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Abstract: A nonparametric regression setting is considered with a real-
valued covariate and responses from a metric space. One may approach this
setting via Fréchet regression, where the value of the regression function at
each point is estimated via a Fréchet mean calculated from an estimated
objective function. A second approach is geodesic regression, which builds
upon fitting geodesics to observations by a least squares method. These ap-
proaches are applied to transform two of the most important nonparamet-
ric regression estimators in statistics to the metric setting – the local linear
regression estimator and the orthogonal series projection estimator. The
resulting procedures consist of known estimators as well as new methods.
We investigate their rates of convergence in a general setting and compare
their performance in a simulation study on the sphere.
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1. Introduction

Our goal is to estimate an unknown function [0, 1] → Q, t �→ mt, which is not
of a simple parametric form, where (Q, d) is a general metric space. To this
end, we have access to independent data (xi, yi)i=1,...,n. We assume that the
covariates are fixed as xi = i

n , and yi is a random variable with values in Q
such that its Fréchet mean is equal to mxi , i.e., mxi = arg minq∈Q E[d(yi, q)2].
We consider Q to be nonstandard, i.e., a metric space that is not isometric to
a convex subset of a separable Hilbert space. Examples of nonstandard spaces
are Riemannian manifolds, like the hypersphere S

k, Hadamard spaces, like the
space of phylogenetic trees [5], or Wasserstein spaces [1] in dimension greater
than one.

The literature on statistical analysis in nonstandard spaces is vast. We re-
fer the reader to [15] for an overview and only present a small glimpse here.
The Fréchet mean [12] or barycenter m ∈ arg minq∈Q E[d(Y, q)2] of a random
variable Y with values in the metric space Q lies at the heart of most analysis
in nonstandard spaces. It can be viewed as a generalization of the Euclidean
mean as E[X] = arg minq∈Rk E[|X − q|2] for a R

k-valued random variable X

with E[|X|2] < ∞. In Alexandrov spaces, the sample Fréchet mean is shown
to attain the parametric rate of convergence under certain conditions [13]. In
Hadamard spaces, the theory of Fréchet means [24] and algorithms for their
calculation [3] are well described. The Fréchet mean has been studied on Rie-
mannian manifolds, e.g., [4]. In this setting, [10] (among others) show a central
limit theorem. Nonparametric regression with metric target values is developed,
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e.g., in [8, 14, 19]. [17] present a regression technique with regularization by to-
tal variation. [23] discuss nonparametric regression techniques between Rieman-
nian manifolds. Specifically in the Riemannian manifold of symmetric positive-
definite matrices, [30] develop a version of a local polynomial regression esti-
mators, where higher order polynomials in this space are defined using parallel
transport. Based on the notion of geodesics, [11] introduces an analog of linear
regression in symmetric Riemannian manifolds. These results are generalized
and extended in [7].

1.1. Model

Let (Q, d) be a metric space. For t ∈ [0, 1], let Yt be a Q-valued random
variable with finite second moment, i.e., E[d(Yt, q)2] < ∞ for all t ∈ [0, 1]
and q ∈ Q. Let the regression function m : [0, 1] → Q be a minimizer mt ∈
arg minq∈Q E[d(Yt, q)2]. Later, we will define certain smoothness conditions on
t �→ mt (and on the change of the distribution of Yt) to restrict the class of pos-
sible functions. We will consider nonparametric estimators which have access to
following data: Let xi := i

n and let (yi)i=1,...,n be independent random variables
with values in Q such that yi has the same distribution as Yxi .

This model will be considered for two classes of metric spaces Q: bounded
metric spaces and Hadamard space. A metric space (Q, d) with the property
supq,p∈Q d(q, p) < ∞ is called bounded. This requirement simplifies the as-
sumptions that require integrals of distances to be finite. Hadamard spaces are
geodesic metric spaces of nonpositive curvature. Formally, a metric space (Q, d)
is Hadamard if and only if it is complete, nonempty, and for all q, p ∈ Q, there is
z ∈ Q such that d(y, z)2 ≤ 1

2d(y, q)
2 + 1

2d(y, p)
2− 1

4d(q, p)
2 for all y ∈ Q. Hilbert

spaces and complete simply-connected Riemannian manifolds of nonpositive sec-
tional curvature are Hadamard, but also spaces without smooth structure like
metric trees [24, Proposition 3.4] or the space of phylogenetic trees [5].

To show the applicability in practice, the results are applied to the hyper-
spheres Sk and simulations are executed on the sphere S2.

1.2. Two approaches

To construct an estimator for t �→ mt, one may try to adapt a known Eu-
clidean estimator to the new scenario. Two prominent approaches to this task
are Fréchet regression [19] and geodesic regression [11].

Fréchet regression The regression function mt is the Fréchet mean of Yt,
i.e., the minimizer of E[d(Yt, q)2] over q ∈ Q. In Fréchet regression, we estimate
the function t �→ E[d(Yt, q)2] for every fixed q ∈ Q by an Euclidean estimator
t �→ F̂t(q) using the data (xi, zq,i)i=1,...,n ⊆ [0, 1] × R with zq,i := d(yi, q)2. In
this step, we may use one of the standard nonparametric regression estimators
for certain classes of functions [0, 1] → R. Then F̂t(q) is minimized over q ∈ Q
for a fixed t to obtain the estimator m̂t.
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Geodesic regression Assume our metric space Q is equipped with an expo-
nential map Exp : Θ → Q, where Θ ⊆ TQ ⊆ Q× R

k is a subset of the tangent
bundle of Q. A geodesic starting in point p ∈ Q and continuing in the direction
v ∈ TpQ of the tangent space TpQ =

{
u ∈ R

k : (p, u) ∈ TQ
}

of Q at p can be
described as a function R → Q, x �→ Exp(p, xv) with (p, v) ∈ TQ. In geodesic
regression with covariates xi ∈ R, we minimize the empirical squared error

n∑
i=1

d(yi,Exp(p, xiv))2 (1)

over (p, v) ∈ Θ to find the best fitting geodesic. All forms of geodesic regression
built on this criterion or a modification of it. For example, we can extend it to
multivariate regression

n∑
i=1

d

⎛
⎝yi,Exp

⎛
⎝p,

J∑
j=1

xi,jvj

⎞
⎠
⎞
⎠

2

, (2)

where xi ∈ RJ and v1, . . . , vJ ∈ TpQ or more general feature regression

n∑
i=1

d

⎛
⎝yi,Exp

⎛
⎝p,

J∑
j=1

ψj(xi)vj

⎞
⎠
⎞
⎠

2

, (3)

where xi ∈ X for an arbitrary space of covariates X and features ψj : X → R.
Furthermore, we may introduce weights wi,t, e.g., wi,t = K((xi − t)/h) for a
kernel K and a bandwidth h > 0 to localize the procedure, and obtain (here for
one-dimensional covariates)

(m̂t, ˆ̇mt) = arg min
(p,v)∈Θ

n∑
i=1

wi,td(yi,Exp(p, xiv))2 . (4)

In this paper, we do not require the existence of an exponential map in the sense
of Riemannian geometry. Instead, Exp : Θ → Q,Θ ⊆ Q×R

k is required to fulfill
certain distance bounds as described in our results on geodesic regression.

1.3. Contribution

We compare the two approaches of geodesic (Geo) and Frechet (Fre) regression
on two regression estimators, namely local linear regression (Loc) and the or-
thogonal series estimator (Ort). This makes four estimation procedures, which
we refer to as LocGeo, LocFre, OrtGeo, and OrtFre. For the resulting estimators,
which we denote as m̂t, our goal is to show explicit finite sample bounds of the
mean integrated squared error (MISE) of the form

∫ 1
0 E[d(mt, m̂t)2]dt ≤ Cn−α

for constants C,α > 0. We are not interested in optimal universal constants, but
the dependence on further parameters, like a moment bound, is to be explicit.
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For LocGeo, LocFre, and OrtFre we find
∫ 1
0 E[d(mt, m̂t)2]dt ≤ Cn− 2β

2β+1 , where
β > 0 is a smoothness parameter. Regarding the smoothness condition, we con-
sider different models for different estimators. In particular, β has a somewhat
different meaning for each estimator. Nonetheless, the results are comparable
and the optimal nonparametric rate of convergence n− 2β

2β+1 is shown to hold in
these three cases.

• LocFre (Section 2): [19] introduce local constant (Nadaraya–Watson) and
local linear Fréchet regression for general bounded metric spaces. For the
local linear estimator, they show d(m̂t,mt) ∈ OP(n− 2

5 ) and a more gen-
eral version of this result, see Corollary 1 in their article. We show, for
a general local polynomial Fréchet estimator of order � ∈ N0, the point-
wise error bound E

[
d(mt, m̂t)2

]
≤ Cn− 2β

2β+1 for a constant C > 0 and a
smoothness parameter β > 0, �β	 = �, which implies the same rate for
the MISE, Theorem 1, Theorem 2. Our results are slightly more general
with conditions slightly less demanding. Furthermore, bounds in expecta-
tion for finite n are stronger than in OP and are needed to make the error
bound of this estimator comparable to the others. As [19], we demand a
smoothness condition not directly on t �→ mt, but on the change of the
probability density of Yt in t.

• OrtFre (Section 3): We apply the approach of Fréchet regression to the or-
thogonal series projection estimator and arrive at a new estimator, OrtFre.
For the trigonometric series as instance of an orthogonal series, we show
E[
∫ 1
0 d(mt, m̂t)2dt] ≤ Cn− 2β

2β+1 for a smoothness parameter β ≥ 1 and a
constant C > 0, Theorem 3, Theorem 4. As for LocFre the smoothness
condition is a requirement on the change of the density of Yt in t.

• LocGeo (Section 4): We apply the approach of geodesic regression to the
classical local linear estimator to obtain LocGeo. A local polynomial regres-
sion estimator of arbitrary order in the Riemannian manifold of symmetric
positive definite matrices was already introduced in [30]. In contrast, the
results here are restricted to a first order expansion, but they are applica-
ble to a wide range of metric spaces. We show a point-wise error bound
of E[d(mt, m̂t)2] ≤ Cn− 2β

2β+1 for all t ∈ [0, 1], a smoothness parameter
β ∈ (1, 2], and a constant C > 0, which implies the same bound on the
mean integrated squared error, Theorem 5, Theorem 6. For this result, we
assume a smoothness condition, which generalizes the Hölder condition
that is common for local linear estimators. It demands that the true func-
tion t �→ mt can be locally approximated at t by a geodesic up to an error
of order |x− t|β for x close to t.

In Section 5, we discuss a construction of an OrtGeo estimator: We apply the
geodesic regression approach to the orthogonal series projection estimator. We
do not show optimal rates of convergence, and argue that this estimator may
be sub-optimal as the properties that make it appealing in Euclidean spaces
are lost in nonstandard spaces. Nonetheless, we include an estimator with the
trigonometric series as the chosen orthogonal series in our simulation study.
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Our goal is to make all theorems as general as reasonably possible. This
manifests in quite abstract statements. To get a gist of the meaning of the ab-
stract objects, we apply the general theorems on the hypersphere: Corollary 1,
Corollary 2, and Corollary 3. These corollaries illustrate our results and show
that they are indeed applicable to explicit and interesting nonstandard spaces.
Furthermore, abstract assumptions of the general theorems are justified by show-
ing that they are fulfilled on the hyperspheres.

The sphere is also the metric space used in our simulation study, Section 7.
To fulfill a variance inequality, which is an assumption for all our results, we
introduce a new family of distributions on the sphere, the contracted uniform
distributions. All estimators are implemented using the statistical programming
language R [26]. The resulting package is freely available at https://github.
com/ChristofSch/spheregr. Our experiments confirm and illustrate the theo-
retical findings.

The proofs of all results can be found in the Appendix A. They partially
built upon techniques developed in [21]. The major tools to prove results in
this setting are empirical process theory with chaining, e.g. [29] or [25], and
a technique called slicing or peeling, e.g., [28]. The proofs for local regression
techniques partially follow the Euclidean version in [27, section 1.6], for trigono-
metric regression we build upon [27, section 1.7].

1.4. Notation and conventions

Assumptions are named in small caps, e.g., Moment. The names of the pre-
sented methods are set in a typewriter font, e.g., LocFre.

We use a lower case c for universal constants c > 0. If the value depends on
a variable, we indicate this by an index, e.g., cκ is a constant that depends only
on κ. We do not specify the values of such constants. They are silently under-
stood to take an appropriate value. Furthermore, the value may vary between
two occurrences of such a constant.

A capital C indicates a constant that has further meaning, which is usually
described by a three letter index, e.g., we may require a moment condition
E[d(Yt,mt)2] ≤ CMom for all t to be fulfilled. For simplicity, we assume these
constants to be ≥ 1, so that, e.g., C2

Abc + CAbcCXyz ≤ cC2
AbcCXyz.

There is a silently underlying probability space (Ω,ΣΩ,P). If a random vari-
able, say Y , has values in a set, say Y , that set is silently understood to be
a measurable space (Y ,ΣY) and the random variable is a measurable map
Y : (Ω,ΣΩ) → (Y ,ΣY).

In each section, the estimator of the regression function at t is denoted as
m̂t. It depends on n and potentially on further parameters like a bandwidth h,
which will not be indicated in the notation but should be clear in the context.

For a vector v ∈ R
k, we denote its Euclidean norm by |v|. For β ∈ R,

let �β	 be the largest integer strictly smaller than β. Let (Q, d) be a metric
space. To shorten the notation, we sometimes write q,p instead of d(q, p) for
q, p ∈ Q. Define the ball B(o, d, δ) := {q ∈ Q : q,o < δ} and the diameter
diam(Q, d) := supq,p∈Q q,p.

https://github.com/ChristofSch/spheregr
https://github.com/ChristofSch/spheregr
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For the theorems below, we need a quantification of the entropy of the metric
space Q. To this end, we use Talagrands’s γ2 [25] as defined below.

Definition 1.

(i) Given a set Q, an admissible sequence is an increasing sequence (Ak)k∈N0

of partitions of Q such that A0 = {Q} and the cardinality of Ak is bounded
as #Ak ≤ 22k for k ≥ 1.
By an increasing sequence of partitions we mean that every set of Ak+1 is
contained in a set of Ak. We denote by Ak(q) the unique element of Ak

which contains q ∈ Q.
(ii) Let (Q, d) be a pseudo-metric space, i.e., d is symmetric, fulfills the tri-

angle inequality, and d(q, q) = 0 for all q ∈ Q. Define

γ2(Q, d) := inf sup
q∈Q

∞∑
k=0

2 k
2 diam(Ak(q), d) , (5)

where the infimum is taken over all admissible sequences in Q.

1.5. Common assumptions

Following assumption are made for all results on rates of convergence of re-
gression estimators in this article. They are conditions needed to bound the
rate of convergence when estimating Fréchet means – even without considering
covariates, see [21, Theorem 1].
Assumptions 1.

• VarIneq: There is CVlo ∈ [1,∞) such that C−1
Vlo q,mt

2 ≤ E[d(Yt, q)2 −
d(Yt,mt)2] for all q ∈ Q and t ∈ [0, 1].

• Entropy: There are CEnt ∈ [1,∞) and α ∈ [1, 2) such that γ2(B, d) ≤
CEnt max(diam(B, d), diam(B, d)α) for all B ⊆ Q.

• Moment: There are κ > 2
2−α and CMom ∈ [1,∞) such that the bound

E[d(Yt,mt)κ] 1
κ ≤ CMom holds for all t ∈ [0, 1].

Remark 1.

• VarIneq: This condition is also called variance inequality and is well-
known in the context of Fréchet means in Alexandrov spaces, [24, 18, 13].
VarIneq is a condition on the noise distribution and the geometry of the
metric space. It can be viewed as a quantitative version of the condition
of unique Fréchet means mt of Yt. The variance inequality not only en-
sures uniqueness of mt, it also requires the objective function E[Yt,q

2] to
grow quadratically in the distance of a test point q to the minimizer mt.
Intuitively, this is fulfilled when the noise distribution is not too similar
to a distribution that has nonunique Fréchet means.
VarIneq is always true in Hadamard spaces [24, Proposition 4.4], which
are geodesic metric spaces with nonpositive curvature and include the
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Euclidean spaces. For a variance inequality in spaces of nonnegative cur-
vature, see [2, Theorem 3.3]. Furthermore, Proposition 1 below shows an
explicit construction of distributions fulfilling VarIneq. We use this in
Section 7 to construct a distribution for our simulations on the sphere.

• Entropy: This condition can be viewed as a quantitative version of the
requirement that balls in Q are totally bounded.
We use Talagrand’s γ2 to formulate the entropy condition. Let B ⊆ Q. It
holds

γ2(B, d) ≤
∫ ∞

0

√
log(N(B, d, r))dr , (6)

where the integral is called entropy integral and

N(B, d, r) = min

⎧⎨
⎩k ∈ N

∣∣∣∣∃q1, . . . , qk ∈ Q : B ⊆
k⋃

j=1
B(qj , d, r)

⎫⎬
⎭ (7)

is the covering number. Thus, we can use bounds on the entropy integral
to fulfill Entropy, which is more common in the statistics literature.
In some circumstances γ2 is strictly lower than the entropy integral [25,
Exercise 4.3.11]. One can further weaken the entropy condition as done in
[2] and [21], potentially at the cost of worse rates of convergence.
In the Euclidean space R

k, Entropy holds with α = 1 and CEnt = 2
√
k.

