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Abstract: We consider the problem of constructing nonparametric undi-
rected graphical models for high-dimensional functional data. Most existing
statistical methods in this context assume either a Gaussian distribution
on the vertices or linear conditional means. In this article, we provide a
more flexible model which relaxes the linearity assumption by replacing it
by an arbitrary additive form. The use of functional principal components
offers an estimation strategy that uses a group lasso penalty to estimate
the relevant edges of the graph. We establish statistical guarantees for the
resulting estimators, which can be used to prove consistency if the dimen-
sion and the number of functional principal components diverge to infinity
with the sample size. We also investigate the empirical performance of our
method through simulation studies and a real data application
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1. Introduction

In recent years, there has been a large amount of work on estimating undirected
graphical models that describe the conditional dependencies among the compo-
nents of a p-dimensional random vector X = (X1

, . . . , X
p)T. Mathematically, let

V = {1, . . . , p}, and E denote a subset of {(i, j) ∈ V×V : i �= j}, which satisfies
(i, j) ∈ E if and only if (j, i) ∈ E. The pair G = (V,E) constitutes an undirected
graph, with V representing the set of vertices and E the set of edges. The vector
X follows a graphical model if

(i, j) /∈ E ⇔ X
i

X
j|X−(i,j)

, (1.1)

where X
−(i,j) represents the vector X with its ith and jth components removed,

and for random elements A, B, and C, A B|C means that A and B are
conditionally independent given C. The goal is to estimate the edge set E based
on a random sample from X.

However, many recent applications, particularly medical applications, involve
multivariate functional data, such as electroencephalogram (EEG) and func-
tional magnetic resonance imaging (fMRI) data, where each sampling unit is
modelled as a realization of a p-dimensional stochastic process X1(t), . . . , Xp(t),
where t ∈ T and T is a closed subset of R. The central goal is to depict the
conditional dependence structure among these p random functions by functional
graphical models (FGM), which have become very popular in recent rears. In this
paper, we are interested in estimating a nonparametric and high-dimensional
undirected graphical model for multivariate functional data.

Our motivation is brain network connectivity based on EEG in neuroscience
research. EEG measures brain activities by placing electrodes on various lo-
cations on the subject’s scalp and measuring voltage values across time. This
results in a vector of interdependent random functions. One of the interests
in network connectivity analysis is to characterize the inter-dependence of the
random functions by an undirected graph, where the nodes corresponds to the
electrodes on the subject’s scalp and the edges represent conditional dependen-
cies among the electrodes.

In contrast to the finite dimensional case, less literature can be found on
graphical models for multivariate functional data. [26] proposed the Functional
Gaussian Graphical Model (FGGM) assuming that X is a multivariate Gaus-
sian random process. Roughly speaking, they used a truncated Karhunen-Loève
expansion, say of order mn, to reduce the infinite dimensional problem to a
pmn-dimensional problem for the principal component scores. The conditional
independencies of the graph define a block sparsity structure, such that the
zero blocks of the precision matrix of the scores can be used to identify the
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edge set using a group lasso penalty. They called this method functional glasso,
or simply fglasso, and the authors showed that, when mn approaches infinity,
consistent estimation of the edge set is possible. The FGGM is the extension
of the Gaussian graphical model of [38] to the functional setting. [40] proposes
a FGGM based on a new notion of separability for the covariance operator of
multivariate functional data, termed partial separability. [43] considered a neigh-
bourhood selection approach to estimate the FGGM, which is an extension of
the popular work of [21] to the functional setting. [45] proposed a Bayesian
framework for the analysis of FGGM, [42] developed a method that estimates
the difference between two functional graphical models and [27] considered a
dynamic functional graphical model, where the dependency structure among
the Gaussian random functions is allowed to change over time. Finally, to relax
the Gaussian assumption [16] replace conditional independence with the con-
cept of functional additive conditional independence and [31] proposed a copula
transformation on the principal scores, which is an extension of the Gaussian
copula model of [18, 17] and [36] from the multivariate setting to the functional
setting.

In this paper, we introduce an alternative approach to relax the Gaussian
assumption in the functional graphical model. Our research is motivated by
the fact that in many applications the relation between the functional principal
scores is rarely linear as implied by the assumption of the FGGM. To illustrate
this observation, we consider an EEG dataset that consists of two groups of
subjects: 77 subjects in the alcoholic group, and 45 in the control group [41, 13].
For each subject, an EEG activity was recorded at 256 time points over a one
second time interval using 64 electrodes placed on the subject’s scalp. The goal
is to construct a FGM to characterize brain network connectivity for the two
groups of subjects based on the functional data collected by the electrodes.
In Figure 1, we display the pairwise scatterplots between channels using the
first two principal components for the random functions of the two groups.
Clearly, this figure indicates that the conditional relationships among the scores
corresponding to different vertices of the graph are nonlinear. Therefore, the
Gaussian assumption of the FGGM is difficult to justify for the analysis of this
type of data.

As an alternative, we propose a new nonparametric FGM that allows the con-
ditional relationships among the principal scores to take an additive structure.
Our approach uses the traditional probabilistic concept of conditional indepen-
dence, and then applies the additive structure to the scores of the Karhunen-
Loève expansion of each random function. We approximate each nonparametric
additive component by a linear combination of B-splines basis functions. This
enables us to estimate the edge set of the graph by imposing the group lasso
penalty on a matrix formed by the coefficients in the spline approximation.
We derive statistical guarantees for the resulting estimates, which can be used
to prove consistency if the dimension p and the number of scores diverge to
infinity with the sample size. This provides a useful methodology for general
nonparametric analysis of high-dimensional functional graphical models.

The remainder of the article is organized as follows. Section 2 describes the
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Fig 1. Pairwise scatterplots for the alcoholic group between channels F7 and FP2 (left) and
for the control group between channels O1 and X (right) with locally-weighted polynomial
regression (blue line).

methodology and proposes the nonparametric functional graphical model. Sec-
tion 3 presents the estimation procedure. In Section 4 we study the theoretical
properties of the resulting estimator. In Section 5 we conduct simulation stud-
ies to evaluate the finite sample properties of the proposed methodology, and in
Section 6 we apply the new model to the motivating EGG dataset. We conclude
with some final remarks in Section 7, while all proofs of the theoretical results
are deferred to the Appendix.

2. Additive functional graphical models

We first provide a formal definition of an additive function-on-function regres-
sion model which will be used to define the functional graphical model consid-
ered in this paper. We begin by introducing some basic concepts from functional
data analysis.

Throughout this paper, L2([0, 1]) denotes the space of all square-integrable
functions defined on the interval [0, 1] ⊂ R. We denote by 〈f, g〉 =

∫
[0,1]

f(t)g(t)dt
the common inner product in L2([0, 1]) and by ‖f‖ = 〈f, f〉1/2 the corresponding
norm. Let X = (X1

, . . . , X
p) denote a p-dimensional random element with mean

0 whose ith component X
i is an element of L2([0, 1]) such that E‖Xi‖2

< ∞.
For each Xi, we define the corresponding covariance operator

Σ
X

i
X

i(f)(t) =
∫ 1

0

f(s)σ
X

i
X

i(s, t)ds, f ∈ L2([0, 1]), (2.1)

where σ
X

i
X

i(s, t) = cov(Xi(s), Xi(t)) = E(Xi(s)Xi(t)) is the covariance func-
tion of the random element X

i. The operator Σ
X

i
X

i is a compact Hilbert-
Schmidt operator [see, for example, 11], and there exists a spectral decomposi-
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tion of the covariance function of the form

σ
X

i
X

i(s, t) =
∞∑

r=1

λ
i

rφ
i

r(s)φ
i

r(t), (2.2)

where λ
i

1 ≥ λ
i

2 ≥ . . . ≥ 0 are the eigenvalues and {φi

k}k∈N are orthonormal
eigenfunctions satisfying∫ 1

0

σ
X

i
X

i(s, t)φi

r(s)ds = λ
i

rφ
i

r(t).

Consequently, each X
i ∈ L2([0, 1]) can be represented by its Karhunen-Loève

expansion

X
i =

∞∑
r=1

√
λi

rξ
i

r φ
i

r i = 1, . . . , p, (2.3)

where the random variables ξi

r = 〈Xi
, φ

i

r〉/
√
λi

r are called the functional princi-
pal component scores and satisfy E(ξi

r) = 0, var(ξi

r) = 1, E(ξi

qξ
i

r) = 0 for q �= r
for i = 1, . . . , p.

We next give our formal definition of the functional graphical model. Let
G = (V,E) be an undirected graph, where V denotes the finite set {1, . . . , p},
and E denotes a subset of {(i, j) ∈ V × V : i �= j}, which satisfies (i, j) ∈ E if
and only if (j, i) ∈ E.

Definition 2.1. A vector of random functions X = (X1
, . . . X

p) ∈ L2([0, 1]) ×
. . .×L2([0, 1]) is said to follow a functional graphical model with respect to an
undirected graph G = (V,E) if and only if

X
i

X
j|X−(i,j)

, ∀ (i, j) /∈ E.

Example 2.1. [26] assumed that X = (X1
, . . . , X

p) is a p-dimensional Gaussian
process on L2([0, 1])×. . .×L2([0, 1]) and define a Functional Gaussian Graphical
model (FGGM) by the condition

(i, j) /∈ E ⇔ cov[Xi(s), Xj(t)|X−(i,j)] = 0 ∀ s, t ∈ [0, 1]. (2.4)

Next, they proposed to approximate each X
i by the first mn coefficients from

the Karhunen-Loève expansion (2.3). Thus, for each X
i, one obtains a pmn-

dimensional Gaussian random vector ξ
� = ((ξ1)�, . . . , (ξp)�) of scores, where

ξ
i = (ξi

1, . . . , ξ
i

mn
)� is the vector of the first mn functional principal component

scores in the Karhunen-Loève expansion (2.3) of each X
i. Based on this finite

mn-dimensional representation, the FGGM can be represented as a conditional
multivariate linear regression model with respect to the scores. Indeed, each ξ

i

q

can be expressed as

ξ
i

q =
p∑

j �=i

mn∑
r=1

B
ij

qrξ
j

r + ε
i

q, i ∈ V, q = 1, . . . ,mn, (2.5)
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such that (εiq)1≤q≤mn is uncorrelated with (ξj

r)1≤r≤mn , i �= j if and only if

B
ij

n = (Bij

qr)1≤q,r≤mn = −(Θii

n )−1Θij

n , (i, j) ∈ V × V, i �= j,

where Θij

n ∈ R
mn×mn is the (i, j)th element of the block precision matrix

Θn = (Θij

n )1≤i,j≤p of the pmn-dimensional vector ξ. Hence, under the Gaus-
sian assumption the conditional relationships between nodes i and j are linear,
and the network structure of the FGGM can also be recovered by the spar-
sity structure of the regression coefficient matrix B

ij

n . They used group-lasso
penalized maximum likelihood estimation to address the blockwise sparsity of
Θn, and showed that Θn is a consistent estimate of the set E, when p and mn

approach infinity with increasing sample size.

We use a generalization of the representation (2.5) to give a formal definition
of the additive function-on-function model for multivariate functional data.

Definition 2.2. Consider a vector of random functions X = (X1
, . . . X

p) ∈
L2([0, 1]) × . . . ,×L2([0, 1]) and suppose that each X

i has a Karhunen-Loève
expansion of the form (2.3). The vector X follows the function-on-function ad-
ditive model if for each pair (i, j) ∈ V×V there exists a sequence of smooth
functions f

ij = {f ij

qr : q, r ∈ N} defined on R with E[f ij

qr(ξ
j

r)] = 0, q, r ∈ N, such
that

E[ξi

q|{ξ
j

r , j �= i}] =
p∑

j �=i

∞∑
r=1

f
ij

qr(ξ
j

r). (2.6)

Similar to the functional additive regression model of [9], model (2.6) relaxes
the linearity assumption in FGGM by imposing an additive structure on the
scores in the Karhunen-Loève expansion, giving rise to a more flexible model
than the FGGM. By definition, the scores ξi

r are uncorrelated, but we also require
them to be independent in the following discussion as also postulated in [9].
Furthermore, we assume that they take values in a closed and bounded interval
[−1, 1]. For example, this can be achieved by taking a monotone transformation
Ψ : R → [−1, 1], such as Ψ(x) = −1 + 2arctan(x)+0.5π

π . [see 46, 34].
We now define a new nonparametric functional graphical model which we

call the Additive Functional Graphical Model (AFGM).

Definition 2.3. Suppose X = (X1
, . . . X

p) ∈ L2([0, 1]) × . . . ,×L2([0, 1]) is
associated with a functional graphical model G = (V,E). If X is additionally
a function-on-function additive model of the form (2.6), then we say that X
follows an additive functional graphical model, and write this statement as X ∼
AFGM(G).

The definition implies that the independence structure of X can be recov-
ered by the sparse structure of the additive components f

ij

qr in the representa-
tion (2.6). In most cases, the sequence of eigenvalues decreases fast, and hence
without much loss of generality, we will assume a finite mn-dimensional model,
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where (mn)n∈N is a sequence of positive real numbers converging to infinity with
increasing sample size. Specifically,

ξiq =
p∑

j �=i

mn∑
r=1

f ij
qr(ξjr) + εiq, i = 1, . . . , p, q = 1, . . . ,mn, (2.7)

such that the error terms εiq = ξiq −
∑p

j �=i

∑mn

r=1 f
ij
qr(ξjr) have 0 mean, they

are mutually independent, and independent of the predictors ξjr , j �= i if and
only if conditional independence among Xi can be recovered from the additive
functions f ij

qr, since in this case the conditional mean of each ξiq in the graph only
depends on the values of its neighbours. In the Gaussian model, f ij

qr(ξjr) = Bij
qrξ

j
r ,

and model (2.7) reduces to the FGGM (2.5).
Thus, our goal is to estimate the edge set

En = {(i, j) ∈ V × V : i �= j, f
ij

qr �= 0 for some q, r = 1, . . . ,mn}. (2.8)

Note that we aim to recover the edge set when each X
i is exactly a finite sum

of mn terms rather than an infinite sum. This allows us to work with finite
dimensional graphs that is E = En. Our theoretical results in Section 4 show
that the edge set can be identified with probability converging to 1 as mn → ∞,
p → ∞ and n → ∞.

Remark 2.1.

(a) Note that it is not necessary to fix the sign of the eigenfunctions in the
definition of scores ξ

i

r = 〈Xi
, φ

i

r〉/
√
λr used in the representation (2.6)

or (2.7), because a sign change can always be compensated by choosing
the function f

ij

qr(−x) instead of f ij

qr(x).
(b) Model (2.7) can be regarded as the nonparametric and additive version

of the FGGM (2.5), and the generalization of the model of [33] to the
functional setting, where they propose a semi-parametric method which
allows the conditional means of the random variables to take on an arbi-
trary additive structure.

3. Estimation and computation

In this section, we develop an estimation procedure for fully observed functional
data to estimate the scores ξ

i for each X
i, which is used afterwards for the

estimation of the edge set En.
To be precise, let X1, . . . , Xn be an independent sample from X, such that for

each u = 1, . . . , n, Xu = (X1
u, . . . , X

p

u) is a vector in L2([0, 1]) × . . .× L2([0, 1]).
Then, for each i = 1, . . . , p, the covariance operator Σ

X
i
X

i can be estimated by

Σ̂
X

i
X

i(f)(t) =
∫

[0,1]

f(s)σ̂
X

i
X

i(s, t)ds, f ∈ L2([0, 1]),
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where

σ̂
X

i
X

i(s, t) = 1
n

n∑
u=1

X
i

u(s)X
i

u(t),

is the common estimator of the covariance function (note that the X
i are cen-

tered). Let λ̂i

r and φ̂
i

r be the sample eigenvalues and eigenfunctions obtained by
solving the equation∫ 1

0

σ̂
X

i
X

i(s, t)φi

r(s)ds = λ
i

rφ
i

r(t), r = 1, . . . ,mn,

subject to the constraints 〈φi

q, φ
i

r〉 = 0, for q �= r, q, r = 1, . . . ,mn and ‖φi

r‖ = 1.
Then, the estimated scores ξ̂

i

ur are given by
ξ̂
i

ur = (λ̂i

r)
−1/2〈Xi

u, φ̂
i

r〉, u = 1, . . . , n, r = 1, . . . ,mn, i ∈ V.

