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mean, a quantile or a risk measure, the ideal point forecast is the respective
functional applied to the conditional distribution. This paper provides a
theoretical justification why this ideal forecast is actually a forecast, that
is, an F-measurable random variable. To that end, the appropriate notion
of measurability of T is clarified and this measurability is established for
a large class of practically relevant functionals, including elicitable ones.
More generally, the measurability of T implies the measurability of any
point forecast which arises by applying T to a probabilistic forecast. Similar
measurability results are established for proper scoring rules, the main tool
to evaluate the predictive accuracy of probabilistic forecasts.
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1. Introduction

A typical aspect of decision making, be it in business, politics, or private life, is
that decisions should account for unknown or future events. Hence, these deci-
sions commonly base on predictions or forecasts for these events. Fortunately,
one regularly has at least partial information about the events of interest, such
as regressors or feature variables in a cross-sectional setting or past observations
of the event in a time series framework, which help to improve the predictions.
Expressed in terms of mathematical statistics, the event of interest is a random
element Y on a probability space (Ω,A,P) which often attains values in the real
numbers, and the given information is modelled as a sub-σ-algebra F ⊆ A.

It has been argued in the literature that probabilistic forecasts, taking the
form of probability measures, distributions, or densities, are most informative
and should be preferred, since they directly express the uncertainty about the fu-
ture event (Dawid, 1984, Gneiting, Balabdaoui and Raftery, 2007). The ideal or
truthful probabilistic forecast of Y based on F is the conditional distribution of
Y given F , denoted by PY |F . “However, practical situations may require single-
valued point forecasts, for reasons of decision making, reporting requirements,
or communications, among others” (Gneiting and Katzfuss, 2014, pp. 134–135).
In such situations, one summarises the uncertainty in a typically real-valued
functional T of the distribution of Y such as the mean, a quantile, an expectile,
or a law-determined risk measure such as Expected Shortfall. Then, the ideal
or truthful point forecast for Y based on F is the functional T applied to the
conditional distribution of Y given F , that is, T (Y |F) := T (PY |F ) (Nolde and
Ziegel, 2017). This concatenation also turns out to be the main idea in building
dynamic or conditional risk measures (Weber, 2006).

Ideal forecasts based on F need to be F-measurable random elements, or ran-
dom variables, for the case of point forecasts. On the one hand, this ensures that
they actually only exploit the information in F and no additional sources. From
a more technical perspective, on the other hand, measurability ensures that one
can assign probabilities to events induced by forecasts and, more generally, that
forecasts are amenable to statistical analysis.

This paper studies when an ideal point forecast based on F , or more gener-
ally, a forecast which arises by applying the functional to a probabilistic forecast
based on F , is indeed F-measurable. To this end, the appropriate notion of mea-
surability of the target functional T , viewed as a map from a class of probability
measures to the reals, is clarified. Moreover, we establish corresponding mea-
surability results for many practically relevant examples, including the class
of elicitable ones, which can be written as the minimiser of an expected loss
function (Theorem 9). Our results provide a formal justification for the F-
measurability of ideal F-based point forecasts which seems to have been taken
for granted in large parts of the forecast evaluation literature, sometimes tac-
itly, sometimes with somewhat incomplete arguments, or which has been es-
tablished under restrictive assumptions (Weber, 2006, Holzmann and Eulert,
2014, Nolde and Ziegel, 2017, Pohle, 2020, Fissler and Hoga, 2021, Gneiting and
Resin, 2021, Fissler et al., 2021, Hoga and Dimitriadis, 2022). From a regression
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or machine learning perspective where Y is observed together with explana-
tory variables X, our results justify the measurability of the oracle regression
function x �→ T (Y |X = x) beyond the classical situation of mean regression
to quantile regression (Koenker, 2005), expectile regression (Newey and Pow-
ell, 1987) or Expected Shortfall regression (Dimitriadis and Bayer, 2019). In
the field of sensitivity analysis, measuring the information content with score
improvements also calls for the measurability results established in our paper
(Borgonovo et al., 2021, Fissler and Pesenti, 2022).

