
Statistics Surveys
Vol. 16 (2022) 238–270
ISSN: 1935-7516
https://doi.org/10.1214/22-SS139

Kronecker-structured covariance models
for multiway data∗

Yu Wang, Zeyu Sun, Dogyoon Song and Alfred Hero
University of Michigan,
Ann Arbor, MI 48109

e-mail: wayneyw@umich.edu; zeyusun@umich.edu; dogyoons@umich.edu; hero@umich.edu

Abstract: Many applications produce multiway data of exceedingly high
dimension. Modeling such multi-way data is important in multichannel sig-
nal and video processing where sensors produce multi-indexed data, e.g.
over spatial, frequency, and temporal dimensions. We will address the chal-
lenges of covariance representation of multiway data and review some of
the progress in statistical modeling of multiway covariance over the past
two decades, focusing on tensor-valued covariance models and their infer-
ence. We will illustrate through a space weather application: predicting the
evolution of solar active regions over time.

MSC2020 subject classifications: Primary 62H12, 60H15, 60H20; sec-
ondary 62P12.
Keywords and phrases: Tensor valued data, multiway graphical Lasso,
high dimensional statistics, space weather applications.

Received January 2022.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
2.2 Multiway data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
2.3 Multiway covariance representations for diffusion processes . . . 241

3 Multiway covariance models . . . . . . . . . . . . . . . . . . . . . . . . 243
3.1 The Kronecker product covariance model . . . . . . . . . . . . . 244
3.2 Kronecker covariance decomposition and Kronecker PCA . . . . 245
3.3 Kronecker graphical Lasso and tensor Lasso . . . . . . . . . . . . 247
3.4 Tensor graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . 248
3.5 Sylvester graphical Lasso and SG-PALM . . . . . . . . . . . . . . 249

4 Illustrations and performance comparisons . . . . . . . . . . . . . . . . 250
4.1 Theoretical guarantees . . . . . . . . . . . . . . . . . . . . . . . . 250
4.2 Numerical experiments with synthetic data . . . . . . . . . . . . 252

4.2.1 Two generative models for spatio-temporal dynamics . . . 252
∗This work was supported in part by the SOLSTICE Drive Center funded by NASA

and National Science Foundation under grant 80NSSC20K0600, the Army Research Office
under grants W911NF1910269 and W911NF1510479, and by the National Nuclear Security
Administration under grant DE-NA0003921.

238

https://imstat.org/journals-and-publications/statistics-surveys/
https://doi.org/10.1214/22-SS139
mailto:wayneyw@umich.edu
mailto:zeyusun@umich.edu
mailto:dogyoons@umich.edu
mailto:hero@umich.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


Multiway covariance models 239

4.2.2 Experiments with synthetic data: Performance comparisons 254
4.3 Application to predicting evolution of solar active regions . . . . 259

5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 262
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

1. Introduction

Probabilistic modeling of data is ubiquitous in statistics and machine learning,
and arguably, estimating dependencies across covariates is one of the most fun-
damental modeling tasks. While first order “mean field” analysis can describe
typical mean behavior of covariates, higher order analysis is required to capture
interactions between covariates. Among the latter, covariance estimation is a
second order analysis that has been extensively studied for empirically estimat-
ing the covariance or the inverse covariance (precision) matrix from multivariate
data. Besides being of interest in their own right, covariance estimates are of-
ten a prerequisite in other applications, including: dimensionality reduction;
multivariate clustering; supervised classification; linear prediction; and model
selection [42, 63, 101, 5, 24, 79, 80, 81].

A striking feature of many modern datasets is their high-dimensionality and
multiway nature, often involving a huge number of multi-indexed variables rep-
resented as tensor-valued data [46, 48]. Second order analysis of such tensor-
valued data poses significant modeling and computational challenges due to the
intrinsically high computational complexity of manipulating tensor represen-
tations [35]. To overcome these challenges, several methodological approaches
have been developed over the past 50 years that reduce model complexity by
imposing sparse or low-dimensional dependency structures in the covariance or
inverse covariance. These include Kronecker generalizations of PCA (Kronecker
PCA) [84, 30] and the matrix normal model [19], where the covariates are mul-
tivariate normal with multiway covariance structure modeled as a Kronecker
product of matrices of much lower dimension. These Kronecker representations
of covariance can have Kronecker factors that are either dense [22, 95] or sparse
[2, 85].

The introduction of such parsimoniously structured tensor covariance mod-
els, and fast iterative computational algorithms for inferring these models, have
made tensor covariance models more practical for many applications. In particu-
lar, such models have been applied to image classification [25], spatio-temporal
image processing [30, 32, 65, 20], bioinformatics [83, 31, 82, 21], atmospheric
science [54, 33], neuroscience [91, 78, 7], medical imaging [58, 57], and digital
advertising [34]. Several other applications of multiway covariance models are
discussed in the unpublished survey [76].

In this article, we survey some of the recent advances in second order anal-
ysis of multiway data. The focus is on Kronecker structured representations
and approximations to multiway covariance. After introducing some notation
in Section 2, we describe how multiway covariance structure arises in different
applications, including in linear prediction of dynamic processes whose evolu-
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tion is governed by differential equations. We then overview recent approaches
to Kronecker modeling and estimation of multiway covariance and inverse co-
variance in Section 3. In Section 4, we summarize and compare these Kronecker
models and estimators based on their theoretical performance properties and
a numerical comparison study. The numerical study focuses on model compar-
ison for an important application in the domain of space weather: prediction
of solar active region evolution over time. In Section 5, we conclude the paper
with a few open research directions in second order multiway data modeling.
A software package [92] accompanies this survey with code implementing the
methods described herein.

This survey is intended to complement previous surveys on aspects of high
dimensional covariance modeling important to practitioners. These include sur-
veys on robust structured covariance estimation [96, 44] and regularized covari-
ance estimation [69, 49, 13]. Here, we focus on the class of Kronecker structured
covariance models.

2. Background

2.1. Notation

Throughout the paper, scalars are denoted by lowercase letters, vectors by
boldface lowercase letters, and matrices by boldface capital letters. All matrix
and vector quantities are assumed to be real valued, although all the multi-
way covariance models discussed in this paper straightforwardly generalize to
complex valued data. For a matrix A = (Ai,j) ∈ R

d×d, the spectral norm
is denoted as ‖A‖2, the Frobenius norm as ‖A‖F , and the nuclear norm as
‖A‖∗. We define ‖A‖1,off :=

∑
i �=j |Ai,j | as its off-diagonal �1 norm. For ten-

sor algebra, we adopt the notations used by Kolda and Bader [46]. K-th or-
der tensors are denoted by boldface Euler script letters, e.g, X ∈ R

d1×···×dK ,
with the (i1, . . . , iK)-th element denoted as X i1,...,iK . A fiber of a tensor is a
higher order analogue of a row or a column of a matrix. It is obtained by fix-
ing all but one of the indices of the tensor. The vectorization of X , denoted
as vec(X ), stacks the entries of the tensor into a d-dimensional column vec-
tor (X 1,1,...,1,X 2,1,...,1, . . . ,X d1,d2,...,dk

)T , where d =
∏K

k=1 dk. Matricization,
also known as unfolding, is the process of transforming a tensor into a ma-
trix. The mode-k matricization of a tensor X , denoted by X (k), arranges the
mode-k fibers to be the columns of the resulting matrix. The k-mode product
of a tensor X ∈ R

d1×···×dK and a matrix A ∈ R
J×dk , denoted as X ×k A,

is a tensor of size d1 × · · · × dk−1 × J × dk+1 × . . . dK , with entries defined as
(X ×kA)i1,...,ik−1,j,ik+1,...,iK :=

∑dk

ik=1 X i1,...,iKAj,ik . We define the K-way Kro-
necker product (KP) as

⊗K
k=1 Ak = A1 ⊗ · · · ⊗AK , and the K-way Kronecker

sum (KS) as
⊕K

k=1 Ak = A1⊕· · ·⊕AK =
∑K

k=1 I[d1:k−1]⊗Ak⊗I[dk+1:K ], where
I[dk:�] = Idk

⊗ · · · ⊗ Id�
. For the case of K = 2, A1 ⊕A2 = A1 ⊗ Id2 + Id1 ⊗A2.

