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Abstract: We consider truncated (or conditional) sum-of-squares estima-
tion of a parametric fractional time series model with an additive determin-
istic structure. The latter consists of both a drift term and a generalized
power law trend. The memory parameter of the stochastic component and
the power parameter of the deterministic trend component are both con-
sidered unknown real numbers to be estimated and belonging to arbitrarily
large compact sets. Thus, our model captures different forms of nonstation-
arity and noninvertibility as well as a very flexible deterministic specifica-
tion. As in related settings, the proof of consistency (which is a prerequisite
for proving asymptotic normality) is challenging due to non-uniform con-
vergence of the objective function over a large admissible parameter space
and due to the competition between stochastic and deterministic compo-
nents. As expected, parameter estimates related to the deterministic com-
ponent are shown to be consistent and asymptotically normal only for parts
of the parameter space depending on the relative strength of the stochas-
tic and deterministic components. In contrast, we establish consistency and
asymptotic normality of parameter estimates related to the stochastic com-
ponent for the entire parameter space. Furthermore, the asymptotic distri-
bution of the latter estimates is unaffected by the presence of the deter-
ministic component, even when this is not consistently estimable. We also
include Monte Carlo simulations to illustrate our results.
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1. Introduction

A common approach to time series modeling is to assume an additive struc-
ture, where the observed process is a sum of latent stochastic and deterministic
components. Regarding the former, the autoregressive moving average (ARMA)
class, possibly including unit root nonstationary and noninvertible processes, is
dominant. A general model that includes these processes as special cases, and
also bridges the gap between stationary and invertible ARMA models and the
unit root nonstationary or noninvertible models, is the fractionally integrated
time series model. Specifically, a zero-mean fractional model for zt is given by

Δδ
+zt = ut, t ∈ Z, (1)

ut = ω(L;ϕ)εt, t ∈ Z, (2)

where εt is a zero-mean and serially uncorrelated sequence, L is the lag operator,
and, for any process ξt, Δ

ζ
+ξt = ΔζξtI(t ≥ 1) =

∑t−1
i=0 πi (−ζ) ξt−iI(t ≥ 1) with

I(·) denoting the indicator function, πi(v) = 0 for i < 0, π0(v) = 1, and

πi (v) =
Γ (v + i)

Γ (v) Γ (1 + i)
=

v(v + 1) . . . (v + i− 1)

i!
, i ≥ 1, (3)

denoting the coefficients in the binomial expansion of (1− z)−v. The parameter
δ is the “memory” of the process, which satisfies δ = 0 for stationary and
invertible ARMA models, δ = 1 for unit root nonstationary models, and δ = −1
for unit root noninvertible models.

The process zt generated by (1) has been termed by the literature as a Type II
fractionally integrated process of order δ. The Type II specification (1) assumes
that the process is initialized at t = 1, but at the cost of more complicated proofs
we conjecture that this could be generalized to any initialization under suitable
conditions on the initial values. Johansen and Nielsen (2010, 2012a, 2016) devel-
oped maximum likelihood-based inference theory for fractional processes under
more general assumptions on the initialization, where the inference is conditional
on a finite number of initial values. Of course, finite sample behavior may de-
pend on the initialization, as investigated by Johansen and Nielsen (2016) using
higher-order asymptotic expansions and numerical methods. To avoid further
complications of the theory, we maintain the simpler Type II initialization in (1).

The function ω in (2) characterizes parametrically the short memory depen-
dence present in ut, and hence in zt. It is given as

ω(L;ϕ) =

∞∑
j=0

ωj(ϕ)L
j , (4)

where ϕ is an unknown p × 1 vector collecting the short-memory parameters.
For example, we could have

ω(L;ϕ) =
αMA(L;ϕ)

αAR(L;ϕ)
, (5)
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where αAR and αMA are polynomials of orders p1 and p2, respectively, with no
common zeros and all roots outside the unit circle. Then (1), (2), (5) constitutes
the fractionally integrated ARMA, or FARIMA(p1, δ, p2), model, where ϕ col-
lects the AR and MA parameters. However, we will maintain the more general
short-memory specification (4) instead of (5), so that, under our conditions, zt
will not be restricted to belong to the FARIMA class. More precise conditions
will be imposed on ω below.

An important implication of model (1), (2) is that E (zt) = 0, so therefore,
even if this setting has been employed in theoretical work (e.g., Hualde and
Robinson, 2011; Nielsen, 2015), it has limited empirical relevance. In practice,
it would be natural to extend (1), (2) to allow for some deterministic structure
such as, for example, a non-zero mean or drift. A very simple possibility would
be to consider the observable process xt generated as

Δδ
+ (xt − μ) = ut, t ∈ Z, (6)

which implies that

xt = μI (t ≥ 1) + zt = μπt−1 (1) + zt, t ∈ Z, , (7)

so xt is a fractionally integrated process with drift if μ �= 0. This is a partic-
ular case of previous proposals in the literature, like Robinson (1994, 2005) or
Robinson and Iacone (2005). An alternative specification for the deterministic
component could be

Δδ
+xt = β + ut or xt = Δ−δ

+ β +Δ−δ
+ ut = βπt−1 (δ + 1) + zt, (8)

see also Robinson (1994). By Stirling’s approximation, πt−1(1 + c) behaves like
tc, apart from a constant factor, and πt−1(1+c) is therefore denoted a generalized
power law trend of order c or a generalized polynomial trend of order c. Thus, the
presence of a non-zero β in (8) generates a deterministic trend component for xt.

Several ideas arise from the previous discussion. First, the specification in (8)
shows that, when dealing with fractional time series, the fractional coefficients
πt−1 appear to be a more natural and elegant representation of deterministic
terms compared with the usual powers of t. Of course, for the commonly applied
cases c = 0, 1, πt−1(1 + c) equals tc for t ≥ 1. More generally, considering
πt−1 appears to be a natural approach to introducing a deterministic term that
complements the Type II process zt, due to the properties

Δd
+πt−1(c) = πt−1(c− d) and

t−1∑
j=0

πj (c) = πt−1 (1 + c) . (9)

Second, in view of (1), restricting the fractional order of the stochastic and
deterministic components to be identical in (8) seems arbitrary. This motivates
the more general model

xt = βπt−1(γ) + zt, (10)
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where β and γ are both unknown real-valued parameters and zt is generated by
(1), (2), so, in particular, it can be either short or long memory. Under the model
(1), (2), (10), the fractional order of the stochastic term is δ and that of the
deterministic term is γ, thus allowing these orders to be modeled by two different
parameters. In related work, Hualde and Nielsen (2020) analyze the model

xt = βtγ−1
+ + zt, (11)

where tγ−1
+ = tγ−1

I(t ≥ 1) (strictly speaking, they considered the power tγ+,
but this makes no difference with the obvious re-labeling). Of course, since
πt−1(γ) = tγ−1

I(t ≥ 1) for γ = 1, 2, (10) and (11) are identical specifications for
γ = 1, 2. Model (11) is a particular case of those of Robinson (2005) or Robinson
and Iacone (2005), where more deterministic terms are included, but the power
law parameters were assumed to be known. Also, (11) is embedded in Robinson’s
(2012) spatial model, where the power law parameters were unknown, but which
required a short memory stochastic component. As will be seen below, apart
from being more natural in a fractional setting, the specification (10) offers
several crucial advantages over (11). Therefore, (11) is more accurately described
as an approximation to (10) in a fractional setting with γ �= 1, 2.

Third, the model (10) (or (11)) is, undoubtedly, quite restrictive. For exam-
ple, it cannot accommodate the commonly applied constant plus linear trend
specification. To illustrate the restrictive nature of (10) or (11), note that for
both models x1 = β + z1, which implies that the β parameter is intimately
linked to the initial observation. Thus, in practice, a large value of x1 will lead
to a large value of the estimated β, even in cases where the true slope of the de-
terministic component is small. This discussion just indicates that models (10)
or (11) might be misspecified in most cases due to the omission of a drift com-
ponent that determines the level of the observable time series. Thus, inspired
by (7) and (10), we consider instead of (10) the more general structure

xt = μπt−1(1) + βπt−1(γ) + zt, (12)

where for identification γ �= 1. The deterministic specification in (12) covers the
standard case of constant plus linear trend (when γ = 2). However, since γ is
allowed to take any real value, (12) characterizes a wide range of deterministic
behaviors. Compared to (10) (or (11)), the generalization in (12) appears to be
particularly relevant for γ < 1, because in this case the deterministic structure
would approach smoothly the drift μ as time increases. One interpretation of
this case, which appears to be both realistic and coherent with e.g. economic
time series, is that of a series moving around a deterministic structure that
approaches an equilibrium value (given by μ). Furthermore, the parameter μ
is the so-called “level parameter” in the terminology of Johansen and Nielsen
(2016), the inclusion of which they argue can alleviate bias issues arising from
non-zero initial conditions in the Type II context.

Fourth, model (12) is closed under fractional differencing in the sense that,
for any d ∈ R,

Δd
+xt = μπt−1 (1− d) + βπt−1(γ − d) + Δd−δ

+ ut (13)
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has the exact same structure as (12). This property is an important advantage,
because, as will be seen below, our proposed estimators depend crucially on
fractional differences of the observables, and (13) will simplify the estimation
procedure by avoiding the presence of “approximation errors” which routinely
appear when taking fractional differences of polynomials of t. It is desirable,
both from a mathematical and from a practical point of view, that fractional
differences of a process belonging to a class of fractional time series belong to
the same class of fractional time series. In other words, it would seem strange if
fractional differences of a fractional time series process generated processes that
were outside the class.

Unlike (10) and (12), the alternative model (11) given with tγ−1
+ instead

of πt−1(γ) is not closed under fractional differencing. Thus, modeling trends
by means of πt−1 seems both more natural and more elegant than a power
of t, and leads to several advantages, which are even more relevant because
of the extra flexibility introduced by the drift term μ. In particular, we note
that the properties (9) are only shared approximately by tc+, in the sense that

Δd
+t

c
+ is only asymptotically equal to a constant times tc−d

+ , and only for some
values of c and d. From a technical viewpoint, the “closedness” leads to simpler
and more elegant proof arguments. From a practical viewpoint, for the model
(11) discussed in Hualde and Nielsen (2020), only the case γ > 0 could be
considered. Nicely, considering generalized trends (πt−1) instead of powers of t
permits consideration of any value of γ in an arbitrarily large compact set.

In our model (1), (2), (12), we allow both the stochastic and deterministic
components to be of a fractional order, thereby placing them on an equal foot-
ing. Specifically, δ (which we permit to lie in an arbitrarily large compact in-
terval) characterizes the behavior of V ar (xt) and Cov (xt, xt−j) and γ charac-
terizes the behaviour of E (xt). Thus, borrowing White and Granger’s (2011)
terminology, when δ > 1/2, xt has an increasing “stochastic trend in variance”
because V ar (xt) grows at rate t2δ−1. Similarly, xt has a “stochastic trend in
mean” because E (xt) grows at rate tγ−1. In this sense, letting γ be real-valued
appears as natural as letting δ be real-valued. Moreover, in the context of frac-
tional models, letting γ be real-valued seems to be a natural alternative to the
more standard linear trend model, which might suffer from severe specification
problems with important implications for inference.

We note that if γ were known in (12), the estimation problem is simplified
greatly. This case has been studied by Robinson (2005) who considered M -
estimation of a model like (11) (although involving more deterministic terms)
with known γ and allowing for fractional zt. Other works that have considered
a similar problem to ours, but assuming that zt is at most a weakly depen-
dent process, include Wu (1981), Phillips (2007), and Robinson (2012). The lat-
ter analyzes a more general spatial setting with more deterministic terms, but
where the weakly dependent stochastic component is dominated by the deter-
ministic structure. Related to the implications of the relative strength of deter-
ministic and stochastic components for estimation, Johansen and Nielsen (2016)
proved consistency and asymptotic normality of a truncated/conditional sum-
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of-squares estimator that ignores the deterministic components, whenever this
component is dominated by the stochastic one. Other contributions that include
power law trends, although in slightly different contexts, are Robinson and Mar-
inucci (2000) and Robinson and Iacone (2005). Finally, as mentioned above,
Hualde and Nielsen (2020) analyze the model given by (1), (2), (11), using the
approximation given by the simple power tγ−1

+ instead of the fractional coeffi-
cients πt−1(γ). Their work has two very important limitations with respect to
our contribution in the present paper. First, they have no drift term, which, as
justified before, limits substantially the empirical relevance of their model. Sec-
ond, as a consequence of applying the approximation tγ−1

+ , they require a strong
condition on the power law parameter, namely γ > 0, so cases where the deter-
ministic structure tends very quickly to an equilibrium value (known to be 0 in
their model) are not covered.

In the present paper we derive the limiting properties of a truncated (or
conditional) sum-of-squares estimator of parameters in model (1), (2), (12). As
in Hualde and Nielsen (2020), our setting is substantially more involved than
in the related analysis of Hualde and Robinson (2011) (or Nielsen, 2015), which
discussed parametric estimation in model (12) taking μ = β = 0 as known. This
avoids the huge complication of dealing with the competition between stochastic
and deterministic components, especially related to the proof of consistency
(prerequisite for proving limiting normality), which is very delicate because the
loss function does not converge uniformly over a large admissible parameter
space, even when knowledge of μ = β = 0 is imposed. Additionally, the presence
of a second deterministic term (the drift) over the simpler setting of Hualde and
Nielsen (2020) introduces very substantial technical challenges.

As in Hualde and Nielsen (2020), we establish the limiting properties of our
estimators, noting that results depend on the relative strength of the determin-
istic and stochastic components. We distinguish different cases depending on
the true values of the parameters, which are denoted by subscript zero. When
γ0 − 1/2 > δ0 and δ0 < 1/2, we find that the estimators of all parameters are
consistent and asymptotically normal. Next, when γ0 − 1/2 > δ0 but δ0 > 1/2,
consistency and asymptotic normality hold for all estimators except that of μ0.
Alternatively, when γ0−1/2 < δ0, only the estimators of the parameters related
to the stochastic component (δ0,ϕ0) are consistent and asymptotically normal.
In this case, the joint limiting distribution of the estimators of δ0 and ϕ0 is
unaffected by the presence of deterministic components that cannot be consis-
tently estimated; a phenomenon that has been noted previously in, e.g., Heyde
and Dai (1996), Abadir, Distaso and Giraitis (2007), Iacone (2010), and Hualde
and Nielsen (2020). If, in this case, δ0 < 1/2, we also provide a convergence rate
for the estimator of μ0.

The rest of the paper is organized as follows. First, in Section 2 we discuss
the estimation problem in model (12) and compare with several alternatives. In
Section 3 we present the main theoretical results of the paper. Next, a Monte
Carlo experiment of finite sample performance is presented in Section 4, and we
give some concluding remarks in Section 5. Finally, Section 6 collects the proofs
of our main results, while all lemmas are stated in Sections 7 and 8. Proofs of the
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lemmas can be found in the working paper version (Hualde and Nielsen, 2022).

2. The estimation problem

We introduce the following notation. Let prime denote transposition. The pa-
rameter for the stochastic component is τ = (δ,ϕ′)′ with true value τ 0 =
(δ0,ϕ

′
0)

′. We also define the parameters ϑ = (τ ′, γ)′ and φ = (μ, β)′ with true
values ϑ0 = (τ ′

0, γ0)
′ and φ0 = (μ0, β0)

′. Thus, the model is given by (12),
which we repeat here for convenience,

xt = μπt−1(1) + βπt−1(γ) + zt,

where zt is a stochastic term modeled by (1), (2). The data generating process
(DGP) is given by (1), (2), (12) with parameters ϑ0 and φ0.

To illustrate the estimation problem, suppose for now that ω(L;ϕ) = 1, and
hence ut = εt, and ignore ϕ, so that the parameters to be estimated are δ, γ, μ, β.
Hualde and Nielsen’s (2020) proof methods and results make evident the sig-
nificant technical difficulties of enlarging their relatively restrictive model (11)
with additional deterministic terms to capture a richer structure (e.g., includ-
ing a drift). Thus, an interesting and tempting proposal is the “differencing and
adding back” procedure, where the idea is to eliminate the drift by differencing
to simplify the estimation problem. A similar idea has been considered for esti-
mation of nonstationary processes by Velasco (1999a,b) and Chen and Hurvich
(2003) in combination with tapering of the periodogram in frequency domain
methods. Specifically, consider yt = Δ+xt in (12); that is

yt = Δ+xt = μπt−1(0) + βπt−1(γ − 1) + Δ1−δ
+ εt, (14)

so that the observable process is yt = β0πt−1(γ0 − 1) + Δ1−δ0
+ εt for t ≥ 2 and

y1 = μ0 + β0 + ε1. We notice that μ0 only affects one observation, y1, so an
apparently sensible approach could be to “forget” about this effect and act as if
the influence of μ0 had been completely removed by differencing. In this setting,
we will discuss several variations of differencing and adding back, and argue why
these all fail for this model.

Supposed we observed

ỹt = β0πt−1(γ0 − 1) + Δ1−δ0
+ εt, t = 1, ..., T.

Then we could consider the loss function

Q̃T (δ, γ, β) = T−1
T∑

t=1

(Δδ−1
+ ỹt − βπt−1(γ − δ))2 (15)

and derive the corresponding estimators. This approach would eliminate the
drift parameter μ, and thus simplify the estimation problem. In particular, it
would be relatively similar to that in Hualde and Nielsen (2020), with the only
relevant difference of dealing with πt−1(γ − δ) instead of Δδ

+t
γ−1 in the loss
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function. However, in practice we observe xt, or equivalently yt, for t = 1, . . . , T ,
so that Q̃T is infeasible because ỹ1 is unobserved. Specifically, ỹt = yt for t ≥ 2
but ỹ1 = β0 + ε1 �= μ0 + β0 + ε1 = y1 if μ0 �= 0. We now discuss three feasible
alternatives.

First, inspired by Q̃T in (15), we could ignore the presence of μ0 in the single
observation y1 and set the loss function as

Q1T (δ, γ, β) = T−1
T∑

t=1

(Δδ−1
+ yt − βπt−1(γ − δ))2.

We note from (14) that Δδ−1
+ yt = μ0πt−1(1 − δ) + β0πt−1(γ0 − δ) + Δδ−δ0

+ εt.

Thus, comparing with the infeasible Q̃T , we find

Q1T (δ, γ, β) = T−1
T∑

t=1

(Δδ−1
+ ỹt − βπt−1(γ − δ) + μ0πt−1(1− δ))2,

and the presence of the additional term μ0πt−1(1 − δ) in Q1T (compared with

Q̃T ) is undesirable. For example, evaluated at the true values we find

Q1T (δ0, γ0, β0) = T−1
T∑

t=1

(εt + μ0πt−1(1− δ0))
2,

where the contribution of the term μ0πt−1(1− δ0) is non-negligible, and in fact
is dominant for δ0 < 0 if μ0 �= 0.

Second, to eliminate the influence of the first observation, suppose we force
a zero initial condition and consider

y∗1 = 0 and y∗t = Δxt = β0πt−1(γ0 − 1) + Δ1−δ0
+ εt for t ≥ 2.

We could then use the observed values y∗t , t = 1, . . . , T , in the estimation; that
is, work with the loss function

Q2T (δ, γ, β) = T−1
T∑

t=1

(Δδ−1
+ y∗t − βπt−1(γ − δ))2.

Comparing again with the infeasible Q̃T , we find that

Q2T (δ, γ, β) = T−1
T∑

t=1

(Δδ−1
+ ỹt − βπt−1(γ − δ)− (β0 + ε1)πt−1(1− δ))2,

where the additional term (β0+ε1)πt−1(1−δ) inQ2T causes difficulties similar to
the additional term in Q1T . Furthermore, simply omitting the first observation
and defining Q2T by a summation over t = 2, . . . , T causes identical problems.

Third, instead of yt in (14), suppose we consider the forward difference. That
is, consider the observable

y†t = xt+1 − xt = β0πt(γ0 − 1) + Δ1−δ0
+ εt+1 for t = 1, . . . , T − 1
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and the corresponding loss function

Q3T (δ, γ, β) = (T − 1)−1
T−1∑
t=1

(Δδ−1
+ y†t − βΔδ−1

+ πt(γ − 1))2.

This would appear to eliminate the influence of the first observation and μ0.
However, because Δδ−1

+ y†t = β0Δ
δ−1
+ πt(γ0−1)+Δδ−δ0

+ εt+1−πt(1−δ)ε1, the ad-
ditional term πt(1−δ)ε1 again causes difficulties similar to the additional terms
in Q1T and Q2T . Unreported Monte Carlo simulations confirm that estimators
based on QiT , i = 1, 2, 3, are inconsistent for δ0 < 0.

