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Abstract: The nearest shrunken centroids classifier (NSC) is a popular
high-dimensional classifier. However, it is prone to inaccurate classification
when the data is heavy-tailed. In this paper, we develop a robust general-
ization of NSC (RNSC) which remains effective under such circumstances.
By incorporating the Huber loss both in the estimation and the calcula-
tion of the score function, we reduce the impacts of heavy tails. We rigor-
ously show the variable selection, estimation, and prediction consistency in
high dimensions under weak moment conditions. Empirically, our proposal
greatly outperforms NSC and many other successful classifiers when data
is heavy-tailed while remaining comparable to NSC in the absence of heavy
tails. The favorable performance of RNSC is also demonstrated in a real
data example.
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1. Introduction

The nearest shrunken centroids classifier (NSC, [49]) is a popular high-dimensional
classifier [50, 24, e.g]. It assigns each observation to the class with the nearest
centroid, i.e, the within-class mean. In high dimensions, NSC performs variable
selection by shrinking the centroid estimates. Thanks to its simplicity, NSC is
extremely interpretable and computationally efficient. Moreover, it is observed
to achieve remarkable accuracy on many benchmark datasets.

However, heavy-tailed data have been attracting much attention in recent
years, as such data frequently arise in many fields, such as biometry, ecological
systems, finance, and sociology [43, 39, 47, 53]. NSC is vulnerable in this situ-
ation. For one thing, NSC estimates the centroid of each class with the sample
mean, but the sample mean is easily impacted by a few outliers, and tends to be
inaccurate for heavy-tailed data. In theory, the concentration property for the
sample mean is usually proved by assuming the predictors to be sub-Gaussian
or sub-exponential, but such assumptions are not appropriate for heavy-tailed
data. For the other, NSC measures the distance between the observation and
each centroid with the squared Euclidean distance. The quadratic form of this
distance amplifies the influence of a few extreme values as well.

To tackle this challenge, we propose the robust nearest shrunken centroids
method (RNSC) that is suitable for potentially heavy-tailed data. RNSC gains
robustness by combining the Huber loss and Huber estimators with the original
NSC method. The impacts of outliers are mitigated, while the resulting classifier
continues to be sparse and interpretable. In theory, RNSC is consistent when
only the fourth moment exists, which ensures the applicability of RNSC on a
wide range of data. In numerical studies, RNSC exhibits better performance
than many existing methods when heavy tails or outliers are present, and is
comparable to NSC when data are Gaussian.

RNSC is a unique addition to the robust high-dimensional classification litera-
ture, even though there exist a few pioneering proposals for this topic. For exam-
ple, [23] proposed the component-wise median estimators in a high-dimensional
scheme. The properties of median-based classifier were also discussed by [21] and
[28]. Although the median is robust and can be applied to heavy-tailed data,
it is likely to suffer from efficiency loss. In contrast, RNSC balances between
the mean and the median estimates depending on how heavy-tailed the data
is. Other examples for robust classifiers include [6] and [20], but it is unclear if
similar frameworks can be established for more robust versions of NSC.
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RNSC is motivated by recent advancements in robust statistics, especially
those employing the Huber loss. For example, [31, 19] combined the Huber
loss with adaptive LASSO penalty to obtain robust estimation. [48] gave a
sharp phase transition for Huber estimators of regression parameters. [2] fur-
ther looked into the properties and advantages of the Huber estimator when
estimating covariance and precision matrices in the high-dimensional case. [58]
studied the theoretical properties and the application of the Huber estimator for
the high-dimensional multiple testing problem. [34] showed a general result on
the theoretical properties of robust M-estimators in the high-dimensional sce-
nario where the data is disturbed by heavy-tailed distributions or outliers. Our
proposal of RNSC further generalizes these works to classification problems.

We also note that there exist many high-dimensional classification methods.
However, most of them do not consider heavy-tailed data. For example, there
are extensions of NSC [52, 46, 51, 12], logistic regression [24, 40, e.g], linear
discriminant analysis [15, 13, 56, 17, 38, 36, e.g], support vector machine [4, 5, 57,
e.g], among others. Most of these methods with theoretical justifications require
tail conditions such as sub-Gaussian or sub-exponential, and thus may not be
appropriate for heavy-tailed data.

The rest of this article is organized as follows. We propose RNSC in Section 2.
The theoretical results of RNSC are discussed in Section 3. In Section 4, we
present the simulation studies in different heavy-tailed or outlier scenarios to
further reveal the advantages of our proposal. In Section 5, we give a real-data
example for RNSC. The proof of theorems is in the Appendix.

2. Methodology

2.1. The nearest shrunken centroids method

We first briefly review the nearest shrunken centroids (NSC) classifier. In a
classification problem, we have a pair of random variables, (Y,X), where the
predictors X = (X1, . . . , Xp)

T ∈ R
p and the response Y ∈ {1, . . . ,K}, with K

being a positive integer. Let Pr(Y = k) = πk be the prior probability that an
observation belongs to Class k. We want a prediction on Y based on the infor-
mation from X. The classical nearest centroids method assigns an observation
to the class with the closest centroid with respect to �2 distance. In high dimen-
sions, the nearest shrunken centroids (NSC) method further enforces variable
selection to facilitate interpretation and accurate prediction.

Suppose that we observe the dataset {Yi,Xi}ni=1, where (Yi,Xi) are indepen-
dent and identically distributed copies of (Y,X), and n is the sample size. In
high dimensions, we have that p is much larger than n. We further let Ck be the
set of indices of the nk samples in Class k.

In NSC, we first find initial estimates for the centroids of the k-th class and
the variability of each Xj :

X̄·jk =
1

nk

∑
i∈Ck

Xij , S2
j =

1

n−K

K∑
k=1

∑
i∈Ck

(Xij − X̄·jk)
2. (1)
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We further compute the grand mean for Xj as X̄·j = 1
n

∑n
i=1 Xij , and the

sample proportion for Class k as π̂k = nk

n , which is also the estimator for πk.
Then we shrink X̄·jk as follows. Let

djk =
X̄·jk − X̄·j

mkSj
, (2)

where mk =
√

1/nk − 1/n so that mkSj equals the estimated standard error of
the numerator in djk. For a user-speficied parameter Λ ≥ 0, we soft-threshold
djk to be d′jk = sign(djk)(|djk| − Λ)+. Then the shrunken estimator for μjk is:

X̄ ′
·jk = X̄·j +mkSjd

′
jk, (3)

and the estimated classifier is given by:

δ̂nsc(X∗) = argmin
k

p∑
j=1

(X∗,j − X̄ ′
·jk)

2

S2
j

− 2 log π̂k. (4)

It is easy to see that, for sufficiently large Λ, for many j we have X̄ ′
·j1 = · · · =

X̄ ′
·jK . These variables do not have any effect on the final classification.

2.2. Our proposal of the robust nearest shrunken centroids method

The nearest shrunken centroids method is a powerful method that has been
proved to have excellent performance [50, 24]. However, it is sensitive to heavy-
tailed distributions and outliers for at least two reasons. First, it is apparent that
X̄·j , X̂

′
·jk and Sj attempt to estimate the (conditional) mean and variance of

Xj . They are sample estimates with some shrinkage when applicable. However,
sample estimates are known to be unstable in the presence of heavy tails. If
data have several observations far away from the truth, the sample estimates
tend to be inaccurate. Consequently, variable selection and prediction could be
negatively impacted. Second, even if we knew the true (conditional) means and
variance, NSC uses the �2 loss to measure the distances between X and the
centroids. If X is drawn from a heavy-tailed distribution, it is likely that X
could have a few elements that drive the prediction by coincidence and thus the
classification is prone to errors.

To resolve these issues, we propose the robust NSC by replacing both the es-
timates and the �2 loss with robust counterparts. We achieve both goals through
the Huber loss [25]. The Huber loss is defined as:

fr(Z) =

{
Z2, for |Z| ≤ r,

2r(|Z| − 1
2r), for |Z| > r,

(5)

where r > 0 is a parameter that controls the level of robustness for the resulting
estimate. It is well-known that, by clipping the �1 and the �2 loss at r, the Huber
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loss effectively reduces the contribution of extreme values. The Huber loss has
recently been regenerating many interests in high dimensions but has not been
combined with classification methods to the best of our knowledge.

To apply the Huber loss, we first note some simple facts in NSC. It is easy to
see that the estimates X̄·j and X̄·jk defined in (1) are minimizers to the �2 loss:

X̄·j = argmin
α∈R

n∑
i=1

(Xij − α)2, X̄·jk = argmin
α∈R

∑
i∈Ck

(Xij − α)2, (6)

while S2
j is also related to the �2 loss, as S2

j =
∑K

k=1 π̂k(Qjk − X̄2
·jk), where

Qjk = argmin
α∈R

∑
i∈Ck

(X2
ij − α)2. (7)

To make these estimates more robust, we replace these estimates with suitable
Huber estimates. We let

X̃·jk = argmin
α∈R

{
∑
i∈Ck

fH(Xij − α)}, Q̃jk = argmin
α∈R

{
∑
i∈Ck

fH(X2
ij − α)}, (8)

where H > 0 is a tuning parameter. We use X̃·jk as an initial robust estimator

for the conditional mean of Xj within Class k, and Q̃jk as a robust estimator
for the second moment. Then we estimate the grand mean and the conditional
variance of Xj as follows:

X̃·j =
K∑

k=1

π̂kX̃·jk, S̃2
j =

K∑
k=1

π̂k(Q̃jk − X̃2
·jk). (9)

With these Huber estimates, we soft-threshold the centroid estimates in a
similar way to (2)–(3). Namely, for a tuning parameter Λ ≥ 0, we let

d̃jk =
X̃·jk − X̃·j

mkS̃j

, d̃′jk = sign(d̃jk)(|d̃jk| − Λ)+. (10)

The shrunken Huber estimator for the centroid of Xj within Class k is

X̂ ′
·jk = X̃·j +mkS̃j d̃

′
jk. (11)

Moreover, we also use the Huber loss when we calculate the discriminant
score. We assign a new observation X∗ to the class

δ̂h(X∗) = argmin
k

p∑
j=1

fh(
X∗,j − X̂ ′

·jk

S̃j

)− 2 log π̂k, (12)

where h > 0 is a tuning parameter. Compared with (4), we use the Huber loss
instead of the �2 loss to measure the distance between X∗ with each centroid
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so that the effects of extreme values are limited. In practice, the parameters H
and h are tuned separately to obtain higher accuracy. Numerically, there is a
small probability that a variance estimator is a negative number close to zero.
We exclude the jth predictor from the classifier if S̃j < 0.

We refer to this modified NSC as the robust nearest shrunken centroids
method (RNSC). As NSC, when Λ is reasonably large, most X̂ ′

·jk equal X̃·j
by shrinkage, and the corresponding Xj is excluded from final classification in
RNSC. The remaining variables give us a sparse classifier. RNSC has a similar
interpretation as NSC, as it assigns an observation to its closest centroid and the
selected variables can still be viewed as those differentially distributed across
classes.

However, RNSC is more widely applicable than NSC, especially when the
data are potentially heavy-tailed. In the next section, we will rigorously show in
theory that RNSC is consistent under much weaker tail conditions than NSC.
The robustness comes at a very low price, as we will later demonstrate in numer-
ical studies that, when the heavy tail is not an issue, RNSC still works almost
as well as NSC.

We want to remark that robust estimators other than the Huber estimator
could be used to robustify the sample mean and variance. For example, the
median-of-means estimator has similar robust properties to the Huber estimator
[42, 31, 7, 27, 2]. We choose to use the Huber estimator in RNSC because,
in addition to the estimation of the parameters, we also need a robust way
to calculate the discriminant score. RNSC uses the Huber loss to replace the
squared loss in the discriminant score for this purpose. The median-of-means
estimator is not associated with a robust loss function that can be used in the
discriminant score.

Finally, RNSC implicitly assumes that the marginal within-class variances
are constant across classes so that the pooled estimator S̃2

j in (8) can be used.
As suggested by the referee, we note that RNSC can be generalized to the het-
erogeneous case where the within-class variance is not constant. We explore this
direction by developing the Heterogeneous Robust Nearest Shrunken Centroids
method (HRNSC). Relevant results along this line are presented in Appendix A.

