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Abstract: Tensor regression models are of emerging interest in diverse
fields of social and behavioral sciences, including neuroimaging analysis,
neural networks, image processing and so on. Recent theoretical advance-
ments of tensor decomposition have facilitated significant development of
various tensor regression models. The focus of most of the available lit-
erature has been on the Canonical Polyadic (CP) decomposition and its
variants for the regression coefficient tensor. A CP decomposed coefficient
tensor enables estimation with relatively small sample size, but it may not
always capture the underlying complex structure in the data. In this work,
we leverage the recently developed concept of tubal rank and develop a ten-
sor regression model, wherein the coefficient tensor is decomposed into two
components: a low tubal rank tensor and a structured sparse one. We first
address the issue of identifiability of the two components comprising the
coefficient tensor and subsequently develop a fast and scalable Alternating
Minimization algorithm to solve the convex regularized program. Further,
we provide finite sample error bounds under high dimensional scaling for the
model parameters. The performance of the model is assessed on synthetic
data and is also used in an application involving data from an intelligent
tutoring platform.
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1. Introduction

There is increased interest in tensor analysis due to both technical developments
and novel applications - see [16, 7] and references therein. There has been ex-
tensive work in the literature on tensor decomposition, including the classical
Tucker ([36]), Canonical Polyadic (CP) ([5]) and higher-order Singular Value
Decomposition (HOSVD) ([8]) and more recently, the tensor train (TT) ([29])
and tensor SVD ones (t-SVD) ([13]).

In many applications, the interest is on building regression models based
on tensor data. Examples include neuroscience and neuroimaging applications
([42, 22, 34]), applications to other image processing tasks ([31]), neural networks
([17]) and analysis of longitudinal and spatio-temporal data ([11, 39]).

A typical setting for tensor regression is as follows: one has access to predictors
whose structure can be succinctly represented by a tensor and an outcome vari-
able of interest. For example, [22] consider Magnetic Resonance Imaging tech-
nology three-dimensional scans from subjects in an Alzheimer’s Disease study
together with their corresponding mini-mental state exam scores. A regression
model to associate the information contained in the scans and the outcome
scores takes the form

y = 〈B,X〉+ ε,

wherein B ∈ R
d1×d2×d3 is the regression coefficient tensor that captures the

association between the score y and the tensor predictor (image scan) X ∈
R

d1×d2×d3 . Note that the inner product between the coefficient tensor and the
predictor tensor is defined as

〈B,X〉 = V ec(B)TV ec(X) =
∑

i1,i2,i3

Xi1,i2,i3Bi1,i2,i3 (1)

where Xi1,i2,i3 and Bi1,i2,i3 are the (i1, i2, i3)
th element of X and B, respec-

tively. The number of parameters in B increases rapidly and can easily become
larger than the available sample size, thus requiring some form of regularization
to estimate the regression coefficient. To that end, [42] proposed a generalized
linear model with a tensor predictor in the systematic component and utilized
a CP Decomposition to reduce the high dimension of the coefficient tensor B.
[22] considered a regression model with a multivariate (vector) response and a
tensor predictor and assumed that regression coefficients admit a sparse CP de-
composition. Some other work, dealing with sparse CP decomposition, includes
[2], [10] and [31]. [34] extended the regression model to accommodate a tensor
response, assumed the previously mentioned sparse CP decomposition on the re-
gression coefficient ([22]) and also developed an alternating updating algorithm
to obtain a (local) minimizer of the underlying non-convex optimization prob-
lem. [21] extended the work of [42] by using a Tucker decomposition, which is a
generalized version of the CP decomposition. [32] presented a general convex op-
timization approach for solving tensor regression problems by applying convex
and weakly decomposable regularizers on the regression coefficient. They estab-
lished the weak-decomposability of the sparsity regularizer (both element-wise
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Fig 1. Illustration of example: In the first component, all the “rating type - age group” com-
binations share similar baseline effects across the three categories. In the second component,
some of the combinations exhibit additional effects specific to some of the categories.

and group-wise) and low-rankness regularizer (nuclear norm, defined through
its dual norm) and derived their theoretical results for these two special cases.

While a sparse CP decomposed structure on B enables estimation with rela-
tively small sample size, in many applications it may not be particularly suitable,
since the data may exhibit more complex structure. For example, imaging data
over different time points can be considered as a three-dimensional predictor,
while the response can be a clinical outcome (see [22]). The images may have
similar baseline effects across all the time points, while there might be selected
segments of the images showing some additional effects, which are specific to
selected time points only. A sparse CP decomposed regression model does not
account for this structure, that in turn may not help researchers obtain good
scientific insights from their data.

Another example relates to online commerce data, where the predictor can
be organized as a three-dimensional tensor with one dimension corresponding
to product categories (books, electronics and clothing accessories), the second
dimension to ratings of these products (different types of ratings, including
“fashionable”, “durable” and so on) and the third dimension to age groups of
the customers, as shown in Figure 1 (see Example 2 in [1]). The response can
be the gross sales of the company. It is meaningful to decompose the effects
of the coefficient tensor into two parts. In the first component, all the “rating
type - age group” combinations share a similar baseline effect across the product
categories. On the other hand, there might be some of the “rating type - age
group” combinations, for which additional effects are present only in some spe-
cific categories. For instance, the combination of rating type label “fashionable”
and age group range “16 years - 30 years” should have additional effects in the
clothing accessories category. Similarly the combination of label “durable” and
“31 years - 50 years” demands additional effect in the electronics category.

In this paper, we propose a tensor regression model with a scalar response,
a third-order tensor predictor and consider a low-dimensional structure on the
coefficient tensor suitable for the previously mentioned examples. The key tech-
nical assumption is that one component of the regression coefficient B exhibits
low tubal rank, a concept introduced for tensor decompositions in [14] and [13]
and briefly explained next. As depicted in Figure 2, in the case of a third-order
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Fig 2. Matrix-type view of a third-order tensor: Lateral Slices, Horizontal Slices and Tube
Fibers can be visualized as columns, rows and elements respectively

tensor, the horizontal slices, lateral slices and the tube fibers (see Notation for
rigorous definitions and Figures 2.1 and 2.2 in [16] for a pictorial illustration)
play the roles of rows, columns and elements of a matrix, respectively. The ques-
tion addressed in the aforementioned papers is “How does one extend the well
known concepts of matrix algebra, e.g., linear combination, linear dependence,
rank and so on to this case?”. Their key technical development lies in the novel
concept of t-product [Definition C.1] between a lateral slice (or, horizontal slice)
and a tube, which is the tensor counterpart of the product between a column
(or, row) and a scalar. Along the same lines, the t-linear combination [Defini-
tion C.7] of lateral slices and the Range of the tensor are defined, which can
be conceptualized as the tensor counterparts of the linear combination of the
columns and the column space, respectively. Finally, [14] shows that the num-
ber of elements needed to generate any element in the range, is the same as
the tubal rank [Definition C.9]. Thus, just like the rank of a matrix, tubal-rank
of a third-order tensor determines the number of lateral (and horizontal) slices
that are t-linearly independent (see the discussion after Definition C.7, Figure 3
and Section 2 for more details). In addition to the low-dimensional structure as
expressed through a low-tubal rank, to capture idiosyncratic effects, we assume
that the coefficient tensor B can be decomposed as follows: B = L+S, wherein
the first component is a low tubal-rank tensor, where the baseline effects are
shared across the slices and the second component is sparse, reflecting additional
idiosyncratic effects (see Figure 1).

The key novel contribution of this paper is to develop the algorithm and
technical tools to obtain estimates of the two components of the regression
coefficient B and establish a non-asymptotic upper bound to their estimation
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error. This type of decomposition has been employed earlier in another line of
research that deals with tensor recovery (see [23]). However, to the best of our
knowledge, the proposed methodology and the subsequent theoretical analysis
are new in the context of tensor regression. [20] considered a tensor regression
model with sparse tubal-regularized penalization. However, the latter paper is
motivated by a different perspective vis-a-vis the current work. As mentioned
in the previous paragraph, the current work characterizes the baseline effects
as the low tubal-rank tensor and the idiosyncratic effects as the sparse tensor.
Thus, this can be conceptualized as the third-order generalization of the matrix
low-rank plus sparse approach in [1]. On the other hand, [20] does not consider
any such decomposition of their coefficient tensor into baseline (L in our case)
and idiosyncratic parts (S in our case). Rather, in order to reduce the dimen-
sion of the regression coefficient, they simply assume both low tubal-rank and
sparse structure on the coefficient tensor W. Consequently, the objective func-
tions considered in the two papers are different. Finally, in terms of theoretical
developments, a novel incoherence condition is needed for identifiability of the
two components in our case and we also provide a detailed derivation and in-
terpretation of the non-asymptotic upper bound of the estimation error. The
bounds, as discussed in Section 3, are in line with the matrix case results [1].
On the other hand, [20] did not make any such attempt in their paper.

The remainder of the paper is organized as follows: In section 2, we develop
and provide intuition on how to interpret the low tubal rank regression model.
Section 2.1 discusses the convex relaxation and presents a block alternating
minimization algorithm to estimate the unknown model parameters from data.
Theoretical results related to estimation error bounds are discussed in Section
3. In Sections 4 and 5, we evaluate the performance of our model on synthetic
and real data, respectively. Finally, we conclude with a discussion in Section 6.
Background material on the t-product and the corresponding t-Singular Value
Decomposition and related concepts are provided in Appendix C.

Notation: The order of a tensor is the number of its dimensions. For a tensor
of order N, we use d1, d2, · · · , dN to denote the size of the tensor along each of
the N dimensions. Throughout the paper, tensors of order three or higher are
denoted by boldface Euler script letters, e.g., X. We write X ∈ R

d1×d2×···×dN

to represent an N-order tensor of size d1 × d2 × ... × dN . For any third-order
tensor X, Xijk denotes the (i, j, k)th element of X. One dimensional sections
of a third-order tensor X, namely, Column Fiber, Row Fiber and Tube Fiber
(see Figure 2.1 of [16]) are denoted by x:jk, xi:k and xij: respectively. Simi-
larly, the two-dimensional sections, namely, Horizontal Slice, Lateral Slice and
Frontal Slice (see Figure 2.2 of [16]) are denoted by Xi::, X:j: and X::k re-
spectively. As illustrated in Figure 2, the lateral slices, horizontal slices and
tube fibers can be visualized as columns, rows and elements of a matrix. For
any matrix A ∈ R

d1×d2 , whose (i, j)th element is denoted by aij , the Frobenius

Norm is defined as ‖A‖F =
√∑d1

i=1

∑d2

j=1 a
2
ij . �∞ norm of matrix A is defined

by ‖A‖∞ = max
i,j

| aij |. �2,1 norm of A is defined as ‖A‖2,1 =
∑d2

j=1(
∑d1

i=1 a
2
ij)

1
2 .
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Similarly, �2,∞ norm of A is given by, ‖A‖2,∞ = max
1≤j≤d2

(
∑d1

i=1 a
2
ij)

1
2 . Denoting

by σ1(A), σ2(A), · · · , σd(A), the singular values of A, where d = min{d1, d2}, we
define the Nuclear Norm of A by ‖A‖∗ =

∑d
j=1 σj(A) and the Spectral Norm

of A by ‖A‖sp = max
1≤j≤d

{σj(A)}.

