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highlight the flexibility of these new advances in YUIMA using simulated
and real data.

MSC2020 subject classifications: Primary 62F12, 62M20; secondary
60G51, 62-04.
Keywords and phrases: Noise Inference, SDE driven by a Lévy process,
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1. Introduction

We consider the following univariate Markovian stochastic differential equation
(SDE):

dXt = a(Xt, α)dt+ c(Xt−, γ)dJ
η
t , (1)

where:

• The coefficients a and c are smooth enough with c being non-degenerate,
and known except for an unknown parameter

θ := (γ, α) ∈ Θγ ×Θα =: Θ ⊂ Rp

for bounded convex domains Θα ⊂ Rpα and Θγ ⊂ Rpγ (p = pα + pγ);
• The driving noise Jη is a standardized non-Gaussian Lévy process with

finite moments, whose distribution depends on an unknown parameter
η ∈ Θη, a domain in Rpη , and where Jη is independent of X0.

We write J = Jη in the sequel. We suppose that there are true values θ0 =
(γ0, α0) ∈ Θγ × Θα and η0 ∈ Θη which induce the true image measure P of
(X, J), and that we observe a discrete-time sample Xn := (Xtj )

n
j=1, where

tj = tnj := jhn, with the sampling stepsize h = hn → 0 satisfying that

Tn := nh → ∞ and nh2 → 0 as n → ∞, (2)

the so-called rapidly increasing experimental design.
Our objective is to estimate the value ξ0 := (θ0, η0) under the ergodicity. We

remark the parameter may not completely characterize the distribution L(J), so
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that the problem is not necessarily parametric; for example, η is just a skewness
or kurtosis, which may or may not completely determine L(J1).

For the estimation of the coefficient parameter θ, from the statistical point
of view it is important what kind of distributional is used to approximate the
conditional distribution of Xtj given Xtj−1 . Previously, [12] and [18] considered
estimation of θ based on the Gaussian quasi-likelihood (GQL), and proved the
asymptotic normality and the tail probability estimates of the Gaussian quasi-
maximum likelihood estimator (GQMLE). At the expense of efficiency, the GQL
based method has the robustness against misspecification of the driving-noise
distribution, which may be crucial in the context of time-series models, see [17,
Section 6.2]. Further, concerned with estimation of a Lévy-measure functional
of the form

∫
ϕ(z)ν(dz), with ν denoting the Lévy measure of J , the previous

study [13] proposed a moment-matching based estimator and proved its asymp-
totic normality at rate

√
Tn. However, the procedure imposed some stringent

conditions on the behavior of ϕ around the origin [13, Assumption 2.7], and
was not quite suitable if we want to estimate L(J1) directly; in general, estima-
tion of the distribution and that of the corresponding Lévy measure can be of
technically rather different matters.

In this paper, we will propose yet another strategy for estimating η based on
the unit-time approximation, which goes as follows:

1. First we construct the GQMLE θ̂n := (γ̂n, α̂n) and the residual

Δ̂jJ = Δ̂jJ
n
:=

Xtj −Xtj−1 − ha(Xtj−1 , α̂n)

c(Xtj−1 , γ̂n)
. (3)

2. We then estimate the L(J1)-i.i.d. sequence (i = 1, . . . , n)

εi := Ji − Ji−1

by adding up the finer increments over the ith unit-time interval [i− 1, i]:

ε̂i :=
∑
j∈Ai

Δ̂jJ, (4)

where, for each i ∈ {1, 2, . . . , �Tn	},

Ai := {j ∈ N : i− 1 < tj ≤ i} =

{
j ∈ N :

⌊
i− 1

h

⌋
+ 1 ≤ j ≤

⌊
i

h

⌋}
,

and then measure the discrepancy between a functional of {ε̂i} and that
of {εi} through a stochastic expansion.

3. For an appropriate function m, we estimate η by

η̂n ∈ argmax
η∈Θη

�Tn�∑
i=1

m (ε̂i, η) .
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The rest of this paper is organized as follows. We briefly summarize some
prerequisites in Section 2, and then presents theoretical results in Section 3.
Section 4 introduces new classes and methods in YUIMA R package ([2] and [7])
for the estimation procedure proposed in the previous sections. Some numerical
examples based on simulated and real data are given in Section 5.

2. Preliminaries

2.1. Notations and conventions

Here are some basic notations and conventions used in this paper.

• For any vector variable x = (x(i)), we write ∂x =
(

∂
∂x(i)

)
i
.

• C denotes a universal positive constant which may vary at each appear-
ance.

• � stands for the transpose operator, and v⊗2 := vv� for any matrix v.
• For a matrix M = (Mij) ∈ Rd1 × Rd2 and vector u = (uj) ∈ Rd2 , we will

write M [u] =
∑d2

j=1 M·juj ∈ Rd1 . In particular, when d1 = 1, it stands for
the dot product of two vectors. We will also write M [U ] =

∑
k,l MklUkl

for two square matrices M and U of the same order.

• The convergences in probability and in distribution are denoted by
p−→

and
L−→, respectively, and all limits appearing below are taken for n → ∞

unless otherwise mentioned.
• For two nonnegative real sequences (an) and (bn), we write an � bn if

lim supn(an/bn) < ∞.
• For any x ∈ R, �x	 denotes the maximum integer which does not exceed

x.
• Given a function h : R → R+ and a signed measurem on a one-dimensional

Borel space, we write

||m||h = sup {|m(f)| : f is R-valued, m-measurable and satisfies |f | ≤ h} .

2.2. Basic assumptions

Denote by (Ω,F , (Ft)t≥0, P ) the underlying complete filtered probability space;
every processes are adapted to the filtration (Ft). We will write E for the ex-
pectation operator associated with P .

Assumption 2.1. The Lévy process J has moments of any order with E[J1] =
0, E[J2

1 ] = 1, and E[|J1|q] < ∞, for any q > 0.

Assumption 2.2. 1. The drift coefficient a(·, α0) and scale coefficient c(·, γ0)
are Lipschitz continuous, and c(x, γ) �= 0 for every (x, γ).

2. For each i ∈ {0, 1} and k ∈ {0, . . . , 4}, the following conditions hold:

• The coefficients a and c admit the partial derivatives ∂i
x∂

k
αa and ∂i

x∂
k
γc

for i ≥ 0 and k ≥ 0, all of which have continuous extensions as
elements in C(R×Θ).
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• There exists nonnegative constant Ci,k satisfying

sup
(x,α,γ)∈R×Θα×Θγ

1

1 + |x|Ci,k

{
|∂i

x∂
k
αa(x, α)|+ |∂i

x∂
k
γc(x, γ)|+ |c−1(x, γ)|

}
< ∞.

(5)

Then

Assumption 2.3. 1. There exists a probability measure π0 such that for
every q > 0, we can find constants a > 0 and Cq > 0 for which

sup
t∈R+

exp(at)||Pt(x, ·)− π0(·)||hq ≤ Cqhq(x), (6)

for any x ∈ R where hq(x) := 1 + |x|q.
2. For any q > 0, we have

sup
t∈R+

E[|Xt|q] < ∞. (7)

See [12, Proposition 5.4] for easy-to-verify conditions for Assumption 2.3.

We introduce a block-diagonal p× p-matrix

Γ = diag(Γγ ,Γα),

whose components are defined by:

Γγ := 2

∫
R

(∂γc(x, γ0))
⊗2

c2(x, γ0)
π0(dx),

Γα :=

∫
R

(∂αa(x, α0))
⊗2

c2(x, γ0)
π0(dx).

Assumption 2.4. Γ is positive definite.

We define real valued functions H1(γ) and H2(α) on Θγ and Θα by

H1(γ) = −
∫
R

(
log c2(x, γ) +

c2(x, γ0)

c2(x, γ)

)
π0(dx), (8)

H2(α) = −
∫
R

c(x, γ0)
−2(a(x, α0)− a(x, α))2π0(dx). (9)

We assume the following identifiability condition for H1(γ) and H2(α):

Assumption 2.5. θ� ∈ Θ, and there exist positive constants χγ and χα such
that for all (γ, α) ∈ Θ,

Y1(γ) := H1(γ)−H1(γ0) ≤ −χγ |γ − γ0|2, (10)

Y2(α) := H2(α)−H2(α0) ≤ −χα|α− α0|2. (11)
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2.3. Examples

Although Assumption 2.1 imposes a strong restriction on the mean and variance
structure of Z, there is still room for statistical modeling of Z with respect to,
for example, its skewness and jump activity. In this section, with the param-
eter constraints for Assumption 2.1, we give concrete Lévy processes induced
from subordinators (i.e. non-decreasing Lévy processes) by the following two
procedures: For given two independent subordinators τ1 and τ2, one can easily
construct a possibly skewed Lévy process of finite variation by taking its bilat-
eral version: τ ′ := τ1− τ2. Another way to deliver a new Lévy process is to take
a normal mean variance mixture of a subordinator: for μ, β ∈ R, a subordinator
τ , and a standard normal random variable η being independent of τ , the normal
mean variance mixture of τ at time t is given by

Zt = μt+ τtβ +
√
τtη.

By their construction, E[|τ ′|q] < ∞ and E[|Z|q] < ∞ hold as long as the q-
th moment of τ1, τ2 and τ exists. It is worth noting that having a generator
of τ1, τ2 and τ in hand, we can directly obtain that of τ ′ and Z. All of the
following induced Lévy processes can be generated by the functions setLaw and
simulate in YUIMA package.

Example 2.6. (Bilateral gamma [9]) For δ1, γ1, δ2, γ2 ∈ R+, the bilateral gamma
process τ ′ is defined by the difference of two independent gamma subordinators
τ1 and τ2 whose Lévy densities are expressed as: for each i ∈ {1, 2},

fτ i(z) =
δi
z
e−γiz, z > 0.