If diam(Q, d) < ∞, one can choose α = 1 without loss of generality as
the ratio between diam(B, d) and diam(B, d)α is bounded by the constant
diam(Q, d)α−1.
Next we consider an example in which α > 1 is needed. Take countably
infinitely many intervals of length 1 and glue them together such that they
form an infinite binary tree. This space with its intrinsic distance d is an
example of a metric tree and a Hadamard space [24, Proposition 3.4].
A subset B in this space with diameter 2R has at most 3R+1 branches
and all branches together have at most length R3R+1. Thus, N(B, d, r) ≤
cR exp(cR)/r and we can calculate the bound γ2(B, d) ≤ cmax(R,R

3
2 ).

• Moment: This condition can be described as a moment condition. In
Euclidean spaces Q = Rk, d = | · |, this is equivalent to E[|Yt − E[Yt]|κ] <
Cκ

Mom. Note that, due to the triangle inequality, E[d(Yt,mt)κ] < ∞ if and
only if E[d(Yt, q)κ] < ∞ for any q ∈ Q or, equivalently, for all q ∈ Q.

Proposition 1 ([18, section 5]). Let (Q, d) be a proper Alexandrov space of
nonnegative curvature. Let Z1 be a random variable with values Q such that
E[d(Z1, q)2] < ∞ for all q ∈ Q. Let m ∈ arg minq∈Q E[Z1,q

2] be any Fréchet
mean of Z1. For a ∈ [0, 1), let Za := γm→Z(a), where, for z ∈ Q, γm→z is a
geodesic with γm→z(0) = m, γm→z(1) = z. Then

(1 − a)q,m2 ≤ E[Za,q
2 − Za,m

2] (8)

for all a ∈ [0, 1].
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2. Local Fréchet regression

We use the principles of Fréchet regression on local polynomial regression. This
yields local polynomial Fréchet regression, LocFre, which was introduced (in
the local constant and local linear forms) in [19].

Let K : R → R be a function, the kernel. For � ∈ N0, h > 0, and x, t ∈ [0, 1]
define

Ψ(x) :=
(
xk

k!

)
k=0,...,�

, (9)

Bn,t := 1
nh

n∑
i=1

Ψ
(
xi − t

h

)
Ψ
(
xi − t

h

)
�K

(
xi − t

h

)
, (10)

wi,t := 1
nh

Ψ(0)�B−1
n,tΨ

(
xi − t

h

)
K

(
xi − t

h

)
, (11)

whenever Bn,t is invertible. Note that wi,t depends on n, (xj)j=1,...,n and in
particular on h, which is not indicated in the notation. A local polynomial
Fréchet estimator of order � is any element

m̂t ∈ arg min
q∈Q

n∑
i=1

wi,td(yi, q)2 . (12)

For denoting a smoothness condition required for this estimator to achieve the
nonparametric rate of convergence, we need to refer to the Hölder class Σ(β, L)
for β, L > 0. It is defined as the set of �β	-times continuously differentiable
functions f : [0, 1] → R with |f (�β�)(t)− f (�β�)(x)| ≤ L |x− t|β−�β� for all x, t ∈
[0, 1].
Assumptions 2.

• Kernel: There are CKmi, CKma ∈ [1,∞) such that

C−1
Kmi1[− 1

2 ,
1
2 ](x) ≤ K(x) ≤ CKma1[−1,1](x) (13)

for all x ∈ R.
• HölderSmoothDensity: The function [0, 1] → Q, t �→ mt is continu-

ous. Let CLen ∈ [1,∞) such that sups,t∈[0,1] d(ms,mt) ≤ CLen. Let μ be
a probability measure on Q. Let CInt ∈ [1,∞) such that

∫
y,m0

2μ(dy) ≤
CInt. Let y → ρ(y|t) be the μ-density of Yt. Let β > 0 with � = �β	. For
μ-almost all y ∈ Q, there is L(y) ≥ 0 such that t �→ ρ(y|t) ∈ Σ(β, L(y)).
Furthermore, there is a constant CSmD ∈ [1,∞),

∫
L(y)2dμ(y) ≤ C2

SmD.

Kernel and a smoothness condition are classical requirements for a local
polynomial estimators to obtain an optimal error bound [27, Proposition 1.13].
Remark 2.

• Kernel: This is a typical condition on kernels for local kernel regression,
see also [27, Lemma 1.5]. It is fulfilled, e.g., by the rectangular kernel
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1[− 1
2 ,

1
2 ](x) or the Epanechnikov kernel 3

4 (1− x2)1[−1,1](x). Kernel likely
could be weakened to allow for a greater variety of kernels, e.g., higher
order kernels.

• HölderSmoothDensity: If the noise distribution has a μ-density and
this density is smooth enough, HölderSmoothDensity can be inter-
preted as a smoothness condition on t �→ mt: In a Euclidean space Q =
R

k with a location model ρ(y|t) = f(|y − mt|2) for a smooth function
f : [0,∞) → [0,∞), we have ∂tρ(y|t) = −2(y−mt)�ṁtf

′(|y−mt|2), where
ṁt ∈ R

k is the derivative of x �→ mx at t. If f ′ is smooth enough and
bounded, the smoothness of ∂tρ(y|t) is dominated by the smoothness of
mt. Informally, the density should be as least as smooth as the regression
function, to view this condition as a typical smoothness assumption on
the regression function. It is likely an artifact of the proof that we require
the error density to be smooth.

Theorem 1 (LocFre Bounded). Let (Q, d) be a bounded metric space. Let β > 0
with � = �β	. Let m̂t be the local polynomial estimator of order � with h ≥ c

n and
n ≥ c. Assume VarIneq, Entropy with α = 1, HölderSmoothDensity,
Kernel. Then

E

[
mt,m̂t

2] ≤ C1h
2β + C2(nh)−1 , (14)

where C1 = cC2
VloC

2
KerC

2
SmD diam(Q, d)2 and C2 = cC2

VloC
2
EntC

2
Ker diam(Q, d)2.

Theorem 2 (LocFre Hadamard). Let (Q, d) be a Hadamard space. Let β > 0
with � = �β	. Let m̂t be the local polynomial estimator of order � with c ≥ h ≥ c

n
and n ≥ c. Assume Moment, Entropy, HölderSmoothDensity, Kernel.
Then, for all t ∈ [0, 1],

E

[
mt,m̂t

2] ≤ C1h
2β + C2(nh)−1 , (15)

where

C1 = cα,κ
(
C2

KmiC
2
KmaCSmDCMomCLenCInt

) 2
2−α ,

C2 = cα,κ
(
CMomCEntC

2
KmiC

2
Kma

) 2
2−α .

The two theorems are derived from a more general result in the appendix,
Theorem 7. We obtain the classical error bound for local polynomial estimators
with a bias term h2β and a variance term (nh)−1. If we set h = n− 1

2β+1 , in both
cases, we obtain the classical nonparametric rate of convergence E[mt,m̂t

2] ≤
Cn− 2β

2β+1 . By integrating the inequality, we obtain the same bound for the MISE
E[
∫ 1
0 mt,m̂t

2dt].
Remark 3. Theorem 2 applied to the real line (Q, d) = (R, | · |) yields almost the
same result as the standard result for Euclidean local polynomial regression [27,
Proposition 1.13]. Aside from different constants, we require a finite moment of
order κ > 2 instead of κ = 2 and the error density needs to change smoothly,
see point HölderSmoothDensity in Remark 2. It seems remarkable that the
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results are so close as we have to do without an inner product and without
vector space structure in the space of responses.

3. Orthogonal series Fréchet regression

Let (ψj)j∈N be a sequence of functions that form an orthonormal base in L
2[0, 1],

in particular, ∫ 1

0
ψj(x)ψj̃(x)dx = δjj̃ (16)

for all j̃, j ∈ N, where δjj̃ is the Kronecker delta. Let N ∈ N. Define ΨN :=
(ψj)j=1,...,N .

Assume the matrix Bn := 1
n

∑n
i=1 ΨN (xi)ΨN (xi)� is invertible. The orthog-

onal series Fréchet regression estimator is

m̂t ∈ arg min
q∈Q

ΨN (t)�B−1
n

1
n

n∑
i=1

ΨN (xi)d(yi, q)2 . (17)

For an explicit estimator, we have to choose an explicit orthogonal series. Be-
cause of its appealing theoretical properties among other things, the trigonomet-
ric series is a common choice. Let (ψj)j∈N be the trigonometric basis of L2[0, 1],
i.e., for x ∈ [0, 1], j ∈ N,

ψ1(x) = 1 , ψ2j(x) =
√

2 cos(2πjx) , ψ2j+1(x) =
√

2 sin(2πjx) . (18)

The trigonometric basis is orthonormal. Furthermore,

1
n

n∑
i=1

ψj(xi)ψj̃(xi) = δjj̃ (19)

for j, j̃ ∈ {1, . . . , n− 1}, see [27, Lemma 1.7]. Thus, Bn is the identity matrix if
N < n and the estimator simplifies to

m̂t ∈ arg min
q∈Q

ΨN (t)�1
n

n∑
i=1

ΨN (xi)d(yi, q)2 . (20)

The appropriate smoothness class connected to the trigonometric basis (ψj)j∈N

is the periodic Sobolev class W per(β, L), see [27, Definition 1.11]. A function
f(x) =

∑∞
j=1 ϑjψj(x) belongs to W per(β, L) if and only if the sequence ϑ =

(ϑj)j∈N, ϑj =
∫ 1
0 f(x)ψj(x)dx, of the Fourier coefficients of f belongs to the

ellipsoid E(β, L), which is defined as

E(β, L) =

⎧⎨
⎩ϑ ∈ �2(R) :

∞∑
j=1

ϑ2
ja

−2
j ≤ L2

⎫⎬
⎭ , (21)

where a2j+1 = a2j = (2j)−β , see [27, Proposition 1.14].
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Assumptions 3.

• SobolevSmoothDensity: The function [0, 1] → Q, t �→ mt is continu-
ous. Let CLen ∈ [1,∞) such that sups,t∈[0,1] d(ms,mt) ≤ CLen. Let μ be
a probability measure on Q. Let CInt ∈ [1,∞) such that

∫
y,m0

2μ(dy) ≤
CInt. For all t ∈ [0, 1], the random variable Yt has a density y �→ ρ(y|t)
with respect to μ. Let β ≥ 1. For μ-almost all y ∈ Y, there is L(y) ≥ 0
such that t �→ ρ(y|t) ∈ W per(β, L(y)). Furthermore, there is CSmD ∈ [1,∞)
such that

∫
L(y)2dμ(y) ≤ C2

SmD.

Remark 4.

• SobolevSmoothDensity: This condition parallels HölderSmooth-

Density with Hölder smoothness replaced by Sobolev smoothness. Again,
this condition can be interpreted as a smoothness condition on t �→ mt if
the error density is smooth enough, see Remark 2.
The trigonometric basis functions are periodic and the smoothness condi-
tion also requires t �→ mt to be periodic, i.e., identifying t = 0 and t = 1
should yield a well-defined function which is appropriately smooth at this
transition.

Further conditions are discussed in Remark 1.

Theorem 3 (OrtFre Bounded). Let (Q, d) be a bounded metric space. Assume
VarIneq, Entropy with α = 1, SobolevSmoothDensity, and N < n. Then

E

[∫ 1

0
mt,m̂t

2dt
]
≤ C1

(
N−2β + Nn1−2β)+ C2

N

n
, (22)

where C1 = cβC
2
VloC

2
SmD diam(Q)2 and C2 = cβC

2
VloC

2
Ent diam(Q)2.

Theorem 4 (OrtFre Hadamard). Let (Q, d) be a Hadamard metric space.
Assume Moment, Entropy with α = 1, SobolevSmoothDensity, and
N ≤ c

√
n. Then

E

[∫ 1

0
mt,m̂t

2dt
]
≤ C1 log(N + 1)2

(
N−2β + Nn1−2β)+ C2

N

n
, (23)

where C1 = cκ,βC
2
SmDC

2
LenC

2
MomC

2
Int and C2 = cκ,βC

2
MomC

2
Ent.

Note that for OrtFre, we require α = 1 in Entropy also in the case of
Hadamard spaces. In contrast, for LocFre and LocGeo we allow α ∈ [1, 2).

We obtain the classical error bound for trigonometric series estimators with a
bias term N−2β and a variance term N

n . The term Nn1−2β is of lower order than
N
n for β > 1 and can be discarded for large n in this case. If we set N = n

1
2β+1 ,

we obtain the classical nonparametric rate of convergence E[
∫ 1
0 mt,m̂t

2dt] ≤
Cn− 2β

2β+1 with an additional log(n)2 factor in the Hadamard case. The two
theorems are derived from a more general result in the appendix, Theorem 8.
Point-wise results are not obtained here.
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Remark 5. Theorem 4 applied to the real line (Q, d) = (R, | · |) with N = n
1

2β+1

yields the same bound as the standard result for Euclidean trigonometric se-
ries regression [27, Theorem 1.9] up to the log(n)2 factor and constant factors.
The requirements are slightly stricter: A finite moment of order κ > 2 is as-
sumed instead of κ = 2 and the error density needs to change smoothly, see
point SobolevSmoothDensity in Remark 4 and HölderSmoothDensity

in Remark 2.

4. Local geodesic regression

We investigate an estimator, LocGeo, that locally fits (generalized) geodesics
of the form x �→ Exp(p, xv): Let h ≥ 2

n . Let K : R → R be a function, the
kernel. For t ∈ [0, 1], define the weight function wh(t, x) = 1

hK(x−t
h ) and the

normalized weights wi,t = wh(t, xi)(
∑n

j=1 wh(t, xj))−1. Note that wi,t depends
on n, (xj)j=1,...,n and in particular on h, which is not indicated in the notation.
Let Θ ⊆ Q×R

k be a set, the set of parameters of geodesics. Let R ≥ 1 and set

Θh := Θ ∩
(
Q× B(0, | · |, Rh−1)

)
. (24)

Let Exp : Θ → Q, (p, v) �→ Exp(p, v) be a function, the exponential map. Let

(p̂t,h, v̂t,h) ∈ arg min
(p,v)∈Θh

n∑
i=1

wi,t d
(
yi,Exp

(
p, (xi − t)v

))2
and m̂t = p̂t,h . (25)

Remark 6. For a geodesic t �→ Exp(p, tv) defined by (p, v) ∈ Θ, the parameter v
determines the speed of the geodesic. In some spaces, allowing arbitrary speeds
when fitting geodesics can have adverse effects:

Consider the circle Q = S
1 = [0, 1) with its intrinsic distance d = dS1 . In

contrast to our model, we assume here that the xi do not form a grid, but
instead are irregular in following sense: If

∑n
i=1 aixi ∈ Z for ai ∈ Z, then

ai = 0 for i = 1, . . . n. In particular, all xi and all ratios between different xi are
irrational. Let yi ∈ S

1, i = 1, . . . n. Then we can find a geodesic on the circle
that uniformly approximates all (xi, yi)i=1,...,n arbitrarily well: For all ε > 0,
there is v ∈ R such that

dS1(Exp(0, xiv), yi) = |[xiv] − yi| < ε , (26)

i = 1, . . . n, where [a] = a − max{k ∈ Z : k ≤ a} ∈ S
1. This is a consequence

of Kronecker’s theorem on diophantine approximation, see Proposition 2 below
(with p = 1).

Even though we have a regular grid, xi = i
n , in our setting, similar effects

might occur if we allow v to be arbitrarily large. This is prevented be minimizing
over Θh instead of Θ when fitting geodesics.

Proposition 2 (Kronecker’s Theorem [16]). Let X ∈ Rn×k and y ∈ Rn. Then

∀ε > 0: ∃v ∈ Z
k, b ∈ Z

n : |Xv − b− y| < ε . (27)

if and only if a�X ∈ Z
k implies a�y ∈ Z for a ∈ Z

n.
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Assumptions 4.

• HölderSmoothEx: Let β > 0. There is CSmo ∈ [1,∞) such that for all
t ∈ [0, 1], there is (pt, vt) ∈ Θh such that E[d(Yx,Exp(pt, (x − t)vt))2 −
d(Yx,mx)2] ≤ C2

Smo |x− t|2β for all x ∈ [0, 1].
• ExpMap: There are CMup, CMlo ∈ [1,∞) such that

d(Exp(q, v),Exp(p, u)) ≤ CMup(d(q, p) + |v − u|) , (28)∫ 1
2

− 1
2

d(Exp(q, xv),Exp(p, xu))2 dx ≥ C−2
Mlo

(
d(q, p)2 + |v − u|2

)
(29)

for all (q, v), (p, u) ∈ Θ with |u|, |v| ≤ R.

Remark 7.

• HölderSmoothEx: HölderSmoothEx can be understood as a Hölder-
smoothness condition. But it involves not only t �→ mt but also the dis-
tribution of the observations similar to HölderSmoothDensity.
VarIneq implies that d(Exp(pt, (x− t)vt),mx)2 ≤ CVloC

2
Smo |x− t|2β . For

β ∈ (1, 2] on the real line with Exp(pt, (x− t)vt) = mt +(x− t)ṁt, this be-
comes the standard Hölder-condition, i.e., t �→ mt ∈ Σ(β, L) for a constant
L > 0.
If a reverse variance inequality holds, i.e.,

E[d(Yt,Exp(pt, (x− t)vt))2 − d(Yt,mt)2] ≤ CVupd(q,mt)2 ,

then the Hölder-type bounds on d(Exp(pt, (x − t)vt),mx)2 and on the
term E[d(Yt, q)2 − d(Yt,mt)2] are equivalent (up to constants). Such a
reverse variance inequality always holds in proper Alexandrov spaces of
nonnegative curvature (like the the Euclidean spaces or hyperspheres) with
CVup = 1, [18, Theorem 5.2]. See also [13, Theorem 8] for a variance equal-
ity, from which both a variance inequality and a reverse variance inequality
may be deduced in certain spaces.

