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Abstract.  All models may be wrong—but that is not necessarily a problem
for inference. Consider the standard ¢-test for the significance of a variable
X for predicting response Y while controlling for p other covariates Z in a
random design linear model. This yields correct asymptotic type I error con-
trol for the null hypothesis that X is conditionally independent of Y given Z
under an arbitrary regression model of Y on (X, Z), provided that a linear
regression model for X on Z holds. An analogous robustness to misspecifi-
cation, which we term the “double-estimation-friendly” (DEF) property, also
holds for Wald tests in generalised linear models, with some small modifica-
tions.

In this expository paper, we explore this phenomenon, and propose
methodology for high-dimensional regression settings that respects the DEF
property. We advocate specifying (sparse) generalised linear regression mod-
els for both Y and the covariate of interest X; our framework gives valid
inference for the conditional independence null if either of these hold. In
the special case where both specifications are linear, our proposal amounts
to a small modification of the popular debiased Lasso test. We also investi-
gate constructing confidence intervals for the regression coefficient of X via
inverting our tests; these have coverage guarantees even in partially linear
models where the contribution of Z to Y can be arbitrary. Numerical experi-
ments demonstrate the effectiveness of the methodology.
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1. INTRODUCTION

In this expository article, we describe a concept of in-
sensitivity or robustness against model misspecification
in linear and generalised linear models. Our starting point
is the observation that inference in a misspecified linear
model for the regression parameter still leads to correct
statements about certain conditional independencies if the
relationships between the covariates takes an appropri-
ate form. Our aim is to popularise this main idea which,
up to a few exceptions, seems to have been largely over-
looked in the statistical literature and textbooks; and also
to further develop the methodology and some theory for
the case of high-dimensional linear and generalised linear
models.
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Misspecified linear models and the t-test. We now de-
scribe a simple result (see Theorem 1) which should serve
as a motivation. Consider data (Y, X,Z) € R" x R" x
R™P (note X is a vector while Z is a matrix) for which
we have postulated a random design linear model,

(1) Y =X0+2Zp" +¢,

with & ~ N, (0,0°T) and design matrix (X, Z) having
i.i.d. Gaussian rows. The reason for distinguishing the co-
variate X from the other columns of Z is to focus attention
on a single component of the vector of regression coeffi-
cients, namely 6. If this model is correctly specified, the
t-statistic provides valid and optimal inference for 6.
Now suppose that the model (1) is misspecified and
Y is a nonlinear function of the Gaussian covariates and
a (not necessarily Gaussian) error term. Then, the stan-
dard t-test in the misspecified linear model for 6 = 0
still provides asymptotically valid inference for testing
the null hypothesis that Y is conditionally independent
of X given all other covariates Z, in the sense that the
type I error is asymptotically correctly controlled. In fact
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if Y=6X+ f(Z, ¢) for an essentially arbitrary measur-
able function f, standard confidence intervals for 6 will
be valid in this more general partially linear model setting.
This perhaps comes as a surprise! As we will explain, it
is connected to the fact that in the misspecified model,
the projected parameter in the specified linear model cor-
responding to X is exactly zero when we have the con-
ditional independence Y L X|Z; this in turn is a conse-
quence of the regression relation between X and Z being
linear due to the Gaussian assumption, that is, we have
E(X|Z) = ZBX for some BX € RP.

This is just a simple motivating example, and we will
relax some of the assumptions to provide a more gen-
eral methodology and theory. In particular, we show that
this phenomenon also extends to generalised linear mod-
els (GLMs) in the sense that if X 1 Y|Z, then the esti-
mated coefficient corresponding to X following a gener-
alised linear regression of Y on (X, Z) will have mean
zero asymptotically if either the GLM is valid, or if a lin-
ear regression model for X on Z holds (and in the latter
case, the GLM can be arbitrarily misspecified).

Thus, in general, basic statistical inference procedures
concerning linear models and GLMs have validity beyond
the restrictive parametric settings for which they are de-
signed. Our focus in this work is studying this robustness
property for which we use the term

DEF, for “double-estimation-friendly”. The
word “double” refers to the issue of specify-
ing and estimating two models, and the double
estimation leads then to more “friendly” re-
sults where valid inference is provided if either
model is well specified.

With this term DEF we want to clearly distinguish it from
double robustness, a concept whose relation to DEF is de-
scribed below in Section 1.1.

A substantial part of this work considers DEF method-
ology in high-dimensional regression where p > n.
Driven by demands from a range of application areas,
but perhaps most notably genomics, high-dimensional re-
gression has received a great deal of attention over the
last two decades; see, for example, the books Biihlmann
and van de Geer (2011), Hastie, Tibshirani and Wain-
wright (2015), Wainwright (2019) and references therein.
While earlier work dealt primarily with point estimation
of regression coefficients, more recently there has been
a drive towards (Frequentist) uncertainty quantification,
including testing for whether prespecified regression co-
efficients are nonzero. Much of this work has centred on
the so-called debiased Lasso (Zhang and Zhang, 2014,
van de Geer et al., 2014) which gives a construction of a
coefficient estimate that unlike the more standard Lasso
(Tibshirani, 1996) on which it is based, is asymptotically
unbiased and normally distributed; it can therefore serve

as a basis for forming confidence intervals and hypothesis
tests about the unknown true coefficient vector.

The debiased Lasso has been a major advance for infer-
ence in high-dimensional settings. However, the validity
of the statistical inferences it provides rests on the some-
what strong assumption that the true coefficient vector is
highly sparse. For example, when testing whether Y =
ZBY + e, that is, if the coefficient for X is 0, guarantees
for the debiased Lasso require that sy :=|{; : ,BjY # 0}
satisfies sy = o(4/n/log(p)). Given the preceding discus-
sion, it is natural to ask whether the debiased Lasso is in
some sense DEF. We show in this work that, with some
small modifications, a version of the debiased Lasso has
the DEF property. Specifically, a modified debiased Lasso
gives a valid test for X L Y|Z if either the X-model, that
is the model for X regressed on Z, or the Y-model is a
sparse linear model. Confidence intervals derived from
the debiased Lasso, however, are not DEF and do rely
heavily on a sparse linear Y-model. We demonstrate that
confidence intervals constructed via inverting a DEF hy-
pothesis test can lead to much better coverage properties.
While not part of the main focus of this work, we also
show how a related approach may be used to construct
confidence intervals for w’ Y, where w € R? is a possi-
bly dense contrast vector.

In many settings, for example, when X is binary, a lin-
ear model for X on Z seems unlikely to hold. It would
therefore be desirable to have a DEF procedure for test-
ing the conditional independence relationship X 1L Y|Z
that is valid when either the Y-model or the X-model
are sparse generalised linear models. For example, when
both Y and X are binary we might wish to specify both
models as logistic regression models. By first adapting
our proposed DEF procedure to settings with linear X-
and Y-models with heteroscedastic errors, we show how
generalised linear models can be handled within our DEF
methodology.

Below we mention some related work. We first discuss
how our DEF concept and methodology relates to the lit-
erature on double robustness, and then look at other work
in high-dimensional inference that bears some relation to
ours here.

1.1 Relation to Double Robustness

The concept of double robustness has been developed
in the context of missing values and causal effects; the
latter can be seen as a missing value problem with un-
observed potential outcomes. One specifies a model for
the response and a model for the missingness (e.g., unob-
served potential outcome), both as a function of covari-
ates. The double robustness property is then (typically) as
follows: if only one of the models is correctly specified,
one can still obtain consistent estimates of average effects.
This conclusion comes as a result of the bias of a doubly
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robust estimator taking the form of a product of estima-
tion errors relating to each of the aforementioned models.
In order for the product to tend to zero, only one of the
terms in the product need tend to zero; we refer to Robins
and Rotnitzky (1995), Scharfstein, Rotnitzky and Robins
(1999), Kang and Schafer (2007), Cao, Tsiatis and Da-
vidian (2009), Rotnitzky et al. (2012), among many other
contributions in the literature.

While the philosophy of DEF is similar to that of dou-
ble robustness in that it aims to “give the analyst two
chances, instead of only one, to make a valid inference”
(Bang and Robins, 2005), there are several differences.
First, we are asking for valid inferential procedures, that
is, hypothesis tests and confidence intervals, when either
the X-model or the Y-model is misspecified. Whereas for
consistency, it suffices for one of the terms composing the
bias to go to zero, for our purposes this would need to van-
ish at a rate dominated by the variance which is typically
n~1/2. The requirement that the product of estimation er-
ror rates bounding the bias goes zero faster than n~!/2
has been referred to as rate double robustness (Smucler,
Rotnitzky and Robins, 2019). However, directly applying
known estimation error rates for high-dimensional regres-
sion to achieve rate double robustness gives rise to proce-
dures for hypothesis testing that require both the X and Y -
models to be sparse regression models with sparsity lev-
els sx, sy = o(y/n/log(p)) (Chernozhukov et al., 2018,
Shah and Peters, 2020, Dukes, Avagyan and Vansteelandt,
2020); a stronger requirement than needed for the debi-
ased Lasso, which only assumes a sparse Y-model, and
stronger still than our DEF methodology, which requires
either a well-specified sparse Y-model or X-model.

In parallel work to ours, Bradic, Wager and Zhu (2019)
introduce the concept of sparsity double robustness in
the context of estimation of average treatment effects that
refers to a weakening of the strong sparsity conditions im-
posed by rate double robustness above; however, in con-
trast to our DEF principle, this still requires sparse X and
Y-models.

A second difference is that whereas doubly robust
methods are typically semiparametrically efficient as they
are often derived by considering efficient influence func-
tions for the parameters at hand, this sort of efficiency
does not necessarily arise in the more general settings
covered by our idea of DEF inference. Because of these
differences, we use the new terminology to distinguish the
concept from double robustness.

1.2 Other Related Work

In the low-dimensional setting, early work on single-
index models (Brillinger, 1983, Li and Duan, 1989, Duan
and Li, 1991) has shown that OLS regression on Gaussian
covariates can correctly estimate the direction of the vec-
tor of regression coefficients up to an unknown sign. This

property is somewhat related to the DEF property of OLS,
though deals with a rather specific form of misspecifica-
tion of a linear model.

The concept of leveraging an X-model in assessing
the contribution of a covariate X to a response Y while
controlling for additional covariates Z has a long his-
tory, and the modelling of propensity scores when esti-
mating average treatment effects is one example of this
(Rosenbaum and Rubin, 1983). The work of Robins,
Mark and Newey (1992) proposes to exclusively estimate
an X-model in more general settings, and this idea has
also appeared more recently in the model-X knockoff
framework (Candes et al., 2018). The conceptual differ-
ence though is that with DEF (and also double robustness
as discussed above), both the X-model and Y-model are
estimated but one does not need to know which of the two
models is correct.