2. Low tubal-rank tensor regression model and its estimation

Let y ∈ R be a scalar response and X ∈ R
d1×d2×d3 be a third-order tensor

predictor. We propose the following tensor regression model,

y = 〈B∗,X〉+ ε (2)

The coefficient tensor B∗ ∈ R
d1×d2×d3 captures the association between the

scalar response and the tensor predictor. The inner product is defined as in (1).
Further, it is assumed that ε ∼ N(0, σ2). To deal with the large number of
regression coefficients, we posit that B∗ = L∗ + S∗, where L∗ and S∗ are char-
acterized by two complementary types of low dimensional structure, discussed
next.

The L∗ component corresponds to a low tubal-rank tensor. As shown in [13]
and discussed in Section 1, the tubal-rank of a third-order tensor is analogous
(in the appropriate algebra, see Appendix C) to the rank of a matrix. Hence,
analogously to the fact that low rankness of a matrix implies linear dependence
among its columns and rows, a low value of the tubal-rank characterizes a sim-
ilar type of dependence, namely t-linear dependence (see Definition C.7 and
the ensuing discussion), among the lateral and horizontal slices. For the posited
model, we select the dimension across the lateral slices to impose low-rankness.
However, one can always reorient the tensor and thus impose low-rankness as-
sumption across any of the dimensions. The aforementioned dependence is gov-
erned by the concept of the t-product and the t-linear combination introduced
in [13]. Although the formal definitions are deferred to Appendix C, Figures
3 and 4 illustrate the key ideas. As Figure 3 depicts, a lateral slice is said to
be t-dependent on the other, if the former can be expressed as the t-product
between the latter and a suitable tube. Using the definition of t-product, Fig-
ure 3 also provides an alternative representation of t-dependence in terms of
a block-circulant matrix [see Notation B.2]. Figure 4 provides some numerical
examples to show the relation between tubal-rank and t-dependence among the
lateral slices. Based on this brief discussion, the purpose of the first component
L∗ becomes to capture similar baseline effects.

The second component, S∗ consists of the additional effects, which might be
present only in some of the specific lateral slices and they can be at element, row
or column level within each slice. For the posited model, it is assumed without
loss of generality that the slice specific effects are present column-wise in S∗.
However, one may also assume any of the other two possibilities with few minor
adjustments, as discussed in the sequel. It is interesting to note that, one can
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Fig 3. t-linear dependence between two lateral slices

Fig 4. Tubal Rank and t-linear dependence

have an alternative representation of S∗, which is easier to work with, namely
that its frontal slices are column-wise sparse.

Based on the above discussion, we rewrite the regression model in more ex-
plicit form as follows:

y = 〈L∗ + S∗,X〉+ ε, (3)

where L∗ is a low-tubal rank tensor, S∗ is a tensor whose frontal slices are
column-wise sparse and ε ∼ N(0, σ2). The goal becomes to estimate both L∗

and S∗ based on available data.

Note that similarly to the matrix case [1], an additional constraint is needed
in order to make the model identifiable. Specifically, L∗ needs to be “incoherent”
with S∗, an issue addressed in Section 2.1.
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2.1. Estimation of the tensor regression coefficient

Analogously to the matrix case, the tubal-rank is non-convex. Hence, for es-
timation purposes we aim to leverage a convex relaxation. To that end, from
equation (31) and the related discussion in Appendix B, it can be seen that
1
d3

‖Circ(L∗)‖∗ corresponds to such a convex relaxation, where Circ(L∗) is the

block-circulant matrix associated with the tensor L∗ (see notation B.2 in Ap-
pendix) and ‖·‖∗ denotes the matrix nuclear norm. Indeed, it is an alternative
form of the Tensor Nuclear Norm defined in [26] (see Definition 7 in [26] and
Equation (12) in [25]) and imposing a restriction on this norm translates into
an analogous restriction on the tubal-rank. Further, since S∗ consists of column-
wise sparse frontal slices, one can simply treat each frontal slice as a matrix and
employ the usual column-wise �2,1 norm for each of them. Hence, we consider a

regularizer
∑d3

k=1 ‖S∗
::k‖2,1 to constrain the sparse component.

The objective function for estimating the tensor regression coefficientB based
on the posited low-tubal rank and structured sparse decomposition is given by:

min
L,S

{ 1

2n

n∑
i=1

(yi − 〈L+ S,Xi〉)2 + λL
1

d3
‖Circ(L)‖∗ + λS

d3∑
k=1

‖S::k‖2,1} (4)

wherein λL and λS are non-negative regularization parameters corresponding
to low tubal-rank and sparse components, respectively. The factor 1

d3
can be

interpreted as follows: for any third-order tensor in R
d1×d2×d3 , the associated

block-circulant matrix consists of d2 blocks. Each block corresponds to a par-
ticular lateral slice and contains all of the d3 possible block-circulant arrange-
ments of that lateral slice. Hence, besides causing inter-slice t-dependence, the
penalty on ‖Circ(L∗)‖∗ also induces intra-slice dependence among the d3 block-
circulant arrangements of the slice. The factor 1

d3
thus adjusts for this additional

penalization.
Before presenting an algorithm for estimating (L∗,S∗), we address the issue

of identifiability of these parameters. In the matrix case, an incoherence condi-
tion is required and usually operationalized through conditions on the singular
vectors of the low rank component obtained from the SVD (see, e.g., [6], [4] and
[37]). We adapt the approach used in [1] to the low tubal rank tensor L∗ and
the structured sparse tensor S∗ and require

‖Circ(L∗)‖2,∞ ≤ α√
d2

,

for some fixed parameter α > 0. Note that based on Proposition A.1, a low
tubal rank for L∗ translates to low matrix rank for Circ(L∗) and vice versa.
Hence the nature of the posited incoherence constraint follows from that for
the matrix case. Specifically, by imposing this “spikeness” restriction on the
columns of Circ(L∗), one can ensure a sufficient number of non-zero columns
in Circ(L∗) and thus in each of the frontal slices of L∗. However, each of the
last d2(d3 − 1) columns of Circ(L∗) can be written by rearranging elements of
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any one of its first d2 columns. Hence by restricting the “spikiness” of only the
first d2 columns, one can essentially control the “spikiness” of all the columns
of Circ(L∗), which leads to the posited incoherence conditions.

Note that the objective function (4), denoted by f(L,S), is jointly convex
and hence the following alternating block minimization procedure summarized
in Algorithm 1, will obtain the desired minimizer. The details of Steps 1 and 2,
that update L and S alternatively, are discussed next.

Algorithm 1 Alternating Block Minimization Procedure for minimizing
f(L,S)

Input: data {(yi,Xi), i = 1, 2, · · · , n}, λL, λS

Initialize: L(0),S(0) ∈ R
d1×d2×d3

repeat
Step 1: Update L(t+1) = argmin

L

f(L,S(t)), given S(t)

Step 2: Update S(t+1) = argmin
S

f(L(t+1),S), given L(t+1)

until f(L(t+1),S(t+1)) converges

Step 1: Step 1 updates the value of L given S. For a given value of S,
letting ui = yi − 〈S,Xi〉, the problem then reduces to minimizing g(L) =
1
2n

∑n
i=1(ui − 〈L,Xi〉)2 + λL

1
d3

‖Circ(L)‖∗, with respect to L. Further, denot-

ing the matrix Circ(L)
d3

by W and Circ(Xi) by Vi, some simple algebraic steps
show that, minimizing g(L) with respect to L, is equivalent to minimizing
g(W ) = 1

2n

∑n
i=1(ui − Tr(WTVi))

2 + λL ‖W‖∗ with respect to W . This min-
imization problem shows up in various applications of machine learning, such
as matrix classification, multi-task learning and matrix completion (see [3, 35]).
[12] consider a general class of optimization problems that includes the above
formulation: specifically, for a matrix variable M , the objective function of inter-
est is given by min

M
{F (M)+λ ‖M‖∗}, wherein F (·) is a smooth convex function.

[12] proposed an Extended Gradient Algorithm and Accelerated Gradient Algo-
rithm to obtain the minimizerM and also addressed convergence issues. A direct
application of the aforementioned algorithms provides the optimal solution W
and thus eventually, the optimal L.

Step 2: In Step 2, for a given value ofL, letting zi = yi−〈L,Xi〉, the problem
boils down to minimizing h(S) = 1

2n

∑n
i=1(zi − 〈S,Xi〉)2 + λS

∑d3

k=1 ‖S::k‖2,1,
with respect to S. We now construct the matrix SMat of dimension d1 × d2d3
(and similarly XiMat), by placing the frontal slices of S (and of Xi) side by side.

One can easily check that 〈S,Xi〉 = Tr(ST
MatXiMat) and

∑d3

k=1 ‖S::k‖2,1 =

‖SMat‖2,1 and thus h(S) = 1
2n

∑n
i=1(zi − Tr(ST

MatXiMat))
2 + λS ‖SMat‖2,1.

Finally, vectorizing SMat and XiMat, the problem takes the form of a group-
lasso penalized learning problems, as discussed in [38]. Assuming that the loss
function admits the Quadratic Majorization condition, [38] develops Groupwise-
Majorization-Descent (GMD) algorithm in order to solve such problems. We
directly employ that method to obtain the optimal S.
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The above algorithm requires a slight modification to accommodate sparsity
at the element level for the component S∗. Specifically, in Step 2 the objective
function h(S) penalizes the �1 norm of vec(SMat), and thus the optimal S is
obtained by solving a lasso problem.

3. Theoretical results

We start by defining the estimation error e2(L̂, Ŝ) as follows:

e2(L̂, Ŝ) =
∥∥∥L̂−L∗

∥∥∥2
F
+
∥∥∥Ŝ− S∗

∥∥∥2
F

(5)

Next, we introduce some additional notation needed in the sequel.

Additional notation: For L∗ with tubal rank r 	 min{d1, d2}, the rank of
the associated block-circulant matrix is denoted by R and is bounded above
by r × d3 (see Proposition A.1). S∗

Mat is a matrix of dimension d1 × d2d3,
that is constructed by placing the frontal slices of S∗ side by side. We assume
that S∗

Mat has s 	 d2d3 non-zero columns. More specifically, suppose that
S∗
Mat is supported on a subset E ⊆ {1, 2, · · · , d2d3}, with |E| = s. We de-

fine a pair of subspaces (M(E),M⊥(E)), such that, M(E) = {M ∈ R
d1×d2d3 |

kth column of M = 0, ∀k /∈ E} andM
⊥(E) = (M(E))⊥. As shown in [1, 28], one

can easily verify that for any M1 ∈ M(E) and M2 ∈ M
⊥(E), ‖M1 +M2‖2,1 =

‖M1‖2,1+‖M2‖2,1. This ensures that the regularizer ‖·‖2,1 is decomposable (see

[28]) with respect to the subspace pair (M(E),M⊥(E)). Simplifying the notation
from (M(E),M⊥(E)) to (M,M⊥), it is evident that, S∗

Mat ∈ M, πM(S
∗
Mat) =

S∗
Mat and πM⊥(S∗

Mat) = 0, where πM(·) is the projection onto the subspace M.