The above discussion makes it clear that the “differencing and adding back”
procedure cannot be used to simplify the estimation problem in our context. We
therefore focus on the observed xt for t = 1, . . . , T . Motivated by the Gaussian
log-likelihood and dealing with the general specification for ω given in (4), we
consider the sum-of-squares loss function

LT (ϑ,φ) =
1

T

T∑
t=1

(
ρ(L;ϕ)xt(δ)− φ′ct−1(1− δ, γ − δ,ϕ)

)2
. (16)

Here we have defined ρ(s;ϕ) = ω−1(s;ϕ), see the discussion following Assump-
tion A1, ξt(d) = Δd

+ξt for an arbitrary process ξt, and

ct−1(1− δ, γ − δ,ϕ) = (ct−1(1− δ,ϕ), ct−1(γ − δ,ϕ))′

with the convolution coefficient

ct−1(d,ϕ) = ρ(L;ϕ)πt−1(d) =

t−1∑
j=0

ρj(ϕ)πt−j−1(d). (17)

Clearly, for a given ϑ, we can concentrate the loss function (16) with respect to
φ, to obtain the concentrated loss function

RT (ϑ) =
1

T

T∑
t=1

(
ρ(L;ϕ)xt(δ)− φ̂

′
(ϑ)ct−1(1− δ, γ − δ,ϕ)

)2

,

where

φ̂(ϑ) =

(
T∑

t=1

ct−1(1− δ, γ − δ,ϕ)c′t−1(1− δ, γ − δ,ϕ)

)−1

×
T∑

t=1

ct−1(1− δ, γ − δ,ϕ)ρ(L;ϕ)xt(δ).

(18)

Thus, letting the parameter space for ϑ be denoted Ξ, which will be fully spec-
ified in Assumption A3 below, we propose the estimator

ϑ̂ = argmin
ϑ∈Ξ

RT (ϑ), (19)

along with φ̂ = φ̂(ϑ̂) and σ̂2 = LT (ϑ̂, φ̂).
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As proposed by Hualde and Robinson (2011), we call (19) the truncated sum-
of-squares estimator, though it is also often called the nonlinear least squares or
conditional sum-of-squares estimator. Because it is based on the Gaussian like-
lihood, it is expected to be asymptotically efficient under Gaussianity. For non-
fractional ARMA models with a known integer-valued memory parameter, (19)
was advocated by, e.g., Box and Jenkins (1971). For fractional time series, the
estimator was suggested by Li and McLeod (1986) in stationary FARIMA mod-
els. The first rigorous asymptotic analyses of (19) with the memory parameter
lying in an arbitrarily large compact interval were given by Hualde and Robin-
son (2011) and Nielsen (2015).

3. Main results

We first provide the assumptions needed for consistency of the estimator. Our
conditions for the asymptotic analysis are nearly identical to those in Hualde
and Robinson (2011) and Hualde and Nielsen (2020), with the only difference
being in Assumption A3 below.

A1. (i) for all ϕ ∈ Ψ\{ϕ0}, |ω(s;ϕ)| �= |ω(s;ϕ0)| on a set S ⊂ {s : |s| = 1} of
positive Lebesgue measure;

(ii) for all ϕ ∈ Ψ, ω(eiλ;ϕ) is differentiable in λ with derivative in Lip(ς)
for 1/2 < ς ≤ 1;

(iii) for all λ, ω(eiλ;ϕ) is continuous in ϕ;

(iv) for all ϕ ∈ Ψ, ω0(ϕ) = 1 and |ω(s;ϕ)| �= 0, |s| ≤ 1.
A2. The εt in (2) are stationary and ergodic with finite fourth moment and

satisfy E(εt| Ft−1) = 0, E(ε2t
∣∣Ft−1) = σ2

0 , a.s., where Ft is the σ-field of
events generated by εs, s ≤ t. The conditional (on Ft−1) third and fourth
moments of εt are equal to the corresponding unconditional moments a.s.

A3. The parameter space for ϑ is given by Ξ = [�1,�2]×Ψ× � and ϑ0 ∈ Ξ.
Here, �1, �2 are arbitrary real numbers such that �1 < �2, Ψ ⊆ R

p is
compact and convex, and � = [�1, 1 − κ] ∪ [1 + κ,�2] for arbitrary real
numbers �1, �2, and an arbitrarily small real number κ > 0 such that
�1 < 1 − κ and �2 > 1 + κ. For φ the parameter space is R2. Finally, if
γ0 − 1/2 > δ0, we also assume that β0 �= 0.

For a detailed discussion of A1 and A2 we refer to Hualde and Robinson
(2011) and Hualde and Nielsen (2020). Note that writing ω−1(s;ϕ) = ρ(s;ϕ) =∑∞

j=0 ρj(ϕ)s
j , Assumption A1 implies that ρ0(ϕ) = 1 for all ϕ and

sup
ϕ∈Ψ

|ωj(ϕ)| = O(j−1−ς) as j → ∞, (20)

sup
ϕ∈Ψ

|ρj(ϕ)| = O(j−1−ς) as j → ∞, (21)

inf
|s|=1,ϕ∈Ψ

|ρ(s;ϕ)| > 0, (22)

where ς > 1/2 is given in A1(ii). A1 is easily satisfied for stationary and in-
vertible ARMA models and for the exponential spectrum model of Bloomfield
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(1973). It is very similar to other conditions employed in asymptotic theory for
the estimate τ̂ , see Hualde and Robinson (2011) and Nielsen (2015), as well
as Whittle estimators that restrict to stationarity, e.g. Fox and Taqqu (1986),
Dahlhaus (1989), and Giraitis and Surgailis (1990). Assumption A1 can be read-
ily verified because ω is a known parametric function. In fact ω satisfying A1
are invariably employed by practitioners.

Assumption A2 does not impose independence or identical distribution of εt,
but requires conditional homoskedasticity. It is standard in the time series lit-
erature since Hannan (1973), although it may be quite strong for some empiri-
cal applications. We conjecture that this assumption could be relaxed to allow
for both conditional and unconditional heteroskedasticiy following recent work
by Cavaliere, Nielsen and Taylor (2015, 2017, 2022). This would require replac-
ing A2 by more complicated summability conditions on the cumulants of εt and
would substantially complicate our proofs. Consequently, this seems beyond the
scope of this paper.

Assumption A3 is very similar to A3 in Hualde and Nielsen (2020), but with
two important differences. First, due to the inclusion of the extra drift term, we
need γ0 �= 1 to guarantee identification of μ0 and β0 (see also Section 4.2). This
condition, along with the need of dealing with compact parameter spaces in the
consistency proof, leads to setting the parameter space for γ as [�1, 1 − κ] ∪
[1 + κ,�2]. A similar requirement is imposed in the related setting of Robinson
(2012). Second, translated to our notation, Hualde and Nielsen (2020) impose
the condition that �1 > 0, which implies that just cases where γ0 > 0 can be
considered. This is due to the approximate nature of their model. Specifically,
this additional condition helps to guarantee that their model is approximately
closed under fractional differencing, i.e. to obtain that Δd

+t
c
+ is approximately

equal to a constant times tc−d
+ . In contrast, apart from the exclusion of the

arbitrarily small open interval (1−κ, 1+κ), we permit γ0 to lie in an arbitrarily
large set. Also, similarly to Hualde and Nielsen (2020), the parameter space for
φ is basically unrestricted, although we need the condition β0 �= 0 to guarantee
the identification of γ0 whenever this parameter can be consistently estimated.

As will be seen, when δ0 is large, the stochastic signal dominates the deter-
ministic trend. In particular, whenever δ0 > γ0 − 1/2, γ0 and β0 cannot be con-
sistently estimated, and if δ0 > 1/2 this problem also affects the estimation of
the drift μ0. On the other hand, when δ0 < γ0 − 1/2 and/or δ0 < 1/2, at least
part of the deterministic structure can be consistently estimated. Interestingly,
for small values of δ0 even very small and vanishing generalized trends (with
small or negative γ0) can be consistently estimated. In this sense, the value of
δ0 helps the identification of the deterministic trend.

Theorem 1 Let xt be generated by (1), (2), and (12) with true values ϑ0 and
φ0, and let Assumptions A1–A3 hold.

(i) If γ0 − 1/2 > δ0, then ϑ̂ →p ϑ0 as T → ∞.
(ii) If γ0 − 1/2 < δ0, then τ̂ →p τ 0 as T → ∞.
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Because φ̂ = (μ̂, β̂)′ has an explicit form, a prior consistency proof is not

required, and therefore φ̂ is not included in Theorem 1. When applicable, we
present directly the asymptotic distribution of φ̂ in Theorem 2(i) below. Specifi-
cally, it follows straightforwardly from Theorem 2 that μ̂ is consistent if δ0 < 1/2

and β̂ is consistent when γ0 − 1/2 > δ0.

Theorem 1(i) shows consistency of ϑ̂ when γ0 − 1/2 > δ0, which we refer to
as the strong deterministic trend case. On the other hand, Theorem 1(ii) shows
consistency only of τ̂ when γ0−1/2 < δ0, which is the weak deterministic trend
case. In the latter case, γ0 (and β0) cannot possibly be consistently estimated.
This is easily seen by considering for example δ0 = 1 (a random walk) in which
case the parameters γ0 and β0 cannot be consistently estimated when γ0 < 3/2
because the deterministic signal is drowned by the stochastic noise. This gen-
eralizes the well-known result that a level (γ0 = 1) cannot be estimated consis-
tently for a random walk, whereas a linear trend (γ0 = 2) can be consistently
estimated. Similarly, we note that, as will be discussed in the context of Theo-
rem 2(i) below, the drift parameter μ0 can be consistently estimated whenever
δ0 < 1/2, i.e. when zt is (asymptotically) stationary.

More generally, Theorem 1(ii) shows that, even in cases where the deter-
ministic signal is not strong enough for consistent estimation of the determin-
istic structure, the parameter characterizing the stochastic component, τ 0, can
nonetheless still be consistently estimated.

The proof of Theorem 1 is very challenging due to the non-uniform behaviour
of the loss function over a large admissible parameter set. In a much simpler set-
ting with absence of any deterministic component, this problem was acknowl-
edged and solved by Hualde and Robinson (2011) and Nielsen (2015), where the
difficulty arose due to the nonstationary/stationary behaviour of fractional dif-
ferences of the observed process. Our proof strategy is similar to that in Hualde
and Nielsen (2020) in that it takes advantage of the competition between the
deterministic and stochastic components, although this is now more challenging
because of the arbitrarily large parameter space for γ, and in particular because
of the presence of a second deterministic term. Specifically, the latter compli-
cates matters substantially due to the difficulties outlined in Section 2 and be-
cause dealing with the relative strengths of stochastic and deterministic terms
is now more involved.

For the asymptotic distribution theory we define the convolution coefficient
bj(ϕ0) =

∑j−1
k=0 ωk(ϕ0)∂ρj−k(ϕ0)/∂ϕ and the matrix

A =

(
π2/6 −

∑∞
j=1 b

′
j (ϕ0) /j

−
∑∞

j=1 bj (ϕ0) /j
∑∞

j=1 bj (ϕ0) b
′
j (ϕ0)

)
,

which is the Fisher information for the parameter τ under Gaussianity; see
Dahlhaus (1989) and Hualde and Robinson (2011). Also, we require an addi-
tional regularity condition.

A4. (i) ϑ0 ∈ int(Ξ);

(ii) for all λ, ω(eiλ;ϕ) is thrice continuously differentiable in ϕ on a closed
neighbourhood Nε(ϕ0) of radius ε ∈ (0, 1/2) about ϕ0, and for all
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ϕ ∈ Nε(ϕ0) these partial derivatives with respect to ϕ are themselves
differentiable in λ with derivative in Lip(ς) for 1/2 < ς ≤ 1;

(iii) the matrix A is nonsingular.

Assumption A4 is identical to A4 in Hualde and Nielsen (2020). It is slightly
stronger than A3 in Hualde and Robinson (2011). This strengthening seems
necessary to obtain the bounds

sup
ϕ∈Nε(ϕ0)

∣∣∣∣∂ρj(ϕ)∂ϕi

∣∣∣∣ = O(j−1−ς), sup
ϕ∈Nε(ϕ0)

∣∣∣∣∂2ρj(ϕ)

∂ϕi∂ϕl

∣∣∣∣ = O(j−1−ς),

sup
ϕ∈Nε(ϕ0)

∣∣∣∣ ∂3ρj(ϕ)

∂ϕi∂ϕl∂ϕk

∣∣∣∣ = O(j−1−ς), (23)

where ς > 1/2 is given in A4(ii) and ϕi denotes the i-th element of ϕ; see Hualde
and Nielsen (2020) for details. Again A4 is easily satisfied for ARMA models or
the Bloomfield (1973) spectral model. For the latter model, the analytical for-
mulas for A, and hence for the asymptotic variance matrix, simplify neatly; see
Robinson (1994). In practical implementations, though, numerical derivatives
of the objective function will typically be used.

To describe the asymptotic distribution, we introduce additional notation.
Let Iq and 0q denote the q-dimensional identity matrix and a q-vector of zeros,
respectively, and define

P μ,β,T = diag(Ip+1, T
δ0−γ0+1, T δ0 , T δ0−γ0+1 log T )

and W μ,β =

⎛⎝ σ2
0A 0p+1 0p+1

0′
p+1

0′
p+1

V μ,β

⎞⎠ ,
(24)

P β,T = diag(Ip+1, T
δ0−γ0+1, T δ0−γ0+1 log T )

and W β =

(
σ2
0A 0p+1

0′
p+1 vβ

)
,

(25)

where

V μ,β =

(
(γ0−1)2

(γ0−2δ0)2
vβ 0

0 ρ2(1;ϕ0)(γ0−1)2

Γ2(1−δ0)(1−2δ0)(γ0−2δ0)2

)
,

vβ =
β2
0ρ

2(1;ϕ0)

Γ2(γ0 − δ0)(2(γ0 − δ0)− 1)3
.

Theorem 2 Let xt be generated by (1), (2), and (12) with true values ϑ0 and
φ0, and let Assumptions A1–A4 hold. Then, as T → ∞:

(i.a) If γ0 − 1/2 > δ0 and δ0 < 1/2,

T 1/2P−1
μ,β,T

⎛⎝ ϑ̂− ϑ0

μ̂− μ0

β̂ − β0

⎞⎠ →d

⎛⎝ Ip+2 0p+2

0′
p+2 1

0′
p+1 −β0 0

⎞⎠Nμ,β , (26)

where Nμ,β is a random variable distributed as N(0p+3, σ
2
0W

−1
μ,β).
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(i.b) If γ0 − 1/2 > δ0 and δ0 > 1/2,

T 1/2P−1
β,T

(
ϑ̂− ϑ0

β̂ − β0

)
→d

(
Ip+2

0′
p+1 −β0

)
Nβ , (27)

where Nβ is a random variable distributed as N(0p+2, σ
2
0W

−1
β ).

(ii) If γ0 − 1/2 < δ0,

T 1/2(τ̂ − τ 0) →d N(0p+1,A
−1). (28)

If, in addition, δ0 < 1/2, then for any ε > 0,

μ̂− μ0 = op
(
T δ0−1/2+ε

)
. (29)

The asymptotic distribution results in Theorem 2 are divided into two main
cases. In Theorem 2(i) we first present the result for the strong deterministic
trend case, γ0 − 1/2 > δ0. Here, the deterministic signal is sufficiently strong,
relative to that of the stochastic component, that we can prove joint asymptotic
normality for the estimators ϑ̂ and β̂. Within this case, we distinguish between
δ0 < 1/2, where we can also include μ̂, and δ0 > 1/2 where we cannot include μ̂.

Whether μ̂ can be included or not, ϑ̂ and β̂ retain identical convergence rates.
In Theorem 2(ii) we present the result for the weak deterministic trend case,

γ0 − 1/2 < δ0. In this case, we can obtain the asymptotic distribution for the
estimator of the stochastic component τ 0 only, but when δ0 < 1/2 we also prove
consistency of μ̂ with rate T 1/2−δ0+ε for any arbitrarily small ε > 0. However,
the estimator μ̂ is a complicated function of γ̂, whose behavior is unknown in
this case and indeed is not even consistent; see the discussion after Theorem 1.
Thus, deriving an asymptotic distribution result for μ̂ in case (ii) with δ0 < 1/2
does not seem to be possible.

Theorem 2(ii) shows that, even in cases where the deterministic signal is not
strong enough for consistent estimation of γ0 and β0 (and possibly also μ0), the
estimator of the parameter characterizing the stochastic component, τ̂ , has ex-
actly the same limiting properties as in the strong deterministic trend case in
Theorem 2(i.a). That is, the asymptotic distribution result for τ̂ in Theorem 2
is unaffected by the relative strengths of the stochastic and deterministic com-
ponents. In particular, even when γ0, β0, and μ0 cannot be consistently esti-
mated, the asymptotic distribution of τ̂ is unaffected by their presence.

It is noteworthy that the asymptotic distribution of τ̂ is unaffected by the
presence of the deterministic component in (12), and τ̂ has the same asymptotic
distribution as in, e.g., Theorem 2.2 of Hualde and Robinson (2011). Specifi-
cally, the variance A−1 in the asymptotic distribution of τ̂ in (26), (27), and
(28) is equal to the inverse Fisher information under Gaussianity; see Dahlhaus
(1989). Because the estimate τ̂ is also asymptotically independent of the re-
maining parameter estimates, it therefore follows that τ̂ is asymptotically effi-
cient under the additional assumption of Gaussianity, and this occurs regardless
of the relative strength of the deterministic and stochastic components.
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More generally, Theorem 2 makes it possible to conduct inference on the
model parameters, with the caveat that the joint asymptotic distribution of
ϑ̂, μ̂, and β̂ given in (26) as well as that of ϑ̂ and β̂ given in (27) are both
singular, which makes testing of joint hypotheses on ϑ0 and β0 impossible.
However, separate inference can straightforwardly be conducted on ϑ0 and β0.
For example, it is straightforward given (26) or (27) to construct confidence
intervals and/or to test hypotheses such as γ0 = 2 (deterministic trend in xt is
linear) or δ0 = 1 (stochastic component is of the random walk-type).

To conduct inference on the model parameters using Theorem 2 a consis-
tent estimate of σ2

0 is needed. To this end, consistency of the estimator σ̂2 =

LT (ϑ̂, φ̂), see (16), is straightforwardly obtained using the methods in the proofs
of Theorems 1 and 2.

Specifically, in view of the above comments, inference on the parameter τ 0

characterizing the stochastic component can be conducted by means of likeli-
hood ratio tests or Wald/t tests. The former do not require estimation of the
variance, whereas for the latter a consistent estimate of the variance of τ̂ can be
obtained by numerical evaluation of the Hessian matrix. Because the (marginal)
asymptotic distribution of τ̂ is the same across the different cases in Theo-
rem 2, and because the Hessian matrix is asymptotically block-diagonal in each
case, it is a straightforward consequence of Theorem 2 that such likelihood ra-
tio or Wald tests are asymptotically χ2-distributed and t-tests are asymptoti-
cally standard normally distributed, regardless of the case. Nonetheless, it may
sometimes be of interest to determine which of the cases in Theorem 2 is rel-
evant in a given situation. Of course there are many ways of doing so, and in
Section 4.2 we consider a stepwise testing procedure.

We notice from (26) and (27) in Theorem 2(i) that γ̂ is T γ0−δ0−1/2-consistent

whereas β̂ is only T γ0−δ0−1/2/ log T -consistent. In fact, it can be shown that
if γ0 were known, then the least squares regression estimator of β0 would also
be T γ0−δ0−1/2-consistent. Thus, there is a (small) rate-of-convergence loss from
having to estimate the power law parameter γ0.

Finally, we also notice from (26) that, in the case where they are both con-

sistently estimable, β̂ and μ̂ are asymptotically independent. This seemingly
contradicts Robinson (2012), who considers the weakly dependent case (δ0 = 0
known) with unknown power law parameters. In contrast, we consider the power
law parameter corresponding to β to be unknown (γ0), while the power law pa-
rameter corresponding to μ is known (and equal to one). This fundamental differ-
ence ensures that, compared with a situation in which the power law parameter
corresponding to μ were unknown, μ̂ converges at a rate log T faster, and this in
turn guarantees asymptotic independence from the coefficient estimate β̂. The
technical justification for this asymptotic independence result is given in (138).
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4. Monte Carlo simulations

4.1. Parameter estimation

We investigate the finite-sample performance of our estimators of γ0 and δ0 by
means of a simple Monte Carlo experiment. We generate the observable series
xt, t = 1, ..., T , from (12) with ut = εt being an independent N(0, 1) sequence
and T = 64, 128, 256. We fix μ0 = 1 (results are virtually unaffected by the
value of μ0, so there is no loss of generality here) and consider δ0 = 0, 1, 2,
β0 = −5, 1, 10, and 14 different values for γ0 given by γ0−δ0 = 1.2, 1.1, . . . , such
that γ0 �= 1. Based on (12) and (13), it is tempting to think that results should
be invariant to δ0 as long as γ0 − δ0 is kept fixed, but that is not the case. In
fact, for fixed γ0−δ0, results depend on δ0 in a subtle way, because whenever γ0
is close to 1, results are worse due to near-multicollinearity of πt(1) and πt(γ0);

see (12). We computed δ̂, γ̂ using the optimizing intervals δ ∈ [δ0−5, δ0+5] and
γ ∈ [−4, 0.99]∪ [1.01, 6], and we report Monte Carlo bias and standard deviation
(SD) across 10,000 replications.

Results for Monte Carlo bias of δ̂ are presented in Table 1. Here, the perfor-
mance of δ̂ reflects the asymptotic theory in Theorems 1 and 2. First, for all
(δ0, γ0, β0, T ) combinations the bias is negative and it clearly decreases in abso-
lute value as T increases, even for the boundary case γ0−δ0 = 1/2, which is not
covered by our theory. Second, when the deterministic signal gets stronger (so
γ0 − δ0 is higher) results are slightly worse. Third, for fixed γ0 − δ0, results are
better for larger δ0 because then γ0 is further away from 1, so that the asymp-
totic multicollinearity problem is less noticeable. Finally, the results in this ta-
ble are basically unaffected by the value of β0.