Some recent work has looked at DEF procedures for
different high-dimensional settings. Shah and Biihlmann
(2018) studied a certain regularised partial correlation
proposed in Ren et al. (2015); the latter work shows this
test statistic is valid for testing X Il Y|Z when both the
X-model and Y-models are sparse linear models, while
the former shows in fact only the Y-model needs to be
true for correct type I error control. As the test statistic is
symmetric in X and Y, we can further conclude it has the
DEF property. Our proposed DEF methodology for the
high-dimensional setting builds on this work, generalising
it to allow for generalised linear X and Y -models. This ap-
proach is not the only possibility for DEF methodology in
the high-dimensional setting, and Zhu and Bradic (2018a)
look at another similar test statistic they call CorrT that
delivers hypothesis tests with asymptotic type I error con-
trol in the setting where the Y-model is permitted to be a
dense linear model, while the X-model must be a sparse
linear model. Again, this test statistic has a DEF-like
property as a consequence of its symmetry, though the
dense linear model still entails some restrictions on the
model class, see the discussion following Theorem 5 in
Section 3.1.

Biihlmann and van de Geer (2015) consider inference
with the debiased Lasso in misspecified linear models, but
where the best linear predictor of the response given co-
variates, is sparse, and the X-model is linear. This is re-
lated to our results and methodology here, though in con-
trast we aim for valid inference with no sparsity require-
ments on one of either the X or Y-models. We note that
our work also connects more generally to a thriving liter-
ature on high-dimensional inference. We refer to Dezeure
et al. (2015) for a review of some of the most important
developments that are related to our work here.

1.3 Organisation of the Paper

The rest of the paper is organised as follows. In Sec-
tion 2, we study the low-dimensional setting and formally
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set out the DEF properties of standard inference proce-
dures for linear and generalised linear models. We then
turn to the high-dimensional setting and study in Sec-
tion 3.1 the case where we allow either the regression
model for Y on Z or that for X on Z to be linear. In Sec-
tion 3.2, we detail the construction of confidence inter-
vals in partially linear high-dimensional models using the
classical duality between confidence regions and hypoth-
esis tests. We then study the setting where the models of
Y and X are generalised linear models. Some numerical
experiments are presented in Section 4 and we conclude
with a discussion in Section 5. The Appendix contains
proofs omitted in the main text, a construction for con-
fidence regions for w” B based on the methodology set
out in Section 3.1, a description of how square-root Lasso
solutions may be computed given regular Lasso solutions,
and some additional numerical experiments.

2. LOW DIMENSIONS

Recall that (Y, X, Z) € R" x R" x R"*? and we are in-
terested in the relationship between Y and X, and specif-
ically testing the conditional independence X I Y|Z. We
first study the DEF property of the standard ¢-statistic in
the linear model, before turning to generalised linear mod-
els in Section 2.2.

2.1 Linear Models

Let Z := (X,Z) e R"(*D and let (9, BY) e R x R”?
be the regression coefficient vector from an OLS regres-
sion of Y on Z. Further let P and P be the orthogo-
nal projections on to Z and Z, respectively. Also define
&2 =Y — PY|3/(n — p — 1). The usual ¢-statistic for
testing the significance of variable X is given by Tors :=

6/\{(ZTZ)~1},162. Denote by R := (I — P)X the resid-
uals from regressing X on Z.
Consider the following set of assumptions.

(Y1) We have Y = Z8Y + ¢ with E(g;|Z) = 0, E(siz|
Z) =o% > 0, E(|8,‘|2+8|Z) < M for some constants
M,$,0% > 0, and the g; are independent conditional on
7.

(Y2) We have P(R =0) — 0 and for some § > 0,

1 . 248
——— Y R/ ifR#£0,
2 Ayi=1 R3] ; ’
0 if R=0,

satisfies A, £o.

Condition (Y1) formalises the particular form of the lin-
ear model we assume here (under the null hypothesis),
which includes the normal linear model, for example, but
is rather more general. Condition (Y2) enforces that no
individual residual is too extreme. Indeed, it is sufficient

that max; R;/||R]|>2 £ 0. This would typically be satisfied
if the rows of (X, Z) were i.i.d., for example, but is much
weaker. We also introduce the following.

(Xj) The equivalent of (Y j) above but with X replaced
with Y and vice versa, for j € {1, 2}.

The theorem below shows that Tor s has a DEF property.

THEOREM 1. Suppose p/n — 0. If either (X1) and
(X2) or (Y1) and (Y2) hold, then under the null hypothe-

sis that X AL Y|Z, we have Tors > N0, 1).

The result may be viewed as a consequence of the close
relationship between the ¢-statistic above and the partial
correlation

. X"1-P)Y
P IaA=PX LI A=P)Y ]

This can also be interpreted as a test statistic based on
a score test for 8 = 0 when it is assumed the errors are
Gaussian. One can verify that

(3) TOLS=\/”_P_1ﬁ,

so the distributional result for Tors follows from /np —d>
N(0,1). As p is symmetric in X and Y it is unsurprising
that this has a DEF property. Indeed, the DEF approach
suited to the high-dimensional setting we present in Sec-
tion 3, is based on a certain regularised partial correlation.

We also remark that under the assumption that Y =
Z,BY + & with € ~ M (0, 02I), we have the exact distri-
butional relationship

L n—p—1
p Wwfn—p—l-

The symmetry of this statistic in X and Y means that the
distributional result also holds when an analogous normal
linear model for X on Z holds. This may be used to yield
a DEF test for conditional independence with exact type
I error control in finite samples, under these additional
Gaussianity assumptions.

EXAMPLE 1. The famous diabetes dataset of Efron
et al. (2004) contains p = 10 predictors (age, sex, BMI,
etc.) measured for n = 442 patients. We take these covari-
ates as our matrix Z € R"*? and generate an additional
predictor X € R” with entries X; = > i Zij + el.X where

8l-X +1 S Exp(1). We ignore the original response of
the design matrix and generate a new response Y € R”
that depends nonlinearly on Z through Y; = n;{; where
i b X12 and

exp(Zij Zir)

4 = .
@ i %; 1 +exp(ZijZik)
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FI1G. 1. Histograms of Tors (left plot) and 2 (right plot) for the setup described in Example 1. The red curves are kernel density estimates. We see
close agreement with the theoretical normal density (blue curves). The vertical dashed red lines and blue lines in the right plot are the empirical
and theoretical means respectively; their proximity in this example makes them hard distinguish visually.

In this setup, we then have Y; 1 X;|Z; and the X-model
is a linear regression model. Theorem 1 suggests that the
t-statistic TorLs corresponding to X should have a dis-
tribution well approximated by a standard normal. The
left panel of Figure 1 plots the histogram of Tors com-
puted on 500 simulated datasets generated through the
construction above. We do indeed see a close agreement
with a standard normal density, verifying the theoretical
result. The right panel plots the coefficient estimate 6 cor-
responding to X when the equation for Y has X added
(i.e., the null hypothesis does not hold). It is easy to see
that compared to the previous setup, this coefficient will
be shifted by 1, and hence asymptotically should have a
Gaussian distribution centred on 1, as we observe in the
plot.

2.2 Generalised Linear Models

It is well known that maximum likelihood estima-
tors under misspecification are, given regularity condi-
tions, asymptotically normal about a parameter vector
corresponding to the model closest to the ground truth
in terms of Kullback-Leibler divergence (Huber, 1967,
White, 1982). This fact is typically used as reassurance
that while all statistical models are wrong, provided one
is working with a model that is a good enough approxima-
tion to the truth, maximum likelihood estimation is nev-
ertheless useful. However, as we shall explain, in terms
of conditional independence testing, maximum likelihood
estimation of generalised linear models can form the basis
of a valid test even under severe misspecification.

In this section, we will assume that the rows (X;, Y;, Z;)
of (X,Y,Z) € R"™¥*P) are independent copies of the
random triple (X, Y, Z) € R x R x R”. Consider a gener-
alised linear model relating response vector Y to covari-
ates (X, Z), or more generally, a model where the density
fy|x,z of Y conditional on (X, Z) (with respect to a mea-
sure ) takes the form

Q) frix.zOlx,z2) =L(x6 +z7 Y y)

for (6, ,BY) € ® C RP*!, We will assume that L is twice
differentiable in its first argument. Define ¢ := log L and

U := ¢’ where the prime denotes a derivative with respect
to the first argument; we will typically suppress the de-
pendence of U on its second argument y for simplicity.
Under regularity conditions, the maximum likelihood es-
timator
n
6, B") :=argmin—Y_¢(X;t + Z B; Y;)
“.)e® i

is asymptotically normal centred on (8*, 8*), which solve
for (¢, B) € © the score equations

(6) E{XU(Xt+2"B)} =0,
(7) E{zU (Xt +Zz"B)} =0.

When (5) holds (which includes as a special case when a
generalised linear model is correct), under regularity con-
ditions, we will have (6%, 8*) = (0, B ¥y In order for in-
ference based on 6 to provide useful information concern-
ing the conditional independence X 1l Y|Z when (5) does
not hold, we would like 6* = 0 in the case of conditional
independence. Analogously to the case with linear mod-
els discussed in the previous section, we have that regard-
less of the form of the Y-model, provided the X-model is
linear, it holds that * = 0; here though we additionally
require that the solution to (6) and (7) is unique to derive
this conclusion.

THEOREM 2. Suppose X 1L Y|Z. Let B7 € R? max-
imise the expected log-likelihood B£(ZT B; Y) over B. As-
sume regularity conditions set out in Section A.2.1 of the
Appendix. Suppose that either the Y -model is well speci-
fied so (5) holds, or the X-model is linear so E(X|Z) =
ZTBX . Then (t, B) = (0, BY) satisfies the score equations
(6), (D).

Theorem 2 shows that under the X-model, the param-
eter corresponding to the projection of the truth on to the
purported Y-model is 0 under conditional independence.
A standard Wald test for whether 6 = 0 will, however, not
be valid under general misspecification as the asymptotic
variance of 6 will not necessarily be given by the (1, 1)
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entry of the inverse Fisher information matrix for (6, 8 Yy,
Indeed, it is well known that, under regularity conditions,
the variance of 6 is given by the sandwich formula

6 6*\\ d L gy
(8) ﬁ((By> — <ﬁ*)) SNO H'VHT,

where V is the covariance matrix of the derivative of
2(X60 + ZT,B; Y) with respect to (6, 8) evaluated at
(6™, B*) (satisfying the score equations (6), (7)) and H
is the negative expectation of the corresponding Hessian
matrix:

v ((5)(3) o z7m).