2.3. Choice of tuning parameters

RNSC has three tuning parameters, H, h, and Λ. We propose to tune them by
two-step cross-validation. In the first step, we find the optimal H by tuning the
pair of parameters (H,Λ) with the �2 loss classifier by cross-validation. In the
second step, we fix H as chosen in the first step, and find the optimal (h,Λ)
by cross-validation. Note that Λ is tuned twice because in both steps we need
a reasonably large Λ to construct a sparse classifier that minimizes the cross-
validation error. But only the second choice of Λ is used in the final classifier.
This tuning procedure is used in RNSC in our reported numerical studies with
the number of folds set to 10.

We admit that such a tuning procedure may have some loss of robustness,
as H is chosen according to the �2 loss instead of a robust loss. If we could
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tune (H,h,Λ) jointly and use the Huber loss throughout the cross-validation,
the results could be better. However, we choose to tune H and h separately for
computational concerns. Also, we observe that such a tuning procedure leads
to fairly good results in numerical studies to be presented. In the future, it
will be interesting to develop a robust tuning procedure. A related work is [9],
in which the authors considered robust cross-validation in a low-dimensional
non-parametric problem.

As suggested by the referee, an alternative approach for fitting RNSC is to
apply the recent tuning-free principle by [55]. It is shown therein that we can
solve an equation system to simultaneously find a suitable Huber loss parameter
and the corresponding estimator. We describe such a method, referred to as the
tuning-free RNSC (TF-RNSC), in Section 2.4. We want to remark though that
TF-RNSC only avoids tuning on H, but still resorts to cross-validation on h
and Λ.

2.4. The tuning-free RNSC

We describe the tuning-free RNSC (TF-RNSC) as a variant of RNSC that al-
leviates the computation cost of cross-validation when we construct the Huber
estimates. TF-RNSC is based on the tuning-free principle in [55]. We first give
a brief review of this principle.

Consider m independent and identically distributed (i.i.d.) random variables
Z1, . . . , Zm with mean ξ. For a given r, we can find the Huber estimator for ξ
as

ξ̂r = argmin
α

m∑
i=1

fr(Zi − α). (13)

In order to automatically choose r, [55] propose to solve the following equation
system: { ∑m

i=1 ψr(Zi − α) = 0,
1
m

∑m
i=1 min{(Zi − α)2, r2} − z

m = 0,
(14)

where ψr(x) = sign(x)min(|x|, r) = 1
2f

′
r(x) is 1

2 of the derivative of the Huber
loss and z refers to a user-specified parameter that controls the confidence level.
The authors suggest z = log(m) in their paper, which we adopt. As a result, we

obtain a choice of r̂ and the corresponding ξ̂r̂ without tuning.
In TF-RNSC, we do not construct estimates according to (8) that requires

user-specified Huber loss parameters. Instead, when we estimate the Class k cen-
troid for the j-th variable, we solve (14) by replacing {Zi}mi=1 with {Xi,jk}i∈Ck

to obtain X̃TF
·jk . Similarly, we estimate the Class k second moment of the j-th

variable by Q̃TF
jk that solves (8) with {Zi}mi=1 replaced by {X2

i,jk}i∈Ck
. Then TF-

RNSC proceeds much the same as RNSC, with the only exception that X̃TF
·jk

and Q̃TF
jk are used in the place of X̃·jk and Q̃jk.

With these tuning-free estimates, we further apply cross-validation to choose
(h,Λ) in the final classifier. The tuning-free principle does not apply in this part,
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as our ultimate goal is prediction instead of estimation. In this sense, we cannot
completely avoid tuning in RNSC even with the assistance of the tuning-free
principle. But we abuse the terminology and refer to the resulting classifier as
tuning-free RNSC (TF-RNSC) to distinguish it from our proposal of RNSC.

3. Theoretical results

In this section, we study the properties and benefits of RNSC under the high-
dimensional setting where p could be much larger than n. For variable selection,
We show that RNSC consistently obtains the set of all important variables. For
the classifier, we first show that with high probability the estimated classifier
gives the same result as the true one. Both the results for variable selection and
prediction require a mild condition that includes many heavy-tailed distribu-
tions. We then give a special case that the prediction error of RNSC converges
to the Bayes error in the Gaussian scenario.

We only present the theoretical results for RNSC, but we conjecture that TF-
RNSC has similar properties that can be proved with some simple modifications
to our proofs for RNSC. The theoretical properties of RNSC are a result of the
convergence of X̃jk and Q̃jk in Propositions 2 & 3 (Appendix B.1). For TF-

RNSC, X̃TF
jk and Q̃TF

jk have similar properties according to Theorems 2.1 & 2.2
in [55].

Similar to NSC, RNSC can be used as a heuristic classifier without model
assumptions. However, for the sake of theoretical studies, we introduce an intu-
itive model that allows us to define the set of important variables. We assume
that the number of classes K is fixed and Pr(Y = k) = πk ∈ (0, 1). We further
assume the following model for X given Y ,

X = μk + ε, if Y = k, (15)

where μk = (μ1k, . . . , μpk)
T ∈ R

p is the conditional mean for Class k and
ε = (ε1, . . . , εp)

T ∈ R
p is the noise term. For any j ∈ {1, . . . , p}, εj follows a

distribution gj with mean 0 and variance σ2
j . This model is also studied in [35],

but the main focus in that paper is variable transformation. In comparison, we
work with the original data without transformation.

Throughout the rest of this section, let C be a generic positive constant that
can vary in different places. The following assumptions are needed to obtain
the results of variable selection and classifier convergence. Recall that gj is the
probability density function for εj .

(A1) There exists some constant ζ > 0 such that maxk{‖μk‖∞} ≤ ζ.
(A2) There exist constants u > 0 and U > 0 such that u ≤ σj ≤ U for all j.
(A3) For the prior πk, there are constants 0 < c1 < 1 and 0 < c2 < 1 such that

c1 < πk < c2 for all k.
(A4) There exists some constant V > 0 such that gj(εj) ≤ V for all j.
(A5) There exists some constant κ > 0 such that Eε4j ≤ κ2 for all j.
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All these assumptions are very mild. Assumptions (A1) and (A2) guarantee
that the mean and variance do not go to infinity as the dimension increases.
These two technical conditions simplify our calculation, but, if needed, we can
also allow ζ, u, U to diverge with n, p at the price of more tedious proofs. As-
sumption (A3) bounds πk away from 0 and 1, which ensures that we have a de-
cent sample size for each Class k. Assumptions (A4) and (A5) are regularity con-
ditions on the distribution of εj . We only assume that gj ’s are bounded and εj ’s
have uniformly bounded fourth moments. These assumptions are much weaker
than the popular sub-Gaussian assumption in the high-dimensional statistics
literature, and allow the application of RNSC to heavy-tailed data.

We first present the theoretical result on variable selection. We start with
defining the set of important variables. For any k1, k2 ∈ {1, . . . ,K} such that

k1 �= k2, we have fh(
x−μjk1

σj
) = fh(

x−μjk2

σj
) for all x ∈ R if and only if μjk1 =

μjk2 . Thus, the jth predictor is an important variable if and only if there exist
k1 �= k2 such that μjk1 �= μjk2 . We define the set of important variables as

D = {j : there exist k1, k2 ∈ {1, . . . ,K} s.t. μjk1 �= μjk2}. (16)

We also denote the number of important predictors as q = |D|. The estimator
for D is

D̂ = {j : there exist k1, k2 ∈ {1, . . . ,K} s.t. X̂ ′
jk1

�= X̂ ′
jk2

}. (17)

Further define

N0 = min
k1,k2,j

{|μjk1 − μjk2 | : |μjk1 − μjk2 | > 0} (18)

as the smallest nonzero mean difference. We have the following theorem.

Theorem 1. Assume that (A1)-(A5) hold. Let N0 be defined as in (18). Then
we have the following conclusions:

1. Let H = v2

ε , where v ≥ max{U, κ} and ε > 0 s.t. ε ≤ min{ 1
2 ,

√
2
4 v,N0/16}.

Then with the choice of Λ such that 8ε
m0w

≤ Λ ≤ N0−8ε
Cm0w

, where m0 =√
C/n, 0 < w ≤ u− Cε, we have

Pr(D̂ = D) ≥ 1− Cp exp{−Cnε2

v2
}. (19)

2. Furthermore, assume that n → ∞ and log p
n → 0. Let C

√
log p � Λ �

CN0
√
n − C

√
log p. Then under the condition that H → ∞ and H �

C
√

n
log p , we have

Pr(D̂ = D) → 1. (20)

Theorem 1 shows that, with a proper choice of tuning parameters H and
Λ, RNSC exactly recovers the set of important variables with a probability
tending to 1 even when log p = o(n), which is usually the best we can do in
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high dimensions. Also, recall that this is achieved without the sub-Gaussian or
sub-exponential assumption. NSC is unlikely to have the same property, as the
sample mean is used and we cannot derive similar concentration inequalities
without sub-Gaussian/sub-exponential assumptions.

Next, we show that RNSC consistently estimates the classifier as well. Ap-
parently, the classifier defined in (12) intends to approximate

δh(X∗) = argmin
k

p∑
j=1

fh(
X∗,j − μjk

σj
)− 2 log πk. (21)

Let the training data set be (Ytr,Xtr). The following theorem shows that this
approximation is very accurate.

Theorem 2. Assume that (A1)-(A5) hold. Let N0 be defined as in (18).

1. Let H = v2

ε , where v ≥ max{U, κ} and ε > 0 s.t. ε ≤ min{1
2 ,

√
2
4 v, Cu, N0

16 }.
Then with the choice of Λ = 8ε

m0w
, where m0 =

√
C/n and 0 < w ≤ u−Cε,

we have

Pr
(
δ̂h(X∗) �= δh(X∗)

∣∣∣(Ytr,Xtr)
)
≤ qhCε4/5 (22)

with probability greater than 1− (q + p)C exp{−Cnε2

v2 }.
2. Assume that n → ∞ and q5/2h5/2 log p

n → 0 for any h > 0. With H → ∞,

H �
√

v2n
log p , C

Λ√
n
→ 0 and Λ � C

√
log p, we have

Pr
(
δ̂h(X∗) �= δh(X∗)

∣∣∣(Ytr,Xtr)
)
→ 0. (23)

Theorem 2 implies that the estimated classifier converges to the truth when
only up to the fourth moment exists for X. This moment condition includes
many heavy-tailed distributions that are frequently encountered. Therefore, The
results in Theorem 2 guarantee that the classification problem with heavy-tailed
data or data with outliers can be handled by RNSC. We note though, for any

fixed h, we need q5/2 log p
n → 0. This requirement is stronger than classifiers with

the normality assumption [8], which can often handle q log p
n → 0. RNSC needs

the model to be sparser (i.e, q to be smaller) because X∗ can be heavy-tailed.
Even though we can consistently identify D and estimate μk and σ2

j accurately,
X∗ could inflate the estimation error in the discriminant score. However, in what
follows we will show that, if the data is not heavy-tailed, there is no need for
the stronger requirement on q for RNSC to be consistent in prediction.

Consider the special case that ε ∼ N(0,Δ) with Δ being diagonal. Our
model in (15) reduces to the diagonal linear discriminant analysis (LDA) model.
Consequently, NSC can be viewed as an estimate for the so-called Bayes rule:

δbayes(X∗) = argmin
k

p∑
j=1

(X∗,j − μjk)
2/σ2

j − 2 log πk, (24)
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which is the optimal classifier [24]. We show that RNSC also consistently es-
timates the Bayes rule under the normal assumption. In other words, we gain
improved robustness with little loss of efficiency when data is not heavy-tailed.
We denote φ as the probability density function for a standard normal random
variable.