Monte Carlo SD results for δ̂ are given in Table 2. These again reflect the
asymptotic theory and complement nicely the results in Table 1. As expected,
the SD results improve as T increases and are largely unaffected by the values
of γ0, δ0, and β0.

Next, results for Monte Carlo bias of γ̂ are presented in Table 3. As expected
from the asymptotic theory in Theorems 1 and 2, the behaviour of γ̂ is qualita-
tively different from that of δ̂. When γ0 − δ0 ≤ 1/2, the bias is generally large
(in absolute value) and does not decrease as T increases. This is, to some ex-
tent, mitigated for β0 = −5 and β0 = 10, where the coefficient on the deter-
ministic trend is so large that the theoretically dominant stochastic component
appears to be hidden in finite samples. On the other hand, when γ0 − δ0 > 1/2
the bias is generally very small and decreases as γ0 − δ0 increases, reflecting the
fast convergence rates in those cases implied by Theorem 2. This effect is weaker
when δ0 = 0, where γ0 − δ0 > 1/2 implies that γ0 is relatively close to 1, and
the asymptotic multicollinearity clearly worsens the bias of the γ̂ estimates.

The Monte Carlo SD results for γ̂ are presented in Table 4. Again, these
results are clearly in line with the predictions from asymptotic theory, and are
qualitatively different from the SD results for δ̂ in Table 2. For γ0 − δ0 ≤ 1/2,
the SD is large and does not seem to decrease for larger values of T . The latter
is seen regardless of the value of β0. On the other hand, for γ0 − δ0 > 1/2,
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Table 1

Monte Carlo bias of δ̂

β0 = −5 β0 = 1 β0 = 10

γ0 − δ0\T 64 128 256 64 128 256 64 128 256

Panel A: δ0 = 0

1.2 −0.159 −0.076 −0.039 −0.149 −0.076 −0.039 −0.160 −0.076 −0.039
1.1 −0.150 −0.073 −0.038 −0.129 −0.066 −0.035 −0.154 −0.074 −0.038
0.9 −0.151 −0.071 −0.037 −0.152 −0.073 −0.031 −0.151 −0.070 −0.036
0.8 −0.143 −0.068 −0.035 −0.147 −0.072 −0.037 −0.144 −0.068 −0.035
0.7 −0.143 −0.066 −0.025 −0.145 −0.070 −0.036 −0.138 −0.065 −0.029
0.6 −0.134 −0.063 −0.032 −0.142 −0.069 −0.035 −0.132 −0.063 −0.032

0.5 −0.128 −0.060 −0.031 −0.140 −0.068 −0.035 −0.127 −0.060 −0.031

0.4 −0.122 −0.057 −0.030 −0.138 −0.067 −0.034 −0.123 −0.057 −0.029
0.3 −0.116 −0.054 −0.028 −0.136 −0.066 −0.034 −0.115 −0.055 −0.028
0.2 −0.110 −0.052 −0.026 −0.134 −0.065 −0.034 −0.110 −0.052 −0.026
0.1 −0.104 −0.049 −0.025 −0.132 −0.064 −0.033 −0.104 −0.049 −0.024
0.0 −0.098 −0.046 −0.024 −0.131 −0.063 −0.033 −0.098 −0.046 −0.023

−0.1 −0.093 −0.044 −0.023 −0.129 −0.062 −0.032 −0.092 −0.043 −0.022
−0.2 −0.087 −0.042 −0.022 −0.128 −0.063 −0.032 −0.087 −0.041 −0.021

Panel B: δ0 = 1

1.2 −0.129 −0.061 −0.032 −0.128 −0.062 −0.031 −0.130 −0.061 −0.031
1.1 −0.127 −0.060 −0.031 −0.125 −0.061 −0.031 −0.127 −0.060 −0.031
1.0 −0.124 −0.059 −0.030 −0.122 −0.060 −0.031 −0.125 −0.059 −0.030
0.9 −0.120 −0.057 −0.030 −0.116 −0.058 −0.029 −0.122 −0.057 −0.029
0.8 −0.117 −0.055 −0.029 −0.110 −0.055 −0.028 −0.118 −0.056 −0.028
0.7 −0.113 −0.053 −0.027 −0.101 −0.050 −0.026 −0.114 −0.053 −0.027
0.6 −0.108 −0.051 −0.026 −0.092 −0.046 −0.023 −0.110 −0.051 −0.026

0.5 −0.088 −0.042 −0.022 −0.098 −0.047 −0.021 −0.049 −0.036 −0.022

0.4 −0.087 −0.038 −0.018 −0.097 −0.047 −0.019 −0.055 −0.028 −0.015
0.3 −0.085 −0.039 −0.020 −0.075 −0.036 −0.018 −0.093 −0.043 −0.021
0.2 −0.074 −0.035 −0.017 −0.072 −0.034 −0.017 −0.083 −0.038 −0.019
0.1 −0.068 −0.032 −0.016 −0.068 −0.032 −0.016 −0.072 −0.033 −0.016

−0.1 −0.095 −0.046 −0.023 −0.097 −0.047 −0.025 −0.091 −0.042 −0.021
−0.2 −0.089 −0.042 −0.022 −0.096 −0.047 −0.024 −0.076 −0.034 −0.017

Panel C: δ0 = 2

1.2 −0.114 −0.056 −0.030 −0.115 −0.057 −0.030 −0.115 −0.056 −0.030
1.1 −0.111 −0.056 −0.029 −0.112 −0.056 −0.029 −0.112 −0.055 −0.029
1.0 −0.108 −0.054 −0.028 −0.109 −0.054 −0.028 −0.109 −0.053 −0.028
0.9 −0.104 −0.052 −0.027 −0.103 −0.052 −0.027 −0.105 −0.051 −0.027
0.8 −0.099 −0.049 −0.026 −0.095 −0.049 −0.026 −0.100 −0.049 −0.026
0.7 −0.097 −0.046 −0.024 −0.087 −0.044 −0.023 −0.095 −0.047 −0.024
0.6 −0.091 −0.043 −0.023 −0.080 −0.039 −0.020 −0.089 −0.044 −0.023

0.5 −0.085 −0.040 −0.021 −0.076 −0.037 −0.018 −0.083 −0.041 −0.021

0.4 −0.079 −0.032 −0.015 −0.074 −0.036 −0.016 −0.078 −0.037 −0.019
0.3 −0.069 −0.033 −0.017 −0.060 −0.029 −0.014 −0.063 −0.034 −0.017
0.2 −0.063 −0.029 −0.015 −0.054 −0.026 −0.013 −0.066 −0.032 −0.015
0.1 −0.056 −0.025 −0.013 −0.049 −0.023 −0.012 −0.058 −0.028 −0.013
0.0 −0.050 −0.022 −0.011 −0.044 −0.021 −0.011 −0.051 −0.025 −0.011

−0.1 −0.044 −0.020 −0.010 −0.040 −0.019 −0.010 −0.045 −0.022 −0.010

Note: Based on 10,000 Monte Carlo replications.
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Table 2

Monte Carlo standard deviation of δ̂

β0 = −5 β0 = 1 β0 = 10

γ0 − δ0\T 64 128 256 64 128 256 64 128 256

Panel A: δ0 = 0

1.2 0.158 0.092 0.059 0.162 0.092 0.059 0.158 0.092 0.058
1.1 0.157 0.091 0.059 0.160 0.094 0.060 0.158 0.092 0.058
0.9 0.157 0.091 0.059 0.153 0.091 0.059 0.156 0.092 0.058
0.8 0.157 0.091 0.058 0.156 0.091 0.059 0.158 0.091 0.058
0.7 0.157 0.090 0.059 0.156 0.092 0.059 0.155 0.090 0.061
0.6 0.154 0.089 0.058 0.156 0.092 0.059 0.154 0.090 0.058

0.5 0.153 0.089 0.058 0.156 0.092 0.059 0.153 0.090 0.057

0.4 0.152 0.088 0.058 0.156 0.092 0.059 0.150 0.090 0.057
0.3 0.150 0.088 0.057 0.156 0.091 0.059 0.150 0.088 0.057
0.2 0.149 0.087 0.057 0.156 0.092 0.059 0.149 0.088 0.056
0.1 0.148 0.087 0.056 0.156 0.092 0.059 0.147 0.087 0.056
0.0 0.146 0.086 0.056 0.157 0.092 0.059 0.145 0.086 0.056

−0.1 0.144 0.086 0.056 0.157 0.092 0.059 0.143 0.085 0.055
−0.2 0.142 0.085 0.055 0.157 0.092 0.059 0.140 0.085 0.055

Panel B: δ0 = 1

1.2 0.149 0.089 0.058 0.151 0.088 0.057 0.150 0.089 0.057
1.1 0.149 0.088 0.058 0.151 0.088 0.057 0.150 0.089 0.057
1.0 0.149 0.088 0.058 0.153 0.088 0.056 0.149 0.089 0.057
0.9 0.150 0.089 0.057 0.156 0.089 0.057 0.149 0.089 0.057
0.8 0.147 0.088 0.057 0.159 0.091 0.057 0.148 0.089 0.057
0.7 0.147 0.088 0.057 0.160 0.092 0.058 0.147 0.089 0.057
0.6 0.147 0.088 0.057 0.158 0.091 0.059 0.147 0.088 0.057

0.5 0.175 0.099 0.061 0.157 0.091 0.058 0.215 0.113 0.061

0.4 0.157 0.093 0.060 0.149 0.088 0.058 0.183 0.107 0.066
0.3 0.149 0.089 0.057 0.153 0.089 0.057 0.146 0.088 0.056
0.2 0.149 0.088 0.057 0.153 0.089 0.057 0.146 0.088 0.056
0.1 0.150 0.089 0.057 0.151 0.088 0.057 0.147 0.089 0.056

−0.1 0.146 0.088 0.057 0.149 0.088 0.057 0.147 0.088 0.057
−0.2 0.145 0.088 0.057 0.149 0.088 0.057 0.143 0.086 0.055

Panel C: δ0 = 2

1.2 0.142 0.088 0.056 0.144 0.088 0.056 0.144 0.088 0.057
1.1 0.143 0.088 0.057 0.145 0.088 0.056 0.145 0.088 0.056
1.0 0.142 0.088 0.057 0.147 0.088 0.057 0.145 0.088 0.056
0.9 0.142 0.088 0.057 0.149 0.089 0.057 0.145 0.088 0.056
0.8 0.142 0.087 0.056 0.152 0.089 0.057 0.145 0.087 0.057
0.7 0.144 0.087 0.056 0.153 0.092 0.058 0.144 0.086 0.056
0.6 0.143 0.087 0.056 0.150 0.092 0.058 0.143 0.085 0.056

0.5 0.142 0.086 0.056 0.146 0.090 0.057 0.141 0.085 0.056

0.4 0.140 0.092 0.060 0.144 0.089 0.057 0.140 0.084 0.056
0.3 0.138 0.084 0.055 0.146 0.088 0.056 0.152 0.084 0.055
0.2 0.138 0.083 0.055 0.141 0.087 0.056 0.137 0.083 0.055
0.1 0.135 0.082 0.054 0.139 0.085 0.055 0.134 0.082 0.054
0.0 0.133 0.081 0.054 0.139 0.084 0.055 0.131 0.081 0.054

−0.1 0.131 0.080 0.053 0.133 0.083 0.054 0.128 0.080 0.053

Note: Based on 10,000 Monte Carlo replications.
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Table 3

Monte Carlo bias of γ̂

β0 = −5 β0 = 1 β0 = 10

γ0 − δ0\T 64 128 256 64 128 256 64 128 256

Panel A: δ0 = 0

1.2 0.007 0.003 0.001 0.237 0.125 0.039 0.002 0.001 0.000
1.1 0.083 0.033 0.011 0.065 0.104 0.204 0.020 0.005 0.003
0.9 0.239 0.176 0.116 0.194 0.011 −0.065 0.075 0.053 0.042
0.8 0.069 0.026 0.011 0.280 0.078 0.082 0.010 0.006 0.002
0.7 0.031 0.013 0.087 0.340 0.161 0.138 0.005 0.003 0.016
0.6 0.022 0.008 0.005 0.398 0.211 0.157 0.003 0.002 0.001

0.5 0.016 0.005 0.002 0.454 0.311 0.178 0.002 0.001 0.000

0.4 0.011 0.001 0.001 0.533 0.358 0.225 0.002 0.001 0.000
0.3 0.005 −0.003 −0.004 0.608 0.409 0.300 0.000 0.000 −0.002
0.2 0.001 −0.007 −0.009 0.652 0.473 0.360 −0.001 −0.001 −0.003
0.1 −0.003 −0.009 −0.013 0.742 0.560 0.460 −0.002 −0.002 −0.004
0.0 −0.006 −0.011 −0.015 0.833 0.628 0.560 −0.003 −0.003 −0.005

−0.1 −0.008 −0.011 −0.014 0.904 0.731 0.630 −0.003 −0.003 −0.005
−0.2 −0.009 −0.012 −0.013 0.941 0.787 0.689 −0.004 −0.003 −0.005

Panel B: δ0 = 1

1.2 0.000 0.000 0.000 0.005 0.001 0.001 0.000 0.000 0.000
1.1 0.000 0.000 0.000 0.006 0.003 0.001 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.001 0.006 0.005 0.000 0.000 0.000
0.9 0.000 0.000 0.000 −0.023 0.005 0.007 0.000 0.000 0.000
0.8 −0.001 0.000 0.001 −0.067 0.011 0.019 0.000 0.000 0.000
0.7 −0.014 0.001 0.002 −0.171 −0.079 0.008 −0.001 0.000 0.001
0.6 −0.051 −0.009 0.001 −0.263 −0.268 −0.196 −0.107 −0.012 0.001

0.5 −0.132 −0.056 −0.029 −0.294 −0.354 −0.370 −0.145 −0.041 −0.009

0.4 −0.213 −0.187 −0.168 −0.229 −0.334 −0.373 −0.185 −0.109 −0.060
0.3 −0.255 −0.276 −0.303 −0.134 −0.239 −0.316 −0.249 −0.201 −0.181
0.2 −0.136 −0.186 −0.272 −0.030 −0.139 −0.190 −0.328 −0.291 −0.283
0.1 0.031 −0.028 −0.113 0.094 −0.038 −0.099 −0.143 −0.167 −0.194

−0.1 0.196 0.146 0.036 0.280 0.123 0.119 0.067 −0.028 −0.027
−0.2 0.173 0.130 0.040 0.361 0.221 0.203 −0.097 −0.143 −0.109

Panel C: δ0 = 2

1.2 0.000 0.000 0.000 0.002 0.002 0.001 0.000 0.000 0.000
1.1 0.001 0.000 0.000 0.002 0.004 0.001 0.000 0.000 0.000
1.0 0.001 0.000 0.000 −0.005 0.008 0.003 0.000 0.000 0.000
0.9 0.001 0.001 0.000 −0.032 0.009 0.008 0.000 0.000 0.000
0.8 0.002 0.001 0.000 −0.107 −0.015 0.010 0.001 0.000 0.000
0.7 0.002 0.001 0.001 −0.288 −0.138 −0.049 0.001 0.000 0.000
0.6 0.002 0.001 0.001 −0.510 −0.438 −0.324 0.001 0.000 0.000

0.5 0.000 0.000 0.000 −0.641 −0.692 −0.643 0.001 0.000 0.000

0.4 −0.006 −0.043 −0.054 −0.728 −0.802 −0.794 0.000 −0.001 −0.002
0.3 −0.024 −0.021 −0.019 −0.704 −0.811 −0.833 −0.034 −0.002 −0.002
0.2 −0.048 −0.046 −0.046 −0.667 −0.760 −0.792 −0.004 −0.006 −0.004
0.1 −0.087 −0.086 −0.080 −0.594 −0.695 −0.709 −0.007 −0.011 −0.008
0.0 −0.133 −0.141 −0.137 −0.506 −0.605 −0.614 −0.011 −0.016 −0.013

−0.1 −0.181 −0.195 −0.199 −0.403 −0.519 −0.528 −0.017 −0.022 −0.018

Note: Based on 10,000 Monte Carlo replications.



Estimation of fractional time series with generalized trend 2903

Table 4

Monte Carlo standard deviation of γ̂

β0 = −5 β0 = 1 β0 = 10

γ0 − δ0\T 64 128 256 64 128 256 64 128 256

Panel A: δ0 = 0

1.2 0.121 0.069 0.041 1.528 0.640 0.235 0.060 0.034 0.020
1.1 0.458 0.183 0.107 2.765 2.403 1.789 0.147 0.087 0.055
0.9 1.399 0.793 0.373 2.989 2.927 2.798 0.281 0.145 0.101
0.8 0.463 0.242 0.138 2.852 2.732 2.601 0.130 0.087 0.063
0.7 0.258 0.168 0.184 2.793 2.696 2.602 0.099 0.070 0.084
0.6 0.228 0.146 0.117 2.778 2.713 2.689 0.087 0.065 0.051

0.5 0.225 0.147 0.109 2.795 2.788 2.769 0.082 0.064 0.052

0.4 0.209 0.156 0.129 2.817 2.821 2.822 0.080 0.065 0.055
0.3 0.218 0.173 0.155 2.837 2.818 2.859 0.081 0.069 0.060
0.2 0.220 0.189 0.163 2.847 2.855 2.853 0.084 0.074 0.068
0.1 0.225 0.213 0.185 2.839 2.848 2.848 0.089 0.081 0.076
0.0 0.251 0.242 0.209 2.837 2.821 2.826 0.094 0.088 0.085

−0.1 0.270 0.262 0.227 2.832 2.807 2.802 0.100 0.095 0.093
−0.2 0.277 0.261 0.249 2.816 2.788 2.777 0.105 0.101 0.100

Panel B: δ0 = 1

1.2 0.018 0.011 0.006 0.096 0.054 0.032 0.009 0.005 0.003
1.1 0.023 0.015 0.009 0.179 0.075 0.047 0.012 0.007 0.005
1.0 0.030 0.020 0.013 0.317 0.107 0.069 0.015 0.010 0.007
0.9 0.039 0.027 0.019 0.563 0.254 0.101 0.020 0.014 0.010
0.8 0.107 0.038 0.028 1.145 0.676 0.327 0.026 0.018 0.014
0.7 0.294 0.055 0.040 1.826 1.514 1.140 0.070 0.064 0.020
0.6 0.552 0.254 0.115 2.362 2.310 2.161 0.555 0.183 0.030

0.5 0.925 0.682 0.515 2.757 2.756 2.738 0.674 0.360 0.182

0.3 2.025 2.020 2.035 3.037 3.052 3.053 1.164 1.038 0.976
0.2 2.602 2.625 2.689 3.083 3.097 3.087 1.770 1.753 1.788
0.1 2.984 2.993 3.042 3.097 3.111 3.108 2.672 2.695 2.721

−0.1 3.002 3.017 3.050 3.098 3.112 3.118 2.725 2.753 2.745
−0.2 2.756 2.771 2.803 3.085 3.106 3.103 1.950 1.946 1.932

Panel C: δ0 = 2

1.2 0.017 0.010 0.006 0.123 0.052 0.032 0.008 0.005 0.003
1.1 0.021 0.014 0.009 0.231 0.070 0.046 0.011 0.007 0.005
1.0 0.027 0.019 0.013 0.363 0.097 0.065 0.013 0.009 0.006
0.9 0.032 0.024 0.017 0.596 0.241 0.093 0.016 0.012 0.009
0.8 0.039 0.030 0.023 1.037 0.568 0.237 0.019 0.015 0.012
0.7 0.048 0.037 0.030 1.607 1.226 0.889 0.023 0.019 0.015
0.6 0.059 0.047 0.039 2.167 2.033 1.877 0.028 0.023 0.019

0.5 0.092 0.077 0.055 2.568 2.577 2.546 0.035 0.030 0.026

0.4 0.149 0.325 0.329 2.804 2.866 2.866 0.045 0.040 0.062
0.3 0.247 0.226 0.169 2.916 2.981 3.002 0.216 0.054 0.051
0.2 0.376 0.350 0.303 2.984 3.028 3.062 0.083 0.076 0.073
0.1 0.527 0.507 0.451 3.025 3.063 3.077 0.111 0.105 0.102
0.0 0.675 0.695 0.643 3.053 3.072 3.093 0.145 0.140 0.137

−0.1 0.806 0.842 0.822 3.060 3.084 3.096 0.186 0.185 0.181

Note: Based on 10,000 Monte Carlo replications.



2904 J. Hualde and M. Ø. Nielsen

the SD clearly decreases as either T or γ0 − δ0 increases, although the results
are relatively poor for β0 = 1, δ0 = 0, due to the asymptotic multicollinearity
problem. As was the case with the bias in Table 3, the SD is clearly smaller
for β0 = −5 or β0 = 10 compared with β0 = 1, reflecting the fact that the
deterministic trend is easier to detect when its coefficient is larger in magnitude.

4.2. Testing procedure

Although parameter estimation and inference is straightforward using the results
in Theorem 2, and for the parameters of the stochastic component it is not
necessary to know which of the cases covered by Theorem 2 applies in any given
situation. Nonetheless, it may sometimes be of interest to discern which case
applies and, additionally, given that γ0 = 1 leads to an identification problem,
check whether the data support this possibility. Clearly, there are many possible
ways of doing so, and we propose here a stepwise testing procedure. We do
not pursue a formal analysis, which would involve very lengthy repetitions of
techniques already developed in the proofs of Theorems 1 and 2, but instead
illustrate the finite sample behavior by means of a small Monte Carlo simulation
experiment. Our proposed testing procedure is as follows.