H:=-E ((g) (g)T U'(X0* + ZTﬁ*)> .

The matrices V and H may be estimated individually us-
ing the data via several methods (MacKinnon and White,
1985). However, if either the X-model is a homoscedastic
linear model, or the Y-model holds, some simplifications
are possible, as the result below describes.

THEOREM 3. Suppose X 1 Y|Z and assume regu-

larity conditions set out in Section A.3.1 of the Appendix.
Suppose either (5) holds with U = {', or E(X|Z) =
ZT BX. We additionally assume Var(X|Z) = Var(X) in
the latter case. Then we have

27T p*
(V) = () e

The correction factor for the usual inverse of the Fisher
information may be readily estimated by
P Urzl )

9) Cp=— —
» L, UzI'py)

or indeed a variant of the above with ZZ-T pY replaced ev-
erywhere by X0 + ZiT ,3Y which we will refer to as C.
Writing H for the empirical version of H,

. 1T /x (XA\T . .
H:Z“-X;(Zf) (z) U'(Xi0 +2057).
1=

n i
we may define for j = 1, 2, the test statistics
Jnb

TGLM,j = .
VCi(H D

Putting together Theorems 2 and 3 we have the following
result.

THEOREM 4. Suppose X L Y|Z and (8) holds where
(6%, B*) is the unique solution in (t, 8) to (6) and (7).
Assume that H % H with H positive definite and assume
the regularity conditions set out in Section A.4.1. Suppose
that either the Y -model is well specified so (5) holds, or
the X-model is linear so B(X|Z) = ZT BX. Then for j =
1,2 we have

d
Toim,j — N0, 1).
EXAMPLE 2. We use a similar setup to Example 1 but

. i.id.
here generate the response Y € R" according to Y; K
Poisson(;) with

log(ui) =a1 ) Zij +oazn;
J
with o € {0, 2,4} and factors a; and a» chosen so the
maximum absolute value over i of the two terms above
is 3 to ensure EY; does not take values that are too large.
We consider testing the significance of the variable X us-
ing (a) standard Wald-based p-values assuming a Pois-
son log-linear model, (b) the equivalent using a quasi-
Poisson likelihood and (c) using Tgrm,2. We plot in Fig-
ure 2 the empirical distribution functions of the p-values

1.0
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0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FI1G. 2.  Empirical distribution functions of p-values from the simulation setups of Example 2 with o =0, 2, 4 from left to right. Blue, purple and
red curves correspond to naive p-values (a), quasi-likelihood-based p-values (b) and p-values based on Tgrp 2 (), respectively. Type I errors of
the resulting tests are well controlled for (c), but (a) and (b) fail to maintain nominal levels under misspecification.
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observed over 500 replicates of the three settings de-
termined by o. As expected, for the well-specified case
with o = 0 all p-values are roughly uniformly distributed.
However, for increasing levels of misspecification, the
standard p-values (a) tend to be more anti-conservative,
a phenomenon which occurs to a lesser extent for the
quasi-likelihood-based p-values (b). The correction fac-
tor (c) ensures that p-values corresponding to Tgrm 2 are
approximately uniform across all of the settings consid-
ered.

3. HIGH DIMENSIONS

We have seen in the previous section how classical lin-
ear and generalised linear model inferential tools have the
DEF property. In the case of linear models, this could be
deduced from the similarity of the standard z-statistic to
partial correlation. For generalised linear models, the DEF
property is perhaps more surprising. Our analysis first
used the fact that maximum likelihood converges to a pro-
jection of the ground truth, and then considered the pro-
jected parameters themselves. There is, however, no ana-
logue of the classical Huber—White results on the prop-
erties of maximum likelihood in nonlinear models under
misspecification available for high-dimensional estima-
tors. Our approach to DEF inference in high-dimensional
settings will therefore be based around versions of partial
correlation. We first study linear models before turning to
the case of high-dimensional generalised linear models.

3.1 Linear Models

One of the most popular methods for testing the signif-
icance of predictors in high-dimensional regression prob-
lems is the so-called debiased Lasso (Zhang and Zhang,
2014). We begin by discussing this approach, in order to
motivate our DEF methodology.

The debiased Lasso works as follows: first we form esti-
mates (é, 3Y) through a Lasso regression of Y on (X, Z),
and also conduct a Lasso regression of X on Z to give
a coefficient estimate E X There are a variety of choices
of tuning parameters for each of these regressions; to en-
sure that these tuning parameters do not depend on the
noise variances of the respective regressions, we may
use a particular parametrisation of the Lasso known as
the square-root Lasso regressions (Belloni, Chernozhukov
and Wang, 2011, Sun and Zhang, 2012):

@,BY):= argmin {|Y —Xr —ZB|2//n
(t,B)eR!+P

(10) +aylBlli},

pr = a;g%ﬂpin{llx ~ZBll2/n+rx B}

Here we may take Ay = Ay = A/2log(p)/n for A > 1.
Note that we have denoted the estimate of the coefficient

vector for X as #Y in order to distinguish it from AY intro-
duced in (14) below. The square-root Lasso may be com-
puted easily using standard software that computes regu-
lar Lasso solutions: see Section B in the Appendix.

We then construct a test statistic 7pg for assessing the
conditional independence X L Y|Z as follows:

(Y -2p")" (X - Z5%)
Tpg :=+/n ~ 'BVY ﬁAX :
1Y =X =ZB" 21X = ZB* |2
When the Y -model is a sparse linear model so Y = ZaY +

e with g¥ sparse and & ~ N, (0, o°I), we have that T —d>
N (0, 1) as we now outline. Let us write

R:=X - 78%,
&:=|Y—-6X~-28"|,/vn.

A consequence of the stationarity conditions (the so-
called KKT conditions) for the optimisation problem
defining BX is that, provided R # 0,

1
11 —|Z™R R[> < Ax.
(11) ﬁH loo/IRII2 < Ax
We may thus decompose Tpg as follows:
1 RT 1 U R
Top =z ——¢e+ (8" —B") 2" —— =: (i) + (ii).
o [Rl2 a( ) IRIl2

Conditioning on R, R7e/|R]> is a weighted sum of
the independent and identically distributed ¢;, and thus
will have an asymptotic Gaussian distribution under weak
conditions on R; in fact if the & are Gaussian them-
selves we will have R7e/||R|2|R ~ N (0, 02) exactly,
and of course the unconditional distribution will hence
also be Gaussian. If & 5 o, then by Slutsky’s lemma
we will have that (i) converges in distribution to a stan-
dard normal. In order to guarantee this, we may appeal
to known results about the square-root Lasso (Sun and
Zhang, 2012). These rest on a compatibility factor ¢ (van
de Geer and Biihlmann, 2009) being bounded away from
Zero:

(12)  ¢*:=
(t,B)eRI*P
|t|+Hﬁs§ 1 =31Bsy 1#0

I1Xt +ZB/n
| Bsy ll1/sy

here Sy :={j : ,B}/ # 0}, sy := |Sy| and we have used the
notation that for any vector b € R” andset S C {1, ..., p},
bs € RISl is the subvector of b composed of those compo-
nents of b indexed by S. Roughly speaking, designs with
large compatibility factors cannot have very highly cor-

related columns. Provided ¢ > 1, we have & £ & and

also [|fY — Y |l1 < sy /Tog(p)/n with high probability,
when Ay < 4/log(p)/n (van de Geer, 2016). This second
property may be used to bound (ii) via

(B" —B")TZ'R| _
A 1
(13) IRl S Axsyy/log(p)

< sy log(p)/+/n,
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where we have used Holder’s inequality and (11). Thus,
in an asymptotic regime where sy log(p)/+/n — 0, Slut-

sky’s lemma gives us that Tpg 4 N, 1).

Note that essentially no assumptions regarding a regres-
sion model for X on Z are required here; the only purpose
of the square-root Lasso regression producing BX is to
construct the vector of residuals R. This latter quantity
may be regarded as a version of predictor X modified to
be almost orthogonal to the remaining covariates Z (11)
such that when normalised, the dot product with the bias
term Z(BY — ,5 ¥ is well controlled (13). Although this or-
thogonality comes free as a by-product of the square-root
Lasso, we have, however, tacitly assumed R # 0 to arrive
at (11). If R = 0 (which we have yet to observe in prac-
tice) we can simply agree to accept the null of conditional
independence, so this poses no problem for type I error
control. We note that the same sort of orthogonality ar-
gument may not go through for a regular Lasso estimator
with tuning parameter chosen by cross-validation, for ex-
ample, as control of the LHS of (11) with no assumptions
on the model would be very challenging. However, em-
pirically, we have observed that the cross-validated Lasso
performs similarly to the square-root Lasso here.

Now consider the case where the X-model is a sparse
linear model. While we will have control of ||8%X — X1,
the equivalent of (11) with residuals R replaced by Y —
Z,é Y will not hold in general. The issue is that the lat-
ter quantity is not equal to the residuals from the Y-
regression unless @ = 0. Thus the debiased Lasso is not
quite DEF in that it can be sensitive to misspecification of
the Y-model.

There are several options for how to restore the DEF
property in this setting, but one that is particularly simple
involves enforcing that 6 = 0, that is, setting ,BY to be
coefficients from a regression of Y on Z rather than the
augmented design (X, Z):

(14) B :=argmin{||Y — Zb|2/v/n + iyl };
beRP

note this differs from the definition in (10). The resulting
test statistic takes the form of a regularised partial corre-
lation:

Togr := Tper(Y, X)

(15) . 2T (X - Zp%)
"I 2BV aIX - ZBX |

note the inclusion of the notation Tpgr(Y, X) making the
dependence of the test statistic on Y and X is included
here for use later in Section 3.2. In the unlikely case that
the denominator defining Tpgr above is zero, so one of
the square-root Lasso solutions is degenerate, we will set
Tper = 0; we have never observed this degeneracy to oc-
cur in any of the numerical experiments conducted. The
test statistic (15) above was first studied in Ren et al.

(2015) in the context of Gaussian graphical model esti-
mation where asymptotic normality was shown when both
the X-model and Y-model are sparse. The work of Shah
and Biihlmann (2018) extended this result to show that the
same conclusion holds when only the Y -model holds, and
hence by symmetry of the test statistic, that it has the DEF
property. Below we state a variant of the latter result that
allows for non-Gaussian errors.

