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Abstract: Suppose that a statistician observes two independent variates
X1 and X2 having densities fi(·; θ) ≡ fi(·−θ) , i = 1, 2, θ ∈ R. His purpose
is to conduct a test for

H : θ = 0 vs. K : θ ∈ R \ {0}

with a pre-defined significance level α ∈ (0, 1). Moran (1973) suggested a
test which is based on a single split of the data, i.e., to use X2 in order to
conduct a one-sided test in the direction of X1. Specifically, if b1 and b2
are the (1−α)’th and α’th quantiles associated with the distribution of X2

under H, then Moran’s test has a rejection zone

(a,∞)× (b1,∞) ∪ (−∞, a)× (−∞, b2)

where a ∈ R is a design parameter. Motivated by this issue, the current
work includes an analysis of a new notion, regular admissibility of tests.
It turns out that the theory regarding this kind of admissibility leads to a
simple sufficient condition on f1(·) and f2(·) under which Moran’s test is
inadmissible.
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1. Introduction

Assume that a statistician observes iid one-dimensional Gaussians with mean
θ ∈ R and unit variance. The purpose of the statistician is to test H : θ = 0
versus K : θ ∈ R \ {0} with a pre-defined significance level α ∈ (0, 1). In [17],
Moran provided a discussion regarding a test which is based on data-splitting.
Namely, divide the data into two sub-samples. If the mean of the first sub-
sample is positive, then use the mean of the second sub-sample to conduct an
α-level upper-tailed Z-test. Otherwise, use the mean of the second sub-sample to
conduct an α-level lower-tailed Z-test. Intuitively, it seems reasonable to expect
that once θ is far away from the origin, then Moran’s test leads to some gain
relative to an α-level two-sided Z-test. Interestingly, this intuition fails because
Moran’s suggestion is an unbiased test and it is well-known that the two-sided
Z-test is a uniformly most powerful (UMP) unbiased test.

Of-course, this test might be applied also when the data are not distributed
according to a Gaussian distribution. The current research query is whether
Moran’s test is inadmissible under general assumptions regarding the data dis-
tribution? Specifically, assume that the mean of the i’th (i = 1, 2) sub-sample
has a distribution with a density function fi(·; θ) ≡ fi(· − θ), θ ∈ R. In this
setup, let b1 and b2 be the (1 − α)’th and α’th quantiles of the distribution
whose density is f2(·; 0). Then, Moran’s test for H : θ = 0 versus K : θ ∈ R\{0}
has a rejection zone

(a,∞)× (b1,∞) ∪ (−∞, a)× (−∞, b2) (1.1)

where a ∈ R is a design parameter. In this work, it is shown that the following
condition is sufficient for inadmissibility of Moran’s test.

Condition 1.

(a) For every i = 1, 2, fi(·) is continuous, bounded and positive on R.
(b) For every θ ∈ (0,∞):

lim
x→∞

f2(x− θ)

f2(x)
= ∞ , lim

x→−∞
f2(x− θ)

f2(x)
< ∞ . (1.2)
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(c) For every θ ∈ (−∞, 0):

lim
x→∞

f2(x− θ)

f2(x)
< ∞ , lim

x→−∞

f2(x− θ)

f2(x)
= ∞ . (1.3)

In particular, when f2(·) is even, (b) and (c)may be unified into the condition

lim
x→∞

f2(x− θ)

f2(x)
= ∞ , ∀θ ∈ (0,∞) . (1.4)

Then, it is easy to apply this condition for specific examples of data distributions
(including the Gaussian case) in order to prove that Moran’s test is inadmissible
for them.

An additional contribution of this work is by showing that Moran’s test for
the multi-dimensional Gaussian setup is inadmissible. More precisely, assume
that the observations are d-dimensional Gaussians (2 ≤ d < ∞) with mean
θ ∈ R

d and an identity covariance matrix. Then, the purpose of the statistician
is to test

H : θ = 0 vs. K : θ ∈ R
d \ {0} (1.5)

where 0 is the zero-vector in R
d. Let X̄1 be the mean of the first sub-sample.

Then, Moran [17] suggested to use the second sub-sample in order to test a
simple hypothesis in the direction of X̄1. That is, consider a most powerful
(MP) test for the simple hypothesis testing

H : θ = 0 , K(X̄1) : θ =
X̄1

‖X̄1‖
(1.6)

with a pre-defined significant level α ∈ (0, 1) where ‖ · ‖ is the Euclidean norm
in R

d. Standard likelihood-ratio calculations yield that the rejection zone of this
test equals to {

x1, x2, . . . , xn ∈ R
d s.t. x̄1 
= 0 ;

x̄1 · x̄2

‖x̄1‖
> D

}
(1.7)

where · denotes dot product, x̄1 ≡ 1
m

∑m
i=1 xi, x̄2 ≡ 1

k

∑n
i=m+1 xi and D > 0 is

a constant which is determined uniquely by the vector (α,m, n).
Motivated by these applications, the theoretical contribution of this work is

due to an analysis of a new notion, regular admissibility of tests. Section 2 in-
cludes a detailed description of a general model in which the theory regarding
regular admissibility is established. Roughly speaking, the main result of Sec-
tion 3 is that any test which satisfies regular admissibility is an MP test in a
simple hypothesis testing problem of the original null H versus a Bayes-mixture
of simple alternatives under K. In Section 4, it is shown how the fundamen-
tal Lemma of Neyman and Pearson naturally leads to a sufficient condition for
inadmissibility. This condition is applied in order to show that Moran’s test is
inadmissible. Specifically, Section 5 includes an application of the results from
the previous sections to the proof of Condition 1. Section 6 is about another ap-
plication to the multi-dimensional Gaussian case. Section 7 is a short discussion
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regarding the way in which the current results should be interpreted including
several directions for further research. Finally, Section 8 includes all the proofs
for the claims in this paper.

1.1. Related literature

In [17], Moran wrote that data-splitting is an approach in which much of natural
science proceeds, i.e., one examines a large body of evidence, notices certain
empirical features, and then proceeds to test if these are real. Despite this fact,
as mentioned by Romano et al. [18], it turns out that the statistical literature
does not contain much work in this direction. Besides [17], there is another work
of Cox [6, 7] which is about an application of data-splitting to an hypothesis
testing regarding the mean of a Gaussian population with a sparse alternative.

Naturally, tests which are based on data-splitting are exposed to criticism
because they are not invariant to permutations of the data. In order to relieve
this effect, much of the modern research in this area is focused on tests which
are based on many splits (unlike [6, 7] and [17] which are based on a single
split). Namely, from each sub-sample it is possible to extract a p-value. Then,
the question has become how to combine these p-values? For several works in
this direction see, e.g., [8, 9, 18] and the references therein.