In Section 2, we provide the formal definitions and concepts of the article.
The appropriate concept of measurability of functionals is discussed in Section 3,
which leads to the F-measurability of the ideal F-based forecast. We show mea-
surability of important functionals such as moments or weighted quantiles and
discuss the connection to continuity and robustness results discussed in statistics
and finance. Measurability of elicitable functionals is discussed and established
in Section 4. Finally, we provide sufficient conditions for the measurability of
scoring rules in Section 5. They are used to measure the predictive accuracy
of probabilistic forecasts, and map a pair of a predictive distribution P and an
observation y to the real number S(P, y). Hence, technically speaking, for fixed
y they constitute a real-valued statistical functional, which aligns them with
the main topic of this paper. Regarding the application, the measurability of
scoring rules formally justifies common statistical practices such as computing
Diebold–Mariano tests which test predictive dominance (Diebold and Mariano,
1995).

2. Statistical functionals and forecasting

Real-valued statistical functionals map probability measures on the Borel-σ-
algebra of events of the observation domain to real numbers. More formally,
the observation domain O ⊆ Rd is a Borel-measurable subset of a Euclidean
space Rd, where we will mainly consider d = 1, with Borel-σ-algebra O of O.
A statistical functional on some family P of (Borel-)probability measures on
(O,O) is a map T : P → R from P to the real numbers.

A prediction space setting (Gneiting and Ranjan, 2013) consists of a proba-
bility space (Ω,A,P) together with a random variable Y : Ω → O, the response
variable modelling the quantity of interest, and a sub-σ-algebra F of A, the in-
formation set on which the forecast is based. F can be generated, for example,
by observable explanatory variables, often called, regressors or features, which
can also contain past observations of Y in a time series setting. Then, the con-
ditional distribution PY |F of Y given F is called the ideal probabilistic forecast
(Gneiting and Ranjan, 2013, Definition 2.2). If a real-valued quantity shall be
issued as a forecast, it is essential to specify which statistical functional T of the
conditional distribution PY |F is the target.

In analogy, if one is interested in point forecasts with target functional T ,
we call T (Y |F) := T

(
PY |F

)
the ideal point forecast. For T (Y |F) to be defined,

we first require that conditional distributions in PY |F are contained in P, the
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domain of T . Second, we require the F-measurability of the forecast T (Y |F).
Our aim is to provide conditions on T which guarantee that, when well-defined,
T (Y |F) is automatically a forecast, that is, F-measurable, and to show that
these conditions are satisfied by essentially all statistical functionals which arise
in applications.

To proceed, let us recall the formal definition of the conditional distribution
PY |F . A Markov kernel from (Ω,F) to (O,O) is a map κ : Ω ×O → [0, 1] such
that

1. for each ω ∈ Ω, the map B �→ κ(ω,B), B ∈ O, is a probability measure
on (O,O),

2. for each B ∈ O, the map ω �→ κ(ω,B), ω ∈ Ω, is F −B([0, 1])-measurable.

A regular version of the conditional probability of Y given F , denoted by
PY |F , is a Markov kernel from (Ω,F) to (O,O) such that for each F ∈ F and
B ∈ O,

P
(
F ∩ {Y ∈ B}

)
=

∫
F

PY |F (ω,B) dP(ω).

Recall that PY |F is unique only up to almost sure equality.
When forecasting the functional T for Y based on F , we aim at the map

ω �→ T
(
PY |F (ω, ·)

)
=: T (Y |F)(ω), ω ∈ Ω, (1)

and we shall assume that the version PY |F can be and is chosen such that
PY |F (ω, ·) ∈ P for all ω ∈ Ω. If κ is a (not necessarily ideal) probabilistic
forecast based on F , that is, a Markov kernel from (Ω,F) to (O,O) for which
κ(ω, ·) ∈ P for ω ∈ Ω, we may form the resulting point forecast by

ω �→ T
(
κ(ω, ·)

)
, ω ∈ Ω. (2)

To show that T (Y |F) or, more generally, that T
(
κ(·, ·)

)
is a forecast, that is,

F-measurable, it suffices to find a σ-algebra A(P) such that (a) PY |F or κ,
considered as a map from Ω to P, is F − A(P)-measurable, and (b) to show
that T : P → R is A(P)−B(R)-measurable, where B(R) is the Borel-σ-algebra
of R.

3. Measurability of functionals

We shall choose A(P) as the projection σ-algebra. More formally, let Q be the
family of all probability measures P on (O,O), and for each B ∈ O, consider
the evaluation map

πB(P) = P(B), P ∈ Q.