We define, Δ̂L = L̂ − L∗, Δ̂S = Ŝ − S∗. Δ̂SMat is the matrix constructed
by placing the frontal slices of Δ̂S side by side. Δ̂M

SMat = πM(Δ̂SMat) and

Δ̂M
⊥

SMat = πM⊥(Δ̂SMat). Δ̂
M

S and Δ̂M
⊥

S are the tensor counterparts of Δ̂M

SMat and

Δ̂M
⊥

SMat respectively.
The roadmap of the technical developments is as follows: Lemmas 3.1 and

3.2 characterize the set to which the errors (Δ̂L, Δ̂S) belong. In addition, we
assume that Restricted Strong Convexity of the loss function on this set holds
(Assumption 1). For deterministic realizations of the predictors and the error
terms and under certain regularity conditions, Lemma 3.3 establishes the bound
on the estimation error e2(L̂, Ŝ). Theorem 3.4 extends the result to random
realizations of the predictors and the errors, while Corollary 3.4.1 presents the
error bound when S∗ has element-wise sparse frontal slices.

The proofs of the results are delegated to Appendix A.

Lemma 3.1. Let R denote the rank of Circ(L∗). Let C(L,S) be a weighted
combination of the nuclear norm and the �2,1 norm regularizers as follows:

C(L,S) =
1

d3
‖Circ(L)‖∗ +

λS

λL
‖SMat‖2,1
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Then, for any R = 1, 2, · · · ,min{d1d3, d2d3}, there exists a decomposition
Δ̂L = Δ̂A

L + Δ̂B
L with Rank (Circ(Δ̂A

L)) ≤ 2R, Circ(L∗)TCirc(Δ̂B
L) = 0,

Circ(L∗)Circ(Δ̂B
L)

T
= 0 and

C(L∗,S∗)− C(L∗ + Δ̂L,S
∗ + Δ̂S) ≤ C(Δ̂A

L, Δ̂
M

S )− C(Δ̂B
L, Δ̂

M
⊥

S ) (6)

Lemma 3.2. Suppose the predictors Xi’s and the errors εi’s are deterministic.
Define a third-order tensor D ∈ R

d1×d2×d3 as follows:

D =
1

n

n∑
i=1

εiXi

Also let DMat be a matrix obtained by placing the frontal slices of D side by
side. Then under the conditions λL ≥ 4 1

d3
‖Circ(D)‖sp and λs ≥ 4 ‖DMat‖2,∞,

the estimation error (Δ̂L, Δ̂S) satisfies the following constraint:

C(Δ̂B
L, Δ̂

M
⊥

S ) ≤ 3C(Δ̂A
L, Δ̂

M

S ) (7)

As mentioned earlier, the above lemmas characterize a set in which the error
(Δ̂L, Δ̂S) lies. Given this set, we are now in a position to summarize all the
assumptions that we make. We first prepare a list of the assumptions and then
provide further details on each of those assumptions.

Assumption 1. The loss function L(L∗,S∗) satisfies Restricted Strong Con-
vexity with curvature γ > 0 (and tolerance τL = 0) over the set, characterized
by Lemma 3.1 and Lemma 3.2. In other words, there exists a positive constant
γ > 0 such that

1

2n

n∑
i=1

{〈ΔL +ΔS,Xi〉}2

≥ γ

2
‖ΔL +ΔS‖2F , for all (ΔL,ΔS) satisfying equation (7) (8)

Assumption 2. ‖Circ(L∗)‖2,∞ ≤ α√
d2
, for some fixed parameter α

Assumption 3. When the predictors Xi’s and the errors εi’s are deterministic,
the regularizer parameters (λL, λS) satisfy

λL ≥ 4
1

d3
‖Circ(D)‖sp and λs ≥ 4 ‖DMat‖2,∞ +

4γα√
d2

(9)

where D and DMat are as defined in Lemma 3.2.

• Assumption 1 ensures that the loss function exhibits strong convexity over
some restricted set of interest, as defined in equation (7). This is a fairly
standard assumption in the high-dimensional literature [1].
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• Assumption 2 is aimed to ensure that the low-tubal rank component L∗

is incoherent with the sparse component S∗, as discussed in Section 2.1.
It is worth recalling that this assumption is a straightforward application
of the ‘spikiness’ restriction on the columns of the low-rank matrix, as
introduced in [1]. We directly impose that restriction on Circ(L∗), which is
a reasonable low rank matrix-counterpart of our low tubal-rank component
L∗. The reader may revisit Section 2.1 for more details. This assumption
is milder than other Tensor Incoherence conditions, including those in
[24, 40], which involve the components of the t-SVD.

• Assumption 3 imposes a certain lower bound to the two regularizer pa-
rameters, a common requirement in the high-dimensional literature.

The following lemma establishes an upper bound to e2(L̂, Ŝ) in the case of
deterministic predictors and errors.

Lemma 3.3. Suppose the predictors Xi’s and the errors εi’s are determinis-
tic. Then, under Assumptions (1), (2) and (3), the estimation error e2(L̂, Ŝ)
satisfies the following:

e2(L̂, Ŝ)  λ2
L r + λ2

S s (10)

where the notation ‘’ denotes an upper bound, ignoring all constant factors.

Note that the result is broadly in line with Theorem 1 in [1]; specifically, when
the loss function satisfies the Restricted Strong Convexity and the parameters
of interest are exactly (not approximately) Low Rank and Sparse, a similar form
error bound is obtained. In the current setting, the tubal-rank (instead of the
matrix rank) enters the bound, as well as the columnwise sparsity s reflecting
the nature of S∗

Mat.

Next, the above result is extended to the case of stochastic errors and predic-
tors. To that end, we assume that εi’s are i.i.d. N(0, σ2) and use the notation
X(i) = Vec(Xi) in order to denote the vectorized form of the ith predictor Xi.
We write

X = ((X(1))T , (X(2))T , · · · , (X(n))T )T ∈ R
nd1d2d3 (11)

to denote the combined predictors from all the n samples in vectorized form.
As in [32], we assume that X ∼ N(0,Σ), where Σ = Cov(X) ∈ R

nD×nD and
D = d1d2d3. Note that this assumption does not require the data tensors Xi’s
to be independent. We assume that Σ has bounded eigenvalues. Let λmin(·) and
λmax(·) denote the smallest and largest eigenvalues of a matrix respectively. We
assume in the sequel that

c2l ≤ λmin(Σ) ≤ λmax(Σ) ≤ c2u (12)

for some constants 0 < cl ≤ cu < ∞. As mentioned in [32], it is evident that in
particular if all the covariates {X(i) : i = 1, 2, · · · , n} are independent and iden-
tically distributed, then Σ will have a block-diagonal structure and in that case,
the condition in equation (12) reduces to the similar conditions on Cov(X(i)).
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With this Gaussian assumption on the predictors and errors, we establish the
following result.

Theorem 3.4. Suppose εi’s are i.i.d. N(0, σ2) and the predictors follow a Gaus-
sian distribution, characterized by equation (11) and equation (12). Suppose that
Assumption 2 holds. Then it can be shown that the conditions in Assumption 1
and Assumption 3 are satisfied with high probability and we will have

e2(L̂, Ŝ) ≤ c1 σ2c2u
r(d1 + d2)

n
+ c2 [σ2c2u

sd1
n

+ σ2c2u
s log(d2d3)

n
+

α2s

d2
] (13)

with probability greater than 1− exp(−9 log(d2d3)), where c2u is defined in (12).

The bound is analogous to the matrix case; for the latter, with m1 rows, m2

columns and rank w, the bound involves the expression σ2w(m1+m2)
n . This com-

prises two parts: w(m1+m2) corresponds to the degrees of freedom, which is in

the order of the number of free elements and a multiplicative factor σ2

n corre-
sponding to the error variance. Analogously, the term rd1 (or, rd2) corresponds
to the r t-independent lateral slices (or, horizontal slices) and estimation of the
d1 (or, d2) tubes in that slice. The multiplicative factor remains the same, ex-
cept the term c2u that appears additionally in this case in order to accommodate
the variability in the predictors.

The second part of the error bound is related to the sparse component and can
be interpreted as follows: the first term σ2c2u

sd1

n arises as a result of estimating

sd1 non-zero parameters in S∗
Mat and the second term σ2c2u

s log(d2d3)
n is devoted

to the selection of s positions to place the non-zero columns in S∗
Mat. This

selection problem induces the term log(
(
d2d3

s

)
) ≈ s log(d2d3). Finally, the last

term α2s
d2

appears due to the non-identifiability of the model.

When the sparsity in the regression coefficient tensor arises element-wise,
instead of columnwise, the estimation error bound can be obtained in an anal-
ogous manner, with the columnwise �(2,1) norm replaced with the elementwise
�1 norm, that imposes the elementwise sparsity in S∗

Mat. Further, instead of re-
stricting the spikinesss of the columns, the incoherence condition now controls
the elementwise spikiness of Circ(L∗) and thus Assumption 2 takes the form
‖Circ(L∗)‖∞ ≤ α√

d1d2d3
. Also in Assumption 3, the second inequality becomes

λs ≥ 4 ‖DMat‖∞ + 4γα√
d1d2d3

. With these modified versions of the assumptions

and denoting the number of non-zero elements in S∗
Mat by s, we present next

the following Corollary to the Theorem 3.4, that provides the estimation error
bound in case of elementwise sparsity in S∗.

Corollary 3.4.1. Suppose the errors εi’s are i.i.d. N(0, σ2), the predictors fol-
low a Gaussian distribution, characterized by equation (11) and equation (12)
and the modified version of the Assumption 2 holds. Then, it can be shown that
the conditions in Assumption 1 and in modified version of Assumption 3 are
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satisfied with high probability and we obtain

e2(L̂, Ŝ) ≤ c1 σ2c2u
r(d1 + d2)

n
+ c2 [σ2c2u

s log(d1d2d3)

n
+

α2s

d1d2d3
] (14)

with probability greater than 1−exp(−9 log(d1d2d3)), where c
2
u is defined in (12).

4. Performance evaluation

We illustrate the performance of our estimation procedure described in Section
2.1, based on synthetic data under different settings. We start by describing how
the true L∗ and S∗ are generated.