For each i ∈ V, let ξ̂i

u = (ξ̂i

u1, . . . , ξ̂
i

umn
)� be the mn-dimensional vector of the

estimated scaled scores corresponding to the observation Xu, u = 1, . . . , n. Fol-
lowing [12] and [8], we use B-spline functions to approximate the additive compo-
nents f ij

qr in model (2.7). To be precise, let −1 = τ0 < τ1 < . . . < τLn < τLn+1 = 1
be an equidistant partition of the interval [−1, 1] into Ln + 1 subintervals
Ib = [τb, τb+1), b = 0, . . . , Ln − 1, and ILn = [τLn , τLn+1].

For the number of knots we make the following assumption. Define S�Ln

as the space of polynomial splines of degree � ≥ 1 consisting of functions s
satisfying: (a) the restriction of s to the interval Ib is a polynomial of degree �
for 1 ≤ b ≤ Ln; (b) for � ≥ 2 and 1 ≤ �′ ≤ � − 2, s is a �′ times continuously
differentiable on the interval [−1, 1]. Then, there exists a basis of normalized
B-splines functions (hk)1≤k≤kn for the space S�Ln , where kn = Ln + � + 1, such
that every function s ∈ S�Ln can be represented as

s(x) =
kn∑
k=1

βkhk(x)

(see [30]). Under some smoothness conditions, the additive functions f ij

qr can be
represented by linear combinations of B-splines functions

f
ij

qr(x) ≈ f̃
ij

qr(x) =
kn∑
k=1

hk(x)βij

qrk, q, r = 1, 2, . . . , (3.1)

where the sequence of positive real numbers, (kn)n∈N, diverges to infinity as n →
∞ (note that this can always be achieved by increasing the number of knots in
the partition). Hence, the corresponding function f

ij

qr will be zero approximately
if and only if ‖βij

qr‖
2
2 = 0, where ‖ · ‖2 denotes the Euclidean norm of the kn-

dimensional vector βij

qr = (βij

qr1, . . . , β
ij

qrkn
)�, q, r = 1, . . . ,mn. Thus, to encourage

sparsity we propose to minimize the criterion

PLi(β, ξ̂) = 1
2n

mn∑
q=1

n∑
u=1

(
ξ̂
i

uq −
p∑

j �=i

mn∑
r=1

hT(ξ̂j

ur)β
ij

qr

)2

+ λn

p∑
j �=i

{ mn∑
q=1

mn∑
r=1

‖βij

qr‖
2
2

}1/2

,
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subject to the constraint
n∑

u=1

hT(ξ̂j

ur)β
ij

qr = 0, q, r = 1, . . . ,mn, j ∈ V, (3.2)

where hT(x) = (h1(x), . . . , hkn(x)) is the kn-dimensional vector of the B-splines
basis functions and λn ≥ 0 is a tuning parameter. Essentially, this is a group
lasso penalty that enforces all regression coefficients β

ij

qr1, . . . , β
ij

qrkn
to either be

all 0 or all nonzero. Note that the centering constraint (3.2) accounts for the fact
that the function f

ij

qr in model (2.7) satisfies E(f ij

qr(ξ
j

r)) = 0 for q, r = 1, . . . ,mn.
This problem can be converted to an unconstrained optimisation problem by

centering the basis functions. More precisely, defining

h̃nk(ξ̂
j

ur) = hk(ξ̂
j

ur) −
1
n

n∑
u=1

hk(ξ̂
j

ur), k = 1, . . . , kn, r = 1, . . . ,mn, j ∈ V, (3.3)

we consider the unconstrained optimization problem

P̂Li(β, ξ̂) = 1
2n

mn∑
q=1

n∑
u=1

(
ξ̂
i

uq −
p∑

j �=i

mn∑
r=1

h̃T
n(ξ̂j

ur)β
ij

qr

)2

+ λn

p∑
j �=i

{ mn∑
q=1

mn∑
r=1

‖βij

qr‖
2
2

}1/2

,

(3.4)

where

h̃n(ξ̂j

ur) = (h̃n1(ξ̂
j

ur), . . . , h̃nkn(ξ̂j

ur))T, (3.5)

is the kn-dimensional vector of the centered B-splines evaluated at the estimated
scores.

Now let ξ̂i = (ξ̂i

ur)1≤u≤n,1≤r≤mn be the n×mn matrix of the estimated scores,
and define

H̃T
n
(ξ̂−i) = (H̃n(ξ̂1), . . . , H̃n(ξ̂i−1), H̃n(ξ̂i+1), . . . , H̃n(ξ̂p)) ∈ R

n×(p−1)knmn (3.6)

as the vector of matrices H̃n(ξ̂j) = (h̃T
n(ξ̂j

ur))1≤u≤n,1≤r≤mn ∈ R
n×knmn . Similarly,

let

B
i = (Bij

, j ∈ V\{i}) ∈ R
(p−1)knmn×mn ,

be the vector of matrices B
ij = (βij

qr)1≤q≤mn,1≤r≤mn ∈ R
knmn×mn , j �= i. Then,

following some algebraic manipulations, the objective function in (3.4) can be
rewritten as

P̂Li(B, ξ̂) = 1
2n‖ξ̂

i − H̃T
n
(ξ̂−i)Bi‖2

F + λn

p∑
j �=i

‖Bij‖F, (3.7)

where ‖ · ‖F denotes the Frobenius norm. Finally, we define B̂
i

n as the solution
of

B̂
i

n = argmin{P̂Li(B, ξ̂) : B ∈ R
(p−1)knmn×mn},
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and we propose to estimate the set En in (2.8) by

Ên = {(i, j) ∈ V × V : i �= j, ‖B̂ij

n ‖F �= 0 and ‖B̂ji

n ‖F �= 0}. (3.8)

Following [21], we can also estimate the graph by
ˆ̂En = {(i, j) ∈ V × V : i �= j, ‖B̂ij

n ‖F �= 0 or ‖B̂ji

n ‖F �= 0}. (3.9)

As shown in the Corollary 4.1 in Section 4, the differences between these esti-
mated graphs vanish asymptotically. See also [21] and [43]. We summarize the
algorithm below.

(a) Implement FPCA to obtain the estimated scores ξ̂
i

ur of each observation
X

i

u and then transform the scores into the range [−1, 1] using a monotone
transformation. Choose mn such that at least 90% of the total variation
is explained.

(b) For a given λn and for each i ∈ V, solve the optimisation problem (3.7)
using, for example, the Fast Iterative Shrinkage Thresholding Algorithm
(See [4] for more details) to find a sparse estimate of Bi.

(c) Declare that there is an edge between node i and node j if and only if
‖B̂ij

n ‖
2
F and ‖B̂ji

n ‖
2
F are not zero.

4. Statistical guarantees

In this section we study the theoretical properties of the proposed estimator of
the graph structure of the AFGM, where we allow the number of nodes p to di-
verge to infinity with increasing sample size. We also assume that the functions
are fully observed. A particular technical challenge in deriving the asymptotic
theory consists in the fact that the additive structure is applied to the unob-
served variables ξ

i

ur, and the estimator B̂
i

n obtained from minimizing (3.7) is
based on the estimated scores. Thus, the error in these estimated coefficients
must be taken into account for the analysis of the procedure.

We begin by introducing some notation. For any two positive sequences of
real numbers (an)n∈N and (bn)n∈N, we write an � bn if an ≤ K1bn for some
constant 0 < K1 < ∞ which does not depend on n. We use the notation an � bn
representing the property A ≤ infn|an

bn
| ≤ supn|an

bn
| ≤ B, for positive constants

A and B. Moreover, given a matrix A = (aij)1≤i≤M1,1≤j≤M2 ∈ R
M1×M2 , we use

‖A‖F for the Frobenious norm and ‖A‖2 for the operator norm. Finally, for any
two symmetric matrices A and B, we use the notation A � B to denote the
property that the matrix B −A is nonnegative definite.

We define the neighbourhood of each node i ∈ V by

Ni

n = {j ∈ V \ {i} : f ij

qr �= 0, for some 1 ≤ q, r ≤ mn},
where (f ij

qr)1≤q,r≤mn are the true population additive functions in the additive
regression

ξ
i

uq =
∑
j∈Ni

n

mn∑
r=1

f
ij

qr(ξ
j

ur) + ε
i

uq, q = 1, . . . ,mn, u = 1, . . . ,mn, i ∈ V, (4.1)
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where ε
i

uq = ξ
i

uq − E[ξi

uq|{ξ
j

ur, j �= i; r = 1, . . . ,mn}]. Thus, the best predictor of
ξ
i

uq is an additive function of the scores in the set of neighbours Ni

n of the node
i only. Then, the edge set En defined in (2.8) can be rewritten as

En = {(i, j) ∈ V × V : i �= j, i ∈ Nj

n and j ∈ Ni

n}.

Let β
∗ij
qr = (β∗ij

qr1, . . . , β
∗ij
qr1)T be the kn-dimensional vector of the true spline coef-

ficients in

ξ
i

uq =
∑
j∈Ni

n

mn∑
r=1

hT(ξj

ur)Tβ
∗ij
qr + w

i

uq + ε
i

uq, q = 1, . . . ,mn, u = 1, . . . , n, i ∈ V,

where hT(ξj

ur) = (h1(ξj

ur), . . . , h1(ξj

ukn
)) ∈ R

kn is the vector of the B-splines
splines evaluated at the unobserved scaled scores ξ

i

ur and w
ij

uq is the truncation
error

w
i

uq =
∑
j∈Ni

n

mn∑
r=1

(f ij

qr(ξ
j

ur) − hT(ξj

ur)Tβ
∗ij
qr ), q = 1, . . . ,mn, u = 1, . . . , n, i ∈ V.

In Proposition A.1 in the Appendix, we show that this truncation error is uni-
formly small. Let

B
∗i
n = (B∗ij

mnkn
, j ∈ V\{i}) ∈ R

(p−1)knmn×mn ,

where

B
∗ij
mnkn

= {β∗ij
qrk : 1 ≤ q, r ≤ mn, 1 ≤ k ≤ kn}, (4.2)

and define

B
∗Ni

n
n = (B∗ij

mnkn
, j ∈ Ni

n) ∈ R
n
i
knmn×mn . (4.3)

We wish to determine the 0 blocks of the truncated B
∗i
n matrix. Recalling that

B̂
i

n = (B̂ij
, j ∈ V\{i}) ∈ R

(p−1)knmn×mn is the solution to the minimization prob-
lem (3.7). Then, the estimated neighbourhood for each node i ∈ V is

N̂i

n = {j ∈ V \ {i} : ‖B̂ij

n ‖F �= 0},

which yields the estimated edge set

Ên = {(i, j) ∈ V×V : i ∈ N̂j

n and j ∈ N̂i

n}.

Finally, to derive our theoretical results, we need to introduce the following
non-random matrices. Let h̃(ξj

r) = (h̃1(ξj

r), . . . , h̃kn(ξj

r))T ∈ R
kn be the vector

of the centered kn B-splines evaluated at the unobserved scaled scores ξ
j

r , r =
1, . . . ,mn, j ∈ V, and define the 1 × knmn and 1 × n

i
knmn vectors

H̃(ξj) = (h̃T(ξj

r))1≤r≤mn ,
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H̃T(ξNi
n) = (H̃(ξj), j ∈ Ni

n), (4.4)

where 1 ≤ n
i ≤ p is the cardinality of the set Ni

n. We introduce the following
matrices

Σ∗

Ni
nNi

n
= E

(
H̃(ξNi

n)H̃T(ξNi
n)
)
∈ R

n
i
knmn×n

i
knmn (4.5)

and

Σ∗

ξ
jNi

n
= E

(
H̃T(ξj)H̃T(ξNi

n)
)

∈ R
knmn×n

i
knmn . (4.6)

For the statement of our theoretical results we require several assumptions.
Assumption 4.1 is a similar assumption as made by [26] and refers to the eigen-
system of the covariance operator defined in (2.1).

Assumption 4.1.
(i) There exist positive constants d0, d1 and d2 such that

d0r
−β ≤ λ

i

r ≤ d1r
−β

, λ
i

r − λ
i

r+1 ≥ d−1
2 r

−1−β for r ≥ 1,

for some β > 1. We assume that X
i is mn-dimensional; that is, λi

mn
�= 0 and

λ
i

mn+1 = 0.
(ii) The number of principal component scores mn satisfies mn � n

α for some
constant α ∈ [0, 1

2+3β ).
(iii) The eigenfunctions φ

i

r of the covariance operator defined in (2.2) are
continuous and satisfy

max
j∈V

sup
s∈[0,1]

sup
r∈N

|φj

r(s)| ≤ C < ∞.

The next two conditions refer to the smoothness of the functions f
ij

qr in
model (2.6). To be precise, let κ be a nonnegative integer and let ρ ∈ (0, 1].
We define F κ,ρ as the Hölder space of functions f : [−1, 1] → R whose κth
derivative exists and satisfies a Lipschitz condition of order ρ, and additionally
satisfies the condition

‖f‖∞ = supx∈[−1,1]|f(x)| ≤ F, (4.7)

for some F > 0.

Assumption 4.2. Let d = κ+ρ > 0.5 and assume f
ij

qr ∈ F κ,ρ and E[f ij

qr(ξ
j

ur)] =
0, for all q, r = 1, . . . ,mn and (i, j) ∈ V×V.

Assumption 4.3. The joint density function, say p
j, of the random vector

ξ
j = (ξj

1, . . . , ξ
j

mn
)T is bounded away from zero and infinity on [−1, 1]mn for

every j = 1, . . . , p.

In order to derive graph estimation consistency, we make the following as-
sumption about the errors εi1, . . . , ε

i
mn

in model (2.7). A similar condition was
also postulated by [33] for joint additive models in the multivariate setting.
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Assumption 4.4. There exists a constant C > 0 such that P (|εiq| > x) ≤
2 exp(−Cx

2) for all x ≥ 0 and q = 1, . . . ,mn, i ∈ V.

Assumption 4.5. kn = O(nν) for some ν > 0, where ν ≥ α(2+3β)
2d−4 if d > 2.

Assumption 4.6 (Bounded eigenspectrum). The minimum eigenvalue Λmin

(Σ∗

Ni
nNi

n
) of the matrix Σ∗

Ni
nNi

n
defined in (4.5) satisfies for each i ∈ V and all

n ∈ N,

Λmin(Σ
∗

Ni
nNi

n
) > Cmin,

for some constant Cmin > 0.

Assumption 4.7 (Irrepresentable condition). There exists a constant 0 < η ≤
1 such that for all i ∈ V,

max
j /∈Ni

n

‖Σ∗

ξ
jNi

n
(Σ∗

Ni
nNi

n
)−1‖F ≤ 1 − η√

ni
. (4.8)

Assumption 4.6 states that the minimum eigenvalue of the population matrix
ΣNi

nNi
n

is bounded away from 0. Assumption 4.7 is the classical irrepresentable
condition which is necessary and sufficient to show model selection consistency
of the group lasso [39, 1]. According to [22] if the irrepresentable condition is
relaxed, the lasso selects the correct non-zero coefficients but it may select some
additional zero components. [28] and [23] considered similar assumptions for
sparse additive and for high-dimensional multivariate regression models respec-
tively. We now state our main theoretical result for the estimator N̂i

n of the
neighbourhood corresponding to the node i ∈ V.

Theorem 4.1. Suppose that Assumptions 4.1 - 4.7 are satisfied and the regu-
larization parameter λn satisfies for all i,

n
i
m

3/2
n

kd

n

∑
j∈Ni

n
‖B∗ij

mnkn
‖F

� λn � (ni)−3/2(b∗in )3(
∑
j∈Ni

n

‖B∗ij
mnkn

‖F)−2
, (4.9)

where b
∗i
n = min

j∈Ni
n
‖B∗ij

mnkn
‖F. Then,

P
(
N̂i

n �= Ni

n

)
� exp

(
− C1

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)2

nim2
nk

4
n

+ 2 log(pmnkn)
)
,

where C1 > 0.

