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Abstract: In this paper, we consider the linear regression model Y =
SX +ε with functional regressors and responses. We develop new inference
tools to quantify deviations of the true slope S from a hypothesized operator
S0 with respect to the Hilbert–Schmidt norm ~S − S0~2, as well as the
prediction error E‖SX − S0X‖2. Our analysis is applicable to functional
time series and based on asymptotically pivotal statistics. This makes it
particularly user-friendly, because it avoids the choice of tuning parameters
inherent in long-run variance estimation or bootstrap of dependent data.
We also discuss two sample problems as well as change point detection.
Finite sample properties are investigated by means of a simulation study.

Mathematically, our approach is based on a sequential version of the
popular spectral cut-off estimator ŜN for S. We prove that (sequential)
plug-in estimators of the deviation measures are

√
N -consistent and satisfy

weak invariance principles. These results rest on the smoothing effect of
L2-norms, that we exploit by a new proof-technique, the smoothness shift,
which has potential applications in other fields.
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1. Introduction

Over the past decades, new branches of statistical research have developed to
meet the needs of an economy with growing data volumes at its disposal. One
approach to analyze large data samples, particularly when detected on a dense
grid, is interpolation of discrete measurements to continuous, functional obser-
vations. This method is known as functional data analysis (FDA) and nowadays
has numerous applications as diverse as economics, climatology and medicine
(see, for example, Andersson and Lillestøl (2010); Bonner et al. (2014); Sørensen
et al. (2013) among many others). FDA benefits users in several ways: From a
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theoretical perspective, functional models – in contrast to standard multivari-
ate analysis – can incorporate smoothness in the data. From a computational
viewpoint, the interpolation of thousands of observations to, say a yearly curve
of price development, can drastically reduce the amount of data to be stored,
since interpolations only consume a fraction of memory compared to the noisy
raw data (see, e.g., Liebl (2013); Stöhr et al. (2021) among many others). More-
over, from a practical point of view, random curves are easy to visualize and
interpret for human users, who cannot possibly make sense from endless data
lists.

One model that has attracted particular interest in the context of FDA due
to its parsimony and interpretability is the functional linear regression model

Yn = SXn + εn n = 1, . . . , N. (1.1)

Here the regressors, errors and dependent variables are functions. More mathe-
matically speaking, Xn, εn and Yn are elements of (potentially different) Hilbert
spaces H1 and H2 and the slope S : H1 → H2 is a Hilbert–Schmidt operator.
Such models extend existing ones for time series and panel data, and have ap-
plications in different situations, where standard, non-functional approaches fail
(see, e.g. Andersson and Lillestøl (2010)).

Linear models are attractive for users because of their simple structure, where
all information is stored in the slope parameter S. However, compared to the
better known case of finite dimensional, linear regression, the standard tasks of
estimation, prediction and statistical inference become substantially more diffi-
cult in the functional regime. Indeed, all of these tasks require the approximate
inversion of the compact covariance operator Γ := EX⊗X (we discuss this issue
in detail in Section 2.2), which constitutes a statistical inverse problem. Statisti-
cal inverse problems extend classical inverse problems (the reconstruction of an
entity using indirect observations, see for example Engl et al. (1996)) by includ-
ing noise in the model. Naturally arising in different settings, statistical inverse
problems have been studied extensively in tomography, deconvolution or the
heat equation, to name but a few examples (see Cavalier (2008); Bissantz and
Holzmann (2008) and the references therein). Since our subsequent discussion
is exclusively concerned with statistical inverse problems, we will for brevity
just refer to them as inverse problems without qualifications. Characteristic of
statistical inverse problems is a need for regularization, which leads to slower
than parametric convergence rates of the resulting estimates.

The study of functional linear regression and the associated inverse problem
has been a part of FDA for more than two decades (see, for example the mono-
graph of Ramsay and Silverman (1997)). Early work has focused on the scalar
response model

Yn =
∫ 1

0
ϕS(t)Xn(t)dt + εn , (1.2)

which is a special case of (1.1), where H1 = L2[0, 1], H2 = R and the integral
operator S : L2[0, 1] → R has the kernel ϕS ∈ L2[0, 1]2. For the investigation
of 1.2, we refer the interested reader for instance to (Cardot et al., 2003), (Hall
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and Horowitz, 2007), (Yuan and Cai, 2012) and references therein. In (Hall
and Horowitz, 2007) convergence rates for spectral cut-off estimators (a specific
kind of regularization also used in this paper) are investigated with respect
to the L2-norm and it is shown that these estimators can achieve minimax
optimal rates. Generalizations of these results to functional linear regression
with functional responses can be found in (Imaizumi and Kato, 2018). Similarly,
(Benatia et al., 2017) investigate minimax L2-rates, as well as practical aspects
of Tikhonov regularizations in the estimation of the slope parameter. Besides
L2-rates other aspects of model (1.1) have been investigated in a wide variety
of works, such as consistency under weak dependence in a white noise model
(see Hörmann and Kidzinski (2012)), aspects of identifiability (see Scheipl and
Greven (2016)), minimax rates for prediction (see Crambes and Mas (2013))
and robust estimation (see Shin and Lee (2016)).

The list of cited references is by no means complete and only comprises a
fraction of the larger body of research in this domain. Besides estimation and
prediction, hypothesis testing in the functional regression model has attracted
some attention. (Cardot et al., 2003, 2004) consider the problem of testing for a
particular value of the slope, i.e., H0 : S = S0 vs. H1 : S �= S0, where S0 is some
hypothesized operator (see Section 3.1 for details and more references). It turns
out that H0 can be examined by

√
N -consistent tests, which employ transformed

versions of both operators S and S0. Importantly such tests do not have to solve
the inverse problem of reconstructing S, which makes them theoretically more
parsimonious, but practically somewhat difficult to interpret, as they do not
assess the deviation of the true operators of interest. As a consequence, attention
has recently shifted to inference methods, based on direct slope comparisons, to
make the results statistically more meaningful. For example, in the functional
linear model (1.2) with scalar responses (Imaizumi and Kato, 2019) develop
confidence bands that cover the slope function at most points with a prespecified
probability. Other authors use Gaussian approximations to construct uniform
confidence bands, see e.g. (Babii, 2020). Notice that these approaches, based on
reconstructing S (or ϕS), have to pay the price of solving the inverse problem,
by a convergence speed significantly slower than 1/

√
N .

In this paper, we contribute to the discussion by providing a new method of
statistical inference in the regression model (1.1). Our inference concerns the
two deviation measures ~S−S0~2 (the distance in Hilbert–Schmidt-norm) and
E‖SX−S0X‖2 (the expected prediction error), where again S0 is a hypothesized
operator. In contrast to the hypothesis of the form H0 : S = S0, we prefer a more
quantitative approach, testing whether the deviation ~S−S0~2 or the expected
deviation E‖SX − S0X‖2 is smaller than some predetermined threshold, say
Δ > 0. Although one has to solve the inverse problem to reconstruct S, the
proposed estimates converge at a parametric rate of 1/

√
N , due to a natural

smoothing effect of the L2-norms. In particular, we use a new proof-technique,
called smoothness shift, to establish asymptotic normality for estimators of the
deviation measures ~S − S0~2 and E‖SX − S0X‖2. In contrast to other works,
concerned with the estimation of L2-norms, our approach is based on proving
functional weak convergence (in the space of slope operators), which entails
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uniform convergence of the deviation measures (w.r.t. S and S0). Among the
analytical advantages of this approach is a convenient theory for classes of local
alternatives (see Lemma 3.9). We want to point out that this technique can
be also used in the study of other inverse problems, such as deconvolution or
tomography, and is therefore of independent interest.

A direct application of these results for statistical inference such as the con-
struction of hypothesis tests or confidence intervals is theoretically possible,
but practically difficult, because it requires the estimation of asymptotic (long-
run) variances. This estimation is intricate in inverse problems already for i.i.d.
data and becomes even more difficult for functional time series (see Proposi-
tion 3.3 below for a presentation of the long-run variance τ2). To circumvent
these problems, we investigate sequential versions of our estimators, prove weak
invariance principles and use the concept of self-normalization (see, for example,
Shao (2015); Dette et al. (2020)) to construct (asymptotically) pivotal estimates
of the deviation measures. Users benefit from the principle of self-normalization,
because it provides (robust) inference tools, which do not require the choice of
tuning parameters for long-run variance estimation (see, e.g., (Horváth et al.,
2011) and (Kokoszka, 2012)) or for the block bootstrap of dependent data (see,
e.g., Politis and Romano (1994); Bücher and Kojadinovic (2013)).
The rest of this paper is organized as follows: In Section 2, we discuss the
model (1.2) in detail and construct the spectral cut-off estimator ŜN for S.
Next, in Section 3, we present statistical inference for the distance in Hilbert–
Schmidt norm and in Section 4 inference for the expected prediction error.
Then, in Section 5 we propose extensions of our methodology to two sample
and change point scenarios, while in Section 6 we investigate finite sample prop-
erties by virtue of a simulation study. Finally, the online supplement contains
the technical proofs and mathematical details.

2. Estimation of the slope parameter

In this section, we introduce the mathematical set-up for estimation in the
functional linear regression model (1.1). We begin by recalling some basic facts
and notations from functional analysis.

2.1. Operators on Hilbert spaces

Throughout this paper, we treat functional observations as elements of sepa-
rable Hilbert spaces. Thus, before we proceed to the statistics, we recall some
fundamental aspects of operator theory on Hilbert spaces. For a more detailed
overview, we recommend the monographs of (Horváth and Kokoszka, 2012)
(with particular emphasis on functional data) as well as (Weidmann, 1980).

Suppose two Hilbert spaces (H1, 〈, 〉1) and (H2, 〈, 〉2) with corresponding
norms ‖ · ‖1, ‖ · ‖2 are given. We denote by L(H1,H2) the space of linear oper-
ators L : H1 → H2, satisfying ~L~L := sup‖x‖1=1 ‖Lx‖2 < ∞. The norm ~ · ~L
is referred to as operator or spectral norm. Recall that any L ∈ L(H1,H2) is
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also continuous. An important subclass of L(H1,H2) is given by the compact
operators, i.e., such operators L which map the unit ball in H1 to a totally
bounded set in H2. In the special case where H1 = H2 and the operator L is
both compact and symmetric, L can – according to the spectral theorem for
normal operators – be diagonalized, in the sense that for any x ∈ H1

Lx =
∑
n∈N

ηn〈fn, x〉1fn, (2.1)

where η1, η2, . . . ∈ R are the eigenvalues and f1, f2, . . . ∈ H1 the corresponding
eigenvectors of L. In the context of functional spaces, the eigenvectors are usually
referred to as eigenfunctions. The most restrictive class of operators, that we
consider in this paper consists of the Hilbert–Schmidt operators. It is denoted
by S(H1,H2) and includes all L ∈ L(H1,H2) which satisfy

~L~ :=
∑
n∈N

‖Lfn‖2
2 < ∞,

where {fn}n∈N is some orthonormal basis (ONB) of H1. The norm ~ ·~ is called
Hilbert–Schmidt norm and its value is independent of the basis choice {fn}n∈N.
Just as its finite dimensional analogue, the Frobenius norm, it is induced by an
inner product, which for two operators L, T ∈ S(H1,H2) is given by

〈L, T 〉 :=
∑
n∈N

〈Lfn, T fn〉2.

Here again the value of the inner product (on the left hand side) does not
depend on the choice of basis. Equipped with this inner product the linear
space S(H1,H2) becomes itself a Hilbert space. Finally, we introduce the tensor
product of two elements in H1,H2. For any f ∈ H1, g ∈ H2 we define the linear
operator g ⊗ f ∈ S(H1,H2), pointwise by

g ⊗ f [h] := g〈f, h〉1 ∀h ∈ H1. (2.2)

By virtue of this definition it is possible to endow S(H1,H2) with a particularly
natural basis: If {fn}n∈N, {gn}n∈N are ONBs of H1, H2 respectively, then the
set {gn ⊗ fm}n,m∈N is an ONB of S(H1,H2). Finally, we notice that the tensor
product notation can be used to restate the spectral theorem for a compact,
symmetric operator L (see (2.1)) as follows: L =

∑
n∈N

ηnfn ⊗ fn. In the next
step we bring to bear these notations to the analysis of the functional regression
problem (1.1).

2.2. The functional linear model

In this section, we introduce the functional, linear regression model (1.1) in a
more rigorous way. Let T ⊂ R

d denote a compact and non-empty set and μ1,
μ2 measures defined on some σ-algebra on T . Furthermore, we define the spaces
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H1 := (L2(T ), μ1) and H2 := (L2(T ), μ2) of all measurable, real-valued func-
tions on T , that are square integrable w.r.t. μ1 and μ2, respectively. Equipped
with the inner products

〈f, g〉 :=
∫
T
f(t)g(t)dμi(t) f, g ∈ Hi (i = 1, 2)

H1 and H2 are Hilbert spaces. Notice that the inner product 〈f, g〉 depends on
the index i = 1, 2, but for the sake of simplicity we do not make this explicit.
Accordingly, the induced norms are denoted by ‖ · ‖.

This general setup includes many of the standard scenarios treated in the
related literature. For instance, to retrieve the model (1.2) with functional re-
gressors and scalar responses (see Hall and Horowitz (2007)) it suffices to set
T = [0, 1], μ1 = λ (the Lebesgue measure) and μ2 = δ1 (the Dirac measure
at the point 1). Another typical setting is to choose both measures as the
Lebesgue measure, which gives functional inputs and outputs (see, for exam-
ple, Yao et al. (2005) among many others). Further important non-standard
cases such as spatio-temporal functions with continuous time and discrete space
components (see Constantinou et al. (2017)) can be accommodated as well.

Let (X1, Y1), . . . , (XN , YN ) denote a total of N observations from a time
series {(Xn, Yn)}n∈Z ⊂ H1 × H2, which are generated according to the linear
model (1.1), that is Yn = SXn+εn, n = 1, . . . , N , where S ∈ S(H1, H2) denotes
the (unknown) slope parameter and εn ∈ H2 an observational error. By virtue
of the tensor product (see Section 2.1) it is possible to transform this linear
model into a version, which is more suitable to make inference about the slope
parameter. More precisely, “multiplying” the above equation by Xn from the
right gives

Yn ⊗Xn = SXn ⊗Xn + εn ⊗Xn n = 1, . . . , N. (2.3)

Under the assumption E‖Xn‖2,E‖εn‖2 < ∞ the operators SXn ⊗Xn, εn ⊗Xn

are random elements in S(H1, H2). Moreover, if the random functions Xn, εn
are also centered, taking expectations on both sides of the above equation (2.3)
gives EYn ⊗ Xn = SΓ + Eεn ⊗ Xn, where Γ := EXn ⊗ Xn is the covariance
operator of Xn (recall that the sequence {Xn}n∈N of regressors is stationary).
Note that we merely assume centered regressors for ease of presentation, and
adaption to the non-centered case is simple (for details, see Remark 3.8). Under
the additional assumption of weak exogeneity, i.e., Eεn ⊗ Xn = 0, the above
equation entails the fundamental identity

EYn ⊗Xn = SΓ. (2.4)

The task of recovering the operator S from equation (2.4) is non-trivial, even
if we knew the “true” expectation SΓ = EYn ⊗Xn and the covariance operator
Γ. One obvious condition for a complete recovery of S is identifiability, which is
satisfied, if Γ is an injective operator. However, even in this case, as Γ is compact,
its inverse must be unbounded and hence can only be defined on a dense linear
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subspace. We refer the interested reader to (Dunford and Schwartz, 1958) and
(Weidmann, 1980) for a detailed discussion of (un)bounded operators.

A remedy for this problem is given by the application of a regularized inverse,
i.e., a sequence of continuous operators {Γ†

k}k∈N, converging pointwise to Γ−1.
Of course this means that ~Γ†

k~L → ∞ = ~Γ−1~L, but for each finite k, the op-
erator SΓΓ†

k is well-defined on the whole space. Moreover, for sufficiently large
k, we expect that S ≈ SΓΓ†

k in the sense that ~S − SΓΓ†
k~ becomes arbitrarily

small. Let Γ :=
∑∞

i=1 λiei ⊗ ei, denote the spectral decomposition of the oper-
ator Γ, with eigenvalues λ1 ≥ λ2 ≥ ... > 0 and corresponding eigenfunctions
e1, e2, . . .. A typical example of a regularized inverse operator is given by the
spectral cut-off regularizer Γ†

k :=
∑k

i=1
1
λi
ei ⊗ ei, which evidently has operator

norm ~Γ†
k~L = λ−1

k < ∞. We also point out that ΓΓ†
k =: Πk, where Πk is the

projection on the space spanned by the first k eigenfunctions e1, . . . , ek of Γ.
Notice that, if this was the whole problem, we could simply choose a large, but
finite k and receive an arbitrarily precise approximation of S via SΓΓ†

k. How-
ever, in practice neither the true expectation EYn⊗Xn, nor the true covariance
operator Γ are known and have to be estimated from the data. For this purpose,
we define

Γ̂N := 1
N

N∑
n=1

Xn ⊗Xn (2.5)

as the standard estimate of the covariance operator Γ and 1
N

∑N
n=1 Yn ⊗Xn as

estimate of EYn ⊗Xn. This gives an empirical analogue of equation (2.4), that
is

1
N

N∑
n=1

Yn ⊗Xn = SΓ̂N + UN , (2.6)

where

UN := 1
N

N∑
n=1

εn ⊗Xn (2.7)

is a remainder term, arising from (2.3). Note that the identity (2.6) provides a
way of estimating SΓ. We define the empirical version of the regularized inverse
by

Γ̂†
k :=

k∑
i=1

1
λ̂i

êi ⊗ êi, (2.8)

where λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 are the ordered eigenvalues of Γ̂N and ê1, ê2, . . . the
corresponding eigenfunctions. An estimator of the operator S is now given by

ŜN := 1
N

N∑
n=1

Yn ⊗XnΓ̂†
k = SΓ̂N Γ̂†

k + UN Γ̂†
k = SΠ̂k + UN Γ̂†

k , (2.9)

where Π̂k is the projection on the subspace spanned by the first k eigenfunctions
of the empirical covariance operator Γ̂N . This equation differs notably from
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the ideal SΓΓ†
k = SΠk by the noise term UN Γ̂†

k (which makes it a statistical
inverse problem; see the discussion in the introduction). If k is large compared
to N this remainder can potentially spoil the estimate, because the noise UN is
amplified by the regularized inverse Γ̂†

k. Consequently, the solution of the inverse
problem, as described in model (2.3), features a trade-off between regularization
parameter k and sample size N .