For the L∗, we start by generating a third-order tensor in R
d1×d2×d3 with

Uniform (0, 1) entries and then obtain its t-SVD (see Definition C.8) using
the rTensor R package ([19]). Let U and V denote the two orthogonal tensors
(Definition C.5) and let K be the f -diagonal tensor (Notation C.1) of the t-
SVD. For any r = 1, 2, · · · , d = min{d1, d2}, we randomly select d− r diagonal
tubes of K and make them zero, whereas the remaining tubes remain non-zero.
Denoting the resulting f -diagonal tensor by K1, L

∗, with tubal rank r, is then
generated as U ∗ K1 ∗ VT .

To generate S∗, we start with a third-order tensor with Uniform(0, 1) entries
as before. Then, for the kth frontal slice, with k = 1, 2, · · · , d3, we randomly
choose sk(	 d2) columns and set all the remaining d2−sk columns to zero. With

this construction and denoting
∑d3

k=1 sk by s, S∗
Mat will have s(	 d2d3) non-zero

columns, as assumed in Section 3. However, for simplicity, in the simulations we
assume that s1 = s2 = · · · = sd3 = s∗.

The predictors Xi’s are sampled independently, where in each of the predic-
tors, the entries are i.i.d. N(0, 1). Finally we simulate independent and identi-
cally distributed entries of Gaussian noise for the error term and generate the
responses based on Model 2. Given simulated data, we employ the algorithm,
discussed in Section 2.1, to obtain L̂ and Ŝ. The regularization parameters λL

and λS are selected by a two-dimensional grid search method. We run the al-
gorithm and obtain the estimates for different grids of the pair (λL, λS) and

select that pair for which the rank of Circ(L̂) and the positions of the non-zero

columns in ŜMat are as close as possible to the rank of Circ(L∗) and the posi-
tions of the non-zero columns in S∗

Mat respectively. It is worth mentioning that,
later we develop an AIC criteria in order to select the optimum values of the
regularization parameters, when the true rank and sparsity level are unknown
to us.
Performance Evaluation: We use Relative Error, Rank of Circ(L̂), Sensitivity
and Specificity as the criteria of evaluation. Small values of relative error, along
with the closeness of rank of Circ(L̂) and rank of Circ(L∗), characterize the
quality of the estimation. In addition to that, sensitivity and specificity together
assess the ability of support recovery. Below we provide the rigorous definitions
of these criteria.
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1. Relative Error (RE): Considering the definition of Estimation Error pro-

vided in equation (5), the Relative Error is defined as
‖L̂−L∗‖2

F
+‖Ŝ−S∗‖2

F

‖L∗‖2
F+‖S∗‖2

F

2. Specificity (SP): Specificity is defined as 1− False Positive Rate (FPR),
where, FPR is defined as follows:

number of non-zero elements in Ŝ, which are actually zero in S∗

number of elements that are zero in S∗

3. Sensitivity (SN): Sensitivity, also known as True Positive Rate (TPR),
which is defined as follows:

number of non-zero elements in Ŝ, which are actually non-zero in S∗

number of non-zero elements in S∗

Using the above-mentioned criteria we evaluate the performance of our method
under four different scenarios. Each scenario corresponds to specific values of the
triplet (d1, d2, d3). Furthermore, within each scenario, we obtain the estimates
under four different sub-cases, where each sub-case corresponds to a particular
combinations of the true tubal-rank and sparsity level. Now we first describe all
the scenarios and the sub-cases and then summarize the results under all these
cases. The results reported in the following tables are based on 100 replicates.

• Scenario 1: d1 = 10, d2 = 10, d3 = 8, Scenario 2: d1 = 20, d2 = 20, d3 = 8,
Scenario 3: d1 = 10, d2 = 10, d3 = 18, Scenario 4: d1 = 20, d2 = 20, d3 = 18

• Sub-case 1: (r, s∗) = (2, 1), Sub-case 2: (r, s∗) = (2, 2), Sub-case 3: (r, s∗) =
(3, 1), Sub-case 4: (r, s∗) = (3, 2). In all of these cases, L∗ has been gener-
ated in such a way that the right-hand side of the Proposition A.1 follows
with equality. More specifically, rank of the true block-circulant matrix is
simply r × d3. As an example, in Table 1, since d3 is 8, we will have R as
16 and 24 when r is 2 and 3 respectively.

As depicted in Table 1, in all four sub-cases, the relative error decrease as the
sample size increases. Moreover, as the estimation is equipped with more and

Table 1

Performance Evaluation under Scenario 1 : d1 = 10, d2 = 10, d3 = 8; Relative Error, Rank
of the estimated Block-Circulant matrix, Specificity and Sensitivity are reported for four

different combinations of true rank and true sparsity level.

r = 2, s* = 1, R = 16 r = 2, s* = 2, R = 16

Sample Size RE R SP SN RE R SP SN
400 0.48 21 0.90 1 0.62 19 0.94 1
800 0.33 17 0.99 1 0.39 17 0.94 1

1100 0.29 17 0.99 1 0.36 17 0.95 1

r = 3, s* = 1, R = 24 r = 3, s* = 2, R = 24

Sample Size RE R SP SN RE R SP SN
400 0.60 25 0.97 1 0.65 26 0.91 0.94
800 0.37 24 1 1 0.42 25 0.92 1

1100 0.31 24 1 1 0.38 22 1 1
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Table 2

Performance Evaluation under Scenario 2 : d1 = 20, d2 = 20, d3 = 8; Relative Error, Rank
of the estimated Block-Circulant matrix, Specificity and Sensitivity are reported for four

different combinations of true rank and true sparsity level.

r = 2, s* = 1, R = 16 r = 2, s* = 2, R = 16

Sample Size RE R SP SN RE R SP SN
400 0.50 17 0.93 1 0.65 19 0.90 1
800 0.35 18 0.95 1 0.40 18 0.91 1

1100 0.32 17 0.96 1 0.38 18 0.94 1

r = 3, s* = 1, R = 24 r = 3, s* = 2, R = 24

Sample Size RE R SP SN RE R SP SN
400 0.75 28 0.90 1 0.90 25 0.89 0.89
800 0.46 24 0.93 1 0.63 24 0.94 1

1100 0.37 25 1 1 0.53 24 0.97 1

Table 3

Performance Evaluation under Scenario 3 : d1 = 10, d2 = 10, d3 = 18; Relative Error, Rank
of the estimated Block-Circulant matrix, Specificity and Sensitivity are reported for four

different combinations of true rank and true sparsity level.

r = 2, s* = 1, R = 36 r = 2, s* = 2, R = 36

Sample Size RE R SP SN RE R SP SN
500 0.77 37 0.86 1 0.81 37 0.86 0.90
900 0.62 35 0.92 1 0.66 36 0.92 0.97

1200 0.58 34 0.94 1 0.62 36 0.94 1

r = 3, s* = 1, R = 54 r = 3, s* = 2, R = 54

Sample Size RE R SP SN RE R SP SN
500 0.84 51 0.95 0.90 0.90 53 0.91 0.88
900 0.68 50 0.96 1 0.75 52 0.97 0.94

1200 0.65 50 0.96 1 0.72 50 0.97 0.94

more samples, it becomes easier to achieve the target rank of the true block-
circulant matrix. Finally, the values of the specificity and sensitivity approaches
to 1, with increase in the sample size. The reader may also note that, for a fixed
value of true rank, when one increases the true sparsity level, the relative error
increases, which is in accordance with the theoretical finding in Lemma 3.3. For
example, with sample size 800 and tubal-rank 3 (Rank of the block-circulant
matrix 24), when one increases s∗ from 1 to 2, the relative error increases from
0.37 to 0.42. The same argument follows when the true rank is increased for a
fixed level of imposed sparsity.

The remaining tables (Table 2, Table 3 and Table 4) display the results under
the remaining three scenarios. As expected, more samples are required to achieve
good performance while we increase the number of parameters. However, in all
these cases, as in scenario 1, both estimation and support recovery performance
become stronger with increase in the sample size.
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Table 4

Performance Evaluation under Scenario 4 : d1 = 20, d2 = 20, d3 = 18; Relative Error, Rank
of the estimated Block-Circulant matrix, Specificity and Sensitivity are reported for four

different combinations of true rank and true sparsity level.

r = 2, s* = 1, R = 36 r = 2, s* = 2, R = 36

Sample Size RE R SP SN RE R SP SN
500 0.81 38 0.87 0.90 0.84 38 0.86 0.92
900 0.68 37 0.92 1 0.69 38 0.92 0.97

1200 0.60 34 0.94 1 0.64 36 0.94 0.97

r = 3, s* = 1, R = 54 r = 3, s* = 2, R = 54

Sample Size RE R SP SN RE R SP SN
500 0.88 55 0.89 0.90 0.92 56 0.87 0.90
900 0.71 51 0.94 1 0.77 52 0.97 0.94

1200 0.67 50 0.97 1 0.74 51 0.97 0.94

Table 5

Positive predictive values and Negative predictive values for Scenario 1 : There are no cases
of very low positive predictive values even if specificity and sensitivity values are high.

r = 2, s* = 1, R = 16 r = 2, s* = 2, R = 16

Sample Size SP SN PPV NPV SP SN PPV NPV
400 0.90 1 0.70 1 0.94 1 0.72 1
800 0.99 1 0.89 1 0.94 1 0.72 1

1100 0.99 1 0.89 1 0.95 1 0.74 1

r = 3, s* = 1, R = 24 r = 3, s* = 2, R = 24

Sample Size SP SN PPV NPV SP SN PPV NPV
400 0.97 1 0.84 1 0.91 0.94 0.71 0.99
800 1 1 1 1 0.92 1 0.71 1

1100 1 1 1 1 1 1 1 1

Remark 4.1. There can be situations, where only good values of the specificity
and sensitivity may not reveal the actual underlying scenario in terms of support
recovery. For example, suppose there are 10 non-zeros and 9990 zero elements
and an algorithm predicts 1000 non-zeros (including 10 true ones) and 9000 zero
elements. Then the sensitivity is 1 and the specificity is about 0.9. However, the
positive predictive value1 is as low as 0.01 and the negative predictive value is
1. To address this point, we obtained the positive predictive values and negative
predictive values in addition to the specificity and sensitivity. Table 5 provides
the values for the Scenario-1. From the table, it can be seen that, both the positive
predictive values and the negative predictive values are fairly good. Thus, it seems
that, there are no cases of very low positive predictive value (as 0.01 in the
example given above) even if specificity and sensitivity are high. For example,
in sub-case 1 of Table 5 (upper left part) with sample size 800, we have 80
true non-zero values (10 true non-zero values in each of the 8 slices) and 720

1see https://www.medcalc.org/calc/diagnostic_test.php

https://www.medcalc.org/calc/diagnostic_test.php
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(= 800− 80) true zero values. Our method estimates the sparse component with
90 non-zero values (that means, 80 true non-zeros and 10 false positive) and
no false negative. Thus, the specificity and sensitivity values are 0.99 and 1
respectively, along with positive predictive value as 0.89 and negative predictive
value as 1.