We write the law of τ ′1 as bgamma(δ1, γ1, δ2, γ2) and it is straightforward from
the form of fτ i that τ ′t ∼ bgamma(δ1t, γ1, δ2t, γ2). Since the density function of
bgamma(δ1, γ1, δ2, γ2) is the convolution of two gamma density, it satisfies the
symmetry relation

p(x; δ1, γ1, δ2, γ2) = p(−x; δ2, γ2, δ1, γ1), x ∈ R \ {0},

and on the positive real line, its form is given by

p(x; δ1, γ1, δ2, γ2) =
γδ1
1 γδ2

2

(γ1 + γ2)
1
2 (δ1+δ2)Γ(δ1)

x
1
2 (δ1+δ2)−1e−

x
2 (γ1−γ2)

× W 1
2 (δ1−δ2),

1
2 (δ1+δ2−1)(x(γ1 + γ2)),

where Wλ,μ(z) denotes the Whittaker function. By using the independence be-
tween τ1 and τ2, the parameter constraints for Assumption 2.1 are written as
follows:

E[Z1] =
δ1
γ1

− δ2
γ2

= 0, V [Z1] =
δ1
γ2
1

+
δ2
γ2
2

= 1.
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Example 2.7. (Normal (exponentially) tempered stable) The normal (exponen-
tially) tempered stable law NTS(α, a, b, β, μ) is defined by the law of the nor-
mal mean variance mixture of the positive exponentially tempered stable random
variable whose Lévy density is given by

f(z) = az−1−αe−bz, α ∈ (0, 1), a > 0, b > 0,

and its law is denoted by TS(α, a, b); especially inverse Gaussian law corresponds
to α = 1

2 . From [15, Theorem 30.1], the Lévy density of NTS(α, a, b, β, μ) is
explicitly expressed as:

g(z) =

√
2

π
aeβz

(
z2

2b+ β2

)−α
2 − 1

4

Kα+ 1
2

(
z
√

(2b+ β2)
)
,

where Kα+ 1
2
stands for the modified Bessel function of the third kind with in-

dex α + 1
2 . From the expression of the Lévy density, the associated positive

exponentially tempered stable subordinator τ satisfies τt ∼ TS(α, at, b) and
thus the corresponding normal (exponentially) tempered stable process Z also
does Zt ∼ NTS(α, at, b, β, μt). Since zλKλ(z) � 1 as z ↓ 0 for λ > 0, the
Blumenthal-Getoor index of Z is 2α. The parameter constraints for Assumption
2.1 are written as follows:

E[Z1] = μ−aαΓ(−α)bα−1β = 0, V [Z1] = aαΓ(−α)bα−1

[
(α− 1)β2

b
− 1

]
= 1.

Especially in the simple case where μ = β = 0 (that is, Z is a time-changed
Brownian motion), the above constraints are reduced to

− aαbα−1Γ(−α) = 1.

2.4. Stepwise Gaussian quasi-likelihood estimation

Here and in what follows, for any process Y we will denote by ΔjY the j-th
increment

ΔjY := Ytj − Ytj−1 ,

and fj−1(θ) := f(Xtj−1 , θ) for a measurable function f on R × Θ. Building on
the discrete time formal Gaussian approximation, we define the stepwise GQL
functions H1,n(γ) and H2,n(α) as follows [18]:

H1,n(γ) := − 1

2Tn

n∑
j=1

(
h log c2j−1(γ) +

(ΔjX)2

c2j−1(γ)

)
,

H2,n(α) := − 1

2Tn

n∑
j=1

(ΔjX − haj−1(α))
2

hc2j−1(γ̂n)
,

where γ̂n is any maximizer of H1,n over Θγ . We then define the associated

stepwise GQMLE θ̂n := (γ̂n, α̂n) where α̂n is any maximizer of H2,n over Θα.
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Formally, the first-stage H1,n(γ) corresponds to the quasi log-likelihoods asso-
ciated with the (fake) approximation N(x, c2(x, γ)h) for L(Xtj |Xtj−1 = x),
and also the second-stage H2,n(α) does to the one associated with N(x +
a(x, α)h, c2(x, γ̂n)h).

Let ν0(dz) denote the (true) Lévy measure of J , and

νk :=

∫
zk ν0(dz), k ≥ 2.

Under the aforementioned Assumptions 2.1 to 2.5, both ν3 and ν4 exist and are
finite (and E[J2

1 ] = ν2 + σ2 = 1, where σ2 ≥ 0 denotes the Gaussian variance of
J , possibly σ2 = 0). We can deduce the asymptotic normality and the uniform
tail-probability estimate:

Theorem 2.8. Suppose that Assumptions 2.1 to 2.5 holds.

1. The GQMLE θ̂n = (γ̂n, α̂n) satisfies√
Tn(θ̂n − θ0)

L−→ Npγ+pα

(
0,Γ−1Σθ(Γ

−1)�
)
, (12)

where the p× p-matrix

Σθ =

(
Σγ Σγ,α

Σ�
γ,α Σα

)
,

is defined by

Σγ = ν4

∫ (
∂γc(x, γ0)

c(x, γ0)

)⊗2

π0(dx),

Σγ,α = ν3

∫
∂γc(x, γ0)∂αa(x, α0)

c2(x, γ0)
π0(dx),

Σα =

∫ (
∂αa(x, α0)

c(x, γ0)

)⊗2

π0(dx).

2. For any L > 0, there exists a constant CL > 0 such that

sup
n∈N

P
(∣∣∣√Tn(θ̂n − θ0)

∣∣∣ > r
)
≤ CL

rL
, r > 0.

We note that Σγ,α, α̂n and γ̂n are asymptotically independent if ν3 = 0, hence
if in particular ν is symmetric. We refer to [12] and [18] for technical details of
the proof of Theorem 2.8; although the two cited papers used a Z-estimator
type identifiability condition, which is seemingly different from Assumption 2.5
(M -estimator type), it is trivial that we can follow the same line without any
essential change.

To appreciate the difficulty of relaxing the standing condition nh2 → 0 in
(2), let us first mention the case of diffusions: let (wt) be a standard Wiener
process, and consider the following one-dimensional diffusion process

dYt = a(Yt)dt+ b(Yt)dwt
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defined on the stochastic bases (Ω,F , (Ft)t∈R+ , P ). Write the infinitesimal gener-
ator of Y asA. By repeatedly applying Itô’s formula, it follows that for 0 ≤ s < t,
q ∈ N, and a sufficiently smooth function f , we have

f(Yt)

= f(Ys) +

∫ t

s

∂f(Yu)dYu +
1

2

∫ t

s

∂2f(Yu)b
2(Yu)du

= f(Ys) +

∫ t

s

(
∂f(Yu)a(Yu) +

1

2
∂2f(Yu)b

2(Yu)

)
du+

∫ t

s

∂f(Yu)b(Yu)dwu

= f(Ys) +

∫ t

s

Af(Yu)du+

∫ t

s

∂f(Yu)b(Yu)dwu

= f(Ys) +

∫ t

s

(
Af(Ys) +

∫ s

u

A2f(Yv)dv +

∫ s

u

∂Af(Yv)b(Yv)dwv

)
du

+

∫ t

s

∂f(Yu)b(Yu)dwu

= f(Ys) + (t− s)Af(Ys) +

∫ t

s

(∫ s

u

A2f(Yv)dv +

∫ s

u

∂Af(Yv)b(Yv)dwv

)
du

+

∫ t

s

∂f(Yu)b(Yu)dwu

=

q−1∑
i=0

(t− s)i

i!
Aif(Ys) +

∫ t

s

∫
. . .

∫
Aqf(Yvq )dv1 . . . dvq + (martingale term).

Thus, under suitable integrability conditions, we obtain the expansion of
E[f(Yt)|Fs]:

E[f(Yt)|Fs] =

q−1∑
i=0

(t− s)i

i!
Aif(Ys) +Op((t− s)q). (13)

In particular, the first-order approximation of the conditional expectation and
conditional variance are given by

E[Xt|Fs] ≈ Xs + (t− s)a(Xs, α0),

V [Xt|Fs] ≈ E[(Xt −Xs − (t− s)a(Xs, α0))
2|Fs] ≈ (t− s)c(Xs, γ0),

respectively, which are used for constructing the GQL for diffusions. Relaxation
of the condition nh2 → 0 to nhk → 0 for k > 2 is then possible by taking
q = q(k) large enough according to the value of k: the associated GQMLE has
the consistency and asymptotic normality under nhk → 0. We refer to [8] for
details. At this point, we should remark that the GQL based on the first term
on the right-hand side of (13) (with f(y) = y and f(y) = y2) is fully explicit
whatever k > 2 is.

On the other hand, although similar Itô-Taylor expansions to E[Xt|Fs] and
V [Xt|Fs] can be easily derived in our Lévy driven case (1), the corresponding
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infinitesimal generator contains not only the differential operator but also the
integral operator with respect to the Lévy measure νη of the driving Lévy noise.

Specifically, its infinitesimal generator Ã is given by

Ãf(x) = a(x, α)∂f(x) +

∫
(f(x+ c(x, γ)z)− f(x)− ∂f(x)c(x, γ)z)νη(dz),

for a suitable function f . Consequently, the modified GQL based on the higher-
order Itô-Taylor expansion (13) contains the unknown parameter η in addition
to the drift and scale parameters. It is not clear that the simultaneous estimation
of α, γ, and η by the modified GQL has a nice theoretical property. Even if it
does, the entailed numerical optimization involved would be quite heavy and
unstable since, for each η, we need to repeatedly compute several integrals with
respect to νη inside of the modified GQL. For this reason, it is difficult to remove
the condition nh2 → 0 in the present general non-linear-SDE setting, as long as
we use the GQL based on the stochastic expansion (13).

In practice, the sampling points t1, . . . tn may not be equally spaced. In such
a case, supposing (2), we remark that the same statement as in Theorem 2.8
remains in place under the additional “sampling-balance” condition:

min1≤j≤n(tj − tj−1)

max1≤j≤n(tj − tj−1)
→ 1.

For more technical details, see the discussion in [12, p. 1604–1605].

3. Theoretical results

3.1. Stochastic expansion of residual functional

Having the GQMLE in hand, we now turn to approximating L(J1), the the
unit-time distribution of J , based on the residuals

ε̂i =
∑
j∈Ai

Δ̂jJ,

where

Δ̂jJ =
ΔjX − haj−1(α̂n)

cj−1(γ̂n)
.