In the case that (only) the Y-model holds, we will need
to assume in addition to (Y1) and (Y2) with R=X —
7%, the following conditions.

(Y3) Defining Sy := {j : B} # 0} and sy :=
have sy log(p)/f — 0.
(Y4) |8 — B I = op(swlog(m/n)

(Y5) ||Y—Z,3 ||2/n—>0 .

[Syl, we

Note that, as in the low-dimensional case, the only as-
sumption placed on the conditional distribution of X given
Zis (Y2), withR=X — Zﬁ X This would be satisfied if
we had a sparse linear X-model, but such an assumption
is very far from necessary in order for (Y2) to hold. Fur-
thermore, as shown in Shah and Biihlmann (2018), this
is not necessary when the errors & for the Y-model are
Gaussian. We also introduce, in addition to (X1) and (X2)
with R=Y — Z,é Y the following assumptions that are
relevant when the X-model holds.

(Xj) As (Yj) above, but with X and X interchanged
with Y and Y everywhere, for j € {3, 4, 5}.

We have the following result.

THEOREM 5. Let Ax = Ay = A+ /2log(p)/n for
some A > 1. Assume that either (Y1)—(Y5) or (X1)-

(X5) hold. Then under the null hypothesis that X L Y|Z,
test statistic Tpgpr defined according to (15) satisfies

Torr > N (0, 1).

Similarly to the case with the debiased Lasso, under an
alternative where Y = X0 +Zg" + ¢, if a sparse linear X -
model also holds, Tpgr (15) has power tending to 1 when
/nf — oo. We refer the reader to Ren et al. (2015) and
Shah and Biihlmann (2018) for further details.

The DEF version of the debiased Lasso bears some sim-
ilarities to the CorrT test developed and studied in Zhu
and Bradic (2018a). However, whereas the latter relies on
estimating Y and BX via a family of linear programs,
the DEF statistic presented here can be calculated using
standard software for computing Lasso solutions such as
glmnet (Friedman, Hastie and Tibshirani, 2010). We
note further that whereas Theorem 5 only requires the
weak condition that no residual from the regression relat-
ing to the misspecified is too extreme (and no condition on
the residuals when the errors in the true model are Gaus-
sian), the corresponding result (Theorem 2) in Zhu and
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Bradic (2018a) requires the misspecified model to never-
theless be a linear model with the coefficient vector hav-
ing bounded ¢>-norm. Furthermore, the sparsity condition
s = o(y/n/(log p)>/?) is assumed, where s is the spar-
sity of the coefficient vector in the well-specified model,
compared to our requirement of s = o(,/n/log p). On the
other hand, the CorrT test accommodates heteroscedastic
errors whereas one would need to modify our statistic to

%(RY)TRX
i imi RD2R? — (G (RY)TRY)2

Jn

where
RY:=Y-278" and R¥X:=X-27p%

in order to achieve this; see Shah and Peters (2020) which
uses the denominator above more generally in nonpara-
metric models.

3.2 Confidence Intervals via Inverting Tests

Thus far we have only discussed testing, but using the
DEF statistic (15), it is straightforward to obtain confi-
dence intervals for a parameter 6 in the partially linear
model

(16) Y=X0+ f(Z,e),

where ¢ I X|Z and f : R"*? x R" — R”" under the fol-
lowing conditions: either f(Z, &) = Z,BY + &, or a sparse
linear X-model holds. Our approach for constructing a
confidence region for 6 utilises the well-known duality
between confidence intervals and hypothesis tests; specif-
ically we invert the DEF test, noting that under (16), we
have Y — X6 L X|Z. We first compute test statistic

a7 Tokr,: := Tper(Y — Xt, X),

that is, we subtract ¢ times X from Y and compute the
usual DEF test statistic. Then we form a 1 — « confidence
region R, via

Ry :={t € R:|Tpgr,| > za},

where z, is the upper «/2 quantile of a standard normal
distribution. As a consequence of Theorem 5, this confi-
dence region has the following asymptotic validity.

COROLLARY 6. Suppose the partially linear
model (16) holds with & 1L X|Z and let Ax = Ay =
Ay/2log(p)/n for some A > 1. Suppose the assumptions
of Theorem 5 hold with Y replaced by Y — X8, that is, in
particular either f(Z,e) =ZBY + €, or a sparse linear
X-model holds. Then for any o € (0, 1),

PO € Ry) =P(|Tper,| = 2a) = 1 — 0.

Tokert
0
1

-10

FI1G. 3. lllustration of confidence interval construction. We gener-
ated (X, Z) € R"*P with independent rows distributed as Np(0, £)
with % j = 0.9k where (n, p) = (200,500). A response Y
was generated through Y; = X; — 0.5Z;1 + 0.7Z;» + &; where
& ~ Ny (0, I). The plot shows Tpgr,; (17) as a function of t (black
curve). Horizontal dotted blue lines lie at +z( o5 and the shaded red
region enclosing the intersection points with the curve (t, Tpgr,;) de-
picts the 95% confidence interval; here this contains the true parame-
ter 0 =1.

Interestingly, in the case where the X-model holds, f
can be a fairly exotic function such that different com-
ponents of f(Z,&) € R" are dependent, provided (X6)
holds. Figure 3 illustrates our construction.

Rather than directly seeking for an estimate of 6, by in-
verting hypothesis tests, we do not rely on being able to
distinguish the contribution of X from among the remain-
ing covariates Z. Thus, for example having X very highly
correlated with Z would not interfere with coverage prop-
erties of the intervals.

Of course, computing Tpgr,; for all € R is not fea-
sible. However, while R, is not guaranteed to be an in-
terval in general, it appears to be the case in practice and
we have yet to find a counterexample. This observation al-
lows us to find the end points of the interval via a bisection
search. We use coordinate descent to solve the square-root
Lasso programmes involved in computing the test statis-
tics Tpgr,, and warm start this iterative optimisation pro-
cedure at the closest point computed in the search. While
this construction is computationally more intensive than
the standard approach with the debiased Lasso, it is still
feasible in large-scale settings. For the example shown in
Figure 3, the computation of the 500 confidence intervals
taking each columns of Z as the variable of interested
(i.e., treating it as X) took under 6 seconds on a standard
laptop; this time could be further reduced by performing
computations in parallel.

In Section C of the Appendix, we show how a simi-
lar technique to that described above can be used to con-
struct confidence intervals for w’ Y for some w € R?
that is potentially dense, when the Y-model is a sparse
linear model. This is perhaps most useful when w is an
additional covariate vector for a new observation whose
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corresponding response has not been observed; we can
thus provide a confidence interval for the mean response
conditional on the observed vector of covariates.

3.3 Generalised Linear Models

We have seen in Section 3.1 how one can modify the
debiased Lasso to construct a test statistic that has similar
sorts of DEF properties to that enjoyed by the standard -
statistic in the low-dimensional setting. In Section 2.2, we
saw how standard inference for generalised linear mod-
els has a DEF property, albeit with a slight modification
needed to account for the different variances of the test
statistics when the Y-model is misspecified. It is natural to
ask whether inferential procedures for high-dimensional
generalised linear models can be adapted to be DEF, but
one could equally ask the broader question of whether
we can specify sparse generalised linear X and Y-models
(possibly different for each), and obtain valid inference
if at most one of these is misspecified: this is the question
we attempt to address here. As a first step in this direction,
we consider heteroscedastic linear models, and then move
on to treat generalised linear models in Section 3.3.2.

3.3.1 Heteroscedastic linear models. Consider the
model Y; = ZiTﬁY + ¢ where E(¢;|Z) =0, Var(¢;|Z) =
U% / (D}; )> and the ¢; are independent conditional on Z;
and a similar X-model. Equivalently, we may write

(18) D'Y=D'ZAYBY + &7,
(19) DX =DYZAXBX + &X

for the Y and X-models respectively, where Var(sl-Y ) =
a)%, Var(sl-X ) = 0')2( and the diagonal matrices AY AX e
RP*P are such that the empirical variances of the columns
of the resulting design matrices DY ZAY and DXZAX are
1. Note we have redefined Y and X by scaling them by
AY and AX respectively. We will treat the diagonal ma-
trices DY and DX as known, though one of (18) and (19)
may be misspecified, in which case the corresponding ma-
trix will be meaningless. In this context, it seems natural
to seek an analogue of the test statistic 7pgr based on the
weighted square-root Lasso regressions

BT = argmin{[DY(V —ZAT5) |,/ + 21l

B* = argmin{|DX (X — ZAXb)|,/v/n + 1lIbll1}.
beRP
The KKT conditions of the above optimisations are, how-
ever, not “compatible” in the same way as allowed for
arguments similar to (13); the issue is that the design ma-
trices in (19) and (18) are different so Theorem 5 does not
directly apply. Thus we cannot conclude that the bias term
is small unless, for example, both the X and Y-models
specified above hold. Instead, consider orthogonalising
the residuals Y :=Y — ZAYAY and X := X — ZAX X

from the regressions above using the following construc-
tion:

(BY,7¥)= argmin {|DY(Y—ZAYD)
(b.u)€RP xRP
(20) —D*ZA%u)|,//n
+A(1B11 + [lull)}
(B%,7%)= argmin {|D*(X —ZA%b)

(b,u)eRP xRP
(21) —DYZAYw)|,/v/n

+A(I1Bl1 + llwllr)}-

Here we have augmented the designs with the terms DXZ
and DY Z. The only purpose of these terms and the corre-
sponding estimates 77¥ and 7% is to ensure that the resid-
uals from the regressions above satisfy the required near-
orthogonality properties for controlling the bias term.
Consider now the case that the Y-model (18) is well
specified. Let RY := DX(X — ZAXBX) — DYZAY 7X.
The KKT conditions for (21) yield in particular that
I IAXZTDXRY e _

n RX =
22) N IR* ]2

1 |AYZTDYRY| i

N IRX|2 -

note the second inequality is due to the additional DY ZAY
term included in (21). Let us also define RY to be the
equivalent of RX, but with X and X interchanged every-
where with Y and Y respectively. With these we may de-
fine a weighted version of the test statistic 7pgr which is
simply a scaled correlation between the weighted residu-
als R¥ and RY:
(RX ) TRY

Tw-DEF ‘= VN—p——u.
IRX[I2IRY 2
Similar to the homoscedastic case, we set Tyw.pgr = 0 if

the denominator above is zero. We now explain why we

will typically have Tw.per > A(0, 1) if the Y-regression
holds, and hence also by symmetry, if the X-regression
holds. Let us write & := ||RY||2//n. Now

RY =€Y +DY{ZAY(,3Y _BY _IgY)}

(23) XA XY
—D?ZAn".
Thus, we have
RX
6 Tw.per = (¢7)"
(") IRX|2
+ ﬁy _BY _BY TAYZTDY
( ) IRX |2

_ (ﬁY)TAXZTDX R¥
IRX 12

=: (1) + (ii) 4 (iii).
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Under weak conditions, the first term (i) will converge
in distribution to a normal distribution. The two sets of
near-orthogonality conditions (22) in conjunction with
Holder’s inequality give that the two bias terms above sat-
isfy

D)l < var(|BY = BY |, + 11BIh).
|(ii)] < v/nA] 3"

respectively. As explained in Section 3.1, we can expect
that under reasonable conditions we have ||8Y — ﬁy h <
sy~/log(p)/n with high probability. The additional terms
| ,BY i and ||7Y |1 may be controlled similarly to || gy —
;3 |l1; see Theorem 7 below.