As a corollary of our later discussion, we will get a consistency result for
ŜN under suitable regularity conditions. For works specifically aimed at recon-
structing the operator S see, for instance, (Hall and Horowitz, 2007), (Benatia
et al., 2017) and (Imaizumi and Kato, 2018).

3. Statistical inference for the location of S

In this section, we introduce the concept of relevant hypotheses for the location
of S and discuss the assumptions that are made throughout this paper. Fur-
thermore, we revisit the problems in deriving a weak convergence result for the
estimator ŜN as described in (Cardot et al., 2007), (Crambes and Mas, 2013)
and suggest a new technique – the smoothness shift – to grapple with them.
Based on this idea, we establish an invariance principle for the estimated dis-
tance ~ŜN −S0~2, which is used to develop pivotal statistics for testing relevant
hypotheses.

3.1. Relevant differences in the slope

A typical concern in the context of model (1.1) is the comparison of the true
slope S with some hypothesized operator S0 ∈ S(H1, H2). This problem is often
addressed by constructing statistical tests for the hypotheses

H0 : S = S0 versus H1 : S �= S0 . (3.1)

These hypotheses may for instance be used with S0 = 0, to determine the
explanatory power of the model, or with a slope S0 from a theoretical model.
Various tests have been devised for these (or related) hypotheses, such as in
(Cardot et al., 2003, 2004), where the cross covariance operator given by EY1 ⊗
X1 = SΓ is used to test the mathematically equivalent null hypothesis SΓ =
S0Γ. In a similar spirit, (Hilgert et al., 2013) propose minimax optimal adaptive
tests based on projections of Y onto the principal components of Γ or (Kong
et al., 2016) employ traditional tests (such as the F -test) on finite dimensional
subspaces, to validate model fit.

Although from a decision theoretical perspective, all of these methods define
consistent tests for the hypotheses (3.1), they have the drawback of telling us
little about the actual proximity of the operators S and S0. For example a test for
H0, based on the quantity ~SΓ−S0Γ~ is difficult to interpret, as ~SΓ−S0Γ~ may
be arbitrarily small, while in fact the true difference ~S−S0~ is arbitrarily large.
In particular, if a user decides to perform data analysis under the assumption
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S = S0 after a test, which has not rejected the hypothesis SΓ = S0Γ, there
is no guarantee that S0 is indeed a good approximation of S. This insight has
motivated some of the contemporary approaches to confidence regions for S
(see the discussion in the introduction), where even a slower than parametric
convergence rate is accepted, in return for an inference method, based on the
original slope operator S.

In this paper, we take up this insight and base statistical inference directly
on the measure ~S − S0~. Evidently, the point hypothesis in (3.1) is equivalent
to ~S − S0~ = 0. However, in this work, we want to investigate the “relevant
hypotheses”, given by

HΔ
0 : ~S − S0~2 ≤ Δ versus HΔ

1 : ~S − S0~2 > Δ, (3.2)
and

HΔ̃
0 : ~S − S0~2 ≥ Δ̃ versus HΔ̃

1 : ~S − S0~2 < Δ̃, (3.3)

where Δ > 0 and Δ̃ > 0 are predetermined thresholds. Our suggestion to replace
the “classical” hypotheses in (3.1) by hypotheses of the form (3.2) or (3.3) has
theoretical as well as practical reasons.
From a theoretical perspective, testing exact equality of S and S0 (both of
which are infinite dimensional objects) might be questionable, because it is
rarely believed that the hypothesized slope coincides perfectly with the true one.
Therefore, testing H0 means testing a hypothesis, which is essentially known
to be false. This point is important, because any consistent test will detect
any arbitrarily small deviation from H0 if the sample size is sufficiently large
(see Berkson (1938)). Thus we expect any consistent test for H0 to eventually
reject the hypothesis. This problem is evaded by the consideration of relevant
hypotheses (3.2), which only refer to sufficient proximity of S and S0.

We also believe that the relevant hypotheses are more congruent with com-
mon interests of users, who are less concerned with perfect equality than with
the practical issue of comparable performance. Often users are willing to trade
– at least to some extend – statistical precision for a simpler model. In this
sense, the thresholds Δ, Δ̃ in the relevant hypotheses can be understood as the
largest deviation between S and S0, which is still acceptable for the user. This
also highlights that the choice of the threshold will depend on the application in
hand and is not an a priori question. Although this choice appears to be cum-
bersome, we argue that one should carefully think about it in each application,
because the “simple” option Δ = 0 defines a null hypothesis, which is often
known to be wrong.

Note also that a formulation of the hypotheses in the form (3.3) might be
preferred if one is interested to work under the assumption S = S0. If the
null hypothesis HΔ̃

0 is rejected at level α, the risk of erroneously assuming
~S − S0~2 ≤ Δ̃, is controlled, which is not possible using the “classical” hy-
potheses in (3.1), because there is no symmetry in the problem. Although the
hypotheses (3.2) and (3.3) are different with respect to their statistical interpre-
tation, it will become clear later that from a mathematical point of view they
are in some sense equivalent. Therefore, and also for the sake of brevity, we
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restrict ourselves to the development of testing procedures for the hypotheses
in (3.2) and denote the null hypothesis as “no relevant deviation from S0”.

3.2. Assumptions

The theoretical results of this paper require several assumptions, which are ex-
plained and illustrated in this section. Recall that a stationary sequence {Zj}j∈Z

of random variables is called φ-mixing, if limk→∞ φ(k) = 0, where

φ(k) := sup
h∈Z

sup
{
|P(F |E) − P(F )| :E ∈ σ(Z1, . . . , Zh)

F ∈ σ(Zh+k, Zk+h+1, . . .), P(E) > 0
}
.

denotes the φ-dependence coefficients and σ(Zh, . . . , Zk), is the σ-algebra gen-
erated by Zh, . . . , Zk (see for instance Dehling et al. (2002)).

Assumption 3.1.
(1) Smoothness: For some β ≥ 0 the operators S and S0 are elements of the
smoothness class

C(β,Γ) :=
{
RΓβ : R ∈ S2(H1, H2)

}
.

(2) Moments: There exists some κ > 0, such that E‖X1‖4+κ, E‖ε1‖4+κ < ∞.
(3) Dependence: The sequence of random functions {(Xn, εn)}n∈Z is centered,
strictly stationary and φ-mixing, such that

φ(1) < 1 and
∑
h≥1

√
φ(h) < ∞.

(4) Coefficients: There exists a finite constant C > 0, s.t. the inequality
E|〈X1, ej〉|4 ≤ C(E|〈X1, ej〉|2)2 holds for any j ∈ N.

(5) Weak exogeneity: Eε1 ⊗X1 = 0.
(6) Decay of eigenvalues and eigengaps: For some γ > 0 and large enough

C > 0, the eigenvalues of the covariance operator Γ satisfy

λk ≤ Ck−γ and λk − λk+1 ≥ C−1k−γ−1 ∀k ∈ N.

(7) Rates of regularization: The regularization parameter k = k(N) is chosen
such that for some δ > 0

kγ+1+δ

√
N

→ 0 and kγβ√
N

→ ∞.

Remark 3.2.
(a) Assumption (1) is a smoothness condition on the slope operators S, S0,
w.r.t. the principal components of Γ. To see this let S = RΓβ and x ∈ H1. It
follows that Sx = RΓβx = Ry, where y =

∑
r∈N

er(λβ
r 〈x, er〉). Evidently the

L2-coefficients (λβ
r 〈x, er〉) of y decay faster than those of x, as they are weighted

by a power of the decaying eigenvalues. In this sense y is smoother than x and
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a larger value of β translates into lighter coefficients and thus more smoothing.
In this way Sx can be understood as the application of an integral operator R
to a smoothed version of x. Assumption 3.1(1) was also considered in (Benatia
et al., 2017) in their study of the Tikhonov regularization, where it was denoted
by the common label of source condition. At the beginning of their Section 3
the smoothing effect of Γβ is explored by various examples.
In the following calculations, we demonstrate that Assumption 3.1(1) can be
translated into fast decaying tails of the operator S, which is another standard
way of stating smoothness in the literature. Consider the application of R to a
basis function eq of Γ: Req = RΓβΓ−βeq = SΓ−βeq. Notice that Γ−βeq = λ−β

q eq
is indeed well-defined. We can now express Req as

Req = SΓ−βeq =
[ ∑
i,j∈N

si,jfi ⊗ ej

][∑
k∈N

λ−β
k ek ⊗ ek

]
eq =

∑
i∈N

si,qλ
−β
q fi,

where {fi}i∈N is an ONB of H2 and si,j := 〈S, fi ⊗ ej〉 (with the inner product
on the space of Hilbert–Schmidt operators, see Section 2.1). Now the squared
Hilbert–Schmidt norm of R equals

∞ > ~R~
2 =
∑
q∈N

〈Req, Req〉 =
∑
q∈N

〈
∑
i∈N

si,qλ
−β
q fi,

∑
l∈N

sl,qλ
−β
q fl〉

=
∑
q,l∈N

λ−2β
q s2

l,q =
∑
q,l∈N

λ−2β
q 〈Seq, fl〉2 =

∑
q∈N

λ−2β
q ‖Seq‖2, (3.4)

where we have used Parseval’s identity in the last step. In the scalar response
model (1.2) one has ‖Seq‖2 = 〈ϕS , eq〉2. Thus, the summability in (3.4) is
a smoothness condition for ϕS . In this form it has been used by (Hall and
Horowitz, 2007) (see equation (3.3) in that paper). In the more general model (1.1)
the decay of ‖Seq‖2 was considered as a smoothness condition in (Crambes and
Mas, 2013) (see their Definition 3). Evidently, this analysis can also be reversed:
With the same notations as above we have

S =
∑
i,j∈N

si,jfi ⊗ ej =
[ ∑
i,j∈N

si,jλ
−β
j fi ⊗ ej

][∑
k∈N

λβ
kek ⊗ ek

]
= RΓβ .

S is Hilbert–Schmidt whenever
∑

i,j∈N
s2
i,jλ

−2β
j =

∑
j∈N

λ−2β
j ‖Sej‖2 < ∞. Con-

sequently, the decomposability of S = RΓβ is indeed equivalent to fast decaying
tails. Given our Assumption (6), which entails λβ

j ≈ Cj−γβ , we can infer that
for example the decay assumption ‖Sej‖2 ≤ Cj−2r with r > γβ +1/2 would be
sufficient for S = RΓβ to hold, with R of Hilbert–Schmidt class.

(b) Assumptions 3.1(2) – (5) are required to derive a weak convergence re-
sult stated in Theorem 3.5. The existence of moments of larger order than 4
is typical for proving second order, weak invariance principles (it corresponds
to the assumption of more than second moments for the first order; see Berkes
et al. (2013)). The mixing assumption is weaker than those in the related liter-
ature, where almost exclusively i.i.d. observations are considered, (see Hall and
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Horowitz (2007); Crambes and Mas (2013); Benatia et al. (2017); Imaizumi and
Kato (2019); Babii (2020) among others) and can be relaxed further to strong
mixing (see Remark 3.8(4) below). Assumption 3.1(4) regarding the moments of
the coefficients 〈X1, ej〉 is standard in the literature (see for example Hall and
Horowitz (2007); Crambes and Mas (2013); Imaizumi and Kato (2019)) and is
needed for technical reasons. We use it in the proof of Lemma B.1, part ii).
Assumption 3.1(5) regarding the exogeneity is again weaker than in most of
the literature. Here often strong exogeneity is required (see the literature cited
before), where the work of (Benatia et al., 2017) constitutes an important ex-
ception.

(c) Assumption 3.1(6) guarantees a polynomial decay rate for the eigenvalues
of Γ, that is λk ∼ k−γ . More important than the precise rate of decay is the
assumption on the eigengaps, which have to be controlled for identifiability
reasons. Assumptions of this type are standard in the literature, in particular in
the analysis of spectral cut-off estimators (see, Hall and Horowitz (2007); Qiao
et al. (2019) among others), even though they are sometimes made implicitly
(see Lemma 12 in Crambes and Mas (2013)).

The two decay rates in Assumption 3.1(7) expose the trade-off inherent in
the choice of k. On the one hand, k has to increase slowly enough, such that
the k-th eigenvalue λk can be distinguished from λk+1. This means that the
k-th eigengap of size k−γ−1 is of larger order than the estimation error of size
1/

√
N . Our assumption is almost sharp in the sense that we assume kγ+1/

√
N

to decay at some arbitrarily slow polynomial rate in N . We use this additional
leverage to derive not only a CLT but a stronger weak invariance principle,
where remainders have to be controlled uniformly; see Lemma B.1. A sharp
version has been used for confidence bands in the scalar response model by
(Imaizumi and Kato, 2019). On the other hand, k has to increase fast enough,
such that the asymptotic bias is negligible, more precisely

~S − SΠk~ = ~RΓβ [Id− Πk]~ ≤ ~R~~Γβ [Id− Πk]~L

=~R~λβ
k+1 = O(k−γβ) = o(1/

√
N).

It can be shown that the above bound is sharp for general operators and hence
the bias rate cannot be improved upon. Notice that the two Assumptions on k
can be simultaneously fulfilled if and only if β > 1 + 1/γ.

3.3. Main results

In order to develop a statistical test for the relevant hypotheses defined in (3.2)
it is reasonable to estimate the difference ~S − S0~2. A natural estimator is
given by ~ŜN − S0Π̂k~2. While it is also possible to replace S0Π̂k by S0 in the
subsequent theory, we prefer to work with S0Π̂k as it does not seem sensible to
compare S0 along dimensions to S, where no estimate for S exists (this common
sense approach is also supported by simulations). In order to define a consistent
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and (asymptotic) level-α test, we are interested in the weak convergence of the
difference √

N
(
~ŜN − S0Π̂k~

2 − ~S − S0~
2). (3.5)

The standard approach to this problem would be to first establish weak conver-
gence of the difference

√
N(ŜN − S) in the space S(H1, H2) and then deduce

weak convergence of the test statistic in (3.5) by applying the Delta method (see
Section 3.9 in (van der Vaart and Wellner, 1996)) to the mapping S → ~S−S0~2.
Notice that, using the OLS estimator, this method works for finite dimensional
linear regression. However, this approach fails in the context of functional re-
gression problems, as it is not possible to find a standardizing sequence, say
{aN}N∈N, such that the difference aN (ŜN − S) converges weakly to a non-
degenerate limit, if k converges to infinity with the sample size, which is neces-
sary to obtain an asymptotically vanishing bias (see, for example, Crambes and
Mas (2013)).

Nevertheless, the fact that no weak convergence of
√
N(ŜN −S) in the space

S(H1, H2) can be established does not necessarily imply that the difference in
(3.5) cannot converge weakly. Indeed, we will demonstrate that the mapping
S → ~S − S0~2 has a smoothing effect on ŜN . Therefore, the inflation of the
observation error UN (defined in (2.7)) is compensated and it is possible to es-
tablish weak convergence of (3.5) with a normally distributed limit. The precise
statement will be given in Proposition 3.3 below. To get an intuition how this
smoothing works note that by the third binomial formula in Hilbert spaces we
have

~ŜN − S0Π̂k~
2 − ~(S − S0)Πk~

2

=〈ŜN − S0Π̂k − (S − S0)Πk, ŜN − S0Π̂k + (S − S0)Πk〉.

After multiplying with
√
N and some careful bounding of the error terms (recall

that the left side of the inner product asymptotically degenerates), we can show
that this equals

2
√
N〈ŜN − S0Π̂k − (S − S0)Πk, S − S0〉 + oP(1)

(see Section A.1 in the Supplementary Material). Now, by Assumption 3.1(1)
there exist operators R,R0 ∈ S(H1, H2), such that S = RΓβ , S0 = R0Γβ . Hence,
we can perform the following smoothness shift, moving smoothness in the form
of Γβ from the second to the first component of the inner product, i.e.,

2
√
N〈ŜN − S0Π̂k − (S − S0)Πk, S − S0〉

=2
√
N〈ŜN − S0Π̂k − (S − S0)Πk, [R−R0]Γβ〉

=2
√
N〈[ŜN − S0Π̂k − (S − S0)Πk]Γβ , R−R0〉.

It turns out that the smoothing effect of Γβ on the left stops the error inflation.
Intuitively, the smoothing works, because

ŜNΓβ = 1
N

N∑
n=1

Yn ⊗XnΓ̂†
kΓ

β ≈ 1
N

N∑
n=1

Yn ⊗XnΓβ−1, (3.6)
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i.e. the regularized inverse Γ̂†
k and the shifted operator Γβ “cancel out” to Γβ−1,

thus eliminating the pathology of the asymptotically unbounded operator Γ̂†
k.

Now, the asymptotic normality of (3.5) follows from the linearization in (3.6).

Proposition 3.3. Under the Assumptions presented in Section 3.2, it holds
that

TN =
√
N
(

~ŜN − S0Π̂k~
2 − ~(S − S0)Πk~

2
)

d→ N (0, τ2), (3.7)

where the long-run variance τ2 is defined by

τ2 :=4
{∑

h∈Z

E

[
〈(R−R0)L[X0 ⊗X0 − Γ], R−R0〉 (3.8)

〈(R−R0)L[Xh ⊗Xh − Γ], R−R0〉
]

+ 2E
[
〈(R−R0)L[X0 ⊗X0 − Γ], R−R0〉 〈εh ⊗XhΓβ−1, R−R0〉

]

+ E

[
〈ε0 ⊗X0Γβ−1, R−R0〉 〈εh ⊗XhΓβ−1, R−R0〉

]}
.

