convergence of MCMC. We focused
on approaches that have already found an application in
phylodynamics (or closely related fields like phyloge-
netics). Although in principle these methods can be ex-
tended to infer phylodynamic parameters such as EPS,
it is not clear how much efficiency can be gained with
these methods in comparison to current implementations
that rely on Metropolis-Hastings steps. Bayesian compu-
tational statistics for large data sets is a very active area of
research. New approaches, such as nonreversible MCMC
schemes (Bierkens, 2016, Bouchard-Côté, Vollmer and
Doucet, 2018b), are appealing, but to our knowledge,
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have not yet found an application in this field. Other ap-
proaches include the online strategy, which updates of
the posterior distribution as sequences become available
sequentially, as well as the divide-and-conquer strategy,
which divides the data into smaller subsets. We anticipate
several advancements in this area in the future.

Apart from Bayesian computation, an important di-
rection for improving scalability includes more efficient
phylogenetic modeling. As the number of samples in-
creases, the probability of observing sequences with iden-
tical genotypes also increases. Phylogenies with permuted
labels of samples with identical genotypes have equal
likelihood. States of the CP can then be lumped together
in a situation like this. These lower resolutions of the
coalescent have smaller cardinality and can potentially
be more efficient (Sainudiin, Stadler and Véber, 2015,
Palacios et al., 2019, Cappello, Veber and Palacios, 2020).

Another common theme has been a trade-off between
interpretability of model parameters and model complex-
ity. In order to make the CP and the BDSP amenable to
infer relevant quantities such as prevelance, one needs
to both impose more modeling assumptions and incorpo-
rate more data. Recall that under complex epidemiologi-
cal models, the model becomes unidentifiable unless we
pre-specify some of the parameter values or incorporate
independent sources of information. However, incorporat-
ing other sources of information and their corresponding
sampling models can also create biases when the mod-
els are misspecified. We envision future research that in-
corporates robust models against model misspecification
such as the adaptive preferential sampling. As it is com-
mon in many other areas of science, the strive for a bal-
ance between realism on one side, and simplicity and in-
terpretability on the other, is going to be an essential focus
of future work.

Our discussion has omitted other phylodynamic models
that have been used to track the evolution of the pandemic
such as phylogeography models (Lemey et al., 2020),
structured coalescent models (Müller, Rasmussen and
Stadler, 2017), coalescent with recombination (Müller,
Kistler and Bedford, 2022) and models of within-host-
evolution (Jones et al., 2018). We have also omitted model
selection from our discussion and refer the reader to
Lewis et al. (2014). We do not discuss other data-quality
associated statistical challenges such as sequencing errors
(Turakhia et al., 2020, Morel et al., 2021) and underre-
porting of case count data (Wu et al., 2020).

APPENDIX A: DATA ANALYSES

A.1 Phylodynamic Analysis in California

Case counts for Figure 1 panel (A) were obtained
from the New York Times repository (https://github.
com/nytimes/covid-19-data). Molecular sequences for

Figure 1 panel (B) were obtained from the GISAID
repository (accession codes of the sequences used can
be retrieved at https://github.com/JuliaPalacios/phylodyn/
blob/master/data/California_statscience_ack.txt).

Given the molecular sequences, a viral phylogeny was
obtained from a genetic distance-based method called se-
rial UPGMA (Drummond and Rodrigo, 2000). Condition-
ally on the viral phylogeny, the EPS posterior was in-
ferred with a Bayesian nonparametric method described
in Palacios and Minin (2012). The posterior approxima-
tion is based on INLA.

The posterior EPS (Figure 5) was also inferred with
Tang et al. (2019) by fitting the stochastic CP–EPI
model assuming SIR dynamics to the fixed genealogy.
The model assumed a fixed known total population size
Npop = S(t) + I (t) + R(t), a constant removal rate γ ,
and a time-varying infection rate β(t), which is then
reparametrized with a time-varying basic reproduction
number R0(t) = [β(t)Npop]/γ . We used Npop = 39.5 ×
106 based on the California census population size in
2020 and a log-normal prior with parameters (3.6,0.2) in
years based on the recovery period of 7-14 days. We ran
the MCMC algorithm of Tang et al. (2019) for 100,000
iterations, with 10% of burn-in, and thinned to obtain a
total of 1,000 samples.