Throughout the discussion above, we have assumed that
the Y-model holds. If instead the X-model is correct, the
symmetry of the test statistic allows that analogous re-
sults may be established in the same manner, justifying
that Tw.per has a standard normal distribution under the
null hypothesis if either model is well specified. This is
formalised in the result below, which assumes some addi-
tional moment conditions for the entries in Z, and a con-
dition on the growth rate of p compared to n.

THEOREM 7.
such that

1 n
]P’( S (|DEZi AL + DYz AX|2+‘S)§M>—>1,
nz 1

Suppose there exist constants M, § > 0

and p < n for some ¢ € (0,1) and all n sufficiently
large. Suppose that (Y1) holds with the heteroscedastic
Y-model (18) in place of the linear model and § as above,
(Y2) holds with R = RX, and (Y3)—(Y5) hold. Suppose

A= Ay/2log(p)/n for some A > 1. Then there exists a
constant C > 0 such that

@ P(B"] + A"l <clB’ =BT — L.
and moreover, under the null hypothesis that X 1L Y|Z,
we have Ty.per > N0, 1).

By symmetry, an analogous version of the result holds
with every instance of Y and Y interchanged with X and
X, respectively.

3.3.2 Generalised linear models. With the methodol-
ogy for heteroscedastic linear models introduced above,
we can now set out a DEF test statistic for the case where
we wish to specify the X and Y-models as generalised lin-
ear models. The first step is to run penalised generalised
linear regressions of each of Y and X on Z to obtain co-
efficient estimates f:’ Y ,@X € R”. Let ux and uy be the
respective mean functions (i.e., inverse link functions) so
that if the Y-model is well specified and Y 1L X|Z, we
have E(Y;|Z;) = uy(Z] BY) where B¥ € RP. Further de-
fine variance functions Vy ; for the Y-model; when the Y-
model holds we will have Vy ; (,LLy(Zl-TﬂY)) = Var(Y;|Z;).

We will assume for simplicity that the Vy; are known
and do not vary over the observations, so we may write
Vy = Vy,;. Define the variance function Vx for the X-
model analogously.

To compute a DEF test statistic for generalised linear
models, we take the following steps.

1. Define the adjusted response Y eR" by

7o Yi — py (2T BY)
wy(ZI BY)

and define X analogously.

2. Define diagonal matrix DY € Rxn by lA)l{ =
why (ZF BN {(Vy (uy (ZI B¥)))~!/2, and define DY analo-
gously.

3. Compute test statistic 7gr.m-pEF by forming Tw DEF
but replacing X and Y with their adjusted versions X and
Y, and using the diagonal matrices DX and DY defined
above.

We now explain why we can expect that TgLM-DEF —d>
N(0,1) when X 1L Y|Z and either the Y-model or X-
model is well specified. Suppose that the ¥ -model holds.
Then a first-order Taylor expansion yields

Yi —uy(2] BY) =y (2] BY) — v (2] BY) + ¢
~Z] (BT =B )y (2l BY) + i,

where E(£;|Z;) = 0 and Var(;|Z;) = Vy(uy(Z] BY)).
Thus, ¥; ~ 2T (BY — BY) 4 ¢i/wly (ZT BY) and hence

DYY~ D' Z(B — B7) + e,
where [E(¢|Z) = 0 and Var(¢|Z) = 1.

Now the square-root Lasso regression involving Y used
in step 3 above should have little effect as Y is essentially
noise (see Theorem 7). The corresponding regression for
5(, however, will ensure the resulting residuals are almost
orthogonal to the bias term DY Z(B8Y — BY). Arguing sim-
ilarly to (23), we see that the overall bias should be well
controlled. The variance term e’ RX /||[R¥|> should be-
have roughly like a weighted sum of independent zero-
mean random variables ¢;. The fact that DY is used in the
construction of the residuals RX, however, means they
are not independent of &, and one cannot directly apply
a version of the central limit theorem to the term. While
some form of sample splitting could in principle help with
this technical issue (see, e.g., Jankov4 et al. (2020) where
sample splitting is used in a similar context), as the de-
pendence is weak, a normal approximation should work
well in practice; indeed we show empirically in Section 4
that this is the case.
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3.3.3 Connections to the generalised covariance mea-
sure, the decorrelated score test and the debiased lasso.
An alternative to the approach for DEF inference in high-
dimensional generalised linear models presented in the
previous sections is based on the score test. Considering
the setup of Section 2.2, the key argument that results in
the DEF property for maximum likelihood estimation in
low-dimensional generalised linear models is that 87 de-
fined as the maximiser of E€(Z” B; Y) over B € R” satis-
fies

E{XU(z"p";v))
=E{(x - 2" U(ZTB7; 1)},

where X := argminﬂeRp E{(X — ZT,B)Z} is the best lin-
ear predictor of X based on Z. It is straightforward to see
thatif X 1 Y|Z, the RHS is always zero whenever Z r ,BX
coincides with E(X|Z), and clearly the LHS (and hence
also the RHS) is zero whenever the model (5) is well spec-
ified.

The RHS of (25) may be used as the basis of a score-
type test involving linearly regressing X onto Z, and
forming the empirical covariance of these residuals and
(U(ZT,BY Y;))!_,, where /§Y is a maximum likelihood
estimate of Y. Given that both regressions of X and Y on
Z are performed to produce such a test statistic, it is more
intuitively clear that this would have a DEF property. The
X on Z regression is, however, redundant as the station-
arity conditions of BY dictate that (U(ZZT,BVY; Yi)i_, is
orthogonal to the column space of Z. Thus a regular score
test would have the DEF property for a linear regression
model of X on Z.

In high-dimensional settings the estimate BY will nec-
essarily only yield approximate orthogonality to Z, and so
the regression of X on Z is crucial. In a setting where the
regression for Y-model is a generalised linear model with
canonical link, this leads to a test statistic of the form

(25)

(26) ——}j =zl B Y — ny (2] BY)),

where Tp is a normalisation term that ensures an asymp-
totically unit variance under the null. This is the form
of the generalised covariance measure (GCM) (Shah and
Peters, 2020), the decorrelated score test (Ning and Liu,
2017), and, to a first-order Taylor approximation, the de-
biased Lasso (van de Geer et al., 2014); however, they
differ primarily in their choice of estimates ,é X and ,BvY,
Both the GCM and the decorrelated score construct ,é Y
through only regressing on Z, similarly to our DEF ap-
proach, whereas the debiased Lasso involves a regression
on (X, Z). Like our approach, the X on Z regression in the
GCM is performed without using Y and can be tailored to
a specified X-model, whereas both the decorrelated score
test and the debiased Lasso aim to construct BX so that the

residuals X — Z 8% are orthogonal to the bias in the resid-
uals from Y regression, were the Y-model to be correct.
Our DEF approach instead employs an orthogonalisation
step using the square-root Lasso corresponding to each
of X and Y after initial X and Y regressions have been
performed. A further difference is that whereas (26) in-
volves an empirical covariance between raw residuals, our
DEF approach uses Pearson residuals. This is so that the
square-root Lasso orthogonalisation corresponding to the
true model is performed on data with (approximately) ho-
moscedastic errors, which permits (24) to hold. We have,
however. found that a version of the test with raw residu-
als performs very similarly in terms of power and type I
error control.

4. NUMERICAL EXPERIMENTS

In this section, we explore the empirical properties of
our proposed DEF methodology set out in Section 3.

4.1 Partially Linear Models

Here we investigate the empirical performance of our
DEF confidence interval construction described in Sec-
tion 3.2, and compare it with the debiased Lasso. We con-
sider partially linear regression models of the form

Yi=0X;+ f(Z;, &),

where the goal is to provide a confidence interval for 6.
The nuisance function f, parameter 6 and data (Y;, X;,
Zi,g) ERxR xR xRfori=1,...,n withn =100
are generated as follows. We use the publicly available
gene expression data of Bacillus Subtilis (Dezeure et al.,
2014), which has 71 observations and 4088 predictors.
We first select the p + 1 = 500 predictors with the high-
est empirical variances, and then centre and scale these so
the empirical variances are 1. We then fit a Gaussian cop-
ula model to these predictors to give a 500-dimensional
multivariate distribution P from which we can generate
independent realisations of (X;, Z;). This distribution is
non-Gaussian and has some large pairwise correlations
and thus is helpful for assessing how our methods may

perform in challenging and realistic settings.

To form (X;, Z;)7_, we first generate (W;)!"_, iid p

and then consider 12 settings taking each of the first 12
components of W; as the variable X; of interest, and col-
lecting the remaining components into Z;. For each of the
12 settings, we generate a new 6 ~ U [0, 2], and look at 3
forms for the nuisance function f.

(a) Linear. We set

11
f(Zie) =) ZijBj +ei,
j=1
where the (8 j)}lzl are generated independently and fol-
low a U]0, 2]. distribution.
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(b) Slightly nonlinear. We set
1
[(Zive)=)_ZijBj+&i
j=1
: Al : 50, Zij Ziiy _
with (,BJ)J.:1 asin (a) and Z;; :=2e“V /(1 +e%V) — 1.
(c) Highly nonlinear. We first form

11 11 11
n; = ZZ,-,-ﬂj + Z Zzijzikejk + &i,

j=1 j=1k=1

where the (Zij)}lzl and (,BJ-)}L1 are as above and
(ij)},lk=1- We then set f(Z;, ;) =€ /(1 + ).