Here, the map L is given in Definition B.2 of the Supplementary Material.

The proof of Proposition 3.3 rests on the asymptotic normality of the smoothed
process [ŜN − S0Π̂k − (S − S0)Πk]Γβ in the Hilbert space of slope operators
S(H1, H2). Proving normality in the Hilbert space (via smoothness shift) has
several advantages compared to standard linearizations in the real numbers: For
example, we can use functional convergence, to derive generalizations of Propo-
sition 3.3, that hold uniformly over S, S0 ∈ C(β,Γ) (for a precise result see
Theorem 3.5 below). This yields a convenient theory for the analysis of uniform
local alternatives (see Lemma 3.9) as well as test procedures for more general
classes of relevant hypotheses (see Remark 3.10). The price that we pay for
this non-standard approach is a more sophisticated proof, where many difficult
remainder terms have to be controlled.

In the following remark, we discuss how Proposition 3.3 can be used to derive
an asymptotic test for the hypotheses in (3.2).

Remark 3.4. Using Proposition 3.3, we could in principle construct a test for
the hypothesis of no relevant deviation, presented in (3.2), by rejecting the null
hypothesis, whenever

√
N
(

~ŜN − S0Π̂k~
2 − Δ

)
> τΦ−1(1 − α), (3.9)

where Φ−1 is the quantile function of a standard normal distribution and α ∈
(0, 1) denotes the nominal level. This decision yields indeed a test which is
asymptotically consistent and keeps its nominal level asymptotically. To see
this we use the expansion

√
N
(

~ŜN − S0Π̂k~
2 − Δ

)
= T1N + T2N + T3N , (3.10)
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where

T1N =
√
N
(
~ŜN − S0Π̂k~

2 − ~(S − S0)Πk~
2),

T2N =
√
N
(
~(S − S0)Πk~

2 − ~S − S0~
2),

T3N =
√
N
(
~S − S0~

2 − Δ
)
.

By Proposition 3.3 the first term T1N in (3.10) converges weakly to a centered
normal distribution with variance τ2. The term T2N is the bias and asymptoti-
cally vanishes (see discussion of Assumption 3.1(7)). The third term T3N is also
deterministic. In the interior of the null hypothesis, that is ~S − S0~2 < Δ, it
converges to −∞ and thus asymptotically no rejection occurs for N → ∞. On
the boundary of the hypothesis, that is ~S − S0~2 = Δ, it vanishes and we get

√
N
(

~ŜN − S0Π̂k~
2 − Δ

)
= T1N + oP(1) d→ N (0, τ2).

Consequently, the test (3.9) has asymptotic level α in this case. Notice that the
bias T2N is always non-positive, which means that small choices of k (resulting
in larger bias) invariably make the test more conservative. Finally, under the al-
ternative, the term T3N diverges to ∞ and thus rejection occurs with probability
converging to 1 (asymptotic consistency).

The discussion of Remark 3.4 demonstrates that testing the hypothesis (3.2)
based on the decision rule (3.9) is possible, as long as a reliable estimate of
the variance τ2 is available. Unfortunately, even in the case of independent
observations, this quantity is painfully complex to estimate. It requires not only
estimation of Γ, but also of the fourth order structure of regressors and errors,
a linearization map L depending on all eigenvalues and eigenfunctions of the
operator Γ (an object which depends inversely on the small eigengaps) as well
as knowledge about the operators R and R0 in Assumption 3.1(1). What is
difficult for i.i.d. data is almost infeasible in the case of dependent data. In this
case τ2 is a long-run variance, which requires besides the estimation of all the
mentioned entities the determination of a bandwidth, capturing the sequential
dependence of the regressors and errors.

Given the impracticality and instability of such an estimate, we pursue the
different approach of self-normalization in the following section. The techni-
cal prerequisite for this procedure is the derivation of a weak invariance prin-
ciple, generalizing Proposition 3.3. For this purpose, we introduce a sequen-
tial version of the statistic ŜN which is defined similarly as the original, with
the difference that – instead of all N observations – only the observations
(X1, Y1), . . . , (X�ξN�, Y�ξN�) for ξ ∈ (0, 1] are used for estimation. To be pre-
cise we define the sequential covariance estimator

Γ̂N [ξ] = 1
N

�ξN�∑
n=1

Xn ⊗Xn. (3.11)

Furthermore, we define the sequential estimators of the eigenvalues and eigen-
functions of Γ, denoted by λ̂i[ξ], êi[ξ] as the eigenvalues and eigenfunctions of the
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operator Γ̂N [ξ] (where the eigenvalues are again assumed to be in non-increasing
order). With these estimators we set

Γ̂†
k[ξ] =

k∑
i=1

1
λ̂i[ξ]

êi[ξ] ⊗ êi[ξ] and Π̂k[ξ] =
k∑

i=1
êi[ξ] ⊗ êi[ξ]. (3.12)

Finally the sequential estimator of S is given by

ŜN [ξ] := 1
N

�ξN�∑
n=1

Yn ⊗XnΓ̂†
k[ξ]. (3.13)

Note that in the case of ξ = 1 these estimators are identical to their non-
sequential counterparts Γ̂N , Γ̂†

k and ŜN defined in (2.5), (2.8) and (2.9), respec-
tively, and that we do not adapt k = k(N) to ξ. Throughout this paper we will
use the notations Γ̂N and Γ̂N [1] simultaneously. We can now state a general-
ization of Proposition 3.3, which shows uniform convergence in the sequential
parameter as well as the slope operators.

Theorem 3.5. Suppose that Assumption 3.1(2)-(7) holds, let I ⊂ (0, 1] be an
interval and define for some r > 0 the restricted smoothness class

C(β,Γ, r) :=
{
S̃ ∈ S(H1, H2) |S̃ = R̃Γβ : ~R̃~ ≤ r

}
. (3.14)

Then there exists a Gaussian process {G[ξ]}ξ∈I = {(G1[ξ], G2[ξ])}ξ∈I on the
space of bounded S(H1, H1) × S(H1, H2)-valued functions such that{√

Nξ
(

~ŜN [ξ] − S0Π̂k[ξ]~2 − ~(S − S0)Πk~
2
)}

S,S0∈C(β,Γ,r), ξ∈I
(3.15)

d→
{〈

(R−R0)G1[ξ] + G2[ξ]Γβ−1, R−R0
〉}

S,S0∈C(β,Γ,r), ξ∈I
.

The process G is specified in the Appendix (see equation (A.7) and following
discussion). In particular, for fixed S, S0 ∈ C(β,Γ, r) it follows that{√

Nξ
(

~ŜN [ξ] − S0Π̂k[ξ]~2 − ~(S − S0)Πk~
2
)}

ξ∈I

d→ {τB(ξ)}ξ∈I , (3.16)

where B is a standard Brownian motion and the long-run variance τ2 is defined
in (3.8).

The weak invariance principle (3.16) implies Proposition 3.3 for ξ = 1, and
is the key ingredient for a self-normalized statistic. The broader result (3.15), is
of interest for the analysis of local alternatives (see Lemma 3.9) as well as for
testing generalized, relevant hypotheses (see Remark 3.10).

3.4. A pivotal test statistic

In the last section, we have derived a weak invariance principle for the esti-
mated deviation measure in (3.5). While a central limit theorem is theoretically
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sufficient to construct a test for the hypothesis (3.2), as we have seen in the
discussion of Proposition 3.3, the estimation of the long-run variance τ2 is in-
feasible in applications. In this section we circumvent the problem of estimating
τ2, by a self-normalization approach, based on the weak invariance principle in
Theorem 3.5. For this purpose, define for 0 < a < 1 the interval I = [a, 1], let ν
be a probability measure on I and consider the normalizer

V̂N :=
{∫

I

ξ4
(

~ŜN [ξ] − S0Π̂k[ξ]~2 − ~ŜN − S0Π̂k~
2
)2

dν(ξ)
}1/2

. (3.17)

The next corollary is a consequence of (3.16) and the continuous mapping The-
orem. It can be viewed as a standardized version of Proposition 3.3.

Corollary 3.6. Suppose that Assumption 3.1 holds and that τ > 0. Then the
weak convergence (

~ŜN − S0Π̂k~2 − ~(S − S0)Πk~2
)

V̂N

(3.18)

d→W := B(1){∫
I
ξ2(B(ξ) − ξB(1))2dν(ξ)

}1/2

holds, where B is a standard Brownian motion on the interval [0, 1].

We point out that the quantiles of the distribution of W can be readily simu-
lated using the Fourier representation of the Brownian motion. A typical choice
for the measure ν is a discrete uniform measure on the set {1/T, 2/T, ..., (T −
1)/T, 1} for some T ≥ 2. Simulations suggest that the choice of T has little im-
pact on the statistical performance of the resulting procedure, while – of course
– smaller values of T yield computational advantages (see Section 6).

In view of (3.9) and the subsequent discussion, we now define a decision rule
rejecting the null hypothesis in (3.2), whenever

ŴN (Δ) :=
(
~ŜN − S0Π̂k~2 − Δ

)
V̂N

> q1−α, (3.19)

where q1−α is the 1 − α quantile of the distribution of W in (3.18). The next
theorem shows the validity of this test decision.

Theorem 3.7. Under the assumptions of Corollary 3.6 the decision rule pre-
sented in (3.19) yields an asymptotic level-α and consistent test for the hypoth-
esis (3.2).

Remark 3.8.

(1) In the theoretical results presented so far it is assumed that the regressors
are centered, that is EX1 = 0. In reality, it may well be that EX1 = μ �= 0 and
therefore an empirical centering is necessary. More precisely we can introduce
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the sequential mean estimates (recall that ξ ∈ [a, 1], 0 < a < 1)

ȲN [ξ] := 1
�Nξ�

�Nξ�∑
n=1

Yn, and X̄N [ξ] := 1
�Nξ�

�Nξ�∑
n=1

Xn.

Now, considering the modified observations Yn − ȲN [ξ] and Xn − X̄N [ξ] in any
of the sequential statistics introduced at the beginning of this section, it can
be shown that all results presented so far remain correct in this case (we also
employ this empirical centering in the simulation study in Section 6).

(2) It follows from the proof of Theorem 3.7 that P{ŴN (Δ) > q1−α} → 0
as N → ∞, whenever ~S − S0~2 < Δ (i.e., the interior of the null hypothesis),
while for ~S−S0~2 = Δ (boundary of the null hypothesis) we have P{ŴN (Δ) >
q1−α} → α as N → ∞.

(3) It is easy to see that the test statistic ŴN (Δ) is a decreasing function
of the threshold Δ. This means that rejection for some Δ > 0 also entails
rejection for all smaller thresholds and vice versa accepting the hypothesis for
some threshold means acceptance for all larger values. Hence, the interpretation
for multiple values of Δ – if considered – is internally consistent.

(4) Similar results can also be obtained for other dependence concepts than
φ-mixing. For example, consider α-mixing processes (for a definition, see, for
instance Dehling et al. (2002)). We now formulate the new Assumptions

(3′) : The sequence {(Xn, εn)}n∈Z is strictly stationary and α-mixing s.t.
hα(h)

κ
4+κ → 0;

(4′) : For c the smallest even integer c > 4 + κ, it must hold that:
E|〈X1, ej〉|c ≤ C(E|〈X1, ej〉|2)c/2;

where α(h) denotes the α-mixing coefficient. Then all statements in this and
the subsequent sections remain correct if the conditions (3) and (4) in Assump-
tion 3.1 are replaced by (3′) and (4′), respectively. For technical details we refer
the interested reader to (Dehling et al., 2002) (covariance inequalities for α-
mixing in Hilbert spaces) and to (Merlevède et al., 2006) (invariance principles
under α-mixing).

Theorem 3.7 states that the test decision defined in (3.19) is asymptotically
consistent for some fixed S if ~S − S0~2 > Δ. We can sharpen this result by
considering a class of local alternatives. For this purpose, recall the definition
of the smoothness class C(β,Γ, r) in (3.14) and the definition of the long-run
variance τ2 = τ2(S) in (3.8). We restrict the class, only permitting operators
S ∈ C(β,Γ, r), for which the long-run variance τ2(S) is bounded away from 0,
that is for some c > 0

Cc(β,Γ, r) := C(β,Γ, r) ∩ {S : τ2(S) > c}.
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We impose this restriction to avoid pathological cases, where the long-run vari-
ance is (almost) 0 due to dependence in the data. Finally, we define the class of
local alternatives

A(χ) := Cc(β,Γ, r) ∩ {S : ~S − S0~
2 > Δ + χ}, (3.20)

where χ > 0 demarcates the distance to the hypothesis. We now evaluate per-
formance of the test decision (3.19) w.r.t. local alternatives in the following
proposition.

Proposition 3.9. Suppose that Assumption 3.1 (2)-(7) holds. Then we have
for any x > 0

lim inf
N→∞

inf
S∈A(x/

√
N)

P(ŴN (Δ) > q1−α) = p(x).

Here p : R>0 → R>0 is a monotonically increasing function, which satisfies
p(x) > α for all x > 0 and limx→∞ p(x) = 1.

The proof of this result is a consequence of the weak convergence (3.15) in
Theorem 3.5 (notice that the weaker invariance principle in the real numbers
(3.16) is not sufficient). We conclude this section by a brief discussion of relevant
hypotheses for classes of linear operators.

Remark 3.10. The main focus of this paper is the construction of tests for
relevant hypotheses of the form (3.2), i.e. testing for a single hypothesized op-
erator S0, whether ~S − S0~2 ≤ Δ holds. A natural generalization of this is to
test for some (closed) class of operators S ⊂ C(β,Γ, r), whether

HΔ
0 : inf

S̃∈S

~S − S̃~
2 ≤ Δ versus HΔ

1 : inf
S̃∈S

~S − S̃~
2 > Δ.

Such a hypotheses pair might be of interest if S corresponds to a parametric
model, or to a collection of shape-constrained functions. We can use Theorem
3.5 and some simple calculations to see that the weak convergence

√
N
[

inf
S̃∈S

{~Ŝ − S̃Π̂k~
2} − inf

S̃∈S

{~S − S̃~
2}
]

d→ inf
S̃∈S∗

〈
(R− R̃)G1 + G2Γβ−1, R− R̃

〉
,

holds, where S∗ := {S̃ ∈ S : ~S− S̃~2 = inf S̄∈S ~S− S̄~2} is the set containing
all operators in S, with minimum distance to S. Here, the processes G1 = G1[1]
and G2 = G2[1] are defined in Theorem 3.5. Using this weak convergence and
e.g. a bootstrap for dependent data, we can construct a test for HΔ

0 that is
consistent and asymptotically holds level α. However, it does not seem to be
possible to derive a self-normalized statistic in this case.

4. Statistical inference for relevant prediction errors

In the previous section, we have compared the slope operator S to a predeter-
mined operator S0, in terms of the Hilbert–Schmidt norm ~S−S0~2. However,
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from a statistical perspective, other deviation measures are at least equally im-
portant. One vital mode of comparison is, in how far the predictions of the two
operators differ, which we discuss in this section. Prediction in finite and infi-
nite dimensional linear models is a well-investigated subject. In the work most
closely related to our own, (Crambes and Mas, 2013) considered the minimax
prediction error of the spectral cut-off estimator ŜN , compared to the true slope
S. The focus in our work is different, as we want to compare the predictive prop-
erties of the true slope S, with the hypothesized operator S0. More specifically,
we are interested in the quantity E‖SX−S0X‖2, where the expectation is taken
with respect to a regressor X, distributed as X1. A simple calculation, using
the trace representation of inner products and its properties (see Section 13.5
in (Horváth and Kokoszka, 2012)) shows that

E‖SX − S0X‖2 = ~SΓ1/2 − S0Γ1/2
~

2. (4.1)

Therefore we are comparing smoothed versions of the slope operators. We point
out that even though the inequality ~SΓ1/2 − S0Γ1/2~2 ≤ ~Γ1/2~2

L~S − S0~2

implies that small differences between S and S0 result in small prediction errors,
the converse is not true. In particular small prediction errors may be found in
operators, that vastly differ in the Hilbert–Schmidt norm.

We now formulate the hypothesis of no relevant prediction error as
predHΔ

0 : E‖SX − S0X‖2 ≤ Δ predHΔ
1 : E‖SX − S0X‖2 > Δ, (4.2)

where X has the same distribution as X1. Again Δ > 0 is a user determined
threshold, where a deviation of more than Δ is considered scientifically relevant.
In order to test this hypothesis, we recall the identity (4.1), which suggests the
natural estimator ~ŜN Γ̂1/2

N − S0Π̂kΓ̂1/2
N ~2 for the prediction error. Recall that

the projection S0Π̂k can be replaced by the operator S0. But projecting seems
more sensible, because otherwise S0 is compared to S along axes, which are
not estimated. Compared to the statistic discussed in Section 3, we expect that
the multiplication with Γ̂1/2

N leads to an even stronger smoothing effect, which
indeed manifests itself in weaker assumptions on the regularization parameter.

Assumption 4.1. Rates of regularization: The regularization parameter k sat-
isfies for some δ > 0

kγ+1+δ

√
N

→ 0 and kγ(β+1/2)
√
N

→ ∞.

If Assumption 4.1 holds, the bias of the prediction error vanishes asymptoti-
cally, as

~[S − SΠk]Γ1/2
~ = ~RΓβ [I − Πk]Γ1/2

~ ≤ ~R~~Γβ [I − Πk]Γ1/2
~L

= ~R~λ
β+1/2
k+1 = O(k−γ(β+1/2)) = o(1/

√
N).

Notice that compared to Assumption 3.1(7), Assumption 4.1 translates into
weaker smoothness requirements for the operators S and S0. In fact, it implies
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β > 1/2+1/γ (instead of β > 1+1/γ, because S ∈ C(β−1/2,Γ) already entails
SΓ1/2 ∈ C(β,Γ)). In applications, this effect is reflected by smaller values of
k in the spectral cut-off estimator for prediction compared to reconstruction.
Nevertheless, the representation ŜN Γ̂1/2

N = SΠ̂kΓ̂1/2
N +UN (Γ̂†

k)1/2, suggests, that
inference for the prediction error remains a genuinely inverse problem. In par-
ticular, we still observe an amplification of the observation error UN by the
regularized inverse, but to a weaker extent than in the case of reconstruction.