Predictive Performance : To assess the out-of-sample predictive performance
of our model, we split the data into two parts. While we fit the model based
on the first part of the data (training data), the second part (test data) is used
to assess the performance of the model. We use the Root Mean Square Error

(RMSE) as the measure, which is defined as
√∑ntest

i=1 (yi−ŷi)2

ntest
, where ntest is the

number of observations in the test data, yi is the ith actual observation in the
test data and ŷi is the fitted value, using the model based on the train data.
Thus, lower RMSE values imply better performance. We compare our model
with four benchmarks, which are relevant in the literature: 1) Vectorized Lasso
(La-vec): in this case, the third order tensor predictor Xi ∈ R

d1×d2×d3 is vec-
torized and the resulting vector of length d1d2d3 is then used to fit a Lasso
regression with �1 norm penalization. 2) Vectorized Elastic Net (EN-vec): this
is similar to benchmark 1, except for the fact that here we employ the Elastic
Net regularization on the vectorized X, instead of Lasso. 3) Sparse CP regres-
sion (Sp-CP): this is based on the method developed in [42], that uses the CP

decomposition of the coefficient tensor, that is, B =
∑R

r=1 β
(r)
1 ◦ β(r)

2 ◦ β(r)
3 and

imposes �1 norm penalization on the components β
(r)
n as

∑R
r=1

∑3
n=1 |β

(r)
n |. [42]

developed a Block Relaxation algorithm to solve the problem, which is imple-
mented in a Matlab toolbox, TensorReg2 and we use the toolbox to generate
the results. 4) Sparse Tucker regression (Sp-Tu): this is similar to benchmark
3, except for the fact that [21] applies a Tucker decomposition ([16]) on the
coefficient tensor, instead of a CP decomposition. As in benchmark 3, in this
case too, we use toolbox TensorReg in order to generate the results. Note that,
competitors (1) and (2) are oblivious to the tensor nature of the problem and
treat it as a large size regularized regression one.

Table 6 summarizes the RMSE values for our Low Tubal Rank model (Low
TR) and for the four benchmarks, La-vec, EN-vec, Sp-CP and Sp-Tu. The first
column specifies the true data generating procedure, wherein, the first four
entries, TR(r = 3, s = 2), TR(r = 3, s = 1), TR(r = 2, s = 2), and TR(r =
2, s = 1) characterize the four sub-cases (based on the values of tubal rank and
the number of non-zero columns) and the relevant data generating procedures
discussed in Section 4 of our paper. The last entry of the first column, Sp-
data, corresponds to the data generating procedure in the sparse CP tensor
regression [42], which is also provided in their toolbox documentation. For each
of the true data generating processes, Table 6 reports the RMSE values for our
model and the benchmarks for three different sample sizes n = 400, 800, 1100.
While calculating the RMSEs, the number of test data, ntest was taken as 100
and the sizes d1, d2 and d3 of the tensor predictor were fixed at 10, 10 and 8

2https://hua-zhou.github.io/TensorReg/

https://hua-zhou.github.io/TensorReg/
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Table 6

RMSE values for our model (Low TR) and the four benchmarks, La-vec, EN-Vec, Sp-CP
and Sp-Tu, under different true data generating procedures

Low TR La-vec En-vec Sp-CP Sp-TU

TR(r=3, s=2)
n = 400 4.45 5.11 5.16 7.41 7.45
n = 800 3.87 5.07 5.11 6.71 6.79
n = 1100 3.26 4.86 4.89 5.24 5.27

TR(r=3, s=1)
n = 400 4.32 5.04 5.12 6.57 6.59
n = 800 3.39 4.88 4.92 5.83 5.87
n = 1100 2.66 3.35 3.52 4.76 4.83

TR(r=2, s=2)
n = 400 4.29 5.03 5.09 6.55 6.58
n = 800 3.37 4.65 4.73 5.79 5.81
n = 1100 2.58 3.27 3.43 4.68 4.75

TR(r=2, s=1)
n = 400 3.98 4.93 4.96 6.22 6.31
n = 800 3.21 4.32 4.41 5.44 5.48
n = 1100 2.31 3.12 3.17 4.22 4.25

Sp-data
n = 400 2.71 3.32 3.38 2.35 2.37
n = 800 1.85 2.23 2.31 1.96 1.98
n = 1100 1.33 2.12 2.19 1.72 1.78

respectively. As depicted in Table 6, our model outperforms the benchmarks for
the first four data generating procedures, as expected, since the posited low tubal
rank plus sparse model corresponds to the true data generating mechanism. For
the Sp-data generating mechanism, though the RMSE values from our model
are initially slightly higher or on par with the Sp-CP and Sp-Tu ones (that are in
accordance to the true generating mechanism), they start getting smaller than
Sp-CP and Sp-Tu, as we increase the sample size. This is probably due to the
fact that the optimization problem for our model is convex, as opposed to the
sparse CP/Tucker decomposition and also the small number of parameters to be
estimated. Both these features are advantageous in settings with not enormous
sample sizes.

As mentioned earlier, while working with real data, the true rank and sparsity
level are unknown. In such situations, we choose the values of λL and λS in such
a way that the AIC, as defined below, is minimized.

AIC : We define AIC as n log(RSS
n ) + 2 Rank (Circ(L̂)) + 2k, where, RSS =∑n

i=1(yi−〈L̂+ Ŝ,Xi〉)2 and k is the number of non-zero elements in Ŝ. This for-
mulation is quite common in the literature, which essentially rewards goodness
of fit and at the same time penalizes overfitting. Below we provide a numerical
analysis that justifies the performance of the posited AIC criterion.

We consider the synthetic data generated in scenario 1 - sub-case 1. Recall
that for this data set, the true rank of the block-circulant matrix is 16 and there
is only one non-zero column in each frontal slice of the sparse component. The
goal of this experiment is to check whether the values of rank and sparsity that
we get after minimizing AIC, match closely to the true rank and sparsity level
or not. To that end, we obtain the values of AIC for different grids of the pair
(λL, λS) with sample size n = 800. Figure 5 depicts the relevant part of the
grids that contains the minimum AIC value (see additional tables in Appendix
D for the AIC values). The pair (λL, λS) corresponding to this minimum AIC in
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Fig 5. AIC plot: Rank and Sparsity corresponding to minimum AIC match well with the truth

Figure 5, produces L̂ with R = 17 ans Ŝ comprising a frontal slice with two non-
zero columns and remaining frontal slices with only one non-zero column in the
desired positions. Hence, the rank and sparsity, decided by AIC, matches quite
well the true values. Also, these AIC based rank and sparsity pattern are exactly
in line with the ones obtained in the simulations (see the rank, SP and SN for
n = 800 in scenario 1-subcase 1, depicted in Table 1). To gain more assurance
on the parity between AIC based results and the simulation results obtained
earlier, we recalculate the estimation results for all the sub-cases of Scenario 1,
with the AIC based tuning parameters and summarize them in Table 7. As it
can be seen, the AIC based results in Table 7 are quite in line with the scenario
1 simulation results in Table 1.

5. Application to educational data

In this section, we use our proposed method on educational data from an Intel-
ligent Tutoring System (ITS). The ITS under consideration is an online video
based tutoring program launched in year 2013 to help prepare students for an
End-of-Course basic algebra test. The platform offers videos on various alge-
bra topics, recorded by different tutors. The students can assess their progress
by taking practice test. Also, the platform offers a monitored discussion area
where the students can pose questions to peers and volunteer tutors. The data
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Table 7

Performance Evaluation under Scenario 1 with the AIC based tuning parameters

r = 2, s* = 1, R = 16 r = 2, s* = 2, R = 16

Sample Size RE R SP SN RE R SP SN
400 0.46 22 0.90 1 0.59 18 0.95 1
800 0.35 17 0.99 1 0.39 17 0.94 1

1100 0.28 16 0.99 1 0.37 17 0.95 1

r = 3, s* = 1, R = 24 r = 3, s* = 2, R = 24

Sample Size RE R SP SN RE R SP SN
400 0.61 25 0.96 1 0.65 26 0.91 0.94
800 0.37 24 1 1 0.42 24 0.94 1

1100 0.32 24 1 1 0.39 22 1 1

we consider in this section, consists of records of the students for four consec-
utive academic years, starting from 2014-15 to 2017-18. Students who logged
in the tutoring platform for at least five times in a particular academic year,
were considered as users of the platform for that year. For each year, we gather
information on the following variables for each user.

• Socioeconomic variables: 1) Ethnicity: Hispanic/Latino or not, 2) FRL:
Reduced-price (or Free) meals at schools or not, 3) Gender: Male or Female

• Score in Maths Tests: 1) Pre-Score: Score in state standard assessment
maths test, that determines the maths preparedness of the students, 2)
EoC Score: Score in the end of course maths test. The students must take
and pass this test to establish their maths proficiency.

• Platform Usage variables: 1) Video: Number of videos watched by the
user, 2) TYS: Number of “Test yourself” questions completed by the user,
3) Logins: Number of times the user has logged into the platform, 4) Wall
Post: The number of posted comments on the discussion wall by the user.

In the next step, we convert this user level data into school level. To that end,
for each of the schools, we process the data as follows:

• For each academic year, we first make three categories of the teachers,
based on their overall teaching experience, namely E1, E2 and E3. While
E1 is the group of teachers with the least experience (teaching experience
of at most 5 years), E3 is the most experienced group (at least 14 years
of teaching experience).

• Thus, for each school, we arrive at a third-order tensor predictor of dimen-
sion 8× 4× 3 as illustrated in Figure 6. The four lateral slices correspond
to four academic years, where in each lateral slice, 8 variables are captured
across the 3 levels of teaching experience. It is worth mentioning that these
variables are now measured at school level, by averaging over the relevant
student level data. As an example, the very first element of 2014-15 slice
represents the average number of videos watched by the students of that
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Fig 6. Structure of the tensor predictor Xi for ith school: Variables, Academic Year and
Teaching Experience are the three dimensions

particular school in that year, who were taught by the least experienced
group of teachers. All the other usage variables along with Pre-Score have
similar interpretation. For any cell, the variables Female-pr, FRL-pr and
Eth-pr are defined as the proportion of the female students, proportion
of the students that avails free meals at school and the proportion of the
Hispanic/Latino students in that cell.

• Finally, the response variable is the average EoC score obtained by the
students of that school in 2017-18. Specifically, for i = 1, 2, · · · , n, yi, the
average EoC score by the students of the ith school in 2017-18, is the scalar
response variable corresponding to the ith school. On the other hand, the
(l,m, k)th element of the tensor predictor Xi ∈ R

8×4×3 captures the value
of the lth variable, in themth year, with the kth level of teaching experience
experience, l = 1, 2, · · · , 8, m = 1, 2, 3, 4 and k = 1, 2, 3.