Statistical convergence rate will be denoted by the OP (·) notation, which is
defined as follows. Consider a sequence of real random variables {Xn}n∈N defined
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on a probability space (Ω,F , P ) and a deterministic (positive) sequence of reals
{bn}n∈N. By Xn = OP (1) is meant: supn∈N P (|Xn| > K) → 0 as K → ∞,
where Xn is a sequence indexed by n. The notation Xn = OP (bn) is equivalent
to Xn

bn
= OP (1). By Xn = op(1) is meant P (|Xn| > ε) → 0 as n → ∞ for any

ε > 0. By λn 	 bn is meant c1 ≤ λn

bn
≤ c2 for all n, where c1, c2 > 0 are absolute

constants. The asymptotic notation an = O(bn) means lim
∑

b→∞ |an

bn
| ≤ C for

some constant C > 0, while cn = Ω(dn) means lim infn→∞ | cndn
| ≥ C ′ for some

constant C ′ > 0.

2.2. Multiway data

Multiway data frame Multiway data are data that are indexed over multiple
domains, called modes, and can be represented as a tensor-valued data frame.
The number of modes is called the order of the tensor. Examples of multiway
data include 3D images of the brain, where the modes are the 3 spatial di-
mensions, and spatio-temporal weather imaging data, a set of image sequences
represented as 2 spatial modes and 1 temporal mode. One can also obtain a
multiway data by stacking independent, identically distributed data samples.

Multiway patterned covariance matrix Given a multiway data tensor of
order K, the covariance matrix of the vectorized data has a special patterned
structure. For instance, suppose that X ∈ R

d1×d2 is a multiway data frame of
order 2, (i.e., a matrix). Then the covariance matrix of vec(X) is a d1d2 by d1d2
matrix Σ = (Σij) that corresponds to the covariance of the i-th and the j-th
rows of X. See Figure 1 for a visual illustration. As a special case, if the rows
of X are independent and identically distributed with d2 × d2 covariance Σd2 ,
then cov(X) = Id1 ⊗ Σd2 .

Utility of multiway data for prediction Arguably, regression analysis is
one of the most straightforward approaches for prediction as it attempts to es-
timate the relation between the covariates and the response variable. Despite
its long and fruitful history, traditional regression techniques often fall short of
handling multiway data encountered in modern applications, due to the ultra-
high data dimensionality as well as complex data structures. Recently, several
tensor regression models were proposed to exploit the special structure of ten-
sor covariates [105, 34] or of tensor responses [71, 53, 106]. These models try
to utilize the sparse and low-rank structures in the tensors – either in the re-
gression coefficient tensor or the response tensor – to boost performance on the
regression task by reducing the number of free parameters. Similarly, in Sec-
tion 4.3, we demonstrate the utility of sparse precision/covariance matrices in
linear prediction for tensor-valued data.

2.3. Multiway covariance representations for diffusion processes

While multiway representations have been successfully applied to many different
types of data, they are particularly interpretable when modeling data generated
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Fig 1. Multiway data and patterned covariance.

from physical diffusion processes. In particular, consider a random process u
whose sample paths obey partial differential equations of the form

Du = f in Ω,

u = g on ∂Ω,
(1)

where u is the unknown physical process, f is the driving process (e.g., white
Gaussian noise), g is the function value of u on the boundary, D is some differ-
ential operator (e.g, a Laplacian or an Euler-Lagrange operator), and Ω is the
domain. After finite difference discretization over the domain Ω, the model is
equivalent to (ignoring discretization error) the matrix equation

Du = f .

Here, D is a sparse matrix since D is a differential operator. Additionally, as
shown below, D admits the Kronecker structure as a mixture of Kronecker sums
and Kronecker products.

The matrix D reduces to a Kronecker sum when D involves no mixed deriva-
tives. As an example, we consider the Poisson equation, an elliptical PDE
that governs many physical processes including electromagnetic induction, heat
transfer, and convection. On a rectangular region Ω = (0, d1) × (0, d2) in the
2D Cartesian plane, the Poisson equation with homogeneous Dirichlet boundary
condition is expressed as

Du = (∂2
x + ∂2

y)u = f in Ω,

u = 0 on ∂Ω
(2)

where f : Ω → R is the given source function and u : Ω → R is the unknown
process of interest. Using the finite difference method with a square mesh grid
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with unit spacing, the unknown and the source can be expressed as d1-by-d2
matrices, U and F, respectively, that are related to each other via

Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j = Fi,j (3)

for any interior grid point (i, j). Defining n-by-n square matrix

An =

⎡⎢⎢⎢⎢⎣
2 −1

−1 2
. . .

. . . . . . −1
−1 2

⎤⎥⎥⎥⎥⎦ ,

the above relation can be expressed as the (vectorized) Sylvester equation with
K = 2:

(Ad1 ⊕ Ad2)u = f , (4)

where u = vec(U), f = vec(F). Note that An is tridiagonal. In the case where f
is white noise with variance σ2, the inverse covariance matrix of u has the form
cov−1(u) = σ−2(Ad1 ⊕ Ad2)T (Ad1 ⊕ Ad2) and hence sparse.

More generally, any physical process generated from Equation (1) also has
sparse inverse covariance matrices due to the sparsity of general discretized
differential operators. Note that similar connections between continuous state
physical processes and sparse “discretized” statistical models have been estab-
lished by Lindgren, Rue and Lindström [56], who elucidated a link between
Gaussian fields and Gauss-Markov random fields via stochastic partial differen-
tial equations.

In some applications, e.g. weather forecasting and multivariate time series,
the data frame X can be modeled as having been generated by an underlying
dynamical process obeying the aforementioned physical diffusion model. This
model can be used for various tasks such as forecasting, classification, and two-
sample comparison. For example, when the dynamical model is of known linear
form, the Kalman filter can be used for these tasks [8]. In the case of non-linear
dynamics, the ensemble Kalman filter (EnKF) [23] is applicable. Recently, a
sparsity-penalized EnKF was introduced for modeling non-linear state dynam-
ics [39]. This EnKF was implemented with a sparse inverse covariance estimator
in order to stabilize the error covariance update of the Kalman filter. When
the state is high dimensional and tensor-valued, [89] used Kronecker-structured
models for the (inverse) covariance and demonstrated improvements in tracking
certain classes of dynamical models. A similar application of Kronecker covari-
ance modeling will be further illustrated in Section 4.2.

3. Multiway covariance models

In this section, we survey several covariance models for multiway data and review
associated estimation algorithms that have been introduced in the literature.
The common assumption of these models is that the multimodal covariance (or
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Table 1

Overview of the models and the algorithms reviewed in Section 3. Here, Σ and Ω denote the
covariance and the inverse covariance (precision), respectively. For the sake of brevity, the

model in the second column is described for K = 2.