• ExpMap: This condition relates two distances on Θ, which are induced
by d and Exp, to the metric d on Q and the Euclidean norm on R

k. The
theorems below are derived from a more general result in the appendix,
Theorem 9, which shows how this condition may be relaxed (to conditions
IntBoundsSup and Lipschitz, Assumptions 7).
In Euclidean spaces, the geodesics are t �→ Exp(p, tv) = p+tv for p, v ∈ R

k.
Thus,

d(Exp(q, v),Exp(p, u)) ≤ |q − p| + |v − u| (30)

and∫ 1
2

− 1
2

d(Exp(q, xv),Exp(p, xu))2 dx =
∫ 1

2

− 1
2

|(q − p) + x(v − u)|2dx (31)

= |q − p|2 + 1
12 |v − u|2 , (32)



Nonparametric regression in nonstandard spaces 4693

i.e., the condition holds with CMup = 1 and CMlo =
√

12.
ExpMap or (its relaxations in the appendix, Assumptions 7) are not ful-
filled for branching geodesics, i.e., if there are geodesics γ1, γ2 such that
γ1(t) = γ2(t) for t ∈ [a, b] for a < b and γ1(t) �= γ2(t) for t ∈ [a′, b′] for
a′ < b′. The reason is that in this case the integral over the distance of
the geodesics on an interval can be of smaller order than the supremum
of the distance of the two geodesics on the interval.

Further conditions are discussed in Remark 1.

Theorem 5 (LocGeo Bounded). Let (Q, d) be a bounded metric space. Assume
VarIneq, Entropy with α = 1, HölderSmoothEx, Kernel, ExpMap, and
h ≥ c

n . Then
E

[
mt,m̂t

2] ≤ C1(nh)−1 + C2h
2β , (33)

where

C1 = cCKmiCKmaCVloC
2
Smo ,

C2 = cC4
MupC

4
MloC

3
KmiC

3
KmaC

2
EntC

2
VloRk diam(Q, d)2 .

Theorem 6 (LocGeo Hadamard). Let (Q, d) be a Hadamard space. Assume
Entropy, Moment, HölderSmoothEx, Kernel, ExpMap, and h ≥ c

n .
Then

E

[
mt,m̂t

2] ≤ C1(nh)−1 + C2h
2β , (34)

where

C1 = cκCKmiCKmaC
2
Smo ,

C2 = cα,κ
(
C4

MupC
2+2α
Mlo C3

KmiC
3
KmaC

2
EntC

2
MomRk

) 2
2−α .

The two theorems are derived from a more general result in the appendix,
Theorem 9. As for LocFre, we obtain the classical error bound for local linear
estimators with a bias term h2β and a variance term (nh)−1. If we set h =
n− 1

2β+1 , in both cases we obtain the classical nonparametric rate of convergence
E[mt,m̂t

2] ≤ Cn− 2β
2β+1 . By integrating the inequality, we obtain the same bound

for the MISE E[
∫ 1
0 mt,m̂t

2dt].
Remark 8. Theorem 6 applied to the real line (Q, d) = (R, | · |) yields almost
the same result as the standard result for Euclidean local liner regression [27,
Proposition 1.13]. Aside from different constants, we require a finite moment of
order κ > 2 instead of κ = 2. Furthermore, by minimizing over Θh instead of
Θ, we assume that the derivative of t �→ mt is bounded by Rh−1, which is not a
significant drawback as any meaningful choice of h implies h → 0 as n → ∞. In
contrast to LocFre, the smoothness condition is equivalent to the usual Hölder
smoothness assumption, see Remark 7 on HölderSmoothEx.
Remark 9. As mentioned in Remark 7, HölderSmoothEx becomes the stan-
dard Hölder condition of local linear estimation on the real line for β ∈ (1, 2].
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To be able to utilize higher order smoothness, higher degree polynomials are
required. As these are not easily available in general geodesic metric spaces, we
restrict the estimator to geodesics, which can be viewed as degree one polyno-
mials. Even though the smoothness condition for Theorem 5 and Theorem 6 is
stated with arbitrary β > 0, it is suspected to be difficult to find large classes
of interesting functions where HölderSmoothEx holds with β > 2.

5. Short discussion of orthogonal series geodesic regression

After establishing results for Fréchet regression with local linear and orthogonal
series approaches and for geodesic regression with a local linear approach, a
natural next combination to discuss is geodesic regression with orthogonal series
approach.

Let (ψj)j∈N be a sequence of functions that form an orthonormal base in
L2[0, 1]. An OrtGeo estimator m̂t based on N ∈ N basis functions may be
defined as

(p̂, v̂1, . . . , v̂N ) ∈ arg min
p∈Q,vj∈TpQ

d

⎛
⎝Exp

⎛
⎝p,

N∑
j=1

ψj(xi)vj

⎞
⎠ , yi

⎞
⎠

2

, (35)

m̂t := Exp

⎛
⎝p̂,

N∑
j=1

ψj(t)v̂j

⎞
⎠ . (36)

In contrast to LocGeo, observations are not weighted differently for different
t. Thus, the estimated parameters (p̂, v̂1, . . . , v̂N ) do not depend on t. Where
the LocGeo estimator is Exp(p̂t, 0) and ignores the direction v̂t, OrtGeo uses the
estimated directions v̂1, . . . , v̂N to encode the time-dependence of the estimated
curve.

For orthogonal series estimators, one usually bounds the mean integrated
squared error (MISE), as this makes it possible to utilize the orthogonality
property of (ψj)j∈N. The orthogonality allows to use the N + 1 estimated pa-
rameters in an optimal way so that for a suitable choice of N depending on
n the best possible rate of convergence can be achieved. In the metric space
setting, geodesics may not be orthogonal in an L

2-sense: For p, u, v ∈ R
k, j̃ �= j,

we have ∫ 1

0

∣∣(p + ψj(x)u) −
(
p + ψj̃(x)v

)∣∣2 dx = |u|2 + |v|2 , (37)

but for p in a general metric space, the analogous equality with a left-hand side∫ 1

0
d
(
Exp(p, ψj(x)u) ,Exp

(
p, ψj̃(x)v

))2 dx (38)

might not be true.
We were not able to show a theorem similar to the results in the previous

sections. Of course, this does not mean that the estimator above will necessarily
perform badly.
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The estimator was implemented for simulations (Section 7). This revealed an-
other drawback: High-dimensional non-convex optimization is required so that
OrtGeo is – by far – the slowest of all tested methods. But in some settings
the estimator performs quite well, making it or modifications of it appealing for
further investigations. In other settings, the performance is much worse than
for the other estimators. It is not clear, whether this is due to theoretical disad-
vantages or a worse outcome of the general purpose optimizer used for finding
(p̂, v̂1, . . . , v̂N ).

6. Hypersphere

To illustrate our results for the estimators LocFre, OrtFre, and LocGeo, we
apply them to the hyperspheres.

Let k ∈ N. Let S
k = {x ∈ R

k+1 : |x| = 1} be the hypersphere with radius 1
as a subset of Rk+1. We equip S

k with its intrinsic metric d(q, p) = arccos(q�p).
Let TSk =

⋃
q∈Sk

({q} × TqS
k) be the tangent bundle, where TqS

k = {v ∈
R

k+1 | q�v = 0} is the tangent space at q ∈ S
k. The exponential map is

Exp : TSk → S
k, (q, v) �→ cos(|v|)q+sin(|v|) v

|v| . Geodesics can be represented by
a tuple (p, v) ∈ TSk as x �→ Exp(p, xv).

For t ∈ [0, 1], let Yt be a S
k-valued random variable. Let the regression

function m : [0, 1] → Sk be a minimizer mt ∈ arg minq∈Sk E[d(Yt, q)2]. Let xi = i
n

and let (yi)i=1,...,n be independent random variables with values in Sk such that
yi has the same distribution as Yxi .

In the following corollaries, we will always assume VarIneq: There is CVlo ∈
[1,∞) such that C−1

Vlo q,mt
2 ≤ E[Yt,q

2−Yt,mt
2] for all q ∈ S

k and t ∈ [0, 1]. This
condition implies that mt is the unique minimizer of E[d(Yt, q)2]. The hyper-
sphere is a proper Alexandrov space of nonnegative curvature. Thus, Proposi-
tion 1 shows that large classes of distributions fulfill this property.

To fulfill the Kernel conditions for the local estimators, we here use the
Epanechnikov kernel x �→ 3

4 (1 − x2)1[−1,1](x), i.e., we can set CKmi = 16
9 and

CKma = 1.
Each estimator requires a different smoothness condition as stated below. To

state those, let μ be a the measure of the uniform distribution on S
k.

Corollary 1 (LocFre Hypersphere). Let β > 0 and CSmD ≥ 1. Assume the
condition VarIneq and use the Epanechnikov kernel. Choose h = n− 1

2β+1 . Then
the LocFre estimator m̂t of order � = �β	 achieves

lim sup
n→∞

sup
(PYt )t∈[0,1]

n
2β

2β+1E

[∫ 1

0
mt,m̂t

2dt
]
≤ C , (39)

where C = cC2
VloC

2
SmDk and the supremum is taken over all distributions PYt

of each Yt such that the following smoothness condition is fulfilled: PYt has a
μ-density y �→ ρ(y|t) and for μ-almost all y ∈ S

k, t �→ ρ(y|t) ∈ Σ(β,CSmD).
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Corollary 2 (OrtFre Hypersphere). Let β > 0 and CSmD ≥ 1. Assume Var-

Ineq. Choose N = �n 1
2β+1 	. Then the OrtFre estimator m̂t achieves

lim sup
n→∞

sup
(PYt )t∈[0,1]

n
2β

2β+1E

[∫ 1

0
mt,m̂t

2dt
]
≤ C , (40)

where C = cβC
2
VloC

2
SmDk and the supremum is taken over all distributions

(PYt)t∈[0,1] of each Yt such that the following smoothness condition is fulfilled:
PYt has a μ-density y �→ ρ(y|t) and for μ-almost all y ∈ S

k, t �→ ρ(y|t) ∈
W per(β,CSmD).

Corollary 3 (LocGeo Hypersphere). Let β > 0 and CSmo ∈ [1,∞). Assume
VarIneq and use the Epanechnikov kernel. Choose h = n− 1

2β+1 . Let Θ = TSk
and set Θh =

{
(p, v) ∈ Θ: |v| ≤ h−1}. Then the LocGeo estimator m̂t achieves

lim sup
n→∞

sup
(PYt )t∈[0,1]

n
2β

2β+1E

[∫ 1

0
mt,m̂t

2dt
]
≤ C , (41)

where C = cC2
SmoC

2
Vlok

2 and the supremum is taken over all distributions PYt

of each Yt such that the following smoothness condition is fulfilled: For all
x, t ∈ [0, 1], d(mx,Exp(mt, (x − t)ṁt)) ≤ CSmo |x− t|β, where ṁt ∈ TmtS

k

is the derivative of mt.

7. Simulation

There is a total of 4 methods discussed in this article: LocGeo, LocFre, OrtGeo,
OrtFre. For the latter two, we only consider the trigonometric basis. To illus-
trate and compare these methods on the sphere, the R-package spheregr was
developed. All code used for this paper, including all scripts which create the
plots and run and evaluate the experiments shown in this section, are freely
available at https://github.com/ChristofSch/spheregr.

Each method requires numerical optimization. We use R’s general purpose op-
timizers stats::optim(method = "L-BFGS-B") and stats::optimize(), both
without explicit implementation of derivatives, but with several starting points.
The implementations could potentially be improved by using the algorithm pre-
sented in [9]. For alternative implementation of geodesic regression, see [22].

The Fréchet methods are faster than geodesic methods, as the optimiza-
tion problem for geodesics is of higher dimension. We use leave-one-out cross-
validation (LOOCV) to estimate the hyperparameters (h for LocGeo and Loc-
Fre, N for OrtFre). For OrtGeo it did not seem feasible to do many repetitions
of the experiments with cross-validation in each run. Instead we set N = 3 for
this method to be able to calculate a result. In doing so, we effectively reduce
the method to a parametric estimator. See Table 1 for a summary of the op-
timization dimensions and frequencies used in the simulation. For LocGeo and
LocFre, we use the Epanechnikov kernel.

https://github.com/ChristofSch/spheregr
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Table 1

Properties of the optimizations executed in the implementation of the four regression
methods to evaluate m̂t.
LocFre OrtFre LocGeo OrtGeo (N = 3)

space to optimize in S2 S2 S2 × TS2 S2 × (TS2)3
dimension 2 2 4 8
frequency ∀t ∀t once once

repetitions for LOOCV n n n 1

7.1. Contracted uniform distribution

For the distribution of Yt, we choose what we call the contracted uniform dis-
tribution CntrUnif(mt, a) with a ∈ (0, 1), which we define next. The contracted
uniform distribution is obtained from the uniform distribution on the sphere
by moving all points towards a center point along the connecting geodesic by a
given fraction of the total distance.

Let S2 = {x ∈ R3 : |x| = 1} be the sphere with radius 1 and intrinsic
metric d(q, p) = arccos(q�p). We may describe points q ∈ S

2 via two angles
(ϑq, ϕq) ∈ [0, π]×[0, 2π) such that q = (sin(ϑq) cos(ϕq), sin(ϑq) sin(ϕq), cos(ϑq)).

Definition 2. Let a ∈ [0, 1]. Let (Θ,Φ) be random angles with values in [0, π]×
[0, 2π) that form a uniform distribution on the sphere, i.e., they are indepen-
dent, Θ has Lebesgue density 1

2 sin(x)1[0,π](x), and Φ is uniformly distributed
on [0, 2π). Let

Za =

⎛
⎝sin(aΘ) cos(Φ)

sin(aΘ) sin(Φ)
cos(aΘ)

⎞
⎠ . (42)

Let m ∈ S
2. Let Rm ∈ O(3) ⊆ R

3×3 be any orthogonal matrix that fulfills
m = Rme3, where e3

� = (0 0 1). Then the contracted uniform distribution
CntrUnif(m, a) at m with contraction parameter a is defined as the distribution
of RmZa.

The matrix Rm in the definition above is not unique, but the symmetry of
the distribution of Za ensures that the contracted uniform distribution is well-
defined.

Two important properties are implied by Proposition 1: For a ∈ [0, 1), m ∈ S
2

is the unique Fréchet mean of CntrUnif(m, a). Furthermore, VarIneq is fulfilled
with CVlo = (1 − a)−1.

Lastly, we calculate the variance of the contracted uniform distribution. Let
m ∈ S2, a ∈ [0, 1], and Y ∼ CntrUnif(m, a). Let Za and Θ as in Definition 2.
Then E[d(Y,m)2] = E[d(Za, e3)2] because of symmetry. The distance does only
depend on Θ and is equal to aΘ. Thus, E[d(Y,m)2] = E[(aΘ)2] =
1
2a

2 ∫ π

0 x2 sin(x)dx = 1
2 (π2 − 4)a2.
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7.2. Setup and illustration

Let t �→ mt be one of the two curves named simple and spiral, which are de-
scribed below. We set xi = i−1

n−1 and sample independent yi ∼ CntrUnif(mxi , a)
to obtain our data (xi, yi)i=1,...,n. The parameter a ∈ [0, 1] is chosen so that the
distribution has a given standard deviation sd. Then we calculate the four differ-
ent nonparametric regression estimators LocFre, OrtFre, LocGeo, and OrtGeo.

We first show some illustrating plots Figure 1 and Figure 2. In these, we
want to depict functions of the form [0, 1] → [0, π] × [0, 2π), t �→ (ϑmt , ϕmt).
The graph of such a function is 3-dimensional and hard to understand on 2D-
paper. Creating two plots, one for [0, 1] → [0, π], t �→ ϑmt and another for
[0, 1] → [0, 2π), t �→ ϕmt , is also difficult to interpret, as one has to always take
both graphs into account at the same time. Instead we show the image of the
functions {(ϑmt , ϕmt) : t ∈ [0, 1]} ⊆ [0, π] × [0, 2π).

The rectangle of the two angles (ϑ, ϕ) ∈ [0, π] × [0, 2π) parameterizing the
sphere is the Mercator projection. This projection (as any projection of the
sphere to the euclidean plane) distorts the surface of the sphere. This is made
visible by the thin gray lines in the plots, which are geodesics and replace the
usual grid lines. The plots show the image of t �→ mt (black line) and the different
estimators t �→ m̂t (colored lines). The covariate t is not shown directly. But the
positions t = 0.25, 0.5, 0.75 are marked on each curve by a square, a rhombus,
and a triangle, respectively. Note that distances are distorted: Distances close
to the equator (ϑ = 1

2π) are larger than they appear and smaller at the poles
(ϑ ∈ {0, π}). The observations yi (black dots in the top plots) are connected via
thin black lines to mxi .

We test two different regression functions t �→ mt. The first one, named simple
has angles t �→ (1

4π,
1
2 + 2πt), see Figure 1. This seems to be a straight line in

the Mercator projection but is a curved function on the sphere and cannot be
approximated well by a single geodesic. This simple curve is periodic. Moreover,
it can be written as t �→ Exp(p, sin(2πt)v1 + cos(2πt)v2) with the appropriated
choices of p ∈ S

2, v1, v2 ∈ TpS
2. Thus, this curve lies in the model space of

OrtGeo if N ≥ 2. Recall that we fixed N = 3. The second curve is described by
t �→ (1

8π + 3
4πt,

1
2 + 3πt). Again this curve is not geodesic. It spirals around the

sphere, see Figure 2, and is not periodic. To estimate nonperiodic functions with
OrtGeo and OrtFre, which require periodicity, we copy the data and append it
in reverse order to estimate the periodic function

t �→
{
m2t if t < 1

2 ,

m2−2t if t ≥ 1
2 .