Due to lack of information for many schools, we restrict our analysis to n =
38 schools. Using the observed data {(yi,Xi)}ni=1, we fit the tensor regression
model, given by (2). We assume that B = L + S, where L is the low tubal-
rank component and S is a tensor, whose frontal slices are elementwise sparse.
In other words, L captures the baseline effects, which are shared across the
academic years. In addition to that, there are some specific combinations of
variables and experience level, which may show additional effect in some specific
year. The sparse component S is devoted to determining such additional effects.

We first select suitable values of λL and λS using the AIC criteria dis-
cussed in Section 4 and then employ the Alternating Block Minimization Al-
gorithm (Algorithm 1) to estimate the low tubal rank and sparse components
of the coefficient tensor. Figure 7 provides the estimated low tubal-rank com-
ponent, for which the tubal-rank is 1. Thus, there is only one academic year,
for which the corresponding lateral slice is t-linearly independent. In all the
remaining academic years, the effects of the variables are t-linearly dependent
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Fig 7. Estimate of Low Tubal-Rank Component: Four slices are for four academic years. In
each slice, three columns correspond to three different level of teaching experience. In each
column, the variables are in the following order: Video, TYS, Logins, Wall-post, Pre-Score,
FRL-pr, Eth-pr, Female-pr

on the former one. In fact, for most of the variables, the effects are quite sim-
ilar across the years. For instance, the estimated coefficients for the variable
Pre-Score (across three levels of teaching experience) for different academic
years are (0.082, 0.078, 0.077)T , (0.072, 0.074, 0.077)T , (0.081, 0.082, 0.081)T and
(0.083, 0.081, 0.084)T . Prior work on different models based on this data have
also portrayed similar behavior of the Pre-Score coefficients. In the context of
Causal Invariance Prediction, [30] analyzed an educational attainment data and
found that the effects of the school students’ prior scores on their BA degree at-
tainment, are similar across two different “experimental” groups. The first group
corresponds to the students who live within 10 miles of the nearest 4-year col-
lege. On the other hand, the second group of students live at least 10 miles away
from the nearest 4-year college. Similarly in our study, the effect of students’
preparedness or prior knowledge, on their future academic achievements, are
similar across different years. In addition to the Pre-Score or prior knowledge,
the effects of the socioeconomic variables are also similar for different years.

However, as opposed to the Pre-Score and socioeconomic variables, the effects
of the ITS platform usage variables are not quite similar across the years. There
are some usage variables for which some additional effects are captured by the
estimated sparse component Ŝ. The binary heatmap in Figure 8 depicts such
variables for which there are non-zero values in Ŝ, whereas the actual values of
the estimates are tabulated in Appendix (Table 9). As shown in Figure 8, the
two key variables for which additional effects are present, are the number of
videos viewed and the number of logins to the platform. Although it is difficult
to discover the ground truth behind this, intuition suggests that the level of
platform usage may vary significantly across different segments and thus leads
to additional effects in the estimated coefficient. For instance, as the platform
gains more and more popularity with time, more students are expected to get
acquainted with the platform and thus watch tutorial videos. Consequently,
additional effects of videos are expected to become more prominent in Year-3
and Year-4, as compared to Year-1 and Year-2, which is reflected in the heatmap.
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Fig 8. Binary Heatmap of the estimate of sparse component: The combinations that are
colored in red, have non-zero coefficients. All the remaining coefficients are zeros

Regarding the other tensor regression models, as mentioned earlier, our work
is the first one to explore the decomposition of the total effect into baseline (low
tubal-rank tensor) and idiosyncratic effect (sparse tensor). This decomposition
is a necessary intrinsic pattern of the type of educational data that we consider
here. The effects of prior knowledge (Pre-Score) and socioeconomic variables are
similar or shared across the years ([30]), which is the baseline component. In
addition to that, the platform usage variables (number of logins to the platform,
number of tutorial videos watched and so on) display some additional effects as
the platform gains more and more popularity. No other tensor regression models
in the literature have developed an algorithm to estimate such decomposed
effects. As an example, we apply the Sparse CP regression model proposed
by [42] to our data. As previously discussed, a sparse CP regression first uses
CP decomposition to represent the coefficient tensor and then imposes sparsity
assumption on the components of the CP decomposition. The sole purpose of
this method is to reduce the dimensionality and it provides a sparse estimate
of the coefficient tensor. Figure 9 depicts the heatmap of the estimated sparse
coefficient tensor (represented in matrix form) using sparse-CP regression. As it
can be seen, the sparsity pattern in the estimated coefficient tensor is random
and hardly reveals any meaningful interpretation of the underlying effects.

6. Discussion

In this paper, we propose a tensor regression model with scalar response and
third-order tensor predictor and assume that the third-order coefficient tensor is
decomposed into two components. The first one corresponds to a low tubal rank
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Fig 9. Binary heatmap of the sparse CP estimate

tensor, which captures baseline effects, shared across the lateral (or, horizontal)
slices. On the other hand, the second component is a third-order tensor, whose
frontal slices are either elementwise or columnwise sparse. The role of the sparse
component is to capture the additional idiosyncratic effects. This decomposition
of the coefficient tensor, as opposed to the Canonical Polyadic (CP) decompo-
sition used in related literature, expands the scope of exploring more complex
structure in the data. We develop a fast and scalable Alternating Minimization
algorithm to solve our convex regularized program. In the context of theoretical
development, we extend the work in the literature of multivariate regression [1]
to third-order tensor and establish a non-asymptotic interpretable upper bound
to the estimation error. The efficacy of the methodology is illustrated on syn-
thetic and real education data.
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Appendix A: Proofs

In this section, we prove the results presented in Section 3. We start by estab-
lishing a simple proposition, followed by Lemmas 3.1 and 3.2 and then a simple
inequality, termed as the, Basic Inequality. Based on these results we then prove
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Lemma 3.3, which provides an upper bound to the estimation error in case of
deterministic noise and predictors. Finally, using Lemma 3.3, we prove Theo-
rem 3.4 and Corollary 3.4.1, which provide the upper bound in case of random
realizations of errors and predictors.

Proposition A.1. r ≤ R ≤ rd3

Proof. Note that, a block-circulant matrix of a third-order tensor in R
d1×d2×d3 ,

can be expressed as [B1|B2| · · · |Bd2 ], where the jth block Bj is a matrix of
dimension d1d3×d3, j = 1, 2, · · · d2. In each Bj , the first column is the vectorized
version of the jth lateral slice of the tensor and the remaining (d3 − 1) columns
are just a circulant rearrangement of the first column. Since the tubal rank of
the tensor is r, there will be r blocks among these d2 blocks such that:

• any column of any of the remaining d2−r blocks can be written as a linear
combination of the columns of the aforementioned r blocks and

• any column of jth1 block is linearly independent of any column of jth2 block,
where j1 �= j2, j1, j2 = 1, 2, · · · , r.

So the rank of the block-circulant matrix will depend on the intra-block linear
dependence of these r blocks. If all the columns within each of the r blocks are
linearly independent, then there will be r × d3 linearly independent columns
in the full block-circulant matrix. At the other extreme, if there is only one
linearly independent column in each of the r blocks, then there will be r linearly
independent columns in the block-circulant matrix. Hence the proof.

Proof of Lemma 3.1

Proof. Note that Circ(L∗) and Circ(Δ̂L) are the two matrices of the same
dimension. Using Lemma 3.4 of [33], it is possible to decompose Circ(Δ̂L) as
Circ(Δ̂A

L) + Circ(Δ̂B
L), such that, Rank(Circ(Δ̂A

L)) ≤ 2 Rank (Circ(L∗)) =

2R and Circ(L∗)TCirc(Δ̂B
L) = 0, Circ(L∗)Circ(Δ̂B

L)
T

= 0. The reader may
visit [33] to know the details on how to derive such decomposition. It is worth
mentioning that, [1] uses the same tool while proving their Lemma 1. However,
as Lemma 2.3 of [33] proves, the last two equalities are essentially the sufficient
condition of the additivity of nuclear norm. In other words, these imply∥∥∥Circ(L∗) + Circ(Δ̂B

L)
∥∥∥
∗
= ‖Circ(L∗)‖∗ +

∥∥∥Circ(Δ̂B
L)

∥∥∥
∗

(15)

We use the above finding later in this proof. It now remains to show that in-
equality (6) holds for such decomposition. Note that,

C(L∗ + Δ̂L,S
∗ + Δ̂S)

=
1

d3

∥∥∥Circ(L∗) + Circ(Δ̂L)
∥∥∥
∗
+

λS

λL

∥∥∥S∗
Mat + Δ̂SMat

∥∥∥
2,1

,

by the definition of C(L,S) and the fact that Circ(·) is additive
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=
1

d3

∥∥∥Circ(L∗) + Circ(Δ̂A
L) + Circ(Δ̂B

L)
∥∥∥
∗
+

λS

λL

∥∥∥S∗
Mat + Δ̂M

SMat + Δ̂M
⊥

SMat

∥∥∥
2,1

,

by the aforementioned decomposition and the property of projection

≥ 1

d3

∥∥∥Circ(L∗) + Circ(Δ̂B
L)

∥∥∥
∗
− 1

d3

∥∥∥Circ(Δ̂A
L)

∥∥∥
∗

+
λS

λL

∥∥∥S∗
Mat + Δ̂M

⊥

SMat

∥∥∥
2,1

− λS

λL

∥∥∥Δ̂M

SMat

∥∥∥
2,1

,

by the Triangle Inequality

≥ 1

d3
‖Circ(L∗)‖∗ +

1

d3

∥∥∥Circ(Δ̂B
L)

∥∥∥
∗
− 1

d3

∥∥∥Circ(Δ̂A
L)

∥∥∥
∗

+
λS

λL
‖S∗

Mat‖2,1 +
λS

λL

∥∥∥Δ̂M
⊥

SMat

∥∥∥
2,1

− λS

λL

∥∥∥Δ̂M

SMat

∥∥∥
2,1

,

by Equation (15) and the Decomposability of ‖·‖2,1

The remainder of the proof follows from the above inequality and the definition
of C(L∗,S∗).

Proof of Lemma 3.2

Proof. We start by defining a function f : Rd1×d2×d3 −→ R as follows:

f(ΔL,ΔS) = L(L∗ +ΔL,S
∗ +ΔS)− L(L∗,S∗)

+ λL{C(L∗ +ΔL,S
∗ +ΔS)− C(L∗,S∗)} (16)

wherein as before, L(L,S) is used to denote the loss function given by,
1
2n

∑n
i=1(yi − 〈L + S,Xi〉)2. Since f(0, 0) = 0 and (Δ̂L, Δ̂S) is the optimal

error, one must have, f(Δ̂L, Δ̂S) ≤ f(0, 0) = 0. Recall that, we already have es-
tablished a lower bound of C(L∗+Δ̂L,S

∗+Δ̂S)−C(L∗,S∗) from equation (6).
Now our job is to find a lower bound to L(L∗+Δ̂L,S

∗+Δ̂S)−L(L∗,S∗). These
two bounds, along with the fact that f(Δ̂L, Δ̂S) ≤ 0, will prove the result.