Write ûα,n =
√
Tn(α̂n − α0) and ûγ,n =

√
Tn(γ̂n − γ0), and let

ûθ,n := (ûγ,n, ûα,n).

From now on we will mostly omit “(θ0)” from notation. In particular, for a
measurable function f(x, θ) we will abbreviate fj−1(θ0) as fj−1.

Theorem 3.1. Suppose that Assumptions 2.1 to 2.5 hold. Let ρ : R → R be a
C2-function such that

max
i∈{0,1,2}

∣∣∂i
ερ(ε)

∣∣ � 1 + |ε|C .
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Then, we have

�Tn�∑
i=1

ρ (ε̂i) =

�Tn�∑
i=1

ρ (εi) +
1√
Tn

�Tn�∑
i=1

∂ερ (εi) bi[ûθ,n] + op

(√
Tn

)
, (14)

where the random sequence (bi)
�Tn�
i=1 ⊂ Rp is given by

bi = bi(θ0) :=
∑
j∈Ai

(
∂γ(c

−1)j−1(ΔjX − haj−1)
−hc−1

j−1∂αaj−1

)
.

Theorem 3.1 reveals the quantitative effect of plugging in θ̂n. The second term
on the right-hand side of (14) is not op(

√
Tn) but Op(

√
Tn), which implies that

the asymptotic distribution of η̂n is indeed subject to influence of the proposed
unit-time approximation; this is natural and expected, for we are using the√
Tn-consistent (generally sub-optimal) estimator of θ.
To prove Theorem 3.1, we begin with a preliminary estimate.

Lemma 3.2. Under Assumptions 2.1 to 2.5, for each r ≥ 2 we have

max
1≤i≤�Tn�

E

[∣∣∣∣ε̂i − εi −
1√
Tn

bi[ûθ,n]

∣∣∣∣r] � h ∨ T−r
n . (15)

Proof. We will abbreviate a(Xs, α0) as as and so on; with a slight abuse of

notation, we will write aj−1 for atj−1 . Write Δ̂jJ = δj(θ̂n); then,

δj(θ̂n) = δj + (∂θδj)[θ̂n − θ0] +
1

2

(
∂2
θδj(θ0 + sn(θ̂n − θ0))

)
[(θ̂n − θ0)

⊗2]

for a suitable random point sn ∈ [0, 1]. Decompose ε̂i − εi as follows:

ε̂i − εi =
∑
j∈Ai

(Δ̂jJ −ΔjJ) +
(
J(� i−1

h �+1)h − Ji−1

)
+

(
Ji − J� i

h �h

)
=

1√
Tn

bi[ûθ,n] + ζ1,i + ζ2,i + ζ3,i,

where

ζ1,i :=
1

2Tn

∑
j∈Ai

(
∂2
θδj(θ0 + sn(θ̂n − θ0))

)
[û⊗2

θ,n],

ζ2,i :=
∑
j∈Ai

(δj −ΔjJ) =
∑
j∈Ai

c−1
j−1

(∫ tj

tj−1

(as − aj−1)ds

+

∫ tj

tj−1

(cs− − cj−1)dJs

)
,

ζ3,i :=
(
J(� i−1

h �+1)h − Ji−1

)
+

(
Ji − J� i

h �h

)
.
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Before proceeding, let us note that by Theorem 2.8 the sequence (ûθ,n) is Lr-
bounded for each r ≥ 2:

E (|ûθ,n|r) � 1, (16)

where we implicitly assume that r ≥ 1 when using this notation.
First we will deduce

max
1≤i≤�Tn�

E (|ζ1,i|r) � T−r
n . (17)

Since the parameter space Θ = Θα × Θγ is supposed to be bounded and
convex, the Sobolev inequality is in force (see [1] for details): for a random field
u ∈ C1(Θ) and q > p, we have

E

[
sup
θ∈Θ

|u(θ)|q
]
� sup

θ∈Θ
{E[|u(θ)|q] + E[|∂θu(θ)|q]} .

Noting the identities

∂k
γ∂

l
αδj(θ) = −h

{
∂k
γ (c

−1)j−1(γ)
}
∂l
αaj−1(α),

∂k
γδj(θ) =

{
∂k
γ (c

−1)j−1(γ)
}
(ΔjX − haj−1(α)),

valid for each k ≥ 0 and l ≥ 1, we can apply Sobolev’s and Jensen’s inequalities
to conclude that, for r > pγ ,

E

⎡⎣∣∣∣∣∣∣
∑
j∈Ai

(
∂2
θδj(θ0 + sn(θ̂n − θ0))

)∣∣∣∣∣∣
r⎤⎦

� E

⎡⎣ sup
γ∈Θγ

∣∣∣∣∣∣
∑
j∈Ai

∂2
γ(c

−1)j−1(γ)

∫ tj

tj−1

cs−dJs

∣∣∣∣∣∣
r⎤⎦+ E

⎡⎣h ∑
j∈Ai

(1 + |Xtj−1 |C)

⎤⎦
� max

k∈{2,3}
sup
γ∈Θγ

E

⎡⎣∣∣∣∣∣∣
∑
j∈Ai

∂k
γ (c

−1)j−1(γ)

∫ tj

tj−1

cs−dJs

∣∣∣∣∣∣
r⎤⎦+ 1.

Let χj(s) denote the indicator function of the interval [tj−1, tj).
To proceed, we recall Burkholder’s inequality for stochastic integrals with

respect to a centered Lévy process: under the moment conditions on Jη, for any
predictable process H and q ≥ 2 we have

E

[∣∣∣∣∣
∫ � i

h	h

� i−1
h 	h

HsdJs

∣∣∣∣∣
q]

≤ Kq(ν
q/2
η,2 + νη,q)

∫ � i
h	h

� i−1
h 	h

E [|Hs|q] ds �
∫ � i

h	h

� i−1
h 	h

E [|Hs|q] ds,

where Kq is a positive constant depending only on q, and νη,k :=
∫
zk νη(dz)

for k ≥ 2 (see [14, Theorem IV 48]).
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Then, we see that the last expectation equals

E

⎡⎣∣∣∣∣∣∣
∫ � i

h	h

� i−1
h 	h

∑
j∈Ai

χj(s)∂
k
γ (c

−1)j−1(γ)cs−dJs

∣∣∣∣∣∣
r⎤⎦

�
∑
j∈Ai

∫ tj

tj−1

E
[∣∣∂k

γ (c
−1)j−1(γ) cs

∣∣r] ds � 1. (18)

This together with (16) concludes (17).
Turning to ζ2,i, we note the standard moment estimate: for any real r ≥ 2,

max
j≤n

sup
s∈(tj−1,tj ]

E
[
|Xs −Xtj−1 |r

]
� h.

With this and the Lipschitz property of x �→ (a(x, α0), c(x, γ0)), analogous ar-
guments as in handling ζ1,i yield that for each r ≥ 2

max
1≤i≤�Tn�

E [|ζ2,i|r] � h. (19)

As for the remaining ζ3,i, it follows from Assumption 2.1 and the stationarity
of increments that for each r ≥ 2,

max
1≤i≤�Tn�

E [|ζ3,i|r] � E
[(

Jj−1 − J� j−1
h �h+h

)r]
+ E

[(
J� j

h �h − Jj

)r]
� h.

(20)

Piecing together (17), (19), and (20) concludes the proof.

Proof of Theorem 3.1. Mimicking the estimates for (17), for each r ≥ 2 we
obtain

max
1≤i≤�Tn�

E

[∣∣∣∣ 1√
Tn

bi

∣∣∣∣r] � T−r/2
n .

Combined with (15) and (16), it follows from Hölder’s inequality that for each
r ≥ 2,

max
1≤i≤�Tn�

E [|ε̂i − εi|r] � h ∨ T
− r

2
n , (21)

and hence max1≤i≤�Tn� E[|ε̂i|r] � 1 as well. We use the expression

�Tn�∑
i=1

ρ (ε̂i) =

�Tn�∑
i=1

ρ (εi) +

�Tn�∑
i=1

∂ερ (εi) (ε̂i − εi)

+
1

2

�Tn�∑
i=1

∂2
ε ρ (εi + u (ε̂i − εi)) (ε̂i − εi)

2

for a (random) u ∈ [0, 1]. By means of Schwarz’s inequality and (15),

E

⎡⎣∣∣∣∣∣∣
�Tn�∑
i=1

∂ερ (εi) (ε̂i − εi)−
1√
Tn

�Tn�∑
i=1

∂ερ (εi) bi[ûθ,n]

∣∣∣∣∣∣
⎤⎦
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= E

⎡⎣∣∣∣∣∣∣
�Tn�∑
i=1

∂ερ (εi)

(
ε̂i − εi −

1√
Tn

bi[ûθ,n]

)∣∣∣∣∣∣
⎤⎦ � Tn

√
h ∨ T−2

n (22)

=
√

Tn

√
nh2 ∨ T−1

n = o
(√

Tn

)
.

By the moment estimates in the proof of Lemma 3.2, Hölder’s inequality, and
(21), and also recalling (2), we see that for δ ∈ (1, 2],

E

⎡⎣∣∣∣∣∣∣
�Tn�∑
i=1

∂2
ε ρ (εi + u (ε̂i − εi)) (ε̂i − εi)

2

∣∣∣∣∣∣
⎤⎦

� Tn max
1≤i≤�Tn�

E
[
|ε̂i − εi|2δ

]1/δ
�

√
Tn

{
(nh1+2/δ)δ/2 ∨ T−δ/2

n

}1/δ

= o
(√

Tn

)
.

This completes the proof.

3.2. M-estimation of noise parameter

We keep Assumptions 2.1 to 2.5 in force. Having Theorem 3.1 in hand, we
proceed with estimation of η based on the unit-time residual sequence (ε̂i). Let

H3,n(η) :=
1

Tn

�Tn�∑
i=1

m(ε̂i, η),

and consider an M -estimator

η̂n ∈ argmax
η∈Θη

H3,n(η). (23)

Among others, this includes the (quasi) maximum-likelihood for m(ε, η) =:
log f(ε; η), where {f(ε; η) : η ∈ Θη} is a model for the unit-time noise dis-
tribution L(J1). We need to impose several conditions on the function m, all of
which are standard in the general theory of M -estimation.