(43)

This may lead to boundary effects.
Roughly speaking and judging only from Figure 1 and Figure 2, all estimators

seem to perform similarly, except for a worse outcome for OrtGeo on the spiral.
In the setting (n = 20, sd = 1) the estimators are not able to come close to the
true curves.
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Fig 1. For the simple curve, we sample n ∈ {20, 80} observations with contracted uniform
noise of standard deviation sd ∈ { 1

4 , 1} (top plot of each quadrant). Then we apply LocGeo,
LocFre, OrtGeo, OrtFre (middle part of each quadrant). The distance of the estimated curve
to the true one at each point in time is shown in the plots at the bottom of each quadrant.

7.3. Results

We approximate the MISE values in different settings with the simple and the
spiral curve. To this end, the simulations are repeated 500 times and the inte-
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Fig 2. For the spiral, we sample n ∈ {20, 80} observations with contracted uniform noise of
standard deviation sd ∈ { 1

4 , 1}. Then we apply LocGeo, LocFre, OrtGeo, OrtFre. The distance
of the estimated curve to the true one at each point in time is shown in the plots at the bottom
of each quadrant.

grated squared errors of these repetitions are averaged. The results are presented
in Table 2. The more reliable analysis of the approximated MISE-values con-
firms that all estimators behave similar, except OrtGeo, which has some bad
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Table 2

Approximated MISE values for nonparametric regression methods. The colors give a visual
indication of the MISE value of the given methods divided by the best MISE value in the row.

Setting MISE
n sd curve LocFre OrtFre LocGeo OrtGeo

20 0.25 simple 0.02070 0.02410 0.02595 0.01397
80 0.25 simple 0.00731 0.00662 0.00851 0.00361
20 1.00 simple 0.34890 0.39052 0.36356 0.86604
80 1.00 simple 0.12056 0.09350 0.11026 0.09228
20 0.25 spiral 0.02899 0.05902 0.03268 0.38623
80 0.25 spiral 0.00900 0.01534 0.01008 0.37191
20 1.00 spiral 0.56768 0.52354 0.54786 0.91824
80 1.00 spiral 0.15185 0.14662 0.14677 0.47189

outcomes. This may have several reasons: We were not able to show an error
bound for this method and argued that it may be sub-optimal, i.e., it may be
inherently worse than the other methods. Furthermore, we do not use cross-
validation for OrtGeo, as we do for the other methods, but fix N = 3. Thus,
the comparison might be unfair, because the hyper-parameters are not tuned
equally. Lastly, in OrtGeo, we have to numerically solve an 8-dimensional non-
convex optimization problem (2 dimensions for each of p̂, v̂1, v̂2, v̂3). There
are 4 dimensions for LocGeo and 2 for the Fréchet methods, see Table 1. Our
program might return values farther away from the optimum in those methods
with higher dimensional optimization problems.

Figure 3 and Figure 4 show the approximated point-wise mean squared error
in the upper part of each plot. In the lower part, a point-wise decomposition
into a squared bias and a variance term is shown. This decomposition is not
straight forward in curved spaces: We calculate the Fréchet mean m̄t of our
repetitions (m̂j

t )j=1,...,500. The dotted line in each plot is t �→ d(m̄t,mt)2 =:
Bias2t . The dashed line is 1

500
∑500

j=1 d(m̄t, m̂
j
t )2 =: Vart. But, in nonstandard

spaces, there is no guarantee that 1
500

∑500
j=1 d(mt, m̂

j
t )2 =: MSEt = Bias2t +

Vart. Still this decomposition is valuable. It shows that OrtGeo is an unbiased
estimator of the simple curve, which is not surprising as OrtGeo with N = 3 is
a parametric estimator and the simple curve is in its model space. On the spiral
the estimators suffer from boundary effects. On the simple curve this only affects
the local estimators as this curve is periodic and does not have a boundary for
the trigonometric estimators.

Appendix A: Proofs

Recall the general metric space model. Let (Q, d) be a metric space. For t ∈
[0, 1], let Yt be a Q-valued random variable with finite second moment, i.e.,
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Fig 3. Point-wise MSE, squared bias, and variance for the simple curve.

E[d(Yt, q)2] < ∞ for all t ∈ [0, 1] and q ∈ Q. Let the regression function
m : [0, 1] → Q be a minimizer mt ∈ arg minq∈Q E[d(Yt, q)2]. We consider non-
parametric estimators which have access to following data: Let xi = i

n and let
(yi)i=1,...,n be independent random variables with values in Q such that yi has
the same distribution as Yxi .
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Fig 4. Point-wise MSE, squared bias, and variance for the spiral.

We introduce some further notation. Define

q,p := d(q, p) ,
♦(y, z, q, p) := d(y, q)2 − d(y, p)2 − d(z, q)2 + d(z, p)2 ,

a(y, z) := sup
q,p∈Q,q 	=p

♦(y, z, q, p)
d(q, p) .



4704 C. Schötz

A.1. LocFre

A.1.1. A general result

To prove the theorems from Section 2 concerning the LocFre estimator, we show
a more general results first.

For a > 0, define �a	 as the largest integer strictly smaller than a. The Hölder
class Σ(β, L) for β, L > 0 is defined as the set of �β	-times continuously differ-
entiable functions f : [0, 1] → R with

∣∣f (�β�)(t) − f (�β�)(x)
∣∣ ≤ L |x− t|β−�β� for

all x, t ∈ [0, 1].
Assumptions 5.

• VarIneq: There is CVlo ∈ [1,∞) such that C−1
Vlo q,mt

2 ≤ E[d(Yt, q)2 −
d(Yt,mt)2] for all q ∈ Q and t ∈ [0, 1].

• Entropy: There are CEnt ∈ [1,∞) and α ∈ [1, 2) such that γ2(B, d) ≤
CEnt max(diam(B, d), diam(B, d)α) for all B ⊆ Q, where γ2 is the measure
of entropy defined Definition 1.

• Moment: There are κ > 2
2−α and CMom ∈ [1,∞) such that the bound

E[d(Yt,mt)κ] 1
κ ≤ CMom holds for all t ∈ [0, 1].

• Kernel: There are CKmi, CKma ∈ [1,∞) such that

C−1
Kmi1[− 1

2 ,
1
2 ](x) ≤ K(x) ≤ CKma1[−1,1](x)

for all x ∈ R.
• HölderSmoothDensity: The function [0, 1] → Q, t �→ mt is continu-

ous. Let CLen ∈ [1,∞) such that sups,t∈[0,1] d(ms,mt) ≤ CLen. Let μ be
a probability measure on Q. Let CInt ∈ [1,∞) such that

∫
y,m0

2μ(dy) ≤
CInt. Let y → ρ(y|t) be the μ-density of Yt. Let β > 0 with � = �β	. For
μ-almost all y ∈ Q, there is L(y) ≥ 0 such that t �→ ρ(y|t) ∈ Σ(β, L(y)).
Furthermore, there is a constant CSmD > 0,

∫
L(y)2dμ(y) ≤ C2

SmD.
• BiasMoment: Define H(q, p) = (

∫
(y,q + y,p)2 μ(dy)) 1

2 . There is CBom ∈
[1,∞) such that E[H(m̂t,mt)κ] 1

κ ≤ CBom for all t ∈ [0, 1].

Theorem 7 (LocFre General). Assume HölderSmoothDensity, BiasMo-

ment, Kernel, VarIneq, Entropy, Moment. Let � = �β	. Then, for t ∈
[0, 1], n ≥ c, and h ≥ c

n , the local polynomial Fréchet estimator m̂t of order �
fulfills,

E

[
mt,m̂t

2] ≤ C1

(
h2β + h

2β
2−α

)
+ C2

(
(nh)−1 + (nh)−

1
2−α

)
,

where

C1 = cα,κ (CVloCKmiCKmaCSmDCBom)
2

2−α ,

C2 = cα,κ
(
CVloCMomCEntC

2
KmiC

2
Kma

) 2
2−α .

To prove Theorem 7, We first apply the variance inequality to relate a bound
on the objective functions to a bound on the minimizers. The required uniform
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bound on the objective functions can be split into a bias and a variance part,
which are bounded separately thereafter. Then, these results are put together in
the application of a peeling device, which is used to bound the tail probabilities
of the error. Integrating the tails leads to the required bounds in expectation.

A.1.2. Proof of the general result

Kernel First we state some properties of the weights wi,t to be used later.

Lemma 1 ([27, Proposition 1.12, Lemma 1.3, Lemma 1.5]). Assume Kernel.
Let f : R → R be a polynomial of degree ≤ �. Then

wi,t = 0 if |xi − t| > h ,

n∑
i=1

wi,t = 1 ,
n∑

i=1
f(xi)wi,t = f(t) ,

|wi,t| ≤ c
CKmiCKma

nh
,

n∑
i=1

|wi,t| ≤ cCKmiCKma ,

n∑
i=1

w2
i,t ≤ c

C2
KmiC

2
Kma

nh
.

for all t ∈ [0, 1], h ≥ c
n , n ≥ c.

Proof. The first statement is due to the bounded support of the kernel. For the
other statements in the first row, see [27, Proposition 1.12]. The next two bounds
follow from [27, Lemma 1.3, Lemma 1.5]. The last bound is a consequence of
the previous two.

Variance inequality and split We define following notation for the objective
functions

F̂t(q) =
n∑

i=1
wi,td(yi, q)2 F̂t(q, p) = F̂t(q) − F̂t(p) ,

F̄t(q) =
n∑

i=1
wi,tE[d(yi, q)2] F̄t(q, p) = F̄t(q) − F̄t(p) ,

Ft(q) = E[d(Yt, q)2] Ft(q, p) = Ft(q) − Ft(p) .

Using VarIneq and the minimizing property of m̂t we obtain

C−1
Vlod(m̂t,mt)α ≤ Ft(m̂t,mt)

≤ Ft(m̂t,mt) − F̂t(m̂t,mt)

=
(
Ft(m̂t,mt) − F̄t(m̂t,mt)

)
+
(
F̄t(m̂t,mt) − F̂t(m̂t,mt)

)
The first parenthesis represents the bias part, the second one the variance part.
We will bound the former using HölderSmoothDensity, the later by an
empirical process argument.
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Variance Define

Zi(q) = wi,t

(
d(yi, q)2 − d(yi,mt)2

)
− E

[
wi,t

(
d(yi, q)2 − d(yi,mt)2

)]
.

Then Z1, . . . , Zn are independent and centered processes with Zi(mt) = 0. They
are integrable due to Moment. By the definition of a,

|Zi(q) − Zi(p) − Z ′
i(q) + Z ′

i(p)| ≤ |wi,t| a(yi, y′i)d(q, p) ,

where Zi(q)′ and y′i are independent copies of Zi(q) and yi, respectively. Theo-
rem 10 yields

E

[
sup

q∈B(mt,d,δ)

∣∣∣F̄t(q,mt) − F̂t(q,mt)
∣∣∣κ
]

= E

[
sup

q∈B(mt,d,δ)

∣∣∣∣∣
n∑

i=1
Zi(q)

∣∣∣∣∣
κ]

≤ cκ

⎛
⎜⎝E

⎡
⎣( n∑

i=1
w2

i,ta(yi, y′i)2
)κ

2
⎤
⎦

1
κ

γ2(B(mt, d, δ), d)

⎞
⎟⎠

κ

for a constant cκ depending only on κ. Define W =
∑n

i=1 w
2
i,t and vi = w2

i,t/W .
We apply Moment,

E

⎡
⎣( n∑

i=1
w2

i,ta(yi, y′i)2
)κ

2
⎤
⎦ = E

⎡
⎣(W

n∑
i=1

via(yi, y′i)2
)κ

2
⎤
⎦

≤ E

[
W

κ
2

n∑
i=1

via(yi, y′i)κ
]

= W
κ
2

n∑
i=1

viE[a(yi, y′i)κ]

≤ W
κ
2 Cκ

Mom .

By Lemma 1, W ≤ cC2
KmiC

2
Kma(nh)−1. The assumption Entropy implies the

bound γ2(B(mt, d, δ), d) ≤ CEnt max(δ, δα). Thus,

E

[
sup

q∈B(mt,d,δ)

∣∣∣F̄t(q,mt) − F̂t(q,mt)
∣∣∣κ
]

≤ cκ

(
CMomCEntC

2
KmiC

2
Kma max(δ, δα)(nh)− 1

2

)κ

.

Bias As
∑n

i=1 wi,t = 1 (Lemma 1), we have

Ft(q,mt) − F̄t(q,mt) =
n∑

i=1
wi,tE[♦(Yt, yi, q,mt)] .

Using the μ-density y �→ ρ(y|t) of Yt, we can write E[Yt,q
2 − Yt,p

2] =∫ (
y,q2 − y,p2) ρ(y|t)dμ(y). By HölderSmoothDensity, we have t �→ ρ(y|t) ∈
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Σ(β, L(y)). Thus, there are ak(y) such that ρ(y|x) = Ry(x, x0)+
∑�

k=0 ak(y)(x−
x0)k with |Ry(x, x0)| ≤ L(y) |x− x0|β . Using that the weights annihilate poly-
nomials of order � [27, equation (1.68)], we obtain

n∑
i=1

wi,tE[♦(Yt, yi, q, p)] =
∫ n∑

i=1
wi,t

(
y,q2 − y,p2) (ρ(y|t) − ρ(y|xi)) dμ(y)

=
∫ n∑

i=1
wi,t

(
y,q2 − y,p2)Ry(t, xi)dμ(y)

≤
∫ n∑

i=1
|wi,t|

∣∣y,q2 − y,p2∣∣ |Ry(t, xi)|dμ(y) .

It holds ∣∣y,q2 − y,p2∣∣ |Ry(x, x0)| ≤ q,p |x− x0|β (y,q + y,p)L(y) .

Together with
∑n

i=1 |wi,t| ≤ cCKmiCKma from Lemma 1, we obtain∣∣∣∣∣
n∑

i=1
wi,tE[♦(Yt, yi, q, p)]

∣∣∣∣∣ ≤ cCKmiCKma q,p h
β

∫
(y,q + y,p)L(y)dμ(y)

Recall H(q, p) =
(∫

(y,q + y,p)2 μ(dy)
) 1

2 . By the Cauchy–Schwartz inequality
and HölderSmoothDensity,

∫
(y,q + y,p)L(y)dμ(y) ≤ H(q, p)

(∫
L(y)2dμ(y)

) 1
2

≤ H(q, p)CSmD .

Thus,
Ft(q,mt) − F̄t(q,mt) ≤ cCKmiCKmaCSmD q,p hβH(q,mt) (44)

BiasMoment states E[H(m̂t,mt)κ] 1
κ ≤ CBom. Finally we obtain

E

[∣∣Ft(m̂t,mt) − F̄t(m̂t,mt)
∣∣κ 1[0,δ](d(m̂t,mt))

] 1
κ

≤ E

[∣∣cCKmiCKmaCSmDd(m̂t,mt)H(m̂t,mt)hβ
∣∣κ 1[0,δ](d(m̂t,mt))

] 1
κ

≤ cCKmiCKmaCSmDCBomδh
β .

Peeling For δ > 0 define

Δδ(q, p) =
(∣∣Ft(q, p) − F̄t(q, p)

∣∣+ ∣∣∣F̄t(q, p) − F̂t(q, p)
∣∣∣) 1[0,δ](d(q, p)) .

Recall that the variance inequality implies

C−1
Vlod(m̂t,mt)2 ≤

(
Ft(m̂t,mt) − F̄t(m̂t,mt)

)
+
(
F̄t(m̂t,mt) − F̂t(m̂t,mt)

)
.
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Let 0 < a < b < ∞. The inequality above and Markov’s inequality yield

P(d(m̂t,mt) ∈ [a, b]) ≤ P
(
a2 ≤ CVloΔb(m̂t,mt)

)
≤ Cκ

VloE[Δb(m̂t,mt)κ]
a2κ .

Our previous consideration allow us the bound the expectation by a variance
and a bias term:
E[Δδ(m̂t,mt)κ]

≤ 2κ−1

(
E

[∣∣Ft(m̂t,mt) − F̄t(m̂t,mt)
∣∣κ 1[0,δ](d(m̂t,mt))

]

+ E

[
sup

q∈B(mt,d,δ)

∣∣∣F̄t(q,mt) − F̂t(q,mt)
∣∣∣κ
])

≤ cκ

(
CKmiCKmaCSmDCBomh

β + CMomCEntC
2
KmiC

2
Kma(nh)− 1

2

)κ

max(δ, δα)κ .

We are now prepared to apply peeling (also called slicing): Let s > 0. Set
A = CVloCKmiCKmaCSmDCBomh

β + CVloCMomCEntcC
2
KmiC

2
Kma(nh)− 1

2 . It holds

P(d(m̂t,mt) > s) ≤
∞∑
k=0

P
(
d(m̂t,mt) ∈ [2ks, 2k+1s]

)

≤
∞∑
k=0

cκA
κ max(2k+1s, (2k+1s)α)κ

(2ks)2κ

≤ cκA
κ
(
s−κ + s−κ(2−α)

) ∞∑
k=0

2−kκ(2−α)

≤ cκA
κ
(
s−κ + s−κ(2−α)

)
.