Theorem 3. Assume that (A1)-(A3) hold. Further assume that εj ∼ N(0, σ2
j )

independently. Then we have following conclusions:

1. Let H = v2

ε , where v ≥ max{U, κ} and ε > 0 s.t. ε ≤ min{1
2 ,

√
2
4 v, Cu, N0

16 }.
Then with the choice of Λ = 8ε

m0w
, where m0 =

√
C/n and 0 < w ≤ u−Cε,

we have

Pr
(
δ̂h(X∗) �= δbayes(X∗)

∣∣∣(Ytr,Xtr)
)
≤ C(qε2)

1
4 + q

(
φ(Ch− C)

Ch− C

)
(25)

with probability greater than 1− (q + p)C exp{−Cnε2

v2 }.
2. Furthermore, assume that n → ∞ and q log p

n → 0. With H → ∞, H �√
v2n
log p , C

Λ√
n

→ 0 and Λ � C
√
log p and h → ∞ and h �

√
log q, we

have
Pr
(
δ̂h(X∗) �= δbayes(X∗)

∣∣∣(Ytr,Xtr)
)
→ 0. (26)

Theorem 3 shows that RNSC gives a similar prediction as the Bayes classifier
under the normality and independence conditions. The dimensionality is allowed
to diverge at the rate of q log p

n = o(1). This rate is identical to that of LDA
methods, which explicitly assumes that the data are Gaussian. Hence, RNSC is
expected to work as well as the less robust methods when there is no heavy tail.

As suggested by the referee, we further compare our theoretical results with
sparse linear discriminant analysis (LDA) methods [8, 13, 56, 17, 38, 36, e.g].
To start, we note that our model in (15) includes the LDA model as a special
case. The LDA model indicates that X is normal given Y [24]. If we assume
that ε follows the multivariate normal distribution, (15) reduces to the LDA
model. The normality assumption is critical for the theoretical study of sparse
LDA methods, as most of them rely on the sub-Gaussian property to show the
consistency in ultra-high dimensions. However, in our Theorems 1 & 2, we do
not make the normality assumption and thus obtain theoretical results under
weaker assumptions than the LDA model.

Another difference between LDA and RNSC is the way they handle corre-
lations. RNSC (and its predecessor, NSC) is a distance-based classifier that
calculates the distance in a coordinate-wise manner. It makes no attempt to
model the correlation among ε. The classifier and the active set D are fully
determined by within-class means and variances. Theorems 1 & 2 do not make
assumptions on the correlation structure, either, as RNSC converges to its pop-
ulation counterpart regardless of the correlation structure. On the other hand,
LDA explicitly exploits the correlation among variables. For example, if K = 2,
LDA aims to estimate β = Σ−1(μ2 −μ1), where Σ is the covariance matrix for
X within Class k, and we need to select the set S = {j : βj �= 0} [8, 17, 38].
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These existing works also show that D can be quite different from S. In this
sense, when some special correlation exists and the normality assumption holds,
RNSC could be sub-optimal to LDA even on the population level. But this sub-
optimality is the price we pay for the extra flexibility in analyzing heavy-tailed
data that does not satisfy the LDA model.

However, there is one special case when RNSC and sparse LDA are closely
related, which is studied in Theorem 3. If εj ∼ N(0, σ2

j ) independently, the
model in (15) becomes a diagonal LDA model (i.e, the LDA model with a
diagonal covariance matrix). As such, RNSC and LDA intend to estimate the
same Bayes rule. Theorem 3 shows that, under suitable conditions, RNSC indeed
converges to the Bayes rule under the diagonal LDA model.

4. Simulation results

We present some simulation results to demonstrate the performance of RNSC.
We consider several models to study binary-class and multi-class problems in
heavy-tailed and outlier scenarios. For all models, we set the dimension p = 2000
and sample size n = 100K, where K is the number of classes. We assume the
model in (15). We consider two sets of parameters in Models A and B, combined
with four different distributions for εj in Models X.1–X.4, where X=A or B. The
parameters are given as follows.

1. Model A (Binary): K = 2,
μ1 = 0,
μ2 = 0.5× (−1.9,−1.8,−1.7,−1.6,−1.5, 2.5, 2.6, 2.7, 2.8, 2.9, 0p−10).

2. Model B (Multiclass): K = 4,
μ1 = 0,
μ2 = (1.9, 1.3,−1.6, 1.4,−0.7, 0p−5),
μ3 = (05,−2, 1.4,−1.9,−1.5, 0.8, 0p−10),
μ4 = (010,−1.8,−2,−1.7,−2,−0.7, 0p−15).

For each selection of parameters, we consider four settings.

1. Model X.1 (Normal): εj ∼ N(0, 1) for all j.
2. Model X.2 (Heavy-tailed): εj ∼ t3 for all j.
3. Model X.3 (Outliers): εj ∼ 0.99N(0, 1) + 0.01N(10, 1).

4. Model X.4 (Heavy-tailed with outliers): εj
d
= Z1−9Z2, where Z1 ∼ t4 and

Z2 ∼ Binomial(0.01).

We consider our proposal of RNSC and TF-RNSC defined in Section 2.4
in the numerical studies. Other competitors include the original NSC method
by [49], the median-based classifier (Med; [23]), sparse optimal scoring (SOS;
[13]), support vector machine with SCAD penalty (SVM-s; [57]) and �1 penal-
ized logistic regression (Logistic; [24]). NSC is implemented by R package pamr.
SVM-s is implemented by the R package penalizedSVM and SVM-s in Model B
is performed by one-vs-one method. The �1 penalized logistic regression is imple-
mented by the R package glmnet. In multi-class problems, SOS is implemented
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by the R package sparseLDA, while in binary case, SOS is implemented by the R
package TULIP [45] by exploiting an equivalence between SOS and direct sparse
discriminant analysis [38, 37]. We consider 200 replicates for each model and
report the results in Table 1.

Table 1

Simulation results. The means of prediction error and variable selection of 200 replications
are reported. The prediction errors as PE are reported in percentage, while the number of

correctly selected variables of each method is denoted as C (The truth is 10 for Model A and
15 for Model B) and the number of incorrectly selected ones is IC. The standard error of

each result is given in the parentheses. The standard error smaller than 0.1 are rounded to 0.

Model TF-RNSC RNSC NSC Med SOS Logistic SVM-s

A.1
PE(%) 4.4(0.11) 5(0.14) 4.5(0.12) 4.5(0.11) 5.6(0.13) 6.3(0.13) 6.4(0.17)

C 10(0) 10(0) 10(0) 10(0) 9(0.1) 10(0) 9(0.1)
IC 50(4.8) 140(11.7) 16(2.4) 21(3.3) 22(1.9) 50(0.7) 26(2.3)

B.1
PE(%) 7(0.08) 7.5(0.12) 7.2(0.1) 7.2(0.09) 13.9(0.11) 9.5(0.11) 9(0.11)

C 15(0.1) 15(0) 14(0.1) 14(0.1) 14(0) 14(0) 14(0.1)
IC 72(8.4) 181(20.6) 31(6) 37(6.2) 15(0.2) 150(1.4) 58(3.5)

A.2
PE(%) 10.9(0.18) 11(0.19) 15.1(0.21) 15.4(0.21) 16.2(0.23) 17.2(0.24) 16.2(0.24)

C 9(0.1) 10(0) 8(0.1) 8(0.1) 8(0.1) 8(0.1) 9(0.1)
IC 23(2.1) 108(6.5) 13(1.5) 12(2) 20(1.5) 40(1.5) 51(3.4)

B.2
PE(%) 16.4(0.12) 16.5(0.16) 21.3(0.15) 21.7(0.15) 26.8(0.16) 24.6(0.17) 23(0.17)

C 14(0.1) 15(0) 13(0.1) 13(0.1) 13(0.1) 14(0.1) 14(0.1)
IC 17(2.5) 102(9.8) 6(1.1) 9(1.4) 24(0.1) 109(3.2) 144(6.1)

A.3
PE(%) 6.1(0.15) 6.6(0.16) 8.9(0.14) 8.9(0.15) 9.8(0.18) 10.8(0.18) 9.7(0.2)

C 10(0.1) 10(0) 9(0.1) 9(0.1) 8(0.1) 9(0.1) 9(0.1)
IC 34(3.1) 129(9) 10(1.3) 8(1.2) 18(1.7) 36(1.2) 31(3.1)

B.3
PE(%) 8.9(0.1) 9(0.12) 11.6(0.12) 12.1(0.13) 18.7(0.13) 15.5(0.15) 12.5(0.12)

C 14(0.1) 15(0) 14(0.1) 14(0.1) 14(0.1) 14(0.1) 14(0.1)
IC 30(3.6) 121(11.6) 6(1.7) 5(0.9) 21(0.2) 124(3) 75(4.4)

A.4
PE(%) 10.8(0.19) 9.9(0.18) 14.9(0.19) 14.6(0.19) 15.6(0.22) 17(0.25) 15.8(0.2)

C 9(0.1) 10(0) 8(0.1) 8(0.1) 8(0.1) 9(0.1) 9(0.1)
IC 21(1.8) 111(7.6) 10(1.1) 9(1.3) 14(1.4) 41(1.5) 42(3.1)

B.4
PE(%) 15.6(0.13) 15.5(0.15) 21.4(0.14) 21(0.14) 26.3(0.15) 24(0.19) 22.6(0.16)

C 14(0.1) 15(0) 13(0.1) 13(0.1) 14(0.1) 14(0.1) 14(0.1)
IC 18(2.6) 106(11.4) 5(0.8) 5(0.9) 23(0.2) 103(3.4) 118(5.4)

For the prediction error in Table 1, we can see that in Models A.1 & B.1, our
proposal has slightly worse performance than NSC. This is because the noise
term is normal, and NSC is a more efficient estimate of the Bayes rule. RNSC
has a little loss of efficiency because it uses robust estimates. But RNSC has
noticeable advantages in all the other settings, where the data have heavy tails
or extreme outliers. Moreover, RNSC successfully selects all important variables
in most replicates in all models. Other competitors are likely to miss at least 1
or 2 important variables in most replicates. Such results support the application
of RNSC in practice, where normality assumptions could be too stringent. They
also support our theoretical studies that RNSC is consistent even when sub-
Gaussian assumptions are not met.

On the other hand, TF-RNSC consistently gives a competitive performance
in all the simulation settings. Even in Models A.1 & B.1 where the normality
assumption holds, TF-RNSC is comparable to NSC. In all the models except
for Model A.4, TF-RNSC is either comparable to or better than RNSC. Such a
fact demonstrates the potential of TF-RNSC.
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5. Application to a real dataset

In this section, we further demonstrate the performance of RNSC on the lung
cancer data ([22]). This dataset contains 181 patient samples with 12533 gene
expression levels as predictors. The response is of two classes, either mesothe-
lioma (MPM) or adenocarcinoma (ADCA). These two classes refer to two types
of lung-cancer-related issues, where MPM is relatively rare and ADCA is much
more common([22]).

In the analysis, the dataset is randomly split into two parts, with the training
set containing 30% of the samples (54 patients) and the testing set containing
the rest. We fit classifiers by RNSC and all the competitors included in Sec-
tion 4. For RNSC, we choose the tuning parameter by 10-fold cross-validation
in the same way as in Section 4. The classification errors are evaluated on the
testing set. We repeat this procedure for 100 times. The results are reported
in Table 2. It can be seen that RNSC has better accuracy on prediction than
all the other methods. TF-RNSC is the second best, but the one-sided paired
t-test suggests that the difference between RNSC and TF-RNSC is borderline
insignificant (p-value=0.054). However, RNSC is significantly better than all the
other methods at the 0.05 level, while TF-RNSC is not significantly better than
NSC (p-value=0.2513) or Med (p-value=0.1569). In what follows, we focus on
the results of RNSC.

Table 2

The means of prediction errors (PE(%)), number of selected genes (SG), and numbers of
frequently selected genes (# of FSG). The standard errors are given in the parentheses.