The proof of Theorem 4.1 is complicated and is given in the Appendix. A
major difficulty consists in the fact that the objective function (3.7) is based
on the estimated scores and one has to establish concentration bounds in the
estimation of the sample design matrix Σn

Ni
nNi

n
using the estimated scores, rather

than the true scores (stated as Theorem A.1 in the Appendix).
Using the union bound of probability and Theorem 4.1 we obtain the following

result that states that the true edge set En is equal to its estimate Ên with
probability tending to 1.
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Corollary 4.1. If the assumptions of Theorem 4.1 are satisfied, we have for a
positive constant C1 > 0

P (Ên �=En) � exp
(
−C1

n
1−α(2+3β)(λn minp

i=1
∑

j∈Ni
n
‖B∗ij

mnkn
‖F)2

nim2
nk

4
n

+3 log(pmnkn)
)
,

where Ên is obtained by (3.8) or (3.9).

Remark 4.1.
(a) Under the assumptions of Theorem 4.1, it follows that

P (Ên �= En) → 0,

if n → ∞, p → ∞ and

n
1−α(2+3β)(λn minp

i=1 b
∗i
n )2

nim2
nk

4
n

→ ∞ and n
i
m

2
nk

4
n log(pmnkn)
λ2

n

= o
( p

min
i=1

b
∗i
n

)2
.

(4.10)

Note that the graph consistency result is achieved when p is much larger than
the degree of each node i ∈ V, ni. For example, if p = O(nθ), θ > 0, maxi∈V n

i =
O(nγ) with 0 ≤ γ < 1, mn = O(nα) with α ∈ [0, 1

2+3β ) and kn = O(nν), then,
conditions (4.10) reduce to

log(pmnkn)
n1−(α(4+3β)+γ+4ν)λn

= o
( p

min
i=1

b
∗i
n

)
.

(b) In the case of scalar data (α = 0), the conditions of Theorem 4.1 will be
implied by

n
i

kd

n

� λnb
∗i
n , λn(ni)3/2 � (b∗in )3 and

√
nik4

n log(pkn)
nλ2

n

= o(b∗in ) ,

which are similar to the assumptions made in [28] and [33] for the analysis of
scalar data by sparse additive models.

5. Finite sample properties

5.1. Simulated data

In this section we investigate the finite sample performance of the proposed
model (AFGM) by means of a simulation study. We also compare the new
methodology with the functional additive precision operator (FAPO) of [16]
and the FGGM of [26], where we consider two scenarios: nonlinear dependence
and linear dependence.

It is not obvious how to construct flexible joint distributions for continuous
random variables. However, joint distributions can be induced via structural
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equation models with respect to a directed acyclic graph (DAG) [24], where each
variable is expressed as a function of some other variables as well as some noise.
Here, we consider additive noise models with additive non-linear differentiable
functions and Gaussian noise [5]. These are special cases of structural equation
models. In particular, given a DAG, G = (V,E), we generate non-Gaussian scores
by following the structural equations,

ξiq =
∑

j∈pa(i)

5∑
r=1

f ij
qr(ξjr) + ε̃jq, i = 1, . . . , p, q = 1, . . . , 5, (5.1)

where pa(i) is the set of parents of node i in the associated DAG G, ε̃jq are
Gaussian distributed random variables with 0 mean and f ij

qr are non-linear and
smooth functions. Next, we moralized the directed graph by connecting with an
undirected edge all parent nodes and dropping the orientations of the directed
edges. This gives us the undirected conditional independence graph of the dis-
tribution [6, 19]. Our goal is to recover the undirected conditional independence
graph.

Then, we generate the multivariate functional data as

X
i

u(ts) =
∑
j∈pai

5∑
q=1

5∑
r=1

f
ij

qr(ξ
j

ur)φq(ts) + ε
i

us, u = 1, . . . , n, (5.2)

where φ
i

1, . . . , φ
i

5 are the first 5 functions of the orthonormal Fourier basis, and
the errors ε

i

us form an i.i.d. sample from a N (0, 0.52) distribution.
In all simulation experiments in this section, this data has been smoothed to

obtain continuous functions Xi

u using 10 B-spline basis functions of order 4; that
is, piecewise polynomials of degree 3. For simplicity we assume f

ij

qr(x) = f(x)
for all q, r = 1, . . . 5 and for all (j, i) ∈ E. In all examples, we center f(ξj

ur)
to have 0 mean, and we generated n = 100 functions observed at 100 equally
spaced time points 0 = t1, . . . , t100 = 1. We consider directed acyclic graphs with
p = 100 nodes so that 1% of pairs of vertices are randomly selected as edges. We
choose mn functional principal components scores so that at least 90% of the
total variation is explained. Furthermore, we approximate each additive function
using B-splines of order 4. For simplicity we choose the same spline functions
for all j = 1, . . . , p and for all r = 1, . . . ,mn. For the choice of kn, we follow [20]
and take kn = 4 + �√n�.

For each scenario, we produce the average ROC curves (over 50 replications)
for a range of 50 tuning parameters for the 3 functional graphical models esti-
mators. To draw the curves, we compute for different regularization parameters
λ the positive rate (sensitivity) and false positive rate (1-specificity) which are
defined as

TP=
∑

1≤j<i≤p
I{(i, j)∈En, (i, j)∈ Ên}∑

1≤j<i≤p
I{(i, j)∈En}

, FP=
∑

1≤j<i≤p
I{(i, j) /∈ En, (i, j)∈ Ên}∑

1≤j<i≤p
I{(i, j) /∈En}

.
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5.1.1. Scenario 1: nonlinear models

We use the following nonlinear models, where the linearity assumption (2.5)
does not hold. We first consider the following model, Model I, used in [46]

Model I: f(x) = 1.4 + 3x− 1
2 + sin(2π(x− 1

2)) + 8(x− 1
3)2 − 8

9 .

For the choice of scores in (5.1), we simulate ξ
i

ur independently from the uniform
distribution U [−1/2, 1/2] for all r = 1, . . . , 5, i ∈ V, u = 1, . . . , n. Furthermore,
the errors ε̃

i

uq in (5.1) form an i.i.d. sample from the normal distribution with
variance 1, that is N (0, 1).

The second example was considered in [20]

Model II: f(x) = − sin(2x) + x
2 − 25/12 + x + exp(−x) − 2/5 · sinh(5/2).

The scores ξ
i

ur were simulated independently from the uniform distribution
U [−2.5, 2.5] for all r = 1, . . . , 5, i ∈ V, u = 1, . . . , n, and the errors ε̃

i

uq in (5.1)
were simulated from the normal distribution, N (0, 1).

For each i = 1, . . . , 100 and q = 1, . . . , 5, we define the overall signal-to-noise
(SNR) ratio as

SNRi
q =

E|
∑

j∈Pai

∑5
r=1 f

ij
qr(ξjr)|√

var(εiq)
.

We have calculated these SNRs by Monte Carlo simulation. Note also that the
true graph is very sparse. The maximum number of parents is 3, where 28
nodes in the graph have 1 parent, 8 nodes have two parents and 2 nodes have 3
parents. In Model I, for nodes with one parent, the integral in the numerator of
the SNR,

∫ 1
−1 . . .

∫ 1
−1

1
32
∣∣∑5

r=1 f(ξjr)
∣∣dξj1 . . . dξj5, is approximately equal to 17.8,

giving a SNR ratio of 25.3. For nodes with 2 and 3 parents the SNR is computed
as 50.44 and 75.7 respectively. Similarly, for Model II, the SNR for nodes with
1 parent is 6.20, whereas the SNR for nodes with 2 and 3 parents is 8.75 and
10.70 respectively.

The left and middle panel of Figure 2 show the averaged ROC curves over
40 replications corresponding to the two models. In first two lines of Table 1,
we report the means and standard deviations (in parentheses) of the associated
area-under-curve (AUC) values. An AUC close to 1 means a better performance
for the estimator. We observe from the plots in Figure 2 and from Table 1, that
for the AFGM estimator the areas under the ROC are substantially larger than
for the FGGM, indicating that our new method AFGM dominates the FGGM.
Similarly, the AFGM performs better than FAPO, indicating the benefit of a
sparse and high-dimensional scheme.

5.1.2. Scenario 2: linear model

Next, we consider a model, where the linearity assumption is satisfied, to see
how much efficiency might be lost by employing a nonparametric model under
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Fig 2. ROC curves ((AFGM (−), FAPO (−−−), FGGM (· · ·)) for Model I (left), Model II
(middle) and Model III (right).

Table 1

Means and standard errors (in parentheses) for AUC for models I and II.

p Models Methods
AFGM FAPO FGGM

100
I 0.73 (0.02) 0.67 (0.02) 0.59 (0.01)
II 0.76 (0.01) 0.70 (0.02) 0.69 (0.02)
III 0.89 (0.01) 0.82 (0.01) 0.90 (0.01)

the Gaussian assumption. The model is generated by (5.1) and (5.2) with

Model III: f(x) = x

The scores ξ
i

ur were simulated independently from the standard Gaussian dis-
tribution. To implement the AFGM we truncate the scores such that they are
located in the interval [−1, 1]. The SNR for nodes with 1 parent is approxi-
mately equal to 0.78, whereas the SNR for nodes with 2 and 3 parents is 1.08
and 1.32 respectively. The right panel in Figure 2 presents the averaged ROC
curves for Model III, whereas the third line in Table 1 reports the means and
standard deviations of AUC. We can see that under the linearity assumption the
AFGM is comparable with the FGGM and both methods show an improvement
compared to FAPO.

6. Real data application

In this section we apply the new method to the EEG data set available at
the UCI Machine Learning Repository. The data involve 77 subjects in the
alcoholic group and 45 subjects in the control group. Each subject was exposed
to a stimulus while brain activities were recorded from the 64 electrodes placed
on the subject’s scalp, over a one-second period in which 256 time points were
sampled. See [41] and [13] for more backgrounds of this data. The goal is to
characterize functional connectivity among the 64 nodes for the two groups,
based on the functional data collected from the electrodes.

We choose kn = 4 + �√n� B-spline functions of order 4 and number of scores
equal to mn = 5. Since our goal is to capture outstanding differences in brain
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Fig 3. Estimated brain networks by AFGM (upper panels), FAPO (middle panels) and FGGM
(lower panels) for the alcoholic group (left), the control group (middle) and differential brain
networks (right)

connectivity between the alcoholic group and control group, we take the tuning
constant λn to be such that 5% of the

(64
2
)

pairs of vertices are retained as edges.
Figure 3 shows the estimated brain networks constructed by the three meth-

ods for the alcoholic group (left) and the control group (middle). The right plots
in Figure 3 represent the differential brain networks, where the red lines indicate
the edges that are in the alcoholic network but not in the control network, and
the blue lines indicate the edges that are in the control network but not in the
alcoholic network. We observe that the brain networks have different patterns
for the two groups. For example, we observe for all methods, that there is in-
creased functional connectivity in the left frontal area for the alcoholic group
relative to the control.

7. Conclusions

In this paper, we utilize the idea of generalized additive models to develop a
new nonparametric graphical model for multivariate functional data which does
not require the assumption of a Gaussian distribution. The conditional relation-
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ships among the principal scores in theKarhunen-Loève expansion of a random
function are allowed to take an arbitrary additive rather than a linear form as
imposed by the assumption of Gaussianity. The additive functions are then ap-
proximated by linear combinations of B-splines. This approximation allows us
to develop a group lasso algorithm to estimate the graph that encourages block-
wise sparsity to a matrix formed by the coefficients in the spline approximation.
We establish consistency of the procedure while both the number of principal
components and the number of nodes diverge to infinity with increasing sample
size. By simulation study and an analysis of a data example, we demonstrate
the applicability of the new methodology.

The proposed model and methodology suggests many directions for future
research. First, the asymptotic results here are developed under the framework
where the order mn in the expansion (2.7) tends to infinity with the sample
size, and it is of interest if similar statistical guarantees can be obtained in
model (2.6) with the infinite representation. Second, the theory is developed
under the assumption that the random functions are fully observed. Therefore,
an interesting and important question for future research is the extension of
the methodology to smooth functions that are observed on a dense time grid
such that the covariance operators and the functions are consistently estimated.
Another important direction is the consideration of the sparse setting, where
the functions are observed on a relatively small number of time points and are
contaminated with noise. In this case, alternative approaches such as [37], [35]
and [25] might be useful and will be further investigated in the future.

Appendix A: Auxiliary results

In this section we state some auxiliary results, which will be used in the proof
of the Theorem 4.1. The next Lemma provides a concentration inequality for
the norm ‖Σ̂

X
i
X

i − Σ
X

i
X

i‖HS, where ‖ · ‖HS denotes the Hilbert-Schmidt norm.
It can be proved by similar arguments as given in the proof of Lemma 6 in [26]
observing the independence of the random variables ξi

ur. The details are omitted
for the sake of brevity.

Lemma A.1. Suppose that Assumption 4.1 is satisfied. Then, there exists a
constant C1 such that for all 0 < ε ≤ C1 and for each i = 1, . . . , p

P
(
‖Σ̂

X
i
X

i − Σ
X

i
X

i‖HS ≥ ε
)

� exp(−C1nε
2).

Let ξ
i = (ξi

ur)
1≤r≤mn
1≤u≤n ∈ R

n×mn be the matrix of unobserved scores, and
define

h̃n(ξj

ur) = (h̃n1(ξ
j

ur), . . . , h̃nkn(ξj

ur))T

as the vector of the centered kn B-splines functions evaluated at the score ξ
j

ur,
where

h̃nk(ξ
j

ur) = hk(ξ
j

ur) −
1
n

n∑
u=1

hk(ξ
j

ur), k = 1, . . . kn. (A.1)
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We also assume the constraint
∑n

u=1

∑kn

k=1 hk(ξj

ur)β
ij

qrk = 0, q, r = 1, . . . ,mn, j ∈
V. Note that this corresponds to (3.3), where the estimated scores ξ̂j

ur have been
replaced by the unobserved scores ξ

j

ur. Let

H̃n(ξj) = (h̃T
n(ξj

ur))1≤u≤n,1≤r≤mn ∈ R
n×knmn , (A.2)

H̃T
n
(ξNi

n) = (H̃n(ξj), j ∈ Ni

n) ∈ R
n×n

i
knmn , (A.3)

and define

Σn

Ni
nNi

n
= 1

n
H̃n(ξ

Ni
n)H̃T

n
(ξNi

n) ∈ R
n
i
knmn×n

i
knmn , (A.4)

which is the sample analog of the matrix Σ∗

Ni
nNi

n
defined in (4.5). Similarly, let

ξ̂
i = (ξ̂i

ur)1≤u≤n,1≤r≤mn be the n×mn matrix of the estimated scores, and

H̃T
n
(ξ̂Ni

n) = (H̃n(ξ̂j), j ∈ Ni

n) ∈ R
n×n

i
knmn , (A.5)

where

H̃n(ξ̂j) = (h̃T
n(ξ̂j

ur))1≤u≤n,1≤r≤mn ∈ R
n×knmn , (A.6)

and h̃n(ξ̂jur) is defined in (3.5). Then,

Σ̂n

Ni
nNi

n
= 1

n
H̃n(ξ̂

Ni
n)H̃T

n
(ξ̂Ni

n) ∈ R
n
i
knmn×n

i
knmn (A.7)

is the estimated version of the sample design matrix Σn

Ni
nNi

n
in (A.4). The next

result provides tail bounds for all entries of the matrix Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
.

Theorem A.1. Suppose that Assumption 4.1 holds. Then, there exists a positive
constant C1 such that for any δ > 0 satisfying 0 < δ ≤ C1 and for all (i, j) ∈
V×V, i �= j, r, q = 1, . . . ,mn and k, � = 1, . . . , kn, we have

P
(∣∣∣ 1

n

n∑
u=1

(
h̃nk(ξ̂

i

ur)h̃n�(ξ̂
j

uq) − h̃nk(ξ
i

ur)h̃n�(ξ
j

uq)
) ∣∣∣ ≥ δ

)
� exp

(
−C1n

1−α(2+3β)
k

−2
n δ

2
)
.