Step 1. Test H1
0 : δ0 = 1/2 against H1

1 : δ0 < 1/2 in model (12). Rejection
of H1

0 favors the possibility that μ0 can be consistently estimated. This test

is simple to implement because we conjecture that our proposed estimator δ̂
derived from (19) has property (28) even in the case where γ0 = 1. Assuming
this conjecture is true, testing H1

0 by means of a t-test is immediate. If H1
0 is

rejected, we proceed to Step 2, and if it is not then we proceed to Step 3.
Step 2. Test H2

0 : β0 = 0 against H2
1 : β0 �= 0 in model (12). The result from

Step 1 suggests that μ0 can be consistently estimated, so, noting (12), it is crucial
to determine whether γ0 = 1 or γ0 �= 1. Nicely, the null γ0 = 1 is equivalent
to β0 = 0 because both conditions lead to models that are observationally
equivalent. Testing H2

0 : β0 = 0 against H2
1 : β0 �= 0 is possible although γ0 is

not identified under the null. This is a classical problem in the hypothesis testing
literature and several solutions have been provided (e.g. Hansen, 1996). We
follow an LM approach. Let (τ̃ , μ̃) denote the restricted estimator that imposes
H2

0 , and let γF ∈ [�1, 1−κ]∪[1+κ,�2] be a fixed number. Define the LM statistic

LM(γF ) =
T

2σ̃2

∂LT (τ̃ , γF , μ̃, 0)

∂(τ ′, μ, β)′

(
∂2LT (τ̃ , γF , μ̃, 0)

∂(τ ′, μ, β)∂(τ ′, μ, β)′

)−1
∂LT (τ̃ , γF , μ̃, 0)

∂(τ ′, μ, β)
,

where σ̃2 = LT (τ̃ , γF , μ̃, 0). We conjecture that, as T → ∞,

LM(γF ) →d χ2
1 under H2

0 . (30)

Another possibility is to consider the supremum over γ instead of a fixed γF ,
which would imply a nonstandard null limit distribution (e.g. Hansen, 1996).
Our small Monte Carlo experiment will rely on (30) for a fixed γF . Additional,
unreported Monte Carlo simulations suggest that results are relatively invariant
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to the choice of γF and also that LM(γF ) only has power if γ0− 1/2 > δ0. This
makes sense because if if γ0 − 1/2 < δ0 then the second term on the right-hand
side of (12) is drowned by the stochastic component so it would be irrelevant
whether β0 = 0 or β0 �= 0. This is useful because rejection using LM(γF ) then
favors the possibility that the generalized trend can be estimated consistently,
whereas non-rejection suggests that the generalized trend is irrelevant (either
because β0 = 0 or because the trend is weak).

Step 3. Test H3
0 : γ0 − 1/2 = δ0 against H3

1 : γ0 − 1/2 > δ0 in model (12)
under the restriction that μ = 0. Because Step 1 suggests that μ0 cannot be
consistently estimated, we omit the drift from the analysis and in this step we
check whether the generalized trend is strong. The test can be implemented as
described in Hualde and Nielsen (2020).

Step 4. The outcomes of the tests in Steps 2 and 3 have the following impli-
cations:

M1: IfH2
0 is rejected then all model parameters can be estimated by (19) and φ̂.

M2: If H2
0 is not rejected then we either employ (19) and φ̂ (ignoring the

estimates of β0 and γ0), or we may use a simplified model that imposes
β = 0.

M3: If H3
0 is rejected then β0, γ0, and τ 0 can be consistently estimated. We

either employ (19) and φ̂ (ignoring the estimate of μ0), or we may use a
simplified model that imposes μ = 0.

M4: If H3
0 is not rejected then only τ 0 can be consistently estimated. We either

employ (19) and φ̂ (ignoring the estimates of μ0, β0, and γ0), or we may use
simplified versions of it in which we remove one or both deterministic com-
ponents (and possibly ignoring estimates of the deterministic structure).

Summarizing, the outcome of the test procedure is one of M1,. . . ,M4. As
usual in model specification, we note that wrongly removing a component from
the model renders all remaining estimates inconsistent. In the present context,
Theorem 2 shows that retaining all deterministic components has no adverse
effect asymptotically, in terms of efficiency or otherwise, on the estimation of
the parameters associated with the stochastic component. This suggests that
a conservative approach of always estimating the full model (12), including all
deterministic components, is appropriate in most circumstances, while being
careful in the interpretation of the parameters associated with the deterministic
components. Nonetheless, we consider next the finite-sample properties of the
above testing procedure.

Table 5 presents the proportion of cases (out of 10,000 replications) in which
the stepwise testing procedure selects the different situations characterized by
M1,. . . ,M4. As before, the observable series xt, t = 1, . . . , T , was generated from
(12) with ut = εt being an independent N(0, 1) sequence, and we present results
for T = 64, 256, μ0 = β0 = 1, δ0 = 0, 0.4, 0.6, 1, and 9 different values for
γ0 given by γ0 − δ0 = 1.6, 1.4, 1.2, . . . , 0.4, 0.0,−0.4. Numbers reported in bold
correspond to proportions of correct choices. All tests were implemented with
nominal size 0.05 and we fix γF = 2 in Step 2.
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Table 5

Monte Carlo selection frequencies of testing procedure

δ0 = 0 δ0 = 0.4 δ0 = 0.6 δ0 = 1.0

γ0 − δ0 Model \T 64 256 64 256 64 256 64 256

1.6 M1 0.999 1.000 0.468 0.526 0.090 0.002 0.000 0.000
1.6 M2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.6 M3 0.001 0.000 0.503 0.474 0.862 0.998 0.942 1.000
1.6 M4 0.000 0.000 0.029 0.000 0.048 0.000 0.058 0.000

1.4 M1 0.998 1.000 0.454 0.528 0.091 0.001 0.000 0.000
1.4 M2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.4 M3 0.001 0.000 0.480 0.472 0.804 0.999 0.863 1.000
1.4 M4 0.001 0.000 0.066 0.000 0.105 0.000 0.137 0.000

1.2 M1 0.737 1.000 0.439 0.519 0.085 0.001 0.000 0.000
1.2 M2 0.256 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.2 M3 0.003 0.000 0.418 0.481 0.695 0.999 0.702 1.000
1.2 M4 0.004 0.000 0.143 0.000 0.220 0.000 0.298 0.000

1.0 M1 0.104 0.077 0.409 0.508 0.080 0.001 0.000 0.000
1.0 M2 0.893 0.923 0.002 0.000 0.000 0.000 0.000 0.000
1.0 M3 0.000 0.000 0.283 0.486 0.457 0.984 0.422 0.973
1.0 M4 0.003 0.000 0.306 0.006 0.463 0.015 0.578 0.027

0.8 M1 0.180 0.221 0.171 0.296 0.067 0.001 0.000 0.000
0.8 M2 0.816 0.779 0.197 0.182 0.005 0.000 0.000 0.000
0.8 M3 0.000 0.000 0.105 0.287 0.177 0.534 0.151 0.428
0.8 M4 0.004 0.000 0.527 0.235 0.751 0.465 0.849 0.572

0.6 M1 0.183 0.161 0.076 0.055 0.033 0.001 0.000 0.000
0.6 M2 0.813 0.839 0.274 0.406 0.028 0.000 0.000 0.000
0.6 M3 0.000 0.000 0.028 0.036 0.045 0.054 0.039 0.029
0.6 M4 0.004 0.000 0.622 0.503 0.894 0.945 0.961 0.971

0.4 M1 0.147 0.100 0.086 0.066 0.026 0.000 0.000 0.000
0.4 M2 0.850 0.900 0.273 0.392 0.039 0.001 0.000 0.000
0.4 M3 0.000 0.000 0.010 0.008 0.015 0.025 0.030 0.056
0.4 M4 0.003 0.000 0.631 0.534 0.920 0.974 0.970 0.944

0.0 M1 0.107 0.076 0.081 0.059 0.029 0.000 0.000 0.000
0.0 M2 0.888 0.924 0.271 0.397 0.033 0.001 0.000 0.000
0.0 M3 0.000 0.000 0.002 0.003 0.023 0.051 0.050 0.098
0.0 M4 0.005 0.000 0.646 0.541 0.915 0.948 0.950 0.902

−0.4 M1 0.110 0.077 0.074 0.054 0.029 0.000 0.000 0.000
−0.4 M2 0.887 0.923 0.261 0.400 0.029 0.001 0.000 0.000
−0.4 M3 0.000 0.000 0.002 0.002 0.017 0.043 0.038 0.067
−0.4 M4 0.003 0.000 0.663 0.544 0.925 0.956 0.962 0.933

Note: Based on 10,000 Monte Carlo replications. Bold entries denote proportions of correct
selections.

Overall, the behaviour of the testing procedure seems satisfactory. The results
generally improve as T increases and correspond to what theory predicts. As
expected, the correct identification of a strong trend (when γ0 − δ0 > 1/2) is
easier for larger values of γ0 − δ0 and worsens substantially when γ0 − δ0 ≤ 1.
This has to do with the relatively low power of Hualde and Nielsen’s (2020) one-
sided LM testing procedure for H3

0 against H3
1 when γ0− δ0 is close to 1/2, and
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our results here are in line with theirs. Additionally, the test of H1
0 against H1

1

shows low power when δ0 = 0.4, which is certainly an adverse situation, though
results improve as T increases.

5. Concluding remarks

We have proposed a parametric time series model that includes both a frac-
tional stochastic component as well as a fractional deterministic component. The
stochastic component is a fractionally integrated process driven by a memory
parameter, δ, combined with a linear short-memory process. The deterministic
component consists of the sum of a constant term and a flexible deterministic
trend. The latter is fractional in the sense that it is defined using the same frac-
tional coefficients as the fractional integration operator in the stochastic compo-
nent, and similarly to the memory parameter δ, the deterministic trend is char-
acterized by a power law parameter γ. Both the memory and power law param-
eters are assumed to lie in sets which can be arbitrarily large. Thus, our model
may display many different behaviours, including various types of dependence
(antipersistency, weak dependence, long memory) and very flexible determinis-
tic trend functions.

Compared with our earlier work in Hualde and Nielsen (2020), there are three
main differences in this paper. First, in this paper we apply the fractional co-
efficients directly to model the deterministic component instead of the approx-
imation given by powers of t. As argued in the Introduction, the former are
much more natural in a fractional context. Second, as a consequence of using
the fractional coefficients to model the deterministic trend, we are able to re-
lax the assumption γ > 0 on the power law parameter required by Hualde and
Nielsen (2020). Instead, we allow the power law parameter to lie in any (arbi-
trarily large) compact interval. Third, we include an additional deterministic
term such that we have both a constant/level and a trend. This complicates
our analysis substantially, but clearly makes the model much more applicable
in practice and also has the potential to alleviate bias arising from non-zero ini-
tial conditions in the Type II context (Johansen and Nielsen, 2016).

Our asymptotic results depend crucially on the relative strengths of the
stochastic and deterministic components, as measured by the memory and power
law parameters. Specifically, when the deterministic signal is sufficiently strong,
that is if γ0−δ0 > 1/2 (δ0 < 1/2), the trend parameters γ0 and β0 (and level pa-
rameter μ0) can be consistently estimated and their estimators are asymptoti-
cally normal. When the deterministic signal is weak, the parameters correspond-
ing to the deterministic components (except μ0 if δ0 < 1/2) cannot be consis-
tently estimated. Remarkably, the asymptotic results for estimator correspond-
ing to the stochastic part of the model (i.e., τ̂ ) are identical to those achieved
in the simpler, purely stochastic, setting of Hualde and Robinson (2011), and
are unaffected by the presence of the deterministic component, whether the pa-
rameters of the latter can be consistently estimated or not.

There are several interesting issues which have not been addressed in the
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present paper, but which will the object of future research. First, a semipara-
metric approach which focuses on estimating γ0 and δ0 (and possibly μ0) with-
out making parametric assumptions about the short-memory structure of zt
seems possible. Second, the fractional process which characterizes our model is
Type II, and it would be of interest to determine whether our theory could also
be developed for a Type I fractional process.

6. Proofs of theorems

Throughout, ε will denote a generic arbitrarily small positive constant, and K
a generic arbitrarily large positive constant.

We note from the outset that many steps of the proofs are affected by the
asymptotic behaviour of

φ′
0ct−1(1− δ, γ0 − δ,ϕ) = μ0ct−1(1− δ,ϕ) + β0ct−1(γ0 − δ,ϕ), (31)

which, depending on the values of γ0 and μ0, is dominated by either the first or
the second term on the right hand side of (31). Recalling that γ0 ∈ [�1, 1−κ]∪
[1+κ,�2] and also that if γ0−1/2 > δ0 then β0 �= 0 (see Assumption A3), there
are two cases. When μ0 = 0 or μ0 �= 0, γ0 ≥ 1 + κ, the second term dominates,
whereas if μ0 �= 0, γ0 ≤ 1 − κ, the first term dominates. We will give the proof
for the former case. The proof for the latter case (μ0 �= 0, γ0 ≤ 1 − κ) is very
similar, just adapting many of the steps in the proof below and also some of
the lemmas to the case where the first term in (31) is the dominant one, which
mainly implies that “1” takes the role of “γ0” in many parts of the proof.

6.1. Proof of Theorem 1(i): the γ0 − 1/2 > δ0 case

Fix ε > 0 and let Mε = {ϑ ∈ Ξ : ‖τ − τ 0‖ < ε}, Mε = {ϑ ∈ Ξ : ‖τ − τ 0‖ ≥
ε}, Nε = {ϑ ∈ Ξ : |γ − γ0| < ε} and Nε = {ϑ ∈ Ξ : |γ − γ0| ≥ ε}. Then

Pr(||ϑ̂− ϑ0|| ≥ ε) → 0 as T → ∞ is implied by

Pr(ϑ̂ ∈ Mε) → 0 as T → ∞, (32)

Pr(ϑ̂ ∈ Nε ∩Mε) → 0 as T → ∞. (33)

Strictly, ε should be ε/
√
2 in (32) and (33), but since ε is arbitrary this is

irrelevant and we continue without the
√
2 factor. In (32) we prove consistency

of τ̂ , uniformly in γ. In (33) we prove consistency of γ̂, given that τ̂ is consistent
and hence that τ lies in a small neighborhood of τ 0.

Noting that from (13),

ρ(L;ϕ)xt(δ) = φ′
0ct−1(1− δ, γ0 − δ,ϕ) + ρ(L;ϕ)ut(δ − δ0), (34)

we decompose the objective function as RT (ϑ) = T−1
∑T

t=1(dt(ϑ) + st(ϑ))
2
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with

dt(ϑ) = φ′
0ct−1(1− δ, γ0 − δ,ϕ)− h′

t−1,T (1− δ, γ − δ,ϕ)

×
T∑

j=1

hj−1,T (1− δ, γ − δ,ϕ)φ′
0cj−1(1− δ, γ0 − δ,ϕ), (35)

st(ϑ) = ρ(L;ϕ)ut(δ − δ0)− h′
t−1,T (1− δ, γ − δ,ϕ)

×
T∑

j=1

hj−1,T (1− δ, γ − δ,ϕ)ρ(L;ϕ)uj(δ − δ0), (36)

defining also the coefficient

ht,T (d1, d2,ϕ) =

⎛⎝ T∑
j=1

cj−1(d1, d2,ϕ)c
′
j−1(d1, d2,ϕ)

⎞⎠−1/2

ct(d1, d2,ϕ), (37)

which clearly satisfies
∑T

t=1 ht−1,T (d1, d2,ϕ)h
′
t−1,T (d1, d2,ϕ) = I2.

As in Hualde and Nielsen (2020) the strategy of proof exploits the different
orders of magnitude of the stochastic term st(ϑ) and deterministic term dt(ϑ)
in RT (ϑ) in different parts of the parameter space. Dealing with (32) and (33)
allows us to consider separately the case where τ is “far” from τ 0 (that is, Mε)
and the case where γ is “far” from γ0 (that is, Nε). Two important technical
problems are that (a) when γ = γ0 then dt(ϑ) = 0 and (b) when δ is “far” from
δ0 then ut(δ − δ0) may change from stationary to nonstationary. Both these
features complicate greatly the treatment of (32) where γ = γ0 is admissible.
In (33) neither of these problems appear, and in that sense the proof of (33) is
simpler than that of (32). Hence, we first give the proof of (33).

6.1.1. Proof of (33)

Let RT (τ , γ) = RT (ϑ), dt(τ , γ) = dt(ϑ), and st(τ , γ) = st(ϑ) = s1t(τ )− s2t(ϑ)
with s1t(τ ) = ρ(L;ϕ)ut(δ − δ0) and

s2t(τ , γ) = s2t(ϑ) = h′
t−1,T (1−δ, γ−δ,ϕ)

T∑
j=1

hj−1,T (1−δ, γ−δ,ϕ)s1j(τ ); (38)

see (36). Thus, because
∑T

t=1 ht−1,T (1− δ, γ − δ,ϕ)h′
t−1,T (1− δ, γ − δ,ϕ) = I2

by (37),

T∑
t=1

s22t(ϑ) =

T∑
t=1

s1t(τ )s2t(ϑ) =

∥∥∥∥∥∥
T∑

j=1

s1j(τ )hj−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥∥
2

.

Because
∑T

t=1 dt(ϑ)ct−1(1− δ, γ − δ,ϕ) = 0, it holds that

T∑
t=1

dt(ϑ)st(ϑ) =

T∑
t=1

dt(ϑ)ρ(L;ϕ)ut(δ − δ0), (39)
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where ρ(L;ϕ)ut(δ − δ0) =
∑t−1

j=0 cj(δ0 − δ,ϕ)ut−j . Therefore,

RT (ϑ) =
1

T

T∑
t=1

d2t (ϑ) +
1

T

T∑
t=1

s21t(τ )

− 1

T

∥∥∥∥∥∥
T∑

j=1

s1j(τ )hj−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥∥
2

+
2

T

T∑
t=1

dt(ϑ)s1t(τ ). (40)

Clearly, in view of (32) and for T sufficiently large, ϑ̂ ∈ Nε∩Mε is equivalent
to infϑ∈Nε∩Mε

RT (ϑ) ≤ infϑ∈Nε∩Mε RT (ϑ). Because RT (ϑ) is continuous in τ

and Mε is compact, the infimum over Nε ∩ Mε is attained for τ and denoted
τ̂ , and it follows that infϑ∈Nε∩Mε

RT (ϑ) = infγ∈Nε
RT (τ̂ , γ). Furthermore, it

clearly holds that infϑ∈Nε∩Mε RT (ϑ) ≤ infγ∈Nε RT (τ̂ , γ) ≤ RT (τ̂ , γ0). Combin-
ing these inequalities we find that

Pr(ϑ̂ ∈ Nε ∩Mε) = Pr

(
inf

ϑ∈Nε∩Mε

RT (ϑ)− inf
ϑ∈Nε∩Mε

RT (ϑ) ≤ 0

)
≤ Pr

(
inf

γ∈Nε

RT (τ̂ , γ)−RT (τ̂ , γ0) ≤ 0

)
. (41)

Recalling that dt(τ , γ0) = 0, we obtain a useful cancellation of terms and find

RT (τ̂ , γ)−RT (τ̂ , γ0) =
1

T

T∑
t=1

d2t (τ̂ , γ) +
2

T

T∑
t=1

dt(τ̂ , γ)s1t(τ̂ )

− 1

T

∥∥∥∥∥∥
T∑

j=1

s1j(τ̂ )hj−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥∥
2

+
1

T

∥∥∥∥∥∥
T∑

j=1

s1j(τ̂ )hj−1,T (1− δ, γ0 − δ,ϕ)

∥∥∥∥∥∥
2

.

Thus, (33) holds if

lim
T→∞

inf
ϑ∈Nε∩Mε

1

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ) > ε, (42)

sup
ϑ∈Nε∩Mε

1

T 2(γ0−δ)−1

∣∣∣∣∣
T∑

t=1

dt(ϑ)s1t(τ )

∣∣∣∣∣ = op(1), (43)

sup
ϑ∈Nε∩Mε

1

T 2(γ0−δ)−1

∥∥∥∥∥∥
T∑

j=1

s1j(τ )hj−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥∥
2

= op(1), (44)

noting the change in the normalization compared with (41) (T 2(γ0−δ0)−1 instead
of T ), which is justified because the right-hand side of the inequality inside
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the probability in (41) is 0, so multiplying the left- and right-hand sides of the
inequality by a positive number does not alter the probability.

First, (42) follows from Lemma 2, noting that in Nε ∩ Mε, γ0 − δ ≥ γ0 −
δ0 − ε > 1/2 setting ε small enough. Next, letting both ε and θ be sufficiently
small and noting that in Nε ∩ Mε, δ0 − δ ≥ −ε, the left-hand side of (43)
is Op(T

1/2+δ0−γ0+5θ+ε) = op(1) by (150) of Lemma 4. Finally, by (187) of
Lemma 18 the left-hand side of (44) is Op(T

−2(γ0−δ0−1/2−θ−ε)) = op(1), to
conclude the proof of (33).