Recalling the definition of the sequential estimators (3.11), (3.12) and (3.13)
in Section 3.3 we obtain the following invariance principle.

Theorem 4.2. Under the Assumptions 3.1(1)-(6) and Assumption 4.1, it holds
for any compact interval I ⊂ (0, 1], that{√

Nξ
(

~ŜN [ξ]Γ̂N [ξ]1/2 − S0Π̂k[ξ]Γ̂N [ξ]1/2~
2 − ~(S − S0)ΠkΓ1/2

~
2
)}

ξ∈I

d→ {τpred
B(ξ)}ξ∈I ,

where the long-run variance (τpred)2 is defined as follows

(τpred)2 :=4
{∑

h∈Z

E

[
〈(R−R0)L̃[X0 ⊗X0 − Γ], R−R0〉 (4.3)

〈(R−R0)L̃[Xh ⊗Xh − Γ], R−R0〉
]

+ 2E
[
〈(R−R0)L̃[X0 ⊗X0 − Γ], R−R0〉

〈εh ⊗XhΓβ−1, R−R0〉
]

+ E

[
〈ε0 ⊗X0Γβ−1, R−R0〉〈εh ⊗XhΓβ−1, R−R0〉

]}
.

Here the map L̃ is given in Definition B.2.

Next we define the adapted denominator

V̂ pred
N :=

{∫
I

ξ4
(

~ŜN [ξ]Γ̂N [ξ]1/2 − S0Π̂k[ξ]Γ̂N [ξ]1/2~
2 (4.4)

− ~ŜN Γ̂1/2
N − S0Π̂kΓ̂1/2

N ~
2
)2

dν(ξ)
}1/2

,

and propose to reject the null hypothesis in (4.2), if

Ŵ pred
N (Δ) :=

(
~ŜN Γ̂1/2

N − S0Π̂kΓ̂1/2
N ~2 − Δ

)
V̂ pred
N

> q1−α. (4.5)

Theorem 4.3. Suppose that the Assumptions 3.1(1)-(6), Assumption 4.1 hold
and that the long-run variance τpred is positive. Then the decision rule in (4.5)
defines a consistent, asymptotic level-α test for the hypothesis in (4.2).

We conclude this part by comparing the weak convergence result of this
section to those derived in (Crambes and Mas, 2013) for prediction.
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Remark 4.4. (Crambes and Mas, 2013) proved a weak convergence result in
the case of i.i.d. observations and somewhat different assumptions than those
used in this section. In their Theorem 9 (which is a generalization of Theorem 4.2
in (Cardot et al., 2007)), they showed that for a random variable X distributed
as X1 and independent of the sequence {(Xn, εn)}n∈Z , the weak convergence√

N

k
(ŜNX − SX) d→ G (4.6)

holds, where G is a centered Gaussian process on H2, with covariance operator
Eε1⊗ε1. Notice the standardization of

√
N/k instead of

√
N , which corresponds

to the standard deviation of UNΓ†
kX. This term naturally occurs (as second

term) in the decomposition√
N

k
(ŜN − SΠk)X =

√
N

k

{
S(Π̂k − Πk)X + UN Γ̂†

kX
}
.

Importantly the first term here is asymptotically negligible, which is not the
case in our smoothed statistic. Indeed, in the L2-statistic, after the smoothness
shift is performed, the amplifying effect of the regularized inverse is eliminated,
which yields the convergence rate N−1/2 for both terms instead of

√
k/N . In

view of these technical differences, we have developed a separate asymptotic
theory for the proof of Theorem 4.3 tailored to the study of relevant hypotheses
and could not use the result in (4.6).

5. Change point analysis and two sample tests

In the context of dependent time series, functional data analysis is usually em-
ployed to model successive observations of a system over an extended time
period. In this context it is natural to consider the stability of the data, e.g. by
searching for change points in the mean (see e.g. Berkes et al. (2009)), Chap-
ter 6 in (Horváth and Kokoszka, 2012), (Aston and Kirch, 2012) or (Dette et al.,
2020)) or in the second order structure, i.e. covariance operators (Jarušková,
2013), principle components (Dette and Kutta, 2021) or other features (Aue
et al., 2020). For the linear regression model (1.1) stability concerns first and
foremost the slope operator S. This problem has been addressed by (Horváth
et al., 2010) for AR(1)-processes and by (Horváth and Reeder, 2011) for more
general processes by testing “classical” hypotheses (of the type H0 versus H1
described at the beginning of Section 3.1). In this section, we discuss how one
can adapt the previous techniques to the detection of a relevant change in the
operator S. The related, but easier case of comparing two operators, say S(1)

and S(2) from independent samples is briefly discussed in Remark 5.3 below.
To be precise, consider the following regression model

Yn ⊗Xn = SnXn ⊗Xn + εn ⊗Xn n = 1, ..., N, (5.1)

where S(1) := S1 = S2 = ... = S�θN�, S(2) := S�θN�+1 = ... = SN and θ ∈ (0, 1)
determines the location of the change point and is unknown. We assume that
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{(Xn, εn)}n∈Z is a stationary time series of regressors and errors, which satisfies
the Assumptions 3.1(1)-(5) in Section 3.2. The two hypotheses of no relevant
change at θ in the slope operator and of no relevant change in the predictive
properties of S are defined by

HΔ
0 : ~S(1) − S(2)

~
2 ≤ Δ HΔ

1 : ~S(1) − S(2)
~

2 > Δ, (5.2)
predHΔ

0 : E‖S(1)X − S(2)X‖2 ≤ Δ predHΔ
1 : E‖S(1)X − S(2)X‖2 > Δ. (5.3)

Before continuing we point out an important difference to change point analysis
based on testing classical hypotheses (that is Δ = 0): Suppose a change in
the slope operator is detected by a traditional change point test, but would be
considered irrelevant in the sense of the hypotheses (5.2) for some small Δ > 0.
In this situation, it might be reasonable to reconstruct the slope S using all the
data, instead of considering two estimates from the data before and after the
estimated change point. On the one hand this would introduce a (small) bias in
the estimation, but on the other hand this increase could be compensated by a
significant reduction of the variance.

In the following discussion, let θ̂ denote an estimator of the change point
(see Remark 5.3(1) below for a concrete example). We define the sequential
estimators for the covariance operator

Γ̂(1)
N [ξ] = 1

Nθ̂

�ξθ̂N�∑
n=1

Xn ⊗Xn, Γ̂(2)
N [ξ] = 1

N(1 − θ̂)

�ξ(1−θ̂)N�∑
n=θ̂N+1

Xn ⊗Xn . (5.4)

The eigenvalues (in non-increasing order) and their corresponding eigenfunctions
are denoted by λ̂

(j)
1 [ξ] ≥ λ̂

(j)
2 [ξ] ≥ . . . and ê

(j)
1 [ξ], ê(j)

2 [ξ], . . ., respectively (j =
1, 2). As before, we consider for k ∈ N the regularized inverse of the operator
Γ̂(j)
N [ξ], as well as the projection on the first k empirical eigenfunctions as

Γ̂†,(j)
k [ξ] =

k∑
i=1

1
λ̂

(j)
i [ξ]

ê
(j)
i [ξ] ⊗ ê

(j)
i [ξ], Π̂(j)

k [ξ] =
k∑

i=1
ê
(j)
i [ξ] ⊗ ê

(j)
i [ξ].

By virtue of the regularized inverse operators, we can now define the slope
estimates, as

Ŝ
(1)
N [ξ] = 1

Nθ̂

�ξθ̂N�∑
n=1

Yn ⊗XnΓ̂†,(1)
k [ξ], (5.5)

Ŝ
(2)
N [ξ] = 1

N(1 − θ̂)

�ξ(1−θ̂)N�∑
n=Nθ̂+1

Yn ⊗XnΓ̂†,(2)
k [ξ]

and propose to reject the null hypothesis in (5.2) whenever

Ŵ cp
N (Δ) :=

(
~Ŝ

(1)
N − Ŝ

(2)
N ~2 − Δ

)
V̂ cp
N

> q1−α. (5.6)
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where the denominator V̂ cp
N is defined as

V̂ cp
N :=

{∫
I

ξ4
(

~Ŝ
(1)
N [ξ] − Ŝ

(2)
N [ξ]~2 − ~Ŝ

(1)
N − Ŝ

(2)
N ~

2
)2

dν(ξ)
}1/2

, (5.7)

and q1−α is the (1 − α)-quantile of the distribution of the random variable W
defined in (3.18). In order to test for relevant predictive differences, we define
Ŵ cp,pred

N (Δ) in the same way as Ŵ cp
N (Δ), where we replace all instances of

S(j)[ξ] by S(j)[ξ]Γ̂(j)
N [ξ]1/2. This gives us the test decision for a relevant change

in prediction
Ŵ cp,pred

N (Δ) > q1−α. (5.8)

For the statement of the main results of this section, we require the consis-
tency of the change point estimator θ̂, such that the amount of missclassified
data is asymptotically negligible.

Assumption 5.1. (Consistency of θ̂): θ̂ = θ + oP(1/
√
N).

The following result shows that the decision rules (5.6) and (5.8) define con-
sistent tests for the hypotheses (5.2) and (5.3), respectively and have asymptotic
level α. In its formulation, we understand that a postulated assumption applies
to each operator before and after the change point.

Theorem 5.2. Suppose that the Assumptions 3.1(1)-(6) and Assumption 5.1
hold.

a) If additionally Assumption 3.1(7) holds, then the long-run variance (τ cp)2
(defined in (A.8)) of

√
N
(

~Ŝ
(1)
N − Ŝ

(2)
N ~

2 − ~S(1) − S(2)
~

2
)

d→ N (0, (τ cp)2)

exists. If τ cp is positive, then the decision rule in (5.7) yields a consistent,
asymptotic level-α test for the hypothesis (5.2) of no relevant change in
the slope.

b) If additionally Assumption 4.1 holds, then the long-run variance (τ cp,pred)2
(defined in (A.8)) of

√
N
(

~Ŝ
(1)
N (Γ̂(1)

N )1/2 − Ŝ
(2)
N (Γ̂(2)

N )1/2~
2 − ~(S(1) − S(2))Γ1/2

~
2
)

d→N (0, (τ cp,pred)2)

exists. If τ cp,pred is positive, then the decision rule in (5.8) yields a consis-
tent, asymptotic level-α test for the hypothesis (5.3) of no relevant change
in the prediction.

It is possible to give explicit formulas for τ cp and τ cp,pred, which are similar
to those in Proposition 3.3 and Theorem 4.2 above, but we omit them to avoid
redundancy. We conclude this section with a brief remark concerning the change
point estimator θ̂ and two sample testing.
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Remark 5.3.
(1) There are many ways of defining an estimator for the location θ of the

change point. As an example, we consider a standard change point estimator
from the observations Y1⊗X1 . . . , Yn⊗Xn based on the CUSUM-principle (note
that any change in the slope operator Sn in model (5.1) manifests itself in the
product SnΓ). To be precise we define

θ̂ := 1
N

argmax {f(M) : 1 < M < N} , (5.9)

where the function f is given by

f(M) := M

N

(
1 − M

N

)�

�

�

�

�

1
M

M∑
n=1

Yn ⊗Xn − 1
N −M

N∑
n=M+1

Yn ⊗Xn

�

�

�

�

�

2

,

for M = 2, . . . , N − 1. It then follows from Corollary 1 in (Hariz et al., 2007)
that

|θ̂ − θ| = OP(1/N)

if the condition ∑
q,r

√
E〈S(j)X ⊗X, fr ⊗ eq〉2 < ∞

holds for some orthonormal basis {fr}r≥1 of H2. In this case, Assumption 5.1
is satisfied for the estimator in (5.9).

(2) In this section, we have assumed that there exists at most one change
in the data (AMOC model). However, generalizations to multiple changes are
possible. Suppose we have two changes θ1 < θ2 and consistent estimators θ̂1, θ̂2
identify them at a rate of oP(1/

√
N). It is then possible to prove analogous

versions of Theorem 5.2, where we consider e.g. the hypothesis Hsum
0 : ~S(1) −

S(2)~2 +~S(2) −S(3)~2 ≤ Δ (for details see Remark 7 in Dette et al. (2020)). A
special case where such hypotheses are of interest is that of an epidemic change.
Here, the distribution changes at some point θ1 but returns to the status quo
ante after a second change θ2 (see Stöhr et al. (2021)).

(3) It is easy to see that the test formulated in this section can be applied
(without the change point estimation) to the case of two independent samples
of size N1 and N2. In this case, we set N = N1 + N2 and replace θ̂N and
(1 − θ̂)N in the definitions (5.4) and (5.5) by N1 and N2. If N1 = N2 the as-
sumption of independence can be dropped and it suffices that the time series
(X(1)

n , X
(2)
n , ε

(1)
n , ε

(2)
n )n∈Z, satisfies stationarity and the required mixing assump-

tion. The details are omitted for the sake of brevity. Tests for relevant differences
between the slopes of two functional linear regression models may be of inter-
est, e.g. in cases where the behavior of contemporary individuals at different
geographical locations is compared.
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6. Finite sample properties

In this section, we investigate the finite sample properties of the spectral re-
constructions and the self-normalized tests by means of a simulation study.
We restrict ourselves to the one-sample cases presented in Sections 3 and 4,
even though non-reported simulations suggest similar performance for two sam-
ple cases and change point scenarios. Following (Benatia et al., 2017), we let
(Hi, μi) = (L2([0, 1], μ), for i = 1, 2, where μ is the uniform distribution on the
points {0, 1/50, 2/50..., 1}, which may be regarded as a discretized version of
the Lebesgue measure. We consider two scenarios of dependence: i.i.d. observa-
tions and dependent observations, where regressors and errors are generated by
AR(1) processes.

6.1. Inference for the location of S

Recall the regression model in (1.1). In the case of i.i.d. observations, we generate
the regressors as

Xn(t) = Γ(An + Bn)
Γ(An)Γ(Bn) t

An(1 − t)Bn + Zn, (6.1)

(shifted β-densities) where An, Bn are independent, uniformly distributed on
the interval [2, 5] and Zn is an independent, standard normal shift. Notice that
the regressor functions X1, X2, . . . are not centered, and hence we include an
empirical centering in all statistics (see Remark 3.8). The error functions εn are
i.i.d. realizations of an Ornstein–Uhlenbeck process, with zero mean, variance
parameter and mean reversion rate equal to one. Note that εn is a stationary,
centered, Gaussian process, which is the solution of the stochastic differential
equation dε(t) = −ε(t)dt + σdB(t), where B is a standard Brownian motion
and σ = 1. Some typical paths of these regressors and errors are depicted in
Figure 1.

Fig 1: Realizations of regressors (left) and errors (right), both in the i.i.d. case.
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In the case of dependent observations we generate both regressors and errors
by AR(1) processes, with parameter ρ = 0.6, that is

X̃n = ρX̃n−1 + Xn, ε̃n = ρε̃n−1 + εn,

where the random variables Xn and εn are i.i.d. random functions, generated
as in the independent case (see equation (6.1) and following discussion). In all
simulations, a burn in period of 200 repetitions is used. Finally, we turn to the
operators S0 and S, both of which are integral operators, defined as

Sf �→
∫ 1

0
ϕS(s, ·)f(s)μ(s), and S0f �→

∫ 1

0
ϕS0(s, ·)f(s)dμ(s),

pointwise for a function f ∈ (L2[0, 1], μ), where ϕS and ϕS0 are the integral
kernels corresponding to S and S0. We first define the benchmark kernel ϕS0 as
in (Benatia et al., 2017), by

ϕS0(s, t) = 1 − |s− t|2

and then the slightly more complex regression kernel ϕS as

ϕS(s, t) = 1 − 4/5|s− t|2 + 1/5 cos(|s− t|/5).

In Figure 2 we plot the two kernel functions, to illustrate their shape differences.
The difference between the kernels can be assessed by the relative deviation
measure

1 − ~S − S0~2

~S0~2 = 1 −
∫ 1
0
[
ϕS(s, t) − ϕS0(s, t)

]2
ds dt∫ 1

0 ϕS0(s, t)2ds dt
≈ 0.032

(since ~S~2 ≈ ~S0~2 it does not matter by which norm we normalize).

Fig 2: Image of the two integration kernels, plotted as surfaces. Left: ϕS. Right:
ϕS0 .
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Before we consider the estimation problem, it is reasonable to investigate the
complexity of the two slopes S and S0, relative to the principal components of
the operator Γ. For this purpose we consider the measure of relative explanation

~SΠk − S0Πk~2

~S − S0~2 , (6.2)

which varies in the interval [0, 1] and is increasing in k. A value of 1 means
that S − S0 acts exclusively on span{e1, . . . , ek}, whereas a value of 0 implies
that S − S0 lives on the orthogonal complement. A rapid increase in k corre-
sponds to a high degree of smoothness in the sense of Assumption 3.1(1) and
hence to a small bias. However, smoothness of the slopes is not enough, since one
also has to be able to estimate the principal components of Γ properly. This cor-
responds to eigenvalues λ1, λ2, . . . of Γ (and eigengaps), which are not too small.

In the left part of Figure 3 we display the measure (6.2) as a function of k and
observe a quick increase for k ≤ 5 up to 95%. In the right part of the figure we
present the decaying eigenvalues of the operator Γ (in the case of independent
variables). Here we observe a fast decay followed by a sharp elbow. The first three
eigengaps are rather large, but afterwards the distinction becomes increasingly
difficult. Indeed, even for a large sample size of N = 1000, the recovery of
more than 5 eigenfunctions is somewhat unstable, resulting in inflated rejection
probabilities at the boundary of the hypothesis. Together, these considerations
suggest that choices of k between 4 and 5 are optimal, depending on the sample
size N .

Fig 3: Left: The measure (6.2) as a function of k. Right: First 9 eigenvalues of
the operator Γ.