Assumption 3.3.

1. m ∈ C2,3(R × Θη) and max i∈{0,1,2}
k∈{0,1,2,3}

supη∈Θη

∣∣∂i
ε∂

k
ηm(ε, η)

∣∣ � 1 + |ε|C for

some C ≥ 0.

2. E [∂ηm(J1, η0)] = 0, the pη × pη-matrix E
[
(∂ηm(J1, η0))

⊗2
]
is positive

definite, and
{η0} = argmax

η
E [m(J1, η)] .

The consistency of η̂n can be easily seen from Theorem 3.1 and Lemma 3.2:
we have the continuous random function

Yn(η) := H3,n(η)−H3,n(η0)
p−→ Y(η) := E [m(J1, η)]− E [m(J1, η0)] ,
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where Y(η) ≤ 0 by Jensen’s inequality with Y(η) = 0 if and only if η = η0, and
moreover, the convergence is uniform in η ∈ Θη since supn E[supη |∂ηYn(η)|] <
∞. Hence the consistency η̂n

p−→ η0 follows.
We turn to the asymptotic normality of η̂n. Let ûη,n :=

√
Tn(η̂n − η0). In

the sequel, for any measurable function f(x, θ) we will simply write f̂j−1 for

fj−1(θ̂n).

Corollary 3.4. Under Assumptions 2.1 to 2.5, and Assumption 3.3, we have

(
−∂2

ηH3,n(η̂n)
)
[ûη,n]−

1

Tn

�Tn�∑
i=1

(
∂η∂εm (ε̂i, η̂n)

(
b̂i[ûθ,n]

))
L−→ Npη

(
0, E

[
(∂ηm(J1, η0))

⊗2
])

,

where

b̂i :=
∑
j∈Ai

(
̂∂γ(c−1)j−1(ΔjX − hâj−1)

−hĉ−1
j−1∂̂αaj−1

)
.

Proof. By the consistency η̂n
p−→ η0 we may and do focus on the event {∂ηH3,n

(η̂n) = 0}, on which(
−
∫ 1

0

∂2
ηH3,n(η0 + s(η̂n − η0))ds

)
[ûη,n] =

√
Tn∂ηH3,n.

Then, by Theorem 3.1 we have

(
−∂2

ηH3,n(η̂n) + op(1)
)
[ûη,n] =

1√
Tn

�Tn�∑
i=1

∂ηm (εi, η0)

+
1

Tn

�Tn�∑
i=1

(
∂η∂εm (ε̂i, η̂n)

(
b̂i[ûθ,n]

))
+ op(1).

Hence, letting
ûn := (ûθ,n, ûη,n) ,

we have

Ĥn[ûn] =
1√
Tn

�Tn�∑
i=1

∂ηm (εi, η0) + op(1), (24)

where Ĥn is pη × (p+ pη)-matrix given by

Ĥn =

⎛⎝− 1

Tn

�Tn�∑
i=1

∂η∂εm (ε̂i, η̂n) b̂i, − ∂2
ηH3,n(η̂n)

⎞⎠ ,

and is Op(1). Since the random variables ε1, ε2, . . . , ε�Tn� are i.i.d., the desired
result follows on applying the central limit theorem to (24).
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Corollary 3.4 suggests that the effect of plugging in the GQMLE does remain
in the limit. Therefore, in order to construct confidence interval and hypothesis
testing for η, we need to verify the joint asymptotic distribution of În[ûn] with
some invertible matrix În. We additionally introduce the following condition.

Assumption 3.5. There exist pη × pγ-matrix Ση,γ and pη × pα-matrix Ση,α

such that

1

Tn

�Tn�∑
i=1

∂ηm(εi, η0)
∑
j∈Ai

(
∂γcj−1

cj−1

[
(ΔjJ)

2 − h
]) p−→ Ση,γ , (25)

1

Tn

�Tn�∑
i=1

∂ηm(εi, η0)
∑
j∈Ai

(
∂αaj−1

cj−1
ΔjJ

)
p−→ Ση,α. (26)

Furthermore, the (p+ pη)× (p+ pη)-matrix

Σ =

⎛⎜⎝ Σγ Σγ,α Ση,γ

Σ�
γ,α Σα Ση,α

Σ�
η,γ Σ�

η,α E
[
(∂ηm(J1, η0))

⊗2
]
⎞⎟⎠ ,

is invertible.

From now on, we will write Ei−1[·] for the conditional expectation E[·|Fi−1].

Remark 3.6. By an elementary application of Burkholder’s inequality, it is
easy to deduce that (25) and (26) are equivalent to

1

Tn

�Tn�∑
i=1

Ei−1

⎡⎣∂ηm(εi, η0)
∑
j∈Ai

(
∂γcj−1

cj−1

[
(ΔjJ)

2 − h
])⎤⎦ p−→ Ση,γ ,

1

Tn

�Tn�∑
i=1

Ei−1

⎡⎣∂ηm(εi, η0)
∑
j∈Ai

(
∂αaj−1

cj−1
ΔjJ

)⎤⎦ p−→ Ση,α,

respectively. This fact will be used later.

Let

Γ̂n := diag(−∂2
γHn(γ̂n),−∂2

αHn(α̂n)),

În :=

(
Γ̂n O

−T−1
n

∑�Tn�
i=1 ∂η∂εm (ε̂i, η̂n) b̂i −∂2

ηH3,n(η̂n)

)
.

We also introduce the (p+ pη)× (p+ pη)-matrix

Σ̂n =

⎛⎝ Σ̂γ,n Σ̂γ,α,n Σ̂η,γ,n

Σ̂�
γ,α,n Σ̂α,n Σ̂η,α,n

Σ̂�
η,γ,n Σ̂�

η,α,n Σ̂η,n

⎞⎠ ,
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where the ingredients are defined as follows:

Σ̂γ,n =

⎛⎝ 1

n

n∑
j=1

(
∂γ ĉj−1

ĉj−1

)⊗2
⎞⎠⎛⎝ 1

hn

n∑
j=1

(
Δ̂jJ

)4

⎞⎠ ,

Σ̂α,n =
1

n

n∑
j=1

(
∂αâj−1

ĉj−1

)⊗2

,

Σ̂η,n =
1

Tn

�Tn�∑
i=1

(∂ηm(ε̂i, η̂n))
⊗2,

Σ̂γ,α,n =

⎛⎝ 1

n

n∑
j=1

∂γ ĉj−1∂αâj−1

ĉ2j−1

⎞⎠⎛⎝ 1

hn

n∑
j=1

(
Δ̂jJ

)3

⎞⎠ ,

Σ̂η,γ,n =
1

Tn

�Tn�∑
i=1

∂ηm(ε̂i, η̂n)
∑
j∈Ai

(
∂γ ĉj−1

ĉj−1

[(
Δ̂jJ

)2

− h

])
,

Σ̂η,α,n =
1

Tn

�Tn�∑
i=1

∂ηm(ε̂i, η̂n)
∑
j∈Ai

(
∂αâj−1

ĉj−1
Δ̂jJ

)
.

Now we are ready to state the main result.

Theorem 3.7. Under Assumptions 2.1 to 2.5, Assumption 3.3, and Assump-
tion 3.5, we have

Σ̂−1/2
n În[ûn]

L−→ Np+pη

(
0, Ip+pη

)
.

By Theorem 3.7, we have

Tn(θ̂n − θ0, η̂n − η0) Î�
n Σ̂−1

n În(θ̂n − θ0, η̂n − η0)
� L−→ χ2(p+ pη),

based on which we can construct an approximate confidence set for (θ0, η0), and
also perform a Wald-type test. Also trivially, we can recover the asymptotic
distribution of θ̂n:

Tn(θ̂n − θ0) Γ̂n

(
Σ̂γ,n Σ̂γ,α,n

Σ̂�
γ,α,n Σ̂α,n

)−1

Γ̂n(θ̂n − θ0)
� L−→ χ2(p).

It is difficult to obtain Ση,γ and Ση,α in explicit easy-to-handle forms even
if the coefficients and m are simple. However, by an application of Cauchy-
Schwartz inequality and the estimates in the proof of Theorem 3.8, we can
observe that at least, the left-hand-sides in (25) and (26) are tight. Moreover,
we can formally write their limit by means of the representation theorem ([10,
Proposition 3]): there exists a predictable process s �→ ξ̃η,n(s, z) such that

�Tn�∑
i=1

∂ηm(εi, η0) =

∫ �Tn�

0

∫
ξ̃η,n(s, z)Ñ(ds, dz). (27)
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From Itô’s formula and some calculations, we have∑
j∈Ai

∂αaj−1

cj−1
ΔjJ

=

∫ � i
h	h

� i−1
h 	h

∑
j∈Ai

(
χj(s)

∂αaj−1

cj−1

)
dJs

=

∫ � i
h	h

� i−1
h 	h

∫ ∑
j∈Ai

(
χj(s)

∂αaj−1

cj−1

)
zÑ(ds, dz)

=

∫ � i
h	h

� i−1
h 	h

∫
∂αas−
cs−

zÑ(ds, dz),

∑
j∈Ai

∂γcj−1

cj−1

[
(ΔjJ)

2 − h
]

=

∫ � i
h	h

� i−1
h 	h

∑
j∈Ai

(
χj(s)

∂γcj−1

cj−1
(Js− − Jtj−1)

)
dJs

+

∫ � i
h	h

� i−1
h 	h

∫ ∑
j∈Ai

(
χj(s)

∂γcj−1

cj−1

)
z2Ñ(ds, dz)

=

∫ � i
h	h

� i−1
h 	h

∫
∂γcs−
cs−

z2Ñ(ds, dz) +Op(hn).

To sum up, we obtain the following expression:

În[ûn] =
1√
Tn

∫ �Tn�

0

∫ ⎛⎜⎝
∂γcs−
cs−

z2

∂αas−
cs−

z

ξ̃η,n(s, z)

⎞⎟⎠ Ñ(ds, dz) + op(1).