We integrate this tail bound to bound the expectation. For this we require
κ > 2

2−α . Set B = cκA
κ, then

E[d(m̂t,mt)2] = 2
∫ ∞

0
sP(d(m̂t,mt) > s)ds

≤ 2
∫ ∞

0
smin

(
1, B

(
s−κ + s−κ(2−α)

))
ds

≤ 2
∫ ∞

0
smin

(
1, Bs−κ

)
ds + 2

∫ ∞

0
smin

(
1, Bs−κ(2−α)

)
ds .

For the first summand,

2
∫ ∞

0
smin

(
1, Bs−κ

)
ds = 2

∫ B
1
κ

0
sds + 2B

∫ ∞

B
1
κ

s1−κds

= B
2
κ + 2B

κ− 2B
2−κ
κ

= κ

κ− 2B
2
κ .
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Similarly,

2
∫ ∞

0
smin

(
1, Bs−κ(2−α)

)
ds ≤ κ(2 − α)

κ(2 − α) − 2B
2

κ(2−α)

Thus,

E[d(m̂t,mt)2] ≤ cκ

(
A2 + A

2
2−α

)
≤ cα,κ (CVloCKmiCKmaCSmDCBom)

2
2−α

(
h2β + h

2β
2−α

)
+

cα,κ
(
CVloCMomCEntC

2
KmiC

2
Kma

) 2
2−α

(
(nh)−1 + (nh)−

1
2−α

)
.

A.1.3. Main theorems

We use Theorem 7 to prove the two main theorems concerning LocFre. Recall

H(q, p) =
(∫

(y,q + y,p)2 μ(dy)
) 1

2 .

Proof of Theorem 1. We want to apply Theorem 7 with α = 1. As diam(Q, d) <
∞, H(q, p) ≤ 2 diam(Q) for all q, p ∈ Q, and we can set CBom = 2 diam(Q, d).
Furthermore, y,q2 − y,p2 − z,q2 + z,p2 ≤ 4q,p diam(Q, d). Thus, the bound
a(y, z) ≤ 4 diam(Q, d) holds and we can choose CMom = 4 diam(Q, d). Lastly,
we may integrate the inequality E[mt,m̂t

2] ≤ C1h
2β +C2(nh)−1 with respect to

t to obtain the bound for the mean integrated squared error.

Proposition 3. Let Q be a Hadamard space. Assume HölderSmoothDensi-

ty, Kernel, Moment. To fulfill BiasMoment, we can choose

CBom = cκCMomCKmiCKmaCLenCInt .

Proof of Proposition 3. Using the triangle inequality

H(q, p)2 =
∫

(y,q + y,p)2 μ(dy)

≤
∫

(q,p + 2y,p)2 μ(dy)

≤ 2
∫

q,p2 + 4y,p2μ(dy)

≤ 2q,p2 + 8
∫

y,p2μ(dy)

as μ is a probability measure.

E[H(m̂t,mt)κ] 1
κ ≤ E

[(
2m̂t,mt

2 + 8
∫

y,mt
2μ(dy)

)κ
2
] 1

κ
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≤ cκ

(
E

[
m̂t,mt

κ
] 1

κ +
(∫

y,m0
2μ(dy)

) 1
2

+ mt,m0

)

≤ cκ

(
E

[
m̂t,mt

κ
] 1

κ + CInt + CLen

)
.

Next, we will bound E[mt,m̂t
κ]. Let W =

∑n
i=1 |wi,t|. First, as VarIneq holds

in Hadamard spaces with CVlo = 1, ♦(y, z, q, p) ≤ 2y,z q,p in Hadamard spaces,
and the minimizing property of m̂t,

mt,m̂t
2 ≤ Ft(m̂t,mt)
≤ Ft(m̂t,mt) − F̂t(m̂t,mt)

=
n∑

i=1
wi,tE[♦(Yt, yi,mt, m̂t) | y1...n]

≤ 2
n∑

i=1
|wi,t| m̂t,mt E[d(Yt, yi) | yi] .

Thus,

mt,m̂t ≤
n∑

i=1
|wi,t|E[d(Yt, yi) | yi]

With Jensen’s inequality

E[mt,m̂t
κ] ≤ E

[(
n∑

i=1
|wi,t|E[d(Yt, yi) | yi]

)κ]

= Wκ
E

[(
n∑

i=1

|wi,t|
W

E[d(Yt, yi) | yi]
)κ]

≤ Wκ
n∑

i=1

|wi,t|
W

E[E[d(Yt, yi) | yi]κ]

≤ Wκ
n∑

i=1

|wi,t|
W

E[d(Yt, yi)κ]

≤ Wκ sup
s,t∈[0,1]

E[d(Yt, Y
′
s )κ] .

As d is a metric,

E[d(Yt, Y
′
s )κ] ≤ E

[
(d(Yt,mt) + d(mt,ms) + d(ms, Y

′
s ))κ

]
≤ 3κ

(
2 sup
t∈[0,1]

E[d(Yt,mt)κ] + d(mt,ms)κ
)

≤ cκ (Cκ
Mom + Cκ

Len) .

Lemma 1 shows W ≤ cCKmiCKma. This completes the proof.
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Proof of Theorem 2. We want to apply Theorem 7. VarIneq holds in all Hada-
mard spaces with CVlo = 1. Furthermore, the quadruple inequality in Hadamard
spaces yields a(y, z) = 2d(y, z), which allows to state the moment condition with
respect to d instead of a. We bound E[H(m̂t,mt)κ] 1

κ ≤ CBom using

CBom = cκCMomCKmiCKmaCLenCInt ,

see Proposition 3. Lastly, we may integrate the inequality

E

[
mt,m̂t

2] ≤ C1

(
h2β + h

2β
2−α

)
+ C2

(
(nh)−1 + (nh)−

1
2−α

)
with respect to t to obtain the bound for the mean integrated squared error.

A.2. OrtFre

A.2.1. A general result

We prove a general theorem that implies the main theorems concerning OrtFre.
Assumptions 6.

• VarIneq: There is CVlo ∈ [1,∞) such that C−1
Vlo q,mt

2 ≤ E[Yt,q
2 −Yt,mt

2]
for all q ∈ Q and t ∈ [0, 1].

• Entropy: There are CEnt ∈ [1,∞) and α ∈ [1, 2) such that γ2(B, d) ≤
CEnt max(diam(B, d), diam(B, d)α) for all B ⊆ Q, where γ2 is the measure
of entropy defined Definition 1.

• Moment: There are κ > 2
2−α and CMom ∈ [1,∞) such that the bound

E[d(Yt,mt)κ] 1
κ ≤ CMom holds for all t ∈ [0, 1].

• SobolevSmoothDensity: The function [0, 1] → Q, t �→ mt is continu-
ous. Let CLen ∈ [1,∞) such that sups,t∈[0,1] d(ms,mt) ≤ CLen. Let μ be
a probability measure on Q. Let CInt ∈ [1,∞) such that

∫
y,m0

2μ(dy) ≤
CInt. For all t ∈ [0, 1], the random variable Yt has a density y �→ ρ(y|t)
with respect to μ. Let β ≥ 1. For μ-almost all y ∈ Y, there is L(y) ≥ 0
such that t �→ ρ(y|t) ∈ W per(β, L(y)). Furthermore, there is CSmD ∈ [1,∞)
such that

∫
L(y)2dμ(y) ≤ C2

SmD.

• BiasMoment: Define H(q, p) =
(∫

(y,q + y,p)2 μ(dy)
) 1

2 . There is CBom ∈
[1,∞) such that E[H(m̂t,mt)κ] 1

κ ≤ CBom for all t ∈ [0, 1].

Theorem 8 (OrtFre General). Assume VarIneq, Entropy with α = 1, Mo-

ment, BiasMoment, SobolevSmoothDensity. Then

E

[∫ 1

0
mt,m̂t

2dt
]
≤ C1

(
N−2β + Nn1−2β)+ C2

N

n
,

where C1 = cκ,βC
2
VloC

2
SmDC

2
Bom and C2 = cκ,βC

2
VloC

2
MomC

2
Ent.
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The difference of the objective functions is split into three parts in Lemma 2.
In Lemma 3, we use a peeling device and the variance inequality to relate this
difference to the distance between the minimizers m̂t and mt, which is the
quantity to be bounded in the theorem. Of the three parts, two bias related
quantities are bounded in Lemma 4 and Lemma 5 with an auxiliary result in
Lemma 6. The third part, a variance term, is bounded in Lemma 7 via chaining.
The bounds on the three parts are summarized in Lemma 8. In the end, the
integral over t is applied to calculate the mean integrated squared error. Here,
the auxiliary result Lemma 9 is applied.

A.2.2. Proof of the general result

For shorter notation define Ft(q, p) := Ft(q)−Ft(p) and F̂t(q, p) := F̂t(q)−F̂t(p).
We introduce the Fourier coefficients ϑj(q, p) of t �→ Ft(q, p) with respect to the
trigonometric basis

ϑj(q, p) =
∫ 1

0
ψj(x)Fx(q, p)dx

such that Ft(q, p) =
∑∞

j=1 ϑj(q, p)ψj(t) due to SobolevSmoothDensity. De-
fine

rt(q, p) =
∞∑

k=N+1

ϑj(q, p)ψj(t) ,

F r
t (q, p) = ΨN (t)�1

n

n∑
i=1

ΨN (xi)rxi(q, p) ,

εt(y, q, p) = Ft(q, p) −
(
y,q2 − y,p2) ,

F ε
t (q, p) = ΨN (t)�1

n

n∑
i=1

ΨN (xi)εxi(yi, q, p) .

Lemma 2. If N < n, then

Ft(q, p) − F̂t(q, p) = rt(q, p) + F ε
t (q, p) − F r

t (q, p) .

Proof of Lemma 2. It holds

1
n

n∑
i=1

ψj(xi)ψj̃(xi) = δjj̃

for j, � ∈ {1, . . . , n− 1}, see [27, Lemma 1.7]. Set

FN
t (q, p) =

N∑
k=1

ϑj(q, p)ψj(t) .

Then 1
n

∑n
i=1 ψj(xi)FN

xi
(q, p) = ϑj(q, p) for j ≤ N < n. Thus,

FN
t (q, p) = ΨN (t)�1

n

n∑
i=1

ΨN (xi)FN
xi

(q, p) .
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As Ft(q, p) − rt(q, p) = FN
t (q, p), we obtain

Ft(q, p) − F̂t(q, p) − rt(q, p)

= ΨN (t)�1
n

n∑
i=1

ΨN (xi)FN
xi

(q, p) − ΨN (t) 1
n

n∑
i=1

ΨN (xi)
(
yi,q

2 − yi,p
2)

= ΨN (t)�1
n

n∑
i=1

ΨN (xi)
(
FN
xi

(q, p) − Fxi(q, p) + Fxi(q, p) −
(
yi,q

2 − yi,p
2))

= ΨN (t)�1
n

n∑
i=1

ΨN (xi) (−rxi(q, p) + εxi(yi, q, p))

= F ε
t (q, p) − F r

t (q, p) .

Next, we apply the peeling device.

Lemma 3. For b > 0, define

Ut,b = sup
q∈B(mt,b,d)

F ε
t (q,mt) + (rt(m̂t,mt) − F r

t (m̂t,mt)) 1[0,b](m̂t,mt)) .

Let κ > 2. Define

h(t) = sup
b>0

(
E[Uκ

t,b]
bκ

) 1
κ

Assume VarIneq. Then

E

[
m̂t,mt

2] ≤ 4κ
κ− 2C

2
Vloh(t)2 .

Proof of Lemma 3. For a function h(t) > 0, we have

E

[
m̂t,mt

2

h(t)2

]
=
∫ ∞

0
2sP

(
m̂t,mt > sh(t)

)
ds .

By VarIneq, the minimizing property of m̂t, and Lemma 2, we obtain

C−1
Vlo m̂t,mt

2 ≤ Ft(m̂t,mt)
≤ Ft(m̂t,mt) − F̂t(m̂t,mt)
= rt(m̂t,mt) + F̂ ε

t (m̂t,mt) − F r
t (m̂t,mt) .

If m̂t,mt ∈ [a, b] for 0 < a < b, then

C−1
Vloa

2 ≤ C−1
Vlo m̂t,mt

2

≤ F ε
t (m̂t,mt) + rt(m̂t,mt) − F r

t (m̂t,mt)
≤ sup

q∈B(mt,b,d)
F ε
t (q,mt) + (rt(m̂t,mt) − F r

t (m̂t,mt)) 1[0,b](m̂t,mt)

= Ut,b .
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Thus, by Markov’s inequality

P
(
m̂t,mt ∈ [a, b]

)
≤ P

(
a2 ≤ CVloUt,b

)
≤

Cκ
VloE[Uκ

t,b]
a2κ .

Let ak(s) = 2ksh(t). As E[Uκ
t,b] ≤ bκh(t)κ, we have

P
(
m̂t,mt > sh(t)

)
≤ min

(
1,

∞∑
k=0

P
(
m̂t,mt ∈ [ak, ak+1)

))

≤ min
(

1, Cκ
Vlo

∞∑
k=0

aκk+1h(t)κ

a2κ
k

)
.

We obtain

aκk+1h(t)κ

a2κ
k

=
(
2k+1sh(t)

)κ
h(t)κ

(2ksh(t))2κ
=
(

2 · 2ksh(t)h(t)
22ks2h(t)2

)κ

=
(
2 · 2−ks−1)κ

and thus
∞∑
k=0

aκk+1h(t)κ

a2κ
k

= 2κs−κ
∞∑
k=0

2−kκ = 2κ

1 − 2−κ
s−κ

Putting everything together with cκ = 2κ

1−2−κC
κ
Vlo yields

h(t)−2
E

[
m̂t,mt

2] = 2
∫ ∞

0
sP
(
m̂t,mt > sh(t)

)
ds

≤ 2
∫ ∞

0
smin

(
1, cκs−κ

)
ds

=
∫ c

1
κ
κ

0
2sds + 2cκ

∫ ∞

c
1
κ
κ

s1−κds

= c
2
κ
κ + 2cκ

1
κ− 2

(
c

1
κ
κ

)2−κ

= c
2
κ
κ

(
1 + 2

κ− 2

)

≤ 4κ
κ− 2C

2
Vlo .

Using the smoothness assumption, we are able to bound the r-term.

Lemma 4 (Bound on r). Assume SobolevSmoothDensity. Then

E[|rt(m̂t,mt)|κ 1[0,b](m̂t,mt)] ≤ bκhN (t)κCκ
Bom ,

where

hN (t) =

⎛
⎝∫ ( ∞∑

�=N+1

ξ�(y)ψ�(t)
)2

μ(dy)

⎞
⎠

1
2
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H(q, p) =
(∫

(y,q + y,p)2 μ(dy)
) 1

2

.

Proof. It holds

ϑj(q, p) =
∫ 1

0
ψj(x)Fx(q, p)dx

=
∫ 1

0

∫
ψj(x)

(
y,q2 − y,p2) ρ(y|x)dμ(y)dx

=
∫ (

y,q2 − y,p2) ∫ 1

0
ψj(x)ρ(y|x)dxdμ(y)

=
∫ (

y,q2 − y,p2) ξ(y)dμ(y) .

Thus,

rt(q, p) =
∫ (

y,q2 − y,p2) ∞∑
�=N+1

ξ�(y)ψ�(t)μ(dy)

≤
(∫ (

y,q2 − y,p2)2 μ(dy)
) 1

2

⎛
⎝∫ ( ∞∑

�=N+1

ξ�(y)ψ�(t)
)2

μ(dy)

⎞
⎠

1
2

≤ q,pH(q, p)hN (t) .

Finally, we obtain

E[|rt(m̂t,mt)|κ 1[0,b](m̂t,mt)] ≤ bκhN (t)κE[H(m̂t,mt)κ] .

Using the previous result, we can also establish a bound on F r.

Lemma 5 (Bound on F r).

E[F r
t (m̂t,mt)κ1[0,b](m̂t,mt)] ≤ cκ

(
Nn1−2βCSmD

)κ
bκCκ

Bom

where cκ ∈ [1,∞) depends only on κ.

Proof. We will show that asymptotically F r
t (q, p) � rt(q, p). Recall

F r
t (q, p) = ΨN (t)�1

n

n∑
i=1

ΨN (xi)rxi(q, p)

rt(q, p) =
∞∑

k=N+1

ϑj(q, p)ψj(t)

and define

rn,t(q, p) =
∞∑
�=n

ϑ�(q, p)ψ�(t)
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It holds

F r
t (q, p) ≤ |ΨN (t)| | 1

n

n∑
i=1

ΨN (xi)rxi(q, p)|

By Lemma 6 below, to be shown below,∣∣∣∣∣ 1n
n∑

i=1
ΨN (xi)rxi(q, p)

∣∣∣∣∣
2

≤ 1
n

n∑
i=1

rxi(q, p)2

As in the proof of Lemma 4, we have

|rn,t(q, p)| ≤ q,phn(t)κH(q, p) ,

where

hn(t)2 =
∫ ( ∞∑

�=n

ξ�(y)ψ�(t)
)2

μ(dy)

Thus,

F r
t (q, p)2 ≤ q,p2H(q, p)2|ΨN (t)|2 1

n

n∑
i=1

hn(xi)2

|ΨN (t)|2 ≤ 2N

As ξ(y) ∈ E(β, L(y)), we have
∑∞

k=1 ξj(y)2a
−2
j ≤ L(y)2 with a2j+1 = a2j =

(2j)−β .
∞∑

k=n

a2
j ≤ cn1−2β .