6.1.2. Proof of (32)

To prove (32) we use

Pr(ϑ̂ ∈ Mε) = Pr

(
inf

ϑ∈Mε

RT (ϑ) ≤ inf
ϑ∈Mε

RT (ϑ)

)
≤ Pr

(
inf

ϑ∈Mε

ST (ϑ) ≤ 0

)
,

(45)
where ST (ϑ) = RT (ϑ) − RT (ϑ0). Fix an arbitrarily small η > 0 such that
η < (γ0 − δ0 − 1/2)/2 and suppose that �1 < δ0 − 1/2 − η and �2 > γ0 −
1 − η. Our proof will cover trivially the situation where any of these condi-
tions does not hold, in which case some of the steps below are superfluous. Let
I1 = {δ : �1 ≤ δ ≤ δ0 − 1/2− η}, I2 = {δ : δ0 − 1/2− η ≤ δ ≤ δ0 − 1/2}, I3 =
{δ : δ0 − 1/2 ≤ δ ≤ δ0 − 1/2 + η}, I4 = {δ : δ0 − 1/2 + η ≤ δ ≤ γ0 − 1− η}, and
I5 = {δ : γ0 − 1− η ≤ δ ≤ �2}, noting that the upper bound for η guarantees
that I4 is non-empty, and correspondingly define Ti = Ii×Ψ. Furthermore, fix-
ing ξ > 0 and � > 0 such that � < min{η/2, κ}, also define Hi = {ϑ ∈ Mε :
τ ∈ Ti, |γ − γ0| < ξT−κi}, Hi = {ϑ ∈ Mε : τ ∈ Ti, ξT−κi ≤ |γ − γ0| ≤ �}, and
Hi = {ϑ ∈ Mε : τ ∈ Ti, |γ − γ0| ≥ �} for i = 1, . . . , 5, where κi > 0 will be de-
fined subsequently, noting that Hi is non-empty for any ξ, �, for T large enough.

Now, by (45), (32) is justified by showing

Pr

(
inf
Hi

ST (ϑ) ≤ 0

)
→ 0 as T → ∞ for i = 1, . . . , 5, (46)

Pr

(
inf
Hi

ST (ϑ) ≤ 0

)
→ 0 as T → ∞ for i = 1, . . . , 5, (47)

Pr

(
inf
Hi

ST (ϑ) ≤ 0

)
→ 0 as T → ∞ for i = 1, . . . , 5. (48)

The partitioning of the parameter space into Hi, Hi, and Hi for i = 1, . . . , 5 is
useful because of the different behavior (orders of magnitude) of the stochastic
term st(ϑ) and the deterministic term dt(ϑ) on these sets. This motivates a
separate analysis of (46), (47), and (48), at least for i = 1, . . . , 4. We first give
the main ideas and motivation for separate treatment of each of these sets, and
then we give below the details of the proofs for each of these sets in separate
subsections.
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For i = 5 the stochastic term st(ϑ) dominates the deterministic term dt(ϑ)
in ST (ϑ), and the contribution of dt(ϑ) to ST (ϑ) is negligible. Furthermore,
because ut(δ− δ0) is asymptotically stationary for i = 5, the proof for this case
can be based on arguments from Hualde and Robinson (2011) for the purely
stochastic term, ρ(L;ϕ)ut(δ − δ0).

For i ≤ 4 the deterministic term dt(ϑ) dominates the stochastic term st(ϑ) in
ST (ϑ), but only if γ �= γ0. Recall that dt(ϑ) = 0 when γ = γ0, which necessitates

separate consideration of Hi, Hi, and Hi, at least for some i.

Specifically, on Hi we have |γ − γ0| ≥ �, so that we can take advantage of
dt(ϑ) dominating st(ϑ) by an order of magnitude, so that the contribution of

st(ϑ) to ST (ϑ) is negligible. Thus, Hi can be dealt with for i = 1, . . . , 4 with one

proof that applies a uniform lower bound on, suitably normalized,
∑T

t=1 d
2
t (ϑ).

On Hi we have |γ − γ0| < ξT−κi , so that γ = γ0 is admissible. Because

dt(ϑ) = 0 when γ = γ0, we cannot exploit the lower bound on
∑T

t=1 d
2
t (ϑ).

Thus, on Hi we need to deal carefully with the stochastic term st(ϑ) and we
divide the parameter space and separately consider i = 1, . . . , 4 as in Hualde
and Robinson (2011), Johansen and Nielsen (2012a), and subsequent works.
For i = 4, ut(δ − δ0) is asymptotically stationary and we can apply the same
proof as for i = 5 using the mean value theorem to show that the contribution
of dt(ϑ) is negligible. The cases i = 2, 3 deal with the discontinuity of the
objective function, because ut(δ − δ0) is near the border between stationarity
and nonstationarity. The proof here uses the result of Hualde and Robinson
(2011) that the contribution from the purely stochastic term, ρ(L;ϕ)ut(δ− δ0),
can be made arbitrarily large, and we then show that the contribution from the
deterministic term is bounded. Finally, for i = 1, ut(δ − δ0) is nonstationary
and we can use the method of Johansen and Nielsen (2019) and Hualde and
Nielsen (2020), that avoids the strong moment condition (see Johansen and
Nielsen, 2012b). The reason is that ut(δ − δ0) has memory δ0 − δ ≥ 1/2 + η for
an arbitrarily small η > 0, and the most direct proof for i = 1 would involve
justifying the weak convergence of the appropriately normalized sum of squares
of ut(δ−δ0). The difficulty here is that for fixed δ convergence can be established
under the condition that ut has q finite moments, where q ≥ 2 and q > (δ0−δ−
1/2)−1. Thus, if δ0− δ is close to 1/2, the condition q > (δ0− δ− 1/2)−1 is very
strong, and, in fact, this is a serious technical problem because Johansen and
Nielsen (2012b) showed that this moment condition is necessary and, moreover,
in earlier parts of the proof η is required to be arbitrarily small. However,
by using the lower bound in Lemma 22, we instead need to show the weak
convergence of the appropriately normalized sum of squares of ut(δ−δ0−1). This
process has memory δ0 − δ + 1, so this convergence does not require the strong
moment condition because for i = 1, δ0− δ+1 ≥ 3/2+η. In addition, note that
Johansen and Nielsen (2019) require 8 moments, but this is not used to establish
the bounds that we require. The cases Hi for i = 1, . . . , 4 also require joint
treatment of the deterministic and stochastic terms in ST (ϑ). In these case we
show that, after suitable normalization, the contribution from the deterministic
term dt(ϑ) is “large” compared to that of the stochastic term st(ϑ). In that
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sense, the proofs here are opposite those of Hi for i = 2, 3. Because of the
different behavior and normalization of ut(δ − δ0), and hence of st(ϑ), for each
of i = 1, . . . , 4, slightly different proofs are needed for Hi in each of these cases.

6.1.3. Proof of (46), (47), and (48) for i = 5

In this case, we give just one proof that covers the whole set H5∪H5∪H5, where
δ0 − δ ≤ 1 + δ0 − γ0 + η < 1/2, so ut(δ − δ0) is asymptotically stationary. Let

ST (ϑ) = U(τ )− rT (ϑ), (49)

where U(τ ) = E((ρ(L;ϕ)Δδ−δ0ut)
2)− σ2

0 and, recalling dt(ϑ0) = 0,

rT (ϑ) =
1

T

T∑
t=1

(ρ(L;ϕ0)(utI(t > 0)))2 − σ2
0

− 1

T

T∑
t=1

(
(ρ(L;ϕ)ut(δ − δ0))

2 − E((ρ(L;ϕ)Δδ−δ0ut)
2)
)

− 1

T

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ0)(utI(t > 0))ht−1,T (1− δ0, γ0 − δ0,ϕ0)

∥∥∥∥∥
2

+
1

T

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

− 2

T

T∑
t=1

dt(ϑ)st(ϑ)−
1

T

T∑
t=1

d2t (ϑ).

It follows that (46), (47), and (48) for i = 5 hold if we show that

inf
‖τ−τ0‖≥ε,τ∈T5

U(τ ) > ε, (50)

1

T

T∑
t=1

(ρ(L;ϕ0)(utI(t > 0)))2 − σ2
0 = op(1), (51)

sup
‖τ−τ0‖≥ε,τ∈T5

1

T

T∑
t=1

(
(ρ(L;ϕ)ut(δ − δ0))

2 − E((ρ(L;ϕ)Δδ−δ0ut)
2)
)
= op(1),

(52)

sup
H5∪H5∪H5

1

T

∣∣∣∣∣
T∑

t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = op(1), (53)

sup
H5∪H5∪H5

1

T

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1). (54)
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First, (50), (51), and (52) follow by identical arguments to those in the proofs
of (2.8) and (2.9) in Hualde and Robinson (2011). Next, for any θ > 0, by (148)
of Lemma 4 with γ0−δ ≤ 1+η and δ0−δ ≤ δ0−γ0+1+η, the left-hand side of
(53) is Op(T

max{θ,1+δ0−γ0+η}+4θ−1/2+η) which is op(1) for θ and η sufficiently
small. In the same way, the left-hand side of (54) is Op(T

2max{θ,1+δ0−γ0+η}−1)
by (185) of Lemma 18, which is again op(1) for θ and η small enough. This
concludes the proof of (46), (47), and (48) for i = 5.

6.1.4. Proof of (46) for i = 1, . . . , 4

In view of Lemma 1 and that dt(ϑ0) = 0, the result holds if, for i = 1, . . . , 4,

Pr

(
inf
Hi

1

T

T∑
t=1

(dt(ϑ) + st(ϑ))
2 ≤ σ2

0 + ε

)
→ 0 as T → ∞.

For δ ∈ ∪4
i=1Ii it holds that γ0−δ ≥ 1+η, so the probability above is bounded by

Pr

(
inf
Hi

T 2(γ0−δ)−1

T
inf
Hi

1

T 2(γ0−δ)−1

T∑
t=1

(dt(ϑ) + st(ϑ))
2 ≤ σ2

0 + ε

)

= Pr

(
inf
Hi

1

T 2(γ0−δ)−1

T∑
t=1

(dt(ϑ) + st(ϑ))
2 ≤ σ2

0 + ε

T 2η

)

≤ Pr

(
inf
Hi

1

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ)− sup
Hi

2

T 2(γ0−δ)−1

∣∣∣∣∣
T∑

t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ ≤ σ2
0 + ε

T 2η

)
.

When δ ∈ ∪4
i=1Ii we have δ0 − δ ≥ δ0 − γ0 +1+ η, so by (150) of Lemma 4, for

θ small enough,

sup
Hi

2

T 2(γ0−δ)−1

∣∣∣∣∣
T∑

t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = op(1),

and the proof follows by Lemma 2.

6.1.5. Proof of (47) and (48) for i = 4

Fix ζ such that 0 < ζ < η and let κ4 = γ0−δ−1−ζ, noting that κ4 ≥ η−ζ > 0
when δ ∈ I4. Then, because dt(ϑ0) = 0, (47) holds if

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

(
T∑

t=1

d2t (ϑ)− 2

∣∣∣∣∣
T∑

t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣−
T∑

t=1

s2t (ϑ0)

)
≤ 0

)
→ 0

(55)
as T → ∞, noting the change in the normalization from (47) to (55), which is
justified because the right-hand side of the inequality inside the probability in



Estimation of fractional time series with generalized trend 2915

(47) is 0, so multiplying the left- and right-hand sides of the inequality by the
same positive number does not alter the probability. By the Cauchy-Schwarz
inequality and (39), the probability in (55) is bounded by

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

(
T∑

t=1

d2t (ϑ)(1− 2vT (ϑ))−
T∑

t=1

s2t (ϑ0)

)
≤ 0

)
, (56)

where vT (ϑ) = (
∑T

t=1(ρ(L;ϕ)ut(δ − δ0))
2/

∑T
t=1 d

2
t (ϑ))

1/2. Then (55) holds if

sup
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

s2t (ϑ0) = op(1), (57)

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ)(1− 2vT (ϑ)) ≤ ε

)
→ 0 as T → ∞. (58)

First, because T 2κ4−2(γ0−δ)+1 = T−1−2ζ , (57) follows immediately by using
Lemma 1. Next, fixing c such that 0 < c < 1/2, the probability in (58) equals

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ)(1− 2vT (ϑ)) ≤ ε, sup
H4

vT (ϑ) ≤ c

)

+ Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ)(1− 2vT (ϑ)) ≤ ε, sup
H4

vT (ϑ) > c

)

≤ Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ)(1− 2c) ≤ ε

)
+ Pr

(
sup
H4

vT (ϑ) > c

)
, (59)

so (58) holds on showing that

lim
T→∞

inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ) > ε, (60)

sup
H4

vT (ϑ) = op(1). (61)

We first justify (60). Choose an arbitrarily small α > 0. Then we initially
show that

lim
T→∞

inf
H4,1−δ≤1/2+α

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ) > ε. (62)

By the Cauchy-Schwarz inequality,
∑T

t=1 d
2
t (ϑ) ≥ T−1d

2

T (ϑ), where dt(ϑ) =∑t
s=1 ds(ϑ), so that (62) holds by (146) of Lemma 3. Next we show

lim
T→∞

inf
H4,1−δ≥1/2+α

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ) > ε. (63)
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By very similar arguments to those given in the proof of Lemma 2, using also
Lemma 11, as well as very similar steps to those in the proof of Lemma 13,
approximating sums by integrals (Lemma 10) and noting that the second term
in (31) dominates because γ0 ≥ 1 + κ, it can be shown that

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ) =
T 2κ4β2

0ρ
2(1;ϕ0)

Γ2(γ0 − δ)

(
1

2(γ0 − δ)− 1
−

( 1
γ0−2δ

1
γ0+γ−2δ−1

)
×
(

1
2(1−δ)−1

1
γ−2δ

1
γ−2δ

1
2(γ−δ)−1

)−1 ( 1
γ0−2δ

1
γ0+γ−2δ−1

))
+ r4T (ϑ),

(64)

where supH4,1−δ≥1/2+α |r4T (ϑ)| = o (1). It can be shown that the first term on

the right-hand side of (64) equals

T 2κ4β2
0ρ

2(1;ϕ0)(γ0 − 1)2(γ0 − γ)2

Γ2(γ0 − δ)(2(γ0 − δ)− 1)(γ0 − 2δ)2(γ0 + γ − 2δ − 1)2
, (65)

so by (22), (64), and (65)

inf
H4,1−δ≥1/2+α

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ) ≥
κ2ε

K
inf
H4

T 2κ4(γ0 − γ)2 =
κ2ε

K
ξ2 > ε,

to conclude the proof of (60).
To show (61), note that

sup
H4

vT (ϑ) ≤
(
supH4

T−1−2ζ
∑T

t=1(ρ(L;ϕ)ut(δ − δ0))
2

infH4
T 2κ4−(2(γ0−δ)−1)

∑T
t=1 d

2
t (ϑ)

)1/2

, (66)

recalling κ4 = γ0 − δ − 1 − ζ. Here, supH4
T−1−2ζ

∑T
t=1(ρ(L;ϕ)ut(δ − δ0))

2 =
op(1) by Lemma 17 because δ0 − δ ≤ 1/2− η. Then (66) is op(1) by (60), which
concludes the proof of (47) for i = 4.

Next we show (48) for i = 4. A potential problem here is that γ = γ0 is
admissible, so we cannot directly exploit the lower bound for the normalized∑T

t=1 d
2
t (ϑ) as in (60) because dt(ϑ) = 0 when γ = γ0. However, we can instead

take advantage of |γ − γ0| ≤ ξT−κ4 in H4 and apply the mean value theorem.
First note that δ ∈ I4 implies that δ0 − δ ≤ 1/2− η and γ0 − δ ≥ 1 + η, so that
ut(δ − δ0) is asymptotically stationary as in the proof for i = 5. Then, given
(49), the result follows by (50), (51), (52) (whose proofs apply also for δ ∈ I4),
and showing also that

sup
H4

1

T

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1), (67)

sup
H4

1

T

∣∣∣∣∣
T∑

t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = op(1). (68)
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From (185) of Lemma 18, the left-hand side of (67) is Op(T
−2η) = op(1) by

choosing θ < 1/2 − η. Next, because |γ − γ0| < ξT−κ4 in H4, by (147) and
(149) of Lemma 4 the left-hand side of (68) is Op(T

ζ−η+4θ) = op(1) for θ small
enough because ζ < η.

6.1.6. Proof of (47) for i = 1, 2, 3

The proofs of (47) for i = 1, 2, 3 are nearly identical, but with different normal-
izations given by q1 = q2 = 2(δ0−δ) and q3 = 1. Fix χ1 = χ2 = γ0−δ0−1/2 > 0
and κ3 = γ0 − δ − 1, so that κ3 ≥ γ0 − δ0 − 1/2 − η > 0 because δ ∈ I3, and
finally let α > 0 be an arbitrarily small number. To justify (47) for i = 1, 2, 3,
we prove that

Pr

(
inf

Hi,1−δ≤1/2+α
ST (ϑ) ≤ 0

)
→ 0 as T → ∞, (69)

Pr

(
inf

Hi,1−δ≥1/2+α
ST (ϑ) ≤ 0

)
→ 0 as T → ∞. (70)

First, changing the normalization (T qi instead of T ) and applying the Cauchy-
Schwarz inequality, the probability in (69) is bounded by

Pr

(
inf

Hi,1−δ≤1/2+α

1

T qi+1
(dT (ϑ) + sT (ϑ))

2 − 1

T qi

T∑
t=1

s2t (ϑ0) ≤ 0

)
, (71)

where st(ϑ) =
∑t

j=1 sj(ϑ), so that

sT (ϑ) =

T∑
t=1

st(ϑ) = ρ(L;ϕ)uT (δ − δ0 − 1)−
T∑

t=1

h′
t−1,T (1− δ, γ − δ,ϕ)

×
T∑

j=1

hj−1,T (1− δ, γ − δ,ϕ)ρ(L;ϕ)uj(δ − δ0). (72)

The probability in (71) is bounded by

Pr

(
inf

Hi,1−δ≤1/2+α

1

T qi+1
d
2

T (ϑ)(1− 2|vT (ϑ)|)−
1

T qi

T∑
t=1

s2t (ϑ0) ≤ 0

)
, (73)

where vT (ϑ) = sT (ϑ)/dT (ϑ). Applying Lemma 1, (69) for i = 1, 2, 3 then holds
if

Pr

(
inf

Hi,1−δ≤1/2+α

1

T qi+1
d
2

T (ϑ)(1− 2|vT (ϑ)|) ≤ K

)
→ 0 as T → ∞, (74)
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for an arbitrarily large K. As in (59), fixing c such that 0 < c < 1/2, the
probability in (74) is bounded by

Pr

(
inf

Hi,1−δ≤1/2+α

1

T qi+1
d
2

T (ϑ)(1− 2c) ≤ K

)
+Pr

(
sup

Hi,1−δ≤1/2+α

|vT (ϑ)| > c

)
,

(75)
so, as in (66), (74) holds if

sup
Hi,1−δ≤1/2+α

1

T qi/2+1/2
|sT (ϑ)| = Op(1), (76)

lim
T→∞

inf
Hi,1−δ≤1/2+α

1

T qi+1
d
2

T (ϑ) > K. (77)

For δ ∈ I3 it holds that δ0 − δ ≤ 1/2, so in view of (72) the proof of (76) is
immediate using (177) in Lemma 16 together with Lemmas 17 and 18 with θ <
1/2. For δ ∈ I1∪I2 it holds that δ0−δ ≥ 1/2, so with the different normalization,
(76) again follows by application of Lemmas 16, 17 and 18. Finally, because
T−(qi+1) = T 2κi−2(γ0−δ), (77) follows by (146) of Lemma 3, to conclude the
proof of (69) for i = 1, 2, 3.

Next, (70) holds if, for i = 1, 2, 3,

Pr

(
inf

Hi,1−δ≥1/2+α

1

T qi

(
T∑

t=1

(dt(ϑ) + st(ϑ))
2 −

T∑
t=1

s2t (ϑ0)

)
≤ 0

)
→ 0 (78)

as T → ∞. Using Lemma 22 and proceeding as in the proof of (47) for i = 4,
the probability in (78) is bounded by

Pr

(
inf

Hi,1−δ≥1/2+α

1

T qi

(
π2

4T 2

T∑
t=1

d
2

t (ϑ)(1− wT (ϑ))−
T∑

t=1

s2t (ϑ0)

)
≤ ε

)
,

where

wT (ϑ) =

(∑T
t=1 s

2
t (ϑ)∑T

t=1 d
2

t (ϑ)

)1/2

.

Then, because T 2κi−(2(γ0−δ)+1) = T−qi−2 for i = 1, 2, 3, by Lemma 1, (78) holds
if

lim
T→∞

inf
Hi,1−δ≥1/2+α

T 2κi

T 2(γ0−δ)+1

T∑
t=1

d
2

t (ϑ) > K, (79)

sup
Hi,1−δ≥1/2+α

1

T qi+2

T∑
t=1

s2t (ϑ) = Op(1). (80)

Again, by similar arguments to those given in the proofs of Lemmas 2 and 13,
and using Lemmas 10 and 11 to approximate sums by integrals, it can be shown
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that

1

T 2(γ0−δ)+1

T∑
t=1

d
2

t (ϑ) =
β2
0ρ

2(1;ϕ0)

Γ2(γ0 − δ + 1)
Λ(γ, δ) + pT (ϑ),

where supHi,1−δ≥1/2+α |pT (ϑ)| = o(1) for i = 1, 2, 3 and

Λ(γ, δ) =
1

2(γ0 − δ) + 1
+
(

(γ0−δ)2

γ0−2δ
(γ0−δ)2

γ0+γ−2δ−1

)(
1

2(1−δ)−1
1

γ−2δ
1

γ−2δ
1

2(γ−δ)−1

)−1

×
(

1
(2(1−δ)+1)(1−δ)2

1
(γ−2δ+2)(1−δ)(γ−δ)

1
(γ−2δ+2)(1−δ)(γ−δ)

1
(2(γ−δ)+1)(γ−δ)2

)

×
(

1
2(1−δ)−1

1
γ−2δ

1
γ−2δ

1
2(γ−δ)−1

)−1 ( 1
γ0−2δ

1
γ0+γ−2δ−1

)

− 2
(

γ0−δ
γ0−2δ

γ0−δ
γ0+γ−2δ−1

)(
1

2(1−δ)−1
1

γ−2δ
1

γ−2δ
1

2(γ−δ)−1

)−1

×
(

1
(γ0−2δ+2)(1−δ)

1
(γ0+γ−2δ+1)(γ−δ)

)
.