By applying the central limit theorem for the stochastic integral with respect to
a Poisson random measure (cf. [19, Lemma A.2]), the isometry property of the
stochastic integral yield that under suitable moment and regularity conditions,

În[ûn]
L→ Np+pη

⎛⎜⎝0,

⎛⎜⎝ Σγ Σγ,α Ση,γ

Σ�
γ,α Σα Ση,α

Σ�
η,γ Σ�

η,α E
[
(∂ηm(J1, η0))

⊗2
]
⎞⎟⎠
⎞⎟⎠ ,

where Ση,γ and Ση,α are given by the limits in probability:

1

Tn

∫ �Tn�

0

∫
E

[
∂γcs−
cs−

ξ̃η,n(s, z)

]
z2ν0(dz)ds

p−→ Ση,γ ,

1

Tn

∫ �Tn�

0

∫
E

[
∂αas−
cs−

ξ̃η,n(s, z)

]
zν0(dz)ds

p−→ Ση,α,
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and the other ingredients are the same as our previous works (cf. Theorem 2.8).
However, since the explicit form of ξ̃η,n(s, z) cannot be obtained in general, it
is difficult to check the above convergence.

Finally, we would like to add that Theorem 3.7 and the resulting Wald-type
test are valid without Assumption 3.5 if the minimum eigenvalue of Σ̂ is positive
uniformly in n. Such a condition for eigenvalues is often assumed in the context
of (non-)linear regression.

Proof of Theorem 3.7. By the Cramér-Wold device, we may and do assume that
pγ = pα = pη = 1 without loss of generality. It is straightforward to deduce that

Σ̂n
p−→ Σ from Theorem 2.8, Theorem 3.1, Lemma 3.2, and the estimates we have

seen in the previous proofs. Hence, by means of Slutsky’s theorem, it suffices to
show that

În[ûn]
L−→ Np+pη (0,Σ) . (28)

From [18, Proof of Theorem 3.4], we have

Γ̂n[ûθ,n] =
1√
Tn

�Tn�∑
i=1

∑
j∈Ai

(
∂γcj−1

cj−1

[
(ΔjJ)

2 − h
]

∂αaj−1

cj−1
ΔjJ

)
+ op(1).

This together with (24) and the definition of În leads to

În[ûn] =
1√
Tn

�Tn�∑
i=1

⎛⎝ξγ,i
ξα,i
ξη,i

⎞⎠+ op(1), (29)

where

ξγ,i :=
∑
j∈Ai

∂γcj−1

cj−1

[
(ΔjJ)

2 − h
]
, ξα,i :=

∑
j∈Ai

∂αaj−1

cj−1
ΔjJ,

ξη,i := ∂ηm (εi, η0) .

By (25), (26), and the arguments in the proof of Corollary 3.4, the martingale
central limit theorem concludes (28) if we have the following convergences:∣∣∣∣∣∣ 1√

Tn

�Tn�∑
i=1

Ei−1 [ξγ,i]

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1√

Tn

�Tn�∑
i=1

Ei−1 [ξα,i]

∣∣∣∣∣∣ p−→ 0, (30)

1

Tn

�Tn�∑
i=1

Ei−1
[
ξ2γ,i

] p−→ Σγ , (31)

1

Tn

�Tn�∑
i=1

Ei−1 [ξγ,iξα,i]
p−→ Σγ,α, (32)

1

Tn

�Tn�∑
i=1

Ei−1
[
ξ2α,i

] p−→ Σα, (33)
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1

T 2
n

�Tn�∑
i=1

Ei−1
[
|ξγ,i|4 + |ξα,i|4 + |ξη,i|4

] p−→ 0. (34)

Trivially {(ξγ,i, ξα,i, ξη,i)}i≤�Tn� forms a martingale difference array with respect
to (Fi), since we have Fi−1 ⊂ Ftj for each j ∈ Ai; this immediately ensures
(30). By the arguments in Remark 3.6, we can replace (31), (32), and (33) by

1

Tn

n∑
j=1

(
∂γcj−1

cj−1

[
(ΔjJ)

2 − h
])2

p−→ Σγ ,

1

Tn

n∑
j=1

(
∂γcj−1

cj−1

[
(ΔjJ)

2 − h
])(

∂αaj−1

cj−1
ΔjJ

)
p−→ Σγ,α,

1

Tn

n∑
j=1

(
∂αaj−1

cj−1
ΔjJ

)2
p−→ Σα,

respectively. Noting that E[|Jhn |q] = O(hn) for any q ≥ 2 under Assumption 2.1,
we can deduce the last three convergences from [3, Lemma 9] and the ergodic
theorem.

It remains to show (34). It follows from Itô’s formula and Assumption 2.1
that for any j ∈ {1, . . . , n},

(ΔjJ)
2 − h = 2

∫ tj

tj−1

(Js− − Jtj−1)dJs +

∫ tj

tj−1

∫
z2Ñ(ds, dz),

where Ñ(ds, dz) is the compensated Poisson random measure of J ; recall that
we are assuming that E[(ΔjJ)

2] = (σ2+
∫
z2ν(dz))h = h. Then, we can rewrite

ξγ,i and ξα,i as

ξγ,i =

∫ � i
h	h

� i−1
h 	h

∑
j∈Ai

(
χj(s)

∂γcj−1

cj−1
(Js− − Jtj−1)

)
dJs

+

∫ � i
h	h

� i−1
h 	h

∫ ∑
j∈Ai

(
χj(s)

∂γcj−1

cj−1

)
z2Ñ(ds, dz),

ξα,i =

∫ � i
h	h

� i−1
h 	h

∑
j∈Ai

(
χj(s)

∂αaj−1

cj−1

)
dJs

=

∫ � i
h	h

� i−1
h 	h

∫ ∑
j∈Ai

(
χj(s)

∂αaj−1

cj−1

)
zÑ(ds, dz).

Taking a similar route to the estimate (18), we have

1

T 2
n

�Tn�∑
i=1

Ei−1
[
|ξγ,i|4 + |ξα,i|4

]
� 1

T 2
n

�Tn�∑
i=1

(1 + |Xi−1|C) = Op(T
−1
n ) = op(1).

Since T−2
n

∑�Tn�
i=1 Ei−1

[
|ξη,i|4

] p−→ 0 under Assumptions 2.1 and 3.3, we obtain
the desired result.
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3.3. Further remarks

3.3.1. Dimension of the processes

For the asymptotics of the GQMLE, we could consider multivariate X without
any essential change [18]; we will conduct related simulations in Section 5.2.
Moreover, the estimator of (α, γ) may not be necessarily the GQMLE and could

be any measurable mappings θ̂n = θ̂n(Xn) for which we have an asymptotically
linear representation as in (29).

3.3.2. Model selection for L(J1)

Residual based on information criterion (IC) formulation after estimation should
be possible (both AIC and BIC types). We can infer the structure of J as in the
i.i.d case, yet should be careful in making possibly necessary corrections stem-
ming from the stochastic expansion (14). For example, for the AIC statistics to
be theoretically in effect, among other conditions it is required that the random
sequence (ûη,n)n is L2+δ(P )-bounded for some δ > 0. It could be verified by
means of the uniform tail-probability estimate for (ûη,n)n through the random
function H3,n(η); indeed, we could make use of the same machinery to deduce
Theorem 2.8(2).

3.3.3. Setting of noise inference

Although we have set a finite-dimensional η above, we could consider infinite-
dimensional η, most generally L(J1) itself: once {ε̂j} has been constructed, it is
also possible to take into account conventional nonparametric procedures, such
as the kernel density estimation, and also goodness-of-fit tests; see Section 5.3
for an illustration.

4. Implementation

In this section, we discuss the new classes and the new methods in the YUIMA
R package that gives us the possibility to deal with an SDE driven by a Lévy
process completely specified by the user. To construct an object of YUIMA
class, that is a mathematical description of an SDE driven by a pure Lévy jump
process, three steps are necessary:

1. Definition of an object that contains all the information about the struc-
ture of the pure Lévy jump. In this step, the user can specify a random
number generator, a density function, a cumulative distribution function,
a quantile function, a characteristic function, and the number of compo-
nents for the underlying Lévy process.

2. Definition of the structure of the SDE where the driving noise is deter-
mined from the object constructed in Step 1.
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Fig 1. The structure of an object that belongs to the YUIMA class.

Fig 2. The structure of an object that belongs to the yuima.law class.

3. Construction of an object that belongs to the YUIMA class whose slots are
reported in Figure 1. The slot model is filled with the object built in Step
2. This new object can be used to simulate a sample path by overwriting
the slot sampling with the structure of the time grid. Alternatively, we
can use this object to estimate the SDE defined in Step 2. In this case, we
can store the observed data in the slot data.

4.1. yuima.law: A new class for a mathematical description of the
Lévy process

In this section, we describe the structure of a yuima.law-object and its con-
structor setLaw. The main advantage of this new class is the possibility of
connecting YUIMA with any CRAN package that provides functions for a spe-
cific random variable. Figure 2 reports the slots that constitute an object of
yuima.law class.

The first five slots contain R user-defined functions. In particular, the first
two slots contain the random number generator and the density function re-
spectively. Although it is not necessary to specify these functions to construct
an object of yuima.law class, the definition of a random number generator is
necessary to run the YUIMA simulate method while the density function is
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Fig 3. Procedure for the construction of an object that belongs to the yuima.law class.

used internally by the YUIMA qmleLevy method. The template of these two
functions is listed below:

# User specified random number generator

R> user.rng <- function(n, eta, t){

+ ... ... ... # Body of the function

+ }

# User specified density function

R> user.density <- function(x, eta, t){

+ ... ... ... # Body of the function

+ }

where the input eta is a vector containing the names of the Lévy noise param-
eters and the input t refers to the label of the time variable.

An object of yuima.law class is built using setLaw constructor.