Model Algorithm Note

KP-Covariance
(Section 3.2) Σ =

∑r
l=1 Al ⊗ Bl

KPCA [84] Algorithm requires K = 2
Robust KPCA [31] Algorithm requires K = 2

AdaKron [52] Analysis restricted to K = 2
TRCM [2] Analysis restricted to K = 2

Gemini [104] Analysis restricted to K = 2

KP-Precision
(Section 3.3) Ω = A ⊗ B KGlasso [2, 85] Analysis restricted to K = 2

Tlasso [59] Applicable to K ≥ 2

KS-Precision
(Section 3.4) Ω = A ⊕ B TeraLasso [33] Applicable to K ≥ 2

BiGlasso [43] Analysis restricted to K = 2

Sylvester GM
(Section 3.5) Ω = (A ⊕ B)2 SyGlasso [91] Applicable to K ≥ 2

SG-PALM [90] Applicable to K ≥ 2

inverse covariance) of multiway data has a factorized representation involving
a Kronecker product or a Kronecker sum of smaller matrices, or as a linear
combination thereof. Each of the smaller matrices corresponds to a single mode
of data and these are often interpreted as mode-wise (inverse) covariances. The
models and the algorithms reviewed in this section are summarized in Table 1.

3.1. The Kronecker product covariance model

For a K-mode tensor-valued data frame, the Kronecker product (KP) model of
its covariance matrix Σ is

Σ = Σ1 ⊗ · · · ⊗ΣK (5)

where Σk ∈ R
dk×dk , k = 1, . . . ,K are symmetric positive-semidefinite matrices,

which are called the Kronecker factors of Σ.
The KP model with K = 2 imposes a simple two-way covariance representa-

tion recast as Σ = A ⊗ B, arguably the simplest non-trivial one. Then, under
this model, each d2 × d2 block [Σ]ij of the d1d2 × d1d2 patterned covariance
matrix Σ shown in Figure 1 is the same matrix, namely [Σ]ij = B, up to a mul-
tiplicative factor. Despite its apparent simplicity, the KP model with K = 2 has
been used effectively in many different applications, including spatio-temporal
data frames arising in MIMO wireless communications [100, 95], geostatistics
[16], genomics [98, 38], face recognition [102], and recommender systems [2].

The KP model was introduced by Dawid [19] in the context of the matrix
normal distribution for data with K = 2 tensor modes. An alternating opti-
mization algorithm for maximum likelihood estimation (MLE) of the K = 2
Kronecker factors was introduced by Mardia and Goodall [61] and analyzed by
Dutilleul [22]. A different approach based on the covariance matching principle
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was taken by Strobach [75], who cast the problem of estimating the K = 2
Kronecker factors as a minimum Frobenius norm covariance matching problem:

min
A,B

‖S − A ⊗ B‖2
F . (6)

Using the fact that the matrix Frobenius norm is invariant to permutation
of the entries, the above optimization (6) boils down to finding the rank-one
approximation to the matrix R(S), where R is the rearrangement-permutation
operator that maps the square matrix S ∈ R

d1d2×d1d2 to a rectangular matrix
R(S) ∈ R

d2
1×d2

2 [87]. The minimizers of (6) can thus be expressed in closed form
using the left and right principal components u and v of R(S) as Â = R−1(u)
and B̂ = R−1(v), and the resultant estimator can be represented as Σ̂ = Â⊗B̂.
Compared to the MLE, this least square estimate does not require an iterative
algorithm, but is generally not asymptotically efficient. A weighted Frobenius
norm formulation based on (6) was considered by Werner, Jansson and Stoica
[95], leading to an asymptotically efficient estimator under the matrix normal
assumption.

KP models with K > 2 also arise in applications and are explored in the
literature. Mardia and Goodall [61] considered a spatio-temporal multivariate
environmental monitoring data set and adopted a KP covariance with K = 3.
They were the first to propose a maximum likelihood estimation via triple itera-
tion. As there were insufficient replicates, they simplified the model by assuming
the temporal components were statistically independent. Galecki [26] discussed
five 3-way KP models with different combinations of covariance factor struc-
tures, such as identity, compound symmetry, AR(1), and unstructured factors.
Akdemir and Gupta [1] provided a heuristic method for K ≥ 2, generalizing
the flip-flop method originally proposed for matrices. The convergence of the
algorithm was empirically verified using simulations with K up to 4, and using
real world data with K up to 3. Hoff [36] discussed maximum likelihood estima-
tion and Bayesian estimation for tensor normal models for general K, the latter
approach verified on a 4-way international trade dataset. We note here that,
in both Hoff [36] and Ohlson, Ahmad and Von Rosen [67], the KP model was
referred to as the “separable covariance” model. An empirical study of the three-
stage iterative algorithm for MLE of KP structured covariance with K = 3 was
given by Manceur and Dutilleul [60], who provided numerical and simulation
results showing the convergence of the algorithm. Pouryazdian, Beheshti and
Krishnan [70]) proposed to select the order of canonical decomposition (CAN-
DECOMP/PARAFAC) in modeling 3-way data under the assumption that the
noise covariance is a KP model with K = 3 modes, justified by the structure
of electroencephalogram (EEG) data spanning the time, frequency, and space
dimensions.

3.2. Kronecker covariance decomposition and Kronecker PCA

There is a less restrictive model than (5) that approximates the covariance as a
sum of several Kronecker products. For example, when K = 2, the covariance
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under this model is expressed as

Σ =
r∑

l=1

Al ⊗ Bl, (7)

where r ≥ 1 is a positive integer, Al ∈ R
d1×d1 and Bl ∈ R

d2×d2 for all 1 ≤ l ≤ r.
The sum of Kronecker product representation (7) is universal in the sense that
any matrix Σ ∈ R

d1d2×d1d2 can be expressed as a sum of r Kronecker products
with r ≤ min{d2

1, d
2
2} in view of SVD, cf. Van Loan and Pitzianis [87, Section

2]. Indeed, even when K ≥ 3, every tensor Σ ∈ R
d×d can be represented by a

sum of Kronecker products Σ =
∑r

l=1 A(1)
l ⊗ · · · ⊗ A(K)

l where d =
∏K

k=1 and
A(k)

l ∈ R
dk×dk for all k ∈ [K] and l ∈ [r]. The minimum positive integer r such

that Σ admits a representation of the form (7) is called the (tensor) rank of Σ
[46]; note that the KP model from Section 3.1 corresponds to the special case
with tensor rank 1 with additional constraints enforcing the factor matrices to
be symmetric positive semidefinite.

A model of the form (7) (with small r) allows for a compact, yet quite flexi-
ble, representation of the matrix Σ. Recently, Dantas, Cohen and Gribonval [18]
investigated the utility of this model for hyperspectral image denoising through
the lens of dictionary learning. We remark that they used the model (7) to ap-
proximate the first-order “mean-field” behavior of data rather than its covari-
ance (cf. Section 1), and can be considered a higher-order analogue of low-rank
matrix models.

In the context of second-order (covariance) analysis, Tsiligkaridis and Hero
[84] proposed a penalized optimization approach for estimating a (tensor) rank
r Kronecker product decomposition (7) of covariance, proposing an estimate
that solves

min
{Al,Bl}

∥∥∥∥∥S −
r∑

l=1

Al ⊗ Bl

∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥
r∑

l=1

Al ⊗ Bl

∥∥∥∥∥
∗

for a user-supplied regularization parameter λ > 0. The solution to this penal-
ized optimization is specified by the first r principal components of the singular
value decomposition (SVD) of R(S) where r is determined by λ through a soft-
thresholding of the SVD spectrum. In analogy to the ordinary PCA algorithm,
the soft-thresholding SVD solution to this optimization problem was called Kro-
necker PCA (KPCA) in [30]. In [84], it was shown that, when the sample size
n > d1d2, KPCA provides a consistent estimator of Σ. Bounds on statistical
convergence rates were also established.