In all cases the errors (g;)7_, are taken to be i.i.d. stan-
dard normal. In our implementation of the debiased Lasso
and DEF confidence intervals, we use the square-root
Lasso with parameters Ax and Ay chosen according to
the method of Sun and Zhang (2013). Figures 4, 5 and
6 show the results. We see that the DEF 95% confidence
intervals have significantly better coverage compared to
those based on the debiased Lasso. This is even true in
the linear setting where one might have expected the per-
formances to be similar, suggesting that the strategy of in-
verting hypothesis tests may also be useful when applied
in conjunction with debiased Lasso-based tests. The im-
proved coverage we observe is partly due to the DEF con-
fidence intervals being wider, but they also seem to have
slightly better centring around the true parameter values;

10
I}

86 % 93 % 96 %

98 %

82 %

DEF

-5
L

95 % 93 % 89 % 64 %

L

debiased
2
1

b |
e o ™ W

o
h

96 %

87 %
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in contrast the debiased Lasso confidence intervals dis-
play a substantial bias towards zero in several cases.
Note that the nonlinear settings (b) and (c) do not quite
satisfy the conditions for our theory (see Theorem 5) as
the non-Gaussianity of the Z; would mean that the X-
models are unlikely to be sparse linear models. Never-
theless, the coverage is reasonable if not perfect in these
more challenging settings. Results for analogous scenar-
ios to those studied here but with P replaced by a mul-
tivariate Gaussian with a Toeplitz covariance matrix X
where X j; = 0.917=k are shown in Section D of the Ap-
pendix. In these settings, the X-model is a highly sparse
linear model, and as a result the coverage properties of
both methods are improved; however, the debiased Lasso
still undercovers while the DEF confidence intervals reach
a coverage of closer to 95%. We have observed a very
similar pattern of results for other settings of (n, p).

4.2 Generalised Linear Models

Here we present some simple experiments to inves-
tigate the performance of the DEF statistic TGLM-DEF
for generalised linear models (Section 3.3) where we
take the X and Y-models to be logistic regression mod-
els. We generate data (Y;, X;, Z;) € {0, 1} x {0, 1} x R?
fori =1,...,n with (n, p) = (250, 100) in the follow-
ing way. We first construct a multivariate distribution P
as in Section 4.1, but take p = 250. We then simulate

Z: "~ P, and independently generate ¥; ~ Bern(rr}) and

88 % 98 % 82 %

0% 98 % 46 %

m " .
N

A

FIG. 4. DEF (top row) and debiased Lasso (bottom row) 95% confidence intervals from 500 simulations of each of the 12 linear settings (a).
The light red and blue vertical lines depict those confidence intervals that covered their target parameter 6 shown the red horizontal lines. Darker
vertical lines are confidence intervals that failed to cover their target and are grouped into those whose endpoints were too high, and too low.

Coverage proportions are reported above each of the plots.
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FI1G. 6.
X~ Bern(rrl.X ) where probabilities rrl.Y and JTl-X satisfy
24
logit(w)) =" a;Zi;B;.
j=1

27)

4
logit(7X) =" a;Z;; B},
j=1

L

The highly nonlinear setting (c); the interpretation is similar to that of Figure 4.

91 % 98 % 86 % 97 % 95 % 95 %

0% 98 % 56 % 44 % 55 % 6%

The slightly nonlinear setting (b); the interpretation is similar to that of Figure 4.

90 % 93 % 84 % 96 % 97 % 94 %

1% 72% 53 % 54 % 64 % 20 %

A

-l

with B; tid Ul0,1] and a; =1 — (j — 1)/24. Note that
X; 1 Y;|Z;; however, the X; and Y; are positively corre-
lated, making control of the type I error when performing
the conditional independence test challenging.

We generate 6 sets of (8,Z) pairs, and for each of
these simulate 250 realisations of X and Y. To each of the
6 x 250 datasets, we apply our DEF methodology posit-
ing logistic regression models for the X and Y-models,
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- T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FI1G. 7. Empirical distribution functions (ECDF’s) of p-values con-
structed via the DEF (red) and debiased Lasso (blue) approaches for
null (top) and alternative (bottom) settings described in Section 4.2.
In each panel, the fainter and thinner lines correspond to the 6 setups
with different (8, Z) while the thicker solid lines are aggregate ECDFs.

and also the debiased Lasso for generalised linear mod-
els via weighted least squares (see Section 3.2 of Dezeure
et al., 2015). The results are given in the top plot of Fig-
ure 7. We see that that DEF approach is able to control
the type I error by exploiting the fact that the X-model,
being highly sparse, is relatively easy to estimate. On the
other hand, the debiased Lasso requires accurate estima-
tion of all 24 components of 8 in the Y-model, and as a
consequence is highly anti-conservative here.

To assess the power of the methods, we consider an
identical setup as just described, but X; is added to the
right-hand side of (27) to induce dependence. The bottom
plot in Figure 7 presents the corresponding results. We
see that while the p-values for TgLM.pEF are sub-uniform,
power is reduced compared to the debiased Lasso as ex-
pected; this is the price of the additional robustness of-
fered by the DEF approach.

5. DISCUSSION

In recent years, there has been growing interest in
understanding the performance of statistical procedures

when the models they have been designed for are mis-
specified; see, for example, Buja et al. (2019a), Buja et al.
(2019b). In this work, we consider regression models with
response Y, a single predictor of interest X, and additional
covariates Z € R?. Our goal is assessing the significance
of X after controlling for Z, a problem which may be
equivalently framed as testing for the null hypothesis Hy
of conditional independence Y 1 X|Z. If either the Y or
the X-model is linear or generalised linear, the situation
is favourable for DEF inference.

The DEF property holds for a test statistic 7" if the

following is true. Under Hy : X AL Y|Z we have T LY
N(0,1) when at least one among the ¥ and X-model
holds. Examples of such test statistics include the follow-
ing ones:

(i) Tors, the standard z-statistic for testing signifi-
cance of the parameter corresponding to X as laid out in
Theorem 1;

(i1) Term,1 and Tgrm 2, the modified Wald statistics
with correction factors (see (9)) for the standard error as
discussed in Section 2.2;

(iii)) TpgF in (15) based on a symmetrised version of
the debiased Lasso in a high-dimensional linear model as
discussed in Theorem 5;

(iv) ToLm-DEF based on a symmetrised version of the
debiased Lasso in high-dimensional generalised linear
models as discussed in Section 3.3.

In cases (iii) and (iv), we explicitly model both the X and
Y regressions, and also explicitly build in symmetry into
the test statistics to reflect the symmetry of the null hy-
pothesis. On the other hand, the first two examples, which
relate to low-dimensional settings, are not obviously en-
gineered to have the DEF property. An interesting find-
ing here is that the these classical test statistics implic-
itly use a linear X-model. We may speculate that this hid-
den robustness of classical significance tests to potentially
severe Y-model misspecification has in some way con-
tributed to their popularity and usefulness given that all
models—but as we have established here, not all inferen-
tial tools—are wrong (Box, 1976).

As a separate point of interest, we argue that confi-
dence intervals in high-dimensional settings should be
constructed via inversion of tests instead of relying di-
rectly on asymptotic distribution theory for the relevant
pivot. Supporting empirical evidence is given in Sec-
tion 3.2.

Our work also offers a number of potentially fruitful
directions for further research. For example, it would be
interesting to investigate the power properties of our DEF
procedures. In addition, lower bounds on the power that
can be achieved subject to a DEF property holding would
be worth exploring. Finally, the analogue of the method
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proposed for confidence interval construction via invert-
ing tests seems not to have the DEF property in the con-
text of generalised linear models. It would be very useful
to develop DEF confidence intervals for this setting, or
indeed prove that it is in some sense not possible.

APPENDIX A: PROOFS
A.1 Proof of Theorem 1

The relationship (3) between the ¢-statistic 7 and the
partial correlation p follows easily from the following ob-
servations:

Y 1-P)X
IX—P)X|3’

1 -2
}11 = ”(I—P)X”z )

6=

(z'z)”
(Y 1-P)X)?

I-P)Y[|2=|a-P)Y|? -

= @-P)Y[5(1 - ).

Thus, it suffices to show that /np LY N (0, 1) since this

implies that p £ 0. As 0 is symmetric in X and Y, we
need only show these facts hold assuming (Y1) and (Y2).
Note then we have

_ XTI -Pe
[X=P)el2| M- P)X]2’
where since X 1L Y|Z, the properties of (¢;)}_; hold con-

ditionally on (Z, X). We first show || I—P)e|2//7 > o.
We have

A

1 1 1
28)  —[A=P)e|3=—lel5——&"Pe.
n n n

By the weak law of large numbers, the first term converges
in probability to o2. For the second term, note that due to
(Y1), using the cyclic property of the trace operator,

Ee’Pe =Etr(e’ Pe) = tr(Eee’ P)
= trE{E(ee’ |P)P}] =0’ tr(P) < 0 p.
[
=021

Thus the final term in (28) has expectation tending to 0
as p/n — 0. By Markov’s inequality, this must therefore

go to 0 in probability, and so (I — P)e|2//7 > o as

required.
Next, we claim that
XTI -Pe 1 d )
=——————=|R] Rig; — N(0,07).
T IA=P)Xl 2 L kRie (0.7)

i=1

Note that conditional on (X, Z), the &; are i.i.d. with vari-
ance o2 and third moment bounded by M. Lemma 8 be-
low with R,, = (I — P)X then shows that A, i> N(0,02).
Combining with the previous result and applying Slut-

sky’s lemma gives /np LY N (0, 1) as required

LEMMA 8. Let (gin)i<n and (Rin)i<n be triangular
arrays of random variables and define R,, = (Ry, ...,
Run) for all n. Assume these random variables satisfy the
following conditions:

() e1n, .-, &nn are independent conditional on Ry,;
(i) foralli=1,...,n and some §, M > 0,

E(£in|Rn) =0
E(e},IR,) =02 >0,
E(lein* T |Ry) < M;

(i) P(R, =0) — 0;
(iv) for some § > 0,

1
|Rin*™° if R, #0,
Ay = ||Rn||2+5Z

0 fR=0,

satisfies A, %0, and
1

+
IR ”2+5 ZI Rinl ]l{Rn;é()}—)O
n

Then

n
B, = ||Rn||2_1 Z Rin1iR,+0)€in LY N(0,02).
i=1

PROOF. Let the random sequences above be defined
on a common probability space (2, F, ). Let (n);2, €
N be an arbitrary subsequence. Then we know there exists
a further subsequence (nx(;));2, on which the following
occur:

(a) the convergence in (iv) above happens almost
surely, that is, the probability that

90

TR 12+ Z |Rl”k(l)|

Ry, #0) =0
Tk (l) ” =

lim
[—o00 ||R
equals one.
() X721 PRy, =0) < oo.