R> setLaw(rng = function(n, ...){ NULL },

+ density = function(x, ...){ NULL },

+ cdf = function(q, ...){ NULL },

+ quant = function(p, ...){ NULL },

+ characteristic = function(u, ...){ NULL },

+ time.var = "t", dim = NA )

The first five inputs in the function fill the corresponding slots in the yuima.law
object. Figure 3 describes the steps required for the construction of the
yuima.law-object.

After the construction of an object that belongs to the yiuma.law class, by
using the standard constructor setModel where an yuima.law object is passed
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Fig 4. Procedure for the definition of the model where the noise is defined by an object of
yuima.law class.

to setModel through the argument measure, the user can specify completely a
SDE driven by a pure Lévy jump as shown in the following command line:

R> setModel(drift = "User.Defined_drift",

+ jump.coeff = "User.Defined_jump.coef", measure.type = "code",

+ measure = list(df = User.Defined_yuima.law))

We remark that an object of yuima.law class can be also used to specify the
Lévy noise in the Continuous Time ARMA model [4] and in the COGARCH
process [5, 6]. In the first case, the model is built using the constructor setCarma:

R> setCarma(p, q, measure.type = "code", measure = list(df =

+ User.Defined_yuima.law))

where p and q are two integers indicating the order of the autoregressive and
the moving average parameters. The COGARCH(p,q) process can be defined in
YUIMA using the function setCogarch as follows:

R> setCogarch(p, q, measure.type = "code", measure = list(df =

+ User.Defined_yuima.law))

Figure 4 shows how to use an object of yuima.law class in the definition of
models that can be constructed using YUIMA.

4.2. yuima.qmleLevy.incr: Estimation of an SDE driven by a Lévy
pure jump process in yuima

In this section, we discuss how to estimate an SDE driven by a Lévy pure jump
process in YUIMA. In particular, we describe the features of the new class
yuima.qmleLevy.incr and explain the usage of the new method qmleLevy.
The yuima.qmleLevy.incr class is the extension of the classical yuima.qmle
class because we have additional slots associated with the filtered Lévy incre-
ments obtained using the procedure described in Section 3. As a child class,
yuima.qmleLevy.incr class inherits all the YUIMA methods developed for the
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Fig 5. Main slots of an object that belongs to the yuima.qmleLevy.incr class.

yuima.qmle class. Figure 5 reports the new slots. The most relevant for our
study is the slot Incr.Lev where we can find the estimated Lévy increments.

An object of yuima.qmleLevy.incr class can not be directly constructed by
the user but it is a possible output of the function qmleLevy that performs the
estimation approach discussed in Section 2. The syntax of this function is as
follows:

R> qmleLevy(yuima, start, lower, upper, joint = FALSE,

+ third = FALSE, Est.Incr = "NoIncr", aggregation = TRUE)

The first argument is an object of yuima class where the slot data contains
the observed dataset, while the slot model is a mathematical description of
the SDE driven by the pure Lévy jump process. The arguments start, lower
and upper are used in the optimization routine to identify the initial guesses
and box-constraints. The arguments joint and third are technical arguments
related to the procedure of the GQMLE; we refer to [7] for a specific documen-
tation of their meaning. The most important arguments for the estimation of
the Lévy increments are Est.Incr and aggregation. The argument Est.Incr
assumes three values: NoIncr, Incr and IncrPar. In the first case, the function
returns an object of yuima.qmle class that contains only the SDE parameters.
The function qmleLevy internally runs only the GQMLE procedure. Setting
Est.Incr = "Incr" or Est.Incr = "IncrPar", qmleLevy returns an object of
yuima.qmleLevy.incr class. In the first case the object contains the estimated
increments while, in the second case, we also obtain the estimated parameters
of the Lévy measure. The last argument aggregation is a logical variable. If
aggregation = TRUE, the estimated Lévy increments are (4) associated to the
unit-time intervals while, if aggregation = FALSE, the function returns the
Δt-time Lévy increments, see (3).

Figure 6 shows all the steps for the estimation of an SDE driven by a user-
defined Lévy process using the real data. As remarked at beginning of Section
4, Figure 6 remarks the preliminary step for the construction of an object that
belongs to yuima class through the constructor setYuima.
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Fig 6. Procedure for the estimation of a SDE driven by a Lévy process in YUIMA.

5. Numerical examples

5.1. Univariate Lévy SDE model

In this section, we show how to use YUIMA in the simulation and estimation
of an univariate SDE driven by a pure jump Lévy process defined by the user
through an object of yuima.law class. The model, that we consider, is defined
by the following SDE:

dXt = α1 (α2 −Xt) dt+ γdJt (35)

where α2 is a real parameter while α1 and γ are positive parameters, and where
{Jt}t≥0 is a symmetric Variance Gamma process with parameter η > 0.

In this example we use an object of yuima.law class to construct a link
between YUIMA and the VarianceGamma package [16] available in CRAN. We
use two functions available in the package VaranceGamma respectively rvg for
the random number generation and dvg to construct the density function. The
parametrization in VarianceGamma package was introduced in [11] where the
symmetric Variance Gamma J random variable is defined as a normal variance
mean mixture with a gamma subordinator. Specifically, we set

φJ1 (u) =

(
1 + σ2ν

u2

2

)− 1
ν

for the characteristic function of J1. Setting ν = 1
ηΔt and σ =

√
Δt, we identify

the distribution of the increments Jt−Jt−Δt for the symmetric Variance Gamma
Lévy process used in (35).

Following the structure presented in Section 4, we define an object of yuima.law
class that contains all the information on the underlying process {Jt}t≥0. We
run all examples using version yuima.1.15.4 available on R-Forge.
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R> library(VarianceGamma)

#### Definition of a yuima.law object ####

R> myrng <- function(n, eta, t){

+ rvg(n, vgC = 0, sigma = sqrt(t), theta = 0, nu = 1/(eta*t))

+ }

R> mydens <- function(x, eta, t){

+ dvg(x, vgC = 0, sigma = sqrt(t), theta = 0, nu = 1/(eta*t))

+ }

R> mylaw <- setLaw(rng = myrng, density = mydens, dim = 1)

R> class(mylaw)

[1] "yuima.law"

attr(,"package")

[1] "yuima"

R> slotNames(mylaw)

[1] "rng" "density" "cdf" "quantile"

[5] "characteristic" "param.measure" "time.var" "dim"

Using the constructor setLaw we are able to build an object of yuima.law
class where the first two slots contain the random number generator (myrng)
and the density function (mydens) that we will use for the simulation and the
estimation of the distribution of J in the model (35). The next step is to build
an object of yuima.model class using the standard constructor setModel:

#### Definition of an object of yuima.model class ####

R> yuima1 <- setModel(drift = "alpha1*(alpha2-X)",

+ jump.coeff = "gamma", jump.variable = "J",

+ solve.variable = c("X"), state.variable = c("X"),

+ measure.type = "code", measure = list(df = mylaw))

It is worth noticing that the slot measure of the object yuima1 contains the
object mylaw constructed previously.

R> print(yuima1@measure[[1]])

An object of class "yuima.law"

Slot "rng":

function(n, eta, t){

rvg(n, vgC = 0, sigma = sqrt(t), theta = 0, nu = 1/(eta*t))

}

Slot "density":
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function(x, eta, t){

dvg(x, vgC = 0, sigma = sqrt(t), theta = 0, nu = 1/(eta*t))

}

Slot "cdf":

function(q,...){NULL}

<environment: 0x000001e202715cf0>

Slot "quantile":

function(p,...){NULL}

<environment: 0x000001e202715cf0>

Slot "characteristic":

function(u,...){NULL}

<environment: 0x000001e202715cf0>

Slot "param.measure":

[1] "eta"

Slot "time.var":

[1] "t"

Slot "dim":

[1] NA

We can generate a sample path using the simulate method in YUIMA that
we report in Figure 7. The simulation scheme in YUIMA is based on the Euler
discretization, and the small-time increments of the noise J therein are generated
by the random number generator stored in mylaw object.

#### real parameters ####

R> alpha1 <- 0.4; alpha2 <- 0.25; gamma<- 0.25; eta <- 1

#### Sample grid ####

R> n <- 50000

R> Time <- 1000

R> sam <- setSampling(Terminal = Time, n = n)

#### Simulation ####

R> yuima2 <- setYuima(model = yuima1, sampling = sam)

R> true <- list(alpha1 = alpha1, alpha2 = alpha2,

+ gamma = gamma, eta = eta)

R> set.seed(123)

R> yuima3 <- simulate(yuima2, true.parameter = true,

+ sampling = sam)

#### plot sample path ####
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Fig 7. Simulated Trajectory of an OU-VG model with parameters α1 = 0.4, α2 = 0.25, γ =
0.25, η = 1.

R> plot(yuima3)

To assess numerically the effectiveness of the three-step estimation procedure
discussed in Section 2 and Section 3 we re-estimate the model in (35) using the
data stored in the object yuima3.

#### starting point ####

R> set.seed(123)

R> start <- list(alpha1 = runif(1, 0.01, 2),

+ alpha2 = runif(1, 0.01, 2), gamma = runif(1, 0.01, 2),

+ eta = runif(1, 0.5, 1.5))

#### upper and lower bounds ####

R> upper <- list(alpha1 = 2, alpha2 = 2, gamma = 2, eta = 1.5)

R> lower <- list(alpha1 = 0.01, alpha2 = 0.01, gamma = 0.01,

+ eta = .5)

#### GQMLE procedure ####

R> res.VG <- qmleLevy(yuima3, start = start, lower = lower,

+ upper = upper, Est.Incr = "IncrPar", aggregation = TRUE,

+ joint = FALSE)

The function qmleLevy returns an object of yuima.qmleLevy.incr class that
extends the standard class yuima.qmle.

R> class(res.VG)

[1] "yuima.qmleLevy.incr"

attr(,"package")
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Fig 8. Estimated unit-time increments from the OU-VG model defined in (35).

[1] "yuima"

R> slotNames(res.VG)

[1] "Incr.Lev" "logL.Incr" "minusloglLevy" "Levydetails"

[5] "Data" "model" "call" "coef"

[9] "fullcoef" "fixed" "vcov" "min"

[13] "details" "minuslogl" "nobs" "method"

The slot Incr.Lev is filled with an object of yuima.data class that contains
the estimated unit-time Lévy increments.