Subsequently, regularized variants of KPCA were proposed. Greenewald and
Hero [30] proposed to add one pair of diagonal matrices in the representation (7),
namely, (A0,B0), to provide a better fit to homogeneous noise in spatiotemporal
modeling. This was further extended to a robust Kronecker PCA [31], which is
equipped with the additional capability to handle sparse unstructured “outlier
correlations” that do not fit the vanilla KPCA model à la robust PCA [9, 11].

While the KPCA model is flexible in the sense that every covariance tensor
admits a representation (7) for some r, there is no a priori guarantee that the
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factors Al,Bl are symmetric, positive semidefinite (PSD) matrices. Indeed, one
can see from a dimension counting argument1 that if d1, d2 ≥ 2, then there
exists a PSD matrix Σ ∈ R

d1d2×d1d2 that cannot be expressed as a sum of
Kronecker products of symmetric matrices Al ∈ R

d1×d1 and Bl ∈ R
d2×d2 . As

a PSD matrix is symmetric, the aforementioned matrix Σ cannot be expressed
as a sum of Kronecker products of PSD matrices. Unless the factors Al,Bl are
PSD, we may not be able to interpret them as mode-wise ‘principal covariance
components.’

It remains an open question how closely an arbitrary covariance Σ can be
approximated by a sum of Kronecker products of PSD matrices, or whether a
typical covariance Σ can be represented as a sum of Kronecker products of PSD
matrices under reasonable data-generative models.

3.3. Kronecker graphical Lasso and tensor Lasso

As discussed in Section 2.3, physical processes often give rise to sparse covariance
or sparse inverse covariance. Furthermore, when the number of independent
samples, n, is smaller than the data dimension, d =

∏K
i=1 di, imposition of a

sparse structure can stabilize the multi-way covariance estimates. Leng and Pan
[52] considered the problem of estimating a sparse covariance in the KP model
(5) using a sparsity-penalized moment matching approach. Under the matrix
normal model, this corresponds to a sparse model on the pairwise marginal
dependencies in the covariates. It is sometimes more natural to impose sparsity
on the conditional dependencies, equivalent to imposing sparsity on the inverse
covariance instead of on the covariance itself, as demonstrated by Yuan and
Lin [101] and Banerjee et al. [5]. A fast algorithm for sparse estimation of the
inverse covariance in the matrix normal framework was proposed by Friedman
et al. [24], who called the algorithm the graphical lasso (Glasso).

Allen and Tibshirani [3] extended the Glasso to the matrix normal model
(K = 2 modes) and this algorithm, which we call the Kronecker graphical
lasso (KGlasso), was shown to be consistent with statistical convergence bounds
in [85]. The KGlasso uses an alternating flip-flop optimization on the sparsity
penalized KP log-likelihood function, similarly to the algorithm proposed by
Mardia and Goodall [61] for the original unpenalized KP maximum likelihood
problem. Besides the diffusion processes mentioned in Section 2.3, the sparse
KP inverse covariance structures also arise in classification problems where the
predictors are matrix-valued [66].

The KGlasso solves the following non-convex optimization, equivalent to max-
imizing the penalized log likelihood,

min
A,B

tr{S(A ⊗ B)} − log det(A ⊗ B) + λ1‖A‖1 + λ2‖B‖1 (8)

1The set of d1d2 × d1d2 PSD matrices has nonempty interior in the vector space of d1d2 ×
d1d2 symmetric matrices that has dimension

(d1d2+1
2

)
. Note that the tensor product of the

vector space of d1 × d1 symmetric matrices and that of d2 × d2 symmetric matrices is the
span of Kronecker products and has dimension

(d1+1
2

)(d2+1
2

)
, which is strictly smaller than(d1d2+1

2
)

if d1, d2 ≥ 2.
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where λ1, λ2 are sparsity regularization parameters applied to the �1 norms of
the Kronecker product factors A and B. Here, the �1 norms are often restricted
to range only over the off-diagonals of A and B. Like the Glasso, iterative opti-
mization methods are required to solve the optimization problem (8), however,
algorithmic implementation of such methods can be significantly more difficult
because it is a non-convex problem.

The tensor Lasso (Tlasso) introduced by Lyu et al. [59] is a generalization of
the KGlasso to K ≥ 2 modes. As in the KGlasso, an alternating flip-flop max-
imization method is used to estimate the precision matrix factors. Consistency
and a minimax property are established for the Tlasso. As pointed out in [59],
normalization of the K inverse covariance factors is necessary to ensure model
identifiability as the tensor normal model is invariant to reciprocal scaling and
other transformations on the Kronecker factors.

Following KGlasso and Tlasso, recent works have focused on more efficient
estimation algorithms for solving the non-convex problem posed by (8) with
provable guarantees. For example, instead of alternatingly applying Glasso, Xu,
Zhang and Gu [97] proposed an alternating block gradient descent algorithm
that has been shown to converge linearly to the true unknown precision ma-
trices with optimal statistical error rates. More recently, Min, Mai and Zhang
[64] proposed a parallel estimation scheme as an alternative to previous alter-
nating/cyclic approaches for estimating the K inverse covariance factors. They
demonstrated that the parallelized version achieves similar convergence rates as
alternating block descent.

3.4. Tensor graphical Lasso

The tensor graphical Lasso (TeraLasso) of Greenewald et al. [33] is a K ≥ 2
generalization of the bigraphical lasso (BiGlasso) of Kalaitzis et al. [43]. For sim-
plicity, we confine the discussion to the simpler K = 2 mode case. In contrast to
the KGlasso/Tlasso, the TeraLasso replaces the Kronecker product representa-
tion of the inverse covariance, Ω = A⊗B, with a Kronecker sum representation:
Ω = A⊕B = A⊗ I + I⊗B. The rationale of [43, 33] that motivates the Kro-
necker sum model is that, for the equal number of non-zero entries in factors
A and B, it gives a sparser inverse covariance than the Kronecker product.
This can be appreciated from the fact that the Kronecker sum representation
of the inverse covariance corresponds to a Cartesian product graphical model
instead of a direct product graphical model given by the Kronecker product
representation. This KS structure has recently been studied in the context of
matrix-valued time-series analysis – Jiang, Bigot and Maabout [40] introduced a
novel multivariate autoregressive model to infer the graph topology encoded in
the coefficient matrix, which captures the sparse Granger causality dependency
structures describing both the sparse spatial relationship between sensors and
the multiple measurement relationship. They decompose the graph by imposing
a KS structure on the coefficient matrix.

Furthermore, the Kronecker sum representation converts non-convex opti-
mization problem in the KGlasso (8) into the convex optimization problem:
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min
A,B

tr{S(A ⊕ B)} − log det(A ⊕ B) + λ1‖A‖1 + λ2‖B‖1 (9)

where λ1, λ2 are sparsity regularization parameters applied to the �1 norms of
the Kronecker sum factors A and B. As in the KGlasso, these �1 norms range
over the off-diagonals of A and B. This objective can be solved via either an
iterative application of Glasso [43] or by a projected proximal gradient descent
algorithm [33]. More recent work has also extended these estimation schemes to
be more scalable and to handle non-identifiability [99] and count data [55].