Proof. First, we have

∣∣ n∑
u=1

(
h̃nk(ξ̂

i

ur)h̃n�(ξ̂
j

uq) − h̃nk(ξ
i

ur)h̃n�(ξ
j

uq)
)∣∣ ≤ T1 + T2,

where the terms T1 and T2 are defined as

T1 =
∣∣∣ n∑

u=1

h̃n�(ξ
j

uq)
(
h̃nk(ξ̂

i

ur) − h̃nk(ξ
i

ur)
)∣∣∣,
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T2 =
∣∣∣ n∑

u=1

h̃nk(ξ̂
i

ur)
(
h̃n�(ξ̂

j

uq) − h̃n�(ξ
j

uq)
) ∣∣∣.

Consequently, for any δ > 0,

P
(∣∣∣ n∑

u=1

(
h̃nk(ξ̂

i

ur)h̃n�(ξ̂
j

uq) − h̃nk(ξ
i

ur)h̃n�(ξ
j

uq)
) ∣∣∣ ≥ 2nδ

)
≤ P (T1 ≥ nδ) + P (T2 ≥ nδ), (A.8)

and therefore it is sufficient to derive inequalities for the two probabilities on
the right-hand side of (A.8).

(a) We start with the probability P (T1 ≥ nδ). By the definition of h̃nk(ξ̂i

ur)
and h̃nk(ξi

ur) in (3.3) and (A.1), respectively, and some elementary calculations,
we obtain for any δ > 0

P (T1 ≥ nδ) ≤ P
(
T11 ≥

nδ

2

)
+ P

(
T12 ≥

nδ

2

)
,

where

T11 =
∣∣∣ n∑

u=1

h�(ξ
j

uq)(hk(ξ̂
i

ur) − hk(ξ
i

ur))
∣∣∣,

T12 =
∣∣∣n−1

n∑
v=1

h�(ξ
j

vq)
n∑

u=1

(hk(ξ̂
i

ur) − hk(ξ
i

ur))
∣∣∣.

We now derive a concentration inequality for T11. By Cauchy-Schwarz inequality
and using the fact that |h�(ξj

uq)| ≤ 1 we have

P
(
T11 ≥

nδ

2

)
≤ P

( n∑
u=1

|hk(ξ̂
i

ur) − hk(ξ
i

ur)|
2 ≥ nδ

2

4

)
,

and Taylor’s expansion gives∣∣∣hk(ξ̂
i

ur) − hk(ξ
i

ur)
∣∣∣ =

∣∣∣∂hk(ξ∗)
∂ξi

ur

(
ξ̂
i

ur − ξ
i

ur

) ∣∣∣, (A.9)

where ξ∗ lies in the line segment between ξ̂
i

ur and ξ
i

ur. From the derivative formula
of the B-splines (see [7], Ch.10) there exists a constant M > 0, independent of
n, such that for all k = 1, . . . , kn and x ∈ [−1, 1],∣∣∣∂hk(x)

∂x

∣∣∣ ≤ MLn, (A.10)

where Ln is the number of knots. As a result, using (A.9) and (A.10) we obtain

P (T11 ≥ nδ) ≤ P
( n∑

u=1

|hk(ξ̂
i

ur) − hk(ξ
i

ur)|
2 ≥ nδ

2

4

)
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≤ P
( n∑

u=1

|ξ̂i

ur − ξ
i

ur|
2 ≥ nδ

2

4M 2L2
n

)
.

Recall that ξ̂
i

ur = (λ̂i

r)
−1/2〈Xi

u, φ̂
i

r〉 and ξ
i

ur = (λi

r)
−1/2〈Xi

u, φ
i

r〉. Then,

ξ̂
i

ur − ξ
i

ur =(λ̂i

r)
−1/2〈Xi

u, φ̂
i

r〉 − (λi

r)
−1/2〈Xi

u, φ
i

r〉
≤((λ̂i

r)
−1/2 − (λi

r)
−1/2)〈Xi

u, φ̂
i

r〉 + (λi

r)
−1/2〈Xi

u, φ̂
i

r − φ
i

r〉.

By the Cauchy-Schwarz inequality and using the fact that ‖φ̂i

r‖ = 1 we obtain,

|ξ̂i

ur − ξ
i

ur| ≤ |(λ̂i

r)
−1/2 − (λi

r)
−1/2|‖Xi

u‖ + (λi

r)
−1/2‖Xi

u‖‖φ̂
i

r − φ
i

r‖
≤ |(λ̂i

r)
−1/2 − (λi

r)
−1/2|‖Xi

u‖ + (λi

r)
−1/2

d
i

r‖X
i

u‖‖Σ̂X
i
X

i − Σ
X

i
X

i‖HS,

where we have used the inequality ‖φ̂i

r−φ
i

r‖ ≤ d
i

r‖Σ̂X
i
X

i−Σ
X

i
X

i‖HS [see Lemma
4.3 in 2] and assume w.l.o.g. that φ̂i

r can be chosen to satisfy sgn〈φ̂i

r, φ
i

r〉 = 1 (see
the discussion in Remark 2.1). Using the inequality (a+b)2 ≤ 2(a2+b

2), a, b ∈ R,
this implies

P (T11 ≥ nδ) ≤ P
(
|(λ̂i

r)
−1/2 − (λi

r)
−1/2|2

n∑
u=1

‖Xi

u‖
2 ≥ nδ

2

16M 2L2
n

)
+ P

(
(λi

r)
−1(di

r)
2‖Σ̂

X
i
X

i − Σ
X

i
X

i‖2
HS

n∑
u=1

‖Xi

u‖
2 ≥ nδ

2

16M 2L2
n

)
.

(A.11)

We now consider the first term at the right-hand side of (A.11). Observe that∑n

u=1 ‖X
i

u‖
2 =

∑∞

r=1 λ
i

r

∑n

u=1(ξ
i

ur)
2, and recall that ξ

i

ur ∈ [−1, 1] with E(ξi

ur) =
1, E((ξi

ur)
2) = 1. Thus |(ξi

ur)
2−1| ≤ 2, which implies that for each r = 1, . . . ,mn,∑n

u=1((ξ
i

ur)
2 −1) is a sub-Gaussian random variable with parameter proxy σ

2 =
4n. Consequently, we obtain by Theorem 2.1 of [3]

E
{ n∑

u=1

((ξi

um)2 − 1)
}2k

≤ k!(16n)k, k ≥ 1.

Using the convexity of the function x �→ x
2k and Jensen’s inequality, it follows

E
∣∣∣ n∑

u=1

(‖Xi

u‖
2 −E‖Xi

u‖
2)
∣∣∣2k = E

{ ∞∑
r=1

λ
i

r

n∑
u=1

((ξi

um)2 − 1)
}2k

≤
∞∑

r=1

λ
i

rE
{ n∑

u=1

((ξi

um)2 − 1)
}2k

(
∞∑

r=1

λ
i

r)
2k−1

≤ k!(16λ2
0n)k, k ≥ 1,

where λ0 = supi≤p

∑∞

r=1 λ
i

r < ∞ (due to Assumption 4.1). Hence, from Theorem
2.1 of [3], we obtain for all ε > 0,

P
( n∑

u=1

(‖Xi

u‖
2 − E‖Xi

u‖
2) ≥ ε

)
≤ exp

(
− ε

2

128λ2
0n

)
.
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Furthermore, E(
∑n

u=1 ‖X
i

u‖
2) ≤ nλ0. Thus, for all ε/2 ≥ nλ0,

P
( n∑

u=1

‖Xi

u‖
2 ≥ ε

)
≤ P

( n∑
u=1

(‖Xi

u‖
2 − E‖Xi

u‖
2) ≥ ε

)
≤ exp

(
− ε

2

128λ2
0n

)
.

(A.12)

Now, we obtain for the first probability on the right-hand side of (A.11)

P
(
|(λ̂i

r)
−1/2 − (λi

r)
−1/2|2

n∑
u=1

‖Xi

u‖
2 ≥ nδ

2

16M 2L2
n

)
≤ P

(
|(λ̂i

r)
−1/2 − (λi

r)
−1/2| ≥ δ

2M 1/2Ln

)
+ P

( n∑
u=1

‖Xi

u‖
2 ≥ n

4M

)
. (A.13)

Define the event Ωi

mn
= {‖Σ̂

X
i
X

i − Σ
X

i
X

i‖HS < 2−1δ
i

mn
}, where δ

i

mn
=

min1≤r≤mn{λ
i

r − λ
i

r+1}. Assumption 4.1(i) implies δ
i

mn
≥ d−1

2 m
−(1+β)
n leading

to

P ((Ωi

mn
)�) ≤ P (‖Σ̂

X
i
X

i − Σ
X

i
X

i‖HS ≥ 2−1d−1
2 m

−(1+β)
n ) � exp(−C1nm

−2(1+β)
n ),

(A.14)
for some C1 > 0, where we have used Lemma A.1 with δ = 2−1d−1

2 m
−(1+β)
n .

Furthermore, from Lemma 4.43 of [2] we have on the event Ωi

mn

sup
r≥1

|λ̂i

r − λ
i

r| ≤ ‖Σ̂
X

i
X

i − Σ
X

i
X

i‖HS ≤ 2−1δ
i

mn
≤ 2−1λ

i

mn
.

This implies λ̂
i

r ≥
λ
i

r

2 , λ̂i

r ≤ 2λi

r and

|(λ̂i

r)
−1/2 − (λi

r)
−1/2| ≤ (λ̂i

r)
−1|λ̂i

r − λ
i

r|(λ
i

r)
−1

(λ̂i

r)−1/2 + (λi

r)−1/2
≤ 2(λi

r)
−3/2|λ̂i

r − λ
i

r|.

This together with (A.14) imply that

P
(
|(λ̂i

r)
−1/2 − (λi

r)
−1/2| ≥ δ

2M 1/2Ln

)
≤ P

((
|(λ̂i

r)
−1/2 − (λi

r)
−1/2| ≥ δ

2M 1/2Ln

)
∩ Ωi

mn

)
+ P ((Ωi

mn
)�)

≤ P
((

|λ̂i

r − λ
i

r| ≥
δ(λi

r)
3/2

4M 1/2Ln

)
+ P ((Ωi

mn
)�)

≤ P
(
(‖Σ̂

X
i
X

i − Σ
X

i
X

i‖HS ≥ δ(λi

r)
3/2

4M 1/2Ln

)
+ P ((Ωi

mn
)�),

where we used Lemma 4.43 of [2] for the third inequality. Therefore, from this,
Lemma A.1, (A.12) with ε = n

4M and the fact that d0r
−β ≤ λ

i

r, the right-hand
side of (A.13) can be upper-bounded by

P
(
(‖Σ̂

X
i
X

i − Σ
X

i
X

i‖HS ≥ δ(λi

r)
3/2

4M 1/2Ln

)
+ P

( n∑
u=1

‖Xi

u‖
2 ≥ n

4M

)
+ P ((Ωi

mn
)�)

(A.15)
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� exp(−C1nL
−2
n m

−3β
n δ

2) + exp(−C2n) + exp(−C3nm
−2(β+1)
n ),

for all 0 < δL
−1
n m

−3β/2
n ≤ C1 and some positive constants C1, C2 and C3.

For the second term on the right-hand side of the inequality (A.11) we use
Lemma A.1, (A.12) and the fact that (di

r)−1 ≥ d2
2
√

2m
−1−β

n , to obtain,

P
(
(λi

r)
−1(di

r)
2‖Σ̂

X
i
X

i − Σ
X

i
X

i‖2
HS

n∑
u=1

‖Xi

u‖
2 ≥ nδ

2

16M 2L2
n

)
≤ P

(
‖Σ̂

X
i
X

i − Σ
X

i
X

i‖HS ≥ δ(λi

r)
1/2(di

r)
−1

2M 1/2Ln

)
+ P

( n∑
u=1

‖Xi

u‖
2 ≥ n

4M

)
(A.16)

� exp(−C4n) + exp(−C5nL
−2
n m

−(2+3β)
n δ

2),

for 0 < δL
−1
n m

−(2+3β)/2
n ≤ C5 and C4 > 0, C5 > 0.

Combining (A.15) and (A.16) we obtain for all 0 < δL
−1
n m

−3β/2
n ≤ C3 the

inequality

P (T11 ≥ nδ) � exp(−C1n) + exp(−C2nm
−2(β+1)
n ) + exp(−C3nL

−2
n m

−(2+3β)
n δ

2).
(A.17)

We now consider the probability P (T12 ≥ nδ). Using the fact that |h�(ξj

uq)| ≤ 1
and Taylor’s expansion (A.9) yield

P (T12 ≥ nδ) ≤ P
(∣∣∣ n∑

u=1

(ξ̂i

ur − ξ
i

ur)
∣∣∣ ≥ nδ

2MLn

)
≤ P

( n∑
u=1

|ξ̂i

ur − ξ
i

ur|
2 ≥ nδ

2

4M 2L2
n

)
,

where we have used the Cauchy-Schwarz inequality. Therefore, by similar ar-
guments as used in the derivation of the bound for P (T11 ≥ nδ), there exist
positive constants C4, C5 and C6 such that for all 0 < δL

−1
n m

−3β/2
n ≤ C6

P (T12 ≥ nδ) � exp(−C4n) + exp(−C5nm
−2(β+1)
n ) + exp(−C6nL

−2
n m

−(2+3β)
n δ

2).
(A.18)

Combining (A.17) and (A.18) and choosing suitable constants, we obtain for
0 < δL

−1
n m

−3β/2
n ≤ C1,

P (T1 ≥ nδ) � exp(−C1nL
−2
n m

−(2+3β)
n δ

2). (A.19)

(b) To derive a bound for the term P (T2 ≥ nδ) in (A.8) we use the decomposi-
tion

P (T2 ≥ nδ) ≤P
(∣∣∣ n∑

u=1

(
h̃nk(ξ̂

i

ur) − h̃nk(ξ
i

ur)
)(

h̃n�(ξ̂
j

uq) − h̃n�(ξ
j

uq)
) ∣∣∣ ≥ nδ

2

)
+ P

(∣∣∣ n∑
u=1

h̃k(ξ
i

ur)
(
h̃n�(ξ̂

j

uq) − h̃�(ξ
j

uq)
) ∣∣∣ ≥ nδ

2

)
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=P
(
T21 ≥ nδ

2

)
+ P

(
T22 ≥ nδ

2

)
,

where the last inequality defines the terms T21 and T22 in an obvious manner.
For the second term, we obtain by the same arguments as used to estimate
P (T1 ≥ nδ) for any 0 < δL

−1
n m

−3β/2
n ≤ C2,

P
(
T22 ≥

nδ

2

)
� exp(−C2nL

−2
n m

−(2+3β)
n δ

2).

For the first term, we use the definition of the centred B-splines in (3.3) and (A.1)
to obtain for any δ > 0

P
(
T21 ≥

nδ

2

)
≤ P

(
T211 ≥

nδ

4

)
+ P

(
T212 ≥

nδ

4

)
,

where

T211 =
∣∣∣ n∑

u=1

(
hk(ξ̂

i

ur) − hk(ξ
i

ur)
)(

h�(ξ̂
j

uq) − h�(ξ
j

uq)
) ∣∣∣,

T212 = n−1
∣∣∣ n∑

u=1

(
hk(ξ̂

i

ur) − hk(ξ
i

ur)
) ∣∣∣∣∣∣ n∑

u=1

(
h�(ξ̂

j

uq) − h�(ξ
j

uq)
) ∣∣∣.