Method TF-RNSC RNSC NSC Med SOS Logistic SVM-s
PE(%) 2.3(0.31) 1.7(0.18) 2.7(0.32) 2.6(0.24) 3.7(0.24) 3.8 (0.24) 17.4(0.17)
SG 707(107) 477(150) 214(70) 209(80) 20(0.66) 10(0.35) 8(0.94)

# of FSG 70 23 12 2 4 0 8

The favorable performance of RNSC can be partially explained by the heavy
tails or the presence of outliers in the data. For simplicity, we say that a gene is
“frequently selected” (FSG for short) if it is selected at least in 70 out of the 100
replicates. Eleven genes are uniquely frequently selected by RNSC, but not by
other methods. For the sake of space, we plot the empirical probability density
functions of 4 of them in Figure 1. It can be seen that there are outliers far away
from the bell shape in these 4 gene expressions when the patients are detected
as ADCA. Gene expressions of 39409 at and 39795 at tend to be heavy-tailed
when the patients are detected as MPM. Hence, it is more difficult for methods
such as NSC to detect them.

We further check the empirical excess kurtosis (EEK) of selected genes by
RNSC and NSC. The EEK is defined as empirical kurtosis minus 3, where 3 is
the kurtosis of normal distribution. Large EEK is indicative of heavy tails or the
presence of outliers. The EEKs of genes for each class are presented in Figure 2.
These genes are either selected by NSC or uniquely selected by RNSC. Within
the class of ADCA, the EEKs of the expression of selected genes are generally
large. Thus, the robust method of RNSC is more appropriate on this dataset
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Figure 1. Empirical probability density curves within each class for 4 out of 11 genes that
are uniquely selected by RNSC are presented here.

Figure 2. The distribution of empirical excess kurtosis(EEK) of genes selected by NSC or
uniquely selected by RNSC is presented for the given class. When the patient is detected as
ADCA, the expressions of selected genes have large kurtosis.

and produces more accurate classification results.

Finally, there is evidence that the genes uniquely selected by RNSC are asso-
ciated with MPM. We list several genes out of them and the publications that
point out their association with the disease. WT1 products are found to be a
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possible marker for MPM by [1]. [30] observes an elevated expression level of
PEA-15 in MPM cells. [29] finds the over-expression of SEMA3C in MPM cells.
It is observed by [14] that there are significant gene expression differences of
GFPT2 between ADCA and MPM. PTGIS is deregulated with statistical sig-
nificance in at least one cell line in [41]. These studies support that the variables
identified by RNSC are biologically meaningful as well.

6. Discussion

We propose RNSC as a robust high-dimensional classifier. Numerical and the-
oretical results suggest that RNSC is a competitive classifier on a wide range
of classification problems. The improved robustness in RNSC is a result of em-
ploying the Huber loss. We use the Huber loss because it is naturally related to
the �2 loss in the original NSC method, and strikes a delicate balance between
efficiency and robustness. We note though that there are other approaches for
high-dimensional robust statistics. For example, estimation for conditional me-
dian regression was proposed based on different regression models [3, 16, 54,
e.g]. [10] developed a truncation-type estimator. It is out of the scope of this
paper to conduct an exhaustive study of robust extensions of NSC with these
works, but such an investigation is expected to be an interesting future research
topic.

Appendix A: The heterogeneous robust nearest shrunken centroids
method

In NSC and RNSC, the pooled sample variances, S2
j and S̃2

j , are used in stan-

dardization, which leads to the assumption that the true variances σ2
j for each j

stays constant across classes in Section 3. However, if the true variances are not
constant, the shrinkage procedure in (10) and the estimation for (16) may need
to be modified. Hence, we consider a generalization of RNSC to heterogeneous
problems, referred to as the heterogeneous robust nearest shrunken centroids
classifier (HRNSC).

A.1. Methodology

Similar to the idea of RNSC, we aim to develop the HRNSC classifier of the
form

δ̂HRNSC(X∗) = argmin
k

p∑
j=1

fh(
X∗,j − X̊ ′

·jk

S̊′
jk

) + 2 log S̊′
jk − 2 log π̂k, (27)

where X∗ is a new observation, and X̊ ′
·jk, S̊

′
jk are robust estimates of the within-

class mean and variance that will be formally defined later. Note that HRNSC
differs from RNSC in that we have a class-specific S̊′

jk and the additional term
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of 2 log S̊′
jk in the classifier. The class-specific S̊′

jk models the potential hetero-

geneity in the data. The term 2 log S̊′
jk makes the HRNSC classifier identical

to the quadratic discriminant analysis (QDA) when we make the normality as-
sumption and let h = ∞. For some recent developments of sparse QDA, see
[44, 32, 18, 26, e.g].

To construct X̊ ′
·jk, S̊

′
jk, we start with finding some robust initial estimates.

Let X̃·j , X̃·jk, Q̃jk and S̃2
j be defined as in (8) and (9), and denote

S̃2
jk = Q̃jk − X̃2

·jk (28)

as the initial estimator for the within class variance. These estimates involve
minimizers of the Huber loss and are thus robust. But they do not induce
sparsity in the final estimator. To enforce sparsity, we further consider shrunken
versions of them.

We note that, a predictor Xj is not important in (27) if and only if X̊ ′
·jk, S̊

′
jk

are both constant across k. Consequently, we need to shrink both X̃·jk and

S̃2
jk = Q̃jk − X̃2

·jk towards the pooled mean and variance, respectively. In other

words, we need to shrink X̃·jk − X̃·j and S̃2
jk − S̃2

j to zero. Recall that, in
RNSC, the shrinkage is scaled by a robust estimate of the standard error of
each estimate. We use the same technique in HRNSC. Exact formulas for the
standard errors of X̃·jk and S̃2

jk are difficult to derive, but we can use some
surrogates as follows.

Recall that X̄·jk is the sample mean within Class k and X̄·j is the pooled
sample mean for the jth predictor. We also define S2

jk = 1
nk−1

∑
i∈Ck

(Xij −
X̄·jk)

2 as the sample variance within Class k and S̄2
j =

∑K
k=1 π̂kS

2
jk as their

average. These sample estimates are different from our Huber estimates, but
their standard errors are easy to obtain, and we use robust estimates of their
standard errors to scale our shrinkage of the Huber estimates. This approach is
only an approximation, but yield reasonably good performance in our numerical
studies. To this end, we have the following lemma concerning the variance of
X̄·jk − X̄·j and S2

jk − S̄2
j . The proof of this lemma is in Section A.3.

Lemma 1. For Xij, assume that Xij has mean μjk and variance σ2
jk given

Yi = k. Further denote its b-th moment within Class k as Mbjk = E[Xb
ij | Yi = k]

for b ∈ {2, 3, 4}. Then for the random variables X̄·jk − X̄·j and S2
jk − S̄2

j defined
as above, we have

Var[X̄·jk − X̄·j | n1, . . . , nK ] = (
1

nk
− 2

n
)σ2

jk +
1

n

K∑
k=1

π̂kσ
2
jk, (29)
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and

Var[S2
jk − S̄2

j | n1, . . . , nK ]

=
(n− nk)

2

n2

(
M4jk − 4μjkM3jk + 6μ2

jkM2jk − 3μ4
jk

nk
−

σ4
jk(nk − 3)

nk(nk − 1)

)

+
∑
k′ �=k

n2
k′

n2

(
M4jk′ − 4μjk′M3jk′ + 6μ2

jk′M2jk′ − 3μ4
jk′

nk′
−

σ4
jk′(nk′ − 3)

nk′(nk′ − 1)

)
.

(30)

To estimate the right-hand side of (29) & (30) for heavy-tailed data, we again
resort to Huber estimates. According to (8), (28), and (9), we have X̃jk as the

estimate for μjk, Q̃jk for M2jk, S̃
2
jk for σ2

jk, and S̃2
j for

∑K
k=1 π̂kσ

2
jk, respectively.

We further define the Huber estimators for third and fourth moments as

M̃bjk = argmin
α∈R

{
∑
i∈Ck

fH(X3
ij − α)} (31)

for Mbjk with b ∈ {3, 4}.
Then we have

T̃ 4
jk =

(n− nk)
2

n2

[
M̃4jkH − 4X̃jkM̃3jkH + 6X̃2

jkQ̃jk − 3X̃4
jk

nk
−

S̃4
jk(nk − 3)

nk(nk − 1)

]

+
∑
k′ �=k

n2
k′

n2

[
M̃4jk′H − 4X̃jk′M̃3jk′H + 6X̃2

jk′Q̃jk′ − 3X̃4
jk′

nk′
−

S̃4
jk′(nk′ − 3)

nk′(nk′ − 1)

]

(32)

as the robust estimator for Var[S2
jk − S̄2

j | n1, . . . , nK ].

Based on this conclusion, we consider the following shrunken estimator. Let

ṽ2jk =
S̃2
jk − S̃2

j

T̃ 2
jk

, ṽ′2jk = sign(ṽ2jk)(|ṽ2jk| − Λ2)+, (33)

where Λ2 ≥ 0 is a tuning parameter. With ṽ2jk shrunken by Λ2, the shrunken

Huber estimator for the variance σ2
jk within Class k is

S̊′2
jk = S̃2

j + T̃ 2
jkṽ

′2
jk. (34)

To scale X̃·jk − X̃·j , we again propose a robust estimator for the variance of
X̄·jk− X̄·j as a surrogate. As the robust shrunken estimator for the within class

variance is obtained in (34), we use S̊′2
jk as the robust estimator for σ2

jk now.

Then ( 1
nk

− 2
n )S̊

′2
jk +

1
n S̃

2
j is a surrogate for the variance of X̃·jk − X̃·j according

to Lemma 1.
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Then following the same shrinking procedure of X̃·jk in Section 2.2, we have

d̊jk =
X̃·jk − X̃·j√

( 1
nk

− 2
n )S̊

′2
jk + 1

n S̃
2
j

, d̊′jk = sign(d̊jk)(|d̊jk| − Λ1)+. (35)

The shrunken Huber estimator for the centroid of Xj within Class k is

X̊ ′
·jk = X̃·j +

√
(
1

nk
− 2

n
)S̊′2

jk +
1

n
S̃2
j d̊

′
jk. (36)

In HRNSC, we plug (34) & (36) into (27). Compared to RNSC, HRNSC
adapts to non-constant within-class variance.

A.2. Numerical analysis

We have three sets of numerical results for HRNSC. We first apply HRNSC on
Models A.X and B.X in Section 4 to compare it with the methods in Table 1.
Then we modify model A.X by changing the variance of five predictors following
the important variables to be C.X. To be specific, we let the variance of εjk in
model A.X to be k times of its original variance for any 10 < j ≤ 15. We last
check its performance on the real dataset previously discussed in Section 5.

HRNSC has many additional tuning parameters compared to existing meth-
ods. For the sake of time, we employ tuning-free Huber estimators in HRNSC
and use grid-search to determine the parameters Λ1, Λ2 and h with 10-fold
cross-validation in HRNSC. The results of 200 replicates for Models A.X and
B.X, and Models C.X are given in Tables 3 and 4, respectively.

Table 3

The means of prediction errors, number of correctly and incorrectly selected variables for
HRNSC for Models A.X and B.X. The standard errors are in the parentheses. The true

value of correctly selected variables is 10 for Model A.X and 15 for Model B.X.

HRNSC A.1 B.1 A.2 B.2
PE(%) 4.6(0.11) 7.4(0.09) 14.5(0.2) 21.2(0.14)

C 10(0) 15(0.1) 9(0.1) 14(0.1)
IC 94(6) 145(11) 28(1.9) 30(2.7)

A.3 B.3 A.4 B.4
PE(%) 7.4(0.15) 10.3(0.11) 14.5(0.21) 20.6(0.15)

C 10(0.1) 14(0.1) 9(0.1) 14(0.1)
IC 40(2.8) 41(3.8) 24(1.8) 27(2.1)

Moreover, we apply HRNSC on the lung cancer dataset introduced in Sec-
tion 5 for 100 replicates. On average, HRNSC has the prediction error of 2.0%
(0.72), 149(45.0) selected genes, and 17 frequently selected genes (in the paren-
theses are corresponding standard errors.).

It can be seen that both in the simulation and real data study that HRNSC
outperforms NSC, but does not have a clear advantage over RNSC. One poten-
tial reason is that, given the high dimensions and the low sample sizes, estimat-
ing too many parameters may bring in excessive variability. Another possibility



3362 S. Ren and Q. Mai

Table 4

The means of prediction errors, number of correctly and incorrectly selected variables are
for Models C.X. The standard errors are in the parentheses. The true value of correctly

selected variables is 15 for Model C.X.