Then, on Q we can consider the smallest σ-algebra A(Q) which makes all eval-
uation maps A(Q) − B([0, 1])-measurable. For a subset P ⊆ Q we denote by
A(P) = {P ∩ A | A ∈ A(Q)} the trace σ-algebra. Note that A(P) is also the
σ-algebra generated by the restrictions of the evaluation maps πB to P, which
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follows from the simple fact that for any C ∈ B([0, 1]) and any B ∈ O we have
π−1
B|P(C) = P ∩ π−1

B (C). Moreover, if O is a separable metric space and O its
Borel σ-algebra, A(P) coincides with the Borel σ-algebra generated by the weak
convergence (Gaudard and Hadwin, 1989).

Lemma 1. Let κ : Ω×O → [0, 1] be a map such that for each ω ∈ Ω, κ(ω, ·) ∈
P. Then κ is a Markov kernel from (Ω,F) to (O,O) if and only if the map
ω �→ κ(ω, ·) from Ω to P is F −A(P)-measurable.

Lemma 1 follows from Kallenberg (2002, Lemma 1.40). We provide the ar-
gument for the sake of completeness.

Proof of Lemma 1. κ is a Markov kernel if and only if for each B ∈ O, the map
ω �→ κ(ω,B) = πB(κ(ω, ·)) is F − B([0, 1])-measurable, which is the case if and
only if ω �→ κ(ω, ·) is F −A(P)-measurable.

Concerning the measurability of the forecasts T (Y |F) of functionals T , we
observe the following.

Lemma 2. If the functional T : P → R is A(P) − B(R)-measurable, then
T (Y |F) defined in (1) is F − B(R)-measurable.

Proof. This is clear since by Lemma 1, the conditional distribution PY |F is
F −A(P)-measurable as a map from Ω to P, and T is A(P)−B(R)-measurable
by assumption.

Similarly to Lemma 2, the general forecast ω �→ T
(
κ(ω, ·)

)
, ω ∈ Ω, where κ is

a Markov kernel from (Ω,F) to (O,O), is F−B(R)-measurable. Thus, to clarify
the measurability of T

(
κ(·, ·)

)
and of T (Y |F) in (1) it suffices to investigate T .

Before we turn to a general result for elicitable functionals, let us investigate
several important examples.
Example 3 (Moments). Let h : O → R be a measurable function. Let Ph be a
family of probability measures on (O,O) satisfying

∫
O

|h(y)|dP(y) < ∞, and
consider the mean functional

Th(P) =
∫
O

h(y) dP(y), P ∈ Ph.

Then Th is A(Ph) − B(R)-measurable.
Indeed, if h(y) = 1B(y) for some B ∈ O, then Th = πB and the claim

follows from the measurability of the evaluation map. If h is a simple function,
the resulting functional will be a finite linear combination of evaluation maps,
and hence also measurable. For h ≥ 0, there is a sequence of non-negative
simple functions (hn) with hn ↑ h pointwise, and then Thn(P) ↑ Th(P) for
every P. Hence, as a pointwise limit of the measurable functions Thn , Th is also
measurable. For a general h, the measurability follows by the decomposition
Th = Th+ − Th− .

Example 3 directly yields the measurability of Borel-measurable functions of
multiple moments. This yields, for example, the measurability of the variance,
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the skewness, the kurtosis, or of the Sharpe ratio. In the following we identify
any probability distribution P ∈ Q with its distribution function F = FP defined
by F (x) = P(O ∩ (−∞, x]), x ∈ O.
Example 4 (Quantiles). Let O = R, fix α ∈ [0, 1] and let

T (F ) = q−α (F ) = inf{x ∈ R | F (x) ≥ α} ∈ R̄ = R ∪ {−∞,∞}, F ∈ P,

be the lower α-quantile of F , which is its essential supremum if α = 1. Recall
that B(R̄) = {A ∪ E | A ∈ B(R), E ⊆ {−∞,∞}}.

To show that T is A(P)−B(R̄)-measurable, consider the family of evaluation
maps π(−∞,x](F ) = F (x), for F ∈ P, x ∈ R. Each π(−∞,x] is A(P) − B([0, 1])-
measurable.