By simple but very cumbersome calculations, it can be shown that

Λ(γ, δ) =
(γ0 − 1)2(γ0 − γ)2ΛN (γ, δ)

ΛD(γ, δ)
,

where

ΛD(γ, δ) = (1− δ)2(γ − δ)2(2(γ0 − δ) + 1)(2(1− δ) + 1)(2(γ − δ) + 1)(γ0 − 2δ)2

× (γ0 − 2δ + 2)(γ0 + γ − 2δ − 1)2(γ0 + γ − 2δ + 1)(γ − 2δ + 2),

and ΛN (γ, δ) is a complicated function. Then, noting that γ0 �= 1 by Assump-
tion A3 and that |γ0 − γ| ≥ ξT−κi , setting ξ large enough, (79) holds by show-
ing that

inf
Hi,1−δ≥1/2+α

ΛN (γ, δ) > ε. (81)

First, given that |γ0 − γ| ≤ �, it can be shown that

inf
Hi,1−δ≥1/2+α

ΛN (γ, δ) ≥ inf
Hi,1−δ≥1/2+α

ΛN (γ0, δ)−K�, (82)

where the second term on the right-hand side of (82) can be made arbitrarily
small by setting � small enough. Also, it can be shown that

ΛN (γ0, δ) = (γ0 − δ)

6∑
k=0

(γ0 − δ − 1)kgk(δ) + (2(1− δ) + 1)((1− δ)2 − 1)2,
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where gk(δ) are relatively complicated polynomials of δ, for which it can be
shown that

inf
Hi,1−δ≥1/2+α

gk(δ) > ε

for i = 1, 2, 3, to justify (81) and conclude the proof of (79).
Next we show (80). Clearly,

1

T qi+2

T∑
t=1

s2t (ϑ) ≤
2

T qi+2

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0 − 1))2

+
2

T qi+2

T∑
t=1

(
t∑

s=1

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)

× h′
j−1,T (1− δ, γ − δ,ϕ)hs−1,T (1− δ, γ − δ,ϕ)

)2

.

(83)

First, we note that δ0 − δ + 1 ≤ 3/2 for i = 3 and δ0 − δ + 1 ≥ 3/2 for i = 1, 2.
Then, by (183) and (184) of Lemma 17,

sup
Hi,1−δ≥1/2+α

2

T qi+2

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0 − 1))2 = Op

(
1

T 3

T∑
t=1

t2

)
= Op(1)

for i = 1, 2, 3. Similarly, by (176) of Lemma 16 and (185), (187) of Lemma 18,

sup
Hi,1−δ≥1/2+α

2

T qi+2

T∑
t=1

(
t∑

s=1

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)

× h′
j−1,T (1− δ, γ − δ,ϕ)hs−1,T (1− δ, γ − δ,ϕ)

)2

= Op

⎛⎝ 1

T 3

T∑
t=1

(
T 1/2

t∑
s=1

s−1/2−θT θ

)2
⎞⎠ = Op(1)

for i = 1, 2, 3, to conclude the proof of (80), and therefore that of (70) and (47)
for i = 1, 2, 3.

6.1.7. Proof of (48) for i = 2, 3

As with (47) for i = 1, 2, 3, the proofs of (48) for i = 2, 3 are nearly identical,
but with different normalizations. Recall q2 = 2(δ0 − δ) and q3 = 1. Then (48)
for i = 2, 3 holds if, as T → ∞,

Pr

(
inf
Hi

1

T qi

(
T∑

t=1

s2t (ϑ)− 2

∣∣∣∣∣
T∑

t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣−
T∑

t=1

s2t (ϑ0)

)
≤ 0

)
→ 0, (84)
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where

T∑
t=1

s2t (ϑ) =

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0))
2

−
∥∥∥∥∥

T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

. (85)

In the proof of their (2.7) for i = 2, 3, Hualde and Robinson (2011) showed that

Pr

(
inf

‖τ−τ0‖≥ε,τ∈Ti

1

T qi

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0))
2 > K

)
→ 1 as T → ∞ (86)

for any arbitrarily large fixed constant K (for small enough η). Thus, in view of
(85), (48) for i = 2, 3 holds by (86) and Lemma 1 (noting that for i = 2, 3 we
have T−qi ≤ T−1) on showing

sup
Hi

1

T qi/2

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = Op(1), (87)

sup
Hi

1

T qi

∣∣∣∣∣
T∑

t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = ξOp(1). (88)

We note here that, even if ξ had to be set large enough in the proof of (77) (see
the proof of Lemma 3), this can be dominated by the constant K fixed in (86),
which can be chosen arbitrarily large by setting η small enough.

By (185) of Lemma 18, (87) holds for i = 3 because δ0 − δ ≤ 1/2 when
δ ∈ I3. Furthermore, noting that supH3

|γ−γ0| ≤ ξT−κ3 and that δ ∈ I3 implies
γ0− δ ≥ γ0− δ0 +1/2− η > 1 and δ0− δ ≤ 1/2, it follows by (147) and (151) of
Lemma 4 that the left-hand side of (88) with i = 3 is ξOp(1) by choosing θ < 1/2.

Next, (87) with i = 2 follows by (187) of Lemma 18 choosing θ < 1/2, and
noting that supH2

|γ − γ0| ≤ ξT−κ2 = ξT−(γ0−δ0−1/2) and that δ ∈ I2 implies
γ0 − δ ≥ γ0 − δ0 + 1/2 > 1 and δ0 − δ ≥ 1/2. Finally, (88) with i = 2 follows
from (147) and (152) of Lemma 4 setting θ < 1/2, to conclude the proof of (48)
for i = 2, 3.

6.1.8. Proof of (48) for i = 1

Finally we show (48) for i = 1, which holds if

Pr

(
inf
H1

1

T 2(δ0−δ)

(
T∑

t=1

(dt(ϑ) + st(ϑ))
2 −

T∑
t=1

s2t (ϑ0)

)
≤ 0

)
→ 0 (89)

as T → ∞. By Lemma 1 (noting that for i = 1 we have 2(δ0−δ) ≤ −1−2η < −1)
and Lemma 22 with Zt = dt(ϑ) + st(ϑ), (89) follows if there exists an ε > 0
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such that

Pr

(
inf
H1

1

T

T∑
t=1

(
1

T δ0−δ+1/2
dt(ϑ) +

1

T δ0−δ+1/2
st(ϑ)

)2

> ε

)
→ 1 (90)

as T → ∞. Note that in H1, γ0−δ ≥ 1+η and |γ − γ0| < ξT−κ1 , so there exists
α > 0 such that for T sufficiently large it holds that γ− δ ≥ 1+α. Defining the
sets G1 = {ϑ : τ ∈ T1, γ−δ ≥ 1+α, 1−δ ≤ 1/2+α, γ ∈ [�1,�2]} and G2 = {ϑ :
τ ∈ T1, γ− δ ≥ 1+α, 1− δ ≥ 1/2+α, γ ∈ [�1,�2]}, (90) is justified by showing

Pr

(
inf
G1

1

T

T∑
t=1

(
1

T δ0−δ+1/2
dt(ϑ) +

1

T δ0−δ+1/2
st(ϑ)

)2

> ε

)
→ 1, (91)

Pr

(
inf
G2

1

T

T∑
t=1

(
1

T δ0−δ+1/2
dt(ϑ) +

1

T δ0−δ+1/2
st(ϑ)

)2

> ε

)
→ 1 (92)

as T → ∞.
First we show (91). Initially we justify that

1

T δ0−δ+1/2
st(ϑ) =

1

T δ0−δ+1/2
(a1t(ϑ) + a2t(ϑ)), (93)

where

a1t(ϑ) = ρ(L;ϕ)ut(δ − δ0 − 1)

−
ct−1(γ − δ + 1,ϕ)

∑T
j=1 ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)∑T
j=1 c

2
j−1(γ − δ,ϕ)

(94)

and a2t(ϑ) is a remainder term such that for any arbitrarily small ε1 > 0, ε2 > 0,
and for T sufficiently large,

Pr

(
sup
G1,t

1

T δ0−δ+1/2
|a2t,T (ϑ)| > ε1

)
< ε2. (95)

As in (72),

st(ϑ) = ρ(L;ϕ)ut(δ − δ0 − 1)−
T∑

j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ, γ − δ,ϕ)

×
(

T∑
k=1

ck−1(1− δ, γ − δ,ϕ)c′k−1(1− δ, γ − δ,ϕ)

)−1

× ct−1(2− δ, γ − δ + 1,ϕ)

= ρ(L;ϕ)ut(δ − δ0 − 1)− a11t(ϑ) + a12t(ϑ) + a13t(ϑ) + a14t(ϑ)

D1T (ϑ)
,
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where

a11t(ϑ) = ct−1(2− δ,ϕ)

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ,ϕ)

T∑
k=1

c2k−1(γ − δ,ϕ),

a12t(ϑ) = −ct−1(γ − δ + 1,ϕ)

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ,ϕ)

×
T∑

k=1

ck−1(1− δ,ϕ)ck−1(γ − δ,ϕ),

a13t(ϑ) = ct−1(γ − δ + 1,ϕ)

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)

×
T∑

k=1

c2k−1(1− δ,ϕ),

a14t(ϑ) = −ct−1(2− δ,ϕ)

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)

×
T∑

k=1

ck−1(1− δ,ϕ)ck−1(γ − δ,ϕ)

D1T (ϑ) =
T∑

j=1

c2j−1(1− δ,ϕ)
T∑

j=1

c2j−1(γ − δ,ϕ)

−

⎛⎝ T∑
j=1

cj−1(1− δ,ϕ)cj−1(γ − δ,ϕ)

⎞⎠2

.

Then, it can be straightforwardly shown that (93)-(95) follow by (159), (160),
(162), (163), (164), (166), (170), (195), and (196). Next, let [·] denote the integer
part of the argument and consider S1T (r,ϑ) = T δ−δ0−1/2a1[Tr](ϑ) a process
indexed by (r,ϑ) that is càdlàg in r and continuous in ϑ. By almost identical
techniques to those of Hualde and Nielsen (2020) it can be shown that

S1T (r,ϑ) ⇒ S1(r,ϑ), (96)

where

S1(r,ϑ) = ρ(1;ϕ)ω(1;ϕ0)W (r; 1 + δ0 − δ)

− ρ(1;ϕ)ω(1;ϕ0)(2(γ − δ)− 1)

γ − δ
rγ−δW (1; 1 + δ0 − δ)

+
ρ(1;ϕ)ω(1;ϕ0)(2(γ − δ)− 1)(γ − δ − 1)

γ − δ
rγ−δ

×
∫ 1

0

uγ−δ−2W (u; 1 + δ0 − δ)du
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and⇒means weak convergence in the product space of functions that are càdlàg
in r ∈ [0, 1] and continuous in ϑ ∈ G1 endowed with the Skorokhod topology in r
and the uniform topology in ϑ, and where W (r; d) = Γ(d)−1

∫ r

0
(1− s)d−1dB(s)

and B(s) denote fractional (Type II) and regular scalar Brownian motions,
respectively, both with variance σ2

0 . Because dt(ϑ) is deterministic and st(ϑ) is
stochastic, and in view of the square in (91) and (93)–(95), (91) follows from (96)
(also note Assumption A1(iv) and (22)). Note that the application of Lemma 22
going from (89) to (90) is essential to avoid a very strong necessary moment
condition (Johansen and Nielsen, 2012b).

Next we show (92), the proof of which is similar to that of (91). Defining
S2T (r,ϑ) = T δ−δ0−1/2s[Tr](ϑ), we show

S2T (r,ϑ) ⇒ S2(r,ϑ), (97)

where

S2(r,ϑ) = ρ(1;ϕ)ω(1;ϕ0)W (r; 1 + δ0 − δ)− ρ(1;ϕ)ω(1;ϕ0)

×
(
(1, 1)W (1; 1 + δ0 − δ)

−
∫ 1

0

(−δs−1−δ, (γ − δ − 1)sγ−δ−2)W (s; 1 + δ0 − δ)ds

)

×
(

1
2(1−δ)−1

1
γ−2δ

1
γ−2δ

1
2(γ−δ)−1

)−1 (
r1−δ

1−δ
rγ−δ

γ−δ

)
,

and ⇒ now means weak convergence in the product space of functions that
are càdlàg in r ∈ [0, 1] and continuous in ϑ ∈ G2 endowed with the Skorokhod
topology in r and the uniform topology in ϑ. The proof of (97) is almost identical
to that of (96), noting that in G2, 1− δ ≥ 1/2+α. Also, for ϑ ∈ G2 it holds that∫ 1

0
s−1−δW (s; 1+δ0−δ)ds is a well-defined random variable with zero mean and

finite variance (e.g., for δ = δ0 this variance is 2σ2
0((1− δ)(2(1− δ)− 1))−1). As

in the proof of (91), (97) justifies (92), which completes the proof of (90), and
hence that of (89). Thus the proof of (48) for i = 1 is completed and therefore
that of (32).

6.2. Proof of Theorem 1(ii): the γ0 − 1/2 < δ0 case

Clearly

Pr (‖τ̂ − τ 0‖ ≥ ε) = Pr

(
inf

ϑ∈Mε

RT (ϑ) ≤ inf
ϑ∈Mε

RT (ϑ)

)
, (98)

so, as in the proof of part (i), the result follows by showing that the right-hand
side of (45) is o(1), which, in view of Lemma 1, holds if

Pr

(
inf

ϑ∈Mε

RT (ϑ) ≤ σ2
0 + ε

)
→ 0 as T → ∞. (99)
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Recall the intervals Ii and define Wi = {ϑ ∈ Mε : δ ∈ Ii} for i = 1, 2, 3 and
W4 = {ϑ ∈ Mε : δ ∈ I4 ∪ I5}. Then (99) follows on showing that

Pr

(
inf
Wi

RT (ϑ) ≤ σ2
0 + ε

)
→ 0 as T → ∞ for i = 1, . . . , 4. (100)

The proofs of (100) for each of i = 1, . . . , 4 follows in the next subsections.
Each proof proceeds by showing that, because γ0 − 1/2 < δ0, the deterministic
term dt(ϑ) in RT (ϑ) is negligible with the appropriate normalization. We can
therefore take advantage of lower bounds on the stochastic terms in RT (ϑ)
established in Hualde and Robinson (2011), Johansen and Nielsen (2019), and
Hualde and Nielsen (2020). Note again that Johansen and Nielsen (2019) require
8 moments, but that is not used to establish the bounds that we require.

6.2.1. Proof of (100) for i = 4

We first note that

RT (ϑ) =
1

T

T∑
t=1

(ρ(L;ϕ)xt(δ))
2 − 1

T

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)xt(δ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

≥ 1

T

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0))
2

− 2 ‖φ0‖
T

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(1− δ, γ0 − δ,ϕ)

∥∥∥∥∥
− 1

T

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)xt(δ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

, (101)

where the inequality follows from (34). Because δ0−δ ≤ 1/2−η when δ ∈ I4∪I5,
ut(δ − δ0) is asymptotically stationary. In view of (101), the proof of (100) for
i = 4 then follows by Hualde and Robinson (2011) (see the proof of their (2.7)
for i = 4) by showing

sup
W4

1

T

∣∣∣∣∣
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(1− δ, γ0 − δ,ϕ)

∣∣∣∣∣ = op(1), (102)

sup
W4

1

T

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)xt(δ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1). (103)

First, because δ ∈ I4∪I5 implies δ0−δ ≤ 1/2−η and γ0−δ ≤ 1/2+γ0−δ0−η,
(193) of Lemma 20 implies that the left-hand side of (102) is Op(T

γ0−δ0−1/2−2η+
T−ς−η + T−1 log T ) = op(1).
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Next, using (34) and noting that the second term in (31) dominates because
γ0 ≥ 1 + κ, (103) follows by showing

sup
W4

T−1/2
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ) = op(1), (104)

sup
W4

T−1/2
T∑

t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ) = o(1). (105)

Here, (185) of Lemma 18 shows that the left-hand side of (104) is Op(T
θ−1/2 +

T−η) = op(1) by choosing θ < 1/2, while (191) of Lemma 19 shows that the
left-hand side of (105) O(T θ−1/2 + T γ0−1/2−δ0−η) = o(1), to conclude the proof
of (100) for i = 4.

6.2.2. Proof of (100) for i = 2, 3

Recall the different normalizations given by q3 = 1 and q2 = 2(δ0 − δ). Clearly,

Pr

(
inf
Wi

RT (ϑ) ≤ σ2
0 + ε

)
≤ Pr

(
inf
Wi

T qi

T
inf
Wi

T

T qi
RT (ϑ) ≤ σ2

0 + ε

)
= Pr

(
inf
Wi

T

T qi
RT (ϑ) ≤ σ2

0 + ε

)
. (106)

Thus, in view of (86) and (101), the proof of (100) for i = 2, 3 follows on showing

sup
Wi

1

T qi

∣∣∣∣∣
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(1− δ, γ0 − δ,ϕ)

∣∣∣∣∣ = Op(1), (107)

sup
Wi

1

T qi

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)xt(δ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= Op(1). (108)

For i = 3, both (107) and (108) follow straightforwardly by identical steps as
those given in the proofs of (102) and (103) just replacing η by 0. For i = 2, we
need to take into account the different normalization, which implies using (192)
instead of (191) in Lemma 19, (194) instead of (193) in Lemma 20, and (187)
instead of (185) in Lemma 18.

6.2.3. Proof of (100) for i = 1

Following identical steps to those given in (106),

Pr

(
inf
W1

RT (ϑ) ≤ σ2
0 + ε

)
≤ Pr

(
inf
W1

T

T 2(δ0−δ)
RT (ϑ) ≤

σ2
0 + ε

T 2η

)
,

so the required result follows on showing

Pr

(
inf
W1

T

T 2(δ0−δ)
RT (ϑ) > ε

)
→ 1 as T → ∞. (109)
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First we show that

T

T 2(δ0−δ)
RT (ϑ) ≥

1

T 2(δ0−δ)

T∑
t=1

s2t (ϑ) + q1T (ϑ), (110)

where supW1
|q1T (ϑ)| = op(1). Noting (35) and (39), the proof of (110) follows

by showing

sup
W1

1

T 2(δ0−δ)

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(γ0 − δ,ϕ)

∥∥∥∥∥ = op(1)

and

sup
W1

1

T 2(δ0−δ)

∥∥∥∥∥∥
T∑

j=1

cj−1(γ0 − δ,ϕ)h′
j−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥∥
×

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = op(1).

Because δ0−δ ≥ 1/2+η and γ0−δ ≥ 1/2+η+γ0−δ0 on W1, these results follow
straightforwardly by (187), (192), and (194), noting that also γ0− 1/2− δ0 < 0.

Next, let α > 0 be arbitrarily small (in particular α < (ς−1/2)/3) and define
the sets Φ1, . . . ,Φ9 as in the proof of Lemma 2. Then, in view of (110), (109)
follows on showing

Pr

(
inf

W1∩Φj

1

T 2(δ0−δ)

T∑
t=1

s2t (ϑ) > ε

)
→ 1 as T → ∞ (111)

for j = 1, ..., 9.
First we prove (111) for j = 1, 2, 4, 5. In their eqn. (S.126), Hualde and Nielsen

(2020) showed that

Pr

(
inf

‖τ−τ0‖≥ε,τ∈T1

1

T 2(δ0−δ)

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0))
2 > ε

)
→ 1 as T → ∞.

(112)
Then, in view of (85) and (112), (111) for j = 1, 2, 4, 5 holds if we show that

sup
W1∩Φj

1

T 2(δ0−δ)

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1). (113)

We cannot apply Lemma 18 to (113) because it only shows Op(1). Instead, we
decompose as

1

T 2(δ0−δ)

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

=
B1T +B2T +B3T

D1T (ϑ)
,
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where

B1T =

⎛⎝ T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)

⎞⎠2
T∑

j=1

c2j−1(1− δ,ϕ), (114)

B2T =

⎛⎝ T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ,ϕ)

⎞⎠2
T∑

j=1

c2j−1(γ − δ,ϕ), (115)

B3T = −2

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ,ϕ)

×
T∑

j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)

T∑
j=1

cj−1(1− δ,ϕ)cj−1(γ − δ,ϕ),

(116)

and

D1T (ϑ) =

T∑
j=1

c2j−1(1− δ,ϕ)

T∑
j=1

c2j−1(γ − δ,ϕ)

−

⎛⎝ T∑
j=1

cj−1(1− δ,ϕ)cj−1(γ − δ,ϕ)

⎞⎠2

.

Then (113) holds for j = 1, 2, 4, 5 if

sup
W1∩Φj

∣∣∣∣ BiT

D1T (ϑ)

∣∣∣∣ = op(1) for i = 1, 2, 3 and j = 1, 2, 4, 5.