To derive a concentration bound for the first term, we use (A.9), (A.10) and the
Cauchy-Schwarz inequality to obtain

P
(
T211 ≥

nδ

4

)
≤ P

( n∑
u=1

|ξ̂i

ur − ξ
i

ur||ξ̂
j

uq − ξ
j

uq| ≥
nδ

4M 2L2
n

)
≤ 2P

( n∑
u=1

|ξ̂i

ur − ξ
i

ur|
2 ≥ nδ

4M 2L2
n

)
� exp(−C3nL

−2
n m

−(2+3β)
n δ),

for a positive constant C3 such that for 0 < δ
1/2

L
−1
n m

−3β/2
n ≤ C3. Here the last

inequality follows by the same arguments as used for the bound of P (T11 ≥ nδ).
Finally, for the term P

(
T212 ≥ nδ

4
)

we have

P
(
T212 ≥

nδ

4

)
=P

(∣∣∣ n∑
u=1

(
hk(ξ̂

i

ur) − hk(ξ
i

ur)
) ∣∣∣∣∣∣ n∑

u=1

(
h�(ξ̂

j

uq) − h�(ξ
j

uq)
) ∣∣∣ ≥ n

2
δ

4

)
.

Thus, we can apply similar techniques as used in the derivation of the bound
(A.17) with nδ

2 replaced by nδ
1/2

2 leading to

P
(
T212 ≥

nδ

4

)
� exp(−C4nL

−2
n m

−(2+3β)
n δ),

for 0 < δ
1/2

L
−1
n m

−3β/2
n ≤ C4. Combining these results with (A.8) and (A.19)

and using the fact that mn � n
α and kn > Ln, we obtain the assertion of the

Theorem.
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Theorem A.1 states that the elements of the matrix Σ̂Ni
nNi

n
− Σn

Ni
nNi

n
exhibit

exponential-type probability tails. We also observe that the decay rate β of the
eigenvalues appears in the tail behaviour. A similar condition of exponential
tails is imposed on the elements of the sample covariance matrix of scalar and
functional Gaussian data for the analysis of high-dimensional Gaussian graphical
models [see, for example, 29, 26].

Proposition A.1. Suppose that Assumptions 4.2, 4.3 and condition (4.7) are
satisfied. Then, there exist functions f̃

ij

nqr =
∑kn

k=1 β
∗ij
qrkh̃nk and positive constants

c1, C1, such that

P
(
Ω�) ≤ 2 exp

(
− C1

nk
−2d
n

nim2
n

+ log(ni
m

2
n)
)
,

where
Ω =

{
max
j∈Ni

n

max
1≤q,r≤mn

1√
n
‖f ij

qr
− f̃ ij

qr
‖2 < c1k

−d

n

}
, (A.20)

and f ij

qr
=

(
f

ij

qr(ξ
j

1r), . . . , f
ij

qr(ξ
j

nr)
)�, f̃ ij

nqr
=

(
f̃

ij

nqr(ξ
j

1r), . . . , f̃
ij

nqr(ξ
j

nr)
)�.

Proof. By Assumptions 4.2 and 4.3 for any f
ij

qr ∈ F κ,ρ there exists a B-spline
gijqr =

∑kn

k=1 β
∗ij
qrkhk ∈ S�Ln and a positive constant c1 such that

‖f ij

qr − g
ij

qr‖∞ ≤ c1k
−d

n ,

(see Lemma 5 in [32]). Let f̃ ij

nqr(ξjur) = g
ij

qr(ξjur)− 1
n

∑n

u=1 g
ij

qr(ξ
j

ur). Then recalling
the notation (A.14) we have f̃

ij

nqr(ξjur) =
∑kn

k=1 β
∗ij
qrkh̃nk(ξjur), and we obtain

1
n
‖f ij

qr
− f̃ ij

nqr
‖2

2 ≤ 2c2
1k

−2d
n + 2

( 1
n

n∑
u=1

g
ij

qr(ξ
j

ur)
)2

≤ 2c2
1k

−2d
n + 4

( 1
n

n∑
u=1

(gij

qr(ξ
j

ur) − f
ij

qr(ξ
j

ur))
)2

+ 4
( 1
n

n∑
u=1

f
ij

qr(ξ
j

ur)
)2

≤ 6c2
1k

−2d
n + 4

( 1
n

n∑
u=1

f
ij

qr(ξ
j

ur)
)2

.

From this, condition (4.7), Hoeffding’s inequality and the union bound, it follows
with an appropriate constant c2 > 0

P
(

max
j∈Ni

n

max
1≤q,r≤mn

1
n
‖f ij

qr(ξ
j

r) − f̃
ij

nqr(ξ
j

r)‖
2
2 ≥ c

2
1k

−2d
n

)
≤ P

(
max
j∈Ni

n

max
1≤q,r≤mn

∣∣∣ 1
n

n∑
u=1

f
ij

qr(ξ
ij

ur)
∣∣∣ ≥ c2k

−d

n

)
≤ 2 exp

(
− nk

−2d
n

2M 2nim2
n

+ log(ni
m

2
n)
)
,

which completes the proof.
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A.1. Rates of convergence for sample design matrices

In this section we show that if Assumptions 4.6 and 4.7 hold, then with high
probability, the assumptions hold also for the corresponding sample matrices

Σn

Ni
nNi

n
= 1

n
H̃n(ξ

Ni
n)H̃T

n
(ξNi

n) ∈ R
niknmn×niknmn ,

Σn

ξ
jNi

n
= 1

n
H̃T

n(ξj)H̃T
n
(ξNi

n) ∈ R
knmn×knmnn

i

,

(A.21)

where H̃n(ξj) and H̃n(ξNi
n) are defined in (A.2) and (A.3), respectively. Note that

the matrices in (A.21) are based on the unobserved scores and are the sample
analogs of the matrices Σ∗

Ni
nNi

n
and Σ∗

ξ
jNi

n
in (4.5) and (4.6), respectively.

Lemma A.2. Suppose that Assumption 4.6 holds. Then, there exists a constant
C1 > 0 such that for any δ > 0,

P
(
‖Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
‖F ≥ δ

)
≤ 2 exp

(
− C1

nδ
2

(nimnkn)2 + 2 log(ni
mnkn)

)
. (A.22)

P
(
Λmin(Σ

n

Ni
nNi

n
) ≤ Cmin − δ

)
≤ 2 exp

(
− C1

nδ
2

(nimnkn)2 + 2 log(ni
mnkn)

)
.

(A.23)

Proof. Weyl’s Lemma yields

Λmin(Σ
∗

Ni
nNi

n
) − Λmin(Σ

n

Ni
nNi

n
) ≤ ‖Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
‖2 ≤ ‖Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
‖F,

and by Assumption 4.6 we have,

P
(
Λmin(Σ

n

Ni
nNi

n
) ≤ Cmin − δ

)
≤ P

(
‖Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
‖F ≥ δ

)
. (A.24)

By definition the n
i
mnkn × n

i
mnkn matrix Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
contains elements of

the form

W
j1,j2
k�,rq = 1

n

n∑
u=1

h̃nk(ξ
j1
uq)h̃n�(ξ

j2
ur) −E(h̃k(ξ

j1
q )h̃�(ξ

j2
r )),

which can be rewritten (recalling the notation (A.1)) as A1 −A2, where

A1 = 1
n

n∑
u=1

hk(ξ
j1
uq)h�(ξ

j2
ur) − E(hk(ξ

j1
q )h�(ξ

j2
r )),

A2 = 1
n2

n∑
u1=1

n∑
u2=1

hk(ξ
j1
u1q)h�(ξ

j2
u2r) −E(hk(ξ

j1
q ))E(h�(ξ

j2
r )).
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Next, observe that the summands of A1 have expectation 0 and are bounded
in absolute value by 2. Therefore, by Hoeffding’s inequality, for any ε > 0, we
have P (|A1| ≥ ε) ≤ 2 exp(−nε

2

128 ). Moreover, the term A2 can be written as
n−1
n A21 + A22, where

A21 = 1
n(n− 1)

n∑
u1 �=u2

hk(ξ
j1
u1q)h�(ξ

j2
u2r) − E(hk(ξ

j1
u1q)h�(ξ

j2
u2r),

is a U -statistic and A22 = 1
n2

∑n

u1=1 hk(ξj1
u1q)h�(ξj2

u1r)−E(hk(ξj1
u1q)h�(ξj2

u1r)). Con-
sequently, by Hoeffding’s inequality for U -statistics [10], for any ε > 0, P (|A21| ≥
ε) ≤ 2 exp(−nε

2

128 ), and it is easy to see (due to the additional factor 1/n) that
A22 satisfies an even stronger concentration inequality. Therefore, it follows that
for any ε > 0

P
(
|W j1,j2

k�,rq | ≥ ε
)
≤ 2 exp

(
−C1nε

2)
, (A.25)

for some constant C1 > 0. Thus, the union bound over the (ni
mnkn)2 indices and

the choice of ε = δ

nimnkn
in (A.25) yields (A.22). Finally, the assertion (A.23)

follows from relation (A.24) at the beginning of the proof.

The next Lemma guarantees that the matrices defined in (A.21) satisfy the
irrepresentable condition in Assumption 4.7 with high probability.

Lemma A.3. If Assumption 4.6 and 4.7 are satisfied for some 0 < η ≤ 1, then

P
(

max
j /∈Ni

n

‖Σn

ξ
jNi

n
(Σn

Ni
nNi

n
)−1‖F≥

1 − η
2√

ni

)
�exp

(
−C1

n

((ni)5/4mnkn)2 + 2 log(pmnkn)
)
,

where C1 is a positive constant that depends only on Cmin and η.

Proof. First, we decompose

max
j /∈Ni

n

‖Σn

ξ
jNi

n
(Σn

Ni
nNi

n
)−1‖F ≤ max

j /∈Ni
n

‖Σn

ξ
jNi

n
(Σn

Ni
nNi

n
)−1 − Σ∗

ξ
jNi

n
(Σ∗

Ni
nNi

n
)−1‖F

+ max
j /∈Ni

n

‖Σ∗

ξ
jNi

n
(Σ∗

Ni
nNi

n
)−1‖F.

By Assumption 4.7 we have max
j /∈Ni

n
‖Σ∗

ξ
jNi

n
(Σ∗

Ni
nNi

n
)−1‖F ≤ 1−η√

ni
and it suffices to

consider

P
(

max
j /∈Ni

n

‖Σn

ξ
jNi

n
(Σn

Ni
nNi

n
)−1 − Σ∗

ξ
jNi

n
(Σ∗

Ni
nNi

n
)−1‖F ≥ η

2
√
ni

)
.

For this purpose we use the decomposition Σn

ξ
jNi

n
(Σn

Ni
nNi

n
)−1 − Σ∗

ξ
jNi

n
(Σ∗

Ni
nNi

n
)−1 =

T
j

1 + T
j

2 + T
j

3 where

T
j

1 = Σ∗

ξ
jNi

n

(
(Σn

Ni
nNi

n
)−1 − (Σ∗

Ni
nNi

n
)−1

)
, T

j

2 =
(
Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n

)
(Σ∗

Ni
nNi

n
)−1

,
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T
j

3 =
(
Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n

)(
(Σn

Ni
nNi

n
)−1 − (Σ∗

Ni
nNi

n
)−1

)
,

and control the probabilities P
(
max

j /∈Ni
n
‖T j

h‖F ≥ η

6
√

ni

)
separately.

(a) For the first term T
j

1 , we use the identity A−1 −B−1 = A−1(B −A)B−1

and obtain from Assumption 4.7

max
j /∈Ni

n

‖T j

1 ‖F ≤ max
j /∈Ni

n

‖Σ∗

ξ
jNi

n
(Σ∗

Ni
nNi

n
)−1‖F‖(Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
)(Σn

Ni
nNi

n
)−1‖F

≤ (1 − η)√
ni

‖Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
‖F‖(Σn

Ni
nNi

n
)−1‖2.

Thus, defining the event T = {‖(Σn

Ni
nNi

n
)−1‖2 ≤ 2

Cmin
} we obtain

P
(

max
j /∈Ni

n

‖T j

1 ‖F ≥ η

6
√
ni

)
≤ P

(
‖Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
‖F‖(Σn

Ni
nNi

n
)−1‖2 ≥

η

6(1 − η)

)
≤ P

(
‖Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
‖F ≥ ηCmin

12(1 − η)

)
+ P

(
T �

)
≤ 4 exp

(
− C1

n

(nimnkn)2 + 2 log(ni
mnkn)

)
,

(A.26)

where we used Lemma A.2 with δ = ηCmin
12(1−η) and δ = Cmin

2 for the last inequality.
(b) For the second term T

j

2 , we have

max
j /∈Ni

n

‖T j

2 ‖F ≤ ‖(Σ∗

Ni
nNi

n
)−1‖2 max

j /∈Ni
n

‖Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n
‖F ≤ C−1

min max
j /∈Ni

n

‖Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n
‖F,

where we used Assumption 4.6 in the second inequality. Thus,

P
(

max
j /∈Ni

n

‖T j

2 ‖F ≥ η

6
√
ni

)
≤ P

(
max
j /∈Ni

n

‖Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n
‖F ≥ ηCmin

6
√
ni

)
.

Now, using similar arguments as in the proof of (A.22) in Lemma A.2, we can
show

P
(
‖Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n
‖F ≥ δ

)
≤ 2 exp

(
− C1

nδ
2

nim2
nk

2
n

+ log(ni
m

2
nk

2
n)
)
, (A.27)

for some positive constant C1 > 0. This bound with δ = ηCmin

6
√

ni
and the union

bound yield

P
(

max
j /∈Ni

n

‖T j

2 ‖F ≥ η

6
√
ni

)
≤ (p− n

i)P
(
‖Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n
‖F ≥ ηCmin

6
√
ni

)
≤2 exp

(
−C1

n

(nimnkn)2 + log(ni
m

2
nk

2
n)+log(p− n

i)
)
.

(A.28)
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(c) For the third term T
j

3 , we have

P
(

max
j /∈Ni

n

‖T j

3 ‖F ≥ η

6
√
ni

)
≤ P

(
max
j /∈Ni

n

‖Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n
‖F ≥

√
η

6
√
ni

)
+ P

(
‖(Σn

Ni
nNi

n
)−1 − (Σ∗

Ni
nNi

n
)−1‖F ≥

√
η

6
√
ni

)
. (A.29)

Using (A.27) with δ =
√

η

6
√

ni
we obtain for the first term on the right-hand

side of (A.29)

P
(

max
j /∈Ni

n

‖Σn

ξ
jNi

n
− Σ∗

ξ
jNi

n
‖F ≥

√
η

6
√
ni

)
(A.30)

� exp
(
− C1

n

(ni)3/2m2
nk

2
n

+ log(ni
m

2
nk

2
n) + log((p− n

i)m2
nk

2
n)
)
.

To derive a bound for the second term in (A.29) we apply the same arguments
as used for the term T

j

1

P
(
‖(Σn

Ni
nNi

n
)−1 − (Σ∗

Ni
nNi

n
)−1‖F ≥

√
η

6
√
ni

)
�exp

(
−C1

n

(ni)5/2m2
nk

2
n

2 log(ni
mnkn)

)
+exp

(
−C1

n

(nimnkn)2 +2 log(ni
mnkn)

)
.

(A.31)

Thus, from (A.29), (A.30) and (A.31) we obtain

P
(

max
j /∈Ni

n

‖T j

3 ‖F ≥ η

6
√
ni

)
(A.32)

� exp
(
− C1

n

(ni)3/2(mnkn)2 + log(ni
m

2
nk

2
n) + log((p− n

i)m2
nk

2
n)
)

+ 2 exp
(
− C1

n

(ni)5/2m2
nk

2
n

+ 2 log(ni
mnkn)

)
(A.33)

+ 2 exp
(
− C1

n

(nimnkn)2 + 2 log(ni
mnkn)

)
.

Putting together (A.26), (A.28) and (A.32) and using the fact logni ≤ log(p−
n

i) ≤ log p (since n
i ≤ p) we conclude

P
(

max
j /∈Ni

n

‖Σn

ξ
jNi

n
(Σn

Ni
nNi

n
)−1‖F≥

1 − η
2√

ni

)
≤2 exp

(
− C1

n

(ni)5/2m2
nk

2
n

+ 2 log(pmnkn)
)
,

for some positive constant C1 that depends on Cmin and η. This completes the
proof.
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A.2. Proof of Theorem 4.1

We begin establishing the model selection consistency given that Assumptions 4.6
and 4.7 are satisfied by the sample matrices defined in (A.21). In particular we
define the event

N = {Σn

Ni
nNi

n
,Σn

ξ
jNi

n
satisfy Assumptions 4.6 and 4.7} (A.34)

and state the following result, which is the essential step in the proof of Theo-
rem 4.1 and will be proved in Section A.3 below.