Since λL
1
d3

‖Circ(L∗)‖∗ + λS ‖S∗
Mat‖2,1 = λLC(L∗,S∗), one can think C as

an alternative regularizer and λL as the associated parameter for our problem.
Now as [28] derives while proving their Lemma 1, using the convexity of the loss
function and dual-norm inequality, we get the following:

L(L∗ + Δ̂L,S
∗ + Δ̂S)− L(L∗,S∗) ≥ −C∗(∇L(L∗,S∗))C(Δ̂L, Δ̂S) (17)

Where, C∗ is the dual norm associated with the regularizer C. It is easy to check
that∇L(L∗,S∗) = [−D,−D]. Now, from the given conditions on the regularizer

parameters, we get
‖DMat‖2,∞

λS
≤ 1

4 and 1
d3

‖Circ(D)‖sp ≤ λL

4 and hence using

the similar argument as in the proof of Lemma 1 in [1], C∗(∇L(L∗,S∗)) can be
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shown to be bounded above by λL

2 . Also, it is easy to check that C(Δ̂L, Δ̂S) ≤
C(Δ̂A

L, Δ̂
M

S ) + C(Δ̂B
L, Δ̂

M
⊥

S ). Thus (17) reduces to

L(L∗ + Δ̂L,S
∗ + Δ̂S)− L(L∗,S∗) ≥ −λL

2
(C(Δ̂A

L, Δ̂
M

S ) + C(Δ̂B
L, Δ̂

M
⊥

S )) (18)

Finally, the rest of the proof follows simply from (6),(16),(18) and from the fact
that f(Δ̂L, Δ̂S) ≤ 0.

Basic Inequality

1

2n

n∑
i=1

{〈Δ̂L + Δ̂S,Xi〉}2

≤ 1

n

n∑
i=1

εi〈Δ̂L + Δ̂S,Xi〉+ λLC(L∗,S∗)− λLC(L∗ + Δ̂L,S
∗ + Δ̂S) (19)

Proof. By the optimality of (L̂, Ŝ) and the feasibility of (L∗,S∗) we have the
following inequality:

1

2n

n∑
i=1

(yi − 〈 L̂+ Ŝ,Xi〉)2 + λL
1

d3

∥∥∥Circ(L̂)
∥∥∥
∗
+ λS

∥∥∥ŜMat

∥∥∥
2,1

≤ 1

2n

n∑
i=1

(yi − 〈L∗ + S∗,Xi〉)2 + λL
1

d3
‖Circ(L∗)‖∗ + λS ‖S∗

Mat‖2,1 (20)

Next, from yi = 〈L∗ + S∗,Xi〉+ εi, we will have,

n∑
i=1

{yi − 〈L̂+ Ŝ,Xi〉}2

=

n∑
i=1

{yi − 〈L∗ + S∗,Xi〉 − 〈L̂+ Ŝ,Xi〉+ 〈L∗ + S∗,Xi〉}2

=
n∑

i=1

{εi − 〈Δ̂L + Δ̂S,Xi〉}2

=

n∑
i=1

ε2i +

n∑
i=1

〈Δ̂L + Δ̂S,Xi〉2 − 2

n∑
i=1

εi〈Δ̂L + Δ̂S,Xi〉

Using the above decomposition along with (20), we arrive at the following in-
equality:

1

2n

n∑
i=1

ε2i +
1

2n

n∑
i=1

〈Δ̂L + Δ̂S,Xi〉2 −
1

n

n∑
i=1

εi〈Δ̂L + Δ̂S,Xi〉+ λL
1

d3

∥∥∥Circ(L̂)
∥∥∥
∗

+ λS

∥∥∥ŜMat

∥∥∥
2,1

≤ 1

2n

n∑
i=1

ε2i + λL
1

d3
‖Circ(L∗)‖∗ + λS ‖S∗

Mat‖2,1 (21)

This compeltes the proof of the Lemma.
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Proof of Lemma 3.3

Proof. To avoid complex notations, in this proof, we initially ignore the term d3
in the definition of C(L,S) and adjust that later towards the end of the proof.
The reader may note that Lemma 3.1, Lemma 3.2 and Basic Inequality hold
good with this modification, where the earlier assumption λL ≥ 4 1

d3
‖Circ(D)‖sp

is now replaced by λL ≥ 4 ‖Circ(D)‖sp.

Using the Assumption 1 and (8), we get

1

2n

n∑
i=1

{〈Δ̂L + Δ̂S,Xi〉}2 ≥ γ

2

∥∥∥Δ̂L + Δ̂S

∥∥∥2
F

(22)

We will obtain a lower bound of the right-hand side and an upper bound of the
left-hand side of the above inequality. We first start with deriving a lower bound

for
∥∥∥Δ̂L + Δ̂S

∥∥∥2
F
. It is easy to check that

γ

2
(
∥∥∥Δ̂L

∥∥∥2
F
+

∥∥∥Δ̂S

∥∥∥2
F
)− γ

2

∥∥∥Δ̂L + Δ̂S

∥∥∥2
F
= −γ〈Δ̂L, Δ̂S〉 (23)

It can be easily seen that,

γ|〈Δ̂L, Δ̂S〉|

=γ|〈〈MatV ec(Δ̂L),MatV ec(Δ̂S)〉〉|

≤γ
∥∥∥MatV ec(Δ̂L)

∥∥∥
2,∞

∥∥∥MatV ec(Δ̂S)
∥∥∥
2,1

, using Dual-Norm Inequality

=γ
∥∥∥Circ(Δ̂L)

∥∥∥
2,∞

∥∥∥MatV ec(Δ̂S)
∥∥∥
2,1

, since,

∥∥∥MatV ec(Δ̂L)
∥∥∥
2,∞

=
∥∥∥Circ(Δ̂L)

∥∥∥
2,∞

≤γ{
∥∥∥Circ(L̂)

∥∥∥
2,∞

+ ‖Circ(L∗)‖2,∞}
∥∥∥MatV ec(Δ̂S)

∥∥∥
2,1

≤ 2γα√
d2

∥∥∥MatV ec(Δ̂S)
∥∥∥
2,1

, using Assumption 2

≤ 2γα√
d2

∥∥∥Δ̂SMat

∥∥∥
2,1

≤λS

2

∥∥∥Δ̂SMat

∥∥∥
2,1

, using Assumption 3

Hence, from (23) we get,

γ

2

∥∥∥Δ̂L + Δ̂S

∥∥∥2
F
≥ γ

2
(
∥∥∥Δ̂L

∥∥∥2
F
+

∥∥∥Δ̂S

∥∥∥2
F
)− λS

2

∥∥∥Δ̂SMat

∥∥∥
2,1



2712 S. Roy and G. Michailidis

≥ γ

2
(
∥∥∥Δ̂L

∥∥∥2
F
+
∥∥∥Δ̂S

∥∥∥2
F
)− λS

2

∥∥∥Δ̂SMat

∥∥∥
2,1

− λL

2

∥∥∥Circ(Δ̂L)
∥∥∥
∗

So, we get the following inequality,

γ

2

∥∥∥Δ̂L + Δ̂S

∥∥∥2
F
≥ γ

2
(
∥∥∥Δ̂L

∥∥∥2
F
+

∥∥∥Δ̂S

∥∥∥2
F
)− λL

2
C(Δ̂L, Δ̂S) (24)

Next, we derive an upper bound of the left-hand side of inequality (22). To that
end, using the inequality (6) and (19) we get,

1

2n

n∑
i=1

{〈Δ̂L + Δ̂S,Xi〉}2

≤ 1

n

n∑
i=1

εi〈Δ̂L + Δ̂S,Xi〉+ λL{C(Δ̂A
L, Δ̂

M

S )− C(Δ̂B
L, Δ̂

M
⊥

S )} (25)

It can be seen that

1

n

n∑
i=1

εi〈Δ̂L + Δ̂S,Xi〉

=〈Δ̂L + Δ̂S,D〉

≤〈Circ(Δ̂L), Circ(D)〉+ 〈Δ̂SMat,DMat〉

≤
∥∥∥Circ(Δ̂L)

∥∥∥
∗
‖Circ(D)‖sp +

∥∥∥Δ̂SMat

∥∥∥
2,1

‖DMat‖2,∞

≤‖Circ(D)‖sp {
∥∥∥Circ(Δ̂A

L)
∥∥∥
∗
+

∥∥∥Circ(Δ̂B
L)

∥∥∥
∗
}

+ ‖DMat‖2,∞ {
∥∥∥Δ̂M

SMat

∥∥∥
2,1

+
∥∥∥Δ̂M

⊥

SMat

∥∥∥
2,1

}

≤λL

4
{C(Δ̂A

L, Δ̂
M

S ) + C(Δ̂B
L, Δ̂

M
⊥

S )} ,by definition of C(L,S)

and Assumption 3, both ignoring d3

Putting the above inequality in inequality (25), we arrive at the following in-
equality

1

2n

n∑
i=1

{〈Δ̂L + Δ̂S,Xi〉}2 ≤ 3λL

2
C(Δ̂A

L, Δ̂
M

S ) (26)

Using the inequalities (22), (24) and (26), we get the following inequality,

γ

2
(
∥∥∥Δ̂L

∥∥∥2
F
+
∥∥∥Δ̂S

∥∥∥2
F
) ≤ 3λL

2
C(Δ̂A

L, Δ̂
M

S ) +
λL

2
C(Δ̂L, Δ̂S) (27)
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Again, using Lemma 3.2 and the fact C(Δ̂L, Δ̂S) ≤ C(Δ̂A
L, Δ̂

M

S )+C(Δ̂B
L, Δ̂

M
⊥

S ),
one can easily have,

C(Δ̂L, Δ̂S) ≤ 4C(Δ̂A
L, Δ̂

M

S ) (28)

Replacing the above inequality in (27), we arrive at

γ

2
(
∥∥∥Δ̂L

∥∥∥2
F
+

∥∥∥Δ̂S

∥∥∥2
F
) ≤ 4λLC(Δ̂A

L, Δ̂
M

S ) (29)

Recall from Lemma 3.1 that rank of Circ(Δ̂A
L) is at most 2R. This fact, along

with the concept of Compatibility Constant defined in [1], reveals that

λLC(Δ̂A
L, Δ̂

M

S )

≤
√
2RλL

∥∥∥Circ(Δ̂L)
∥∥∥
F
+ λS

√
s
∥∥∥Δ̂SMat

∥∥∥
F

Next, we adjust the term d3, that we ignored in the beginning of the proof,

by adding the factor 1
d3

prior to
∥∥∥Circ(Δ̂L)

∥∥∥
F

in the above expression. Then,

using the facts that
∥∥∥Circ(Δ̂L)

∥∥∥
F

=
√
d3

∥∥∥Δ̂L

∥∥∥
F
,
∥∥∥Δ̂SMat

∥∥∥
F

=
∥∥∥Δ̂S

∥∥∥
F

and

R ≤ rd3, the above inequality reduces to

λLC(Δ̂A
L, Δ̂

M

S ) ≤
√
2rλL

∥∥∥Δ̂L

∥∥∥
F
+

√
s λS

∥∥∥Δ̂S

∥∥∥
F

(30)

The reader may note that the above inequality is exactly the same as the one
obtained in [1], towards the very end of the proof of their Theorem 1. Hence,
as done in [1], we substitute the above inequality into inequality (29) and then
following the exact same steps as in [1], we complete the proof.