Now, given p ∈ R, the lower α-quantile q−α (F ) of F is strictly larger than p,
q−α (F ) > p, if and only if α > F (p). Therefore

{F ∈ P | q−α (F ) > p} = {F ∈ P | π(−∞,p](F ) < α},

showing measurability of the lower α-quantile, where we exploit the fact that it
suffices to show measurability on a generator of B(R̄).

Similar considerations yield the A(P) − B(R̄)-measurability of the upper α-
quantile, α ∈ [0, 1],

T (F ) = q+
α (F ) = sup{x ∈ R | lim

t↑x
F (t) ≤ α} ∈ R̄, F ∈ P,

where q+
0 (F ) corresponds to the essential infimum of F . For α ∈ (0, 1), we

can also consider the α-quantile, qα, as an interval-valued functional qα(F ) =
[q−α (F ), q+

α (F )] ⊂ R. Then, the previously established measurability results yield
that qα is an Effros measurable closed-valued multifunction in the sense that for
all open sets G ⊆ R, {F ∈ P | qα(F ) ∩ G 
= ∅} ∈ A(P), see Definition 1.3.1
in Molchanov (2017). Therefore, the ideal forecast qα(Y |F) is an F-measurable
random closed set in the sense of Definition 1.1.1 in Molchanov (2017), which
coincides with the recent findings of de Castro et al. (2021), which are established
with different methods.

In the risk management literature, the lower α-quantile is known as Value
at Risk at level α, VaRα. The following example is concerned with another
important quantitative risk measure, the Expected Shortfall.
Example 5 (L-functionals). Let w : [0, 1] → [0,∞) be a measurable weight func-
tion such that the left-sided and the right-sided limits exist for all x ∈ [0, 1].
Consider the L-functional

Tw(F ) =
∫ 1

0
q−γ (F )w(γ) dγ ∈ R̄, F ∈ Pw,

where Pw is the domain such that Tw is well-defined. The measurability of
q−γ from Example 4 and a Riemann approximation argument yield that Tw is
A(Pw) − B(R̄)-measurable.
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This directly yields the measurability of the lower and upper Expected Short-
fall (by choosing w = 1[0,α]/α or w = 1[α,1]/(1−α)) and of the Range Value at
Risk (Cont, Deguest and Scandolo, 2010, Fissler and Ziegel, 2021) (by choosing
w = 1[α,β]/(β − α) for 0 < α < β < 1).

To treat the next Example 7, we first need to establish the following technical
lemma.

Lemma 6. Let T : P → R be an A(P)−B(R)-measurable functional. Then the
composed evaluation maps P → [0, 1],

F �→ π(T (F ),∞)(F ), F �→ π(−∞,T (F ))(F ), F �→ π{T (F )}(F ) (3)

are A(P) − B([0, 1])-measurable.

Proof. For the first map in (3), let p ∈ [0, 1] and consider

{F ∈ P | π(T (F ),∞)(F ) ≤ p} = {F ∈ P | F (T (F )) ≥ 1 − p}
= {F ∈ P | T (F ) ≥ q−1−p(F )}
= {F ∈ P | (T − q−1−p)(F ) ≥ 0} ∈ A(P).

The last assertion comes from the fact that q−1−p is A(P) − B(R)-measurable
and that differences of measurable functionals are also measurable.

For the second map in (3), the arguments are similar. Using the shorthand
F (x−) := limt↑x F (t) for the left-sided limit at x ∈ R, we obtain for p ∈ [0, 1]

{F ∈ P | π(−∞,T (F ))(F ) ≤ p} = {F ∈ P | F (T (F )−) ≤ p}
= {F ∈ P | T (F ) ≤ q+

p (F )}
= {F ∈ P | (T − q+

p )(F ) ≤ 0} ∈ A(P).

Finally, note that π{T (F )}(F ) = 1 − π(T (F ),∞)(F ) − π(−∞,T (F ))(F ).