Thus,

1
n

n∑
i=1

⎛
⎝ ∞∑

j=n

ξj(y)ψj(xi)

⎞
⎠

2

≤ 1
n

n∑
i=1

∞∑
j=n

a−2
j ξj(y)2

∞∑
j=n

a2
jψj(xi)2

≤ 2
∞∑
j=n

a−2
j ξj(y)2

∞∑
j=n

a2
j

≤ c0L(y)2n1−2β .

We obtain

1
n

n∑
i=1

hn(xi)2 ≤ 1
n

n∑
i=1

∫ ( ∞∑
�=n

ξ�(y)ψ�(xi)
)2

μ(dy)

≤ c0n
1−2β

∫
L(y)2μ(dy)
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and can bound

F r
t (q, p)2 ≤ 2c0q,p2H(q, p)2Nn1−2β

∫
L(y)2μ(dy) .

Finally, the inequalities above yield

E[F r
t (m̂t,mt)κ1[0,b](m̂t,mt)]

≤
(

2c0Nn1−2β
∫

L(y)2μ(dy)
)κ

2

bκE[H(m̂t,mt)κ] .

We still have to prove following lemma, which was used in the previous proof.

Lemma 6. Let f : [0, 1] → R be any function and N < n. Then
∣∣∣∣∣ 1n

n∑
i=1

ΨN (xi)f(xi)

∣∣∣∣∣
2

≤ 1
n

n∑
i=1

f(xi)2

Proof of Lemma 6. Let b� = 1
n

∑n
i=1 ψ�(xi)f(xi) and s(t) = f(t)−

∑N
�=1 b�ψ�(t).

Then

1
n

n∑
i=1

s(xi)ψj(xi) = 1
n

n∑
i=1

(
f(xi) −

N∑
�=1

b�ψ�(xi)
)
ψj(xi)

= 1
n

n∑
i=1

f(xi)ψj(xi) −
N∑
�=1

b�
1
n

n∑
i=1

ψ�(xi)ψj(xi)

= bj − bj

= 0

and thus

1
n

n∑
i=1

f(xi)2 = 1
n

n∑
i=1

(
s(xi) +

N∑
�=1

b�ψ�(xi)
)2

= 1
n

n∑
i=1

⎛
⎝s(xi)2 + s(xi)

N∑
�=1

b�ψ�(xi) +
N∑

�,j=1
b�bjψ�(xi)ψj(xi)

⎞
⎠

= 1
n

n∑
i=1

s(xi)2 +
N∑
�=1

b�
1
n

n∑
i=1

s(xi)ψ�(xi)

+
N∑

�,j=1

b�bj
1
n

n∑
i=1

ψ�(xi)ψj(xi)

= 1
n

n∑
i=1

s(xi)2 +
N∑
�

b2� .
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Furthermore, ∣∣∣∣∣ 1n
n∑

i=1
ΨN (xi)f(xi)

∣∣∣∣∣
2

=
N∑
�=1

(ψ�(xi)f(xi))2

=
N∑
�=1

b2�

As 1
n

∑n
i=1 s(xi)2 ≥ 0 we have proved the claim.

Next, we tackle the variance term.

Lemma 7 (Bound on F ε). Assume Moment, Entropy. Then

E

[
sup
q∈B

F ε
t (q, p)κ

]
≤ cκC

κ
Momn

−κ
2 Cκ

Entb
κ
(
ΨN (t)�ΨN (t)

)κ
2 .

Proof of Lemma 7. Recall F ε
t (q, p) = ΨN (t)�1

n

∑n
i=1 ΨN (xi)εxi(yi, q, p). Define

αi = 1
nΨN (t)�ΨN (xi), εi(q, p) = εxi(yi, q, p). Then

F ε
t (q, p) =

n∑
i=1

αiεi(q, p) ,

where ε1, . . . , εn are independent and E[εi(q, p)] = 0. We want to apply Theo-
rem 10 with Zi(q) − Zi(p) = αiεi(q, p) and Ai = αia(yi, y′i). We need to show

|Zi(q) − Zi(p) − Z ′
i(q) + Z ′

i(p)| ≤ Ai q,p

to obtain

E

[
sup
q∈B

∣∣∣∣∣
n∑

i=1
Zi(q)

∣∣∣∣∣
κ]

≤ C E[|A|κ] γ2(B, d)κ .

Using the quadruple property, we obtain

εi(q, p) − ε′i(q, p)
=
(
F (q, p, xi) −

(
yi,q

2 − yi,p
2))− (

F (q, p, xi) −
(
yi,q

2 − yi,p
2))

≤ a(yi, y′i) q,p .

Thus, Theorem 10 yields

E

[
sup
q∈B

F ε
t (q, p)κ

]
≤ Cγ2(B, d)κE

⎡
⎣( n∑

i=1
α2
i a(yi, y′i)2

)κ
2
⎤
⎦ .

Let ai = α2
i∑n

i=1
α2

i

.

E

⎡
⎣( n∑

i=1
α2
i a(yi, y′i)2

)κ
2
⎤
⎦ =

(
n∑

i=1
α2
i

)κ
2

E

⎡
⎣( n∑

i=1
aia(yi, y′i)2

)κ
2
⎤
⎦
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≤
(

n∑
i=1

α2
i

)κ
2

E

[
n∑

i=1
aia(yi, y′i)κ

]

=
(

n∑
i=1

α2
i

)κ
2 n∑

i=1
aiE[a(yi, y′i)κ]

≤
(

n∑
i=1

α2
i

)κ
2

sup
t

E[a(Yt, Y
′
t )κ] .

As a is a pseudo-metric, we have, using Moment,

E[a(Yt, Y
′
t )κ] ≤ 2κCκ

Mom .

Furthermore, it holds
n∑

i=1
α2
i = 1

n2

n∑
i=1

ΨN (t)�ΨN (xi)ΨN (xi)�ΨN (t) = 1
n

ΨN (t)�ΨN (t) .

Together we get

E

[
sup
q∈B

F ε
t (q, p)κ

]
≤ cκC

κ
Momn

−κ
2 γ2(B, d)κ

(
ΨN (t)�ΨN (t)

)κ
2 .

Finally, we put the previous results together to proof our main theorem of
this section.

Lemma 8. There is a constant cκ > 0 depending only on κ such that

h(t)κ ≤ cκ

(
hN (t)κCκ

Bom +
(
Nn1−2βCSmD

)κ
Cκ

Bom + Cκ
Momn

−κ
2 Cκ

Ent|ΨN (t)|κ
)

Proof of Lemma 8. Lemma 4, Lemma 5, and Lemma 7.

Lemma 9. For the function hN defined in Lemma 4, it holds∫ 1

0
hN (t)2dt ≤ cβN−2βC2

SmD .

Proof of Lemma 9. We use Fubini’s theorem and the weights a2j+1 = a2j =
(2j)−β from the definition of the ellipsoid E(β, L) and obtain

∫ 1

0
hN (t)2dt =

∫ ∫ 1

0

( ∞∑
�=N+1

ξ�(y)ψ�(t)
)2

dtdμ(y)

=
∫ 1

0

∫ ( ∞∑
�=N+1

ξ�(y)ψ�(t)
)2

dμ(y)dt

=
∫ ∞∑

�=N+1

ξ�(y)2dμ(y)
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≤
∫

a2
N+1

∞∑
�=N+1

ξ�(y)2a−2
� dμ(y)

≤ cβN−2β
∫

L(y)2dμ(y) .

Proof of Theorem 8. We apply Lemma 3, Lemma 8, and Lemma 9 together with
∫ 1

0
|ΨN (t)|2 dt =

∫ 1

0

N∑
�=1

ψ�(t)2dt = N

to finally obtain∫ 1

0
E

[
m̂t,mt

2]dt
≤ cκC

2
Vlo

∫ 1

0
h(t)2dt

≤ cκC
2
Vlo

(
C2

Bom

∫ 1

0
hN (t)2dt + Nn1−2βC2

SmDC
2
Bom

+ C2
Momn

−1C2
Ent

∫ 1

0
|ΨN (t)|2dt

)

≤ cκ,βC
2
Vlo

(
C2

BomC
2
SmDN

−2β + C2
SmDC

2
BomNn1−2β + C2

MomC
2
Ent

N

n

)
.

A.2.3. Main theorems

We use Theorem 8 to prove the two main theorems concerning OrtFre. Recall

H(q, p) =
(∫

(y,q + y,p)2 μ(dy)
) 1

2 .

Proof of Theorem 3. If diam(Q, d) < ∞, then

H(q, p) ≤
(∫

(2 diam(Q, d))2 μ(dy)
) 1

2

= 2 diam(Q, d) .

Thus, we can choose CBom = 2 diam(Q, d). Using the triangle inequality we get
y,q2 − y,p2 − z,q2 + z,p2 ≤ 4q,p diam(Q, d). Thus, a(y, z) ≤ 4 diam(Q, d) and we
can choose CMom = 4 diam(Q, d).

Proposition 4. Let Q be a Hadamard space. Assume SobolevSmoothDen-

sity and Moment. To fulfill E[H(m̂t,mt)κ] 1
κ ≤ CBom, we can choose

CBom = cκCLenCMomCInt

(
1 + log(N) + N2

n

)

where cκ > 0 depends only on κ.
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This proposition is proven in two steps: Lemma 10 and Lemma 11. Let wi =
1
n

∣∣ΨN (t)�ΨN (xi)
∣∣ and W =

∑n
i=1 |wi|.

Lemma 10. There is a constant cκ ∈ [1,∞) depending only on κ such that

E[H(m̂t,mt)κ] 1
κ ≤ cκ (W (CLen + CMom) + CInt + CLen) .

Proof of Lemma 10. Using the triangle inequality

H(q, p)2 =
∫

(y,q + y,p)2 μ(dy)

≤
∫

(q,p + 2y,p)2 μ(dy)

≤ 2
∫

q,p2 + 4y,p2μ(dy)

≤ 2q,p2 + 8
∫

y,p2μ(dy)

as μ is a probability measure. Using bounds in SobolevSmoothDensity, we
get

E[H(m̂t,mt)κ] 1
κ ≤ E

[(
2m̂t,mt

2 + 8
∫

y,mt
2μ(dy)

)κ
2
] 1

κ

≤ cκ

(
E

[
m̂t,mt

κ
] 1

κ +
(∫

y,m0
2μ(dy)

) 1
2

+ mt,m0

)

≤ cκ

(
E

[
m̂t,mt

κ
] 1

κ + CInt + CLen

)
.

Next, we will bound E[mt,m̂t
κ]. First, by VarIneq and the minimizing property

of m̂t,

mt,m̂t
2 ≤ Ft(m̂t,mt)
≤ Ft(m̂t,mt) − F̂t(m̂t,mt)

≤ 2
n∑

i=1
|wi| m̂t,mt E[d(Yt, yi) | yi]

Thus,

mt,m̂t ≤ 2
n∑

i=1
|wi|E[d(Yt, yi) | yi]

With Jensen’s inequality

E[mt,m̂t
κ] ≤ cκE

[(
n∑

i=1
|wi|E[d(Yt, yi) | yi]

)κ]
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= cκW
κ
E

[(
n∑

i=1

|wi|
W

E[d(Yt, yi) | yi]
)κ]

≤ cκW
κ

n∑
i=1

|wi|
W

E[E[d(Yt, yi) | yi]κ]

≤ cκW
κ

n∑
i=1

|wi|
W

E[d(Yt, yi)κ]

≤ cκW
κ sup
s,t∈[0,1]

E[d(Yt, Y
′
s )κ] .

As d is a metric,

E[d(Yt, Y
′
s )κ] ≤ E

[
(d(Yt,mt) + d(mt,ms) + d(ms, Y

′
s ))κ

]
≤ 3κ

(
2 sup
t∈[0,1]

E[d(Yt,mt)κ] + d(mt,ms)κ
)

≤ cκ (Cκ
Mom + Cκ

Len) .

Lemma 11. There is an universal constant c ∈ (0,∞) such that

W ≤ c

(
1 + log(N) + N2

n

)
.

Proof of Lemma 11. Let gt(s) =
∣∣∣∑N

�=1 ψ�(t)ψ�(s)
∣∣∣. Then

W =
n∑

i=1
|wi| = 1

n

n∑
i=1

∣∣ΨN (t)�ΨN (xi)
∣∣ = 1

n

n∑
i=1

gt(xi) .

By the standard comparison between an integral of a Lipschitz–continuous func-
tion an the corresponding Riemann sum, we obtain∣∣∣∣∣

∫ 1

0
gt(s)ds−

1
n

n∑
i=1

gt(xi)

∣∣∣∣∣ ≤ sup
s∈[0,1]

|g′t(s)|
n

≤ 4πN
2

n
.

This bound is quite rough and could be improved. But we will choose Nn ≤ n
1
3

and thus N2
n

n → 0. For x ∈ R denote [x] the fractional part of x, i.e., the number
[x] ∈ [0, 1) that fulfills [x] = x− k for a k ∈ Z. For � ≥ 2,

ψ�(t)ψ�(s) = 1
2
(
(−1)� cos(2π�[t + s]) + cos(2π�[t− s])

)
.

The function (s, t) �→
∑N

�=1 ψ�(t)ψ�(s) only depends on [s+ t] and [s− t]. When
integrating s from 0 to 1, [s + t] and [s − t] run through every value in [0, 1).
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Thus

sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣1 +
N∑
�=2

ψ�(t)ψ�(s)

∣∣∣∣∣ ds
= sup

t∈[0,1]

∫ 1

0

∣∣∣∣∣1 + 1
2

N∑
�=2

(
(−1)� cos(2π�[t + s]) + cos(2π�[t− s])

)∣∣∣∣∣ds
≤ 1 + 1

2 sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣
N∑
�=2

(
(−1)� cos(2π�[t + s])

)∣∣∣∣∣ ds
+ 1

2 sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣
N∑
�=2

cos(2π�[t− s])

∣∣∣∣∣ ds
= 1 + 1

2

∫ 1

0

∣∣∣∣∣
N∑
�=2

(−1)� cos(2π�s)

∣∣∣∣∣ ds + 1
2

∫ 1

0

∣∣∣∣∣
N∑
�=2

cos(2π�s)

∣∣∣∣∣ ds .
Lagrange’s trigonometric identities state

2
L∑

�=1

cos(�x) = −1 +
sin

(
(L + 1

2 )x
)

sin
(
x
2
) ,

2
L∑

�=1

(−1)� cos(�x) = −1 +
(−1)L+1 sin

(
(L + 1

2 )x
)

− sin
(
x
2
) .

Thus, we have to bound the integral
∫ 1

0

∣∣∣∣ sin((2L + 1)πs)
sin(πs)

∣∣∣∣ds .
It holds |sin(πx)| ≥ 1

2πmin(x, 1 − x) for x ∈ [0, 1]. Let a = kπ for k ∈ N. Then
∫ 1

0

∣∣∣∣ sin(as)
sin(πs)

∣∣∣∣ ds ≤ 2
π

∫ 1

0

|sin(as)|
min(s, 1 − s)ds

= 4
π

∫ 1
2

0

|sin(as)|
s

ds

= 4
π

∫ 1
2a

0

|sin(t)|
t

dt .

We bound this integral as follows,
∫ 1

2kπ

0

|sin(t)|
t

dt =
∫ π

0

|sin(t)|
t

dt +
∫ 1

2kπ

π

|sin(t)|
t

dt

≤
∫ π

0

sin(t)
t

dt +
∫ 1

2kπ

π

1
t
dt
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≤ 2 + log(1
2kπ) − log(π)

= 2 + log(1
2k) .

Thus, we obtain ∫ 1

0

∣∣∣∣ sin(2kπs)
sin(πs)

∣∣∣∣ ds ≤ 8
π

+ 4
π

log(1
2k) ,

which yields

sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣1 +
N∑
�=2

ψ�(t)ψ�(s)

∣∣∣∣∣ ds ≤ c0 + c1 log(N) .

Proof of Theorem 4. VarIneq holds in Hadamard spaces with CVlo = 1. We
bound E[H(m̂t,mt)κ] 1

κ ≤ CBom using

CBom = cκCLenCMomCInt

(
1 + log(N) + N2

n

)
,

see Proposition 4. As N ≤ c
√
n the term N2

n can be bounded by a constant.

A.3. LocGeo

A.3.1. A general result

We prove a general theorem that implies the main theorems concerning LocGeo.
Recall the definitions needed to construct the LocGeo-estimator: Let h ≥ 2

n ,
K : R → R. For t ∈ [0, 1], define wh(t, x) := 1

hK(x−t
h ) and

wi,t = wh(t, xi)∑n
j=1 wh(t, xj)

.

We will show a theorem with a more general notion of parameterized curves than
those induced by an exponential map. To this end, let Θ be a set with subset
Θh ⊆ Θ. Let g : R×Θ → Q. Let θ̂t,h ∈ arg minθ∈Θh

∑n
i=1 wi,t d(yi, g(xi − t, θ))2

and m̂t = g(0, θ̂t,h).
The distance d induces following two distances on Θ, which we will make use

of later.

D2
h(θ, θ̃) :=

∫ 1
2

− 1
2

d
(
g(xh, θ), g(xh, θ̃)

)2 dx ,

bh(θ, θ̃) := sup
x∈[−1,1]

d
(
g(xh, θ), g(xh, θ̃)

)
.
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Assumptions 7.