Model C.1 C.2
Method HRNSC RNSC NSC HRNSC RNSC NSC
PE(%) 4.4(0.11) 5.1(0.13) 4.5(0.11) 15(0.21) 10.8(0.18) 14.9(0.2)

C 11(0.1) 11(0.1) 10(0.1) 9(0.1) 10(0.1) 8(0.1)
IC 150(13.3) 153(12.3) 22(3.5) 31(2.1) 108(6.3) 11(1.6)

Model C.3 C.4
Method HRNSC RNSC NSC HRNSC RNSC NSC
PE(%) 7.5(0.16) 6.7(0.17) 8.9(0.14) 14.6(0.22) 10.2(0.17) 14.7(0.19)

C 10(0.1) 11(0.1) 9(0.1) 9(0.1) 10(0.1) 8(0.1)
IC 45(3) 132(8.5) 15(2.1) 27(1.8) 101(6.6) 9(1.9)

is that HRNSC may be intrinsically less robust than RNSC because it needs
to estimate the third and fourth moments. Therefore, we believe that the full
development of HRNSC is worth further investigation, which is out of the scope
of the current paper.

A.3. Proof of Lemma 1

We prove Lemma 1 in this section. The following proposition is necessary in the
proof.

Proposition 1. (Corollary 1 of [11] with N = ∞) Suppose {Z1, . . . , Zm} are
m i.i.d copies of a random variables Z with mean ξ and variance �2. Denote

its sample variance as s2 =
∑m

i=1(Zi−Z̄)2

m−1 , where Z̄ is the sample mean. Then we
have following property:

Var[s2] =
E[(Z − ξ)4]

m
− �4(m− 3)

m(m− 1)
. (37)

Proof of Lemma 1. For X̄·jk − X̄·j , as Xij are independent for all i, we have
that

Var[X̄·jk − X̄·j | n1, . . . , nK ]

=Var[
1

nk

∑
i∈Ck

Xij −
1

n

∑
i∈Ck

Xij | n1, . . . , nK ] + Var[
1

n

∑
i/∈Ck

Xij | n1, . . . , nK ]

=(
1

nk
− 1

n
)2nkσ

2
jk +

1

n2

∑
k′ �=k

nk′σ2
jk′

=(
1

nk
− 2

n
)σ2

jk +
1

n

K∑
k=1

π̂kσ
2
jk.

For S2
jk − S̄2

j , we know that

S2
jk − S̄2

j = −(
∑
k′ �=k

nk′

n
S2
jk′ +

n− nk

n
S2
jk).
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Since all S2
jk′ and S2

jk are independent, we have

Var[S2
jk − S̄2

j | n1, . . . , nK ] =
∑
k′ �=k

n2
k′

n2
Var[S2

jk′ | nk′ ] +
(n− nk)

2

n2
Var[S2

jk | nk].

By Proposition 1, we have

Var[S2
jk | nk] =

E[(Xij − μjk)
4 | Yi = k]

nk
−

σ4
jk(nk − 3)

nk − 1

for all k. Therefore, we have

Var[S2
jk − S̄2

j | n1, . . . , nK ]

=
(n− nk)

2

n2

(
E[(Xij − μjk)

4 | Yi = k]

nk
−

σ4
jk(nk − 3)

nk(nk − 1)

)

+
∑
k′ �=k

n2
k′

n2

(
E[(Xij − μjk′)4 | Yi = k′]

nk′
−

σ4
jk′(nk′ − 3)

nk′(nk′ − 1)

)
.

As E[(Xij − μjk)
4 | Yi = k] = M4jk − 4μjkM3jk +6μ2

jkM2jk − 3μ4
jk by straight-

forward calculation, we obtain (30) in Lemma 1.

Appendix B: Proof of theoretical results

To prove Theorems 1, 2 and 3, we first show that the Huber estimator X̃·jk
converges to the true mean μjk and S̃j converges to the true standard error
σj in Section B.1. Then, the properties of variable selection and convergence of
classifier will be justified.

In this part, to give details in the proof and simplify the notation, we define

Nj = min
k1,k2

{|μjk1 − μjk2 | : |μjk1 − μjk2 | > 0}, (38)

τ(ε) = 4
K∑

k=1

[exp{−nπkε
2

2v2
}+ exp{−nπ2

k

4
}+ exp{−nπkε

2

3
}], (39)

and

ϑ(ε) =
C1ε

4/5 + (2ζC1 + 4w + 16wC2)ε+ (4 + 16C2)C1ε
2

uw
, (40)

where C1 = K[(8ζ + 20) + U2]/u, C2 =
√
1 + 2/mink{πk} and w = u− C1ε.

The terms that contain constants such as C1, C2, m0, u, U , V and ζ will be
eventually merged into the constant C.
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B.1. Necessary Lemmas

Theorem 5 in [19] gives a general convergence result of the Huber estimator.

Proposition 2 (Theorem 5 in [19]). Let {Z1, . . . , Zm} be m i.i.d random vari-
ables with mean ξ and variance �2. If Z̃ = {α | minα{

∑m
i=1 fr(Zi −α)}} is the

Huber estimator for ξ, then for any ε such that 0 < ε ≤
√
2
4 v, where v ≥ �, by

letting r = v2

ε , we have

Pr(|Z̃ − ξ| ≥ 4ε) ≤ 2 exp{−mε2

v2
}. (41)

To simplify the expression in our discussion, we replace δ in the original

paper with ε = v
√

log(1/δ)
m in Proposition 2. Same expression will be applied in

following propositions.

The result in Proposition 2 can be generalized to the Huber estimators for
variance. As mentioned after Theorem 5 in [19], we have the following proposi-
tion:

Proposition 3 (The discussion following Theorem 5 in [19]). Let {Z1, . . . , Zm}
be m i.i.d random variables with mean ξ and variance �2. If the Huber estimator
for Q = EZ2

i is Q̃ = {α | minα{
∑m

i=1 fr(Z
2
i − α)}}, then for any ε such that

0 < ε ≤
√
2
4 v, where v ≥

√
Var(Z2

i ), by letting r = v2

ε , we have

Pr(|Q̃−Q| ≥ 4ε) ≤ 2 exp{−mε2

v2
}. (42)

For any fixed j ∈ {1, . . . , p}, any class k and i ∈ Ck, {Xij} are independent
and identically distributed. We can then generalize the conclusions in Proposi-
tions 2 & 3 to obtain the concentration inequalities for X̃·jk and S̃j . Considering

the fact that X̃·jk and S̃j are related to nk and π̂k, it is necessary to introduce
the following proposition to bound them.

Proposition 4 (Hoeffding’s inequality). Let nk be the sum of n independent
and identically distributed Bernoulli random variables with probability πk and
π̂k = nk

n be the estimator for πk. Then we have

Pr(nk ≤ nπk/2) ≤ exp{−nπ2
k/4}, (43)

and

Pr(|π̂k − πk| ≥ πkε) ≤ 2 exp{−nπkε
2

3
}, (44)

for any k and ε > 0.

Combining Propositions 2 & 4, we have the following result for X̃·jk:
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Lemma 2. For any j ∈ {1, . . . , p}, any class k and i ∈ Ck, let X̃·jk defined

in (8) be the Huber estimator for the class mean μjk. Then by letting H = v2

ε ,

where v ≥ σj and 0 < ε ≤
√
2
4 v, we have

Pr(|X̃·jk − μjk| ≥ 4ε) ≤ 2 exp{−nπkε
2

2v2
}+ 2 exp{−nπ2

k

4
}. (45)

Proof of Lemma 2. By Proposition 2, we have the following concentration in-
equality for X̃·jk conditional on Y :

Pr(|X̃·jk − μjk| ≥ 4ε | Y ) ≤ 2 exp{−nkε
2

v2
}.

Define A = {nk: nk ≥ nπk/2}. Then for the marginal probability, we have

Pr(|X̃·jk − μjk| ≥ 4ε) = E[Pr(|X̃·jk − μjk| ≥ 4ε | Y )]

≤ E[2 exp{−nkε
2

v2
}]

= E[2 exp{−nkε
2

v2
}IA] + E[2 exp{−nkε

2

v2
}IAc ]

≤ 2 exp{−nπkε
2

2v2
}+ 2E[IAc ]

By (43), E[IAc ] ≤ Pr(nk ≤ nπk/2) ≤ exp{−nπ2
k

4 }. Thus,

Pr(|X̃·jk − μjk| ≥ 4ε) ≤ 2 exp{−nπkε
2

2v2
}+ 2 exp{−nπ2

k

4
}.

By applying the same strategy on the Huber estimator for Qjk = EX2
ij , we

obtain the following result.

Lemma 3. For any j ∈ {1, . . . , p}, any class k and i ∈ Ck, let Q̃jk defined
in (8) be the Huber estimator for the second moment Qjk = EX2

ij. Then by

letting H = v2

ε , where v ≥ max
{
σj ,
√

Var(X2
ij)
}

and 0 < ε ≤
√
2
4 v, we have

Pr(|Q̃jk −Qjk| ≥ 4ε) ≤ 2 exp{−nπkε
2

2v2
}+ 2 exp{−nπ2

k

4
}. (46)

Proof of Lemma 3. By Proposition 3, we have the following concentration in-
equality for Q̃jk conditional on Y :

Pr(|Q̃jk −Qjk| ≥ 4ε | Y ) ≤ 2 exp{−nkε
2

v2
}.

Then following the same method in the proof of Lemma 2, we have the result

Pr(|Q̃jk −Qjk| ≥ 4ε) ≤ 2 exp{−nπkε
2

2v2
}+ 2 exp{−nπ2

k

4
}.
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Combining the results in Lemmas 2 & 3, we now can obtain the concentration
inequality for S̃j .

Lemma 4. Assume that (A1)-(A3) and (A5) hold. Define τ(ε) as in (39) and
S̃j as in (9).

Then, by letting H = v2

ε , where v ≥ max{σj , κ} and 0 < ε ≤ min{ 1
2 ,

√
2
4 v},

we have

Pr

(
K⋃

k=1

{
{|X̃·jk − μjk| ≥ 4ε} ∪ {|π̂k − πk| ≥ ε}

}
∪ {|S̃j − σj | ≥ C1ε}

)
≤ τ(ε),

(47)
where C1 is defined in (40).

Proof of Lemma 4. We start from the event {|S̃j −σj | ≥ C1ε}. Since u ≤ σj for

all j when (A5) holds, u ≤ S̃j + σj as well. Then we have

{|S̃j − σj | ≥ C1ε}
⊂{|S̃j − σj |(S̃j + σj) ≥ uC1ε}
⊂{|S̃2

j − σ2
j | ≥ K[(8ζ + 20) + U2]ε}.

By the definition of S̃2
j , we know

{|S̃2
j − σ2

j | ≥ K[(8ζ + 20) + U2]ε}

⊂
K⋃

k=1

{|π̂k(Q̃jk − X̃2
·jk)− πkσ

2
j | ≥ [(8ζ + 20) + U2]ε}

⊂
K⋃

k=1

{
{|π̂k(Q̃jk − X̃2

·jk)− π̂kσ
2
j | ≥ (8ζ + 20)ε} ∪ {|π̂kσ

2
j − πkσ

2
j | ≥ U2ε}

}

=

K⋃
k=1

(A1,k ∪ A2,k) ,

Where A1,k = {|π̂k(Q̃jk − X̃2
·jk) − π̂kσ

2
j | ≥ (8ζ + 20)ε} and A2,k = {|π̂kσ

2
j −

πkσ
2
j | ≥ U2ε}. We consider {A1,k} first. Since π̂k ≤ 1,

A1,k ⊂ {|(Q̃jk − X̃2
·jk)− σ2

j | ≥ (8ζ + 20)ε}.

Since σ2
j = Qjk − μ2

jk for any k,

{|(Q̃jk − X̃2
·jk)− σ2

j | ≥ (8ζ + 20)ε}
⊂{|Q̃jk −Qjk| ≥ 4ε} ∪ {|X̃2

·jk − μ2
jk| ≥ 8(ζ + 2)ε}.