Example 7. Conditional Value at Risk (CoVaR) and conditional Expected Short-
fall (CoES) are influential systemic risk measures due to Adrian and Brunner-
meier (2016). In a nutshell, they assess the riskiness of a position Y given that
a reference position X is at risk. Following Girardi and Tolga Ergün (2013),
the latter conditioning event is interpreted as X exceeding its Value at Risk at
level β, VaRβ . Hence, these risk measures can be viewed as functionals, first
mapping a bivariate distribution PX,Y to the univariate conditional distribu-
tion PY |X≥VaRβ(X) and then applying a risk measure such as VaRα (in the
case of CoVaR) or ESα (in the case of CoES) to this univariate distribution.
Since VaRα and ESα are measurable functionals from univariate distributions
to R, we obtain the measurability of these conditional risk measures if the map
PX,Y �→ PY |X≥VaRβ(X) is measurable. To account for possible discontinuities in
the marginal distribution of the first component X, we follow Remark C.1 in
Fissler and Hoga (2021) and incorporate a correction term to this map. Hence,
we formally consider η : P2 → P, where P2 is a set of Borel-distributions on R2
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and P is a set of such distributions on R, such that for a Borel set B ∈ B(R)
we get

η(PX,Y )(B) = PY |X�VaRβ(X)(B) := 1
1 − β

[
PX,Y

(
(VaRβ(PX),∞) ×B

)
+
(
1−β − PX

(
(VaRβ(PX),∞)

))
PX,Y

(
{VaRβ(PX)} ×B

)
/PX

(
{VaRβ(PX)}

)]
For the last term, note that PX

(
{VaRβ(PX)}

)
= 0 implies that 1 − β −

PX

(
(VaRβ(PX),∞)

)
= 0 for which case we set 0/0 = 0. To show the A(P2) −

A(P)-measurability of η it is sufficient to show that for any B ∈ B(R), the
concatenation with the evaluation map πB ◦ η is A(P2) − B([0, 1])-measurable.
This measurability follows from Lemma 6 and the fact that for any C ∈ B(R)
the map PX,Y �→ P(· × C) is A(P2) −A(P)-measurable.
Remark 8 (Continuity of statistical functionals). Apart from mere measurabil-
ity, continuity or even differentiability properties of statistical functionals are of
interest in statistics, finance and econometrics. A statistical functional is weakly
continuous at P ∈ P if the weak convergence Pn ⇒ P of a sequence (Pn) in P to
P implies that T (Pn) → T (P). Let B(P) denote the Borel-σ-algebra generated
by the weak topology on P. If a statistical functional T is weakly continuous
at every P ∈ P it is also B(P)-measurable. Gaudard and Hadwin (1989) show
that A(P) ⊆ B(P) with equality if O is a separable metric space and O is its
Borel σ-algebra. For these practically relevant cases, in particular for O = R,
weak continuity of T readily implies A(P)-measurability. However, apart from
the Range Value at Risk the functionals discussed above are known not to be
weakly continuous at every P under the general assumptions that we impose: For
the mean, the discontinuity follows from Huber and Ronchetti (2009, Lemma
2.1), while the lower α-quantile, α ∈ (0, 1), is weakly continuous at F if and
only if the quantile function γ �→ q−γ (F ) is continuous at α, that is, if and only
if q−α (F ) = q+

α (F ); see van der Vaart (1998, Lemma 21.2).
In the finance literature, statistical functionals arise from law-determined

(often called law-invariant) risk measures and are often called risk functionals
(Krätschmer, Schied and Zähle, 2014). Assuming monotonicity with respect
to first order stochastic dominance and translation equivariance, Weber (2006,
Lemma 2.1 and Corollary 2.1) establishes the weak continuity of risk functionals
on the class of probability distributions with compact support on R, implying the
A(P)-measurability. While this applies to lower quantiles and weighted averages
of lower quantiles with weight function w satisfying

∫
w(γ) dγ = 1, we do not

require compactly supported distributions for our results.
Generalising the class of distributions, Krätschmer, Schied and Zähle (2014)

show that monotone and translation equivariant risk functionals on R arising
from convex risk measures on P ⊆ Qp = {P ∈ Q |

∫
|x|p dP(x) < ∞} are

continuous in the Wasserstein metric of order p ∈ [1,∞). Similarly, Kiesel et al.
(2016) show the continuity of L-functionals (see Example 5) in the Wasserstein
metric of order p ∈ [1,∞). Since the topology generated by the Wasserstein
metric of order p is larger than the weak topology, this continuity result does
not imply the A(P)-measurability of L-functionals established in Example 5.
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4. Elicitable functionals

Let us now turn to general elicitable functionals. These are functionals such that
the ideal forecast corresponds to a Bayes act in the sense that it minimises an
expected loss function. Again, let O ⊆ R be a measurable subset, let A be an
interval, and let P be a family of Borel probability measures on (O,O). Let

L : A×O → R

be a scoring or loss function, which assigns a loss L(a, y) ∈ R to a point forecast
a ∈ A if the observation y ∈ O materialises. We impose the following properties
on L:

1. For each a ∈ A and P ∈ P, L(a, ·) is P-integrable. Set

L(a,P) =
∫
O

L(a, y) dP(y).