• VarIneq: There is CVlo ∈ [1,∞) such that C−1
Vlod(q,mt)2 ≤ E[d(Yt, q)2 −

d(Yt,mt)2] for all q ∈ Q and t ∈ [0, 1].
• EntropyGeod: There are CEnG ∈ [1,∞) and α ∈ [1, 2) such that

γ2(B, bh) ≤ CEnG max(diam(B, bh), diam(B, bh)α)

for all B ⊆ Θh.
• MomentA: There is κ > 2

2−α and CMoA ∈ [1,∞) such that the bound
E[a(Yt,mt)κ] 1

κ ≤ CMoA holds for all t ∈ [0, 1].
• Kernel: There are CKmi, CKma ∈ [1,∞) such that

C−1
Kmi1[− 1

2 ,
1
2 ](x) ≤ K(x) ≤ CKma1[−1,1](x)

for all x ∈ R.
• HölderSmoothEx: Let β > 0. There is CSmo ∈ [1,∞) such that for all

t ∈ [0, 1], there is θt ∈ Θh such that E[d(Yx, g(x− t, θt))2 − d(Yx,mx)2] ≤
C2

Smo |x− t|2β for all x ∈ [0, 1].
• Lipschitz: There is CLip ∈ [1,∞) such that

d(g(xh, θ), g(yh, θ)) ≤ CLip |x− y|

for all x, y ∈ [−1
2 ,

1
2 ] and θ ∈ Θh.

• IntBoundsSup: There is CIBS ∈ [1,∞) such that

bh(θ, θ̃)2 ≤ C2
IBSD

2
h(θ, θ̃)

for all θ, θ̃ ∈ Θh.

Theorem 9 (LocGeo General). Assume VarIneq, MomentA, Lipschitz,
HölderSmoothEx, Kernel, EntropyGeod, and IntBoundsSup. Then

E

[
D2

h(θ̂t,h, θt)
]
≤ C1h

2β + C2(nh)−1 + C3(nh)−2 ,

for all t ∈ [0, 1], where

C1 = cκCKmiCKmaCVloC
2
Smo ,

C2 = cα,κ
(
C2

IBSC
3
KmiC

3
KmaC

2
MoAC

2
EnGC

2
Vlo
) 2

2−α ,

C3 = cα,κ (CLipCIBS)
2

2−α .

We first find a general bound on D2
h(θ, θ̃) in which the integral is replaced by

a sum (Lemma 12). Then Lemma 13 shows how the resulting terms can further
be bounded when applied to θ̂t,h and θt using the conditions on the kernel and
the smoothness assumption. In particular, the error term has parts that can be
described as bias and variance parts and the bias terms are bounded here. In
Lemma 14, we use chaining to bound the variance term. Thereafter these results
are put together to prove Theorem 9.
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A.3.2. Proof of the general result

For θ ∈ Θ, define

Ut(θ) :=
n∑

i=1
wi,td(g(xi − t, θ),mxi)

2
.

Lemma 12. Assume Kernel and Lipschitz. Let θ, θ̃ ∈ Θh. Then

D2
h(θ, θ̃) ≤ cCKmiCKma

(
Ut(θ) + Ut(θ̃)

)
+ cCLipbh(θ, θ̃)(nh)−1 .

Proof. Kernel implies

wi,t ≥
C−1

Kmi
CKma#It,h

1[− 1
2 ,

1
2 ]

(
xi − t

h

)
,

where It,h = {i ∈ {1, . . . , n} : t− h ≤ xi ≤ t + h}. We bound the difference be-
tween the Riemann sum and its corresponding integral using Lemma 17 with
Lipschitz, which shows that the function x �→ d(g(xh, θ), g(xh, θ̃))2 is Lipschitz
continuous on [−1

2 ,
1
2 ] with constant L := cCLipbh(θ, θ̃). Thus, we obtain∣∣∣∣∣∣∣

1
#It,h2

∑
i∈I

t, h2

d
(
g(xi − t, θ), g(xi − t, θ̃)

)2 − ∫ 1
2

− 1
2

d
(
g(xh, θ), g(xh, θ̃)

)2 dx

∣∣∣∣∣∣∣
≤ L

#It,h2
.

Hence,
n∑

i=1
wi,td

(
g(xi − t, θ), g(xi − t, θ̃)

)2

≥ C−1
Kmi

CKma#It,h

∑
i∈I

t, h2

d
(
g(xi − t, θ), g(xi − t, θ̃)

)2

≥
C−1

Kmi#It,h2
CKma#It,h

(∫ 1
2

− 1
2

d
(
g(xh, θ), g(xh, θ̃)

)2 dx− L

#It,h2

)
.

As h ≥ 2
n , we obtain
n∑

i=1
wi,td

(
g(xi − t, θ), g(xi − t, θ̃)

)2 ≥ C−1
Kmi

6CKma

(
D2

h(θ, θ̃) − 2L
nh

)
.

Using the triangle inequality, we can further bound
n∑

i=1
wi,td

(
g(xi − t, θ), g(xi − t, θ̃)

)2
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≤ 2
n∑

i=1
wi,t

(
d(g(xi − t, θ),mxi)2 + d(mxi , g(xi − t, θ̃))2

)
= 2

(
Ut(θ) + Ut(θ̃)

)
.

Thus, we arrive at

2
(
Ut(θ) + Ut(θ̃)

)
≥ C−1

Kmi
6CKma

(
D2

h(θ, θ̃) − 2L
nh

)
,

which yields the claimed inequality after rearranging the terms.

Define

F̄t(θ, θ̃) :=
n∑

i=1
wi,tE

[
d(Yxi , g(xi − t, θ))2 − d

(
Yxi , g(xi − t, θ̃)

)2]
,

F̂t(θ, θ̃) :=
n∑

i=1
wi,t

(
d(yi, g(xi − t, θ))2 − d

(
yi, g(xi − t, θ̃)

)2)
.

Lemma 13.

(i) Assume Kernel, HölderSmoothEx, and VarIneq. Then

Ut(θt) ≤ CVloC
2
Smoh

2β .

(ii) Assume Kernel, HölderSmoothEx, and VarIneq. Then

Ut(θ̂t,h) ≤ CVlo

(
F̄t(θ̂t,h, θt) − F̂t(θ̂t,h, θt)

)
+ CVloC

2
Smoh

2β .

Proof.

(i) Applying first VarIneq then HölderSmoothEx and finally Kernel,
we obtain

Ut(θt) =
n∑

i=1
wi,td(g(xi − t, θt),mxi)

2

≤ CVlo

n∑
i=1

wi,tE[d(Yxi , g(xi − t, θt))2 − d(Yxi ,mxi)
2]

≤ CVloC
2
Smo

n∑
i=1

wi,t |xi − t|2β

≤ CVloC
2
Smoh

2β .

(ii) For all θ ∈ Θ, by VarIneq,

C−1
VloUt(θ) ≤

n∑
i=1

wi,tE[d(Yxi , g(xi − t, θ))2 − d(Yxi ,mxi)2]
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≤ F̄t(θ, θt) +
n∑

i=1
wi,tE[d(Yxi , g(xi − t, θt))2 − d(Yxi ,mxi)2] .

By HölderSmoothEx and Lemma 16 with Kernel,∣∣∣∣∣
n∑

i=1
wi,tE[d(Yxi , g(xi − t, θt))2 − d(Yxi ,mxi)

2]

∣∣∣∣∣ ≤ C2
Smo

n∑
i=1

wi,t |xi − t|2β

≤ C2
Smoh

2β .

By the minimizing property of θ̂t,h, F̂t(θ̂t,h, θt) < 0. Putting all together
yields

C−1
VloUt(θ̂t,h) ≤ F̄t(θ̂t,h, θt) − F̂t(θ̂t,h, θt) + C2

Smoh
2β .

Next, we bound a variance term using chaining.

Lemma 14. Let B ⊆ Θ and θ• ∈ B. Assume MomentA and Kernel. Then,

E

[
sup
θ∈B

∣∣∣F̄t(θ, θ•) − F̂t(θ, θ•)
∣∣∣κ] ≤ cκ

(
(CKmiCKma)

1
2 CMoAγ2(B, bh)(nh)− 1

2

)κ

.

Proof. Define

Zi(θ) := wi,t

(
d(yi, g(xi − t, θ))2 − d(yi, g(xi − t, θ•))2 −

E

[
d(yi, g(xi − t, θ))2 − d(yi, g(xi − t, θ•))2

])

Recall the definitions of ♦ and a at the beginning of the section to obtain

E[|Zi(θ)|]
= E[wi,tE[|♦(yi, Yxi , g(xi − t, θ), g(xi − t, θ•))| | yi]]
≤ wi,td(g(xi − t, θ), g(xi − t, θ•))E[a(yi, Yxi)] .

By the triangle inequality for a (see auxiliary result Lemma 15 below) and
MomentA,

sup
i∈{1,...,n}

E[a(Yxi , y
′
i)] ≤ 2CMoA < ∞ ,

such that the processes Zi are integrable. Furthermore, Z1, . . . , Zn are inde-
pendent. Moreover, E[Zi(θ)] = 0 for all θ ∈ Θ, and Zi(θ•) = 0. They fulfill
the following quadruple property: Let Z ′

i be independent copies of Zi with yi
replaced by the independent copy y′i. Then, for θ, θ′ ∈ Θ,

|Zi(θ) − Zi(θ′) − Z ′
i(θ) + Z ′

i(θ′)| ≤ wi,ta(yi, y′i)d(g(xi − t, θ), g(xi − t, θ′)) .

As wi,t = 0 for |xi − t| > h, we have

wi,td(g(xi− t, θ), g(xi− t, θ′)) ≤ wi,t sup
x∈[−1,1]

d(g(xh, θ), g(xh, θ̃)) = wi,tbh(θ, θ′) .
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Thus, Theorem 10 implies

E

[
sup
θ∈B

∣∣∣∣∣
n∑

i=1
Zi(θ)

∣∣∣∣∣
κ]

≤ cκγ2(B, bh)κE

⎡
⎣( n∑

i=1
w2

i,ta(yi, y′i)2
)κ

2
⎤
⎦ .

Define W =
∑n

i=1 w
2
i,t and vi = w2

i,t/W . We obtain, using Jensen’s inequality,

E

⎡
⎣( n∑

i=1
w2

i,ta(yi, y′i)2
)κ

2
⎤
⎦ = E

⎡
⎣(W

n∑
i=1

via(yi, y′i)2
)κ

2
⎤
⎦

≤ W
κ
2

n∑
i=1

viE[a(yi, y′i)κ] .

Thus, E[a(yi, y′i)κ] ≤ 2κE[a(yi,mxi)κ] ≤ 2κCκ
MoA. Furthermore, W ≤ 6CKmiCKma

nh
by Lemma 16 (below). We obtain

E

[
sup
θ∈B

∣∣∣F̄t(θ, θ•) − F̂t(θ, θ•)
∣∣∣κ] ≤ cκ

(
(CKmiCKma)

1
2 CMoAγ2(B, bh)(nh)− 1

2

)κ

.

A major step for obtaining a bound on the objects of interest instead of their
objective function consists in using a peeling device (also called slicing). This is
applied below: We first bound the probability P(D2

h(θ̂t,h, θt) ∈ [a, b]), then infer
a bound on E[D2

h(θ̂t,h, θt)] from it.

Proof of Theorem 9. Assume D2
h(θ̂t,h, θt) ∈ [a, b]. Then bh(θ̂t,h, θt) ≤ CIBSb

1
2 by

IntBoundsSup. Furthermore, by Lemma 12 and Lemma 13,

a ≤ D2
h(θ̂t,h, θt)

≤ cCKmiCKma

(
Ut(θ̂t,h) + Ut(θt)

)
+ cCLipbh(θ̂t,h, θt)(nh)−1

≤ cCKmiCKma

(
CVlo

(
F̄t(θ̂t,h, θt) − F̂t(θ̂t,h, θt)

)
+ CVloC

2
Smoh

2β
)

+ cCLipCIBSb
1
2 (nh)−1 .

By IntBoundsSup, bh(θ, θ̃)2 ≤ C2
IBSD

2
h(θ, θ̃) for θ, θ̃ ∈ Θh. As D2

h(θ̂t,h, θt) ≤ b,
we obtain θ̂t,h ∈ Bb, where

Bb :=
{
θ ∈ Θ: bh(θ, θ̃)2 ≤ C2

IBSb
}
.

Thus,

F̄t(θ̂t,h, θt) − F̂t(θ̂t,h, θt) ≤ sup
θ∈Bb

∣∣∣F̄t(θ, θt) − F̂t(θ, θt)
∣∣∣ .
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Hence,

a ≤ A0 + A1b
1
2 + A2 sup

θ∈Bb

∣∣∣F̄t(θ, θt) − F̂t(θ, θt)
∣∣∣ ,

where

A0 := cCKmiCKmaCVloC
2
Smoh

2β ,

A1 := cCLipCIBS(nh)−1 ,

A2 := cCKmiCKmaCVlo .

Using Markov’s inequality,

P

(
D2

h(θ̂t,h, θt) ∈ [a, b]
)

≤ P

(
A0 + A1b

1
2 + A2 sup

θ∈Bb

∣∣∣F̄t(θ, θt) − F̂t(θ, θt)
∣∣∣ ≥ a

)

≤ cκ
Aκ

0 + Aκ
1b

κ
2 + Aκ

2E
[
supθ∈Bb

∣∣∣F̄t(θ, θt) − F̂t(θ, θt)
∣∣∣κ]

aκ
.

By Lemma 14 with θ• = θt and with EntropyGeod,

E

[
sup
θ∈Bb

∣∣∣F̄t(θ, θt,h) − F̂t(θ, θt,h)
∣∣∣κ]

≤ cκ

(
(CKmiCKma)

1
2 CMoAγ2(Bb, bh)(nh)− 1

2

)κ

≤ cκ

(
(CKmiCKma)

1
2 CMoACEnGC

α
IBS max(b 1

2 , b
α
2 )(nh)− 1

2

)κ

.

Thus,

P

(
D2

h(θ̂t,h, θt) ∈ [a, b]
)
≤ cκ

Aκ
0 + Aκ

3 max(b, bα)κ
2

aκ
,

where

A3 = A1 + (CKmiCKma)
1
2 CMoACEnGCIBS(nh)− 1

2A2 .

By Lemma 18 below and with h ≥ c
n , 2

2−α ≥ 1, this yields

E[D2
h(θ̂t,h, θt)] ≤ cκ

(
A0 + A2

3 + A
2

2−α

3

)
≤ C1h

2β + C2(nh)−1 + C3(nh)−2 ,

where C1 = cκCKmiCKmaCVloC
2
Smo, C2 = cακ

(
C2

IBSC
3
KmiC

3
KmaC

2
MoAC

2
EnGC

2
Vlo
) 2

2−α ,
and C3 = cακ (CLipCIBS)

2
2−α .
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A.3.3. Auxiliary results

A map d : Q×Q → [0,∞] is called pseudo-metric on Q, if d is symmetric with
d(q, q) = 0 for all q ∈ Q and obeys the triangle inequality.

Lemma 15. The functions a and bh are pseudo-metrics on Q and Θ, respec-
tively.

Proof. Recall q,p = d(q, p). All properties for a are straight forward. For the
triangle inequality, as

y,q2 − y,p2 − z,q2 + z,p2

q,p

= y,q2 − y,p2 − v,q2 + v,p2

q,p
+ v,q2 − v,p2 − z,q2 + z,p2

q,p
,

we obtain

sup
q 	=p

y,q2 − y,p2 − z,q2 + z,p2

q,p

≤ sup
q 	=p

y,q2 − y,p2 − v,q2 + v,p2

q,p
+ sup

q 	=p

v,q2 − v,p2 − z,q2 + z,p2

q,p
.

For bh the argument is almost identical.

The weights wi,t have following properties, see [27, Proposition 1.13].

Lemma 16. Assume Kernel and h ≥ 2
n . Then

wi,t ≥ 0 ,
n∑

i=1
wi,t = 1 , wi,t ≤

6CKmiCKma
nh

,

wi,t = 0 if |xi − t| > h ,

n∑
i=1

w2
i,t ≤

6CKmiCKma
nh

for all t ∈ [0, 1] and h ≥ 2
n .

Lemma 17. Assume Lipschitz. Let x, y ∈ [−1
2 ,

1
2 ], θ, θ̃ ∈ Θh. Then

d
(
g(xh, θ), g(xh, θ̃)

)2 − d
(
g(yh, θ), g(yh, θ̃)

)2 ≤ cCLip |x− y| bh(θ, θ̃) .

Proof. First, we write the difference of two squared numbers as the product of
their sum and their difference,

d
(
g(xh, θ), g(xh, θ̃)

)2 − d
(
g(yh, θ), g(yh, θ̃)

)2
=
(
d
(
g(xh, θ), g(xh, θ̃)

)
− d

(
g(yh, θ), g(yh, θ̃)

))
(
d
(
g(xh, θ), g(xh, θ̃)

)
+ d

(
g(yh, θ), g(yh, θ̃)

))
.
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The difference can be transformed noting that in general the triangle inequality
yields

y,q − z,p = y,q − y,p + y,p− z,p ≤ q,p + y,z .

Thus,

d
(
g(xh, θ), g(xh, θ̃)

)
− d

(
g(yh, θ), g(yh, θ̃)

)
≤ d(g(xh, θ), g(yh, θ)) + d

(
g(xh, θ̃), g(yh, θ̃)

)
≤ 2CLip |x− y| ,

where we used Lipschitz in the last inequality. The summands of the other
factor can each be bounded by bh,

d
(
g(xh, θ), g(xh, θ̃)

)
+ d

(
g(yh, θ), g(yh, θ̃)

)
≤ 2bh(θ, θ̃) .