Recently, Vovk et al. [23, 24] suggested to use e-values instead of p-values. By
doing so, they claimed that the problem of using a test which is not invariant
to permutations of the data becomes much less serious. For more information
about e-values, see [21].

Another branch of literature which is related to the current work is about
complete class theorems for hypothesis testing problems with simple null versus
a composite alternative. Several works in this direction are e.g., [4, 5, 16]. In
addition, some relevant surveys regarding admissibility are [13, 20]. Importantly,
note that there is a literature about admissibility and complete class theorems
in the broader context of decision theory. An introduction to this topic is given
in Section 2 of [10]. For a more advanced treatment, see, e.g., [1, 14] and the
references therein.

2. Preliminaries

Consider a measurable space (Ω,H) and a finite-dimensonal Banach space (Θ, ‖·
‖). In particular, let 0 be the zero vector which is associated with Θ. Then, it is
known that both Θ and ΘK ≡ Θ \ {0} are locally compact and σ-compact (For
exact definitions, see, e.g., Section 2.3 and Section 2.16 in [19]). In addition,
assume that X is a (Ω,H)-measurable function which receives values in some
metric space X . Then, for every θ ∈ Θ, let Pθ be a probability measure on
(X ,B(X )) where B is the Borel σ-field of the corresponding topological space.
Then, assume that a statistician who does not know the value of θ observes X
which is a realization of Pθ (here there is a slight an abuse of notation). His
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intention is to test
H : θ = 0 vs. K : θ ∈ ΘK (2.1)

with a pre-defined significance level α ∈ (0, 1).
Denote

Φ ≡ {φ : X → [0, 1] ; φ is a Borel function} (2.2)

which is the set of all tests and for every φ ∈ Φ define the power function

βφ(θ) ≡
∫
X
φ(x)dPθ(x) , ∀θ ∈ Θ (2.3)

and its complement γφ ≡ 1 − βφ. In particular, note that for every θ ∈ ΘK ,
γφ(θ) equals to the risk which is associated with the test φ under θ. In addition,
notice that if t ∈ (0, 1) and φ1, φ2 ∈ Φ, then

φt ≡ tφ1 + (1− t)φ2 ∈ Φ (2.4)

and
βφt(θ) = tβφ1(θ) + (1− t)βφ2(θ) , ∀θ ∈ Θ . (2.5)

Now, for every Γ ∈ {Θ,ΘK} let C(Γ) be the set of all functions f : Γ → R

which are continuous on Γ. Then, denote the space of continuous functions which
vanish in infinity by C0(Γ). Namely, f ∈ C0(Γ) if and only if (iff) f ∈ C(Γ) and
for every ε > 0, there exists a compact set Kf (ε) ⊆ Γ such that

{θ ∈ Γ ; |f(θ)| ≥ ε} ⊆ Kf (ε) . (2.6)

Similarly, Cc(Γ) is a notation for the space of all compactly supported functions.
Namely, f ∈ Cc(Γ) iff f ∈ C(Γ) and there is a compact set Kf ⊆ Γ such that

{θ ∈ Γ ; f(θ) 
= 0} ⊆ Kf . (2.7)

The following simple lemma will be helpful later on. In order to make its state-
ment, for every function f : Θ → R, let f

∣∣
ΘK

be the restriction of f to ΘK .

Lemma 1. There exists a function f ∈ C0(Θ) such that:

1. f
∣∣
ΘK

∈ C0(ΘK).

2. f(0) < f(θ) for every θ ∈ ΘK .

3. Regular admissibility and α-level Bayes tests

Consider the following definitions:

Definition 1. Let
Φ(α) ≡ {φ ∈ Φ ; βφ(0) = α} . (3.1)

Then, φ ∈ Φ(α) is a regular test (of level α) iff γφ ∈ C0(Θ). In addition, let
Φ0(α) be the set of all regular tests (of level α).
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Definition 2. Let φ ∈ S ⊆ Φ(α). Then, φ is an admissible test in S iff for every
φ′ ∈ S, the condition

βφ(θ) ≤ βφ′(θ) , ∀θ ∈ ΘK (3.2)

implies that
βφ(θ) = βφ′(θ) , ∀θ ∈ ΘK . (3.3)

Otherwise, φ is inadmissible in S. Correspondingly, denote the set of all admis-
sible tests in S by AS(α).

In particular, A(α) ≡ AΦ(α)(α) is the set of all admissible tests. In addition,
denote the set A0(α) ≡ AΦ0(α)(α) and each test φ ∈ A0(α) is said to have the
property of regular admissibility.

Definition 3. Let Π be the set of all probability measures on (ΘK ,B(ΘK)) and
consider some π ∈ Π. In addition, let S ⊆ Φ(α) be such that for every φ′ ∈ S,
θ �→ γφ′(θ) is a Borel function on ΘK . Then, φ ∈ S is an α-level π-Bayes test in
S iff ∫

ΘK

βφ(θ)dπ(θ) ≥
∫
ΘK

βφ′(θ)dπ(θ) , ∀φ′ ∈ S . (3.4)

Remark 1. To the best of the author’s knowledge, the concept of a regular test
as described in Definition 1 is new. Generally speaking, this form of regularity
reflects the expectation that the power function of a sensible test should tend
to one as the alternative diverges from the null.

Remark 2. Regular admissibility is a concept which is derived from the stan-
dard concept of admissibility (see, e.g., Equation (6.18) in [15]) by ignoring all
tests which are not regular in the sense of Definition 1. For other concepts of
admissibility which are related to hypothesis testing, see, e.g., Section 6.7 in
[15] and [5] with the references therein.

Remark 3. Albeit the notion which is introduced in Definition 3 resembles the
standard definition of a Bayes rule (see, e.g., Equation (1.15) in [10]), there is
a difference. To see this, take π which is a probability measure on (Θ,B(Θ))
such that π(ΘK) = 1. In addition, denote the restriction of π to ΘK by π

∣∣
ΘK

.
It is straightforward that a statistician with prior belief which is represented by
π will reject the null hypothesis for sure. On the other hand, if φ is an α-level
π
∣∣
ΘK

-Bayes test, then βφ(0) = α < 1 which makes it different.

Theorem 1. If φ ∈ A0(α), then there exists a regular probability measure π ∈ Π
for which φ is an α-level π-Bayes test in Φ0(α).

Remark 4. In fact, the measure π which is defined in the statement of Theo-
rem 1 stems from an application of the Riesz-Markov-Kakutani representation
theorem. Therefore, it is regular in the sense that it satisfies the regularity prop-
erties which appear in the statement of this theorem (see Section 2.14 in [19]).
Importantly, the regularity of π is not important for the analysis to follow in
the sequel.