2. For each P ∈ P, the function a �→ L(a,P), a ∈ A,
(a) is continuous,
(b) has a compact, non-empty interval of minimisers, denoted by IL(P),
(c) is monotonically decreasing to the left of IL(P), and monotonically

increasing to the right.

Then L is P-consistent for the functionals Tmin(P) = min IL(P) and Tmax(P) =
max IL(P) meaning that Tmin(P) and Tmax(P) minimise the expected loss func-
tion a �→ L(a,P) for each P ∈ P. If IL(P) is a singleton for each P ∈ P, then
Tmin = Tmax =: T , and then L is strictly P-consistent for T , meaning that T
uniquely minimises the expected loss. A functional is elicitable on P if there
exists a strictly P-consistent scoring function for it.

If the class P is convex and if the continuity assumption (a) on the expected
loss holds, then the strict P-consistency of L for Tmin = Tmax already implies
properties (b) and (c) as shown in Fissler and Ziegel (2019, Proposition 2.2),
Nau (1985, Proposition 3), Bellini and Bignozzi (2015, Proposition 3.4), Lam-
bert (2019, Proposition 11); see also Steinwart et al. (2014, Theorem 5) for a
related result. Properties (b) and (c) are known as order-sensitivity or accuracy-
rewarding in the literature; see Lambert, Pennock and Shoham (2008) and the
references above. As noted in the discussion below Proposition 2.2 in Fissler
and Ziegel (2019), a sufficient condition for the continuity of the expected loss
a �→ L(a,P) for each P ∈ P are conditions (a), (b) and (c) on the level of the loss
a �→ L(a, y) itself for each y ∈ O. The continuity of L(a, y) in its first argument
is a common regularity condition; see e.g. Gneiting (2011).

Define the Bayes risk (sometimes also called entropy or uncertainty) of the
P-consistent loss L for T as Trisk(P) = L

(
T (P),P

)
, P ∈ P.

Theorem 9. Under the above assumptions, the functionals Tmin, Tmax and Trisk
are A(P) − B(R)-measurable.
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Proof. First consider Tmin. By Example 3, for each a ∈ A the functional P �→
L(a,P) is A(P) − B(R)-measurable. We then argue similarly as in Example 4:
Let a ∈ A and P ∈ P. We claim that under our assumptions, Tmin(P) > a holds
if and only if there exists b ∈ A ∩ Q with b > a such that L(a,P) > L(b,P).
Indeed, by definition of Tmin, Tmin(P) > a holds if and only if a is to the left of
IL(P). By monotonicity and continuity of L(·,P), this holds if and only if there
exists b ∈ (a,∞) ∩Q ∩A such that L(a,P) > L(b,P). Therefore,

{P ∈ P | Tmin(P) > a} =
⋃

b∈(a,∞)∩Q∩A

{P ∈ P | L(a,P) − L(b,P) > 0},

showing measurability of Tmin(P). The arguments for Tmax work similarly.
For Trisk, we obtain the measurability upon noting that for any x ∈ R

{P ∈ P | Trisk(P) < x} =
⋃

a∈Q∩A

{P ∈ P | L(a,P) < x}.

Example 10 (Expectiles and generalised quantiles). On the class of distribu-
tions with finite mean, Newey and Powell (1987) introduce the τ -expectile of a
distribution P, eτ (P), τ ∈ (0, 1), as the unique solution to the equation

τ

∫
(x,∞)

(y − x) dP(y) = (1 − τ)
∫

(−∞,x]
(x− y) dP(y)

in x. On the class of square-integrable distributions, eτ is elicitable with the
asymmetric piecewise quadratic loss Lτ (a, y) = |1{y ≤ a} − τ |(a − y)2 as a
strictly consistent loss. Hence, Theorem 9 establishes the measurability of eτ
on this class. For the measurability on the class of integrable distributions, one
can consider the slightly modified loss function L̃τ (a, y) = Lτ (a, y) − Lτ (0, y).
This result complements the results of Bellini, Bignozzi and Puccetti (2018)
establishing the existence and uniqueness of conditional expectiles.