3.5. Sylvester graphical Lasso and SG-PALM

The Sylvester graphical lasso (SyGlasso) [91] models the precision matrix as
the square of a sparse matrix that has Kronecker sum structure. Different from
KGlasso, Tlasso and TeraLasso, the Sylvester graphical model uses the Sylvester
tensor equation to define a generative process for the underlying multivariate
tensor data. The Sylvester tensor equation has been studied in the context of
finite-difference discretization of high-dimensional elliptical partial differential
equations [29, 47]. Consider the simplest case of K = 2, any solution X to such
a PDE must have the (discretized) form:

XA + BX = Z ⇐⇒ (A ⊕ B) vec(X) = vec(Z), (10)

where Z is the driving source on the domain, and A⊕B represents the discretized
differential operators for the PDE, e.g., Laplacian, Euler-Lagrange operators,
and associated coefficients. These operators are often sparse and structured.

The Sylvester generative (SG) model (10) leads to a matrix-valued random
variable X with a precision matrix Ω = (A ⊕ B)2, given that Z is isotropic
(white) Gaussian distributed. The Sylvester generating factors A and B can be
obtained via minimization of the penalized negative log-pseudolikelihood

min
A,B

tr{S(A⊕ B)2} − log det
(
diag(A) ⊕ diag(B)

)
+ λ1‖A‖1 + λ2‖B‖1. (11)

This differs from the true penalized Gaussian negative log-likelihood in the
exclusion of off-diagonals of A and B in the log-determinant term. (11) is mo-
tivated and derived directly using the Sylvester equation defined in (10), from
the perspective of solving a sparse linear system. This is a generalization and
extension of the convex pseudolikelihood framework for high dimensional par-
tial correlation estimation (CONCORD) [45] to tensor-variate variables. The
pseudolikelihood function is convex and is maximized using an entrywise regres-
sion approach similar to CONCORD. It is known that inference using pseudo-
likelihood is consistent and enjoys the same

√
N convergence rate as the MLE

in general [6, 88].
Estimation of the generating parameters of the SG model is challenging since

the sparsity penalty applies to the square root factors of the precision matrix,
which leads to a highly coupled likelihood function. The nodewise regression
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approach in SyGlasso recovers only the off-diagonal elements of each Sylvester
factor. This is a deficiency in many applications where the factor-wise variances
are desired. Moreover, the convergence rate of the cyclic coordinate-wise algo-
rithm used in SyGlasso is unknown and the computational complexity of the
algorithm is higher than other sparse Glasso-type procedures. To overcome these
deficiencies, Wang et al. [90] proposed a proximal alternating linearized mini-
mization method that is more flexible and versatile, called SG-PALM, for finding
the minimizer of (11). SG-PALM is designed to exploit structures of the coupled
objective function and yields simultaneous estimates for both off-diagonal and
diagonal entries. It also achieves state-of-the-art iterative convergence results
(i.e., linear convergence of the optimization error) and an order of magnitude
improvement in practical runtime per iteration. Additionally, SG-PALM easily
adapts to non-convex regularization functions (e.g., SCAD, MCP) and enjoys a
similar rate of iterative convergence.

4. Illustrations and performance comparisons

In this section, we discuss theoretical guarantees on the multiway covariance
estimation procedures described in Section 3 and provide numerical illustra-
tions of them. In Section 4.1, we collect and compare theoretical guarantees on
the statistical consistency and computational complexity for these covariance
estimation algorithms. Then, in Section 4.2, we provide empirical performance
comparisons when the covariance / precision matrix estimation methods are
used for characterizing multiway physical processes. Finally, in Section 4.3, we
demonstrate the use of tensor graphical models on the real-world application
of solar active region evolution prediction. The numerical studies in Section 4.2
and 4.3 were performed using the publicly available software package [92] devel-
oped by the authors, and the readers can explore other properties beyond those
presented here.

4.1. Theoretical guarantees

All of the methods described in Section 3 have non-asymptotic theoretical guar-
antees on the statistical consistency of the estimators and the rate of computa-
tional convergence, which can be converted to upper bounds on the sample- and
computational complexity of the methods, respectively. The best known upper
bounds on the estimation error (in Frobenius norm) and those on computational
complexity (in the number of flops per iteration) are summarized in Table 2.

Statistical error For each row of Table 2, the expression for statistical er-
ror applies only when the associated model is correct, i.e., there is no model
mismatch (bias) between the model generating the observations and the model
assumed to estimate covariance/precision. For structured covariance estimation,
the more recent AdaKron algorithm achieves better statistical error (given that
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Table 2

Comparison of known theoretical guarantees on sample complexity (statistical error) and
computational complexity. Here, M = max{d1, d2, N}, mk =

∏
i�=k di is the co-dimension of

the k-th mode, d =
∏K

k=1 di, and sk characterizes the sparsity of each of the inverse
covariance Kronecker factors sk = |{(i, j) : i �= j, [Ωk]i,j �= 0}|, s is the sparsity of the full

inverse covariance s = |{(i, j) : i �= j,Ωi,j �= 0}| and s =
∑K

k=1 mksk if Ω satisfies the
Kronecker sum model.

Model Algorithm Statistical Error Computational Complexity

KP-Covariance
(Section 3.2)

KPCA [84] OP

(√
r(d2

1+d2
2+logM)
N

)
O(d3

1d
3
2)

Robust KPCA [31] OP

(√
r(d2

1+d2
2+logM)
N

)
O(d3

1d
3
2)

AdaKron [52] OP

(∑2
i=1

√
(si+di) log di

N

)
O(d3

1 + d3
2)

KP-Precision
(Section 3.3)

KGlasso [2, 85] OP

(√
(d1+d2) logM

N

)
O(d3

1 + d3
2 + Nd1d2)

Tlasso [59] OP

(√
dk(dk+sk) log dk

Nd

)
mode-k O

(∑K
k=1(d3

k + Ndkm
2
k)
)

KS-Precision
(Section 3.4) TeraLasso [33] OP

(√
K + 1 ·

√
(d+s) log d
N mink mk

)
O(dK +

∑K
k=1 d

3
k)

Sylvester GM
(Section 3.5)

SyGlasso [91] OP

(√
K · maxk

√
skdk log d

N

)
O
(
d
∑K

k=1(Ndk +
∑

j �=k(dk + dj))
)

SG-PALM [90] OP

(√
K · maxk

√
skdk log d

N

)
O
(∑K

k=1(d3
k + N

∑
j �=k djm

2
j )
)

the true covariance matrix is sparse) than KPCA/Robust KPCA as the de-
pendence on di’s is linear. For structured precision matrix estimation, all the
structured methods enjoy significantly reduced statistical error compared to the
traditional Glasso. TeraLasso outperforms Tlasso and SyGlasso/SG-PALM ap-
proximately by a factor of dk and sk, respectively. Moreover, it is noteworthy
that Tlasso and TeraLasso achieve single-sample convergence of the �2 norm (op-
erator norm) errors that are not included in the table, meaning that the error
vanishes with a single sample (N = 1) as the dimension grows to infinity [33, 59].

Computational complexity KPCA-based methods require expensive full
SVD/eigenvalue factorization in general, which dominates their runtime com-
plexity. Although speedup can be achieved via randomized algorithms or it-
erative algorithms for sparse matrices along with small r, the computational
complexities of these improvements remain unknown for general problem in-
stances.