It is well-known (see, e.g., Problem 3.20 in [15]) that any α-level π-Bayes test
is admissible. Consequently, Theorem 1 implies the following corollary.
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Corollary 1. A0(α) ⊆ A(α).

4. Inadmissibility of regular tests

Assume that (B, θ) �→ Pθ(B) is a transition kernel on ΘK × B(X ). Specifically,
this means that for every B ∈ B(X ), θ �→ Pθ(B) is a Borel function on ΘK and
for every θ ∈ Θ, Pθ is a probability measure on (X ,B (X )). In addition, assume
that there exists a σ-finite measure λ on X such that

Pθ � λ , ∀θ ∈ Θ (4.1)

where � is a symbol for absolute continuity. Correspondingly, for every θ ∈ Θ
let fθ be the nonnegative version of the Radon-Nikodym derivative of Pθ with
respect to λ. Then, for every probability measure π ∈ Π, define a probability
measure Pπ on (X ,B(X )) such that

Pπ(B) =

∫
Θ

Pθ(B)dπ(θ) , ∀B ∈ B(X ) . (4.2)

In particular, Pπ may be considered as a Bayes-mixture of simple alternatives
under K (this terminology is taken from Birnbaum [3]) and (4.1) implies that
Pπ � λ.

Definition 3 actually asserts that an α-level π-Bayes test in Φ(α) is an MP
test of the simple hypothesis testing problem:

H : X ∼ P0 vs. Kπ : X ∼ Pπ . (4.3)

Therefore, the fundamental lemma of Neyman and Pearson (see Theorem 3.2.1(iii)
in [15]) might be carried out under the assumption that there is no trivial test
for (4.3). Specifically, if φ ∈ Φ(α) is an α-level π-Bayes test in Φ(α), then there
exists a constant C ≡ Cπ ∈ R such that

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩
1 Cf0(x) <

∫
ΘK

fθ(x)dπ(θ)

0 Cf0(x) >

∫
ΘK

fθ(x)dπ(θ)

, λ-a.s. (4.4)

Furthermore, define φ∗
π to be the α-level π-Bayes test which is determined as the

solution of the optimization in Section 6 of [11]. In particular, once fθ(x) > 0,
for every θ ∈ Θ and x ∈ X , then C which appears in (4.4) is positive. Moreover,
in such a case, there exist C∗

π ∈ (0,∞) and τ∗π ∈ [0, 1] such that

φ∗
π(x) = 1{Lπ(x)>C∗

π} + τπ1{Lπ(x)=C∗
π} , ∀x ∈ R

d (4.5)

where

Lπ(x) ≡
∫
Rd\{0}

fθ(x)

f0(x)
dπ(θ) , ∀x ∈ R

d . (4.6)

The following corollary includes a sufficient condition for inadmissibility of
a regular test. It stems immediately from the above-mentioned discussion with
an application of Theorem 1.
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Corollary 2. Let φ ∈ Φ0(α) and assume that there are sets Π1,Π2 ⊆ Π such
that:

1. Π = Π1 ∪Π2.
2. Π1 ⊆ {π ∈ Π ; φ∗

π ∈ Φ0(α)}.
3. For every π ∈ Π2, there exists φ′

π ∈ Φ0(α) such that∫
ΘK

βφ(θ)dπ(θ) <

∫
ΘK

βφ′
π
(θ)dπ(θ) . (4.7)

If for every π ∈ Π1, there is no trivial test for (4.3) and there is no C ∈ R for
which (4.4) is satisfied, then φ ∈ Φ0(α) \ A0(α).

Remark 5. Notice that Φ0(α) ⊆ Φ(α). Therefore, a statement that φ ∈ Φ0(α)
is inadmissible in Φ0(α) is more informative than a statement which asserts that
it is inadmissible in Φ(α).

Remark 6. It is possible to have π for which φ∗
π /∈ Φ0(α). For example, consider

the special case where

1. Θ = X = R.
2. For every θ ∈ R, assume that X ∼ N (θ, 1) under Pθ.
3. π is a Dirac measure on {θ0} for some θ0 ∈ R \ {0}.

Then, φ∗
π is a one-sided Z-test in the direction of θ0. Clearly, this test does not

belong to Φ0(α) because θ �→ γφ∗
π
(θ) does not vanish in infinity.

4.1. Specific framework

It turns out that for the applications to be discussed in the upcoming sections,
Corollary 2 may not be applied directly. However, these applications can be
phrased as special cases of a more specific framework in which it is possible
to derive a more practical result. Specifically, consider the special case where
Θ = R

p, X = R
d , 1 ≤ d, p < ∞ and λ is the Lebesgue measure on R

d. In
addition, let P be a probability measure on (Ω,H) and consider U : Ω → R

d

which is a (Ω,H)-measurable function. Assume that the distribution function
of U (with respect to P ) is absolutely continuous and denote the corresponding
density by fU (·). In particular, assume that fU (u) > 0 for every u ∈ R

d.
For every θ ∈ R

p, let Tθ : Rd → R
d be a bijective differentiable function such

that for every u ∈ R
d:

(T1) θ �→ Tθ(u) is continuous.
(T2) ‖Tθ(u)‖ → ∞ as ‖θ‖ → ∞ where ‖·‖ is the Euclidean norm in the proper

space (Rd or Rp).

Then, for every θ ∈ R
p define X ≡ X(θ) ≡ Tθ(U). Correspondingly, for every

θ ∈ R
p, Pθ is the push-forward probability measure which is induced by X(θ).

Hence, the Jacobian theorem implies that for every θ ∈ R
p, Pθ has a density

with respect to Lebesgue measure on R
d which is given by
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fθ(x) ≡ fU
[
T−1
θ (x)

] ∣∣ det JT−1
θ

(x)
∣∣ , ∀x ∈ R

d (4.8)

where T−1
θ is the inverse of Tθ and JT−1

θ
is the Jacobian matrix associated

with T−1
θ . Importantly, by the above-mentioned assumptions, deduce that for

every θ ∈ R
p, fθ(·) is positive on R

d. This implies that for every θ ∈ R
p the

distribution of the observations under Pθ is supported on R
d. Consequently,

there is no trivial test for (4.3).
For the statement and proof of the following theorem, let 1A be a notation

of an indicator function which is supported on a set A. In addition, for every
a, b ∈ R, let a∧ b ≡ min{a, b} and denote the expectation operator with respect
to P by E.

Theorem 2. Let V be an open set in R
d such that φ = 1V satisfies the following

conditions:

(I) βφ(0) = α.
(II) βφ(θ) → 1 as ‖θ‖ → ∞.

Then, φ ∈ Φ0(α).
Furthermore, assume that Π1 ⊆ Π is such that for every π ∈ Π1 the following

conditions are satisfied:

(i) Lπ(·) is continuous on R
d.

(ii) There is no C ∈ R for which (4.4) is satisfied.