Proposition A.2. If the assumptions of Theorem 4.1 are satisfied. Then,

P (N̂i

n �= Ni

n ∩N )�exp
(
−C1

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)2

nim2
nk

4
n

+ 2 log(ni
mnkn)

)
,

(A.35)

where C1 is a positive constant.

We have

P (N̂i

n �= Ni

n) ≤ P(N̂i

n �= Ni

n and N ) + P(N �) ,

where the first probability on the right hand side can be estimated by (A.35).
Moreover, by Lemmas A.2 and A.3,

P (N �) � exp
(
− C1

n

((ni)5/4mnkn)2 + 2 log(pmnkn)
)

+ exp
(
− C1

n

(ni)2mnkn)2 + 2 log(pmnkn)
)
,

and this proves Theorem 4.1.

A.3. Proof of Proposition A.2

We follow a similar strategy as in [1] and [14], who showed consistency of the
group lasso in a reproducing kernel Hilbert space framework. First, we consider
the following alternative form of the group lasso problem (3.7)

P̂Li(B
i
, ξ̂) = 1

2n‖ξ̂
i − H̃T

n
(ξ̂−i)Bi‖2

F + λn

2 (
p∑

j �=i

‖Bij‖F)2
. (A.36)

Because the function x → x
2, x ≥ 0 is monotone, problem (A.36) leads to

the same regularisation paths as problem (3.7) [see 1, , page 1187 for more
details]. To derive the Karush-Kuhn-Tucker (KKT) conditions, we recall the
notations (A.3), (A.4) and define the matrices

Σ̂n

Ni
nξ

j = 1
n
H̃n(ξ̂

Ni
n)H̃n(ξ̂j) ∈ R

n
i
knmn×knmn , (A.37)
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Σ̂n

ξ
j
ξ
i = 1

n
H̃T

n(ξ̂j)ξ̂i ∈ R
knmn×mn (A.38)

when j �= i and

Σ̂n

Ni
nξ

i = 1
n
H̃n(ξ̂

Ni
n)ξ̂i ∈ R

n
i
knmn×mn , (A.39)

where the matrices H̃n(ξ̂j) and H̃n(ξ̂Ni
n) have been defined in (A.6) and (A.5)

respectively. We also denote by Σn

Ni
nξ

j , Σn

ξ
j
ξ
i , Σn

Ni
nξ

i the versions of (A.37), (A.38),

(A.39) that use the true scores ξ
i

ur instead of the estimated ξ̂
i

ur (see also equa-
tion (A.7)).

Lemma A.4 (KKT conditions). A matrix B
i = (Bij

, j ∈ V\{i})∈R
(p−1)knmn×mn

with support Ni

n is optimal for problem (A.36) if and only if

(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)BNi

n − Σ̂n

Ni
nξ

i = 0, for all j ∈ Ni

n, (A.40a)

‖Σ̂n

ξ
jNi

n
B

Ni
n − Σ̂n

ξ
j
ξ
i‖F ≤ λn

p∑
j �=i

‖Bij‖F, for all j /∈ Ni

n, (A.40b)

where Σ̂n

Ni
nNi

n
is defined in (A.7), BNi

n = (Bij
, j ∈ Ni

n) ∈ R
niknmn×mn , B = (βij

qrk :
1 ≤ q, r ≤ mn, 1 ≤ k ≤ kn) and

D̂Ni
n
= diag

(
(D̂Ni

n
)jj : j ∈ N̂i

n)
)

is a block diagonal matrix with n
i elements (D̂Ni

n
)jj =

∑p

��=i
‖B̂i�‖F

‖B̂ij‖F
Iknmn ∈

R
knmn×knmn .

The idea of the proof is to first construct an estimator B̂Ni
n

n by minimizing the
following restricted problem given the true support Ni

n. That is,

B̂
Ni

n
n = argmin

{
P̂LNi

n
(B, ξ̂) : B ∈ R

niknmn×mn
}
, (A.41)

where

P̂LNi
n
(B, ξ̂) = 1

2n‖ξ̂
i − H̃T

n
(ξ̂Ni

n)B‖2
F + λn

2

( p∑
j∈Ni

n

‖Bij‖F

)2

, (A.42)

(note that P̂LNi
n
(B, ξ̂) corresponds to the function (A.36), where we put Bij = 0

whenever j /∈ Ni), and to show that the minimizer in (A.41) is “close” to the
true matrix B

∗Ni
n

n defined in (4.3). To achieve this we use similar arguments as in
[1] and construct another auxiliary estimator B̃

Ni
n

n that minimizes the restricted
penalized function, where the group lasso penalty in (A.41) is replaced by an
�2-type penalty. More precisely, B̃Ni

n
n is defined by

B̃
Ni

n
n = argmin

{
P̃LNi

n
(B, ξ̂) : B ∈ R

niknmn×mn
}
, (A.43)
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where

P̃LNi
n
(B, ξ̂) = 1

2n‖ξ̂
i − H̃T

n
(ξ̂−i)B‖2

F + λn

2

(∑
�∈Ni

n

‖B∗i�
mnkn

‖F

)(∑
j∈Ni

n

‖Bij‖2
F

‖B∗ij
mnkn

‖F

)
.

We now proceed in the following steps:

(a) In Proposition A.3 we show that the distance ‖B̃Ni
n

n −B
∗Ni

n
n ‖F is small with

high probability.
(b) In Proposition A.4 we show that B̂Ni

n
n is close to B̃

Ni
n

n with high probability.
(c) In Proposition A.5 we use this result to derive a concentration bound for

‖B̂Ni
n

n −B
∗Ni

n‖F.
(d) We then construct the oracle minimiser (B̂Ni

n ,0), where B̂
Ni

n is the min-
imiser of (A.41) and 0 consists of (p− 1 − n

i) zero knmn ×mn matrices.
(e) Finally, in Proposition A.6 we show that the oracle minimiser is optimal

for the restricted problem (A.41) given the true support Ni

n; that is, it
satisfies (A.40b).

The minimisation problem (A.41) is convex; however, for p > n, it need not to
be strictly convex, so that there may not be a unique solution. Nevertheless,
the next lemma shows that the matrix Σ̂n

Ni
nNi

n
defined in (A.7) is strictly positive

definite with high probability, and hence the objective function (A.41) is strictly
convex, and thus B̂

Ni
n is the unique optimal solution.

Lemma A.5. There exists a constant C1 > 0 such that,

P
(
Λmin(Σ̂

n

Ni
nNi

n
) ≥ Cmin

4

)
� 1 − exp

(
− C1

n
1−α(2+3β)

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
.

Proof. By Weyl’s Lemma, we have Λmin(Σn

Ni
nNi

n
) ≤ Λmin(Σ̂n

Ni
nNi

n
)+ ‖Σ̂n

Ni
nNi

n
−Σn

Ni
nNi

n
‖2,

and we get

P
(
Λmin(Σ̂

n

Ni
nNi

n
) ≤ Cmin

4 and Λmin(Σ
n

Ni
nNi

n
) > Cmin

2

)
≤P

(
‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖2 ≥

Cmin

4

)
.

Furthermore, using δ
2 = 1

(nimnkn)2
Cmin

4 in Theorem A.1 with the union bound
over the (ni

mnkn)2 index pairs of the matrix Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
, yields for some

positive constant C1

P
(
‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F ≥ Cmin

4

)
� exp

(
− C1

n
1−α(2+3β)

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
.

The assertion now follows by the same arguments as given in the proof of
Lemma A.2.
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Proposition A.3. Suppose Assumptions 4.1-4.6 hold and the regularization
parameter λn satisfies

n
i
m

3/2
n

kd

n

�
√

2
Cmin

λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F. (A.44)

If Λmin(Σ̂n

Ni
nNi

n
) ≥ Cmin

4 , then there exists a constant c2 ∈ (0, 1/2) such that, for
any δ > 0 satisfying

2
Cmin

√
niλn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F ≤ c2δ, (A.45)

we have for the minimizer of (A.43)

P
(
‖B̃Ni

n
n −B

∗Ni
n

n ‖F ≥ δ
)

� exp
(
− C1

n
1−α(2+3β)

δ
2

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
,

where B
∗Ni

n
n is defined in (4.3) and the constant C1 satisfies 0 < δ ≤ C1.

Before we start with the proof we note that condition (A.44) refers to the
spline approximation error from including only kn terms and the second condi-
tion (A.45) represents the bias due to ridge penalisation.

For the proof we use similar arguments as given in the proof of Proposition
2 of [15]. The main change that we need to consider is the approximation error
of the additive regression functions by splines. First, the minimizer B̃Ni

n defined
in (A.43) is of the form

B̃
Ni

n
n =

(
Σ̂n

Ni
nNi

n
+ λnD

∗

Ni
n

)−1
Σ̂n

Ni
nξ

i ,

where D
∗

Ni
n

is a block diagonal matrix with (D∗

Ni
n
)jj =

∑p

��=i
‖B∗i�

mnkn
‖F/‖B∗ij

mnkn

‖FIknmn , j ∈ Ni

n as diagonal blocks, and the matrices Σ̂n

Ni
nNi

n
and Σ̂n

Ni
nξ

i are defined
in (A.7) and (A.37), respectively.

A simple calculation shows that

‖B̃Ni
n

n −B
∗Ni

n
n ‖F ≤ T1 + T2 + T3,

where the terms T1, T2 and T3 are defined by

T1 =
∥∥(Σ̂n

Ni
nNi

n
+ λnD

∗

Ni
n
)−1(Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i)
∥∥

F
,

T2 =
∥∥{(Σ̂n

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 − (Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1}Σn

Ni
nξ

i

∥∥
F
,

T3 =
∥∥(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nξ

i −B
∗Ni

n
n

∥∥
F
.
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Thus, for any δ > 0, P
(
‖B̃Ni

n
n − B

∗Ni
n

n ‖F ≥ 3δ
)
≤

∑3

i=1 P (Ti ≥ δ), and it is suffi-
cient to derive bounds for the three probabilities corresponding to the random
variables T1, T2 and T3. Starting with T1 we have

T1 ≤ ‖(Σ̂n

Ni
nNi

n
+ λnD

∗

Ni
n
)−1‖2‖Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i‖F ≤ 4
Cmin

‖Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i‖F,

where we use the fact that
‖Σ̂Ni

nNi
n
‖2 ≥

Cmin

4
on the event N and that (Σ̂n

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 �

(
Σ̂n

Ni
nNi

n

)−1. Therefore, using
Lemma A.2, similar arguments as given in the proof of Theorem A.1 and ap-
plying the union bound over the n

i
m

2
nkn pairs, we obtain

P (T1 ≥ δ) ≤ P
(
‖Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i‖F ≥ Cminδ

4

)
� exp

(
− C1

n
1−α(2+3β)

δ
2

nim2
nk

3
n

+ log(ni
m

2
nkn)

)
,

(A.46)

for 0 < δ

nim2
nkn

≤ C1 with C1 > 0 depending on Cmin. To derive the bound for
the probability P (T2 ≥ δ) we use the identity A

−1 −B
−1 = A

−1(B −A)B−1 to
obtain (on the event N )

T2 ≤ ‖(Σ̂n

Ni
nNi

n
+ λnD

∗

Ni
n
)−1‖2‖(Σn

Ni
nNi

n
− Σ̂n

Ni
nNi

n
)(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nξ

i‖F

≤ 4
Cmin

‖Σn

Ni
nNi

n
− Σ̂n

Ni
nNi

n
‖F‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nξ

i‖2. (A.47)

Recall the relation (4.1) and let

w
i

uq =
∑
j∈Ni

n

mn∑
r=1

(f ij

qr(ξ
j

ur) − f̃
ij

nqr(ξ
j

ur)), q = 1, . . . ,mn, u = 1, . . . , n, (A.48)

where f̃
ij

qr denotes the function from Proposition A.1. Then, we can rewrite
relation (4.1) in the form

ξ
i = H̃T

n
(ξNi

n)B∗Ni
n

n + w
i + ε

i ∈ R
n×mn ,

where w
i = (wi

uq)1≤u≤n,1≤q≤mn , εi = (εiuq)1≤u≤n,1≤q≤mn ∈ R
n×mn and H̃�

n
(ξNi

n) is
defined in (A.3). Furthermore, by multiplying from the left the above equation

with H̃n(ξNi

)
n we obtain

Σn

Ni
nξ

i = Σn

Ni
nNi

n
B

∗Ni
n

n + H̃n(ξNi
n)

n
w

i + H̃n(ξNi
n)

n
ε
i
, (A.49)

Σn

ξjξ
i = Σn

ξjNi
n
B

∗Ni
n

n − H̃T
n(ξj)
n

w
i − H̃T

n(ξj)
n

ε
i
. (A.50)
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where the matrix Σn

Ni
nξ

i is defined in Section A.3 and Σn

ξjNi
n
= (Σn

Ni
nξ

j )T. Using this
representation and the triangle inequality we get

‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nξ

i‖2

≤ ‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nNi

n
B

∗Ni
n

n ‖2 + ‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 H̃n(ξNi

n)
n

w
i‖2

+ ‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 H̃n(ξNi

n)
n

ε
i‖2.

As a result from this and (A.47), it follows that for all δ > 0 (on the event N )

P (T2 ≥ δ) ≤ P
(
T21 ≥

δ

3

)
+ P

(
T22 ≥

δ

3

)
+ P

(
T23 ≥

δ

3

)
, (A.51)

where

T21 = 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nNi

n
B

∗Ni
n

n ‖2,

T22 = 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 H̃n(ξNi

n)
n

w
i‖2,

T23 = 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 H̃n(ξNi

n)
n

ε
i‖2.

Next we derive upper bounds for each of the probabilities in (A.51). For T21

observe that

T21 ≤
4

Cmin
‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F‖‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nNi

n
‖2‖B∗Ni

n
n ‖2

≤ 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F,

where the second inequality uses the fact that ‖B∗Ni
n

n ‖2 < ∞ and that the norm
‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nNi

n
‖2 is bounded by one. Therefore, it follows from Theo-

rem A.1 with δ replaced by Cminδ

6nimnkn
and the union bound over the (ni

mnkn)2

pairs that

P
(
T21 ≥

δ

3

)
≤ P

(
‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F ≥ δCmin

12

)
� exp

(
− C2

n
1−α(2+3β)

δ
2

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
,

(A.52)

for 0 < δ

nimnkn
≤ C2, for C2 > 0 depending on Cmin.

For the term T22 note that

‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 H̃n(ξNi

n)√
n

‖2 ≤ ‖(Σn

Ni
nNi

n
)−1 H̃n(ξNi

n)√
n

‖2 = Λmin(Σ
n

Ni
nNi

n
)−1/2

,

(A.53)
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where we used Lemma A.2 for the last inequality with δ = Cmin
2 . Thus, (on the

event N ) the term T22 can be bounded by

T22 ≤
25/2

Cmin
‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F‖

w
i

√
n
‖F.