The proof of (113) for j = 1 follows straightforwardly by (165), (171), and (195).
Next, we show (113) for j = 2. By (173) the normalized D1T (ϑ) can be made
arbitrarily large by setting K large enough, so the result follows on showing that
the supremum of the BiT in (114)–(116) is Op(1). This result in turn follows
by (165) and (196) for B1T , (168) and (195) for B2T , and (167), (195), and
(196) for B3T . The proof of (113) for j = 4 is identical to that for j = 2 using
symmetry of Φ2 and Φ4, and is therefore omitted. Regarding (113) for j = 5,
we re-normalize as

B1T

D1T (ϑ)
=

T 1−2(γ−δ)
(∑T

j=1 ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)
)2

T 1−2(γ−δ)

(∑T
j=1 c

2
j−1(γ − δ,ϕ)− (

∑T
j=1 cj−1(1−δ,ϕ)cj−1(γ−δ,ϕ))

2∑T
j=1 c2j−1(1−δ,ϕ)

) .

(117)
By (174) the infimum of the denominator of (117) can be made arbitrarily
large, whereas by (196) the supremum of the numerator is Op(1), so that
supW1∩Φ5

|B1T /D1T (ϑ)| = op(1). The proof of supW1∩Φ5
|B2T /D1T (ϑ)| = op(1)
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is essentially identical and thus omitted, whereas that of supW1∩Φ4
|B3T /D1T (ϑ)|

= op(1) uses (170) along with (174) and (196).
Finally, the proof of (111) for j = 3, 6, 7, 8, 9 is essentially identical to that

of (90) with dt(ϑ) = 0. The only relevant difference is that we now need to
establish a convergence result on a larger set where γ − δ ≥ 1/2 + α (instead of
γ− δ ≥ 1+α). However, this does not lead to any relevant changes in the proof
because for fixed ϑ such that γ− δ ≥ 1/2+α and 1+ δ0− δ ≥ 3/2+ η with α >

0, η > 0, the integral
∫ 1

0
uγ−δ−2W (u; 1+δ0−δ)du is well defined. This completes

the proof of (111) for j = 3, 6, 7, 8, 9, and therefore that of (100) for i = 1.

6.3. Proof of Theorem 2(i.a): the γ0 − 1/2 > δ0 case with δ0 < 1/2

Defining MT = diag(Ip+1, T
δ0−γ0+1) we initially show that

T 1/2M−1
T (ϑ̂− ϑ0) →d N(0p+2, σ

2
0V

−1
ϑ ) with V ϑ =

(
σ2
0A 0p+1

0′
p+1

(γ0−1)2

(γ0−2δ0)2
vβ

)
.

(118)
By the mean value theorem,

ϑ̂− ϑ0 = −
(
∂2RT (ϑ)

∂ϑ∂ϑ′

)−1
∂RT (ϑ0)

∂ϑ
, (119)

where ϑ represents an intermediate point which is allowed to vary across the
different rows of ∂2RT (·)/∂ϑ∂ϑ′. We first analyze the score in (119). It can be
straightforwardly seen that ∂dt(ϑ0)/∂τ = 0 and ∂s1t(τ )/∂γ = 0, so, recalling
that dt(ϑ0) = 0 and the decomposition (40),

∂RT (ϑ0)

∂ϑ
=

2

T

T∑
t=1

st(ϑ0)

((
∂s1t(τ0)

∂τ
∂dt(ϑ0)

∂γ

)
− ∂s2t(ϑ0)

∂ϑ

)
.

Then, by Lemma 5(a) it holds that

T 1/2

2
MT

∂RT (ϑ0)

∂ϑ
=

(
T−1/2Ip+1 0

0 T 1/2−(γ0−δ0)

) T∑
t=1

εt

(
∂s1t(τ0)

∂τ
∂dt(ϑ0)

∂γ

)
+ op(1).

(120)
As in (2.54) of Hualde and Robinson (2011),

1

T 1/2

T∑
t=1

εt
∂s1t(τ 0)

∂τ
=

1

T 1/2

T∑
t=2

εt

∞∑
j=1

mj(ϕ0)εt−j + op(1),

where mj(ϕ0) = (−j−1, b′j(ϕ0))
′. Next,

∂dt(ϑ0)

∂γ
= −β0c

(1)
t−1(γ0 − δ0,ϕ0) + β0h

′
t−1,T (1− δ0, γ0 − δ0,ϕ0)

×
∑T

j=1 ht−1,T (1− δ0, γ0 − δ0,ϕ0)c
(1)
j−1(γ0 − δ0,ϕ0),

where c
(1)
t (·, ·) is the derivative of ct(·, ·) with respect to the first argument, so
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that

1

T γ0−δ0−1/2

T∑
t=1

εt
∂dt(ϑ0)

∂γ
=

β0

T γ0−δ0−1/2

T∑
t=1

εth
′
t−1,T (1− δ0, γ0 − δ0,ϕ0)

×
T∑

j=1

ht−1,T (1− δ0, γ0 − δ0,ϕ0)c
(1)
j−1(γ0 − δ0,ϕ0)

− β0

T γ0−δ0−1/2

T∑
t=1

εtc
(1)
t−1(γ0 − δ0,ϕ0). (121)

By (17), c
(1)
t−1(d,ϕ) =

∑t−1
j=0 ρj(ϕ)π

(1)
t−j−1(d), where π

(1)
j (·) is the first derivative

of πj(·) given by

π
(1)
j (d) = (ψ(d+ j)− ψ(d))πj(d), (122)

with ψ(·) denoting the digamma function. Then, noting that 1 − δ0 > 1/2 and
γ0− δ0 > 1/2, by a similar analysis to that in the proof of Lemma 13, the right-
hand side of (121) equals

β0ρ(1;ϕ0)

T γ0−δ0−1/2

T∑
t=1

εt
(
πt−1(1− δ0) πt−1(γ0 − δ0)

)
×
( ∑T

t=1 π
2
t−1(1− δ0)

∑T
t=1 πt−1(1− δ0)πt−1(γ0 − δ0)∑T

t=1 πt−1(1− δ0)πt−1(γ0 − δ0)
∑T

t=1 π
2
t−1(γ0 − δ0)

)−1

×
T∑

j=2

(
πj−1(1− δ0)
πj−1(γ0 − δ0)

)
π
(1)
j−1(γ0 − δ0)

− β0ρ(1;ϕ0)

T γ0−δ0−1/2

T∑
t=2

εtπ
(1)
t−1(γ0 − δ0) + op(1). (123)

Using (122) and the approximation ψ(z) = log(z)+O(z−1), see Abramowitz and
Stegun (1970, p. 259, eqn. 6.3.18), as well as careful cancellation of terms, it can

be shown that the first two terms of (123) equal β0ρ(1;ϕ0)T
1/2+δ0−γ0

∑T
t=2 εt

gt,T (1− δ0, γ0 − δ0) + op(1), where

gt,T (d1, d2) =
(
πt−1(d1) πt−1(d2)

)
×

( ∑T
t=1 π

2
t−1(d1)

∑T
t=1 πt−1(d1)πt−1(d2)∑T

t=1 πt−1(d1)πt−1(d2)
∑T

t=1 π
2
t−1(d2)

)−1

×
T∑

j=2

log

(
d2 + j − 1

T

)(
πj−1(d1)
πj−1(d2)

)
πj−1(d2)

− log

(
d2 + t− 1

T

)
πt−1(d2).
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Collecting these terms shows that

T 1/2

2
MT

∂RT (ϑ0)

∂ϑ
=

T∑
t=2

εtηt,T + op(1), (124)

where

ηt,T =

(
T−1/2

∑∞
j=1 mj(ϕ0)εt−j

T 1/2−(γ0−δ0)β0ρ(1;ϕ0)gt,T (1− δ0, γ0 − δ0)

)
.

Since εtηt,T is a martingale difference sequence, we can apply the martingale
central limit theorem (e.g., Corollary 3.1 of Hall and Heyde, 1980) to show that

T∑
t=2

εtηt,T →d N(0p+2, σ
2
0V ϑ). (125)

To prove (125) we note in particular that
∑∞

j=1 mj(ϕ0)mj(ϕ0)
′ = A by defini-

tion, see Assumption A4(iii), and from Lemma 10 and (158) of Lemma 11, we
find that, as T → ∞,

1

T 2(γ0−δ0)−1

T∑
t=2

g2t,T (1− δ0, γ0 − δ0)

→ 1

Γ2(γ0 − δ0)

(
2

(2(γ0 − δ0)− 1)3
−
(

1
(γ0−2δ0)2

1
(2(γ0−δ0)−1)2

)

×
(

1
1−2δ0

1
γ0−2δ0

1
γ0−2δ0

1
2(γ0−δ0)−1

)−1 ( 1
(γ0−2δ0)2

1
(2(γ0−δ0)−1)2

))

=
(γ0 − 1)2

Γ2(γ0 − δ0)(γ0 − 2δ0)2(2(γ0 − δ0)− 1)3
. (126)

In addition,

1

T γ0−δ0

T∑
t=2

gt,T (1− δ0, γ0 − δ0)

∞∑
j=1

mj(ϕ0)εt−j = op(1), (127)

which, noting that
t∑

k=1

∞∑
j=1

mj(ϕ0)εk−j = Op(t
1/2), (128)

follows by summation by parts using Lemmas 10 and 11, and shows block-
diagonality of the variance matrix, V ϑ. Thus,

∑T
t=2 ηt,Tη

′
t,T →p V ϑ as required

in (125). Because the fourth moment of εt is finite, the (conditional) Lindeberg

condition holds if, for example,
∑T

t=2(ξ
′ηt,Tη

′
t,T ξ)

2 →p 0 for an arbitrary con-
forming vector ξ, which follows straightforwardly by previous arguments.
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In view of (119), (124), and (125), the proof of (118) is completed by showing
that

MT

(
∂2RT (ϑ)

∂ϑ∂ϑ′ − ∂2RT (ϑ0)

∂ϑ∂ϑ′

)
MT = op(1) and

1

2
MT

∂2RT (ϑ0)

∂ϑ∂ϑ′ MT →p V ϑ.

(129)
The first result in (129) is relatively straightforward due to Lemma 6. It is
proven by a mean value expansion, noting that the derivatives add at most a
multiplicative logarithmic factor, see Lemma 11, but that is more than compen-
sated by the factor ϑ̂ − ϑ0 = Op(T

−χ), χ > 0, from Lemma 6. The second re-
sult in (129) can be proven by identical methods to the corresponding proof in
Hualde and Nielsen (2020, online supplement p. 16), and specifically follows by
application of Lemma 5(b) and the same methods as applied in (126)–(127).

Given (118), the remaining part of (26) is justified as follows. From (18) and
(34) we find that

φ̂ = φ̂(ϑ̂) =

T∑
t=1

kt−1,T (1− δ̂, γ̂ − δ̂, ϕ̂)c′t−1(1− δ̂, γ0 − δ̂, ϕ̂)φ0

+

T∑
t=1

kt−1,T (1− δ̂, γ̂ − δ̂, ϕ̂)ρ(L; ϕ̂)ut(δ̂ − δ0), (130)

where

kt,T (d1, d2,ϕ) =

⎛⎝ T∑
j=1

cj−1(d1, d2,ϕ)c
′
j−1(d1, d2,ϕ)

⎞⎠−1

ct(d1, d2,ϕ).

By the mean value theorem,

kt−1,T (1− δ̂, γ̂− δ̂, ϕ̂) = kt−1,T (1− δ̂, γ0− δ̂, ϕ̂)+k
(2)
t−1,T (1− δ̂, γ− δ̂, ϕ̂)(γ̂−γ0),

where k
(2)
t,T (·, ·, ·) is the derivative of kt,T (·, ·, ·) with respect to the second argu-

ment and |γ − γ0| ≤ |γ̂ − γ0|. Defining NT = diag(T 1/2−δ0 , T γ0−δ0−1/2/ log T ),
we thus have

NT (φ̂− φ0) = (γ̂ − γ0)NT

T∑
t=1

k
(2)
t−1,T (1− δ̂, γ − δ̂, ϕ̂)c′t−1(1− δ̂, γ0 − δ̂, ϕ̂)φ0

+NT

T∑
t=1

kt−1,T (1− δ̂, γ̂ − δ̂, ϕ̂)ρ(L; ϕ̂)ut(δ̂ − δ0). (131)

First, by application of Lemmas 6 and 7 it follows straightforwardly that the
first term on the right-hand side of (131) equals

(γ̂−γ0)NT

T∑
t=1

k
(2)
t−1,T (1−δ0, γ0−δ0,ϕ0)c

′
t−1(1−δ0, γ0−δ0,ϕ0)φ0+op(1). (132)
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Then, noting that

∂kt,T (d1, d2,ϕ)

∂d2
= −

(
T∑

j=1

cj−1(d1, d2,ϕ)c
′
j−1(d1, d2,ϕ)

)−1

×
(

∂

∂d2

T∑
j=1

cj−1(d1, d2,ϕ)c
′
j−1(d1, d2,ϕ)

)

×
(

T∑
j=1

cj−1(d1, d2,ϕ)c
′
j−1(d1, d2,ϕ)

)−1

ct(d1, d2,ϕ)

+

(
T∑

j=1

cj−1(d1, d2,ϕ)c
′
j−1(d1, d2,ϕ)

)−1 (
0

c
(1)
t (d2,ϕ)

)
,

(132) is

− (γ̂ − γ0)NT

(
T∑

j=1

cj−1(1− δ0, γ0 − δ0,ϕ0)c
′
j−1(1− δ0, γ0 − δ0,ϕ0)

)−1

×
T∑

j=1

cj−1(1− δ0, γ0 − δ0,ϕ0)
(

0 c
(1)
t (γ0 − δ0,ϕ0)

)
φ0 + op(1)

= −(γ̂ − γ0)NT

(
T∑

j=1

cj−1(1− δ0, γ0 − δ0,ϕ0)c
′
j−1(1− δ0, γ0 − δ0,ϕ0)

)−1

×
T∑

j=1

cj−1(1− δ0, γ0 − δ0,ϕ0)
(

cj−1(1− δ0,ϕ0) c
(1)
j−1(γ0 − δ0,ϕ0)

)
×

(
0 0
0 1

)
φ0 + op(1). (133)

Now we note that by (122) it can be straightforwardly shown that c
(1)
j−1(d,ϕ) =

cj−1(d,ϕ)(log j)(1 + o(1)) and apply summation by parts,

T∑
j=1

cj−1(d1,ϕ)c
(1)
j−1(d2,ϕ)

=

T∑
j=1

cj−1(d1,ϕ)cj−1(d2,ϕ)(log j)(1 + o(1))

= (log T )

T∑
j=1

cj−1(d1,ϕ)cj−1(d2,ϕ)(1 + o(1))

−
T−1∑
k=1

(log(k + 1)− log k)

k∑
j=1

cj−1(d1,ϕ)cj−1(d2,ϕ)(1 + o(1)).
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Because log(k+1)− log k = log(1+ k−1) = k−1 +O(k−2), see Abramowitz and

Stegun (1970, p. 68, eqn. 4.1.24), we find that
∑T

j=1 cj−1(d1,ϕ)c
(1)
j−1(d2,ϕ) =

(log T )
∑T

j=1 cj−1(d1,ϕ)cj−1(d2,ϕ)(1+o(1)), see also Lemma 13. Inserting this
result into (133), we find that (133) is

−(γ̂ − γ0)

(
T 1/2−δ0 0

0 T γ0−δ0−1/2

)(
0 0
0 1

)
φ0 + op(1)

= −
(

0
T γ0−δ0−1/2(γ̂ − γ0)β0

)
+ op(1). (134)

Next, proceeding as in the proof of (123), using Lemmas 6, 7, 10, 11, and 13, it
can be straightforwardly shown that the second term on the right-hand side of
(131) is

(
1 0
0 1

log T

) T∑
t=1

εtθt,T + op (1) =

(
1 0
0 0

) T∑
t=1

εtθt,T + op (1) , (135)

where

θt,T =
1

ρ(1;ϕ0)

(
1

Γ2(1−δ0)(1−2δ0)
1

Γ(1−δ0)Γ(γ0−δ0)(γ0−2δ0)
1

Γ(1−δ0)Γ(γ0−δ0)(γ0−2δ0)
1

Γ2(γ0−δ0)(2(γ0−δ0)−1)

)−1

×
(

πt−1(1−δ0)

T 1/2−δ0
πt−1(γ0−δ0)

Tγ0−δ0−1/2

)
.

Therefore, collecting (131)–(135),

NT (φ̂− φ0) =

( (
1 0

)∑T
t=1 εtθt,T

−T γ0−δ0−1/2(γ̂ − γ0)β0

)
+ op(1). (136)

Using summation by parts and (128) it can be shown that

1

T 1/2

T∑
t=1

(
1 0

)
θt,T

∞∑
j=1

mj(ϕ0)εt−j = op(1). (137)

Additionally, as in the proof of (126), and noting that the two main terms
corresponding to the two terms in gt,T (1−δ0, γ0−δ0) cancel, it can be shown that

1

T γ0−δ0−1/2

T∑
t=1

(
1 0

)
θt,T gt,T (1− δ0, γ0 − δ0) = o(1), (138)

and
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(
1 0

) T∑
t=1

θt,Tθ
′
t,T

(
1
0

)
=

1

ρ2(1;ϕ0)

(
1 0

)
×

(
1

Γ2(1−δ0)(1−2δ0)
1

Γ(1−δ0)Γ(γ0−δ0)(γ0−2δ0)
1

Γ(1−δ0)Γ(γ0−δ0)(γ0−2δ0)
1

Γ2(γ0−δ0)(2(γ0−δ0)−1)

)−1 (
1
0

)
+ o(1)

=
Γ2(1− δ0)(1− 2δ0)(γ0 − 2δ0)

2

ρ2(1;ϕ0)(γ0 − 1)2
+ o(1). (139)

Then (26) holds by (136)–(139) using the Cramér-Wold device.

6.4. Proof of Theorem 2(i.b): the γ0 − 1/2 > δ0 case with δ0 > 1/2

The proof for this case (with δ0 > 1/2) is almost identical to that for case (i.a),
but simpler. The main difference is that now, by (169) of Lemma 14, it can be
straightforwardly shown that

1

T γ0−δ0−1/2

T∑
t=1

ct−1(1− δ0,ϕ0)c
(1)
t−1(γ0 − δ0,ϕ0) = o(1),

1

T γ0−δ0−1/2

T∑
t=1

ct−1(1− δ0,ϕ0)εt = op(1). (140)

Using also (162), the consequence is that first term on the right-hand side of
(121) is, apart from a op(1) term,

β0

T γ0−δ0−1/2

T∑
t=1

εtct−1(γ0 − δ0,ϕ0)

∑T
j=1 cj−1(γ0 − δ0,ϕ0)c

(1)
j−1(γ0 − δ0,ϕ0)∑T

j=1 c
2
j−1(γ0 − δ0,ϕ0)

,

while the second term on the right-hand side of (121) is unchanged. Therefore,
instead of gt,T (1− δ0, γ0 − δ0) we now have gt,T (γ0 − δ0) with

gt,T (d) =
πt−1(d)

∑T
j=1 log

(
d+j−1

T

)
π2
j−1(d)∑T

j=1 π
2
j−1(d)

− log

(
d+ t− 1

T

)
πt−1(d),

which satisfies

1

T 2(γ0−δ0)−1

T∑
t=1

g2t,T (γ0 − δ0) →
1

Γ2(γ0 − δ0)(2(γ0 − δ0)− 1)3

as T → ∞. Hence, T 1−2(γ0−δ0)β2
0ρ

2(1;ϕ0)
∑T

t=1 g
2
t,T (γ0−δ0) → vβ , which proves

the required result for ϑ̂ − ϑ0 by an identical proof to that of (118), see also
(125) and (129). To complete the proof we note that (134) still holds for (the
second element of) the first term on the right-hand side of (131), whereas (the
second element of) the second term on the right-hand side of (131) is now op(1)
using Lemmas 6, 7, 10, and 11 together with (140) and (162).
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6.5. Proof of Theorem 2(ii): the γ0 − 1/2 < δ0 case

Similarly to (40), we decompose the loss function RT (ϑ) into the sum of two

terms, RT (ϑ) = QT (τ ) + JT (ϑ), where QT (τ ) = T−1
∑T

t=1 s
2
1t(τ ) is the loss

function in Hualde and Robinson (2011) and

JT (ϑ) =
1

T

T∑
t=1

(dt(ϑ)− s2t(ϑ))
2 +

2

T

T∑
t=1

s1t(τ )(dt(ϑ)− s2t(ϑ)). (141)

Then
∂RT (ϑ̂)

∂τ
= 0p+1 =

∂QT (τ̂ )

∂τ
+

∂JT (ϑ̂)

∂τ
, (142)

and by the mean value theorem

∂QT (τ̂ )

∂τ
=

∂QT (τ 0)

∂τ
+

∂2QT (τ )

∂τ∂τ ′ (τ̂ − τ 0) , (143)

where τ is an intermediate point between τ̂ and τ 0 which is allowed to vary in
different rows of ∂2QT (·)/∂τ∂τ ′. Inserting (143) into (142) we then find

T 1/2(τ̂ −τ 0) = −
(
∂2QT (τ )

∂τ∂τ ′

)−1

T 1/2 ∂QT (τ 0)

∂τ
−
(
∂2QT (τ )

∂τ∂τ ′

)−1

T 1/2 ∂JT (ϑ̂)

∂τ
.