Under these assumptions, if for every π ∈ Π \ Π1, there exists φ′ ∈ Φ0(α) such
that ∫

ΘK

βφ(θ)dπ(θ) <

∫
ΘK

βφ′
π
(θ)dπ(θ) , (4.9)

then φ ∈ Φ0(α) \ A0(α).

In the rest of this section, consider the setup in which the forthcoming ex-
amples are defined. Namely, consider the case in which f ≡ fU (·) is a bounded
continuous density function and Tθ(u) = u+ θ for every u, θ ∈ R

d. Under these
assumptions the following proposition holds.

Proposition 1. Let π be a probability measure on R
d \ {0} and consider an α

level test φ(x) ≡ 1V (x) such that

V ≡
{
x ∈ R

d;

∫
Rp\{0}

f(x− θ)

f(x)
dπ(θ) > C

}
(4.10)

for some constant C ∈ (0,∞) which is determined in order to preserve the
significance level. If Rd \ V is bounded, then φ ∈ A0(α).

Remark 7. Proposition 1 is about a sufficient condition for existence of a
regular admissible test. Some important special cases are associated with f(·)
which is radial. In such cases it is natural to take π which is the normalized
Lebesgue measure on a unit ball centred at the origin. In particular, standard
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calculations yield that this choice of π implies that A0(α) 
= ∅ when f(·) is a
Gaussian density. Furthermore, if d = 1 it is also sensible to consider π such
that π({a}) = π({−a}) = 1

2 for some a ∈ (0,∞).

5. One-dimensional general case

Let θ ∈ R and consider two independent random variables U1 and U2 which
are not necessarily identically distributed. In particular, assume that for every
i = 1, 2, the distribution of Ui is absolutely continuous with a continuous density
function fUi : R → (0,M) for some 0 < M < ∞. In addition, define

X(θ) ≡ X =

[
X1

X2

]
=

[
U1 + θ
U2 + θ

]
(5.1)

and let Pθ be the push-forward probability measure which is induced by X(θ).
Then, a statistician who does not know the value of θ (but knows the distri-

bution of U) observes X and wants to test

H : θ = 0 , K : θ 
= 0 (5.2)

with a pre-defined significance level α ∈ (0, 1). For this purpose, he considers a
test

φ(x) ≡ 1(a,∞)×(b1,∞)∪(−∞,a)×(−∞,b2) (x1, x2) , ∀x = (x1, x2) ∈ R
2 (5.3)

for some a ∈ R where b1 and b2 are the (1 − α)’th and α’th quantiles of the
distribution of U2, i.e.,

b1 ≡ inf {t ∈ R;P (U2 ≤ t) ≥ 1− α} , (5.4)

b2 ≡ inf {t ∈ R;P (U2 ≤ t) ≥ α} .

Note that φ is a test which is based on data-splitting in the sense that X1 is
used in order to determine the direction of a one-sided test to be performed
through the statistic X2. In particular, regardless of the value of X1, observe
that under H, the test to be performed through X2 leads to a rejection with
probability α which means that φ ∈ Φ(α).

Theorem 3.

1. φ ∈ Φ0(α).
2. Assume that

lim
x→∞

fU2(x− θ)

fU2(x)
= ∞ , lim

x→−∞
fU2(x− θ)

fU2(x)
< ∞ , ∀θ ∈ (0,∞) (5.5)

and

lim
x→∞

fU2(x− θ)

fU2(x)
< ∞ , lim

x→−∞

fU2(x− θ)

fU2(x)
= ∞ , ∀θ ∈ (−∞, 0) . (5.6)

Then, φ ∈ Φ0(α) \ A0(α).
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Remark 8. When U2 has a distribution which is symmetric with respect to
the origin, i.e., fU2(x) = fU2(−x) almost everywhere on R, the conditions (5.5)
and (5.6) may be unified into the condition

lim
x→∞

fU2(x− θ)

fU2(x)
= ∞ , ∀θ ∈ (0,∞) . (5.7)

Especially, in the Gaussian case, i.e., when

fU2(x) =
1√
2π

e−
x2

2 , ∀x ∈ R , (5.8)

simple algebra implies that

fU2(x− θ)

fU2(x)
∝ eθx , ∀θ ∈ R \ {0} . (5.9)

Hence, Theorem 3 yields that Moran’s test is inadmissible in the Gaussian case.

Remark 9. It makes sense to think about a model in which ξ1, . . . , ξn is an
iid sequence of random variables. Then, a statistician who does not know the
value of θ ∈ R observes ρi = ξi + θ, i = 1, 2, . . . , n. His intention is to test
(5.2) with a procedure which is based on a single split of the data. What is
the relation between this setup and the model which was described so far in
this section? In this setup X1 and X2 may be viewed as statistics which are
calculated respectively from the first and second sub-samples. Assume that the
first sub-sample is (ρ1, . . . , ρm) and the second sub-sample is (ρm+1, . . . , ρn) for
some 1 ≤ m < n. Then, the requirement is that U1 ≡ X1 − θ and U2 ≡ X2 − θ
satisfy the following conditions:

1. U1 is determined uniquely by (ξ1, . . . , ξm) and U2 is determined uniquely
by (ξm+1, . . . , ξn).

2. The distribution of (U1, U2) is free of θ.

Some examples of statistics which satisfy these conditions are e.g., sample
means, sample quantiles and sample extreme values. Notably, in Section 2 of
[17], Moran regards the case in which X1 and X2 are the sample means of the
two sub-samples.

6. Multi-dimensional Gaussian case

Let d ≥ 1 and assume that U1, U2, . . . , Un is an iid sequence of standard d-
dimensional Gaussians. In addition, for every 1 ≤ i ≤ n, define Xi ≡ Xi(θ) ≡
Ui + θ. A statistician observes X1, X2, . . . , Xn and his purpose is to test

H : θ = 0 , K : θ ∈ R
d \ {0} (6.1)

where 0 is the zero-vector in R
d. In this model, Moran’s test φ is as follows: The

first step is to compute the mean of the first sub-sample, that is X̄1 ≡ 1
m

∑m
i=1 Xi
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for some 1 ≤ m < n. Then, given the computation result, use the second sub-
sample Xm+1, . . . , Xn in order to test a simple hypothesis in the direction of
X̄1. That is, consider

H : θ = 0 , K(X̄1) : θ =
X̄1

‖X̄1‖
(6.2)

with a pre-defined significant level α ∈ (0, 1) where ‖·‖ is the Euclidean norm in
R

d. The general idea for this test was presented by Moran in [17] and recently,
DiCiccio analysed the power of this test (see, Section 2.1.2 in [8]).