Recall the notation of wi
uq in (A.48) and the definition of the event Ω in Propo-

sition A.1. Then, if the event Ω holds, we have,

‖ 1√
n
w

i‖2
F = 1

n

n∑
u=1

mn∑
q=1

(wi

uq)
2 = 1

n

n∑
u=1

mn∑
q=1

(∑
j∈Ni

mn∑
r=1

(f ij

qr(ξ
j

ur) − f̃
ij

nqr(ξ
j

ur))
)2

,

≤ n
i
mn

n

∑
j∈Ni

mn∑
q=1

mn∑
r=1

n∑
u=1

(f ij

qr(ξ
j

ur) − f̃
ij

nqr(ξ
j

ur))
2

≤ n
i
mn

n

∑
j∈Ni

mn∑
q=1

mn∑
r=1

max
j∈Ni

max
1≤q,r≤mn

‖f ij

qr
− f̃ ij

qr
‖2 ≤ c1(n

i)2
m

3
nk

−2d
n ,

(A.54)

and by assumption (A.44) it follows that on the event Ω

‖ 1√
n
w

i‖F ≤ √
c1

√
2

Cmin
λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F. (A.55)

As a result,

P
(
T22 ≥

δ

3

)
≤ P

(( 8
C3/2

min

)2√
c1λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F ≥ δ

3

)
+ P (Ω�)

� exp
(
− C3

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)−2

δ
2

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
(A.56)

+ exp
(
− C3

n

nim2
nk

2d
n

+ log(ni
m

2
n)
)

for 0 < δ(λn

∑
j∈Ni

n
‖B∗ij

n ‖F)−1 ≤ C3, for C3 > 0 depending on Cmin and c1, where
we have used Theorem A.1 and Proposition A.1.

We next derive an upper bound for the probability corresponding to the term
T23 in (A.51) noting that (on the event N )

T23 ≤
8

C2
min

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F‖

H̃n(ξNi
n)

n
ε
i‖F. (A.57)

The (i, j) element of the matrix H̃n(ξNi
n )

n ε
i can be written as an i.i.d sum of the

form 1
n

∑n

u=1 h̃nk(ξj

ur)ε
i

uq. Thus, by Assumption 4.4 it follows that

P
(∣∣∣ 1

n

n∑
u=1

h̃nk(ξ
j

ur)ε
i

uq

∣∣∣ ≥ ε
)
≤ 2 exp(−C5nε

2),
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for any ε > 0. Therefore, by applying the union bound over the n
i
m

2
nkn gives

P
(
‖H̃n(ξNi

n)
n

ε
i‖F ≥ ε

)
≤ 2 exp

(
− C5

nε
2

nim2
nkn

+ log(ni
m

2
nkn)

)
. (A.58)

Using this inequality with ε = Cmin/6, (A.52) and (A.57) gives

P
(
T23 ≥

δ

3

)
� exp

(
− C4

n
1−α(2+3β)

δ
2

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
+ exp

(
− C5

n

nim2
nkn

+ log(ni
m

2
nkn)

)
,

(A.59)

for 0 < δ

nimnkn
≤C4, for C4 > 0 depending on Cmin. Therefore from (A.52), (A.56)

and (A.59) it follows that

P (T2 ≥ δ) � exp
(
− C2

n
1−α(2+3β)

δ
2

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
+ 2 exp

(
− C3

n

nim2
nk

2d
n

+ log(ni
m

2
n)
)
,

(A.60)

for 0 < δ

nimnkn
≤ C2, where the first term dominates the second one because of

Assumption 4.5.
Finally, we derive an upper bound for the probability involving T3. Using

representation (A.49) we obtain

T3 ≤T31 + T32 + T33 , (A.61)

where

T31 =‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nNi

n
B

∗Ni
n

n −B
∗Ni

n
n ‖F,

T32 =‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 H̃n(ξNi

n)
n

w
i‖F,

T33 =‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1 H̃n(ξNi

n)
n

ε
i‖F.

For the first term T31 (on the event N )

T31 = λn‖(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1

D
∗

Ni
n
B

∗Ni
n

n ‖F

≤ 2
Cmin

λn(ni)1/2
∑
j∈Ni

n

‖B∗ij
mnkn

‖F ≤ δ

2(1 + √
c1)

,

where we used condition (A.45) with √
c1 = 1

2c2 − 1 and the fact that

‖diag( B
∗ij
mnkn

‖B∗ij
mnkn

‖F
: j ∈ Ni

n)‖F = (ni)1/2. Moreover, by applying the same ar-

guments for deriving the bound of T22 and by using (A.53), conditions (A.44)
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and (A.45) it follows that on the event Ω

T32 ≤ √
c1

(
2

Cmin

)1/2
n

i
m

3/2
n

kd

n

≤ √
c1

2
Cmin

λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F ≤
√
c1

2(1 + √
c1)

δ.

For T33, we have

T33 ≤ 2
Cmin

‖H̃n(ξNi
n)εi

n
‖F.

Therefore, inequalities (A.61) and (A.58) imply that for all δ > 0

P (T3 ≥ δ) ≤ P
( 2
Cmin

‖H̃n(ξNi
n)εi

n
‖F ≥ δ

2

)
+ P (Ω�)

≤ 2 exp
(
− C3

nδ
2

nim2
nkn

+ log(ni
m

2
nkn)

)
+ 2 exp

(
− C3

n

nim2
nk

2d
n

+ log(ni
m

2
n)
)
,

(A.62)

for C3 > 0 depending on Cmin. Thus, by (A.46), (A.60) and (A.62), we have
shown, for any δ > such that 0 < δ ≤ C1 and 0 < δ ≤ C2

P (‖B̃Ni
n

n −B
∗Ni

n
n ‖F ≥ δ) � exp

(
− C1

n
1−α(2+3β)

δ
2

nim2
nk

3
n

+ log(ni
m

2
nkn)

)
+ exp

(
− C2

n
1−α(2+3β)

δ
2

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
+ exp

(
− C3

nδ
2

nim2
nkn

+ log(ni
m

2
nkn)

)
.

Since the second term dominates the first and the third, the assertion in Propo-
sition A.3 follows.

The next proposition brings B̂
Ni

n
n = (B̂ij

n , j ∈ Ni

n) close to B̃
Ni

n
n = (B̃ij

n , j ∈ Ni

n),
from which we can establish the concentration inequality for B̂

Ni
n

n .

Proposition A.4. Let B̂Ni
n

n be the minimiser of (A.41) and B̃
Ni

n
n be the minimiser

of (A.43). If Λmin(Σ̂n

Ni
nNi

n
) ≥ Cmin

4 then,

‖B̂Ni
n

n − B̃
Ni

n
n ‖F ≤ 10

Cmin
λnn

i(b∗in )−1‖B̃Ni
n

n −B
∗Ni

n
n ‖F

∑
j∈Ni

n

‖B∗ij
mnkn

‖F,

where b
∗i
n = min

j∈Ni
n
‖B∗ij

mnkn
‖F.

Proof. The idea of the proof is similar as in the proof of Proposition 3 in [15].
Consider the sphere Sn(δn) = {B ∈ R

n
i
knmn×mn : ‖B − B̃

Ni
n

n ‖F = δn}, where
(δn)n∈N is a positive sequence of real numbers. For ε ∈ [0, 1] let

f(ε) = P̂LNi
n
(B̃Ni

n
n + εA, ξ̂

i),
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where the function P̂LNi
n
is defined in (A.42) and A = B−B̃

Ni
n

n . A straightforward
calculation gives for the first and the second derivatives of the function f(ε)

Ḟ(ε) = −〈Σ̂n

Ni
nξ

i , A〉F + 〈A, Σ̂n

Ni
nNi

n
(B̃Ni

n
n + εA)〉F

+ λn

∑
j∈Ni

n

‖B̃ij

n + εA
j‖F

∑
k∈Ni

n

(
〈B̃ik

n + εA
k
, A

k〉F‖B̃ik

n + εA
k‖−1

F

)
.

F̈(ε) = 〈A, Σ̂n

Ni
nNi

n
A〉F + λn

(∑
j∈Ni

n

‖B̃ij

n + εA
j‖−1

F 〈B̃ij

n + εA
j
, A

j〉F
)2

+ λn

∑
j∈Ni

n

‖B̃ij

n + εA
j‖F

∑
k∈Ni

n

‖Ak‖2
F‖B̃

ik

n + εA
k‖−1

F

− λn

∑
j∈Ni

n

‖B̃ij

n + εA
j‖F

∑
k∈Ni

n

(
〈B̃ik

n + εA
k
, A

k〉2F‖B̃
ik

n + εA
k‖−3

F

)
.

where 〈·, ·〉F denotes the Frobenious inner product and Σ̂n

Ni
nξ

i , Σ̂n

Ni
nNi

n
are defined

in (A.39) and (A.7) respectively. By construction, f(0) = P̂LNi
n
(B̃Ni

n
n , ξ̂

i), f(1) =
P̂LNi

n
(B, ξ̂

i) and by Taylor’s theorem, we have for some ε ∈ (0, 1)

P̂LNi
n
(B, ξ̂

i) − P̂LNi
n
(B̃Ni

n
n , ξ̂

i) = f(1) − f(0) = ḟ(0) + f̈(ε)
2 . (A.63)

The Cauchy-Schwarz inequality yields for any B ∈ Sn(δn) and ε ∈ [0, 1]

f̈(ε) ≥ 〈A, Σ̂n

Ni
nNi

n
A〉F + λn

(∑
j∈Ni

n
‖B̃ij

n + εA
j‖−1

F 〈B̃ij

n + εA
j
, A

j〉F
)2

≥ Cmin

4 δ
2
n.

(A.64)

On the other hand, by Lemma A7 in [14] it follows that

|ḟ(0)| ≤ λn

∑
j∈Ni

n

∑
k∈Ni

n

[
‖B̃ij

n −B
∗ij
mnkn

‖F‖B̃ik

n −B
k‖F

+ ‖B∗ij
mnkn

‖F‖B∗ik
mnkn

‖−1
F ‖B̃ij

n −B
∗ij
mnkn

‖F‖B̃ik

n −B
k‖F

]
.

A further application of the Cauchy-Schwarz inequality gives

|ḟ(0)| ≤ λn

√
ni

∑
j∈Ni

n

‖B̃ij

n −B∗ij
mnkn

‖2
Fn

i
∑
k∈Ni

n

‖B̃ik

n −Bk‖2
F

+ λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F‖B̃ij

n −B
∗ij
mnkn

‖F(b∗in )−1
∑
k∈Ni

n

‖B̃ik

n
−B

k‖F

= λnn
i‖B̃Ni

n
n −B

∗Ni
n

n ‖F‖B̃Ni
n

n −B‖F

+ λn(b∗in )−1
∑
j∈Ni

n

‖B∗ij
mnkn

‖F‖B̃ij

n
−B

∗ij
mnkn

‖F

∑
k∈Ni

n

‖B̃ik

n
−B

k‖F
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≤ λnn
i‖B̃Ni

n
n −B

∗Ni
n

n ‖F‖B̃Ni
n

n −B‖F

+ λn

√
ni(b∗in )−1‖B̃Ni

n
n −B

∗Ni
n

n ‖F‖B̃Ni
n

n −B‖F‖B∗Ni
n

n ‖F.

Using the fact b
∗i
n ≤ ‖B∗Ni

n
n ‖F ≤

∑
j∈Ni

n
‖B∗ij

mnkn
‖F we obtain

|ḟ(0)| ≤ 2λnn
i(b∗in )−1

∑
j∈Ni

n

‖B∗ij
mnkn

‖F‖B̃Ni
n

n −B
∗Ni

n
n ‖F‖B̃Ni

n
n −B‖F. (A.65)

Hence, combining (A.63), (A.64) and (A.65), we obtain

P̂LNi
n
(B, ξ̂

i) − P̂LNi
n
(B̃Ni

n
n , ξ̂

i) ≥ −2λnn
i(b∗in )−1

∑
j∈Ni

n

‖B∗ij
mnkn

‖F‖B̃Ni
n

n −B
∗Ni

n
n ‖F

+ Cmin

4 δ
2
n.

If we choose δ
2
n = 10

Cmin
λnn

i(b∗in )−1 ∑
j∈Ni

n
‖B∗ij

mnkn
‖F‖B̃Ni

n
n −B

∗Ni
n

n ‖F, it follows that

P̂LNi
n
(B, ξ̂

i) − P̂LNi
n
(B̃Ni

n
n , ξ̂

i) > 0.

Since the function P̂LNi
n
(B, ξ̂

i) is convex, the minimizer B̂
Ni

n
n of P̂LNi

n
(B, ξ̂

i) is
going be inside the sphere defined by Sn(δn), that is,

‖B̂Ni
n

n − B̃
Ni

n
n ‖F ≤ 10

Cmin
λnn

i(b∗in )−1
∑
j∈Ni

n

‖B∗ij
mnkn

‖F‖B̃Ni
n

n −B
∗Ni

n
n ‖F.

Using the Propositions A.3 and A.4, we now can establish the concentration
bounds for ‖B̂Ni

n
n −B

∗Ni
n

n ‖F.

Proposition A.5. Suppose Assumptions of Proposition A.3 are satisfied and
that δ satisfies

2
Cmin

λn(ni)3/2(
∑
j∈Ni

n

‖B∗ij
mnkn

‖F)2 ≤ c2b
∗i
n δ, (A.66)

for some constant c2 > 0. Then,

P
(
‖B̂Ni

n
n −B

∗Ni
n

n ‖F ≥ δ
)

� exp
(
− C1

n
1−α(2+3β)(b∗in )2

δ
2

(ni)4m2
nk

4
n(
∑

j∈Ni
n
‖B∗ij

mnkn
‖F)2 + 2 log(ni

mnkn)
)
,

where C1 > 0 such that 0 < δ ≤ C1.
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Proof. By Proposition A.4 and the triangle inequality,

‖B̂Ni
n

n −B
∗Ni

n
n ‖F ≤ ‖B̂Ni

n
n − B̃

Ni
n

n ‖F + ‖B∗Ni
n

n − B̃
Ni

n
n ‖F

≤ (b∗in )−1‖B∗Ni
n

n − B̃
Ni

n
n ‖F

( 10
Cmin

λnn
i
∑
j∈Ni

n

‖B∗ij
mnkn

‖F + b
∗i
n

)
� n

i(b∗in )−1‖B∗Ni
n

n − B̃
Ni

n
n ‖F

∑
j∈Ni

n

‖B∗ij
mnkn

‖F,

where we have used the fact that b
∗i
n ≤

∑
j∈Ni

n
‖B∗ij

mnkn
‖F and λn � 1. The asser-

tion now follows from Proposition A.3 with δ replaced by
b
∗i
n δ

(
n

i ∑
j∈Ni

n
‖B∗ij

mnkn
‖F

)−1.

Let B̂
Ni

n
n be the minimizer of the restricted problem (A.41). By construction,

the estimator (B̂Ni
n

n ,0) obtained from B̂
Ni

n
n by adding blocks with 0 elements when-

ever j /∈ Ni

n, satisfies the first KKT-condition (A.40a). To prove that (B̂Ni
n

n ,0)
is, with high probability, optimal for problem (A.41), it is therefore sufficient to
show that the second KKT-condition (A.40b) is satisfied. This is the statement
of the following proposition.

Proposition A.6. The matrix (B̂Ni
n

n ,0) satisfies (A.40b) with high probability,
in the sense that

P (max
j /∈Ni

n

‖Σ̂n

ξ
jNi

n
B̂

Ni
n

n − Σ̂n

ξ
j
ξ
i‖F ≥ λn

p∑
j �=i

‖B̂ij

n ‖F)

� exp
(
− C1

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)2

nim2
nk

4
n

+ 2 log(ni
mnkn)

)
,

where C1 is a positive constant.

Proof. The idea of the proof is similar as in the proof of Proposition 4 in [15].
By the first optimality condition (A.40a), we have for all j ∈ Ni

n,

B̂
Ni

n
n = (Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1Σ̂n

Ni
ξ
i , (A.67)

where D̂Ni
n

is defined in Lemma A.4. Using (A.67) in the expression at the left-
hand side of condition (A.40b) gives

Σ̂n

ξ
jNi

n
B̂

Ni
n

n − Σ̂n

ξ
j
ξ
i = Σ̂n

ξ
jNi

n
(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1Σ̂n

Ni
nξ

i − Σ̂n

ξ
j
ξ
i = R

j

1 + . . . + R
j

7,

where

R
j

1 = (Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
)(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1Σn

Ni
nξ

i

R
j

2 = Σn

ξ
jNi

n
(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1(Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i)
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R
j

3 = Σn

ξ
jNi

n
{(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1 − (Σn

Ni
nNi

n
+ λnD̂Ni

n
)−1}Σn

Ni
nξ

i

R
j

4 = (Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
)(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1(Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i)

R
j

5 = Σn

ξ
j
ξ
i − Σ̂n

ξ
j
ξ
i

R
j

6 = Σn

ξ
jNi

n
{(ΣNi

nNi
n
+ λnD̂Ni

n
)−1 − (Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1}Σn

Ni
nξ

i

R
j

7 = Σn

ξ
jNi

n
(Σn

Ni
nNi

n
+ λnD

∗

Ni
n
)−1Σn

Ni
nξ

i − Σn

ξ
j
ξ
i .