Bellini et al. (2014) study generalised τ -quantiles which arise as minimisers of
the expected loss Lτ,φ1,φ2(a, y) = 1{y ≤ a}(1−τ)φ1(|a−y|)+1{y > a}τφ2(|a−
y|) for two convex and strictly increasing functions φ1, φ2 : [0,∞) → [0,∞).
Clearly, if φ1 and φ2 are both the absolute function (the squared function)
the τ -quantile (τ -expectile) arises. Elliott, Timmermann and Komunjer (2005)
consider the situation of general power functions. Theorem 9 then establishes
the A(P) − B(R)-measurability of these generalised τ -quantiles.
Example 11 (Variance and Expected Shortfall). On the class of square-integrable
distributions P, the squared loss L(a, y) = (a − y)2 is a strictly P-consistent
loss for the mean functional. The corresponding entropy functional Trisk is
the variance functional. Therefore, Theorem 9 establishes the A(P) − B(R)-
measurability of the variance as an alternative argument to the direct applica-
tion of Example 3.

For the lower or the upper Expected Shortfall at level α it is well known
(Embrechts and Wang, 2015, Lemmas 2.3 and 3.3) that both versions can be
written as the entropy of a consistent loss function for q−α . Therefore, Theorem 9
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establishes an alternative argument for the measurability to that provided in
Example 5.

An alternative approach to establish the measurability of a functional is to
exploit identifiability instead of elicitability. A functional is called identifiable if
there exists a moment or identification function V: A × O → R such that the
functional is the unique zero of the expected identification function. Indeed, un-
der some technical assumptions, elicitability and identifiability are equivalent for
one-dimensional functionals (Steinwart et al., 2014, Theorem 5), and concerning
measurability, one ends up with similar results and examples as considered in
this section.
Remark 12. Proposition 3.7 in Bellini and Bignozzi (2015) establishes ψ-weak
continuity of elicitable functionals on classes of probability measures with com-
pact support on R under additional regularity conditions on the correspond-
ing strictly consistent loss function. ψ-weak continuity has been discussed in
Krätschmer, Schied and Zähle (2014) and generalises continuity in the Wasser-
stein metric. Since the topology generated by ψ-weak convergence is larger than
the one generated by weak convergence, this continuity result does not imply
the A(P)-measurability of elicitable functionals, which we establish directly.
Remark 13. For an elicitable target functional T : P → R with strictly P-
consistent loss function L, an alternative way to define the ideal forecast for Y
based on F is to set

T (Y |F) := arg min
Z∈F

E
[
L(Z, Y )

]
. (4)

This has been done in Bellini, Bignozzi and Puccetti (2018) for T being a τ -
expectile. In contrast to our concatenation approach (1), the approach (4) en-
sures F-measurability of T (Y |F) by definition, while the existence needs to be
established. The advantage of the concatenation approach is that, first, (1) also
works if T is not elicitable. Second, it can be easily used to define general, not
necessarily ideal forecasts for T based on F as outlined in (2).

5. Measurability of scoring rules

As outlined in the introduction, the F-measurability of the ideal probabilisitic
forecast for Y based on F is guaranteed since this is the conditional distribution
PY |F . In contrast to Section 4, we shall focus here on the measurability of scoring
rules, which are the analogon to loss functions and which are used to compare
probabilistic forecasts. Formally, a scoring rule is a map

S : P ×O → (−∞,∞], (5)

assigning the penalty S(P, y) ∈ (−∞,∞] to a probabilistic forecast P ∈ P if
y ∈ O is observed. We assume that for each P ∈ P, S(P, ·) is Borel-measurable
and that for each Q ∈ P,

EQ
[
S(P, Y )

]
=

∫
O

S(P, y) dQ(y)
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exists. Note that we allow ∞ in the range of S in (5) to treat the common
logarithmic score, see Example 17. The score S is called a strictly P-proper
scoring rule if

EQ
[
S(Q, Y )

]
< EQ

[
S(P, Y )

]
for all P,Q ∈ P, P 
= Q,

meaning that forecasting the true distribution Q uniquely minimises the ex-
pected score.