By the first Borel-Cantelli lemma, we have that the
sequence of events £ = Rnk(l) # 0 satisfies
P(iminf; o €2;) = 1. Let 2, be the intersection of the
event in (a) above and liminf;_, o €2;. Note that P(£2;) =
1.

Now observe that for each w € €2, writing r := R, (w),
we have r # 0 and

_1 E(Ringin**|Ry =)
(Z 1 E(R?, &7, IR, = 1)) 1+9/2

in ln
Ly lrin PHE(ein Ry =)
(I 2B R, = 1) 97
M 3 il
o2 (Y0 r2 )2’

C(w,n) =
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Thus
lim B(w, ngq)) =0
[—o0

for all w € Q7.

For each n, let I3n :R" x F — [0, 1] be a regular con-
ditional probability given R,, and for w € 2, let P, 4 :
F — [0, 1] be given by P, ,(A) = 15,, (R, (w), A). Denot-
ing expectation with respect to P, , by Ej, 4, note that

?:1 En,w(|Rin8in|2+8)
(Z?:l En,w(R'2 &} ))1+5/2'

in-in

C(w,n) =

From the above, for each w € €2, we can apply the
Lindeberg—Feller central limit theorem for triangular ar-
rays (van der Vaart, 1998, Prop. 2.27) along the sequence
of probability measures given by (Pp,,.)j=, noting that
Lyapunov’s condition implies the Lindeberg—Feller con-
dition. Writing Z ~ A(0, %), we have that for any w €
2, and any continuous bounded function g : R — R,

hm Enk(l),w{g(Bnk(l))} = hm E{g(Bnk(l))|Rnk(1) }(a))
[—o0 =00
=Eg(Z).
Now as P(£2;) = 1, we have

11—1>I£lo E{g(Bnk(l))an(k([) } = ]Eg(Z)

almost surely. Then as the subsequence (ny)2; € N was
arbitrary, we see that in fact

E{g(B,)IR,} 5 Eg(2).

Finally, note that as g is bounded, we may apply domi-
nated convergence theorem to show that

E{g(Bn)} — Eg(2).

As this holds for every continuous bounded g, we have
the result. [J

A.2 Proof and Regularity Conditions for Theorem 2

A.2.1 Regularity conditions. Assume the following
regularity conditions.

() L(xt + z'B;y) > 0 almost everywhere and
Ele(Xt+ ZTB;Y)| < oo forall (¢, B) € ©.
(i) The ratio L(xt; + z7 B1;v)/L(xtr + z! Ba; y) is
not almost everywhere equal to 1 when (¢1, 81) # (2, B2).
(iii) There exists an open set K C ® containing (0, ,BT)
such that E¢(Xt + ZT B) is partially differentiable with
respect to ¢ and with respect to B; for all j, with inte-
grable derivatives given by E{XU (Xt + ZT8;Y)} and
E{Z;U (Xt + ZT B; Y)}, respectively.

A.2.2 Proof of Theorem 2. Suppose first that the Y-
model is well specified. Then as X Il Y|Z, we know from
(ii) that & = 0. Standard arguments show that then (0, ,BY )
maximises E£(t X + ZT,B; Y) over (¢, B) € ® and satisfies
the score equations. Thus, 8 = 7.

Let us now consider the case where the X-model is lin-
ear. We first show that (9, 8) = (0, ,BT) satisfies (7). By
optimality of AT, we must have

(29) E{zU(ZzTg";Y)} =0,

so (t, B) = (0, ,BT) satisfies (7). It suffices to check that
this also satisfies (6). We have

E{xU(z"g";Y)} =E[E{XU(Z"B"; V)| Z}]
=E[E((Z" ¥ +e)U(2"B":Y)IZ}]

(30) =E[E{eU (2T 8", Y)|Z, Y]],

(31) =E[U(ZTB"; Y)E{e|Z, Y}] =0.

using property (29) of BT in (30) and that E{¢|Z, Y} =

E{e|Z} due to the conditional independence X L Y|Z in
the final line.

A.3 Proof and Regularity Conditions for Theorem 3

A.3.1 Regularity conditions. In addition to the regular-
ity conditions laid out in Section A.2.1, we assume the
following.

(1) When the Y-model holds, differentiation and inte-
gration can be interchanged such that the variance of the
score is equal to the Fisher information matrix, that is,
H =V, and moreover EL”(ZT p*;Y) =0.

(i1) The solution (8%, 8*) to the score equations is
unique.

(iii) EU'(ZT B*) #0.

(iv) E|U(ZTB*)| < o0, EIIZ|5|U'(ZT B*)| < oo and
E{X2|U'(ZT B*)|} < oo.

A.3.2 Proof of Theorem 3. When the Y-model holds,
we have H'VH' = H~! and

E{U2(ZT ")}
E(U"(ZTB*)}

as EL”(ZTp*;Y) = 0. We now turn to the case where
the X-model holds. Let ¢ = X — Z7 X and note that
E(g|Z) = 0. We know from Theorem 2 that 6* = 0. Let
us first compute H. We have

—Hy j+1=E{XZ;U (2" p*)}.
Now
E{xZ;U'(z" %)Y, Z}
=Z;U (2" B"E(Z27 ¥ + |1, Z)
=2z,;U'(z" g%z B¥.
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Here we have used the factthatas Y 1L Y |Z, E(e|Y, Z) =
E(e|Z) = 0. Considering now Hiy, we have

E{x?U'(ZzT p*)|Y, Z}
— (Y. 2) + (278U (27 7).
Thus, writing A =E{ZZTU'(ZT p*)} e RP*P, we have
b (B AP+ E[PU(ZT ) (85T A
ABX A
Using standard formulas for the blockwise inverse of ma-

trices in terms of Schur complements, we have that the
first column / of H~! satisfies

—1 _
h= (5)() [E{e2U" (27 )]
Thus
(H'vH™Y,, =h"Vh
(32) _ E{SZUZ(ZTﬁ*)}
- [E{2U(ZT B9}

Now as E(e2|Z) = Var(X|Z) = Var(X) = E(e?), we
have that for any measurable function f of Z with
Elf (). E(f(Z)]e?) < oo,

E{e?f(2)) = E[f(Z)E{e?|Z}]
=E{f(2)|E[e?].
Thus, we have that the quantity in (32) is equal to
EU*z"gny () E{U%(Z" %)}
E(e)(EU'(ZT ) HEU/(Z7 %))
A.4 Proof and Regularity Conditions for Theorem 4

A.4.1 Regularity conditions. In addition to the regular-
ity conditions laid out in Sections A.2.1 and A.3.1, we
assume that ® is compact and that there exists functions
fi, fa: RPH2 [0, co) such that for all (¢, 8) € O,

\U'(tX +Z7B;Y)| < fi(X,Y, 2),

U(tX+Z"B;Y) < (X,Y, Z)
with Efi(X, Y, Z) < oo for j =1,2. We further assume
that EU (ZT/B*) > 0 and that U’ is continuous.

A.4.2 Proof of Theorem 4. From Theorems 2 and 3, it
suffices by Slutsky’s lemma and the continuous mapping
theorem to show that

A E{UA(ZT )
P T o T A
E{U(Z" p*)}
Let us consider j = 2; the arguments are similar for j = 1.
By Slustky’s lemma, it suffices to show that

(33) % S u'x; +zI8) B EU(1Xx + 27 B),

i=1

ln 2. T P 2 T
(34) nZU OX;+Z! ) > EU*(tX + Z"B).

i=1

Theorem 2 of Jennrich (1969) shows that
n

1
—>SU'(tXi +ZI'B) —EU'(tX + ZT,B)‘ -0,

sup
B.ned| " 5
1 n
sup |— Y U>(tX; + Z] B) —EU*(tX + ZT,B)‘ -0
B.ne6|N 2

almost surely. By assumption, @, BY) LS ©@*, B*) =
(0, B*), using Theorem 2 for the final equality. Thus for
any subsequence (m(n));° , there exists a further subse-
quence (/(n))5e ; on which the above convergence is al-
most sure. Let us write f(¢, 8) = EU'(tX + ZT,B). Then
given € > 0, there exists Ny such that for all n > Ny,

l
1 m(n) R R R
T 2 UOxi+ 2] B) — £ (0.5)
m(n) |
lm(n) €
< sup ZU/(tXi—i-ZiT,B)—f(f’,B) <z
(B.HeB®tmn) ;= 2

Note that § and ,3 Y depend on the sample size, though
we have suppressed this in the notation. Meanwhile, by
continuity of U’ and the continuous mapping theorem, on
along (;y(n));=; we have

U'bGx+z"pY) - U'(z" g

almost surely. Thus by dominated convergence, we have
that

f0.8")— £(0.8)

along the same subsequence, and so there exists N» > Nj
such that for all n > N,

1£(6,8") = £(0, %) <e/2;

note that 6 and /§ Y above are evaluated at sample sizes
Iy for n > N;. Putting things together, we see that on

the subsequence (I,y(n)); =, We have

lm(n)
Y U'GXi+ 2] B)—EU' (2" BY)
lmany =

almost surely. As the original subsequence (m(n));2,
was arbitrary, we see that (33) holds. The argument to
show (34) proceeds similarly.

A.5 Proof of Theorem 5

By symmetry, it is enough to show the result when (Y1)
and (Y3)—(Y6) hold. On the event where R # 0, we have

(Y - 7287 (X - 78%)

IX — ZBX||
R” R RT

= Z(BY — )+ e.
IR ( ) IR[l2
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The KKT conditions of the Lasso regression of X on
Z imply I1ZTR||oo/IIR]2 < /nix. Thus by Holder’s in-
equality and (Y4), we have that

~Y
— B )|/IR]I21 R0y
~Y
< |R"Z| 8" — B |,/IRl2Lrz0)

= Op(y/log(p) x sy\/log(p)/n).

IRTZ(BY

From (Y3) we see that [R7Z(BY
0.

The proof that RTe/||R||2]1{R¢0} —d> N(0, 02) is iden-
tical to the argument used in the proof of Theorem 1 and
uses Lemma 8 (see Section A.l). Slutsky’s lemma and
(Y5) then yield the desired result.