Throughout this section, all empirical results are based on 1000 simulation
runs. In order to investigate the power of the test (3.19) for the relevant hy-
potheses (3.2) we consider the sample sizes of N = 50, 200, 500 and k = 3, 4, 5
(note that k = 3 is rather small for practical inference and only included to illus-
trate aspects of the bias-variance trade-off). The measure ν in the definition of
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the normalizer (3.17) is the uniform distribution on the set {1/5, 2/5, 3/5, 4/5}.
Simulations for other measures, which are not reported for the sake of brevity,
suggest that the number of points does not have a large or systematic impact on
the results. In Figure 4 we display the rejection probability of the self-normalized
test (3.19) as a function of the threshold Δ in the hypothesis (3.2). A vertical
grey line indicates the true value of ~S − S0~2 ≈ 0.023 and corresponds to the
boundary of the hypotheses, while the grey horizontal line shows the nominal
level α, which is chosen as α = 0.05. The left column shows the results for the
i.i.d. case, while the results for the dependent case can be found in the right
column. The plots can be evaluated as follows:

If Δ < ~S − S0~2 ≈ 0.023 (left of the vertical line) we operate under the
alternative (see (3.2)) and expect high rejection probabilities. At the boundary
of the hypotheses corresponding to the vertical line we expect to approximate
α, whereas for larger values of Δ the asymptotic theory developed in Section 3
suggests that the rejection probability tends to 0; see Remark 3.8(2). Because
the test statistic is a monotone function of Δ, the rejection probability decreases
monotonically in Δ; see Remark 3.8(3).

Before we evaluate the specific performance of the test (3.19), we illustrate in
Figure 4 some general features of the linear inverse problem. Evidently, the re-
jection curves exhibit the bias variance trade-off, which occurs at the level of k.
For k = 3, we observe a substantial bias, which we would expect, in view of Fig-
ure 3 (left). It diminishes rapidly for k = 4 and k = 5. In view of our discussion
of (3.10) we should understand the left shifts of the rejection curves as a result
of the bias, which makes the test somewhat conservative. The upside of smaller
values of k is the accompanying small variance, which manifests itself in the
rapid decay of the rejection curves. For larger values of k the variance increases
and this may result in inflated rejection probabilities at the boundary (e.g. for
N = 50 and the too large choice k = 5). With regard to the statistical properties
of the test presented in (3.19), we observe a reasonable level approximation at
the boundary, even for sample sizes as small as 50 in the independent scenario.
Dependence in the observations leads to a worse performance, particularly for
samples as small as N = 50, whereas the effect for N = 200, 500 is minute.
The power of the test is for independent observations even for N = 50 accept-
able and for larger samples, we observe rapid improvements, even for greater
values of k. In the dependent case, for N = 200, 500, we observe a good level
approximation at the boundary and high rejection probabilities under the al-
ternative. Interestingly the bias-variance trade-off sometimes implies that while
some k leads to the optimal level approximation at the boundary and thus high
power close to the hypothesis, for larger distances smaller values of k perform
better, because the variance is smaller. This effect is reflected by crossing re-
jection curves. Finally, we notice that in view of the sometimes abrupt change
in variance and bias for two successive values of k, in practice a soft threshold
might be considered, for a more nuanced trade-off. We conclude this section
by considering in more detail the effect of dependence on the self-normalized
statistic.
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Fig 4: Rejection probabilities (y-axis) of the test (3.19) for different choices of
Δ (x-axis). Different sizes of N and k are displayed, for i.i.d. observations
(left) and dependent observations (right). The level α = 0.05 is indicated by the
horizontal line, and the true size of ~S − S0~2 by the vertical line.
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Fig 5: Rejection probabilities (y-axis) of the test (3.19) for different choices of Δ
(x-axis). We have fixed k = 5 and the sample size at N = 200 (left) and N = 500
(right). The different curves reflect different choices of the AR-parameter ρ.

Fig 6: Image of the two integration kernels, plotted as surfaces. Left: ϕSΓ1/2 .
Right: ϕS0Γ1/2 .

Remark 6.1. In order to evaluate the stability of the self-normalized statistic
w.r.t. to different dependence levels, we consider the above setup, with samples
sizes N = 200 and N = 500 and fix the truncation parameter at k = 5. To
moderate dependence, we consider four different choices of the AR-parameter
ρ ∈ {0, 0.3, 0.6, 0.9}, ranging from independence to rather strong dependence
(for ρ = 1 the AR-process ceases to be stationary). In Figure 5 we compare the
resulting rejection probabilities head-to-head for N = 200 (left) and N = 500
(right). Our results suggest that the self-normalized statistic is influenced in
only very minor ways by increased dependence. While rejection probabilities
under the null are highest for ρ = 0.9 we do not observe a monotone connection
between α-error and AR-parameter.
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Fig 7: Left: Relative explanation measure defined in (6.3) as a function of k.
Right: Kernel of the operator Γ1/2 (for i.i.d. observations).

6.2. Inference for relevant prediction errors

We consider the set-up described in the previous section to investigate devia-
tion in the predictive performance of S and S0. We begin by considering the
smoothed kernels SΓ1/2 and S0Γ1/2, which are depicted in Figure 6 (for Γ cor-
responding to the i.i.d. case). Even though they bear some resemblance to their
originals (see Figure 2), we observe a high smoothing effect caused by the ap-
plication of Γ1/2. As a consequence of the smoothing effect, we expect that
the relative explanation should be higher than for the non-smoothed operators.
This is in fact what we see in Figure 7 (left), where we have plotted the relative
explanation measure

~SΓ1/2Πk − S0Γ1/2Πk~2

~SΓ1/2 − S0Γ1/2~2 . (6.3)

We see that the first principal component already covers more than 75% of
the norm, for k = 3 the relative explanation is about 99% and for k = 4 it
has reached almost 100%. Compared to the explanation for the non-smoothed
kernel in Figure 3 (left) this is a very rapid increase and it suggests the use of
smaller values for k. Notice that this matches our theoretical results in Sections 3
and 4 (compare Assumptions (3.1)(7) and 4.1)), which suggest higher k for the
recovery of the slope and smaller k for the purpose of prediction. On the right
side of Figure 7 we display the smoothing kernel corresponding to the operator
Γ1/2 in the case of i.i.d. observations.

We now proceed to the application of the statistical test (4.5), presented in
Section 4 for the hypothesis (4.2). As in Section 6.1 we consider sample sizes
N = 50, 200, 500 and parameter choices k = 1, 2, 3, both for i.i.d. samples (left
part of the figures) and dependent samples (right part of the figures).

For details on the model as well as the dependence, we refer to Section 6.1.
The measure ν in the normalizer V̂ pred

N (see (4.4)) is again chosen to be the
uniform measure on {1/5, 2/5, 3/5, 4/5} and the level of the test is α = 0.05. All
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Fig 8: Rejection probabilities (y-axis) of the test (4.5) for different choices of
Δ (x-axis). Different sizes of N and k are displayed, for i.i.d. observations
(left) and dependent observations (right). The level α = 0.05 is indicated by the
horizontal line, and the value ~SΓ1/2 − S0Γ1/2~2 by a vertical line.

simulations are based on 1000 repetitions. Notice that the absolute deviation
(vertical gray line) differs in the case of independent and dependent data, since
the operator Γ is different in the dependent and independent case.

The numerical results confirm the theoretical findings in Section 4. We ob-
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serve a good approximation of the level at the boundary of the hypothesis, both
for dependent and independent data, and accordingly high rejection probabil-
ities under the alternative. The smoothing parameter is chosen smaller than
in the case of prediction, which corresponds to the smaller bias in the case of
prediction. In contrast to Section 6.1 we do not see pronounced crossing of the
power curves for different k, such that better level approximation automatically
translates into higher overall power. This is also an effect of the relatively small
bias in the case of prediction.

6.3. A data example

In this section, we employ our new methodology for the analysis of meteo-
rological time series from the city of Potsdam (Germany), consisting of daily
temperature averages and precipitation rates in the years 1893 − 2018. Due to
incomplete measurements during and after WWII, the years 1942 − 1946 have
been removed from our sample. The data was published by the national me-
teorological agency “Der Deutsche Wetterdienst” ( https://www.dwd.de/DE/
Home/home_node.html), with temperature measurements in ◦C and precipita-
tion rates in mm. To explore the nexus of temperature and precipitation, we
use the functional linear regression model from (1.1), with annual temperature
profiles as regressors and logarithmic precipitation rates as responses. Following
Ramsay and Silverman (1997) (p.248) we reconstruct temperature curves from
daily measurements by using Fourier expansions with 21 basis coefficients (see
Figure 9 left) and logarithmic precipitation rates with 11 coefficients (see Fig-
ure 9 right), where daily precipitation has been floored by a value of 0.05mm
to ensure well-definedness of the logarithm. To account for global warming, we
have removed a linear trend from the temperature curves. Subsequently, we have
used an empirical centering, both for temperature and precipitation, as outlined
in Remark 3.8.

We now want to estimate the slope operator S by its empirical version ŜN

defined in Section 2.2. For this purpose, we have to select the truncation pa-
rameter k, where a proper choice depends on the sample size (N = 121) as well
as the eigengaps of the covariance operator Γ. In Figure 10 (left) we display the
first nine eigenvalues of the empirical covariance operator Γ̂N of the temper-
ature curves. We observe a slow decay of the eigenvalues with relatively large
eigengaps (at least for the first 6 eigenvalues). In view of our above simulations,
we select k = 4 for the reconstruction of S (even though non-reported results
for k = 3 and k = 5 confirm stability of our subsequent inference). In Figure
10 (right) we display the integration kernel ϕŜN

associated with the operator
ŜN . Before we proceed to the statistical inference, we briefly want to investi-
gate qualitative features of ŜN . The correlation of rainfall and temperature has
been investigated already for a long time in geophysics and meteorology (see
for instance Trenberth et al. (2003), Trenberth and Shea (2005), Berg et al.
(2009)). For Europe, the relation is (roughly speaking) positive in the winter
and negative in the summer. On cold winter days, water holding capacity of

 https://www.dwd.de/DE/Home/home_node.html
 https://www.dwd.de/DE/Home/home_node.html
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Fig 9: Reconstructed annual temperature curves (left) and logarithmic precipita-
tion rates (right) in the years 1893 − 1904.

Fig 10: Left: The nine largest eigenvalues of the empirical covariance operator
Γ̂N of the temperature data. Right: Integration kernel ϕŜN

.

the atmosphere is so low, that it can be “too cold to snow” and even a mod-
est temperature increase can substantially raise moisture levels. Underlying this
relation is the Clausius-Clapeyron identity, which associates increased tempera-
ture of a liquid with higher vapor pressure. It implies (for common temperatures
of earth’s surface) that an increase of one degree Celsius leads to an approxi-
mately 7% higher moisture holding capacity in the atmosphere (see Trenberth
et al. (2003)). While warm winters tend to be wet, wet summers are usually cold
due to cloudy skies and evaporative cooling (notice the reversal of causality; see
Trenberth and Shea (2005) and Berg et al. (2009)). We now want to investigate,
whether our estimate ŜN (or rather the integration kernel ϕŜN

) reproduces these
relations in our model. Since an interpretation of the two-dimensional kernel ϕŜN

is non-trivial, we may consider its diagonal values, to investigate the association
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Fig 11: Left: Diagonal values of the integration kernel ϕŜN
. Right: Estimate

ŜN Γ̂1/2
N .

(positive or negative) of the temperature on day t (X(t)) with (log-)precipita-
tion on that day (Y (t)). In Figure 11 we display the diagonal values ϕŜN

(t, t).
As we can see the pattern closely reproduces the relation of earlier studies with
high temperatures corresponding to more precipitation in the winter and less
in the summer. These findings also complement an earlier study of James et al.
(2009) who considered a functional regression model with real valued responses
to relate Canadian temperature profiles with total precipitation over the year.
The advantage of a function-on-function regression is that we can also study the
relation between temperature and precipitation of different time-periods.

For instance, a closer study of ŜN seems to suggest that high temperatures
in the summer are related not only to dry summers, but also to dry winters
(where the causal relation seems to be a lack of moisture over the winter and
spring, which causes dry and hence hot summers; see Quesada et al. (2012) and
references therein). Even though such effects are more difficult to interpret, they
are of practical relevance when predicting strong seasonal variation in weather
patterns.

We now come to the inference part of our analysis. As in our simulation study,
we consider the observations as functions on the space (L2[0, 1], μ), where the
year is scaled to the unit interval and μ is the uniform measure on 365 equally
spaced points, representing days. As noticed before, we fix the truncation pa-
rameter k = 4 for the (raw) reconstruction of S and use k = 3 in the recon-
struction of the prediction measure (a depiction of ϕ

ŜN Γ̂1/2
N

is given in Figure
11, right). As before, the measure ν in the definition of the denominator of the
self-normalized statistics is uniform on the set {1/5, 2/5, 3/5, 4/5}. The bench-
mark operator S0 is fixed as S0 = 0. The test for the hypothesis of no relevant
difference in the slopes (HΔ

0 : ~S − S0~2 ≤ Δ; see (3.2)) rejects at a level of
5% for Δ as large as 0.22 and at 10% for Δ as large as 0.33. These values are
relatively large compared to the size of ~ŜN~2 ≈ 0.56 (about 39% and 59%
respectively). In contrast, the test for the hypothesis of no relevant prediction
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error (predHΔ
0 : E‖SX − S0X‖2 ≤ Δ; see (4.2)) is not rejected for any Δ > 0

at a nominal level of 10%. These different outcomes underline two points: First,
as we have discussed before, the two measures (raw comparison and prediction
error) are genuinely different and a difference in the raw slopes S, S0 may be
“smoothed over” by the application of the operator Γ1/2. Second, on a practical
level, our results suggest a complex meteorological association between tem-
perature and precipitation. Even though from a viewpoint of prediction w.r.t.
current temperature profiles this relation is not especially strong in the temper-
ate climate of Eastern Germany, the effects of global warming might impact the
(future) distribution of temperature profiles, bringing to bear the temperature-
precipitation relation more strongly.

Appendix A: Proofs and technical details

The Appendix is dedicated to the proofs of the theoretical results from Sections 3
to 5. We only show the weak convergence results from Section 3 explicitly, as
those in Sections 4 and 5 are straightforward modifications. The Appendix con-
sists of three parts: In Appendix A we first discuss the main steps in the proof
of Theorem 3.5. Second, we give the proof of Proposition 3.9, which follows by
an application of Theorem 3.5. Subsequently, in Appendix B we have gathered
bounds for various remainders and also discuss a linearization map, which af-
fects the covariance structure of the limiting process in Theorem 3.5. Finally, in
Appendix C we have collected some additional results concerning operators and
their eigensystems, which we use throughout our proofs. There (in Remark C.2)
we also address the problem of the non-uniqueness of eigenfunctions, which is a
technical issue, concerning the comparisons of eigenfunctions. Roughly speaking,
we always assume that the eigenfunctions ei and their empirical counterparts
(both unique up to sign) have “the same sign”, in the sense that for all ξ the
inequality ‖ei − êi[ξ]‖ ≤ ‖ei + êi[ξ]‖ holds. Notice that this technicality is of no
concern in applications, as our test statistics always involve outer products of
the form êi[ξ] ⊗ êi[ξ], which cancel the sign out.

Finally, we assume for notational simplicity that the sequential parameter ξ
is contained in the interval [1/2, 1] (any interval [a, 1], a > 0, can be dealt with
in the same way). In the remainder of this introduction, we recall some useful
identities for sequential operators and introduce a suitable sup-norm for them.

Let us revisit the sequential statistics defined in Section 3.3: Recall the defini-
tion of the sequential covariance estimate Γ̂N [ξ] (see (3.11)), its eigenvalues and
eigenfunctions λ̂i[ξ], êi[ξ], i ≥ 1, its regularized inverse Γ̂†

k[ξ] (see (3.12)), the
projection Π̂k[ξ], (see (3.12)) on span{ê1[ξ], · · · , êk[ξ]}, which can be expressed
as Π̂k[ξ] = Γ̂N [ξ]Γ̂†

k[ξ] and finally the sequential estimate of S, denoted by ŜN [ξ]
(see (3.13)). Notice that for ŜN [ξ] an analogue decomposition to (2.9) holds

ŜN [ξ] = SΠ̂k[ξ] + UN [ξ]Γ̂†
k[ξ],
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where the sequential residual term is defined as

UN [ξ] := 1
N

�Nξ�∑
n=1

εn ⊗Xn.

For fixed ξ, each of these statistics is defined as an element of a suitable
Hilbert space (λ̂i[ξ] ∈ R, êi[ξ] ∈ H1, Γ̂N [ξ], Γ̂†

k[ξ], Π̂k[ξ] ∈ S(H1, H1) and ŜN [ξ] ∈
S(H1, H2)). Alternatively, we may also view each of these statistics as a bounded
function in ξ, mapping from [1/2, 1] into the respective Hilbert space. We make
this notion more precise by defining the space of bounded functions:

Definition A.1. Let B be a Banach space with norm ~ · ~B. Then we denote
by

�∞(B) :=
{
f : [1/2, 1] → B : sup

ξ∈[1/2,1]
~f(ξ)~B < ∞

}
,

the space of all bounded functions with range B. Endowed with the sup-norm
�∞(B) is itself a Banach space.

In the sense of Definition A.1, we see that e.g. Γ̂N [·] ∈ �∞(S(H1, H1)). We
conclude this part with the observation that the sequential covariance estimator
Γ̂N [ξ] is asymptotically close to the true one ξΓ w.r.t. the sup-norm.

Theorem A.2. ((Dette et al., 2021)) Under the Assumptions (3.1)(2) and (3)
it holds that

sup
ξ∈[1/2,1]

~
√
N(Γ̂N [ξ] − ξΓ)~ = OP(1).

We now give the proof of the main Theorem 3.5. To make the proof easier to
comprehend, the discussion of various remainders is bundled in later lemmata.

A.1. Proof of Theorem 3.5

The proof consists of two steps: First we derive an asymptotic linearization of
the test statistic. Subsequently we show weak convergence.