Recall that the ideal probabilistic forecast based on an information set F is
the conditional distribution PY |F . That means in a forecasting situation, with
available information F (e.g. given by regressors), it is natural that the forecasts
have the form of Markov kernels from (Ω,F) to (O,O). Inserting a Markov kernel
κ for P leads to the map

ω �→ S
(
κ(ω, ·), Y (ω)

)
, (6)

and averages of such expressions, which estimate expected values, are used when
comparing different forecasts. But in order to form the expected value in (6)
we in particular require measurability, i.e. we need that (6) is an A − B(R)-
measurable random variable. Since ω �→

(
κ(ω, ·), Y (ω)

)
is A − A(P) ⊗ O-

measurable, this will be guaranteed if S in (5) is A(P)⊗O−B(R)-measurable.
Note that the latter measurability is assumed in Nielsen (2022), whereas the
following lemma provides primitive conditions for it.

Lemma 14. Suppose that O is a one-dimensional interval, and that

1. for each y ∈ O, the map S(·, y) : P → (−∞,∞] is A(P)−B(R)-measurable,
2. for each P ∈ P, the map S(P, ·) is right-continuous (or left-continuous).

Then S in (5) is A(P) ⊗O − B(R)-measurable.

Proof. For a finite interval, say O = (0, 1], for n ∈ N, by (i) the map

Sn(P, y) =
2n∑
k=1

S(P, k/2n)1((k−1)/2n,k/2n](y)

is A(P)⊗O−B(R)-measurable and by (ii), Sn(P, y) → S(P, y) for n → ∞. An
infinite interval can be treated analogously by extending the sum to an infinite
one.

Remark 15. The argument in Lemma 14 can be used to obtain a similar result for
multivariate observations, where right-continuity is defined, as for multivariate
distribution functions, by taking limits from above in each coordinate. However,
the form of the observation domain O is also an issue, and to proceed as above
we require that O is a possibly infinite hyperrectangle.
Example 16 (Continuous ranked probability score). The continuous ranked prob-
ability score (CRPS) of a distribution F with finite first moment is

CRPS(F, y) =
∫ ∞

−∞

(
F (z) − 1{y ≤ z}

)2 dz, F ∈ P, (7)
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see Gneiting and Raftery (2007). It has an alternative representation in terms
of an integrated quantile loss, and also as

CRPS(F, y) = EF

[∣∣y −X
∣∣]− 1

2 EF

[∣∣X ′ −X
∣∣], (8)

where X and X ′ are independent copies with distribution F . From both (8)
and (7) one can readily see that CRPS(F, y) is continuous as a function of y,
invoking the dominated convergence theorem. Further, for fixed y, (8) implies
measurability of CRPS(F, y) as a map in F , while from (7) the measurability
can be obtained with a Riemann sum approximation similarly as in Example 5.
Similar arguments can be made and hence the measurability is obtained for
weighted versions of the CRPS as introduced in Gneiting and Ranjan (2011)
and Holzmann and Klar (2017).
Example 17 (Logarithmic score and local scoring rules). Assume that P is a
family of right-continuous Lebesgue densities on the real line. We write p ∈ P
and denote the distribution function associated with p by Fp. The logarithmic
score is

LOGS(p, y) = − log p(y), p ∈ P,

see Good (1952) and Gneiting and Raftery (2007).
To apply Lemma 14, observe that LOGS(p, y) is right-continuous as a func-

tion of y by our assumption on p and continuity of the logarithm. For the
measurability in p for fixed y, note that by right-continuity,

lim
n→∞

log
(
n
(
Fp(y + 1/n) − Fp(y)

))
= log p(y),

showing measurability, since the evaluation of the distribution function is mea-
surable. Measurability extends to weighted versions of the logarithmic score as
in Diks, Panchenko and van Dijk (2011) and in Holzmann and Klar (2017), and
under appropriate assumptions on higher derivatives to higher-order local scor-
ing rules (Ehm and Gneiting, 2012, Parry, Dawid and Lauritzen, 2012) such as
the Hyvärinen score (Hyvärinen, 2005).
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