In practice, straightforward calculation of the likelihood ratio (note that x1

is considered as a constant) implies that the rejection zone of φ equals to

Rφ ≡
{
x1, x2, . . . , xn ∈ R

d s.t. x̄1 
= 0 ;
x̄1 · x̄2

‖x̄1‖
> D

}
(6.3)

where · denotes dot product, x̄1 ≡ 1
m

∑m
i=1 xi, x̄2 ≡ 1

n−m

∑n
i=m+1 xi and D > 0

is a constant which is determined uniquely by the vector (α, n,m).

Theorem 4. φ ∈ Φ0(α) \ A0(α).

6.1. Beyond Gaussian assumption

Assume that n = 2 and U has a density function f(·) which is not necessarily
Gaussian. Then, it is natural to ask whether the test φ which has been defined
earlier in this section is inadmissible? Honestly, the initial effort was to prove
a multi-dimensional version of Theorem 3. Since the multi-dimensional setup is
related with a continuum of directions, a generalization of the proof of Theorem
3 is not straightforward.

Then, it is a constructive to see whether the current proof of Theorem 4
might be extended? A careful reading of this proof yields that it remains valid
as long as the set {

(x1, x2) ∈ R
2d ; Lπ(x1, x2) ≤ C

}
(6.4)

is convex for every π ∈ Π and C ∈ (0,∞) where

Lπ(x1, x2) =

∫
Rd\{0}

f(x− θ)

f(x)
dπ(θ) , ∀(x1, x2) ∈ R

2d .

Clearly, this condition is satisfied whenever the likelihood ratio f(x − θ)/f(x)
is convex in x for every θ ∈ R

d. While initially this gave some hope for finding
a non-Gaussian density for which the current proof works, a recent result [12]
had implied that the situation is different.

7. Discussion

From the perspective of classical decision theory, an inadmissible test should
not be used because there is another test which is better. Accordingly, the
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inadmissibility results which appear in this work are not encouraging applied
statisticians to apply Moran’s test for real data. The purpose of this short section
is to discuss the implications of the current results more deeply along with some
suggestions for further research.

Primarily, knowing that Moran’s test is inadmissible should be considered
as an initial step toward the pursuit for a better test. For example, in the
one-dimensional Gaussian case, a combination of Theorem 3 and the theory
regarding unbiased tests implies that a two-sided Z-test is better than Moran’s
test. However, it is not clear how to find a better test in the general case, e.g.,
when Condition 1 is satisfied. This practical question remains open.

Furthermore, it is possible that in certain setups, Moran’s test performs quite
well (at least for alternatives which are distant from the null). In such cases,
there is no strong incentive for practitioners to look for a better test. In Section
2.1.2 of [8], there is an effort to compare the power of Moran’s test with the
chi-square test in the multi-dimensional Gaussian setup. It might be good to
keep on in this direction by assessing the performance of Moran’s test when the
data does not have a Gaussian distribution.

It is also reasonable to consider a statistician who is willing to pay in terms of
power for testing the ‘correct’ hypothesis. It is interesting to see how to phrase
a formal model which is consistent with the preferences of such a statistician.
Then, the challenge will be to figure out whether Moran’s test is admissible in
this new framework. Possibly, an inspiration for such a model might come from
some model-selection frameworks in which the statistician is willing to give up
some part of the data in favour of conducting a statistical inference on a better
model. Another branch of literature which might be related regards constrained
statistical inference and an analysis of type III error (for more information, see
e.g., [22]).

This work also motivates further investigation of the notion of regular admis-
sibility. In particular, it is interesting to look whether exists an example in which
there is no regular admissible test, i.e., A0(α) = ∅. Furthermore, it is instructive
to see whether analogous result to the one which appears in Proposition 1 may
be derived under more general assumptions.

Finally, it is intriguing to think whether exists a multi-dimensional density
f(·) under which the conclusion of Theorem 4 remains valid. The discussion in
Section 6.1 yields that a derivation of such a result should be a consequence of
a new approach for the present problem.

8. Proofs

8.1. Proof of Lemma 1

Consider a function

f(θ) ≡
{
‖θ‖ ‖θ‖ ≤ 1

e−(‖θ‖−1) ‖θ‖ > 1
, ∀θ ∈ Θ . (8.1)
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It is given that Θ is a finite-dimensional and hence it is enough to check that
for every ε > 0, the set {θ ∈ Θ; f(θ) ≥ ε} is closed, bounded and contained in
ΘK . This as well as the other requirements of the lemma are easy to verify. �

8.2. Proof of Theorem 1

Denote
Δ(φ) ≡ {f ∈ C(ΘK) ; f(θ) ≤ γφ(θ) , ∀θ ∈ ΘK} (8.2)

and observe that

S ≡
{
γφ′

∣∣
ΘK

; φ′ ∈ Φ0(α)
}
⊆ C(ΘK) . (8.3)

It is given that φ ∈ A0(α) and hence(
Δ(φ) \ {γφ

∣∣
ΘK

}
)
∩ S = ∅ . (8.4)

In fact, it can be verified that both S and Δ(φ) \ {γφ
∣∣
ΘK

} are convex sets.

Especially, since γφ(θ) ≥ 0 for every θ ∈ ΘK , then

f(θ) = −1 , ∀θ ∈ ΘK (8.5)

is an interior point of Δ(φ) \ {γφ
∣∣
ΘK

} with respect to the norm

‖f‖∞|ΘK
≡ sup

θ∈ΘK

|f(θ)| , ∀f ∈ C(ΘK) . (8.6)

Therefore, the basic separation theorem (see Theorem 3.5.13 and Corollary
3.5.14(a) in [2]) implies that there exists a non-zero continuous linear functional
F{·} on C(ΘK) such that

F{f} ≤ F{γ} , ∀f ∈ Δ(φ) \ {γφ
∣∣
ΘK

} , γ ∈ S . (8.7)

Now, consider some f ∈ C(ΘK) which is nonpositive and not identically zero.
Then, f + γφ

∣∣
ΘK

∈ Δ(φ) \ {γφ
∣∣
ΘK

} and hence

F{f}+ F{γφ
∣∣
ΘK

} = F{f + γφ
∣∣
ΘK

} ≤ F{γφ
∣∣
ΘK

} . (8.8)

Moreover, F{·} is continuous and hence it is also bounded, i.e., there exists a
constant M ∈ (0,∞) such that∣∣F{f}

∣∣ ≤ M‖f‖∞|ΘK
, ∀f ∈ C(ΘK) . (8.9)

Therefore, since ‖γφ
∣∣
ΘK

‖∞|ΘK
≤ 1, deduce that |F{γφ

∣∣
ΘK

}| < ∞ and hence

F{·} is positive, i.e.,

F{f} ≥ 0 , ∀f ∈ C(ΘK) s.t. f(θ) ≥ 0 , ∀θ ∈ ΘK . (8.10)
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(ΘK , ‖ ·‖) is a special case of locally compact σ-compact Hausdorff space. Thus,
Riesz-Markov-Kakutani representation theorem (see Section 2.14 in [19]) states
that there exists a regular Borel measure μ on ΘK such that

F{f} =

∫
ΘK

f(θ)dμ(θ) , ∀f ∈ Cc(ΘK) . (8.11)

Since F{·} is non-zero functional, then μ is a non-zero measure. In addition,
since ΘK is σ-compact, then there exists a sequence of non-empty compact sets
K1 ⊆ K2 ⊆ . . . ⊆ ΘK such that ∪∞

n=1Kn = ΘK . Therefore, since ΘK is an open
set, then Urysohn’s lemma (see Section 2.12 in [19]) implies that for every n ≥ 1
there exists a function gn ∈ Cc(ΘK) such that

1. 0 ≤ gn(θ) ≤ 1 for every θ ∈ ΘK .
2. gn(θ) = 1 for every θ ∈ Kn.