Using the identity ‖a‖2 − ‖b‖2 = 2〈a− b, b〉 + ‖a− b‖2 (which is a version of
the third binomial formula for inner products), it follows that

ξ
√
N
{

~ŜN [ξ] − S0Π̂k[ξ]~2 − ~SΠk − S0Πk~
2
}

(A.1)

=2ξ
√
N〈ŜN [ξ] − S0Π̂k[ξ] − SΠk + S0Πk, SΠk − S0Πk〉 + ξ

√
NR2

1[ξ].

Here the term R1[ξ] is defined as

R1[ξ] :=~ŜN [ξ] − S0Π̂k[ξ] − SΠk + S0Πk~ (A.2)

=~(S − S0)(Π̂k[ξ] − Πk) + UN [ξ]Γ̂†
k[ξ]~.

Using the triangle inequality we see that R1[ξ] ≤ ~(S − S0)(Π̂k[ξ] − Πk)~ +
~UN [ξ]Γ̂†

k[ξ]~. Recalling that S−S0 can be rewritten as (R−R0)Γβ for suitable
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Hilbert–Schmidt operators R,R0, implies that the first term on the right is
bounded by

~(S − S0)(Π̂k[ξ] − Πk)~ ≤ ~R−R0~~Γβ(Π̂k[ξ] − Πk)~L. (A.3)

The fact that S, S0 ∈ C(β,Γ, r) implies that ~R−R0~ is bounded. Lemma B.1,
together with the bound (A.3) implies for an arbitrarily small ε > 0, that

R1[ξ] = OP(k(γ+1)/2+ε/
√
N), (A.4)

uniformly in ξ,R and R0. Consequently, ξ
√
NR2

1[ξ] = oP(1) whenever ε is chosen
small enough, i.e., ε ≤ 2δ (see Assumption 3.1(7)). We now focus on the non-
vanishing term on the right of (A.1). It can be further decomposed into the sum
T [ξ] + R2[ξ] where

T [ξ] := 2ξ
√
N
〈
(S − S0)(Π̂k[ξ] − Πk) + UN [ξ]Γ̂†

k[ξ], S − S0

〉
(A.5)

and R2[ξ] is another remainder term, defined as

R2[ξ] := 2ξ
√
N
〈
(S − S0)(Π̂k[ξ] − Πk) + UN [ξ]Γ̂†

k[ξ], (S − S0)(Πk − Id)
〉
.

By the Cauchy–Schwarz inequality one has

|R2[ξ]| ≤ 2ξ
√
NR1[ξ]~(S − S0)(Πk − Id)~.

From (A.4) we know that
√
NR1[ξ] = OP(kγ/2+1/2+ε) and according to our

discussion of Assumption 3.1(7) (see Remark 3.2 (c)) it holds uniformly, that
~(S − S0)(Πk − Id)~ = O(k−γβ). Hence it follows that

R2[ξ] = OP

(
kγ/2+1/2+ε−γβ

)
,

which is oP(1) for a sufficiently small choice of ε, namely ε < (γ + 1)/2 where
we used β > 1 + 1/γ (again see discussion of Assumption 3.1(7) in Remark 3.2
(c)). We now analyze the non-vanishing term T [ξ] defined in equation (A.5). It
follows that

T [ξ] =2ξ
√
N
〈
(R−R0)Γβ(Π̂k[ξ] − Πk) + UN [ξ]Γ̂†

k[ξ], (R−R0)Γβ
〉

=2ξ
√
N
〈{

(R−R0)Γβ(Π̂k[ξ] − Πk) + UN [ξ]Γ̂†
k[ξ]
}

Γβ , R−R0

〉
Notice that we have “shifted” the smoothing operator Γβ from the right side of
the inner product to the left. This shift can be validated by basic calculations.
However, it can be seen more easily as an application of the cyclical property for
the trace of operators (see (Horváth and Kokoszka, 2012), Section 13.5 for de-
tails). Finally, we use Lemma B.3 to replace ξΓβ(Π̂k−Πk)Γβ and ξUN [ξ]Γ̂†

k[ξ]Γβ

on the right, by their asymptotic linearizations, which yields T [ξ] = T ′[ξ]+oP(1),
where

T ′[ξ] = 2
√
N
〈
(R−R0)L(Γ̂N [ξ] − ξΓ) + UN [ξ]Γβ−1, R−R0

〉
. (A.6)
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Here L is a linear map defined in Definition B.2. Our proof up to this point
implies the (asymptotic) stochastic linearization

√
N
{

~ŜN [ξ] − S0Π̂k[ξ]~2 − ~SΠk − S0Πk~
2
}

= T ′[ξ] + oP(1).

In the next step we prove weak convergence. For this purpose, we consider the
process Ĝ[ξ] := (Ĝ1[ξ], Ĝ2[ξ]) on �∞(S(H1, H1) × S(H1, H2)), where

Ĝ1[ξ] :=
√
NL(Γ̂N [ξ] − ξΓ) and Ĝ2[ξ] :=

√
NUN [ξ],

and UN [ξ] and Γ̂N [ξ] are defined in (2.7) and (3.11), respectively.
We can construct the smoothed version Ğ1[ξ] of Ĝ1[ξ] by replacing Γ̂N [ξ] by

Γ̆N [ξ] := 1
N

�ξN�∑
n=1

Xn ⊗Xn + Nξ + 1 − �Nξ�
N

(XNξ� ⊗XNξ�)

in Ĝ1[ξ] and Ĝ2[ξ] by Ğ2[ξ] =
√
NŬN [ξ], where

ŬN [ξ] = 1
N

�Nξ�∑
n=1

εn ⊗Xn + Nξ + 1 − �Nξ�
N

(εNξ� ⊗XNξ�).

Finally, we set Ğ[ξ] := (Ğ1[ξ], Ğ2[ξ]). We now use a small analytical argument
regarding the spaces of convergence: It is easy to show that Ğ[ξ]− Ĝ[ξ] = oP (1)
holds uniformly (with respect to ξ), and we can thus restrict ourselves to proving
convergence of Ğ[ξ]. This process has continuous paths, and we notice that for
such processes the uniform metric and Skorohod distance are identical (we also
point out that the limiting process will have continuous sample paths). Next
we have Ğ[ξ] − Ĝ[ξ] = oP (1) in the Skorohod metric, and hence we can show
weak convergence of Ĝ[ξ] in the Skorohod metric. This means that we can
apply results from Samur (1984, 1987) (which are formulated for the Skorohod
metric). Using Corollary 4.7 in Samur (1984) shows that Ĝ[ξ] converges for
ξ = 1 to a Gaussian limit, with covariance operator C, which applied to (f, g) ∈
S(H1, H1) × S(H1, H2) is defined as

C(f, g) :=
∑
h∈Z

E

[
〈L[X0 ⊗X0 − Γ], f〉 〈L[Xh ⊗Xh − Γ], f〉

]
(A.7)

+ 2E
[
〈L[X0 ⊗X0 − Γ], f〉〈εh ⊗Xh, g〉

]
+ E

[
〈ε0 ⊗X0, g〉〈εh ⊗Xh, g〉

]
.

The conditions of Corollary 4.7 in Samur (1984) can be verified by simple calcu-
lations observing Assumption 3.1 (2) and (3). We can therefore apply Theorem
3.2 in Samur (1987) (where again the conditions are easy to verify), to the
sequential process Ĝ[ξ], which together with the above functional CLT yields
a weak invariance principle, implying that {Ĝ[ξ]}ξ∈[1/2,1] converges weakly to
{G[ξ]}ξ∈[1/2,1]. G[ξ] is a Brownian motion on S(H1, H1) × S(H1, H2), i.e., it is
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centered, has stationary, independent increments, and for any ξ the random op-
erator G[ξ] has covariance ξC. For details on such processes, we refer to Samur
(1987) as well as Kuelbs and Philip (1980).
We have thus shown the weak convergence in (3.15) and the convergence (3.16)
(as well as the fact that τ2 has the form postulated in (3.8)) is a direct conse-
quence of this. �

It is easy to see that proofs of Theorems 4.2 and 5.2 follow along the same
lines as that of Theorem 3.5. For the sake of completeness, we now state (without
proof) the long-run variances τ cp and τ cp,pred corresponding to Theorem 5.2:

(τ cp)2 =(τ cp,(1))2

θ
+ (τ cp,(2))2

1 − θ
(A.8)

(τ cp,pred)2 =(τ cp,pred,(1))2

θ
+ (τ cp,pred,(2))2

1 − θ
. (A.9)

Here we have defined for i = 1, 2

(τ cp,(i))2 := 4
{∑

h∈Z

E

[
〈R(i)L[X0 ⊗X0 − Γ], R(1) −R(2)〉

〈R(i)L[Xh ⊗Xh − Γ], R(1) −R(2)〉
]

+ 2E
[
〈R(i)L[X0 ⊗X0 − Γ], R(1) −R(2)〉 〈εh ⊗XhΓβ−1, R(1) −R(2)〉

]

+ E

[
〈ε0 ⊗X0Γβ−1, R(1) −R(2)〉 〈εh ⊗XhΓβ−1, R(1) −R(2)〉

]}

and

(τ cp,pred,(i))2 := 4
{∑

h∈Z

E

[
〈R(i)L̃[X0 ⊗X0 − Γ], R(1) −R(2)〉

〈R(i)L̃[Xh ⊗Xh − Γ], R(1) −R(2)〉
]

+ 2E
[
〈R(i)L̃[X0 ⊗X0 − Γ], R(1) −R(2)〉〈εh ⊗XhΓβ−1, R(1) −R(2)〉

]
+ E

[
〈ε0 ⊗X0Γβ−1, R(1) −R(2)〉〈εh ⊗XhΓβ−1, R(1) −R(2)〉

]}
.

The next proof follows as an immediate consequence of Theorem 3.5.

A.2. Proof of Proposition 3.9

We begin with a few preliminary remarks. First, we notice that we can use The-
orem 3.5 (for fixed S0) together with a version of the Skorohod representation
theorem (see Dudley (1999) Theorem 3.5.1), to construct a sequence of random
processes {PN}N∈N converging a.s. to P0, where

PN ={PN [ξ, S]}S∈C(β,Γ,r), ξ∈I
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d=
{√

Nξ
(

~ŜN [ξ] − S0Π̂k[ξ]~2 − ~(S − S0)Πk~
2
)}

S∈C(β,Γ,r), ξ∈I

P0 ={P0[ξ, S]}S∈C(β,Γ,r), ξ∈I

d=
{〈

(R−R0)G1[ξ] + G2[ξ]Γβ−1, R−R0
〉}

S∈C(β,Γ,r), ξ∈I
.

Here “ d=” denotes equality in distribution. Next we notice that the map

T : P [ξ, S] �→
{∫

I

ξ4(P [ξ, S] − P [1, S])2dν(ξ)
}1/2

is a continuous transformation for processes with bounded sample paths. Finally
we recall the definition of the function p, pointwise defined for x > 0 as

p(x) := lim inf
N→∞

inf
S∈A(x/

√
N)

P(ŴN (Δ) > q1−α). (A.10)

We have to prove that p(x) > α for all x > 0, p(x) → 1 as x → ∞ and that p is
monotonically increasing.
We begin by considering the probability in (A.10) observing that, by definition,

WN (Δ) d= PN [1, S]
T (PN [·, S]) +

√
N(‖S − S0‖2 − Δ)

T (PN [·, S]) .

Using the almost sure convergence of PN to P0, we see that the right side equals

P0[1, S]
T (P0[·, S]) +

√
N(‖S − S0‖2 − Δ)

T (P0[·, S]) + Rem1(N,S), (A.11)

where Rem(N,S) is a sequence of random functions, that converges to 0 almost
surely, uniformly in S. Thus defining Rem2(N) := supS∈C(β,Γ,r) Rem1(N,S) we
still have Rem2(N) = o(1) a.s. Next we notice that we can rewrite the first two
terms in (A.11) as

P0[1, S]
T (P0[·, S]) +

√
N(‖S − S0‖2 − Δ)

T (P0[·, S])

= P0[1, S]/τ(S)
T (P0[·, S])/τ(S) +

√
N(‖S − S0‖2 − Δ)/τ(S)

T (P0[·, S])/τ(S)
d=W +

√
N(‖S − S0‖2 − Δ)/τ(S)

V
,

where τ2(S) is the long-run variance defined in (3.8), the random variable W
is defined as the fraction in (3.18) and V is defined as the denominator of W .
Importantly, this random variable follows a continuous distribution. We now see
that

P(ŴN (Δ) > q1−α) = P

(
W +

√
N(‖S − S0‖2 − Δ)/τ(S)

V
> q1−α

)
+ o(1),

(A.12)
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where the remainder o(1) is independent of S (because Rem2 is). Recalling the
definition of the class A(x/

√
N) in (3.20) we notice first, that

√
N(‖S−S0‖2 −

Δ) ≥ x and secondly that τ(S) ≤ C for some C > 0. This implies that

P

{
W +

√
N(‖S − S0‖2 − Δ)/τ(S)

V
> q1−α

}
≥ P

{
W + x

CV
> q1−α

}
> α,

where we have used that q1−α is the upper α-quantile of W and that V is
almost surely strictly positive. Together with (A.12), this directly implies that
p(x) > α for all x > 0 and that p(x) → 1 when x → ∞. Finally, the fact that p is
monotonically increasing follows directly from its definition in (A.10), together
with the fact that A(x/

√
N) ⊃ A(y/

√
N) (for all N) if x < y.

Appendix B: Details on the proof of Theorem 3.5

B.1. Bounds for R1

In the next Lemma B.1 we give orders of magnitude for ~UN [ξ]Γ̂†
k[ξ]~ and

~Γβ(Π̂k[ξ] − Πk)~L. Together with (A.3) (and the following part up to (A.4))
these imply that R1 satisfies the decay rate (A.4).

Lemma B.1. Under the conditions of Theorem 3.5, it holds that

i)
sup

ξ∈[1/2,1]
~Γβ(Π̂k[ξ] − Πk)~L = OP(1/

√
N).

ii) For any ε > 0

sup
ξ∈[1/2,1]

~UN [ξ]Γ̂†
k[ξ]~ = OP(kγ/2+1/2+ε/

√
N).

Proof.

i) We use (3.12) and the decomposition

Γβ(Π̂k[ξ] − Πk) = A1[ξ] + A2[ξ] + A3[ξ],

where

A1[ξ] :=
k∑

i=1
Γβ(êi[ξ] − ei) ⊗ ei (B.1)

A2[ξ] :=
k∑

i=1
Γβei ⊗ (êi[ξ] − ei) (B.2)

A3[ξ] :=
k∑

i=1
Γβ(êi[ξ] − ei) ⊗ (êi[ξ] − ei). (B.3)

We now show the desired rate for each term separately.
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A1) Recall the spectral decomposition of the covariance operator Γ =∑
q≥1 λqeq ⊗ eq, which yields

A1[ξ] =
k∑

i=1

∑
q≥1

λβ
q 〈êi[ξ] − ei, eq〉eq ⊗ ei.

Separating the terms where i = q from the ones where i �= q, we
decompose

A1[ξ] = A1,1[ξ] + A1,2[ξ],

with

A1,1[ξ] :=
k∑

i=1
λβ
i 〈êi[ξ] − ei, ei〉(ei ⊗ ei) (B.4)

=
k∑

i=1

−λβ
i

2 ‖êi[ξ] − ei‖2 (ei ⊗ ei),

A1,2[ξ] :=
k∑

i=1

∑
q �=i

λβ
q 〈êi[ξ] − ei, eq〉(eq ⊗ ei). (B.5)

Notice that we used identity 〈êi[ξ] − ei, ei〉 = −‖êi[ξ] − ei‖2
/2 in

(B.4) (see Appendix C, Lemma C.3). We bound the operator norm
of (B.4) and (B.5) individually.
A1,1: Recall that the operator norm of a diagonal operator equals

its largest, absolute diagonal entry, i.e.

~A1,1[ξ]~L = max
1≤i≤k

λβ
i

2 ‖êi[ξ] − ei‖2
. (B.6)

Further, using the inequality

‖êi[ξ] − ei‖ ≤ 2
√

2~Γ̂N [ξ] − ξΓ~2
L

ξ min(λi−1 − λi, λi − λi+1)
,

(see Lemma C.3 below) we have

max
1≤i≤k

λβ
i

2 ‖êi[ξ] − ei‖2 ≤ max
1≤i≤k

2
√

2λβ
i ~Γ̂N [ξ] − ξΓ~L

min(λi−1 − λi, λi − λi+1)
,

where we have used that 1/ξ ≤ 2. We now simplify the right side by
Lemma B.5 part iii) and the fact that ~Γ̂N [ξ] − ξΓ~L = OP(1/

√
N)

(Theorem A.2). Together these show that

sup
ξ∈[1/2,1]

~A1,1[ξ]~L = OP(1/N).
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A1,2: Since the norm inequality ~ · ~L ≤ ~ · ~ holds, it is enough to
show that

sup
ξ∈[1/2,1]

~A1,2[ξ]~ = OP(1/
√
N).

The identity (C.1) implies that, 〈êi[ξ]− ei, eq〉 = 〈Γ̂N [ξ]− ξΓ, êi[ξ]⊗
eq〉/(λ̂i[ξ]− ξλq). We can now upper bound the Hilbert–Schidt norm
of A1,2[ξ] as follows:

~A1,2[ξ]~ =

⎛
⎝ k∑

i=1

∑
q �=i

λ2β
q

〈Γ̂N [ξ] − ξΓ, êi[ξ] ⊗ eq〉2

(λ̂i[ξ] − ξλq)2

⎞
⎠

1/2

(B.7)

≤ max
i≤k,q �=i

λβ
q

|λ̂i[ξ] − ξλq|

⎛
⎝ k∑

i=1

∑
q �=i

〈Γ̂N [ξ] − ξΓ, êi[ξ] ⊗ eq〉2
⎞
⎠

1/2

≤ max
i≤k,q �=i

λβ
q

|λ̂i[ξ] − ξλq|
~Γ̂N [ξ] − ξΓ~.