In the following we derive bounds for the probabilities

P
(

max
j /∈Ni

n

‖Rj

r‖F ≥ λn

7
∑
j∈Ni

n

‖B̂ij

n ‖F

)
(A.68)

(r = 1, . . . , 7). For this purpose we proceed in two steps.

Step 1: First, we define the event, A0, that there exists a constant 0 < c0 < 1,
such that

A0 =
{
‖B̂Ni

n
n −B

∗Ni
n

n ‖F ≤ c0(n
i)−1/2

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

}
.

Then, by Proposition A.5 with δ = c0(ni)−1/2 ∑
j∈Ni ‖B∗

mnkn
‖F we have

P (A�
0) � exp

(
− C1

n
1−α(2+3β)(b∗in )2

(ni)5m2
nk

4
n

+ 2 log(ni
mnkn)

)
� exp

(
− C1

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)2

nim2
nk

4
n

+ 2 log(ni
mnkn)

)
,

(A.69)

for some constant C1 > 0 where for the second inequality we used the fact
2

Cmin
λn(ni)2 ∑

j∈Ni
n
‖B∗ij

mnkn
‖F � b

∗i
n which follows from condition A.66 in

Proposition A.5.
Now, on the event A0, it follows by the Cauchy-Schwarz inequality that∣∣∣∑

j∈Ni
n

‖B̂ij

n ‖F −
∑
j∈Ni

n

‖B∗ij
mnkn

‖F

∣∣∣ ≤ c0

∑
j∈Ni

n

‖B∗ij
mnkn

‖F.

Therefore, we have for r = 1, . . . , 7

P
(

max
j /∈Ni

n

‖Rj

r‖F ≥ λn

7
∑
j∈Ni

n

‖B̂ij

n ‖F

)
≤ P

(
max
j /∈Ni

n

‖Rj

r‖F ≥ λn(1 − c0)
7

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)
+ P (Ac

0),

where the second probability can be bounded by (A.69). Thus, in order to control
the probabilities of the terms max

j /∈Ni
n
‖Rj

r‖F ≥ λn

7
∑

j∈Ni
n
‖B̂ij

n ‖F it suffices to
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derive the probabilities P (max
j /∈Ni

n
‖Rj

r‖F ≥ c1λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F) for all r =

1, . . . , 7, where c1 = 1−c0
7 .

Step 2: Term R
j

1. Substituting the representation (A.49) used in the proof of
Proposition A.3 we can rewrite R

j

1 as

R
j

1 = (Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
)(Σ̂n

Ni
nNi

n
+ λnD̂Ni)−1

(
Σn

Ni
nNi

n
B

∗Ni
n

n + H̃n(ξNi
n)

n
w

i + H̃n(ξNi
n)

n
ε
i
)
,

and by the union bound it follows that

P
(

max
j /∈Ni

n

‖Rj

1‖F≥c1λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)
≤

3∑
r=1

P
(

max
j /∈Ni

n

‖Rj

1r‖F≥
c1λn

3
∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)
,

(A.70)

where R
j

11, R
j

12, R
j

13 are defined in an obvious manner satisfying

‖Rj

11‖F ≤‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F‖(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1Σn

Ni
nNi

n
B

∗Ni
n

n ‖2.

‖Rj

12‖F ≤‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F‖(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1 H̃n(ξNi

n)
n

w
i‖2.

‖Rj

13‖F ≤‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F‖(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1 H̃n(ξNi

n)
n

ε
i‖2.

Next we derive bounds for the probabilities on the right hand side of (A.70)
starting with the term ‖Rj

11‖F. Observing that

(Σ̂n

Ni
nNi

n
− λnD̂Ni

n
)−1Σn

Ni
nNi

n
= (Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1(Σn

Ni
nNi

n
− Σ̂n

Ni
nNi

n
)

+ (Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1Σ̂n

Ni
nNi

n
.

We have

‖(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1Σn

Ni
nNi

n
‖2 ≤ ‖(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1(Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
)‖2 (A.71)

+ ‖(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1Σ̂n

Ni
nNi

n
‖2

≤ 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F + 1, (A.72)

where we used the fact that Σ̂n

Ni
nNi

n
� Σ̂n

Ni
nNi

n
+ λnINi

n
� Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
. From this,

it follows that

max
j /∈Ni

n

‖Rj

11‖F � max
j /∈Ni

n

{‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F}

( 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F + 1

)
,

where we use the fact that ‖B∗Ni
n

n ‖2 is bounded. Consider the event

A1 = {max
j /∈Ni

n

{‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F} ≤

c1λn

∑
l∈Ni

n
‖B∗il

mnkn
‖F

6 }.
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Then,

P
(

max
j /∈Ni

n

‖Rj

11‖F ≥ c1λn

3
∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)
≤ P

(
‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F≥

Cmin

4

)
+P

(
A�

1

)
,

� exp
(
− C2

n
1−α(2+3β)

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
+ exp

(
−C2

n
1−α(2+3β)(λn

∑
l∈Ni

n
‖B∗il

mnkn
‖F)2

nim2
nk

4
n

+log(ni
m

2
nk

2
n)+log((p−n

i)m2
nk

2
n)
)
,

where we have used Theorem A.1 and the union bound and C2 is a positive
constant depending on Cmin.

For the term R
j

12, we use the same arguments as for the term T2 in the proof
of Proposition A.3. Specifically, recall the definition of the event Ω in (A.20)
and the calculation in (A.53) and (A.54) to obtain on the event Ω

max
j /∈Ni

n

‖Rj

12‖F � max
j /∈Ni

n

‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F

( 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F + 1

)
×
( 2
Cmin

)3/2

λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F,

where we used condition (4.9) for the last inequality.
Then, conditioning on the event A2 ={max

j /∈Ni
n
‖Σ̂n

ξ
jNi

n
−Σn

ξ
jNi

n
‖F ≥ c1

6 (Cmin
2 )3/2},

we have by Proposition A.1

P
(

max
j /∈Ni

n

‖Rj

12‖ ≥ c1

3 λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)
≤ P

(
‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F ≥ Cmin

4

)
+ P

(
max
j /∈Ni

n

‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F ≥ c1

6 (Cmin

2 )3/2
)

+ P (Ω�)

� exp
(
− C3

n
1−α(2+3β)

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
+ exp

(
− C3

n
1−α(2+3β)

nim2
nk

4
n

+ log(ni
m

2
nk

2
n) + log((p− n

i)m2
nk

2
n)
)

+ exp(−C3
n

nim2
nk

2d
n

+ log(ni
m

2
n)),

for some C3 > 0 depending on Cmin and c1. For the term R
j

13, we have

max
j /∈Ni

n

‖Rj

13‖F ≤ 4
Cmin

max
j /∈Ni

n

‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F‖

H̃n(ξNi
n)

n
ε
i‖F,
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which yields

P
(

max
j /∈Ni

n

‖Rj

13‖F ≥ c1

3 λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)

≤P
(

max
j /∈Ni

n

‖Σ̂n

ξ
jNi

n
− Σn

ξ
jNi

n
‖F≥

c1λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F

3

)
+P

(
‖H̃n(ξNi

n)
n

ε
i‖F≥

Cmin

4

)
�exp

(
−C4

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)2

nim2
nk

4
n

+log(ni
m

2
nk

2
n) + log((p− n

i)m2
nk

2
n)
)

+ exp
(
− C4

n

nim2
nkn

+ log(ni
m

2
nkn)

)
,

where we used Theorem A.1 and (A.58) for some C4 > 0 that depends on Cmin

and c1. Combining together the results for the terms ‖Rj

13‖F, ‖Rj

12‖F and ‖Rj

13‖F

we conclude that

P
(

max
j /∈Ni

n

‖Rj

1‖F ≥ c1λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)

� exp
(
− C2

n
1−α(2+3β)(λn

∑
l∈Ni

n
‖B∗il

mnkn
‖F)2

nim2
nk

4
n

+ log(pm2
nk

2
n)
)
,

since p− n
i ≤ p and n

i ≤ p.
Term R

j

2. First we write

max
j /∈Ni

n

‖Rj

2‖F ≤ max
j /∈Ni

n

{
‖Σn

ξ
jNi

n
(Σn

Ni
nNi

n
)−1‖F

}
‖Σn

Ni
nNi

n
(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1‖2‖Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i‖F

≤ 1 − η√
ni

‖Σn

Ni
nNi

n
(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)−1‖2‖Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i‖F

≤ 1 − η√
ni

( 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F + 1)‖Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i‖F,

where we used (A.71) and the second inequality holds with high probability by
Lemma A.3. As a result, it follows that

P
(

max
j /∈Ni

n

{‖Rj

2‖F ≥ c1λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F}
)

≤ P
(1 − η√

ni
( 4
Cmin

‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F + 1)‖Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i‖F ≥ c1λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)
≤ P

(
‖Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
‖F ≥ Cmin

4

)
+ P (A�

2)

� exp
(
−C3

n
1−α(2+3β)

(ni)2m2
nk

4
n

+ 2 log(ni
mnkn)

)
+ exp

(
− C3

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)2

m2
nk

3
n

+ log(ni
m

2
nkn)

)
,
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where

A2 =
{
‖Σ̂n

Ni
nξ

i − Σn

Ni
nξ

i‖F ≤ c1

2

√
ni

1 − η
λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

}
,

and we used Theorem A.1 and the union bound for the last inequality for C3 > 0
depending on Cmin, η and c1.

Term R
j

3. Using the identity A
−1 − B

−1 = A
−1(B − A)B−1 and following

similar arguments used to obtain bounds for the terms R1 and R2, we get (note
that we are working on the event N )

P
(

max
j /∈Ni

n

‖Rj

3‖F ≥ c1λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)
≤

3∑
r=1

P
(
‖R3r‖F ≥ c1

3 λn

∑
j∈Ni

n

‖B∗ij
mnkn

‖F

)
,

where,

‖R31‖F = 1 − η√
ni

(
1 + 4

Cmin
‖Σn

Ni
nNi

n
− Σ̂n

Ni
nNi

n
‖F

)
‖Σn

Ni
nNi

n
− Σ̂n

Ni
nNi

n
‖F

× ‖(Σn

Ni
nNi

n
+ λnD̂Ni

n
)−1Σn

Ni
nNi

n
B

∗Ni
n

n ‖2,

‖R32‖F = 1 − η√
ni

(
1 + 4

Cmin
‖Σn

Ni
nNi

n
− Σ̂n

Ni
nNi

n
‖F

)
‖Σn

Ni
nNi
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× ‖(Σn

Ni
nNi

n
+ λnD̂Ni

n
)−1 H̃n(ξNi

n)
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n
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n
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n
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n
)−1 H̃n(ξNi

n)
n

ε
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(note that the terms are independent of j). We next derive bounds for the
probabilities P

(
‖R3r‖F ≥ c1

3 λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F

)
for r = 1, 2, 3. For the term

‖R31‖F, note that the third term is finite. Hence,
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( 4
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)
,

which implies (using the same arguments as before)

P
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‖R31‖F ≥ c1
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∑
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n

‖B∗ij
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)
(A.73)

≤ P
(
‖Σn

Ni
nNi

n
− Σ̂n

Ni
nNi

n
‖F ≥

√
niλn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F

1 − η

c1

6

)
(A.74)

+ P
(
‖Σn

Ni
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n
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Ni
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n
‖F ≥ Cmin

4

)
(A.75)
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� exp
(
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n
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∑
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n
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nim2
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)
, (A.76)

for some positive constant C4 that depends on η and Cmin. Similarly, for the
term ‖R32‖F have

‖R32‖F ≤ 1 − η√
ni
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n
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‖F( 4
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‖Σ̂n
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n
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n
‖F + 1)‖ w

i

√
n
‖F.

Hence, recalling the definition of the set Ω in (A.20) and using conditions (4.9)
and (A.55), Proposition A.1 and Theorem A.1, we obtain for some positive
constant

P
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2
n)),

for some positive constant C5 that depends on η and Cmin. For the term ‖R33‖F,
we write
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( 2
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and consider the event A3 = {‖Σn
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where we used (A.58) and Theorem A.1. Combining the results of ‖R31‖F, ‖R32‖F

and ‖R33‖F we conclude,

P
(
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.

Term R
j

4. We have
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n
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4‖F ≤ max
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ξ
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‖F‖Σ̂Ni

nξ
i − Σn

Ni
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Recall the definition of event A1 ={max
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n
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ξ
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n
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ξ
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n
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n
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then we have

P
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for some positive constant C5 depending on Cmin, where the estimates follow
from Theorem A.1.

Term R
j

5. For the term R
j

5 we obtain directly for some positive constant C6
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.

Term R
j

6. Using again the identity A
−1 −B

−1 = A
−1(B−A)B−1 and (A.49),

we have
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.
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Obviously, on the event N we have
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,

where
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Now, using the same computations as in the proof of Proposition 4 in [15],
we obtain for the operator norm of the matrix (D∗
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where we used the Cauchy-Schwarz inequality. Consequently,
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Now, we apply Proposition A.5 with δ = c1
6

1
1−η (b∗in )2 and δ = b∗in

2 to obtain
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where we used 2
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‖F)2 ≤ c2(b∗in )s (s = 2, 3) for the last

inequality (see condition (A.66)) with C7 > 0 depending on η.
By the same arguments and using (A.53), (A.54) and Assumption 4.9, we

can show the existence of a constant C8 > 0 such that
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where the probability P (Ω�) can be estimated by Proposition A.1 and is domi-
nated by the first term because of Assumption 4.5. Similarly, using (A.58), we
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Combining the results for ‖R61‖F, ‖R62‖F and ‖R63‖F, we can conclude that
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for a positive constant C7 > 0 that depends on η.
Term R
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7. Observing (A.49) and (A.50), the term R
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where we have used Σn
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The matrix I− H̃n(ξNi
n )√
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where c3 = c1 − (1 − η) − ( 2
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)1/2. Finally, combining the result (A.69) from
Step 1 with the estimates for R1, . . . , R7, we conclude that

P
(

max
j /∈Ni

n

‖Σ̂n

ξ
jNi

n
B̂

Ni
n

n − Σ̂n

ξ
j
ξ
i‖F ≥ λn

p∑
j �=i

‖B̂ij

n ‖F

)
� exp

(
− C1

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)2

nim2
nk

4
n

+ 2 log(pmnkn)
)
,

such that λn(ni)3/2 � (b∗in )3(
∑

j∈Ni
n
‖B∗ij

mnkn
‖F)−2.

A.4. Proof of Proposition A.2

First, note that the event N̂i

n = Ni

n holds if and only if

‖B̂ij

n ‖F �= 0 ∀j ∈ Ni

n and ‖B̂ij

n ‖F = 0 ∀j /∈ Ni

n,



6228 E. Solea and H. Dette

which is implied by the conditions

‖B̂Ni
n

n −B
∗Ni

n
n ‖F < b

∗i
n = min

j∈Ni
‖B∗ij

mnkn
‖F ,

max
j /∈Ni

n

‖Σ̂n

ξ
jNiB̂

Ni
n

n − Σ̂n

ξ
j
ξ
i‖F ≤ λn

∑
j∈Ni

‖B̂ij

n ‖F.

Thus, the Proposition A.5 (with δ = b∗in , an obvious estimate of the probability
using condition (A.66)) and Proposition A.6 we can conclude that

P (N̂i

n �=Ni

n and N )�exp
(
−C1

n
1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ij

mnkn
‖F)2

nim2
nk

4
n

+ 2log(pmnkn)
)

and this completes the proof of Proposition A.2.
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