Thus, observe that for every n ≥ 1

μ (Kn) =

∫
Kn

dμ(θ) (8.12)

≤
∫
Θ

gn(θ)dμ(θ) = F{gn} ≤ M‖gn‖∞|ΘK
= M < ∞ .

This means that by taking n → ∞, continuity of measure (from below) implies
that μ (ΘK) is finite.

Let f be some arbitrary function in C0(ΘK). It is well-known that Cc(ΘK)
is dense in C0(ΘK) with respect to the norm ‖ · ‖∞|ΘK

. This means that there
exists a sequence (hn)n≥1 ⊆ Cc(ΘK) such that ‖f − hn‖∞|ΘK

→ 0 as n →
∞. Therefore, since F{·} is continuous, then F{hn} → F{f} as n → ∞. In
addition, ‖f‖∞|ΘK

< ∞ and hence

sup
n≥1

‖hn‖∞|ΘK
= sup

n≥1
sup

θ∈ΘK

|hn(θ)| < ∞ . (8.13)

At the same time, the above-mentioned uniform convergence implies pointwise
convergence hn → f as n → ∞ on ΘK . Thus, recalling that μ is a finite measure,
then bounded convergence theorem yields that

F{hn} =

∫
ΘK

hn(θ)dμ(θ)
n→∞−−−−→

∫
ΘK

f(θ)dμ(θ) . (8.14)

Hence, since f is an arbitrary element in C0(ΘK), then the uniqueness of the
limit implies that

F{f} =

∫
ΘK

f(θ)dμ(θ) , ∀f ∈ C0(ΘK) . (8.15)

Now, define a new non-zero linear functional

G{f} ≡ F
{
f
∣∣
ΘK

}
(8.16)
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on a normed vector-space
(
C(Θ), ‖ · ‖∞|Θ

)
where

‖f‖∞|Θ ≡ sup
θ∈Θ

|f(θ)| , ∀f ∈ C(Θ) . (8.17)

Observe that for every f ∈ C(Θ),

|G{f}| = |F{f
∣∣
ΘK

}| ≤ M sup
θ∈ΘK

|f(θ)| ≤ M‖f‖∞|Θ (8.18)

which means that G{·} is bounded and hence also continuous. Thus, as it was
shown for F{·}, it is possible to show that G{·} is positive. Consequently, since
(Θ, ‖·‖) is a special case of a locally compact σ-compact Hausdorff space, Riesz-
Markov-Kakutani representation theorem can be applied once again. This time
in order to show that there exists a regular Borel measure ν on Θ such that

G{f} =

∫
Θ

f(θ)dν(θ) , ∀f ∈ Cc(Θ) . (8.19)

In particular, ν is non-zero and finite by analogous arguments to those which
were used in order to justify these properties of μ. Furthermore, analogous
arguments to those which lead to (8.15), imply that

G{f} =

∫
Θ

f(θ)dν(θ) , ∀f ∈ C0(Θ) . (8.20)

Now, assume by contradiction that ν is a Dirac measure on {0}. Notice that
Lemma 1 implies that there exists a bounded function f ∈ C0(Θ) such that:

1. f
∣∣
ΘK

∈ C0(ΘK).

2. f(0) < f(θ) for every θ ∈ ΘK .

Then, a contradiction follows from

f(0) = G{f} = F{f
∣∣
ΘK

} =

∫
ΘK

f
∣∣
ΘK

(θ)dμ(θ) > f(0) .

Fix some φ′ ∈ Φ0(α) and for every n ≥ 1, let

fn(θ) ≡ γφ(θ)−
1

n
, ∀θ ∈ Θ . (8.21)

Clearly, for every n ≥ 1, fn
∣∣
ΘK

∈ Δ(φ) \ {γφ} ⊆ C(ΘK) and observe that

‖γφ
∣∣
ΘK

− fn
∣∣
ΘK

‖∞|ΘK
→ 0 as n → ∞ . (8.22)

Hence, since F{·} is a continuous functional on C(ΘK), then F{fn
∣∣
ΘK

} →
F{γφ

∣∣
ΘK

} as n → ∞. Due to (8.7), deduce that F{fn
∣∣
ΘK

} ≤ F{γφ′
∣∣
ΘK

} for

every n ≥ 1. Thus, taking the limit n → ∞ yields that F{γφ
∣∣
ΘK

} ≤ F{γφ′
∣∣
ΘK

}
and hence ∫

Θ

γφ(θ)dν(θ) = G{γφ} = F{γφ
∣∣
ΘK

} (8.23)
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≤ F{γφ′
∣∣
ΘK

} = G{γφ′} =

∫
Θ

γφ(θ)dν(θ) .

Consequently, the generality of φ′ implies that∫
Θ

βφ(θ)dν(θ) ≥
∫
Θ

βφ′(θ)dν(θ) , ∀φ′ ∈ Φ0(α) . (8.24)

Finally, since ν is a non-zero finite regular Borel measure on Θ which is not
concentrated on {0} and βφ(0) = βφ′(0) = α, then the result follows by setting
π to be the restriction of ν to ΘK with a proper normalization. �
Remark 10. Regarding the proof of Theorem 1, one may be wondering why
not to take π to be μ? To answer this question, for simplicity assume that Θ = R

which means that ΘK = R \ {0}. In addition, consider a test φ ∈ Φ0(α) such
that θ �→ γφ(θ) is increasing on (−∞, 0) and decreasing on (0,∞). In such a
case, for every 0 < ε < 1 − α, the set {θ ∈ ΘK ; γφ(θ) ≥ ε} is not closed and
hence not compact. This means that γφ /∈ C0(ΘK) and consequently the proof
of Theorem 1 would be incorrect if one took π which equals to μ.