Here we have used that {êi[ξ]}i∈N, {eq}q∈N are ONBs and thus their
products {êi[ξ] ⊗ eq}i,q∈N form an ONB of the Hilbert–Schmidt op-
erators (see Section 2.1). The fraction of the eigenvalues is uniformly
of order OP(1) by Lemma B.5, part ii) whereas ~Γ̂N [ξ] − ξΓ~ =
OP(1/

√
N) by Theorem A.2.

Combining both estimates gives the (uniform) order OP(1/
√
N) for

the term A1.

A2) As Γβei = λβ
i ei we can rewrite the operator A2[ξ] (defined in (B.2))

as follows

A2[ξ] =
k∑

i=1
λβ
i ei ⊗ (êi[ξ] − ei).

Then applying the Fourier expansion êi[ξ]−ei =
∑

q≥1〈êi[ξ]−ei, eq〉eq,
we can expand A2[ξ] into

k∑
i=1

∑
q≥1

λβ
i 〈êi[ξ] − ei, eq〉ei ⊗ eq

=
k∑

i=1

−λβ
i

2 ‖êi[ξ] − ei‖2
ei ⊗ ei +

k∑
i=1

∑
q �=i

λβ
i 〈êi[ξ] − ei, eq〉ei ⊗ eq.

In the second line we have split up the terms for q = i and q �= i
and have employed identity (C.2) for the first term. Proceeding as
for A1[ξ] now yields the (uniform) order of OP(1/

√
N) for the term

A2[ξ].
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A3) Finally, we turn to A3[ξ] in (B.3). Again we use the spectral decom-
position Γ =

∑
q≥1 λqeq ⊗ eq to rewrite this term as

A3[ξ] =
k∑

i=1

∑
q≥1

λβ
q 〈êi[ξ] − ei, eq〉eq ⊗ (êi[ξ] − ei).

Employing the Fourier expansion of êi[ξ] − ei for the right factor of
the outer product, gives the further expansion

k∑
i=1

∑
q≥1

∑
l≥1

λβ
q 〈êi[ξ] − ei, eq〉〈êi[ξ] − ei, el〉eq ⊗ el.

Though superficially more complicated, this expansion in terms of the
product basis {eq ⊗ el}q,l∈N (see Section 2.1) is handy, to decompose
A3[ξ] into more simple parts. More precisely, we set

A3[ξ] =
4∑

m=1
A3,m[ξ],

where

A3,1[ξ] :=
k∑

i=1
λβ
i 〈êi[ξ] − ei, ei〉2ei ⊗ ei,

A3,2[ξ] :=
k∑

i=1

∑
q �=i

λβ
q 〈êi[ξ] − ei, ei〉〈êi[ξ] − ei, eq〉eq ⊗ ei

A3,3[ξ] :=
k∑

i=1

∑
q �=i

λβ
i 〈êi[ξ] − ei, ei〉〈êi[ξ] − ei, eq〉ei ⊗ eq,

A3,4[ξ] :=
k∑

i=1

∑
l,q �=i

λβ
q 〈êi[ξ] − ei, eq〉〈êi[ξ] − ei, el〉eq ⊗ el

We can now prove the uniform rate of OP(1/
√
N) for each of these

terms individually.
A3,1: Identity (C.2) in Appendix C implies that 〈êi[ξ] − ei, ei〉2 =
‖êi[ξ] − ei‖4/4. Now notice that A3,1[ξ] is a positive definite, diago-
nal operator, such that its operator norm equals its largest diagonal
value, which implies

sup
ξ∈[1/2,1]

~A3,1[ξ]~L = sup
ξ∈[1/2,1]

max
i≤k

λβ
i

4 ‖êi[ξ] − ei‖4
.

As before (in the analysis of A1,1) we can use the inequality (C.3) and
Lemma B.5, to show that the right side is of order OP(k3(γ+1)/N2) =
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OP(1/
√
N).

We bound the Hilbert–Schmidt norm of the remaining terms (since
~ · ~L ≤ ~ · ~) starting with the two middle ones.
A3,2: We begin by noticing that

~A3,2[ξ]~2 =
k∑

i=1

∑
q �=i

λ2β
q

‖êi[ξ] − ei‖4

4 〈êi[ξ] − ei, eq〉2

≤4
k∑

i=1

∑
q �=i

λ2β
q 〈êi[ξ] − ei, eq〉2.

Here we have used that ‖êi[ξ]− ei‖ ≤ ‖êi[ξ]‖+ ‖ei‖ = 2. Proceeding
as for the term A1,2[ξ], we see that ~A3,2[ξ]~ is uniformly of order
OP(1/

√
N).

A3,3: The proof runs among exactly the same lines as for A3,2[ξ]:
We first observe that

~A3,3[ξ]~2 ≤ 4
k∑

i=1

∑
q �=i

λ2β
i 〈êi[ξ] − ei, eq〉2

and subsequently proceed as for A1,2[ξ] to show that ~A3,3[ξ]~ is
uniformly of order OP(1/

√
N).

A3,4: A standard calculation shows that the Hilbert–Schmidt norm
of A3,4[ξ] is bounded as follows

~A3,4[ξ]~ =
{ ∑

q,l=1

( k∑
i=1,l �=i �=q

λβ
q 〈êi[ξ] − ei, eq〉〈êi[ξ] − ei, el〉

)2
}1/2

≤
{( k∑

i=1

∑
q �=i

λ2β
q 〈êi[ξ] − ei, eq〉2

)( k∑
i=1

∑
l �=i

〈êi[ξ] − ei, el〉2
)}1/2

,

where we have applied Cauchy–Schwarz to the inner part. Next,
bounding each factor by the same arguments as in the discussion
of A1,2 (see (B.7)), we have

~A3,4[ξ]~ ≤
(

max
i≤k,q �=i

λβ
q

|λ̂i[ξ] − ξλq|
~Γ̂N [ξ] − Γ~

)
(B.8)

(
max

i≤k,l �=i

1
|λ̂i[ξ] − ξλl|

~Γ̂N [ξ] − Γ~

)
.

By Lemma B.5 part ii) it follows that

max
i≤k,q �=i

λβ
q

λ̂i[ξ] − ξλq

= OP(1)
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and by part i) of the same Lemma, that

max
i≤k,q �=i

1
λ̂i[ξ] − ξλq

= max
i≤k,q �=i

1
ξ(λi − λq)

OP(1) = OP(
√
N).

Here we have used Assumption 3.1(7) in the second step (as the
difference λi − λq is lower bounded by min(λi−1 − λi, λi − λi+1)).
Combining this with ~Γ̂N [ξ] − Γ~ = OP(1/

√
N) (Theorem A.2), it

follows from (B.8), that

sup
ξ∈[1/2,1]

~A3,4[ξ]~ = OP(1/
√
N).

ii) We now want to upper bound ~UN [ξ]Γ̂†
k[ξ]~. For this purpose, consider

the following decomposition:

~UN [ξ]Γ̂†
k[ξ]~ ≤ ~UN [ξ]Γ−ζ

~

(
~Γζ(Γ̂†

k[ξ] − Γ†
k/ξ)~L + ~ΓζΓ†

k/ξ~L
)
,

(B.9)
where ζ = 1/2− 1/(2γ)− ε and ε > 0 is a positive number specified later.
For the inequality, we have used Lemma C.1. We now upper bound the
factors on the right side of (B.9), beginning with the norm ~UN [ξ]Γ−ζ~,
of which we show:

sup
ξ∈[1/2,1]

~UN [ξ]Γ−ζ
~ = OP(kε/

√
N). (B.10)

For this purpose we employ a result from (Moricz et al., 1982) (Theo-
rem 3.1). The theorem is in its original form only formulated for real val-
ued random variables, but the proof can be carried over mutatis mutandis
to Hilbert space valued variables. It implies that the inequality

E sup
ξ∈[1/2,1]

~
√
NUN [ξ]Γ−ζ

~
2 ≤ C̃k2ε (B.11)

for some C̃, depending on ε, but independent of N , if

E

�

�

�

�

1√
N

H∑
i=L

εi ⊗XiΓ−ζ

�

�

�

�

2
≤ C

H − L

N
(B.12)

holds for all 1 ≤ L ≤ H ≤ N and some C, independent of L, H and N .
To verify (B.12) we observe that

E

�

�

�

�

1√
N

H∑
i=L

εi ⊗XiΓ−ζ

�

�

�

�

2

= 1
N

H∑
i,j=L

E〈εi ⊗XiΓ−ζ , εj ⊗XjΓ−ζ〉

=H − L

N

H−L−1∑
|h|=0

(
1 − |h|

H − L

)
E〈ε0 ⊗X0Γ−ζ , εh ⊗XhΓ−ζ〉
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≤H − L

N

∑
h∈Z

√
φ(h)E‖ε0 ⊗X0Γ−ζ‖2,

where we have used stationarity for the second equality and φ-mixing
for the final inequality (for the covariance inequality for mixing we re-
fer to (Dehling, 1983) equation (3.17) with s = r = 2). By Assump-
tion 3.1(3) the sum

∑
h∈Z

√
φ(h) is finite. Thus we only have to prove that

E‖ε0 ⊗X0Γ−ζ‖ < ∞ to get (B.12). By the Cauchy–Schwarz inequality it
suffices to show E‖ε0‖4,E‖X0Γ−ζ‖4 < ∞ separately, where E‖ε0‖4 < ∞
by assumption. For the remaining term note that

E‖X0Γ−ζ‖4 = E

∥∥∥∥∥
∑
n∈N

λ−ζ
n 〈X0, en〉en

∥∥∥∥∥
4

= E

(∑
n∈N

λ−2ζ
n 〈X0, en〉2

)2

=
∑

m,n∈N

λ−2ζ
n λ−2ζ

m E〈X0, en〉2〈X0, em〉2

≤
∑

m,n∈N

λ−2ζ
n λ−2ζ

m

√
E〈X0, en〉4E〈X0, em〉4

≤
∑

m,n∈N

Cλ−2ζ
n λ−2ζ

m E〈X0, en〉2E〈X0, em〉2

=C

(∑
n∈N

λ−2ζ+1
n

)2

≤ C

(∑
n∈N

nγ(2ζ−1)

)2

.

The last sum is finite, as by choice of ζ = 1/2 − 1/(2γ) − ε we have
γ(2ζ − 1) < −1. In the above calculations we have used the Cauchy–
Schwarz inequality in the first, Assumption 3.1(4) in the second and As-
sumption 3.1(6) in the third inequality. We have hence shown (B.12),
which -as we have argued- implies (B.11), which again implies (B.10).
We now bound the second factor in (B.9) analyzing the term ~Γζ(Γ̂†

k[ξ]−
Γ†
k/ξ)~L. Notice that

Γ̂†
k[ξ] − Γ†

k/ξ =
k∑

i=1

êi ⊗ êi

λ̂i[ξ]
−

k∑
i=1

ei ⊗ ei
ξλi

=
4∑

j=1
Bj [ξ], (B.13)

where

B1[ξ] :=
k∑

i=1
(êi[ξ] − ei) ⊗

êi[ξ] − ei

λ̂i[ξ]

B2[ξ] :=
k∑

i=1
(êi[ξ] − ei) ⊗

ei

λ̂i[ξ]

B3[ξ] :=
k∑

i=1
ei ⊗

êi[ξ] − ei

λ̂i[ξ]
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B4[ξ] :=
k∑

i=1
ei ⊗ ei

ξλi − λ̂i[ξ]
λ̂i[ξ]λiξ

In the next step, we have to show that

sup
ξ∈[1/2,1]

~ΓζBj [ξ]~L = OP(k(γ+1)/2+γε) (B.14)

for each 1 ≤ j ≤ 4. For the sake of brevity, we only present the proofs for
B2[ξ] and B4[ξ], as B1[ξ] and B3[ξ] can be treated by similar techniques.
B2: Using a Fourier expansion of the difference êi[ξ] − ei gives

Γζ(êi[ξ] − ei) =
∑
q≥1

〈êi[ξ] − ei, eq〉Γζeq =
∑
q≥1

λζ
q〈êi[ξ] − ei, eq〉eq.

Separating the terms where i = q and i �= q yields

ΓζB2[ξ] = B2,1[ξ] + B2,2[ξ],

where

B2,1[ξ] :=
k∑

i=1

λζ
i

λ̂i[ξ]
〈êi[ξ] − ei, ei〉ei ⊗ ei

B2,2[ξ] :=
k∑

i=1

∑
q �=i

λζ
q

λ̂i[ξ]
〈êi[ξ] − ei, eq〉eq ⊗ ei. (B.15)

Now, proceeding as for A1[ξ] we have

~B2,1[ξ]~L =
�

�

�

k∑
i=1

λζ
i

λ̂i[ξ]
〈êi[ξ] − ei, ei〉ei ⊗ ei

�

�

�

L

≤ max
1≤i≤k

λζ
i

2̂λi[ξ]
‖êi[ξ] − ei‖2 ≤ 2 max

1≤i≤k

λζ
i

λ̂i[ξ]
~Γ̂N [ξ] − ξΓ~2

L
min(λi−1 − λi, λi − λi+1)2

(where we have used the identity (C.2) in the first and the bound (C.3)
in the second inequality). By part i) of Lemma B.5 we see that

max
i≤k

λζ
i

min(λi−1 − λi, λi − λi+1)22̂λi[ξ]
= OP

(
k2(γ+1)+γ(1−ζ)

)
.

Here, we have replaced λ̂i[ξ] by ξλi in the denominator of the Lemma and
then cancelled λζ

i . Recalling that ~Γ̂N [ξ] − ξΓ~2
L = OP(1/N) and using

Assumption 3.1(6) shows that

sup
ξ∈[1/2,1]

~B2,1[ξ]~L = OP

(
k2(γ+1)+γ(1−ζ)

N

)
= OP

(
kγ+1+γ(1−ζ)

√
N

)
.
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Next we consider B2,2[ξ] (defined in (B.15)). By arguments similar to those
used in the discussion of the term A1,2 (see (B.7)) we have

~B2,2[ξ]~ ≤ max
i≤k,q �=i

λζ
q

|λ̂i[ξ] − ξλq| λ̂i[ξ]
~Γ̂N [ξ] − ξΓ~.

Again, part i) of Lemma B.5 can be used to replace the empirical eigen-
value by its population counterpart, which (by Assumption 3.1(6)) shows
that

max
i≤k,q �=i

λζ
q

|λ̂i[ξ] − ξλq| λ̂i[ξ]
= OP

(
k(γ+1)+γ(1−ζ)

)
Thus

sup
ξ∈[1/2,1]

~B2,2[ξ]~ = OP

(
k(γ+1)+γ(1−ζ)

√
N

)
.

Putting the estimates for both terms together we see that ~B2[ξ]~L is
uniformly of order

OP

(
k(γ+1)+γ(1−ζ)

√
N

)
= OP

(
k(γ+1)/2+γε

)
, (B.16)

where the last equality holds by Assumption 3.1(7) and our choice ζ =
1/2 − 1/(2γ) − ε.
B4: We can upper bound the operator norm of ΓζB4[ξ] as follows:

~ΓζB4[ξ]~L =
�

�

�

k∑
i=1

ei ⊗ ei
ξλi − λ̂i[ξ]
λ̂i[ξ]λ1−ζ

i ξ

�

�

�

L
≤ max

1≤i≤k

∣∣∣ξλi − λ̂i[ξ]
λ̂i[ξ]λ1−ζ

i ξ

∣∣∣.
Note that

sup
ξ∈[1/2,1]

|ξλi − λ̂i[ξ]| ≤ sup
ξ∈[1/2,1]

~Γ̂N [ξ] − ξΓ~L = OP(1/
√
N),

which gives a bound for the numerator. For the denominator we can re-
place λ̂i[ξ] by the original ξλi (part i) of Lemma B.5), which gives a rate

1
λ̂i[ξ]λ1−ζ

i ξ
= OP

(
1

λ2−ζ
i

)
= OP

(
kγ(2−ζ)).

Combining these estimates we see that

sup
ξ∈[1/2,1]

~ΓζB4[ξ]~L = OP(kγ/2−1/2+γε) = OP(kγ/2+1/2+γε) ,

where we have used the definition ζ = 1/2−1/(2γ)− ε as well as Assump-
tion 3.1(7). We have now shown that indeed (B.14) holds and therefore
(see (B.13))

sup
ξ∈[1/2,1]

~Γζ(Γ̂†
k[ξ] − Γ†

k/ξ)~L = OP

(
kγ/2+1/2+γε

)
. (B.17)
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Finally, we derive an upper bound in the second term on the right of (B.9),
noting that

ΓζΓ†
k/ξ =

∑
i≤k

λζ
i

ξλi
ei ⊗ ei,

which is positive definite and diagonal. Therefore, we obtain for the oper-
ator norm

sup
ξ∈[1/2,1]

~ΓζΓ†
k/ξ~L = sup

ξ∈[1/2,1]
max
1≤i≤k

λζ
i

ξλi
= O(kγ(1−ζ)) = O(k(γ+1)/2+γε).

(B.18)
Now combing equations (B.10), (B.17) and (B.18) we find, that for any
ε > 0

~UN [ξ]Γ̂†
k[ξ]~ =OP

(
kε√
N

)(
OP

(
k(γ+1)/2+γε

)
+ OP

(
k(γ+1)/2+γε

))
=OP(k(γ+1)/2+(1+γ)ε/

√
N).

Finally, replacing ε by ε/(1 + γ) proves the assertion ii) of Lemma (A.6).

B.2. Linearization of the test statistic

In the proof of Theorem 3.5 in Section A.1 we have used the stochastic lineariza-
tion T [ξ] = T ′[ξ] + oP(1), where the objects T [ξ] and T ′[ξ] are defined in (A.5)
and (A.6) respectively (T ′ is the linearization of T ). That this replacement is
valid is a direct consequence of the subsequent Lemma B.3. Before we state
our Lemma, we define the linearization function L, which acts on the space of
sequential Hilbert–Schmidt operators �∞(S(H1, H1)) (see Definition A.1). For
convenience, we also define the map L̃, which is used to state the long-run
variance in Theorem 4.2.