We know Pr(|Q̃jk − Qjk| ≥ 4ε) ≤ 2 exp{−nπkε
2

2v2 } + 2 exp{−nπ2
k

4 } by Lemma 3.

For the term {|X̃2
·jk − μ2

jk| ≥ 8(ζ + 2)ε}, we have the following argument.
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When the event {|X̃·jk − μjk| < 4ε} holds, we can show that

|X̃2
·jk − μ2

jk| = |X̃·jk − μjk||X̃·jk + μjk|
≤ |X̃·jk − μjk|(|X̃·jk − μjk|+ 2|μjk|)
< 16ε2 + 8|μjk|ε.

Given ε ≤ 1
2 , we have ε2 < ε and hence 16ε2 + 8|μjk|ε < 8(ζ + 2)ε when (A1)

holds. Then we have

{|X̃·jk − μjk| < 4ε} ⊂ {|X̃2
·jk − μ2

jk| < 8(ζ + 2)ε}.

Inversely,

{|X̃2
·jk − μ2

jk| ≥ 8(ζ + 2)ε} ⊂ {|X̃·jk − μjk| ≥ 4ε}.

Therefore,

{|π̂k(Q̃jk − X̃2
·jk)− π̂kσ

2
j | ≥ (8ζ + 20)ε}

⊂{|Q̃jk −Qjk| ≥ 4ε} ∪ {|X̃·jk − μjk| ≥ 4ε}.

On the other hand, since σj ≤ U for all j when (A2) holds, for the term A2,k,
we have

A2,k ⊂ {|π̂k − πk| ≥ ε} ⊂ {|π̂k − πk| ≥ πkε}.

Combining these three parts, we obtain

{|S̃j − σj | ≥ C1ε}

⊂
K⋃

k=1

{
{|Q̃jk −Qjk| ≥ 4ε} ∪ {|X̃·jk − μjk| ≥ 4ε} ∪ {|π̂k − πk| ≥ πkε}

}
.

Therefore,

K⋃
k=1

{
{|X̃·jk − μjk| ≥ 4ε} ∪ {|π̂k − πk| ≥ ε}

}
∪ {|S̃j − σj | ≥ C1ε}

⊂
K⋃

k=1

{
{|Q̃jk −Qjk| ≥ 4ε} ∪ {|X̃·jk − μjk| ≥ 4ε} ∪ {|π̂k − πk| ≥ πkε}

}
.

By the results in Proposition 4 and Lemmas 2 & 3, we can show

Pr

(
K⋃

k=1

{
{|X̃·jk − μjk| ≥ 4ε} ∪ {|π̂k − πk| ≥ ε}

}
∪ {|S̃j − σj | ≥ C1ε}

)

≤
K∑

k=1

(
Pr(|Q̃jk −Qjk| ≥ 4ε) + Pr(|X̃·jk − μjk| ≥ 4ε) + Pr(|π̂k − πk| ≥ πkε)

)

≤ 4

K∑
k=1

[exp{−nπkε
2

2v2
}+ exp{−nπ2

k

4
}+ exp{−nπkε

2

3
}] = τ(ε).
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This lemma helps us merge several events that will be simultaneously used
in later proofs into one. We can show the convergence of S̃j by using it as well.

Lemma 5. Assume that (A1)-(A3) and (A5) hold. Define τ(ε) as in (39) and
S̃j as in (9).

Then, by letting H = v2

ε , where v ≥ max{σj , κ} and 0 < ε ≤ min{ 1
2 ,

√
2
4 v},

we have
Pr(|S̃j − σj | ≥ C1ε) ≤ τ(ε), (48)

Proof of Lemma 5. This is a direct consequence of Lemma 4.

B.2. Proof of Theorem 1

With the setup above, we can now give the variable selection result. To prove
D̂ → D, we first show that for all j ∈ Dc, all d̃′jk shrink to 0 with a proper

choice of Λ, which indicates X̂ ′
·jk = X̂ ′

·j for all k. Then we show that, on the

other hand, when j ∈ D, at least two of X̂ ′
·jk are different for some k1 and k2

with probability converging to 1.
We have the following femma for the case where j ∈ Dc.

Lemma 6. Let j ∈ Dc. Assume that (A1)-(A5) hold. Let H = v2

ε , where

0 < ε ≤ min{ 1
2 ,

√
2
4 v} and v ≥ max{σj , κ}. Then with the choice of Λ ≥ 8ε

m0w
,

where m0 =
√

C/n and w = u− C1ε, we have

Pr(d̃′jk �= 0 for some k) ≤ C exp{−Cnε2

v2
}. (49)

Proof of Lemma 6. We can show

Pr(d̃′jk �= 0 for some k) = Pr

(
K⋃

k=1

{d̃′jk �= 0}
)
.

For a given class k, we have

Pr(d̃′jk �= 0) = Pr(|X̃·jk − X̃·j | > mkS̃jΛ).

According to (A3), all πk are bounded away from 0 and 1. Thus, given a proper
constant C for m0 =

√
C/n, we have mk ≥ m0 for all k. Then with the choice

of Λ ≥ 8ε
m0w

, where 8ε < mkS̃jΛ when |S̃j − σj | ≤ C1ε holds. Thus,

Pr(|X̃·jk − X̃·j | > mkS̃jΛ) ≤ Pr({|X̃·jk − X̃·j | ≥ 8ε} ∪ {|S̃j − σj | ≥ C1ε})

for j ∈ Dc, μj1 = . . . = μjK = μj . Then we have

Pr(|X̃·jk − X̃·j | ≥ 8ε) ≤ Pr(|X̃·jk − μj |+ |X̃·j − μj | ≥ 8ε)

≤ Pr({|X̃·jk − μj | ≥ 4ε} ∪ {|X̃·j − μj | ≥ 4ε}).
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By the definition of X̃·j , we have

{|X̃·j − μj | ≥ 4ε} =

{
K∑

k=1

π̂k(|X̃·jk − μj)| ≥ 4ε

}
⊂

K⋃
k=1

{
|X̃·jk − μj | ≥ 4ε

}
.

Therefore,

Pr({|X̃·jk − μj | ≥ 4ε} ∪ {|X̃·j − μj | ≥ 4ε}) ≤ Pr

(
K⋃

k=1

{|X̃·jk − μj | ≥ 4ε}
)
,

and the LHS of (49) becomes

Pr(d̃′jk �= 0 for some k) = Pr

(
K⋃

k=1

{d̃′jk �= 0}
)

≤Pr

(
K⋃

k=1

{|X̃·jk − X̃·j | ≥ 8ε} ∪ {|S̃j − σj | ≥ C1ε}
)

≤Pr

(
K⋃

k=1

{|X̃·jk − μj | ≥ 4ε} ∪ {|S̃j − σj | ≥ C1ε}
)
.

According to Lemma 4,

Pr

(
K⋃

k=1

{|X̃·jk − μj | ≥ 4ε} ∪ {|S̃j − σj | ≥ C1ε}
)

≤ τ(ε).

Combining the results above, we finally obtain

Pr(d̃′jk �= 0 for some k) = Pr

(
K⋃

k=1

{d̃′jk �= 0}
)

≤ τ(ε) ≤ C exp{−Cnε2

v2
}.

The following lemma proves the case where j ∈ D.

Lemma 7. Let j ∈ D. Assume that (A1)-(A5) hold. Define Nj as in (38). Let

H = v2

ε , where v ≥ max{σj , κ} and 0 < ε ≤ min{ 1
2 ,

√
2
4 v,Nj/16}. Then with

the choice of Λ ≤ Nj−8ε
Cm0w

, where m0 =
√
C/n and w = u− C1ε, we have

Pr(X̂ ′
jk1

= X̂ ′
jk2

for any k1, k2) ≤ C exp{−Cnε2

v2
}. (50)

Proof of Lemma 7. Among all Huber mean estimators, {X̃·jk, . . . , X̃·jK} for any
j ∈ D, we pick the smallest one, denoted as X̃jka , and the largest one, denoted

as X̃jkb
. Since X̃·j =

∑K
k=1 π̂kX̃jk, we have X̃jka ≤ X̃·j ≤ X̃jkb

.
Therefore,

X̂ ′
jkb

− X̂ ′
jka

= (X̃jkb
− X̃·j −mkb

S̃jΛ)+ + (X̃·j − X̃jka −mka S̃jΛ)+.
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Since the threshold function (x)+ is convex and satisfies the property (ax)+ =
a(x)+ for any real number a, we have

1

2
(X̃jkb

− X̃·j −mkb
S̃jΛ)+ +

1

2
(X̃·j − X̃jka −mka S̃jΛ)+

≥(
1

2
(X̃jkb

− X̃·j −mkb
S̃jΛ + X̃·j − X̃jka −mka S̃jΛ))+,

which is equivalent to

(X̃jkb
− X̃·j −mkb

S̃jΛ)+ + (X̃·j − X̃jka −mka S̃jΛ)+

≥(X̃jkb
− X̃jka −mkb

S̃jΛ−mka S̃jΛ)+.

For any j ∈ D, if the event {|X̃·jk−μjk| < 4ε} holds for all k, event {|S̃j−σj | <
C1ε} and Assumptions (A1) and (A2) hold, we have Cm0wΛ ≥ (mka S̃jΛ +

mkb
S̃jΛ) for some constant C ≥ 2maxl1,l2

{√
1/πl1

−1

1/πl2
−1

}
U+C1ε
u−C1ε

. Thus

(X̃jkb
− X̃jka −mkb

S̃jΛ−mka S̃jΛ)+

≥(X̃jkb
− X̃jka − Cm0wΛ)+

=((X̃jkb
− μjkb

)− (X̃jka − μjka) + (μjkb
− μjka)− Cm0wΛ)+.

We now show that (μjkb
− μjka) > 0. The fact that X̃jkb

− X̃jka ≥ 0 indicates
that

X̃jkb
− X̃jka = (X̃jkb

− μjkb
)− (X̃jka − μjka) + (μjkb

− μjka) ≥ 0.

for any ε. If μjkb
− μjka < 0, then (μjkb

− μjka) ≤ −Nj by definition. Thus, we
have

(X̃jkb
− μjkb

)− (X̃jka − μjka) + (μjkb
− μjka) ≤ 8ε−Nj .

Under the condition given in the lemma that ε ≤ Nj

16 , we have X̃jkb
− X̃jka <

0, which contradicts to our choices of X̃jkb
and X̃jka . On the other hand, if

μjkb
= μjka , then since j ∈ D, there is another μjkc such that μjkc �= μjkb

. If
μjkc > μjkb

, μjkc − μjka ≥ Nj by definition. Thus, we have

X̃jkc − X̃jkb
= (X̃jkc − μjkc)− (X̃jkb

− μjkb
) + (μjkc − μjkb

) ≥ Nj − 8ε > 0

when ε ≤ Nj

16 . In this case, X̃jkc > X̃jkb
contradicting to our choice of X̃jkb

. On
the other hand, if μjkc < μjkb

, μjkc − μjka ≤ Nj . In this case, we have

X̃jkc − X̃jka = (X̃jkc − μjkc)− (X̃jka − μjka) + (μjkc − μjka) ≤ 8ε−Nj < 0

when ε ≤ Nj

16 . Thus, X̃jkc < X̃jka , contradicting to our choice of X̃jka .
Therefore, (μjkb

− μjka) > 0 and we obtain

(X̃jkb
− X̃jka −mkb

S̃jΛ−mka S̃jΛ)+ ≥ (Nj − 8ε− Cm0wΛ)+.



Robust nearest centroids classifier 3371

When ε ≤ Nj/16, with the choice of 0 < Λ ≤ Nj−8ε
Cm0w

, X̂ ′
jkb

− X̂ ′
jka

≥ (Nj − 8ε−
Cm0wΛ)+ > 0.

Combining the results above with Lemma 4, we reach the result

Pr(X̂ ′
jk1

= X̂ ′
jk2

for any k1, k2)

≤Pr({|X̃·jk − μjk| ≥ 4ε for some k} ∪ {|S̃j − σj | ≥ C1ε})

≤Pr

(
K⋃

k=1

{|X̃·jk − μj | ≥ 4ε} ∪ {|S̃j − σj | ≥ C1ε}
)

≤τ(ε) ≤ C exp{−Cnε2

v2
}.