8.3. Proof of Theorem 2

Observe that for every θ ∈ R
p,

βφ(θ) = E1V [Tθ(U)] . (8.25)

Thus, since V is open, due to (T1), bounded convergence theorem implies that
θ �→ βφ(θ) is continuous. This with the assumptions (I) and (II) imply that
φ ∈ Φ0(α).

Consider some arbitrary π ∈ Π1 and for every ζ, η > 0 define a test

φζ,η(x) ≡
[
1{‖x‖<ζ}

φ∗
π(x)ζ

1 + ζ
+ 1{‖x‖>η}φ(x) +

1

η

]
∧ 1 , ∀x ∈ R

d . (8.26)

Now, observe that for every θ ∈ R
p,

βφζ,η
(θ) = E

{
1{‖X(θ)‖<ζ}

φ∗
π [X(θ)] ζ

1 + ζ
+ 1{‖X(θ)‖>η}φ [X(θ)] +

1

η

}
∧ 1 (8.27)

and hence bounded convergence theorem implies that for every θ ∈ R
p, (ζ, η) �→

βφζ,η
(θ) is a continuous mapping on R

2
++. Notice that for every η > 0, bounded

convergence theorem yields that

βφζ,η
(0)

ζ↑∞−−−→ E

[
φ∗
π(U) + 1{‖U‖>η}φ(U) +

1

η

]
∧ 1 > Eφ∗

π(U) = α . (8.28)

In particular, to see why the inequality in (8.28) holds, recall that βφ∗
π
(0) = α <

1 which implies that
P [φ∗

π(U) = 1] < 1 . (8.29)
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In addition, for every ζ > 0 bounded convergence yields that

βφζ,η
(0)

η↑∞−−−→ E1{‖U‖<ζ}
φ∗
π(U)ζ

1 + ζ
< βφ∗

π
(0) = α (8.30)

and hence the intermediate value theorem implies that there is a sequence
(ζn, ηn)n≥1 ⊂ R

2
++ such that:

1. (ζn, ηn) → (∞,∞) as n → ∞.
2. βφζn,ηn

(0) = α, ∀n ≥ 1.

For every n ≥ 1, denote φn ≡ φζn,ηn and observe that there is a pointwise
convergence φn → φ∗

π as n → ∞. Therefore, bounded convergence theorem
implies that

lim
n→∞

∫
Rd\{0}

βφn(θ)dπ(θ) = lim
n→∞

∫
Rd

φn(x)dPπ(x) (8.31)

=

∫
Rd

φ∗
π(x)dPπ(x)

=

∫
Rd\{0}

βφ∗
π
(θ)dπ(θ) >

∫
Rd\{0}

βφ(θ)dπ(θ)

where the inequality is justified by (ii) with the help of the fundamental lemma
of Neyman and Pearson (recall that there is no trivial test under the current
model assumptions). This means that there is N ≥ 1 such that βφN

(0) = α and
for which ∫

Rd\{0}
βφN

(θ)dπ(θ) >

∫
Rd\{0}

βφ(θ)dπ(θ) . (8.32)

Hence, since π is an arbitrary element in Π1, then Theorem 1 implies that it is
left to show that γφN

∈ C0(Rd). To this end, notice that for every θ ∈ R
p

E1{‖X(θ)‖>ηN}φ [X(θ)] ≤ βφN
(θ) ≤ 1 (8.33)

and it is to be shown that the left hand-side tends to one as ‖θ‖ → ∞. Initially,
observe that (T2) implies the following pointwise convergence (on Ω):∣∣1{‖X(θ)‖>ηN}φ [X(θ)]− φ [X(θ)]

∣∣ → 0 as ‖θ‖ → ∞ . (8.34)

Consequently,∣∣E1{‖X(θN )‖>η}φ [X(θ)]− βφ(θ)
∣∣ ≤ E

∣∣1{‖X(θ)‖>ηN}φ [X(θ)]− φ [X(θ)]
∣∣ (8.35)

and the right hand-side tends to zero as ‖θ‖ → ∞ by bounded convergence
theorem. Hence, due to (II), deduce that

E1{‖X(θ)‖>η}φ [X(θ)] → 1 as ‖θ‖ → ∞ . (8.36)

Now, (i) implies that

R ≡
{
x ∈ R

d;Lπ(x) > C∗
π

}
, Q ≡

{
x ∈ R

d;Lπ(x) < C∗
π

}
(8.37)
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are open sets. In addition, observe that for every x ∈ R
d, φN (x) equals to{

ζN
1R∩B(x) + τ∗π [1B(x)− 1R∩B(x)− 1Q∩B(x)]

ζN + 1
+ 1V ∩D(x) +

1

η

}
∧ 1 (8.38)

where B ≡ {x ∈ R
d; ‖x‖ < ζN} and D ≡ {x ∈ R

d; ‖x‖ > ηN}. Since V is an
open set, then each of the indicators which appear in (8.38) is supported on an
open set. This means that the same arguments which were introduced in order
to prove continuity of θ �→ βφ(θ) imply that θ �→ βφN

is continuous. �

8.4. Proof of Proposition 1

Due to Problem 3.20 in [15], deduce that φ ∈ A(α) and hence it is left to
show that φ ∈ Φ0(α). To this end, recall that due to the assumptions on f(·),
βφ(·) is continuous. In addition, observe that R

d \ V is bounded and hence
1V (U + θ) → 1, P -a.s. as ‖θ‖ → ∞ and the result follows. �

8.5. Proof of Theorem 3

It is easy to verify that φ satisfies the assumptions of the first part of Theorem
2 from which the assertion follows.

In order to prove the second assertion, consider a probability measure π ∈ Π
which is concentrated on (0,∞) and define a test

φ+
ζ (x1, x2) ≡ 1(ζ,∞)×(b1,∞)∪(−∞,ζ)×(−∞,b2) (x1, x2) , ∀(x1, x2) ∈ R

2 (8.39)

which is parametrized by ζ ∈ (−∞, a). Notice that for every ζ ∈ (−∞, a),
φ+
ζ ∈ Φ0(α) just like φ ∈ Φ0(α).
Since fU2(·) is supported on R, then the definitions of b1 and b2 imply that

Pθ (X2 < b2) < α < Pθ (X2 > b1) , ∀θ ∈ (0,∞) . (8.40)

Therefore, since for every θ ∈ (0,∞), X1 and X2 are independent and Pθ(X1 =
a) = 0, then

Pθ (X2 > b1) = Pθ (X1 > a)Pθ (X2 > b1) + Pθ (X1 < a)Pθ (X2 > b1)

> Pθ (X1 > a)Pθ (X2 > b1) + Pθ (X1 < a)Pθ (X2 < b2)

= βφ(θ) , ∀θ ∈ (0,∞) . (8.41)

Note that for every θ ∈ (0,∞), bounded convergence implies that

βφ+
ζ
(θ) = E1(ζ,∞)×(b1,∞)∪(−∞,ζ)×(−∞,b2) [X1(θ), X2(θ)] (8.42)

→ Pθ (X2 > b1) as ζ → −∞ .