All the structured precision estimation algorithms are variants of Glasso, im-
plemented with techniques tailored to the model assumptions for speedup. Gen-
erally speaking, the resulting complexity consists of the mode-wise complexity
(d3

k) and the cost of updating the objective: dK for TeraLasso, N
∑

k dkm
2
k for

Tlasso, and N
∑

k

∑
j �=k djm

2
j for SG-PALM. Note that AdaKron for structured

covariance models uses a pre-processing step that avoids this operation involving
d and/or N flops per-iteration, but this works only for K = 2. The mode-wise
complexity of TeraLasso is dominated by matrix inversion, which is hard to scale
for general problem instances. For Tlasso/KGlasso, the mode-wise complexity is
the same as that of running a Glasso-type algorithm for each mode, which could
be improved by applying state-of-the-art optimization techniques developed for
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vector-variate Gaussian graphical models. For SG-PALM, the mode-wise opera-
tions involve only sparse-dense matrix multiplications, which could be improved
to O(dk · nnz), where nnz counts the number of non-zero elements of the sparse
matrix (i.e., the estimated Ωk at each iteration). This could greatly reduce the
computational cost for extremely sparse Ωk, e.g., with only O(dk) non-zero ele-
ments. Further, Tlasso and SG-PALM both incur a cost of O(Ndkm

2
k) for each

mode-wise update. This can also be reduced to be ≈ d for sparse estimated
Ωk’s at each iteration. Overall, for the sample-starved setting where we only
have access to a handful of data samples, structured KP and KS models run
similarly fast, while the Sylvester GM runs slower theoretically due to the extra
and richer structures that it takes into account.

4.2. Numerical experiments with synthetic data

Here we compare the performance of the Kronecker covariance / precision esti-
mation methods when used to estimate multiway physical processes, based on
numerical experiments using synthetic data. To this end, we first describe two
generative models that extend the spatial Poisson equation (cf. Section 2.3) to
incorporate temporal dynamics, and the resulting multiway (inverse) covariance
structure in Section 4.2.1. Thereafter, in Section 4.2.2, we illustrate the perfor-
mance of the various (inverse) covariance estimation methods using synthetic
data generated from the two models of spatio-temporal dynamics.

4.2.1. Two generative models for spatio-temporal dynamics

We describe two dynamic models that extend the spatial Poisson equation (cf.
Section 2.3) to incorporate temporal dynamics, and the resulting multiway (in-
verse) covariance structure. These models will be used in our numerical exper-
iments to generate data to compare the performance of estimation algorithms
in Section 4.2.2.

Poisson-AR(1) process The first extension, which we call the Poisson-AR(1)
process, imposes an autoregressive temporal model of order 1 on the source func-
tion f in the Poisson equation (2). Specifically, we say a sequence of discretized
spatial observations {Uk ∈ R

d1×d2}k indexed by time step k = 1, · · · , T is from
a Poisson-AR(1) process if

(Ad1 ⊕ Ad2) vec(Uk) = vec(Zk), (12)
vec(Zk) = a vec(Zk−1) + vec(Wk), |a| < 1, (13)

where {Wk ∈ R
d1×d2}k is spatiotemporal white noise, i.e., W k

i,j ∼ N (0, σ2
w),

i.i.d. Assuming Z0 = 0 and defining the T -by-T matrix
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B =

⎡⎢⎢⎢⎢⎣
1 −a

1
. . .
. . . −a

1

⎤⎥⎥⎥⎥⎦ ,

the above linear system of equations can be written as (Ad1 ⊕ Ad2)UB = W,
or equivalently, (

BT ⊗ (Ad1 ⊕ Ad2)
)
vec(U) = vec(W), (14)

where U = [vec(U1) vec(U2) . . . vec(UT )] ∈ R
d1d2×T and W is defined likewise.

The inverse covariance of U, despite having a large size of d1d2T × d1d2T , is
sparse and has a mixed Kronecker sum and product structure.

Convection-diffusion process The second time-varying extension of the
Poisson PDE model (2) is based on the convection-diffusion process [12]

∂u

∂t
= θ

2∑
i=1

∂2u

∂x2
i

− ε
2∑

i=1

∂u

∂xi
. (15)

Here, θ > 0 is the diffusivity; and ε ∈ R is the convection velocity of the
quantity along each coordinate. Note that for simplicity of discussion here, we
assume these coefficients do not change with space and time (see, Stocker [74],
for example, for a detailed discussion). These equations are closely related to the
Navier-Stokes equation commonly used in stochastic modeling for weather and
climate prediction [12, 74]. Coupled with Maxwell’s equations, these equations
can be used to model magneto-hydrodynamics [73], which characterize solar
activities including flares.

A solution of Equation (15) can be approximated similarly as in the Poisson
equation case, through a finite difference approach. Denote the discrete spatial
samples of u(x, t) at time tk as a matrix Uk ∈ R

d1×d2 . We obtain a discretized
update propagating u(x, t) in space and time, which locally satisfies

Uk
i,j − Uk−1

i,j

Δt
= θ

(
Uk
i+1,j + Uk

i−1,j + Uk
i,j+1 + Uk

i,j−1 − 4Uk
i,j

h2

)

− ε

(
Uk
i+1,j − Uk

i−1,j + Uk
i,j+1 − Uk

i,j−1

2h

)
,

(16)

where Δt = tk+1 − tk is the time step and h is the mesh step (spatial grid
spacing). Similarly to the Poisson-AR(1) process, in the following, we consider
a “blocked” version of the convection-diffusion process.

We define the first-order and second-order discretized differential operators,
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denote by D and A, respectively:

D =

⎡⎢⎢⎢⎣
1
−1 1

. . . . . .
−1 1

⎤⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
2 −1

−1 2
. . .

. . . . . . −1
−1 2

⎤⎥⎥⎥⎥⎦ .

Then, Equation (16) can be written as

1
Δt

(D ⊗ I ⊗ I) vecU = θ

h2 (I ⊗ A ⊗ I + I ⊗ I ⊗ A) vecU

− ε

2h (I ⊗ D ⊗ I + I ⊗ I ⊗ D) vecU,
(17)

where U = [vec(U1) vec(U2) . . . vec(UT )] ∈ R
d1d2×T . Assuming the process is

driven by some white noise W, similarly defined as in the Poisson-AR equation,
the inverse covariance of U is again sparse and has a mixed Kronecker sum and
product structure.

4.2.2. Experiments with synthetic data: Performance comparisons

We consider spatio-temporal processes (2D space + time) that evolve T = 50
time steps on a 8 × 8 spatial grid according to the Poisson-AR(1) and the
Convection-Diffusion dynamics (cf. Section 4.2.1). We generated N = 50 inde-
pendent realizations of each type of process. Figure 2 shows one realization for
each type of process, with spatial resolution increased for better illustration.
Assuming K = 2 with a spatial dimension 64 and a temporal dimension 50, we
estimated the covariance / inverse covariance using several sparse multiway in-
verse covariance estimation methods including Glasso [24], KPCA (Section 3.2),
Tlasso (Section 3.3), TeraLasso (Section 3.4), SG-PALM (Section 3.5). Note that
none of the above-mentioned models operate under the true generative processes
(i.e., there is a model mismatch with the data). Here, the sparsity-regularized
methods are all implemented with an �1 penalty function, and the penalty pa-
rameters were selected similarly and guided by the theoretical results in Table 2.
For example, for SG-PALM, we use a penalty parameter of λk = C

√
dk log d

N

where C is chosen by optimizing a normalized Frobenius norm error between
the estimate and the truth, over a range of λ values parameterized by C. For
the KPCA algorithm, both the nuclear norm penalty parameter and the sepa-
ration rank are selected by optimizing a normalized Frobenius norm error via
grid search.

A summary of the accuracy of estimation (normalized Frobenius norm error),
as well as support recovery (Mathews Correlation Coefficient [62]), are reported
in Table 3. In Figure 3 and Figure 4 we show the true and the estimated inverse
covariance matrices obtained for all the methods except KPCA, under both
the Poisson-AR (Figure 3) and the Convection-Diffusion processes (Figure 4).
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Fig 2. Poisson-AR(1) (top) and 2D Convection-diffusion (bottom) state variables of size
64 × 64 at three different time steps, which are chosen such that t is sufficiently large for
the processes to be in steady state and that the sampling times are adjusted to the temporal
dynamics of each process. Here, model parameters used for simulations are: a = −0.5 for
Poisson-AR, θ = 0.05 and ε = 0.01 for convection-diffusion process; the driving noise is
generated from white Gaussian with σw = 0.1 in both cases.