Y
= B )I/IR[21 R0} —

A.6 Proof of Theorem 7

Let Y = DYS? and let Z = (DYZAY,DXZAX). Note
that Y = Z9 +&?, where 9 € R?” with 9; = (8" — g¥);
for j < p and ¢#; =0 for j > p. We seek to bound ||1§||1
where

§ € argmin{||Y — Zbl2/v/n + A[b]1}.
beR2p

Now writing & = |Y — Z&||»//7, we have that

B € argmin{|[Y — Zb[3/(2n) + A5 ||b]l1 ).
YeR2p

This may be seen from examining the KKT conditions of
each of the optimisations, which are identical, and take
the form

IVT v v oV “
“ZT(Y - Z9) = A v,
n

where V|| <1 and v; = sgn(éj) for all j such that
B j # 0. Dotting both sides with ¢ — ¥, we obtain

1, v 12 Lo

—|Z@ =)+ 25191
(35)

. 1 S0 T LY
=ico|Pl+ ;Ilﬁ — 02" e" |

where we have used Holder’s inequality to bound Isz? | <
IVllooll?llt < I9]l1 and 1Z(» — D) e’| < o — Bl x
IZT Y || oo, and also the fact that #7v = ||#];. We now
aim to show that with high probability,

7T eY
(36) 1278 Noo _
no
for a constant a < 1, where recall that A = A/2log(p)/n
with A > 1. We would then have from (35) that on the

event in question,

13111 < 191 4+ alld = D1 < A+ a)lld 1 +alldl1,

by the triangle inequality, whence

v 14+a 1+a A
191 = 2l =—18" = 8"l

giving the result.

We first observe that by Lemma 2 of Belloni, Cher-
nozhukov and Wang (2011) and also equation (13)
therein, for any B > 1,

IP)(MZTeYnoo/n B

/210gp>
<B — 1.
le¥lla//n n

Now by Lemma 3.1 of van de Geer (2016), writing

A MBY —BY I, \?
=2 —_——— +1) =1
’ J(znﬂnz/ﬁ 1) -t

we have that the event

L {MZT e/
" le¥ll2/s/m —

satisfies 21, C Q2, given by

Q- {Ilsyllz/«f 1 }
2n =

o 1-6
Next for any 1 > a > 1/A, we have writing

- { 1Z"e" |oo/n _
" NS
that 23,, € 1,. Thus on 23, we have that (36) holds.

Now by the weak law of large numbers and the con-

(37)

< —m}

a(l —a)x}

tinuous mapping theorem, |&¥ |2/ /n % &. Moreover

MIBY — BY 11 2 0 due to (Y3) and (Y4). Thus from (37),
we see that P(23,) — 1, proving the first part of the re-
sult. The second part of the result is an easy consequence
of the first and follows from the same arguments as used
to prove Theorem 5.

APPENDIX B: COMPUTATION OF THE
SQUARE-ROOT LASSO

Here we explain how the square-root Lasso

38 = —IIY = ZBll2 + & }
38 B a;ge%ll}n{\/-ll Bll2+ Bl

may be computed easily given regular Lasso solutions

69 A i=agminf Y- g3+ 10 |
BeR?P

As we will see, a square-root Lasso solution path may be
derived from any Lasso solution path via a nondecreasing
reparametrisation of the tuning parameter.

Now the minimisers ,@ S4()) and Bre(y) need not be
unique, but the fitted values Z,ére(y) of the regular Lasso
are always unique. To see this, observe that fixing y > 0
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and taking 81 and B as two solutions to (39) achieving
minimum value ¢*, we have due to the triangle inequality
and strict convexity of || - ||% that

< —|Y-2(8" +8?)2|3
(1D +82)/2],)

(Y =2V + Y - Z6))

+ ¥-
>

(40)

l\)l"
|>» Q|-

+ 5BV +18%]) =

Thus equality must hold throughout, which can only be
the case if (V) = g2,
Let us write

6% i= 1Y = 24,
51° ;:ﬁny—z,sy ”

note that as the fitted values are unique, the latter is
uniquely defined though the former may not be.

To establish the relationship between the Lasso and
square-root Lasso solutions, observe that the KKT con-
ditions of (38) and (39) are given by

1
—Z (Y- Z,B 1= Dy,
na/\

lzT (Y Zﬁre) I‘C

y 9

where ||f);q||OO <1, and f);q agrees in sign withA Sﬁ;q on
its active set (and similarly for v;7), provided a)bq > 0.
Comparing the KKT conditions above, we see that any
Lasso solution B is a square-root Lasso solution ﬁiq with
A=y/o) (providedA 6,7 > 0). Conversely, any square-
root Lasso solution ﬂ;q is equal to a Lasso solution 8
with y = 16,7, provided 6, > 0.

LEMMA 9. Let y* be maximal such that 6;6 =0.The
function y +— y /O’ defined on (y*, o0) is nondecreas-
ing.

The result above shows that given a square-root Lasso
tuning parameter A, we may find via a bisection search

the Lasso tuning parameter y such that y /c};‘3 = X and
thereby obtain a square-root Lasso solution.

B.1 Proof of Lemma 9

The conclusion is equivalent to the following: for any
Y1, Y2 € (y*, 00) with

we have y| < y». Let us write (V) = ,3“’ and @ = },2,
noting that while these need not be unique, the corre-
sponding fitted values and £;-norms are. Then as 8 and
B®@ are square-root Lasso solutions at A1 and A» respec-
tively, we have that

1
TV =280+ 1

1
< IV =267,

(41) |
TV =282, + 108,

1
= IV =280, + 1] 8V,

Adding these inequalities, we deduce that
MlBV + 220 BP0y = M B2N + 2l BV
Rearranging, we obtain

G2 =20 (182, = 18V1,) = 0

and so dividing by A» — A1 > 0 we conclude that
I ,6(2) I > | B |;. Substituting this into (41), we see that

ol : € <o soy = orekl < arekz = y» as required.

Y V2’

APPENDIX C: CONFIDENCE REGIONS FOR w” g%

In this section, we consider a linear model Y = ZS" + ¢
and consider the problem of finding a confidence inter-
val for w” 8 for a given w € R?. When w = e; for a
standard basis vector e¢; € R”, the methodology set out
in Section 3.2 may be used to obtain a confidence region
even in the case where only a partially linear model holds.
For more general w, these methods must be adapted and
here we will need to assume the linear model above holds
with 8 sufficiently sparse. We describe these modifica-
tions below.

First, consider testing a null hypothesis Ho: w’ 0 =
0. Let P = ww?/||w||3. Note w? g% =0 if and only if

(I — P)B% = B9, so the null model may be expressed as
(42) Y=(-P)ZB° +e.

Let

43) B =argmin{|Y —Z( — P)B,//n+ Bl }.

BeRP

Note that under Hy we should have

18— 8%, = Op(sy/log(p)/n)

for A = Ay/2log(p)/n with A > 1 and where s = |{j :
,8;.) # 0}]. Also let R € R" be the vector of residuals from
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the regression

(44)  argmin{|Zw — Z(I — P)B|,/~/n+ 1Bl }.
BeRP

Note that R thus defined enjoys a near-orthogonality
property of the form (1 — P)ZTR/||R||2 < /n\. The rea-
son for aiming to orthogonalise Zw is that were we to
have w! B0 # 0, the residuals from the regression (43)

93% 95% 92% 93% 89%

Al 84% 7% 68% 69% 66%

debiased

should have expectation close to Z PB° o« Zw. Thus a test
statistic involving dotting these residuals with something
close to the direction of Zw should be large in magnitude
under an alternative.

We thus consider the test statistic given by

R7T{Y — Z(I — P)B}
IRI2IY —Z(I — P)Bl2

45  T=van

90% 92% 93% 88% 90% 92%

69% 67% 67% 76% 78% 84%

I

FIG. 8. The linear setting (a) with Toeplitz design; the interpretation is similar to that of Figure 4.

93 % 90 % 93 % 94 %

77 % 75 % 64 % 70 % 69 %

debiased

91 % 93 % 94 % 91 % 91 % 92 %

68 % 69 % 72% 68 % 73 % 78 %

FI1G. 9. The slightly nonlinear setting (b) with Toeplitz design; the interpretation is similar to that of Figure 4.
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Writing 6 = |Y — Z(I — P)B|2//n, we have

1 R | P r R
=——&e+-(f— [—P)ZT ——

GRS T FP A U =P gr
=: (1) + (ii).

Term (i) will be well approximated by a standard nor-
mal under reasonable conditions, and term (ii) may be
bounded in absolute value using an argument similar to
that presented in Section 3.1. Thus under appropriate con-

ditions, we will have T % A7(0, 1).
Now consider testing Ho(?): w’ ,BO =t. Observe that

Y —tZw/|w|3 =ZB° — ZPB° + & = Y,

so the new response Y respects the null model (42). We
may thus test Hp(#) using test statistic 7; defined as in
(45) but computed using the response Y in place of Y.

Then to form a 1 — « confidence region for w” 8% we
can simply invert the tests as in Section 3.2:

Ry :={t eR:|T;| > z4}.

Provided IF’(HO(wT,BO) rejected) > 1 — «, the confidence
region R, will satisfy P(w” 8% € Ry,) > 1 — a; see Corol-
lary 6.

We note that compared to the confidence regions con-
structed in Cai and Guo (2017), which are introduced
primarily for theoretical purposes, our confidence region
does not require prior knowledge of the the inverse covari-
ance of Z, the sparsity of ﬂo, or the noise level Var(eq).
Our construction is related to that in Zhu and Bradic
(2018b), but where we require sparsity of 8°, Zhu and
Bradic (2018b) instead require sparsity of a projection
of the quantity ‘estimated’ by the minimiser in (44). In
fact, with such an assumption, it is straightforward to see
that we can still expect T to have an asymptotically nor-
mal distribution regardless of the sparsity of 8° by revers-
ing the roles of (43) and (44): we only use the former to
establish approximate orthogonality while we exploit as-
sumed small estimation error of the latter. An additional
difference is that the approach in Zhu and Bradic (2018b)
requires solving a family of large-scale linear programs,
whereas our region requires only standard software for
computing the Lasso.

APPENDIX D: ADDITIONAL NUMERICAL RESULTS

Here we present the results of analogous numerical ex-
periments to those described in Section 4.1, but with the
multivariate distribution P used for generating predictors
(X;, Z;) replaced with a multivariate Gaussian distribu-
tion \V,,(0, ). We take the covariance matrix X to have a
Toeplitz design with X j; = 0.9/=*| Note that the inverse
of ¥ is tridiagonal and so the X-model is a sparse linear
model (with sparsity level sy = 1). The settings consid-
ered here thus satisfy the conditions of Theorem 5.

We see that compared to the more challenging set-
tings investigated in Section 4.1, the coverage proper-
ties of both confidence interval construction methods are
improved; however, the debiased Lasso still undercovers
while the DEF confidence intervals reach a coverage of
closer to 95%.
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