(144)
From the proof of Hualde and Robinson (2011, Theorem 2.2), the first term
on the right-hand side of (144) has a N

(
0p+1,A

−1
)
limiting distribution and

∂2QT (τ )/∂τ∂τ
′ converges in probability to a nonsingular matrix. Thus, in

view of (144), the required result follows because T 1/2∂JT (ϑ̂)/∂τ = op(1) by
Lemma 8.

Finally we prove (29). By (130), noting (28) and using Lemma 7 repeatedly,
we find that

T 1/2−δ0(μ̂− μ0) =
a1T + a2T + a3T + a4T

bT
+ op(1),

where

a1T =
1

T 1/2−δ0
β0

T∑
j=1

cj−1(1− δ0,ϕ0)cj−1(γ0 − δ0,ϕ0),

a2T =
−1

T 1/2−δ0
β0

T∑
j=1

cj−1(1− δ0,ϕ0)hj−1,T (γ̂ − δ0,ϕ0)

×
T∑

k=1

hk−1,T (γ̂ − δ0,ϕ0)ck−1(γ0 − δ0,ϕ0),

a3T =
1

T 1/2−δ0

T∑
j=1

cj−1(1− δ0,ϕ0)εj ,
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a4T =
−1

T 1/2−δ0

T∑
j=1

cj−1(1− δ0,ϕ0)hj−1,T (γ̂ − δ0,ϕ0)

T∑
k=1

hk−1,T (γ̂ − δ0,ϕ0)εk,

bT =
1

T 1−2δ0

T∑
j=1

c2j−1(1− δ0,ϕ0)

− 1

T 1−2δ0

(∑T
j=1 cj−1(1− δ0,ϕ0)cj−1(γ̂ − δ0,ϕ0)

)2

∑T
j=1 c

2
j−1(γ̂ − δ0,ϕ0)

,

and ht,T (d,ϕ) = ct(d,ϕ)(
∑T

j=1 c
2
j−1(d,ϕ))

−1/2. For T sufficiently large, bT is
bounded away from zero almost surely by (172) of Lemma 15. Moreover, by
direct application of (159), (176), and (185) (noting that the latter two also
hold for ht,T (d,ϕ), see the proof of Lemma 16), it holds that a1T = o(1),
a2T = op(1), and a4T = Op(T

θ), while Lemmas 11 and 13 imply that a3T →d

N(0, ρ2(1;ϕ0)/((1 − 2δ0)Γ
2(1 − δ0))) by the martingale central limit theorem.

This proves (29) by choosing θ < ε.

7. Auxiliary lemmas

Lemma 1 Under Assumptions A1–A3, T−1
∑T

t=1 s
2
t (ϑ0) →p σ2

0.

Lemma 2 Under Assumptions A1 and A3, for any g > 0 and any κ > 0,
β0 �= 0, and either μ0 = 0 or μ0 �= 0, γ0 ≥ 1 + κ,

lim
T→∞

inf
γ0−δ≥1/2+g,|γ−γ0|≥g,ϕ∈Ψ

1

T 2(γ0−δ)−1

T∑
t=1

d2t (ϑ) > ε.

Lemma 3 Under Assumptions A1 and A3, for any κ > 0, β0 �= 0, and either
μ0 = 0 or μ0 �= 0, γ0 ≥ 1 + κ,

1

T γ0−δ

∂dT (ϑ)

∂γ
=

β0ρ(1;ϕ)

Γ(γ0 − δ)

2(γ − δ)2 − 2(γ − δ) + 1− (γ0 − δ)

(γ − δ)2(γ0 + γ − 2δ − 1)2
+gT (ϑ), (145)

where for any arbitrarily small α > 0, supHi,1−δ≤1/2+α |gT (ϑ)| = o(1). Addi-
tionally, for some fixed ε > 0, which does not depend on ξ or T ,

lim
T→∞

inf
Hi,1−δ≤1/2+α

T 2κi

T 2(γ0−δ)
d
2

T (ϑ) > εξ2 for i = 1, . . . , 4. (146)

Lemma 4 Under Assumptions A1–A3, for any α > 0, κ > 0, and θ such that
0 < θ < min{ς−1/2, α}, for β0 �= 0, and for either μ0 = 0 or μ0 �= 0, γ0 ≥ 1+κ,∣∣∣∣∣

T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ ≤ |γ − γ0||MT (ϑ)|, (147)
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where, uniformly in ϑ ∈ Ξ,

sup
δ0−δ≤g,γ0−δ≤1/2+α

|MT (ϑ)| = Op(T
max{θ,g}+4θ+α), (148)

sup
δ0−δ≤g,γ0−δ≥1/2+α

T δ−γ0 |MT (ϑ)| = Op(T
max{θ,g}+4θ−1/2),

(149)

sup
δ0−δ≥g,γ0−δ≥1/2+α

T 2δ−δ0−γ0 |MT (ϑ)| = Op(T
max{θ,g}+4θ−g−1/2),

(150)

sup
δ0−δ≤g,γ0−δ≥1/2+α,γ−δ≥1/2+θ

T δ−γ0 |MT (ϑ)| = Op(T
max{θ,g}−1/2), (151)

sup
δ0−δ≥g,γ0−δ≥1/2+α,γ−δ≥1/2+θ

T 2δ−δ0−γ0 |MT (ϑ)| = Op(T
max{θ,g}−g−1/2). (152)

Lemma 5 Under the conditions of Theorem 2(i) it holds that:
(a) The first-order derivatives satisfy

1

T 1/2

T∑
t=1

(st(ϑ0)− εt)
∂s1t(τ 0)

∂τ
= op(1),

1

T γ0−δ0−1/2

T∑
t=1

(st(ϑ0)− εt)
∂dt(ϑ0)

∂γ
= op(1),

(153)

1

T 1/2

T∑
t=1

st(ϑ0)
∂s2t(ϑ0)

∂τ
= op(1),

1

T γ0−δ0−1/2

T∑
t=1

st(ϑ0)
∂s2t(ϑ0)

∂γ
= op(1).

(154)

(b) The second-order derivatives satisfy

1

T

T∑
t=1

∂s1t(τ 0)

∂τ

∂s2t(ϑ0)

∂τ ′ = op(1),
1

T γ0−δ0

T∑
t=1

∂s1t(τ 0)

∂τ

∂s2t(ϑ0)

∂γ
= op(1),

1

T γ0−δ0

T∑
t=1

∂s1t(τ 0)

∂τ

∂dt(ϑ0)

∂γ
= op(1),

1

T

T∑
t=1

∂s2t(ϑ0)

∂τ

∂s2t(ϑ0)

∂τ ′ = op(1),

1

T γ0−δ0

T∑
t=1

∂s2t(ϑ0)

∂τ

∂s2t(ϑ0)

∂γ
= op(1),

1

T γ0−δ0

T∑
t=1

∂s2t(ϑ0)

∂τ

∂dt(ϑ0)

∂γ
= op(1),

1

T 2(γ0−δ0)−1

T∑
t=1

(
∂s2t(ϑ0)

∂γ

)2

= op(1),

1

T 2(γ0−δ0)−1

T∑
t=1

∂s2t(ϑ0)

∂γ

∂dt(ϑ0)

∂γ
= op(1),

1

T

T∑
t=1

st(ϑ0)
∂2st(ϑ0)

∂τ∂τ ′ = op(1),
1

T γ0−δ0

T∑
t=1

st(ϑ0)
∂2s2t(ϑ0)

∂τ∂γ
= op(1),
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1

T 2(γ0−δ0)−1

T∑
t=1

st(ϑ0)
∂2s2t(ϑ0)

∂γ2
= op(1),

1

T γ0−δ0

T∑
t=1

st(ϑ0)
∂2dt(ϑ0)

∂τ∂γ
= op(1),

1

T 2(γ0−δ0)−1

T∑
t=1

st(ϑ0)
∂2dt(ϑ0)

∂γ2
= op(1).

Lemma 6 Under the conditions of Theorem 2(i), for some fixed κ > 0, Tκ(ϑ̂−
ϑ0) →p 0.

Lemma 7 Let τ̂ − τ 0 = Op(T
−κ) for some κ > 0. Then, under Assump-

tions A1–A4,

ct(δ̂, ϕ̂) = ct(δ0,ϕ0) +Op(T
−κtmax{δ0−1,−1−ς}(log t)2), (155)

c
(1)
t (δ̂, ϕ̂) = c

(1)
t (δ0,ϕ0) +Op(T

−κtmax{δ0−1,−1−ς}(log t)3), (156)

and, uniformly in t = 1, ..., T ,

ρ(L; ϕ̂)ut(δ̂− δ0) =

t−1∑
j=0

ρj(ϕ̂)ut−j(δ̂− δ0) =

t−1∑
j=0

ρj(ϕ0)ut−j +Op(T
−κ). (157)

Lemma 8 Under the conditions of Theorem 2(ii), T 1/2∂JT (ϑ̂)/∂τ = op(1).

8. Technical lemmas

Lemma 9 Uniformly for max{|α|, |β|} ≤ a0,

t−1∑
j=1

jα−1(t− j)β−1 ≤ K(log t)tmax{α+β−1,α−1,β−1}.

Lemma 10 For any d > 0 and any fixed a ≥ 0, as T → ∞,

1

T d

T∑
t=1

td−1→ 1

d
,
1

T d

T∑
t=1

log
( t+ a

T

)
td−1→ −1

d2
,
1

T d

T∑
t=1

log2
( t+ a

T

)
td−1→ 2

d3
.

Lemma 11 Let j ≥ 1 and K denote any compact subset of R\N0. Then

πj(−v) =
1

Γ(−v)
j−v−1(1 + εj(v)), (158)

where maxv∈K |εj(v)| → 0 as j → ∞. Thus, uniformly in j ≥ 1,m ≥ 0,

(i) πj(−v) ≥ Kj−v−1 uniformly in v ∈ K,
(ii) | ∂m

∂umπj(u)| ≤ K(1 + log j)mju−1 uniformly in |u| ≤ u0,

(iii) | ∂m

∂umT−uπj(u)| ≤ KT−u(1 + | log(j/T )|)mju−1 uniformly in |u| ≤ u0.
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Lemma 12 Under Assumptions A1 and A3, uniformly in t = 1, . . . , T and
T ≥ 1, for m ≥ 0,

sup
d≤g,ϕ∈Ψ

∣∣∣∣∂mct(d,ϕ)

∂dm

∣∣∣∣ = O(tmax{g−1,−1−ς}(log t)m), (159)

sup
d≥g,ϕ∈Ψ

∣∣∣∣ ∂m

∂dm
T−dct(d,ϕ)

∣∣∣∣ = O(T−gtmax{g−1,−1−ς}(1 + | log(t/T )|)m). (160)

Lemma 13 Under Assumptions A1 and A3,

1

T 2d−1

T∑
t=1

c2t−1(d,ϕ) =
ρ2(1;ϕ)

T 2d−1

T∑
t=1

π2
t−1(d) + |rT (d,ϕ)|, (161)

where, for any η > 0, supd≥1/2+η,ϕ∈Ψ |rT (d,ϕ)| = o(1).

Lemma 14 Under Assumptions A1 and A3, for any d ≤ d and α such that
0 < α < (ς − 1/2)/3,

inf
d≤d≤d,ϕ∈Ψ

T∑
t=1

c2t−1(d,ϕ) ≥ 1, (162)

inf
1/2−α≤d≤1/2+α,ϕ∈Ψ

1

T 2d−1

T∑
t=1

c2t−1(d,ϕ) ≥
ε

α
+ o(1), (163)

inf
1/2+α≤d≤d,ϕ∈Ψ

1

T 2d−1

T∑
t=1

c2t−1(d,ϕ) ≥ ε+ o(1), (164)

for some fixed ε > 0, which does not depend on α or T .
Additionally, for any α > 0 and g > α, and for m = 0, 1,

sup
d1≤1/2−α,d2≤1/2−α,ϕ∈Ψ

T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ) = O(1), (165)

sup
d1≥1/2+g

d2≤1/2−α,ϕ∈Ψ

1

T d1−1/2

T∑
t=1

∂m

∂dm1
ct−1(d1,ϕ)ct−1(d2,ϕ) = O(T−α(log T )m),

(166)

sup
d1≥1/2−α,d2≤1/2−α,ϕ∈Ψ

1

T d1−1/2

T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ) = O(Tα), (167)

sup
d1≥1/2−α,ϕ∈Ψ

1

T 2d1−1

T∑
t=1

c2t−1(d1,ϕ) = O(T 2α), (168)

sup
d1≥1/2+α,d2≤1/2−α,ϕ∈Ψ

1

T d1−1/2

T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ) = O(T−α log T ).

(169)
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Finally, for any η > 0 and θ ≥ −1/2− �, and for m = 0, 1,

sup
d1≥1/2+θ,d2≥1/2+θ
d1+d2≥1+η,ϕ∈Ψ

1

T d1+d2−1

T∑
t=1

∂m

∂dm1
ct−1(d1,ϕ)ct−1(d2,ϕ) = O((log T )m).

(170)

Lemma 15 Under Assumptions A1 and A3, for any α > 0 and κ > 2α, there
exists a fixed ε > 0, which does not depend on α or T , such that, uniformly in
|d1 − d2| ≥ κ,

inf
d1≤ 1

2−α

d2≤ 1
2−α

( T∑
t=1

c2t−1(d1,ϕ)
T∑

j=1

c2j−1(d2,ϕ)−
( T∑

t=1

ct−1(d1,ϕ)ct−1(d2,ϕ)

)2)
≥ κ2,

(171)

inf
1
2+α≤d1

1

T 2d1−1

⎛⎜⎝ T∑
t=1

c2t−1(d1,ϕ)−

(∑T
t=1 ct−1(d1,ϕ)ct−1(d2,ϕ)

)2

∑T
t=1 c

2
t−1(d2,ϕ)

⎞⎟⎠ ≥ ε,

(172)

inf
1
2−α≤d1≤ 1

2+α

d2≤ 1
2−α

1

T 2d1−1

(
T∑

t=1

c2t−1(d1,ϕ)

T∑
j=1

c2j−1(d2,ϕ)

−
(

T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ)

)2 )
≥ ε

α
+ o(1), (173)

inf
1
2−α≤d1≤ 1

2+α
1
2−α≤d2≤ 1

2+α

1

T 2d1−1

(
T∑

t=1

c2t−1(d1,ϕ)

−

(∑T
t=1 ct−1(d1,ϕ)ct−1(d2,ϕ)

)2

∑T
t=1 c

2
t−1(d2,ϕ)

)
≥ ε

α
+O(1), (174)

inf
1
2−α≤d1≤ 1

2+α
1
2−α≤d2≤ 1

2+α

1

T 2d1+2d2−2

(
T∑

t=1

c2t−1(d1,ϕ)

T∑
j=1

c2j−1(d2,ϕ)

−
(

T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ)

)2 )
≥ ε

α
+O(1). (175)

Lemma 16 Let θ and κ be arbitrary positive numbers such that 0 < θ <
min{ς − 1/2, κ/2}. Then, under Assumptions A1 and A3, for any real num-
bers d1, d2 ≤ 1/2 − θ and d1, d2 ≥ 1/2 + θ, uniformly in |d1 − d2| ≥ κ and in
t, k = 1, . . . , T and T ≥ 1,

sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

‖ht−1,T (d1, d2,ϕ)‖ = O(t−1/2−θT θ), (176)
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sup
d1∈[d1,d1],,ϕ∈Ψ

∣∣∣∣∣
T∑

t=1

ht−1,T (d1,ϕ)

∣∣∣∣∣ = O(T 1/2), (177)

sup
d1∈[d1,d1]

d2∈[d2,d2],ϕ∈Ψ

‖ht,T (d1, d2,ϕ)− ht−1,T (d1, d2,ϕ)‖ = O(t−3/2−θT θ), (178)

sup
d1∈[d1,d1]

d2∈[d2,d2]
ϕ∈Ψ

∣∣∣∣ ∂

∂d2

(
h′
t−1,T (d1, d2,ϕ)hk−1,T (d1, d2,ϕ)

)∣∣∣∣ = O(t−1/2−θk−1/2−θT 5θ),

(179)

sup
d1∈[d1,d1]

d2∈[d2,d2],ϕ∈Ψ

∣∣∣∣ ∂

∂d2
((ht,T (d1, d2,ϕ)− ht−1,T (d1, d2,ϕ))

′hk−1,T (d1, d2,ϕ))

∣∣∣∣
= O(t−3/2−θk−1/2−θT 5θ). (180)

Additionally, for any α such that 0 < α < θ,

sup
d1∈[d1,d1],d2∈[1/2+θ,d2],ϕ∈Ψ

∣∣∣∣ ∂

∂d2

(
h′
t−1,T (d1, d2,ϕ)hk−1,T (d1, d2,ϕ)

)∣∣∣∣
= O(t−1/2−αk−1/2−αT 2α), (181)

sup
d1∈[d1,d1]

d2∈[1/2+θ,d2],ϕ∈Ψ

∣∣∣∣ ∂

∂d2
((ht,T (d1, d2,ϕ)− ht−1,T (d1, d2,ϕ))

′hk−1,T (d1, d2,ϕ))

∣∣∣∣
= O(t−3/2−αk−1/2−αT 2α). (182)

Lemma 17 Under Assumptions A1–A3, uniformly in t = 1, . . . , T , T ≥ 1, and
ϕ ∈ Ψ,

sup
d≤g

|ρ(L;ϕ)ut(−d)| = Op(t
g−1/2 + log tI(g = 1/2) + I(g < 1/2)), (183)

sup
d≥g

|T−dρ(L;ϕ)ut(−d)| = Op(T
−g(tg−1/2 + log tI(g = 1/2) + I(g < 1/2))).

(184)

Lemma 18 Let θ and κ be arbitrary positive numbers such that 0 < θ <
min{ς − 1/2, κ/2}. Then, under Assumptions A1–A3, uniformly in ϑ ∈ Ξ and
in t, k = 1, . . . , T and T ≥ 1,

sup
δ0−δ≤g

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = Op(T
max{θ,g}), (185)

sup
δ0−δ≤g

∣∣∣∣ T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ

(
h′
t−1,T (1− δ, γ − δ,ϕ)

× hk−1,T (1− δ, γ − δ,ϕ)
)∣∣∣∣ = Op(k

−1/2−θTmax{θ,g}+5θ), (186)
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sup
δ0−δ≥g

1

T δ0−δ

∥∥∥∥∥
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
= Op(T

max{θ,g}−g), (187)

sup
δ0−δ≥g

1

T δ0−δ

∣∣∣∣ T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ

(
h′
t−1,T (1− δ, γ − δ,ϕ)

× hk−1,T (1− δ, γ − δ,ϕ)
)∣∣∣∣ = Op(k

−1/2−θTmax{θ,g}−g+5θ), (188)

sup
δ0−δ≤g,γ−δ≥1/2+θ

∣∣∣∣ T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ

(
h′
t−1,T (1− δ, γ − δ,ϕ)

× hk−1,T (1− δ, γ − δ,ϕ)
)∣∣∣∣ = Op(k

−1/2−θTmax{θα,g}+θ), (189)

sup
δ0−δ≥g,γ−δ≥1/2+θ

1

T δ0−δ

∣∣∣∣ T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ

(
h′
t−1,T (1− δ, γ − δ,ϕ)

× hk−1,T (1− δ, γ − δ,ϕ)
)∣∣∣∣ = Op(k

−1/2−θTmax{θ,g}+θ−g). (190)

Lemma 19 Let θ > 0 be an arbitrary number. Then, under Assumptions A1
and A3, uniformly in ϑ ∈ Ξ,

sup
γ0−δ≤g

∥∥∥∥∥
T∑

t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = O(Tmax{θ,g−1/2}), (191)

sup
γ0−δ≥g

1

T γ0−δ

∥∥∥∥∥
T∑

t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
= O(Tmax{θ,g−1/2}−g). (192)

Lemma 20 Under Assumptions A1–A3, uniformly in ϑ ∈ Ξ,

sup
δ0−δ≤g1,γ0−δ≤g2

1

T

∣∣∣∣∣
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(γ0 − δ,ϕ)

∣∣∣∣∣
= Op(T

g1+g2−3/2 + T−1(log T ) + T g1−1/2−ς

+ Tmax{g2−2,0}(log T )2I(g1 ≤ −1/2)), (193)

sup
δ0−δ≥g1,γ0−δ≥g2

1

T γ0+δ0−2δ

∣∣∣∣∣
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(γ0 − δ,ϕ)

∣∣∣∣∣
= Op(T

−1/2 + T 1/2−g2−ς + T−g1−g2(log T ) + T−g1−1(log T )2I(g1 ≤ −1/2)).
(194)
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Lemma 21 Let η, α be arbitrary positive numbers such that α < η+1/2. Then,
under Assumptions A1–A3, uniformly in ϑ ∈ Ξ,

sup
δ0−δ≥1/2+η,d≤1/2−α

1

T δ0−δ

∣∣∣∣∣
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(d,ϕ)

∣∣∣∣∣ = Op(T
−α),

(195)

sup
δ0−δ≥1/2+η,d≥1/2−α

1

T δ0−δ+d−1/2

∣∣∣∣∣
T∑

t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(d,ϕ)

∣∣∣∣∣ = Op(1).

(196)

Lemma 22 Let Zt, t = 1, . . . , T , be arbitrary. Then

T∑
t=1

Z2
t ≥

(
π2

4
T−2 +O(T−3)

) T∑
t=1

(Δ−1
+ Zt)

2, (197)

where the O(T−3) term does not depend on any parameters.
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