R> str(res.VG@Incr.Lev, 2)

Formal class ’yuima.data’ [package "yuima"] with 2 slots

..@ original.data:’zooreg’ series from 1 to 1000

Data: num [1:1000, 1] 0.141 0.249 -1.219 1.336 0.106 ...

.. ..- attr(*, "dimnames")=List of 2

Index: num [1:1000] 1 2 3 4 5 6 7 8 9 10 ...

Frequency: 1

..@ zoo.data :List of 1

Figure 8 reports the trajectory of the estimated unit-time Lévy increments.

#### Visualization of the estimated unit-time increments ####

R> plot(res.VG@Incr.Lev)

5.2. Multivariate Lévy SDE model

In this section, we simulate and estimate a bivariate SDE model driven by two
independent symmetric Variance Gamma processes. As done in the previous
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section we construct the random number generator and the joint density func-
tion of the underlying bivariate Lévy process using the function developed in
the VarianceGamma package. We report below the code for simulating and es-
timating the process Xt := [X1,t, X2,t]

�
that satisfies the following system of

SDEs:
dX1,t = α1,1 (α1,2 −X1,t − 0.2X2,t) dt+ γ1dJ1,t
dX2,t = α2,1 (α2,2 −X2,t) dt+ γ2dJ2,t

(36)

where Jt = [Jt,1, Jt,2]
�

is a bivariate Lévy process where the components are
two independent symmetric Variance Gamma processes.
The first step is to construct an object of yuima.law class that contains a
random number generator and the joint density of the bivariate Lévy process
Jt. As done for the model in (35) we use the functions available in the R package
VarianceGamma. The random number generator of the increments can be defined
using the following command lines:

#### Construction of a bivariate rng function ####

R> myrng2 <- function(n, eta1, eta2, t){

+ res0 <- rvg(n, vgC = 0, sigma = sqrt(t), theta = 0,

+ nu = 1 / (eta1 * t))

+ cbind(res0, rvg(n, vgC = 0, sigma = sqrt(t), theta = 0,

+ nu = 1 / (eta2 * t)))

+ }

Compared with the random number generator used in the univariate case, the
result of the function rng is a two-column matrix where each column contains
increments generated from a symmetric Variance Gamma random variable. Ex-
ploiting the independence assumption we construct the joint density of the pro-
cess Jt as a product of two univariate symmetric Variance Gamma densities
using the following R function:

#### Construction of the joint density ####

R> mydens2 <- function(x, eta1, eta2, t){

+ dvg(x[,1], vgC = 0, sigma = sqrt(t), theta = 0,

+ nu = 1/(eta1 * t)) * dvg(x[,2], vgC = 0,

+ sigma = sqrt(t), theta = 0, nu = 1/(eta2 * t))

+ }

Using the constructor setLaw, we build an object of yuima.law that contains
information for simulating the noise Jt and for estimating the parameters in
(36).

R> mylaw2 <- setLaw(rng = myrng2, density = mydens2, dim = 2)

We simulate a trajectory of the model in (36) using the standard syntax in
YUIMA as follows:

#### Model Definition ####

R> yuima2 <- setModel(drift = c("alpha11*(alpha12-X1-0.2*X2)",

+ "alpha21*(alpha22-X2)"), jump.coeff = matrix(c("gamma1",
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Fig 9. Simulated trajectory of the bivariate process Yt defined in (36).

+ 0, 0, ""gamma2"), 2, 2), solve.variable = c("X1", "X2"),

+ state.variable = c("X1", "X2"), measure.type = c("code",

+ "code"), measure = list(df = mylaw2), jump.variable = "J")

#### Choosing model parameters ####

R> alpha11 = 0.4; alpha12 = 0.25; gamma1 = 0.2; eta1 = 1

R> alpha21 = 0.3; alpha22 = 0.3; gamma2 = 0.1; eta2 = 1

R> true2 <- list(alpha11 = alpha11, alpha12 = alpha12,

+ gamma1 = gamma1, eta1 = eta1, alpha21 = alpha21,

+ alpha22 = alpha22, gamma2 = gamma2, eta2 = eta2)

#### Setting the sample grid ####

R> n2 <- 50000

R> Time2 <- 1000

R> sam2 <- setSampling(Terminal = Time2, n = n2)

#### Simulation ####

R> yuima2 <- setYuima(model = yuima2, sampling = sam2)

R> set.seed(123)

R> yuima2 <- simulate(yuima2, true.parameter = true2,

+ sampling = sam2)

Figure 9 reports the simulated trajectory of each member in the process Xt :=
[Xt,1, Xt2 ]

�

R> plot(yuima2)

Now we execute the three-step estimation procedure using, as a dataset, the
simulated trajectory stored in the slot data of the object yuima2. As done in the
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univariate case, we select randomly a starting point and we fix upper and lower
bounds for each parameter. We select the inputs of the function qmleLevy to
get an object of yuima.qmleLevy.incr class that contains the estimated unit-
time increments of the noise and the Lévy measure parameters of the bivariate
symmetric Variance Gamma process Zt.

#### Starting point generation ####

R> set.seed(123)

R> start2 <- list(alpha11 = runif(1, 0.01, 2),

+ alpha12 = runif(1, 0.01, 2), gamma1 = runif(1, 0.01, 2),

+ eta1 = runif(1, 0.5, 2), alpha21 = runif(1, 0.01, 2),

+ alpha22 = runif(1, 0.01, 2), gamma2 = runif(1, 0.01, 2),

+ eta2 = runif(1, 0.5, 2))

#### Upper and lower bounds ####

R> upper2 <- list(alpha11 = 2, alpha12 = 2, gamma1 = 2, eta1 = 2,

+ alpha21 = 2, alpha22 = 2, gamma2 = 2, eta2 = 2)

R> lower2 <- list(alpha11 = 0.01, alpha12 = 0.01,

+ gamma1 = 0.01, eta1 = .5, alpha21 = 0.01, alpha22 = 0.01,

+ gamma2 = 0.01, eta2 = .5) ## set lower bound

#### Estimation ####

R> res.VG2 <- qmleLevy(yuima2, start = start2, lower = lower2,

+ upper = upper2, Est.Incr = "IncrPar", aggregation = TRUE,

+ joint = FALSE)

With the following command lines, we compare the initial values for the opti-
mization routine, the fixed and estimated parameters.

#### Starting values ####

unlist(start2)[names(coef(res.VG2))]

alpha11 alpha12 alpha21 alpha22 gamma1 gamma2

0.5822793 1.5787272 1.8815299 0.1006574 0.8238641 1.0609299

eta1 eta2

1.8245261 1.8386286

#### Real parameters ####

unlist(true2)[names(coef(res.VG2))]

alpha11 alpha12 alpha21 alpha22 gamma1 gamma2 eta1 eta2

0.40 0.25 0.30 0.30 0.20 0.10 1.00 1.00

#### Estimated parameters ####

coef(res.VG2)

alpha11 alpha12 alpha21 alpha22 gamma1 gamma2

0.3668973 0.2633624 0.2984875 0.3009404 0.2053790 0.1017661

eta1 eta2

0.9883838 0.9745951
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The estimated parameters seem to be precise. The Euclidean norm of the differ-
ence between true2 and coef(res.VG2) is approximately 0.0457 while, applying
the same distance between true2 and start2, it results to be 2.652 with a re-
duction of 98%. We show the standard errors applying the function summary.

#### Summary ####

summary(res.VG2)

summary(res.VG2)

Quasi-Maximum likelihood estimation

Call:

qmleLevy(yuima = yuima2, start = start2, lower = lower2,

upper = upper2, joint = FALSE, Est.Incr = "IncrPar",

aggregation = TRUE)

Coefficients:

Estimate Std. Error

alpha11 0.3668973 0.005725729

alpha12 0.2633624 0.002610983

alpha21 0.2984875 0.028302434

alpha22 0.3009404 0.017663594

gamma1 0.2053790 0.023555954

gamma2 0.1017661 0.010761713

eta1 0.9883838 0.098752509

eta2 0.9745951 0.094324105

-2 log L: -494221.9 -494557.8 5335.13

The estimated time-unit increments of the bivariate Lévy noise are available in
the slot Incr.Lev

R> summary(res.VG2@Incr.Lev)

Length1 Length2 Class Mode

1000 1000 yuima.data S4

R> plot(res.VG2@Incr.Lev,

+ ylab = c(expression(paste(Delta, J[1, t])),

+ expression(paste(Delta, J[2, t]))), xlab = "t")

5.3. Real data

In this section, we discuss how to estimate a stochastic differential equation
driven by a Lévy process using real data. Once the increments have been ob-
tained, we show how to use them in the two different situations: noise selec-
tion and forecasting. We start with an example that shows how to combine
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Fig 10. Estimated unit-time increments of the bivariate process Jt.

the information stored in an object of yuima.qmleLevy.incr class with avail-
able R packages for selecting a Lévy measure. The data is downloaded from
yahoo.finance using the R package quantmod that downloads time-series in an
xts format. We get the closing log-prices of the S&P500 index ranging from 04
January 1951 to 04 January 2021 using the following command lines:

#### Download Dataset ####

R> library(quantmod)

R> getSymbols(Symbols = "^GSPC", from = "1951-01-04",

+ to = "2021-01-04")

R> logprice <- log(GSPC$GSPC.Close)

R> plot(logprice, main = "Closed log-prices of Standard & Poor 500",

+ main.cex = 0.8)

Figure 11 reports the time series used in our example. We describe the log-price
by the following SDE:

dXt = (α1 + α2Xt) dt+ γ1X
γ2

t dJt, (37)

where α1 > 0, α2 < 0, γ1 > 0 and γ2 ≥ 0. We construct an object of yuima class
that contains the mathematical description of the SDE in (37) and the data.