Lemma 7 aims to show that the important variables can be selected as long as
all Huber estimators, X̃·jk and S̃j , are sufficiently close to the truth. Combining
this result with the conclusion in Lemma 6, we finally can prove the result of
variable selection.

Proof of Theorem 1. Under the conditions stated in Theorem 1, by the result
of Lemma 6 & 7, we have

Pr(D̂ �= D)

≤Pr

⎛
⎝⋃

j∈D
{X̂ ′

jk1
= X̂ ′

jk2
for any k1, k2}

⎞
⎠+ Pr

⎛
⎝ ⋃

j∈Dc

{d̃′jk �= 0 for some k}

⎞
⎠

≤Cp exp{−Cnε2

v2
}.

Therefore,

Pr(D̂ = D) ≥ 1− Cp exp{−Cnε2

v2
}.

Furthermore, assume that n → ∞ and log p
n → 0. Then when H → ∞, H �√

v2n
log p and C

√
log p � Λ � CN0

√
n − C

√
log p, we let ε → 0 and ε �

√
log p
n .

This indicates that Cp exp{−Cnε2

v2 } → 0 and Pr(D̂ = D) → 1.

B.3. Proof of Theorems 2 and 3

For the classifier in the nearest shrunken centroids method, we denote

ρnsck (X) =

p∑
j=1

(Xj − μjk)
2

σ2
j

− 2 log πk (51)

and its estimator as

ρ̂nsck (X) =

p∑
j=1

(Xj − X̄ ′
·jk)

2

S2
j

− 2 log π̂k. (52)
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For our proposal, denote

ρh,k(X) =

p∑
j=1

fh(
Xj − μjk

σj
)− 2 log πk (53)

and its estimator as

ρ̂h,k(X) =

p∑
j=1

fh(
Xj − X̂ ′

·jk

S̃j

)− 2 log π̂k. (54)

For the non-gaussian scenario, the Bayes misclassification rate does not have
an explicit form. Therefore, we consider the difference between the classifier
and its estimator. Intuitively, δ̂h(X∗) = δh(X∗) if all the estimators for Huber
loss functions of important variables converge to the truth. To give a cleaner
expression of the bound, we first show that ρ̂h,k → ρh,k for any k, then prove

Pr
(
δ̂h(X∗) �= δh(X∗)

∣∣∣(Ytr,Xtr)
)
→ 0 when n → ∞.

We start from the Huber loss function part.

Proposition 5 (Markov inequality). Let X∗,j be a random variable with mean
μjY∗ and fourth moment E(ε∗j )

4 ≤ κ2 < ∞. Then for any ε > 0, we have

Pr

(
|X∗,j − μjY∗ | ≥

1

ε1/5

)
≤ κ2ε4/5.

Then we have the following lemma.

Lemma 8. Assume that (A1)-(A5) hold. Define τ(ε) as in (39) and ϑ(ε) as

in (40). Let H = v2

ε , where v ≥ max{σj , κ} and 0 < ε ≤ min{ 1
2 ,

√
2
4 v, u

3C1
}.

Then with the choice of Λ = 8ε
m0w

, where m0 =
√
C/n and w = u − C1ε, we

have

Pr

(
K⋃

k=1

{
|fh(

X∗,j − X̂ ′
·jk

S̃j

)− fh(
X∗,j − μjk

σj
)| ≥ hϑ(ε)

}∣∣∣∣∣(Ytr,Xtr)

)
≤ κ2ε4/5

(55)
with probability greater than 1− τ(ε).

Proof of Lemma 8. Since the derivative of the Huber loss |dfhdx | ≤ h, we can show

that

∣∣∣∣X∗,j−X̂′
·jk

S̃j
− X∗,j−μjk

σj

∣∣∣∣ ≤ ϑ(ε) indicates |fh(
X∗,j−X̂′

·jk
S̃j

) − fh(
X∗,j−μjk

σj
)| ≤

hϑ(ε). Then we can show that

Pr

(
K⋃

k=1

{
|fh(

X∗,j − X̂ ′
·jk

S̃j

)− fh(
X∗,j − μjk

σj
)| ≥ hϑ(ε)

}∣∣∣∣∣(Ytr,Xtr)

)

≤Pr

(
K⋃

k=1

{∣∣∣∣∣X∗,j − X̂ ′
·jk

S̃j

− X∗,j − μjk

σj

∣∣∣∣∣ ≥ ϑ(ε)

}∣∣∣∣∣(Ytr,Xtr)

)
.
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Now consider the event

{∣∣∣∣X∗,j−X̂′
·jk

S̃j
− X∗,j−μjk

σj

∣∣∣∣ ≥ ϑ(ε)

}
. Given the training set

(Ytr,Xtr),∣∣∣∣∣X∗,j − X̂ ′
·jk

S̃j

− X∗,j − μjk

σj

∣∣∣∣∣ ≤
∣∣∣∣∣X∗,j(σj − S̃j)

S̃jσj

∣∣∣∣∣+
∣∣∣∣∣μjkS̃j − X̂ ′

·jkσj

S̃jσj

∣∣∣∣∣ .
If |X∗,j −μjY∗ | < 1

ε1/5
and |S̃j −σj | < C1ε, then when (A1) holds, the first term

becomes∣∣∣∣∣X∗,j(σj − S̃j)

S̃jσj

∣∣∣∣∣ =
∣∣∣∣∣ (μjY∗ +X∗,j − μjY∗)(σj − S̃j)

S̃jσj

∣∣∣∣∣ < ζC1ε+ C1ε
4/5

wσj
.

On the other hand, since |X̂ ′
·jk−μjk| ≤ |X̃·jk−μjk|+mkS̃jΛ, when |X̃·jk−μjk| <

4ε and |S̃j − σj | < C1ε, the second term turns to be:∣∣∣∣∣μjkS̃j − X̂ ′
·jkσj

S̃jσj

∣∣∣∣∣
≤
∣∣∣∣∣μjkS̃j − X̂ ′

·jkS̃j

S̃jσj

∣∣∣∣∣+
∣∣∣∣∣X̂

′
·jkS̃j − X̂ ′

·jkσj

S̃jσj

∣∣∣∣∣
=

∣∣∣∣∣μjk − X̂ ′
·jk

σj

∣∣∣∣∣+
∣∣∣∣∣ [μjk + (X̂ ′

·jk − μjk)](S̃j − σj)

S̃jσj

∣∣∣∣∣
≤|X̃·jk − μjk|+mkS̃jΛ

σj
+

ζC1ε

wσj
+

(|X̃·jk − μjk|+mkS̃jΛ)C1ε

wσj

<
4ε+mkS̃jΛ

σj
+

ζC1ε

wσj
+

(4ε+mkS̃jΛ)C1ε

wσj
.

Follow the choice of Λ in Theorem 1 and let Λ = 8ε
m0w

, then mkS̃jΛ = mk

m0

S̃j

w 8ε.

If |S̃j − σj | < C1ε and ε ≤ u
3C1

≤ σj

3C1
, we have

S̃j

w ≤ 2; If |π̂k − πk| < πkε and

ε ≤ 1
2 , we have mk

m0
≤ C2. Hence, mkS̃jΛ < 16C2ε under these two conditions.

When (A1) and (A2) hold, |μjk| < ζ and u < σj < U . Then we have∣∣∣∣∣X∗,j − X̂ ′
·jk

S̃j

− X∗,j − μjk

σj

∣∣∣∣∣
<
C1ε

4/5 + (2ζC1 + 4w + 16wC2)ε+ (4 + 16C2)C1ε
2

wσj

≤C1ε
4/5 + (2ζC1 + 4w + 16wC2)ε+ (4 + 16C2)C1ε

2

uw
=ϑ(ε).

Summarizing the conditions above, we have

Pr

(
K⋃

k=1

{∣∣∣∣∣X∗,j − X̂ ′
·jk

S̃j

− X∗,j − μjk

σj

∣∣∣∣∣ ≥ ϑ(ε)

}∣∣∣∣∣(Ytr,Xtr)

)
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≤Pr

(
|X∗,j − μjY∗ | ≥

1

ε1/5

∣∣∣∣(Ytr,Xtr)

)

if
⋂K

k=1

{
{|X̃·jk − μjk| < 4ε} ∩ {|π̂k − πk| < ε}

}
∩ {|S̃j − σj | < C1ε} holds.

By the results in Lemma 4 and Proposition 5, with probability greater than
1− τ(ε), we have

Pr

(
K⋃

k=1

{
|fh(

X∗,j − X̂ ′
·jk

S̃j

)− fh(
X∗,j − μjk

σj
)| ≥ hϑ(ε)

}∣∣∣∣∣(Ytr,Xtr)

)

≤Pr

(
K⋃

k=1

{∣∣∣∣∣X∗,j − X̂ ′
·jk

S̃j

− X∗,j − μjk

σj

∣∣∣∣∣ ≥ ϑ(ε)

}∣∣∣∣∣(Ytr,Xtr)

)

≤κ2ε4/5

With the preparations above, we can eventually obtain the convergence of
the classifier.

Proof of Theorem 2. Denote the event

B1 =
K⋃

k=1

{min
l �=k

{|ρh,l(X∗)− ρh,k(X∗)|} > 4Kε+ 2qhϑ(ε) | Y∗ = k}

and
B2 = {|ρ̂h,k(X∗)− ρh,k(X∗)| ≤ 2Kε+ qhϑ(ε) for all k},

then a sufficient condition for {δ̂h(X∗) = δh(X∗)} is B1 ∩B2. Therefore, we can
show that

Pr
(
δ̂h(X∗) �= δh(X∗)

∣∣∣(Ytr,Xtr)
)
≤ 1− Pr (B1 ∩ B2|(Ytr,Xtr))

≤
K∑

k=1

Pr(min
l �=k

{|ρh,l(X∗)− ρh,k(X∗)|} ≤ 4Kε+ 2qhϑ(ε) | Y∗ = k)

+Pr (|ρ̂h,k(X∗)− ρh,k(X∗)| > 2Kε+ qhϑ(ε) for some k | (Ytr,Xtr))

=

K∑
k=1

Pr(B′
1,k | Y∗ = k) + Pr (Bc

2 | (Ytr,Xtr)) ,

where B′
1,k = {minl �=k{|ρh,l(X∗) − ρh,k(X∗)|} ≤ 4Kε + 2qhϑ(ε)} and Bc

2 is the

compliment of B2. We start with
∑K

k=1 Pr(B′
1,k | Y∗ = k). We have

Pr(B′
1,k | Y∗ = k)

≤
∑
l �=k

Pr(|ρh,l(X∗)− ρh,k(X∗)| ≤ 4Kε+ 2qhϑ(ε) | Y∗ = k)

≤
∑
l �=k

∑
j∈D

Pr

(
|fh(

ε∗j + μjk − μjl

σj
)− fh(

ε∗j
σj

)| ≤ 4Kε+ 2qhϑ(ε)

q

)
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for each k. Now consider the equation |fh(x+μjk−μjl

σj
) − fh(

x
σj
)| = 0. Based on

the value of μjk, μjl and h, it can be simplified to a quadratic equation or linear
equation, with two solutions x = a1(μjk, μjl), x = a2(μjk, μjl) or one solution
x = a1(μjk, μjl), where ai are constants determined by μjk, μjl.

When (A4) holds, the density function |gj(ε∗j )| ≤ V . Thus in either cases, we
have

Pr

(
|fh(

ε∗j + μjk − μjl

σj
)− fh(

ε∗j
σj

)| ≤ 4Kε+ 2qhϑ(ε)

q

)

≤
∑
i

Pr

(
|ε∗j − ai| ≤

σj(4Kε+ 2qhϑ(ε))

q

)

≤4V U(4Kε+ 2qhϑ(ε))

q
.

Then we can show that

K∑
k=1

Pr(B′
1,k | Y∗ = k) ≤ 4KV U(4Kε+ 2qhϑ(ε)).