Putting these bounds together yields the result.

Lemma 18. Let V be a nonnegative random variable. Assume that for all 0 <
a < b < ∞, it holds

P(V ∈ [a, b]) ≤ c
uκ +

(
vmax(b, bα) 1

2

)κ

aκ
.

where c ≥ 1, u, v > 0, κ > 2. Then

E[V ] ≤ cκc
2
κ

(
u + v2) .

Proof. For s > 0,

P(V > s)

≤
∞∑
k=0

P
(
V ∈ [s2k, s2k+1]

)

≤
∞∑
k=0

c
uκ + cκvmax(s 1

2 2 k
2 , s

α
2 2αk

2 )κ

sκ2kκ

≤ cκ

(
uκs−κ

∞∑
k=0

2−kκ + vκ max
(
s−

κ
2

∞∑
k=0

2− kκ
2 , s−κ 2−α

2

∞∑
k=0

2−kκ 2−α
2

))

≤ cκ,α

(
uκs−κ + vκs−

κ
2 + vκs−κ 2−α

2

)
.

We integrate the tail to bound the expectation,

E[V ] ≤
∫ ∞

0
P(V > s)ds .
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For A ≥ 0, τ > 1, ∫ ∞

0
min(1, As−τ )ds ≤ τ

τ − 1A
1
τ .

Applying this inequalities to the tail bound above, we obtain

E[V ] ≤ cκ,α

(
u + v2 + v

2
2−α

)
.

A.3.4. Main theorems

We use Theorem 9 to prove the two main theorems concerning LocGeo.
Instead of a general link function g : R×Θ → Q, we use an exponential map

Exp : Q × R
k → Q with g(x, θ) = Exp(p, xv) for θ = (p, v). The set parameter-

izing geodesics is Θ ⊆ Q × R
k. For a chosen bandwidth h ≥ 2

n and a constant
R > 0, we minimize over the subset Θh := Θ ∩ (Q× B(0, | · |, Rh−1)) to obtain
θ̂t,h = (m̂t, ˆ̇mt) as an estimator of θt = (mt, ṁt). In this setting, some conditions
and bounds can be replaced:

Lemma 19.

(i) ExpMap implies Lipschitz with CLip = 2CMupR and IntBoundsSup

with CIBS = 2CMupCMlo.
(ii) Entropy and ExpMap imply EntropyGeod with the constant CEnG =

cCα
MloCMupCEnt

√
k.

(iii) Assume ExpMap. Then

E
[
d(m̂t,mt)2

]
+ h2| ˆ̇mt − ṁt|2 ≤ C2

MloE
[
D2

h(θ̂t,h, θt)
]
.

Proof.

(i) Trivial.
(ii) Let B ⊆ Θh. Define

BQ :=
{
q ∈ Q | ∃v ∈ R

k : (q, v) ∈ B
}
,

BRk :=
{
v ∈ R

k | ∃q ∈ Q : (q, v) ∈ B
}
.

By ExpMap

diam(B, bh) ≥ diam(B, Dh)
≥ C−1

Mlo max(diam(BQ, d), h diam(BRk , | · |))
≥ cC−1

Mlo (diam(BQ, d) + h diam(BRk , | · |)) .

Similarly, by Lemma 23,

γ2(B, bh) ≤ cCMup(γ2(BQ, d) + hγ2(BRk , | · |)) .
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By Entropy, γ2(BQ, d) ≤ CEnt max(diam(BQ, d), diam(BQ, d)α). Further-
more, by Lemma 22, γ2(BRk , | · |) ≤ c

√
k diam(BRk , | · |). Thus,

γ2(B, bh)

≤ cCMupCEnt
√
k (max(diam(BQ, d), diam(BQ, d)α) + h diam(BRk , | · |))

≤ cCα
MloCMupCEnt

√
kmax(diam(B, bh), diam(B, bh)α) .

(iii) Trivial.

Thus, we can use Theorem 9 to show bounds on E[d(m̂t,mt)2], which is our
main goal. Note that the bound on E[D2

h(θ̂t,h, θt)] also entails a bound on the
derivatives of m̂ and mt.

Proof of Theorem 5. We want to apply Theorem 9. VarIneq, Kernel, and
HölderSmoothEx are assumed. ExpMap and Entropy imply Lipschitz,
IntBoundsSup, and EntropyGeod, see Lemma 19. As diam(Q, d) < ∞,
y,q2 − y,p2 − z,q2 + z,p2 ≤ 4q,p diam(Q, d). Thus, a(y, z) ≤ 4 diam(Q, d) and
we can choose CMoA = 4 diam(Q, d) to fulfill Moment. Thus, Theorem 9 with
Lemma 19 and h ≥ 2

n show

E
[
d(m̂t,mt)2

]
≤ C1h

2β + (C2 + C3)(nh)−1 .

Integrating the inequality finishes the proof.

Proof of Theorem 6. We want to apply Theorem 9. HölderSmoothEx, and
Kernel are assumed. ExpMap and Entropy imply Lipschitz, IntBound-

sSup, and EntropyGeod, see Lemma 19. Due to the quadruple inequality
in Hadamard spaces, a(q, p) ≤ 2d(q, p) and Moment implies MomentA with
CMoA = 2CMom. Furthermore, VarIneq is always true in Hadamard spaces with
CVlo = 1. Thus, Theorem 9 with Lemma 19 and h ≥ 2

n show

E
[
d(m̂t,mt)2

]
≤ C1h

2β + (C2 + C3)(nh)−1 .

Integrating the inequality finishes the proof.

A.4. Corollaries on the hypersphere

In this section, we apply the main theorems concerning LocFre, OrtFre, and
LocGeo on bounded spaces to prove the corollaries on the hypersphere.

To this end, we need to show Entropy: There is CEnt ∈ [1,∞) such that
γ2(B, dSk) ≤ CEnt diam(B, dSk) for all B ⊆ S

k. As Sk ⊆ R
k+1, |q−p| ≤ dSk(q, p) ≤

π
2 |q − p|, and Lemma 22, we can choose CEnt = c

√
k + 1.

A.4.1. Corollary 1 – LocFre

Kernel is fulfilled by using the Epanechnikov kernel. VarIneq is assumed.
Entropy was shown above with CEnt = 2

√
k + 1. HölderSmoothDensity is

fulfilled by the smoothness condition in the corollary and noting that diam(Sk) =
π so that we can set CLen = π and CInt = π2.
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A.4.2. Corollary 2 – OrtFre

This corollary is shown exactly the same way as the one for LocFre.

A.4.3. Corollary 3 – LocGeo

To apply the theorem for LocGeo on bounded spaces to the hypersphere, we
have to show ExpMap, i.e., we have to find constants CMup, CMlo ∈ [1,∞) such
that

d(Exp(q, v),Exp(p, u)) ≤ CMup(d(q, p) + |v − u|) ,∫ 1
2

− 1
2

d(Exp(q, xv),Exp(p, xu))2 dx ≥ C−2
Mlo

(
d(q, p)2 + |v − u|2

)

for all (q, v), (p, u) ∈ Θ with |u|, |v| ≤ R. We set R = π. The auxiliary results
Lemma 20 and Lemma 21 below show that we can choose CMup = 2π and
CMlo =

√
2π, respectively.

Kernel (with CKmi = CKma = CKer), and VarIneq are assumed. Entropy

was shown above with CEnt = 2
√
k + 1.

In proper Alexandrov spaces of nonnegative curvature, like (hyper-)spheres,
a reverse variance inequality holds, [18, Theorem 5.2],

E[d(Yt, q)2 − d(Yt,mt)2] ≤ d(q,mt)2 .

This and the smoothness condition stated in the corollary imply Hölder-

SmoothEx.

A.4.4. Auxiliary results

Lemma 20. Let (p, u), (q, v) ∈ TSk. Then

d(Exp(q, v),Exp(p, u)) ≤ π

2 |q − p| + 2π |v − u| .

Proof. We can bound the intrinsic metric on the sphere by the extrinsic one,

d(Exp(q, v),Exp(p, u)) ≤ π

2 |Exp(q, v) − Exp(p, u)|

≤ π

2

(
|cos(|v|)q − cos(|u|)p| +

∣∣∣∣ sin(|v|)
|v| v − sin(|u|)

|u| u

∣∣∣∣
)

.

For the cos-terms, it holds

|cos(|v|)q − cos(|u|)p| ≤ |cos(|v|)| |q − p| + |p| |cos(|v|) − cos(|u|)|
≤ |q − p| + ||v| − |u|| .
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For the sin-terms, let J(x) be the Jacobi matrix of the function R
k → R

k, x �→
sin(|x|)

|x| x. Then
∣∣∣∣ sin(|v|)

|v| v − sin(|u|)
|u| u

∣∣∣∣ ≤ sup
x∈Rk

|J(x)|op |u− v| .

As

J(x) =
(

cos(|x|) − sin(|x|)
|x|

)
|x|−2

xx�+ sin(|x|)
|x| Ik ,

it holds

|J(x)|op ≤
(
|cos(|x|)| +

∣∣∣∣ sin(|x|)
|x|

∣∣∣∣
)
| |x|−2

xx�|op +
∣∣∣∣ sin(|x|)

|x|

∣∣∣∣ |Ik|op ≤ 3 .

Thus, d(Exp(q, v),Exp(p, u)) ≤ π
2 (|q − p| + ||v| − |u|| + 3 |u− v|).

Lemma 21. Let (p, u), (q, v) ∈ TSk with |u| , |v| ≤ π. Then

∫ 1
2

− 1
2

dSk(Exp(p, xu),Exp(q, xv))2dx ≥ 1
π
|p− q|2 + 1

2π2 |v − u|2 .

Proof. First we lower bound the intrinsic distance dSk by the euclidean one and
use the explicit representation of the Exp-function,

dSk(Exp(p, xu),Exp(q, xv))2

≥
∣∣∣∣cos(x |u|)p + sin(x |u|) u

|u| − cos(x |v|)q − sin(x |v|) v

|v|

∣∣∣∣
2

.

When integrating after calculating the squared norm, all summands with a
cos() sin()-factor disappear, because of symmetry. Thus, we obtain

∫ 1
2

− 1
2

dSk(Exp(p, xu),Exp(q, xv))2dx

≥
∫ 1

2

− 1
2

cos(x |u|)2p�p− 2 cos(x |u|) cos(x |v|)p�q + cos(x |v|)2q�q dx

+
∫ 1

2

− 1
2

sin(x |u|)2 u
�u

|u|2
− 2 sin(x |u|) sin(x |v|) u�v

|u| |u| + sin(x |v|)2 v
�v

|v|2
dx .

As |p| = |q| = 1, cos(x)2 +sin(x)2 = 1, 2 cos(α) cos(β) = cos(α−β)+cos(α+β),
and 2 sin(α) sin(β) = cos(α− β) − cos(α + β), the right hand side reduces to

∫ 1
2

− 1
2

2 − (cos(xa) + cos(xb)) p�q − (cos(xa) − cos(xb)) z dx ,
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where we set a = |u| − |v|, b = |u| + |v|, and z = u�v
|u||v| . Integrating yields

2 − 2
( sin(1

2a)
a

+
sin(1

2b)
b

)
q�p− 2

( sin(1
2a)
a

−
sin(1

2b)
b

)
z .

As q�p = 1 − 1
2 |q − p|2, we can split the sum into two parts A + B, where

A :=
( sin(1

2a)
a

+
sin(1

2b)
b

)
|q − p|2 ,

B := 2 − 2
( sin(1

2a)
a

+
sin(1

2b)
b

)
− 2

( sin(1
2a)
a

−
sin(1

2b)
b

)
z .

The function x �→ sin(x)/x decreases on the interval (0, π). Thus,

sin(1
2a)
a

+
sin(1

2b)
b

≥
sin(1

2π)
π

+ sin(π)
2π = 1

π

as |v| , |u| ≤ π. In particular, A ≥ 1
π |q − p|2. To bound B, we will show

f(a, b, z) ≥ 0 for all a ∈ [−π, π], b ∈ [0, 2π], and z ∈ [−1, 1], where

f(a, b, z) := 2 − 2
(

sin(a/2)
a

+ sin(b/2)
b

)
− 2

(
sin(a/2)

a
− sin(b/2)

b

)
z

− 1
2c

(
a2 + b2 + (a2 − b2)z

)
with c > 0. This suffices as a2 + b2 + (a2 − b2)z = 2 |v − u|2. As f is linear in z,
it is minimized either at z = 1 or at z = −1. It holds

f(a, b, 1) = 2 −
4 sin(1

2a)
a

− ca2 , f(a, b,−1) = 2 −
4 sin(1

2b)
b

− cb2 .

Thus, f(a, b, z) ≥ 0 is true if and only if

c ≤ inf
x∈[−π,2π]

2 − 4 sin(x/2)
x

x2 = 1
2π2 .

By setting c = 1
2π2 , we obtain

B ≥ 1
2π2 |v − u|2 .

Appendix B: Chaining

Theorem 10 (Empirical process bound). Let (Q, d) be a separable pseudo-
metric space and B ⊆ Q. Let Z1, . . . , Zn be centered, independent, and integrable
stochastic processes indexed by Q with a q0 ∈ B such that Zi(q0) = 0 for i =
1, . . . , n. Let (Z ′

1, . . . , Z
′
n) be an independent copy of (Z1, . . . , Zn). Assume the
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following Lipschitz-property: There is a random vector A with values in R
n such

that
|Zi(q) − Zi(p) − Z ′

i(q) + Z ′
i(p)| ≤ Aid(q, p)

for i = 1, . . . , n and all q, p ∈ B. Let κ ≥ 1. Then

E

[
sup
q∈B

∣∣∣∣∣
n∑

i=1
Zi(q)

∣∣∣∣∣
κ]

≤ cκ E[ | A|κ2 ] γ2(B, d)κ ,

where cκ ∈ (0,∞) depends only on κ.

Proof. See [21, Theorem 6].

Lemma 22. In the Euclidean space R
k with the metric induced by the Euclidean

norm |·|, it holds γ2(B(x, r, |·|), |·|) ≤ 2r
√
k for any point x ∈ R

k and radius
r > 0.

Proof. See [20, section 4].

Lemma 23. Let d and d′ be metrics on a set Q.

(i) Assume d ≤ Bd′ for a B > 0. Then

γ2(Q, d) ≤ Bγ2(Q, d′) .

(ii) There is a universal constant c > 0 such that

γ2(Q, d + d′) ≤ c (γ2(Q, d + d′) + γ2(Q, d + d′)) .

Proof. See [25, Exercise 2.2.20 and Exercise 2.2.24]

Appendix C: Geometry

We introduce some terms from (metric) geometry, which are used in this article.
See [6] for a in depth introduction.

A metric space is called proper if every closed ball is compact. Let (Q, d) be
a metric space. For a continuous map γ : [a, b] → Q define its length as

L(γ) = sup
{

n∑
i=1

d(γ(xi−1), γ(xi))
∣∣∣∣ a = x0 < x1 < · · · < xn = b, n ∈ N

}
.

Define the inner metric of (Q, d) as di(q, p) = inf L(γ), where the infimum
is taken over all continuous maps γ : [a, b] → Q with γ(a) = q and γ(b) =
p. A length space is a metric space (Q, d) with d = di. Now, let (Q, d) be
a length space. A continuous map γ : [a, b] → Q is called shortest path if
L(γ) ≤ L(γ̃) for all continuous maps γ̃ : [ã, b̃] → Q with γ(a) = γ̃(ã) and
γ(b) = γ̃(b̃). A continuous map γ : [a, b] → Q is locally minimizing if for every
t ∈ [a, b] there is ε > 0 such that γ|[t−ε,t+ε] is a shortest path. A continuous map
γ : [a, b] → Q has constant speed if there is v ≥ 0 such that for every t ∈ [a, b]
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there is ε > 0 such that L(γ|[t−ε,t+ε]) = 2vε. A geodesic is a locally minimizing
continuous map with constant speed. A minimizing geodesic between two
points q, p ∈ Q is a geodesic γ : [a, b] → Q with L(γ) = d(γ(a), γ(b)) and
γ(a) = q, γ(b) = p. A geodesic γ : [a, b] → Q is extendible (through both ends)
if there is ε > 0 and a geodesic γ̃ : [a − ε, b + ε] → Q such that γ̃|[a,b] = γ. The
tuple (Q, d) is a geodesic space if there is a connecting geodesic for every pair
of points. A geodesic space (Q, d) is geodesically complete, if it is complete
and all geodesics are extendible.

A Hadamard space is a nonempty complete metric space (Q, d) such that
for all q, p ∈ Q, there is m ∈ Q such that d(y,m)2 ≤ 1

2d(y, q)
2 + 1

2d(y, p)
2 −

1
4d(q, p)

2 for all y ∈ Q. In Hadamard spaces, all geodesics are minimizing.
Hilbert spaces and Riemannian manifolds of nonpositive sectional curvature are
Hadamard spaces. Hadamard spaces are also called global NPC-spaces, complete
CAT (0) spaces or Alexandrov spaces of nonpositive curvature.

An Alexandrov spaces of nonnegative curvature is a geodesic space
(Q, d) such that for all q, p ∈ Q, there is m ∈ Q such that d(y,m)2 ≥ 1

2d(y, q)
2+

1
2d(y, p)

2− 1
4d(q, p

2) for all y ∈ Q. More generally Alexandrov spaces can be de-
fined with an arbitrary curvature bound. They generalize Riemannian manifolds
with a bound on the sectional curvature.
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