#### Law Definition ####

R> mylaw3 <- setLaw(dim = 1)

R> #### Model and Data ####

yuima3 <- setModel(drift = "alpha1+alpha2*X",

+ jump.coeff = matrix(c("gamma1*X^gamma2")),

+ measure.type = "code",
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Fig 11. Closing log-prices of S&P500 ranging from 04 January 1951 to 04 January 2021

+ measure = list(df = mylaw3), jump.variable = "J",

+ solve.variable = c("X"), state.variable = c("X"))

R> Data <- setData(logprice, delta = 1/30)

R> yuima3 <- setYuima(data = Data, model = yuima3)

R> print(Data)

Number of original time series: 1

length = 17615, time range [1951-01-04 ; 2020-12-31]

Number of zoo time series: 1

length time.min time.max delta

GSPC.Close 17615 0 587.133 0.03333333

From the structure of the object Data, we observe that the time is expressed in
a monthly basis. Therefore, setting t0 = 0, we have Tn = 587.133 and h = 1/30.

It is worth noting that the object mylaw does not require a formal specifi-
cation for the random number generator and for the density function as done
in the previous examples. Indeed, we do not assume any specific form of the
Lévy measure of the process J and the estimation of the unit-time increments
described in Section 3 is completely model-free.

#### Estimation of time-unit increments ####

R> set.seed(123)

R> start3 <- list(alpha1 = runif(1, min = 10^(-10), max = 1),

+ alpha2 = runif(1, min = -1, max = -10^(-10)),

+ gamma1 = runif(1, min = 10^(-10), max = 1),

+ gamma2 = runif(1, min = 0, max = 2))

R> lower3 <- list(alpha1 = 10^(-10), alpha2 = -1,
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+ gamma1 = 10^(-10), gamma2 = 0)

R> upper3 <- list(alpha1 = 1, alpha2 = 1, gamma1 = 1,

+ gamma2 = 2)

R> res3 <- qmleLevy(yuima3, start = start3, lower = lower3,

+ upper = upper3, Est.Incr = "Incr", aggregation = TRUE,

+ joint = FALSE)

R> summary(res3)

Quasi-Maximum likelihood estimation

Call:

qmleLevy(yuima = yuima3, start = start3, lower = lower3,

upper = upper3, joint = FALSE, Est.Incr = "Incr",

aggregation = TRUE)

Coefficients:

Estimate Std. Error

gamma1 0.016267709 0.0007539279

gamma2 0.694168099 0.0715834862

alpha1 0.012156634 0.0081051421

alpha2 -0.000635202 0.0015396235

-2 log L: -113838.7 -113858.5

Applying logLik method to res3, we determine the value for the stepwise GQL
function H1,n(γ̂1, γ̂2) and the value of GQMLE with the following command
lines:

R> T_n <- tail(index(Data@zoo.data[[1]]),1L)

R> H_1 <- -1/T_n*logLik(res3)[1]

R> GQMLE <-logLik(res3)[2]

R> print(c(H_1, GQMLE))

[1] -96.94454 56929.23019

The unit-time increments are stored in the slot res3@Incr.Lev and they can
be extrapolated using the following command lines:

#### Time-unit increments ####

R> UnitaryIncr <- as.numeric(res3@Incr.Lev@original.data)

R> plot(UnitaryIncr, ylab = expression(Delta*J[1]), xlab = " ",

+ main = "Estimated Time-Unit Increments", cex.main = 0.8)

Figure 12 reports the estimated time-unit increments of the process J . Due to
the fact that the object UnitaryIncr belongs to the numeric class, we can apply
any method available in R for any numeric object. Just for an illustration, in the
following command lines, we show how to get the kernel density estimate based
on the estimated increments, and compare it with the empirical histogram; a
graphical comparison is reported in Figure 13.
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Fig 12. Estimated time-unit increments from the real dataset

Fig 13. Comparison betwen empirical and kernel densities of the time-unit increments

#### Plot kernel density ####

R> hist(UnitaryIncr, freq = F, nclass = 50,

+ main = "Density of Time-Unit Increments",

+ cex.main =0.8, xlab = expression(Delta*J[1]), ylab = " ")

R> lines(density(UnitaryIncr), col = "red")

A model selection exercise can be done using the function stepAIC.ghyp

available in the package ghyp that allows the user to compare a list of distribu-
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tions widely applied in finance. In particular, based on the Akaike Information
Criterion, this function identifies the best model between the Generalized Hy-
perbolic, the Hyperbolic, the Variance Gamma, the Normal Inverse Gaussian,
the Student-t and the Normal distribution.

#### Model selection ####

R> library(ghyp)

R> Comparison <- stepAIC.ghyp(UnitaryIncr)

R> Comparison$best.model

Asymmetric Hyperbolic Distribution:

Parameters:

alpha.bar mu sigma gamma

1.8398103 0.5383745 0.9075450 -0.5337697

log-likelihood:

-793.7689

Call:

stepAIC.ghyp(data = UnitaryIncr)

In our example, the function stepAIC.ghyp selects the Asymmetric Hyperbolic
distribution as the best fitting model with the (λ, ᾱ, μ, σ, γ)-parametrization for
a generic Generalized Hyperbolic distribution. The latter is a normal variance
mean mixture with a Generalized Inverse Gaussian subordinator τt and, as
described in the package documentation [20], the (λ, ᾱ, μ, σ, γ)-parametrization
requires the characteristic function of τ1 to be:

φτ1 (u) =

(
ϕ

ϕ− 2iu

)λ
2 Kλ

(√
ξ (ϕ− 2iu)

)
Kλ

(√
ξϕ

)
where ϕ = ᾱ

Kλ+1(
√
ᾱ)

Kλ(
√
ᾱ)

, ξ = ᾱ
Kλ(

√
ᾱ)

Kλ+1(
√
ᾱ)

and ᾱ > 0. The real parameters μ and

γ control the position and the skewness while σ ≥ 0 is a scale parameter for the
Generalized Hyperbolic distribution. The Hyperbolic distribution is obtained by
setting λ = 1.

In the second example, we show how to use an object of yuima.law class to
generate a new trajectory using the increments of the process J . In this case, we
need to estimate the increments associated with the interval of length Δt (small
model-time length). In this example, we use a shorter dataset composed of three
years of observations of the S&P500 index ranging from 04 January 2018 to 04
January 2021. For the estimation of the increments, the chunk code is exactly
the same used in the previous example with only one difference. Indeed, to
obtain the Δt increments we set the input aggregation as FALSE.

#### Download dataset ####

R> getSymbols(Symbols = "^GSPC", from = "2018-01-04",
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+ to = "2021-01-04")

R> logprice2 <- log(GSPC$GSPC.Close)

#### Model and data ####

R> mylaw4 <- setLaw(dim = 1)

R> yuima4 <- setModel(drift = "alpha1+alpha2*X",

+ jump.coeff = matrix(c("gamma1*X^gamma2")),

+ measure.type = "code", measure = list(df = mylaw4),

+ jump.variable = "J", solve.variable = c("X"),

+ state.variable = c("X"))

R> Data <- setData(logprice, delta = 1/30)

R> yuima4 <- setYuima(data = Data, model = yuima4)

#### Estimation delta t increments ####

R> set.seed(123)

R> start4 <- list(alpha1 = runif(1, min = 10^(-10), max = 5),

+ alpha2 = runif(1, min = -1, max = -10^(-10)),

+ gamma1 = runif(1, min = 10^(-10), max = 1),

+ gamma2 = runif(1, min = 0, max = 2))

R> lower4 <- list(alpha1 = 10^(-10), alpha2 = -1,

+ gamma1 = 10^(-10), gamma2 = 0)

R> upper4 <- list(alpha1 = 5, alpha2 = -10^(-10), gamma1 = 1,

+ gamma2 = 2)

R> res4 <- qmleLevy(yuima4, start = start4, lower = lower4,

+ upper = upper4, Est.Incr = "Incr", aggregation = FALSE,

+ joint = FALSE)

R> summary(res4)

Quasi-Maximum likelihood estimation

Call:

qmleLevy(yuima = yuima4, start = start4, lower = lower4,

upper = upper4, joint = FALSE, Est.Incr = "Incr",

aggregation = FALSE)

Coefficients:

Estimate Std. Error

gamma1 0.08111166 0.005677789

gamma2 0.00000000 0.065495083

alpha1 2.01137182 1.367347271

alpha2 -0.25019063 0.171158938

-2 log L: -4207.318 -4210.077

Using the estimated Δt increments in the slot res4@Incr.Lev we can build
an object of yuima.law class that internally uses a random number generator
that samples from the data in res4@Incr.Lev.
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Fig 14. 24 months simulated trajectory of the S&P500 log-price series

#### yuima.law Definition ####

R> mydata <- as.numeric(res4@Incr.Lev@original.data)

R> myrndEmp <- function(n, mydata){

+ sample(mydata, size = n)

+ }

R> mylaw5 <- setLaw(rng = myrndEmp)

The object mylaw contains a random number generator that uses the R func-
tion sample, however, the user can apply more advanced sampling methods
from packages available from CRAN. We can simulate one-year trajectory of
the S&P500 log prices in YUIMA. Figure 14 reports the simulated sample path.

#### Generation 1 year trajectory ####

R> yuima5 <- setModel(drift = "alpha1+alpha2*X",

+ jump.coeff = matrix(c("gamma1*X^gamma2")),

+ measure.type = "code", measure = list(df = mylaw5),

+ jump.variable = "J", solve.variable = c("X"),

+ state.variable = c("X"),

+ xinit = as.numeric(tail(logprice2, 1L)))

R> samp5 <- setSampling(Initial = 0, Terminal = 24, n = 24*30)

R> yuima5 <- setYuima(model = yuima5, sampling = samp5)

R> true5 <- as.list(coef(res4))

R> true5$mydata <- mydata

R> set.seed(123)

R> yuima5 <- simulate(yuima5, true.parameter = true5,

+ sampling = samp5)

R> plot(yuima5,
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+ main = "Forecasted 24 months trajectory of the S&P500 Index",

+ cex.main = 0.8)

In Figure 14, the 24 months trajectory displays an oscillatory behavior. It
fluctuates around the long term mean that can be estimated using the ratio
− α̂1

α̂2
≈ 8.0394.
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