For Bc
2, we can show

Bc
2 ⊂
[

K⋃
k=1

⎧⎨
⎩

p∑
j=1

|fh(
X∗,j − X̂ ′

·jk

S̃j

)− fh(
X∗,j − μjk

σj
)| ≥ qhϑ(ε)

⎫⎬
⎭

K⋃
k=1

{| log π̂k − log πk| > 2ε}
]
.

We first consider the prior term. Since

| log π̂k − log πk| = | log(1 + π̂k − πk

πk
)| ≤ | π̂k − πk

πk
|,

we have {|2 log π̂k − 2 log πk| ≥ 2ε} ⊂ {|π̂k − πk| ≥ πkε}.
Therefore, under the conditions where {|X̃·jk−μjk| < 4ε}, {|π̂k−πk| < πkε},

{|S̃j − σj | < C1ε}, and {D̂ = D} for all j and k, we have

Bc
2 ⊂

⋃
j∈D

K⋃
k=1

{
|fh(

X∗,j − X̂ ′
·jk

S̃j

)− fh(
X∗,j − μjk

σj
)| ≥ hϑ(ε)

}
.

According to the conclusions in Lemmas 5 & 8, Proposition 4 and Theorem 1,

with probability greater than 1− (q + p)C exp{−Cnε2

v2 }, we now have

Pr (Bc
2 | (Ytr,Xtr))

≤
∑
j∈D

Pr

(
K⋃

k=1

{
|fh(

X∗,j − X̂ ′
·jk

S̃j

)− fh(
X∗,j − μjk

σj
)| ≥ hϑ(ε)

}∣∣∣∣∣(Ytr,Xtr)

)
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≤qκ2ε4/5.

Combining the results on B′
1,k and B2, with probability greater than 1 − (q +

p)C exp{−Cnε2

v2 }, we have

Pr
(
δ̂h(X∗) �= δh(X∗)

∣∣∣(Ytr,Xtr)
)

≤qκ2ε4/5 + 4KV U(4Kε+ 2qhϑ(ε))

≤qhCε4/5

Furthermore, when n → ∞ and q5/2h5/2 log p
n → 0 for any h > 0, by letting

H → ∞ while H �
√

v2n
log p , C

Λ√
n
→ 0 while Λ � C

√
log p, we have ε4/5 → 0

and ε4/5 � ( log p
n )2/5. Then qhCε4/5 → 0, which indicates that our estimator

for the classifier consistently gives the same result as the true one.

We then prove a special case where we have the normality assumption. The
following proposition is needed in the proof of Theorem 3.

Proposition 6 (Lemma 11 in [33]). Let Φ and φ denote the distribution and
density functions of a standard Gaussian random variable. Then

φ(t)

2t
≤ 1− Φ(t) ≤ φ(t)

t
if t ≥ 1. (56)

Proof of Theorem 3. [49] points out that the NSC classifier is equivalent to the
linear discriminant analysis classifier when the covariance matrix in LDA is
diagonal. Given the condition that all predictors are independent, we have

Pr
(
δ̂h(X∗) �= δbayes(X∗)

∣∣∣(Ytr,Xtr)
)
= Pr

(
δ̂h(X∗) �= δnsc(X∗)

∣∣∣(Ytr,Xtr)
)
.

Denote the event

B =

{
|
X∗,j − X̂ ′

·jk

S̃j

| ≤ h for any k and j ∈ D̂
}
,

then we have

Pr
(
δ̂h(X∗) �= δnsc(X∗)

∣∣∣(Ytr,Xtr)
)

=Pr
(
{δ̂h(X∗) �= δnsc(X∗)} ∩ B

∣∣∣(Ytr,Xtr)
)

+Pr
(
{δ̂h(X∗) �= δnsc(X∗)} ∩ Bc

∣∣∣(Ytr,Xtr)
)

≤Pr
(
{δ̂h(X∗) �= δnsc(X∗)} ∩ B

∣∣∣(Ytr,Xtr)
)

+Pr (Bc | (Ytr,Xtr)) .
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Denote the event

B̂′ =
K⋂

k=1

{
{|X̃·jk − μjk| < 4ε} ∩ {|π̂k − πk| < ε}

}
∩{|S̃j−σj | < C1ε}∩{D̂ = D}.

Since X∗,j = ε∗j + μjY∗ and |X∗,j−X̂′
·jk

S̃j
| = |X∗,j−μjY∗+μjY∗−μjk+μjk−X̂′

·jk
S̃j

|, it can
be bounded by

σj

S̃j

(
|
ε∗j
σj

| − |μjY∗ − μjk

σj
| − |

μjk − X̂ ′
·jk

σj
|
)

≤|
X∗,j − μjY∗ + μjY∗ − μjk + μjk − X̂ ′

·jk

S̃j

|

≤σj

S̃j

(
|
ε∗j
σj

|+ |μjY∗ − μjk

σj
|+ |

μjk − X̂ ′
·jk

σj
|
)
.

If the event B̂′ and Assumptions (A1) and (A2) hold, we have |μjk| ≤ ζ and
0 < u < σj . Then when ε ≤ 1

8u, we can show

{
|
ε∗j
σj

| ≤ 1

2
h− 2ζ + Cε

u

}
⊂
{
|
X∗,j − X̂ ′

·jk

S̃j

| ≤ h

}
⊂
{
|
ε∗j
σj

| ≤ 2h+
2ζ + Cε

u

}

The conclusions above together show that when the event B̂′ and Assumptions
(A1) and (A2) hold, we have

Bc ⊂
⋃
j∈D

{
|
ε∗j
σj

| > 1

2
h− C

}

For some constants C. Since
ε∗j
σj

is a standard Gaussian random variable, by

Proposition 6, we have

Pr

(
|
ε∗j
σj

| > 1

2
h− C

)
≤ φ(Ch− C)

Ch− C

Hence, by Theorem 1 and Lemma 6, with probability greater than 1 − (q +

p)C exp{−Cnε2

v2 }, we have

Pr (Bc | (Ytr,Xtr)) ≤ q

(
φ(Ch− C)

Ch− C

)
.

We now consider the term Pr
(
{δ̂h(X∗) �= δnsc(X∗)} ∩ B

∣∣∣(Ytr,Xtr)
)
. δ̂h and δnsc

are the same as the classifiers in the Linear Discriminant Analysis (LDA) when
the event B holds. We now can prove that this probability converges to 1.
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For δnsc(X∗), choose k = 1 as a base line, then

ρnsck (X∗)− ρnsc1 (X∗) = 2
∑
j∈D

(X∗,j − μjk+μj1

2 )(μj1 − μjk)

σ2
j

− 2 log
πk

π1
= −2lk,

and we have

δnsc(X∗) = argmax
k

{lk}.

Following the same procedure, let

l̂k =
∑
j∈D̂

(X∗,j −
X̂′

·jk+X̂′
·j1

2 )(X̂ ′
·jk − X̂ ′

·j1)

S̃2
j

+ log
π̂k

π̂1
,

then we have

δ̂h(X∗) = argmax
k

{l̂k}

when event B holds.

Therefore, for any Γ(ε) > 0, we have

Pr
(
{δ̂h(X∗) �= δnsc(X∗)} ∩ B

∣∣∣(Ytr,Xtr)
)

≤1− Pr
(
{|l̂k1 − lk1 | ≤ Γ(ε)/2, |lk1 − lk2 | ≥ Γ(ε), for any k1, k2} ∩ B

∣∣∣(Ytr,Xtr)
)

≤Pr
(
|l̂k1 − lk1 | ≥ Γ(ε)/2, for some k1

∣∣∣(Ytr,Xtr)
)

+Pr (|lk1 − lk2 | ≤ Γ(ε), for some k1, k2|(Ytr,Xtr)) .

Denote θjk =
μjk−μj1

σ2
j

and θ̂jk =
(X̂′

·jk−X̂′
·j1)

S̃2
j

, then lk1 − lk2 is normally dis-

tributed with variance
∑

j∈D σ2
j (θjk1 − θjk2)

2 given Y∗ = k for any k. Thus,

Pr (|lk1 − lk2 | ≤ Γ(ε), for some k1, k2|(Ytr,Xtr))

≤
∑
k

Pr (|lk1 − lk2 | ≤ Γ(ε)|Y∗ = k, (Ytr,Xtr))πk

≤
∑

k1,k2,k

CΓ(ε)√∑
j∈D σ2

j (θjk1 − θjk2)
2

≤CΓ(ε).

Similarly, for Pr
(
|l̂k1 − lk1 | ≥ Γ(ε)/2, for some k1

∣∣∣(Ytr,Xtr)
)
, under the condi-

tion (Ytr,Xtr), l̂k1 − lk1 is normally distributed given Y∗ = k for any k. If the
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event B̂′ holds, then D̂ = D and its distribution has mean

μk1,k =
∑
j∈D

μjk(θ̂jk1 − θjk1)

+
∑
j∈D

1

2

[
(μjk1 + μj1)θjk1 − (X̂ ′

·jk1
X̂ ′

·j1)θ̂jk1

]

+ log
πk1

π1
− log

π̂k1

π̂1

and variance
∑

j∈D σ2
j (θ̂jk1 − θjk1)

2.
By Markov’s inequality, we can obtain

Pr
(
|l̂k1 − lk1 | ≥ Γ(ε)/2, for some k1

∣∣∣(Ytr,Xtr)
)

≤
∑
k

Pr
(
|l̂k1 − lk1 | ≥ Γ(ε)/2

∣∣∣Y∗ = k, (Ytr,Xtr)
)
πk

≤CE

{
maxk1{

∑
j∈D σ2

j (θ̂jk1 − θjk1)
2}

(Γ(ε)− μk1,k)
2

}
.

We can show

|θ̂jk1 − θjk1 | ≤ |
X̂ ′

·jk1

S̃2
j

− μjk1

σ2
j

|+ |
X̂ ′

·j1

S̃2
j

− μj1

σ2
j

|

and

|
X̂ ′

·jk

S̃2
j

− μjk

σ2
j

| ≤ |
X̂ ′

·jk

S̃2
j

− μjk

S̃2
j

|+ |μjk

S̃2
j

− μjk

σ2
j

|

≤ 1

S̃2
j

(4ε+mkS̃jΛ) + μjk

(
˜Sj + σj

S̃2
j σ

2
j

)
Cε

for any k.

Follow the choice of Λ in Theorem 1 and let Λ = 8ε
m0w

, thenmkS̃jΛ = mk

m0

S̃j

w 8ε.

If |S̃j − σj | < C1ε and ε ≤ u
3C1

≤ σj

3C1
, we have

S̃j

w ≤ 2; If |π̂k − πk| < πkε and

ε ≤ 1
2 , we have mk

m0
≤ C2. Hence, mkS̃jΛ < 16C2ε under these two conditions,

which indicates |θ̂jk1 − θjk1 | ≤ Cε.
Now we can show that∑

j∈D
σ2
j (θ̂jk1 − θjk1)

2 ≤ qCε2

and

|μk1,k| ≤ Cε
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when the event B̂′ and Assumptions (A1) and (A2) hold.

Then for any ε < 1, let Γ(ε) = (qε2)
1
4 , we have Γ(ε) ≥ Cε. Therefore,

Pr
(
|l̂k1 − lk1 | ≥ Γ(ε)/2, for some k1

∣∣∣(Ytr,Xtr)
)
≤ Cq

1
2 ε.

Combining the results above, by the result in Lemma 5 and Theorem 1, with

probability greater than 1− (q + p)C exp{−Cnε2

v2 }, we have

Pr
(
δ̂h(X∗) �= δbayes(X∗)

∣∣∣(Ytr,Xtr)
)
≤Γ(ε) + Cq

1
2 ε+ q

(
φ(Ch− C)

Ch− C

)

≤C(qε2)
1
4 + q

(
φ(Ch− C)

Ch− C

)
.

Furthermore, assume that n → ∞ and q log p
n → 0. By letting H → ∞ while

H �
√

v2n
log p , C

Λ√
n
→ 0 while Λ � C

√
log p and h → ∞ while h �

√
log q, we

have ε → 0 and ε �
√

log p
n . Hence, we have C(qε2)

1
4 → 0 and q

(
φ(Ch−C)
Ch−C

)
→ 0,

which indicates that our estimator for the classifier consistently gives the same
result as the true one.
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