Table 3

Comparisons of performances measured by log
(
‖Σ̂ − Σ‖F \‖Σ‖F

)
for KPCA as well as

log
(
‖Ω̂ − Ω‖F \‖Ω‖F

)
and the Mathews Correlation Coefficient (MCC) for SG-PALM,

Tlasso, TeraLasso, Glasso. The MCC is a measure of the quality of sparsity recovery
considered as a binary classification problem, where ±1 indicates perfect agreement or
disagreement between the truth and the estimation. Here the Frobenius norm errors are

included in the first row under each generating type while the MCCs are in the second row.
Note that the best performers under each type/criterion are highlighted.

Type Metric SG-PALM KGlasso TeraLasso Glasso KPCA

P-AR Fnorm −0.2622 1.1777 0.6312 0.9775 0.3289
MCC 0.4300 0.3395 0.2061 0.0560 N/A

C-D Fnorm −0.0420 1.4919 −0.0208 2.2041 0.0642
MCC 0.2122 0.1884 0.2018 0.0349 N/A

The inverse covariances under both generating processes admit structures with
a mix of Kronecker sums and Kronecker products of sparse matrices. In both
of the cases, the SG-PALM produces estimates having the lowest error. We be-
lieve this is due to the goodness of fit because the Sylvester graphical model
imposes a squared KS structure on the precision matrix. Tlasso has compara-
ble performances and achieves the best matrix approximation error under the
convection-diffusion generating process. This might be due to the fact that the
KP model corresponds to an underlying spatio-temporal autoregressive process.
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Fig 3. Visualizations of the inverse covariance structures for Poisson-AR(1) dynamics and its
estimates. Here, white entries indicate zeros in the inverse covariance matrices. The zoomed-
in plots show two temporal blocks (each of size 64×64) of spatial inverse correlation structures
with the diagonal elements removed for clearer visualization. SG-PALM and the associated
Sylvester graphical model produce the richest structures.
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Fig 4. Visualizations of the inverse covariance structures for the Convection-Diffusion dy-
namics and its estimates. Here, white entries indicate zeros in the inverse covariance matri-
ces. The zoomed-in plots show two temporal blocks (each of size 64 × 64) of spatial inverse
correlation structures with the diagonal elements removed for clearer visualization. SG-PALM
and the associated Sylvester graphical model produce the richest structures.
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TeraLasso seems to produce the biggest model mismatch as indicated by the
MCC scores. In Figure 5, we compare the true covariance matrices and the es-
timates obtained by KPCA. Here, although the KPCA model does not match

Fig 5. Visualizations of the middle 128 rows and columns of the covariance structures for
Poisson-AR(1) and Convection-Diffusion dynamics and their estimates, which show two tem-
poral blocks of spatial correlation structures, each of size 64× 64, with the diagonal elements
removed for clearer visualization of the pattern. Here, white entries indicate zeros in the co-
variance matrices. Since the covariances are not sparse in general, all matrices are thresholded
for clearer inspections of patterns.
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Table 4

Average runtime and its standard error (in seconds) of estimating spatio-temporal (inverse)
covariance matrices of size d× 50, where d is varying, using various algorithms.

Comparisons under various problem sizes (i.e., different d and N) are shown. Note the
sparse multiway precision models (SG-PALM, KGlasso, TeraLasso) are comparably fast and

are all faster than Glasso (for large problems) and KPCA.

d N
Glasso SG-PALM TeraLasso KGlasso KronPCA

sec sec sec sec sec

82
25 0.40(0.20) 0.46(0.15) 0.15(0.35) 0.65(0.11) 37.22(0.20)
50 0.48(0.21) 0.47(0.08) 0.22(0.50) 0.70(0.10) 38.22(0.55)
100 0.76(0.05) 0.44(0.13) 0.26(0.28) 0.69(0.30) 39.09(1.05)

162
25 6.43(1.45) 3.37(1.09) 5.38(0.58) 5.14(1.99) 495.47(2.69)
50 9.12(0.98) 3.27(1.81) 4.62(1.98) 3.39(2.00) 516.64(2.19)
100 11.84(2.01) 4.85(1.10) 6.71(0.72) 5.67(0.57) 498.04(4.01)

the underlying generating processes, the estimates were able to capture certain
blocking patterns that similarly exist in the true covariance.

Computational efficiencies of the various covariance/precision estimation al-
gorithms are also vitally important in practice to facilitate real-time tracking of
physical systems. Table 4 shows the runtime of different covariance and inverse
covariance estimation algorithms for the synthetic experiments. It shows that
by recognizing and exploiting multiway structures in the data, sparse multi-
way inverse covariance estimation methods, TeraLasso, Tlasso, and SG-PALM
significantly reduce the runtime complexity of Glasso that ignores such spe-
cial multiway structures. Remark that KPCA runs considerably slower than
other methods as it involves expensive singular value decomposition of a large-
dimensional re-arranged sample covariance matrix of the data.

4.3. Application to predicting evolution of solar active regions

Solar active regions are temporary centers of strong and complex magnetic fields
on the sun, the principal source of violent eruptions such as solar flares [86].
While weak flares of, for example, B-class, have only limited terrestrial effect,
strong flares of M- and X-class can produce tremendous amounts of electro-
magnetic radiation, causing disturbance or damage to satellites, power grids,
and communication systems. Therefore, it would be of great value to be able to
predict how active regions evolve before the onset of solar flares.

Although there are numerous studies that use active region images or physical
parameters to predict flare activities [50, 14, 41, 93, 77], fewer studies have
attempted to predict the complicated preflare evolution of active regions without
physical modeling [4]. In this section, to demonstrate the application of the
tensor graphical models, we use multiwavelength active region observations to
predict the evolution of two types of active regions that lead to either a weak
(B-class) flare or a strong (M- or X-class) flare 2.

2A similar and more comprehensive version of this numerical study was included in Wang
and Hero [90].
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We construct a multiwavelength active region video dataset from the curated
dataset generated by Galvez et al. [27]. The video data are taken in four wave-
lengths (94Å, 131Å, 171Å, and 193Å) by the Atmospheric Imaging Assembly
[AIA, 51] aboard the Solar Dynamics Observatory (SDO) satellite. Each video is
a 24-hour image sequence of an active region at 1-hour cadence before a strong
(M- or X-class) or a weak (B-class) flare occurs in the region. We spatially in-
terpolate the videos so that each video is represented as a d1 × d2 × d3 × d4
tensor, where d1 = 13 denotes the number of frames in the video, d2 = 50 de-
notes the height of the frames after interpolation, d3 = 100 denotes the width
of the frames after interpolation, and d4 = 4 represents the number of different
channels/wavelength at which the images are recorded. To prevent information
leakage, we chronologically split the active region videos into a training set (year
2011 to 2014) and a test set (year 2011 to 2014). In the training set, there are
186 active region videos that lead to a B-class flare and 48 active region videos
that lead to an M/X-class flare. In the test set, the sample sizes are 93 and 24
for the B-class and the M/X-class, respectively.