A.2 Analysis of SARS-CoV-2 Sequences from
Washington State

The two sets of 100 molecular sequences were ana-
lyzed independently with BEAST2 with the same model
and MCMC parameters. We ran the chains for 20 × 106

iterations, thinning every 1000 and with a burnin of
10 × 106 iterations. We placed the Extended Bayesian
Skyline prior on Ne(t) (Heled and Drummond, 2008),
the HKY mutation model with empirically estimated
base frequencies (Hasegawa, Kishino and Yano, 1985),
and the mutation rate fixed to 9 × 10−4 substitutions
per site per year. The two phylogenies obtained are
the maximum clade credibility trees of the posterior
distributions obtained with TreeAnnotator (Bouckaert
et al., 2019). Accession codes of the sequences can
be retrieved at https://github.com/JuliaPalacios/phylodyn/
blob/master/data/Washington_statscience_ack.txt. Details
on the analyses done are included in the main text.

A.3 MDS Analysis

Molecular sequences used to generate Figure 7 were
obtained from GISAID. We analyzed 9 samples of 100
sequences (3 samples of 100 sequences per country) inde-
pendently with BEAST2 (Bouckaert et al., 2019) with the
same model and MCMC parameters. We ran the chains
for 50 × 106 iterations. We placed the Bayesian Skyline
prior on Ne(t), the HKY mutation model, and the mu-
tation rate fixed to 9 × 10−4 substitutions per site per

 https://github.com/nytimes/covid-19-data
https://github.com/JuliaPalacios/phylodyn/blob/master/data/California_statscience_ack.txt
https://github.com/JuliaPalacios/phylodyn/blob/master/data/Washington_statscience_ack.txt
 https://github.com/nytimes/covid-19-data
https://github.com/JuliaPalacios/phylodyn/blob/master/data/California_statscience_ack.txt
https://github.com/JuliaPalacios/phylodyn/blob/master/data/Washington_statscience_ack.txt
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year. Posterior samples were thinned to 100 samples. Pair-
wise distances were obtained using Kim, Rosenberg and
Palacios (2020). Accession codes of the sequences can
be retrieved at https://github.com/JuliaPalacios/phylodyn/
blob/master/data/CanSweUk_statscience_ack.txt

APPENDIX B: GLOSSARY OF TERMS

Anthropogenic selection. A process where human-
induced environmental changes, such as use of antiviral
drugs, alter the direction and magnitude of selection.

Antigenic evolution. An evolutionary response of path-
ogens to host’s antibody-mediated immunity selective
pressures.

Consensus sequence. A consensus individual’s se-
quence consists of those nucleotides with highest fre-
quency at each position in an alignment (aligned to a ref-
erence genome) of multiple reads (Grubaugh et al., 2019);
usually only those nucleotides with high frequency and
high coverage (multiple reads per nucleotide) are used in
the analyses.

Endemic equilibrium. A state at which the disease dy-
namics is in a steady state so the disease persists in the
population.

Locus. The physical location of a specific gene on a
chromosome. Here we assume there is no recombination
within the locus.

Mutation. An alteration in a genetic sequence such as
substitution, insertions, deletions, etc.

Neutral evolution. A theory that postulates that most
evolutionary changes at the molecular level do not af-
fect reproductive success (fitness), and can be described
by random genetic drift of mutations that are selectively
neutral.

Recombination. The exchange of genetic material be-
tween parental genomes by the breakage and rejoining
of chromosomes, producing offspring genomes that carry
genetic information distinct from its parental genomes.

Selection. A nonrandom difference in reproduction
among individuals, often due to differential survival to
specific environments, ensuring the transmission of bene-
ficial traits to succeeding generations.

Substitutions. A type of mutation where a single nu-
cleotide (“chemical letter”) is replaced with a different
nucleotide. There are two types of substitutions: transi-
tion and transversion.

Transition. A transition is a type of substitution muta-
tions that occurs within each structural class of DNA: a
purine nucleotide is substituted with another purine (A ↔
G) or a pyrimidine nucleotide is substituted with another
pyrimidine (C ↔ T).

Transversion. A transversion is a type of substitution
mutations that occurs across different structural classes of
DNA: a purine nucleotide is substituted with a pyrimidine
nucleotide or vice versa (A ↔ C, A ↔ T, G ↔ C, G ↔
T).

Wright–Fisher model. The model describes the sam-
pling of alleles in a population with no selection, no muta-
tion, no migration, nonoverlapping generation times and
random mating. It is a Markov chain which samples with
replacement a new generation from the previous one.
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