Therefore, an additional application of bounded convergence theorem yields that

lim
ζ→−∞

∫
(0,∞)

βφ+
ζ
(θ)dπ(θ) =

∫
(0,∞)

Pθ (X2 > b1) dπ(θ)
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>

∫
(0,∞)

βφ(θ)dπ(θ) (8.43)

where the inequality is justified by (8.41). This means that for any π ∈ Π which
is concentrated on (0,∞), φ is not an α-level π-Bayes test in Φ0(α). Similarly, an
analogous result can be made for any π ∈ Π which is concentrated on (−∞, 0).

Thus, it is left to consider π ∈ Π which is a probability measure on R \ {0}
such that

π ((−∞, 0)) ∧ π ((0,∞)) > 0 . (8.44)

Primarily, for every θ ∈ R, the joint likelihood of the data is given by

lθ(x1, x2) ≡ fU1(x1 − θ)fU2(x2 − θ) , ∀(x1, x2) ∈ R
2 . (8.45)

In particular, it is given that fU1(·) and fU2(·) are positive continuous functions
on R. Therefore, deduce that for every θ ∈ R \ {0}, the likelihood ratio

(x1, x2) �→
lθ(x1, x2)

l0(x1, x2)
(8.46)

is continuous on R
2. Consequently, since for every (x1, x2) ∈ R

2, θ �→ lθ(x1, x2)
is bounded, then bounded convergence theorem leads to the conclusion that

Lπ(x1, x2) =

∫
R\{0}

lθ(x1, x2)

l0(x1, x2)
dπ(θ) , ∀(x1, x2) ∈ R

2 (8.47)

is continuous.
Now, observe that for every (x1, x2) ∈ R

2

Lπ(x1, x2) =

∫
(−∞,0)

lθ(x1, x2)

l0(x1, x2)
dπ(θ) +

∫
(0,∞)

lθ(x1, x2)

l0(x1, x2)
dπ(θ) . (8.48)

In addition, fix some x1 
= 0 and notice that (5.5) and (5.6) with bounded
convergence theorem imply that

lim
x2→±∞

Lπ(x1, x2) = ∞ . (8.49)

This means that for every C ∈ (0,∞), there exist −∞ < w1 < w2 < ∞ such
that

(−∞, w1) ∪ (w2,∞) ⊆ {x2 ∈ R ; Lπ(x1, x2) > C} . (8.50)

On the other hand,

{x2 ∈ R ; φ(x1, x2) = 1} =

{
(b1,∞) x1 > 0

(−∞, b2) x1 < 0
(8.51)

and hence the result follows by an application of Theorem 2. �
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8.6. Proof of Theorem 4

For simplicity and w.l.o.g. consider the case where n = 2 andm = 1. In addition,
as mentioned in Remark 8, Theorem 3 implies the result for the special case
where d = 1 and hence consider the case where 2 ≤ d < ∞.

By construction, φ ∈ Φ(α). In addition, notice that for every θ 
= 0

X1(θ) ·X2(θ)

‖X1(θ)‖
=

(U1 + θ) · (U2 + θ)

‖U1 + θ‖ (8.52)

=
U1 · U2 + θ · (U1 + U2) + ‖θ‖2

‖U1 + θ‖

≥ U1 · U2 − ‖θ‖‖U1 + U2‖+ ‖θ‖2
‖U1 + θ‖

and observe that

0 <
‖U1 + θ‖

‖θ‖ ≤ ‖U1‖
‖θ‖ + 1 . (8.53)

Therefore, deduce that

X1(θ) ·X2(θ)

‖X1(θ)‖
w.p.1−−−→ ∞ as ‖θ‖ → ∞ (8.54)

and hence βφ(θ) → 1 as ‖θ‖ → ∞. Also, observe that (x1, x2) �→ x1·x2

‖x1‖ is a

continuous function on {x1, x2 ∈ R
d;x1 
= 0} which means that Rφ is an open

set. Therefore, by the first part of Theorem 2, deduce that φ ∈ Φ0(α).
Now, consider some π ∈ Π and observe that the same arguments which

appear in the proof of Theorem 3 may be used here in order to show that
(x1, x2) �→ Lπ(x1, x2) is continuous. In addition, standard algebra implies that
for every x1, x2 ∈ R

d

Lπ(x1, x2) =

∫
Rd\{0}

exp

⎧⎨
⎩−1

2

∑
i=1,2

[
‖θ‖2 − 2θ · xi

]⎫⎬⎭ dπ(θ) .

Since expectation is an operator which preserves convexity, deduce that (x1, x2) �→
Lπ(x1, x2) is convex on R

2d. Consequently, for every C ∈ (0,∞) the set{
(x1, x2) ∈ R

2d ; Lπ(x1, x2) ≤ C
}

(8.55)

is convex.
Now, assume by contradiction that φ is an α-level π-Bayes test. Therefore,

up to a null set, the acceptance zone of φ is convex. More precisely, this implies
that the Lebesgue measure of the set of points (u, v) ∈ R

2d for which there exist
(u1, v1), (u2, v2) ∈ R

2d such that

1. (u, v) = (u1,v1)+(u2,v2)
2 ,
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2. u·v
‖u‖ > D,

3. ui·vi
‖ui‖ < D , ∀i = 1, 2,

is zero. In order to obtain a contradiction, denote

u1 ≡ e1√
2
+

e2√
2

, u2 ≡ e1√
2
− e2√

2
(8.56)

and v1 ≡ v2 ≡ δDe1 for some 1 < δ <
√
2 where ei is the i’th (i = 1, 2) element

in the standard basis of Rd. In particular observe that for every i = 1, 2,

ui · vi
‖ui‖

=
δD√
2
< D . (8.57)

In addition, define

u ≡ u1 + u2

2
=

e1√
2

, v ≡ v1 + v2
2

= δDe1 (8.58)

and notice that
u · v
‖u‖ =

δD/
√
2

1/
√
2

= δD > D . (8.59)

Thus, a continuity argument yields that there exists δ > 0 such that(
ũ1+ũ2

2

)
·
(
ṽ1+ṽ2

2

)
‖ ũ1+ũ2

2 ‖
> D ,

ũ1 · ṽ1
‖ũ1‖

< D ,
ũ2 · ṽ2
‖ũ2‖

< D (8.60)

for every (ũi, ṽi) ∈ Bδ ((ui, vi)) , i = 1, 2 where Bδ(y) refers to an Euclidean
ball with radius δ > 0 around y ∈ R

2d. Thus, the result follows by Theorem 2.
�
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