To perform active region prediction, we first fit the tensor graphical models
on the training set to estimate the covariance or prediction matrices for each of
the two types of active region videos, and then we use the best linear predictor
to predict the last frame from all previous frames for videos in the test set. The
forward linear predictor is constructed in a multi-output least squares regression
setting as

ŷt = −Ω−1
2,2Ω2,1yt−1:t−(p−1) (18)

when the precision estimate is available. Here, t = d1 for predicting the last
frame of a video. For notational convenience, let p = d1 and q = d2d3d4, then
yt−1:t−(p−1) = yp−1:1 ∈ R

(p−1)q is the stacked set of pixel values from the previ-
ous p−1 time instances and Ω2,1 ∈ R

q×(p−1)q and Ω2,2 ∈ R
q×q are submatrices

of the pq × pq estimated precision matrix:

Ω̂ =
(
Ω1,1 Ω1,2
Ω2,1 Ω2,2

)
.

The tensor graphical models to be evaluated are SG-PALM (Section 3.5),
Tlasso (Section 3.4), and TeraLasso (Section 3.3), with regularization parame-
ters chosen by optimizing the prediction NRMSE (i.e., the root mean squared
error normalized by the difference between maximum and minimum pixels) on
the training set over a range of λ values guided by the convergence rates pre-
sented in Table 2. In particular, the SG-PALM estimator was implemented using
a regularization parameter λN = C1

√
min(dk) log(d)

N for all k with the constant
C1 chosen by optimizing the prediction NRMSE on the training set over a range
of λ values parameterized by C1. The TeraLasso estimator and the Tlasso es-
timator were implemented using λN,k = C2

√
log(d)

N
∏

i �=k di
and λN,k = C3

√
log(dk)
Nd

for k = 1, 2, 3, respectively, with C2, C3 optimized in a similar manner. Also
considered is a baseline estimator, referred to as IndLasso, obtained by apply-
ing independent and separate �1-penalized regressions to each pixel in yt. Each
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Table 5

Comparison of the SG-PALM, Tlasso, TeraLasso, IndLasso performances measured by
NRMSE in predicting the last frame of 13-frame video sequences leading to B- and

M/X-class solar flares. The NRMSEs are computed by averaging across testing samples and
AIA channels for each pixel. SG-PALM achieves the best overall NRMSEs across pixels. B
flares are generally easier to predict due to both a larger number of samples in the training

set and typically smoother transitions from frame to frame within a video.

Flare Type SG-PALM Tlasso TeraLasso IndLasso
NRMSE NRMSE NRMSE NRMSE

B 0.0379 0.0386 0.0579 0.1628
M/X 0.0620 0.0790 0.0913 0.1172

Fig 6. Examples of one-hour ahead prediction of the first two AIA channels of last frames of
13-frame videos, leading to B- (first two rows) and M/X-class (last two rows) flares, produced
by the SG-PALM, Tlasso, TeraLasso, IndLasso algorithms, comparing to the ground truth
image (far left column). The column ordering from left to right is in the order of increasing
normalized mean squared error (NMSE) - see Table 5. Note that in general linear forward
predictors tend to underestimate the contrast ratio of the images. The proposed SG-PALM
produced the best-quality images in terms of both the spatial structures and contrast ratios.
This figure is excerpted from Wang and Hero [90] (cf. Figure 3 in the reference).

sparse regression in the IndLasso estimator was implemented and tuned inde-
pendently with regularization parameters chosen in a similar manner. Note that
we did not include Glasso and KPCA (Section 3.2) in the comparison due to
their prohibitively expensive runtime complexity for large multiway data.

Table 5 shows the NRMSE over the testing samples for the forecasts based
on SG-PALM, Tlasso, TeraLasso, and IndLasso. We observe that SG-PALM
outperforms all three other methods, indicated by the lowest NRMSEs on the
test set. Figure 6 depicts examples of predicted images, comparing with the
ground truth. The SG-PALM estimates produced the most realistic image pre-
dictions that capture the spatially varying structures and closely approximate
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the pixel values (i.e., maintaining contrast ratios). The latter is important as the
flares are being classified into weak (B-class) and strong (M/X-class) categories
based on the brightness of the images, and stronger flares are more likely to
lead to catastrophic events, such as those that can lead to damaging terrestrial
perturbations and health of astronauts.

5. Conclusion and discussion

Physical interpretability While the Kronecker products expansion used in
KPCA captures dense structures in the covariance matrix of data generated
from more complex spatio-temporal physical processes, it lacks physical inter-
pretability. In contrast to the case of Sylvester graphical model and Poisson-
AR(1) processes, it is not obvious whether the sum of Kronecker products
structure corresponds to any true physical models. Recent work in quantum
informatics [15] has demonstrated a link between the estimation of the density
matrix for entangled quantum states and the structured tensor approximation
via

∑r
i=1 Ai ⊗ Bi. Further characterizing and extending these connections to

other classes of discretized PDEs is an interesting future direction. Further-
more, in both the Poisson-AR(1) and convection-diffusion examples, a mixed
Kronecker sum and Kronecker product structure emerges that can be related to
the state covariance of a dynamical system.

Heavy-tailed multiway covariance/precision models Most existing work
on multiway covariance and inverse covariance models focus on modeling Gaus-
sian variables. It would be interesting to explore whether the pseudo-likelihood
framework we adopted for SyGlasso and SG-PALM can be extended to non-
Gaussian heavy-tailed models, e.g., using copula’s or elliptically contoured dis-
tributions. This could have important practical applications, in particular to
solar flare and active region prediction problems presented in Section 4.3. The
images that characterize the active regions generally include a small number
of pixels of extremely high intensity. These pixels might not be captured by a
Gaussian-like distribution. Recently, there have been advances [94, 44] in covari-
ance estimation for heavy-tailed, non-Gaussian vector-variate data. Multiway
(inverse) covariance estimation is an open problem.

Kronecker-structured autoencoders Low-rank covariance models have
close connections with variational autoencoders (VAEs). Dai et al. [17] studied
the relationship between (robust) PCA and VAEs. Since the Kronecker product
for matrices is a generalization of the outer product for vectors, KPCA can be
considered as a generalization of the low-rank approximation method of PCA. It
is thus natural to exploit similar relationships between KPCA and VAEs. In this
case VAE may be considered as a nonlinear/non-Gaussian extension to KPCA
for low separation rank covariance models. Additionally, recent advances in effi-
cient training of the VAE-type neural network architecture (e.g., using stochastic
gradient descent) could improve the computational complexity of KPCA that
is currently limited by an expensive singular value decomposition [84, 31].
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Computational complexity Estimating the Kronecker product model is
generally hard due to: (i) tensor factorization is NP-hard [35] when K ≥ 3;
and (ii) the optimization objective is nonconvex. The NP-hardness implies com-
putational intractability for large-scale problems in the worst case. However, this
does not necessarily preclude the existence of tractable solutions for most cases.
Specifically, it is believed that the model can be estimated within polynomial
time when the signal-to-noise ratio (SNR) is sufficiently high3, but only when it
is significantly higher than the information-theoretical threshold for model iden-
tifiability [72, 37]. While such studies have been completed for some important
problems e,g, the statistical-computational gap [10, 103] and the optimization
landscape [28], an analogous framework for Kronecker covariance remains to be
developed.

While Kronecker sum models do not suffer from the nonconvexity of the
Kronecker product model, scalable estimation methods that apply to very large
covariance and precision matrices remain computationally challenging. There-
fore, it would be worthwhile to develop improvements for the Kronecker sum
that mirror the successes in related problems, e.g., introducing more amenable
surrogate objectives [6, 45].

Software A software package called TensorGraphicalModels [92] has been
developed to accompany this review article. Detailed code and instructions for
reproducing the numerical results presented in this article (and beyond) are
provided in the reference. The software provides a suite of tools in Julia, which
was designed specifically for numerical and scientific computing and has recently
become popular for large-scale scientific simulation and modeling, such as those
conducted by climate scientists [68].
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