Definition B.2. Let Li be the linear functional acting on �∞(S(H1, H1)) de-
fined pointwise in F [ξ] as

Li(F [ξ]) :=
∑
q �=i

λβ
qλ

β
i

λi − λq
〈F [ξ], ei ⊗ eq〉(eq ⊗ ei).

Therewith we define L(F [ξ]) :=
∑

i≥1 Li(F [ξ])+Li(F [ξ])∗. Moreover, we define
the map L̃ as L̃(F [ξ]) := (Γ−1/2 ⊗ Γ−1/2)L(F [ξ]).

Lemma B.3. Under the assumptions of Theorem 3.5 it holds that

i) supξ∈[1/2,1] ~ξΓβ(Π̂k[ξ] − Πk)Γβ − L(Γ̂N [ξ] − ξΓ)~L = oP(1/
√
N)

ii) supξ∈[1/2,1] ~UN [ξ][ξΓ̂†
k[ξ]Γβ − Γβ−1]~ = oP(1/

√
N).
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Proof. We first prove i): Plugging in the definition of the projections gives the
following expansion:

Γβ(Π̂k[ξ] − Πk)Γβ =
k∑

i=1
Γβ {(êi[ξ] ⊗ êi[ξ]) − (ei ⊗ ei)}Γβ

=D1[ξ] + D2[ξ] + D3[ξ],

where

D1[ξ] :=
k∑

i=1
Γβ((êi[ξ] − ei) ⊗ ei)Γβ

D2[ξ] :=
k∑

i=1
Γβ(ei ⊗ (êi[ξ] − ei))Γβ

D3[ξ] :=
k∑

i=1
Γβ((êi[ξ] − ei) ⊗ (êi[ξ] − ei))Γβ .

The proof now consists of two steps: In the first step we show that

ξD1[ξ] =
∑
i≥1

Li(Γ̂N [ξ] − ξΓ). (B.19)

As D2[ξ] = D1[ξ]∗, this implies ξ(D1[ξ]+D2[ξ]) = L(Γ̂N [ξ]− ξΓ). In the second
step, we establish that D3[ξ] is uniformly of order oP(1).

Step 1:
Using the diagonal representation Γβ =

∑
q≥1 λ

β
q eq ⊗ eq and the identity

Γβei = λβ
i ei, we can rewrite D1[ξ] as follows:

D1[ξ] =
k∑

i=1

∑
q �=i

λβ
qλ

β
i 〈êi[ξ] − ei, eq〉(eq ⊗ ei) +

k∑
i=1

λ2β
i 〈êi[ξ] − ei, ei〉(ei ⊗ ei).

We denote the terms on the right by D1,1[ξ], D1,2[ξ]. We first show that D1,2[ξ]
is negligible. For this purpose we use (C.2), to see that

~D1,2[ξ]~L =
�

�

�

k∑
i=1

−λ2β
i

2 ‖êi[ξ] − ei‖2 (ei ⊗ ei)
�

�

�

L
≤ max

1≤i≤k

λ2β
i

2 ‖êi[ξ] − ei‖2
.

The maximum is smaller than a multiple of the right side of (B.6), which is
uniformly of order oP(1/

√
N).

Next we turn our attention to D1,1[ξ]. Applying identity (C.1), D1,1[ξ] can
be rewritten as

k∑
i=1

∑
q �=i

λβ
qλ

β
i

〈Γ̂N [ξ] − ξΓ, êi[ξ] ⊗ eq〉
(λ̂i[ξ] − ξλq)

(eq ⊗ ei).
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We can now show two things: Firstly that in the above representation we can
replace the empirical eigenfunction êi[ξ] and eigenvalue λ̂i[ξ] by their respective
population counterparts ei and ξλi. Secondly, we can let the outer sum over i
run from 1 to ∞, all of this while incurring only an error of size oP(1/

√
N).

More precisely we get with

D̃1,1[ξ] =
k∑

i=1

∑
q �=i

λβ
qλ

β
i

〈Γ̂N [ξ] − ξΓ, ei ⊗ eq〉
ξ(λi − λq)

(eq ⊗ ei)

that
sup

ξ∈[1/2,1]
~D1,1[ξ] − D̃1,1[ξ]~L = oP(1/

√
N). (B.20)

The proof of this fact requires the estimation of some further remainder terms,
which we defer to the below Lemma B.4. We have now established that D̃1,1[ξ] =
D1[ξ] + oP(1/

√
N) and since ξD̃1,1[ξ] =

∑
i≥1 Li(Γ̂N [ξ] − ξΓ) we have shown

(B.19), which concludes the first step of this proof.

Step 2:
Next, we show that ~D3[ξ]~ is uniformly of order oP(1/

√
N). Using the

Fourier expansion êi[ξ] − ei =
∑

q≥1〈êi[ξ] − ei, eq〉eq two times, we can rewrite
D3[ξ] as follows:

D3[ξ] =
k∑

i=1

∑
r,q≥1

〈êi[ξ] − ei, eq〉〈êi[ξ] − ei, er〉Γβ(eq ⊗ er)Γβ

=
k∑

i=1

∑
r,q≥1

λβ
qλ

β
r 〈êi[ξ] − ei, eq〉〈êi[ξ] − ei, er〉(eq ⊗ er)

In the second equality we have used the fact that Γβeq = λβ
q eq. Consequently

~D3[ξ]~ =
{ ∑

r,q≥1

( k∑
i=1

λβ
qλ

β
r 〈eq, êi[ξ] − ei〉〈êi[ξ] − ei, er〉

)2
}1/2

.

By applying the Cauchy–Schwarz inequality to the squared sum, we get

~D3[ξ]~ ≤
∑
r≥1

k∑
i=1

λ2β
r 〈êi[ξ] − ei, er〉2.

The proof that
sup

ξ∈[1/2,1]
~D3[ξ]~ = oP(1/

√
N)

is now conducted by similar techniques as for the term A1 in the proof of
Lemma B.1 and therefore omitted.
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Finally, we turn to the proof of part ii) of this Lemma. Since this proof is
technically very similar to part ii) of Lemma B.1 we only sketch the idea: We
begin by the simple upper bound

~UN [ξ][ξΓ̂†
k[ξ]Γ

β − Γβ−1]~ ≤ ~UN [ξ]Γ−ζ
~~Γζ [ξΓ̂†

k[ξ]Γ
β − Γβ−1]~L.

Here ζ = 1/2 − 1/(2γ) − ε and ε > 0 is a positive number, which can be
chosen arbitrarily small. By (B.10) we know that uniformly ~UN [ξ]Γ−ζ~ =
OP(kε/

√
N). Thus it suffices to show that the factor ~Γζ [ξΓ̂†

k[ξ]Γβ −Γβ−1/ξ]~L
decays at some arbitrarily small, polynomial speed in N , to get the assertion.
We upper bound it by the sum

~Γζ [ξΓ̂†
k[ξ] − Γ†

k]Γ
β ]~L + ~Γβ−1+ζΠk − Γβ−1+ζ

~L =: F1[ξ] + F2,

where F1[ξ], F2 are defined in the obvious way, and analyse the terms separately.
For F1[ξ], we use similar techniques as in the proof of Lemma B.1 (after equa-
tion (B.13)). Notice that we can indeed show convergence to 0 as additional
smoothing is applied (by Γβ from the right). The proof for F2 is rather simple:
Γβ−1+ζ − Γβ−1+ζΠk is symmetric, positive definite and can be expressed (by
the spectral theorem in Section 2.1) as

∑
q>k λ

β−1+ζ
q eq ⊗ eq. Thus

~Γβ−1+ζΠk − Γβ−1+ζ
~L = λβ−1+ζ

k = O(k−γ(β−1+ζ)).

This concludes the proof.

In the proof of Lemma B.3, we have used the identity (B.20) for the final step
in the linearization. In the Lemma below we give three upper bounds, which
combined directly imply (B.20).

Lemma B.4. Under the assumptions of Theorem 3.5 the following terms are
of order oP(1/

√
N):

i)

sup
ξ∈[1/2,1]

�

�

�

∑
i>k

Li(Γ̂N [ξ] − ξΓ)
�

�

�

ii)

sup
ξ∈[1/2,1]

�

�

�

k∑
i=1

∑
q �=i

λβ
qλ

β
i

〈Γ̂N [ξ] − ξΓ, (êi[ξ] − ei) ⊗ eq〉
(λ̂i[ξ] − ξλq)

(eq ⊗ ei)
�

�

�

iii)

sup
ξ∈[1/2,1]

�

�

�

k∑
i=1

∑
q �=i

λβ
qλ

β
i

〈Γ̂N [ξ] − ξΓ, ei ⊗ eq〉(ξλi − λ̂i[ξ])
(λ̂i[ξ] − ξλq)(ξ(λi − λq))

(eq ⊗ ei)
�

�

�
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Proof.

i) It follows by standard calculations, that

sup
ξ∈[1/2,1]

~
∑
i>k

Li(Γ̂N [ξ] − ξΓ)~ ≤ CN sup
ξ∈[1/2,1]

~Γ̂N [ξ] − ξΓ~,

with (recall that k := k(N))

CN := max
i>k,q �=i

λβ
i λ

β
q

(λi − λq)
.

Lemma B.5 implies that

max
q �=i

λβ
q

|λi − λq|
= O(1).

Hence CN = o(1), as N → ∞. Since ~Γ̂N [ξ]−ξΓ~ = OP(1/
√
N) uniformly

(in ξ) (see Theorem A.2), the assertion follows.
ii) The squared Hilbert–Schmidt norm of the term in part ii) for some fixed

ξ equals
k∑

i=1

∑
q �=i

λ2β
q λ2β

i

〈Γ̂N [ξ] − ξΓ, (êi[ξ] − ei) ⊗ eq〉2

(λ̂i[ξ] − ξλq)2
(B.21)

and can be upper bounded by

max
i≤k,q �=i

λ2β
q

(λ̂i[ξ] − ξλq)2

k∑
i=1

λ2β
i

∑
q �=i

〈Γ̂N [ξ] − ξΓ, (êi[ξ] − ei) ⊗ eq〉2

≤OP(1)
k∑

i=1
λ2β
i ‖(Γ̂N [ξ] − ξΓ)(êi[ξ] − ei)‖2,

where we have used Lemma B.5, part ii). We further bound the right
factor

k∑
i=1

λ2β
i ‖(Γ̂N [ξ] − ξΓ)(êi[ξ] − ei)‖2

≤C

k∑
i=1

λ2β
i ~Γ̂N [ξ] − ξΓ~4

L
ξ2 min(λi−1 − λi, λi − λi+1)2

≤Ck~Γ̂N [ξ] − ξΓ~
4
L max

1≤i≤k

λ2β
i

min(λi−1 − λi, λi − λi+1)2

Here we have used inequality (C.3) in the first step and the fact that
1/ξ ≤ 2 in the second. Recall that ~Γ̂N [ξ] − ξΓ~4

L is uniformly of order
OP(1/N2) (see Theorem A.2) and that the ratio of eigenvalues on the right
is bounded by part iii) of Lemma B.5. Therefore, the term in (B.21) is of
order OP(k/N2) = oP(N−3/2) (by Assumption 3.1(7)).
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iii) With similar arguments as in ii), one sees that the squared Hilbert–
Schmidt norm of the term in iii) is bounded by

OP(1)
k∑

i=1
~Γ̂N [ξ] − ξΓ~

2|λ̂i[ξ] − ξλi|2 = OP(k/N2),

which is oP(N−3/2) and thus yields the desired result.

B.3. Convergence results for empirical eigenvalues

In this section, we collect a few results on the convergence speed of the empirical
eigenvalues to their population counterparts, which are used at several places
in this paper.

Lemma B.5. Under the assumptions of Theorem 3.5, it holds that

i)
sup

ξ∈[1/2,1]
max
1≤i≤k

|λ̂i[ξ] − ξλi| = oP(k−γ−1)

ii)

max
1≤i≤k

max
q �=i

∣∣∣∣∣ λβ
q

λ̂i[ξ] − ξλq

∣∣∣∣∣ = OP(1)

iii)

sup
ξ∈[1/2,1]

max
1≤i≤k

max
q �=i

∣∣∣∣∣ λβ
q

λi − λq

∣∣∣∣∣ = O(1)

Proof. The proof of i) follows by an application of part iv) of Lemma C.3
below, together with Theorem A.2: According to the former |λ̂i[ξ] − λiξ| ≤
~Γ̂N [ξ]−ξΓ~L and according to the latter ~Γ̂N [ξ]−ξΓ~L is uniformly (in ξ) of or-
der OP(1/

√
N). Recalling Assumption 3.1(7) we note that 1/

√
N = oP(k−γ−1),

which concludes the proof.

For ii) we first notice that according to i) we can replace λ̂i[ξ] by is pop-
ulation counterpart ξλi. Since 1/ξ is bounded (by 2), the proof of ii) can be
reduced to the proof of iii).

We now show iii): Let us define the function

f(i, q) :=
λβ
q

|λi − λq|
.

We can make the maximum in iii) larger by maximizing f over all {(i, q) ∈ N
2 :

i �= q}. Now the proof works by contradiction: Suppose there was a sequence of
{(i∗n, q∗n)}n∈N, such that f(i∗n, q∗n) → ∞. For each tuple, the value of the function
is finite and thus i∗n → ∞ or q∗n → ∞. Now there are three possibilities: |i∗n/q∗n|
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is bounded, goes to 0 or goes to ∞. The case |i∗n/q∗n| → 0 can be excluded, as for
any fixed i, the function q �→ f(i, q) is monotonically decreasing in q for q > i.
Thus, if there was a sequence (i∗n, q∗n) with f(i∗n, q∗n) → ∞ and |i∗n/q∗n| → 0 it
also holds true for (i∗n, i∗n + 1) that f(i∗n, i∗n + 1) → ∞, which brings us to the
next case of bounded |i∗n/q∗n|: If |i∗n/q∗n| was bounded, it follows directly that

λβ
q∗n

λi∗n − λq∗n

= O
(

(q∗n)−βγ

(q∗n)−γ−1

)
,

which by choice of β > 1+1/γ is asymptotically vanishing. Finally, we consider
the case where |i∗n/q∗n| → ∞. In this situation

λβ
q∗n

λi∗n − λq∗n

= O
(
λβ
q∗n

λq∗n

)
,

which is asymptotically vanishing. As a consequence, we conclude that

max
(i,q)∈N2:i �=q

f(i, q) < ∞,

proving the assertion.

Appendix C: Miscellaneous

C.1. Operatortheoretic (in)equalities

We begin with an observation concerning bounds on products of operators.

Lemma C.1. Suppose three Hilbert spaces H1,H2,H3 are given. Let A ∈
S(H1,H2), B ∈ L(H2,H3) and B′ ∈ S(H2,H3), A′ ∈ L(H1,H2). Then, it
holds that

~BA~ ≤ ‖B‖L~A~ and ~B′A′
~ ≤ ~B′

~~A′
~L.

In the proof, we use the notion of trace for linear operators, which is well-
defined for trace class operators (a class of operators, which in particular includes
products of Hilbert–Schmidt operators). For a precise definition of the trace Tr,
we refer to Section 13.5 in (Horváth and Kokoszka, 2012).

Proof. We only prove the first inequality, as the proof for the second is identical.
For A,B it holds that

~BA~
2 = Tr[B∗BAA∗] ≤ Tr[B∗B Id ~AA∗

~L]
≤Tr[B∗B]~AA∗

~L = ~B~
2
~A~

2
L.

Here we have used that B∗B,AA∗ are positive semi-definite and symmetric.
Furthermore, for the first inequality we have used that for symmetric, positive
semi-definite operators O1, O2, Õ2 the inequality Tr[O1O2] ≤ Tr[O1Õ2] holds, if
Õ2−O2 is positive semi-definite (Loewner order). This result extends directly to
Hilbert spaces from the finite dimensional case and is therefore not proven.
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Next, we want to discuss in which sense the eigensystems of two similar
operators are also similar. For this purpose, we have to determine how we deal
with the non-uniqueness of eigenfunctions:

Remark C.2. Let A,B be two compact, self-adjoint, positive semi-definite
operators with eigenvalues (in non-increasing order) and corresponding eigen-
functions αj , aj and βk, bk respectively. The eigenfunctions are only determined
up to sign, i.e. both ai and −ai are eigenfunctions of A, belonging to the i-th
eigenvalue αi. However, in order to make a comparison of, say the i-th eigen-
functions ai of A and bi of B meaningful, we have to consider the minimum
min(‖ai − bi‖, ‖ai + bi‖) (otherwise even “the same” eigenfunctions with op-
posing signs would result in a difference ‖ai − bi‖ =

√
2). For the sake of no-

tational parsimony we always assume that, comparing two eigenfunctions of
different operators, the functions have the same sign, in the sense that already
‖ai − bi‖ = min(‖ai − bi‖, ‖ai + bi‖).

In the next lemma, we provide some identities for eigenfunctions and eigen-
values of self-adjoint operators.

Lemma C.3. Let A,B be two compact, self-adjoint, positive semi-definite op-
erators with (in non-increasing order) and corresponding eigenfunctions αj , aj
and βk, bk respectively. Furthermore, suppose that all eigenvalues of A are dis-
tinct, i.e. α1 > α2 > · · · . Then it holds that

i) for j �= k and αj − βk �= 0:

〈aj − bj , bk〉 = 〈A−B, aj ⊗ bk〉
αj − βk

, (C.1)

ii) for any pair of normalized vectors v, w:

〈w, v − w〉 = −1
2‖v − w‖2, (C.2)

iii) for all i ≥ 1:

‖bi − ai‖ ≤ 2
√

2 ‖A−B‖L
min{αi−1 − αi, αi − αi+1}

. (C.3)

iv) for all i ≥ 1:
‖βi − αi‖ ≤ ~B −A~L. (C.4)

Proof. Identities i) and ii) are straightforward adaptions of Lemma 1 in
(Kokoszka and Reimherr, 2013) and for iii) and iv) we refer to (Horváth
and Kokoszka, 2012) (Lemmas 2.2 and 2.3).
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