Proof of Theorem 3.4

Proof. To prove this result, we follow the same technique used by [32] while
proving their Lemma 11.

First, we prove that the condition λL ≥ 4 1
d3

‖Circ(D)‖sp is satisfied with
high probability. It is easy to note that,

‖Circ(D)‖sp

=

∥∥∥∥∥ 1n
n∑

i=1

εiCirc(Xi)

∥∥∥∥∥
sp

Comparing the above expression with the one in the statement of Lemma 11 of
[32], one can claim that by choosing λL greater than 2σcmax√

n
E[‖G‖sp], the condi-

tion λL ≥ ‖Circ(D)‖sp holds with probability at least 1− exp{−(E[‖G‖sp])2},
where G is a matrix of order d1d3 × d2d3 with i.i.d. N(0, 1) entries and cmax

is such that λmax(ΣCirc) ≤ c2max, with ΣCirc = Cov((V ec(Circ(X1)))
T , · · · ,

(V ec(Circ(Xn)))
T )T .



2714 S. Roy and G. Michailidis

It is easy to check that with proper permutations of rows and columns of
ΣCirc, one can arrive at the following block matrix,

C =

⎡
⎢⎢⎢⎣
C11 C12 · · · C1d3

C21 C22 · · · C2d3

...
...

. . .
...

Cd31 Cd32 · · · Cd2
3

⎤
⎥⎥⎥⎦

where, Cij = Σ (see (11) and (12)) for all i = 1, 2, · · · d3 and for all j =
1, 2, · · · , d3. Hence C is a block matrix, whose each of the d23 blocks are Σ. Thus
λmax(ΣCirc) = λmax(Σ) × d3 ≤ c2ud3, using assumption 12. Also, using Lemma
H.1 of [27] we get E[‖G‖sp] ≤ 12(

√
d1d3 +

√
d2d3). Hence, for suitably chosen

constant c∗1, λL should be chosen as follows:

λL ≥ c∗1
d3

σ√
n
cu
√

d3(
√

d1d3 +
√
d2d3)

= c∗1
σ√
n
cu(

√
d1 +

√
d2)

and with such a choice of λL, the condition λL ≥ 4 1
d3

‖Circ(D)‖sp is satisfied
with probability greater than 1− exp(−d3(d1 + d2)).

Next, we prove that the condition λS ≥ 4 ‖DMat‖2,∞ is satisfied with high
probability. We note that,

‖DMat‖2,∞

=

∥∥∥∥∥ 1n
n∑

i=1

εiXiMat

∥∥∥∥∥
2,∞

where XiMat is the matrix of order d1 × d2d3 that is constructed by placing
the frontal slices Xi side by side. As before, using Lemma 11 of [32] one can
claim that, by choosing λS greater than 2σc∗√

n
E[‖G∗‖2,∞], the condition λS ≥

‖DMat‖2,∞ holds with probability at least 1− exp{−(E[‖G∗‖2,∞])2}, where G∗

is a matrix of order d1 × d2d3 with i.i.d. N(0, 1) entries and c∗ is such that

λmax(ΣMat) ≤ c∗
2

, with ΣMat = Cov((V ec(X1Mat))
T , · · · , (V ec(XnMat))

T )T .
However, it is easy to see that ΣMat is same as Σ and thus λmax(ΣMat) ≤ c2u,
using assumption 12.

Next, using Lemma 16 of [32], we have E[‖G∗‖2,∞] ≤ 3(
√
d1 +

√
log(d2d3)).

Hence for a suitably chosen constant c∗2, λS should be chosen as λS ≥
c∗2

σ√
n
cu(

√
d1 +

√
log(d2d3)) and for such a choice of λS , the condition λS ≥

4 ‖DMat‖2,∞ is satisfied with probability greater than 1 − exp(−9 log(d2d3)).
Hence, we have shown that the regularizer parameters satisfy the conditions in
Assumption 3 with high probability.
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Finally, we complete the proof by using Lemma 12 of [32] to show that as-
sumption 1 holds with high probability. That lemma is based on the assumption
that for any c > 0, there exist an n such that

√
Sλ ≤ c, where S is the compat-

ibility constant (see Section 3 of [32]) of the regularizer in the cone set and λ is
the associated parameter. Note that in our case, Lemma 3.2 characterizes the
cone set and C(L,S) and λL are the regularizer and the parameter respectively.
Hence, keeping in mind the choice of λL that we made at the first part of the
proof and following some simple algebra, it can be shown that

√
Sλ has the form

constant × (
√
d1√
n

+
√
d2√
n
). Hence, we need to assume that for any c > 0, there

exists an n, such that (
√
d1√
n

+
√
d2√
n
) ≤ c. However, note that this requirement

is in line with the choices of λL and λS we make. Thus, using Lemma 12 of
[32], we prove that Assumption 1 is satisfied with high probability. Now the
proof follows using Lemma 3.3 and employing similar steps as in the proof of
Corollary 4 of [1].

Proof of Corollary 3.4.1

Proof. Since the condition on λL does not change, we arrive at the same choice
of λL as we did in the proof of Theorem 3.4. Now using the result on Gaussian
maxima([18]), for the matrix G∗ defined in the proof of Theorem 3.4, we get
E[‖G∗‖∞] ≤ 3

√
log(d1d2d3) and thus we choose λS ≥ c∗3

σ√
n
cu
√

log(d1d2d3).

The rest of the proof follows along the same line of the proof of Theorem 3.4.

Appendix B: Matrix-type view of a third-order tensor

We first present the matrix-type view of a third-order tensor. Three basic el-
ements of interest are the lateral slices, horizontal slices and the tube fibers,
defined rigorously under the section Notations. Recalling the definitions, lateral
slices ofX ∈ R

d1×d2×d3 are d2 laterally oriented matrices of dimension d1×d3. As
mentioned in [13], by staring at these laterally oriented matrices straight from
the front, one will actually see them as column vectors of length d1. Hence,
the reader can envisage a three-dimensional tensor as a display of such lateral
slices, placed side by side, playing the role of columns in a matrix. Similarly, the
horizontal slices can be visualized as the row vectors of length d2 and one can
imagine that these slices play the roles of the rows of a matrix. Finally, by view-
ing the tube fibers of the tensor from the front, one would visualize them as the
elements of a matrix. Figure 2 aims to provide the reader a pictorial represen-
tation of this discussion. Note that, lateral and horizontal slices, although being
matrices, can be considered as third-order tensors in R

d1×1×d3 and R
1×d2×d3

respectively. Similarly, a tube fiber, although a vector, can be considered as
a third-order tensor in R

1×1×d3 . [13] refer such elements in R
1×1×d3 as Tubal

Scalar.

Given this matrix-type view of a third-order tensor, to proceed, we discuss
next Block Circulant Matrices.
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Notation B.1. For any vector a = [a0, a1, a2, a3]
T , the Circulant Matrix asso-

ciated with a, denoted by Circ(a), is defined as follows

Circ(a) =

⎡
⎢⎢⎣
a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦

Fact B.1. As discussed in [9], Circulant matrices can be diagonalized with the
normalized Discrete Fourier Transform (DFT) matrix. In terms of commonly
used notations, for any vector a of length n, let Fn denote the n × n DFT
matrix and F ∗

n denote its conjugate transpose. Then, Fn Circ(a) F ∗
n is a diagonal

matrix.

Fact B.2. diag(Fn Circ(a) F ∗
n) = fft(a), where fft(a) is the result of applying

the Fast Fourier Transform to a.

The way circulant matrix is defined, in the same spirit, one can construct the
Block Circulant Matrix using the frontal slices of a third-order tensor. In order
to avoid complications, here we slightly modify our previous notation of frontal
slices. The earlier notation X::k for the kth frontal slice is now simply replaced
by Xk.

Notation B.2. For any third-order tensor A ∈ R
d1×d2×d3 , let A1, A2, . . . ,

Ad3 be the frontal slices. Then the Block Circulant matrix associated with A,
denoted by Circ(A), is the following matrix of order d1d3 × d2d3

Circ(A) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1 Ad3 Ad3−1 · · · A2

A2 A1 Ad3 · · · A3

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . Ad3

Ad3 Ad3−1 . . . A2 A1

⎤
⎥⎥⎥⎥⎥⎥⎦

Fact B.3. Similar to Fact B.1, a block circulant matrix can be block diagonal-
ized. As before, suppose we have a DFT matrix Fd3 of order d3 × d3 and its
conjugate transpose F ∗

d3
. Then the block-diagonalization is achieved as follows:

(Fd3 ⊗ Id1) · Circ(A) · (Fd3 ⊗ Id2) =

⎡
⎢⎢⎢⎣
D1

D2

. . .

Dd3

⎤
⎥⎥⎥⎦

with ⊗ denoting the Kronecker product.

Fact B.4. There is an alternative way to arrive at the above block diagonals.
If one applies the Fast Fourier Transform along each tube of A and obtains a
tensor D, then the above block diagonals are actually the frontal slices of this
newly obtained tensor D.
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Notation B.3. MatVec operator arranges the frontal slices one below other and
creates a matrix of order d1d3 × d2 as follows

MatV ec(A) =

⎡
⎢⎢⎢⎣
A1

A2

...
Ad3

⎤
⎥⎥⎥⎦

Notation B.4. fold operator converts MatVec(A) back into the tensor A.
Hence fold(MatVec(A)) = A.

Appendix C: Background on t-product and t-SVD

Equipped with the aforementioned notations in Appendix B, we present next
the t-product between two tensors and the corresponding t-SVD decomposition.
The idea of the t-product was introduced in [15] and some of its important
theoretical properties used in this work were developed in [14] and summarized
next.

Definition C.1. Given A ∈ R
d1×d2×d3 and B ∈ R

d2×l×d3 the t-product A ∗
B is defined to be a tensor C ∈ R

d1×l×d3 , where,

C = fold (Circ (A) · MatVec (B))

where Circ(·) and MatV ec(·) are defined by Notation B.2 and Notation B.3 in
Appendix B.

Example C.1. Suppose d3 = 2. Then the above definition expands as

C = fold

([
A1 A2

A2 A1

]
·
[
B1

B2

])

Fact C.1. When a third-order tensor in R
d1×d2×d3 is viewed as a d1×d2 matrix

of tubes, then t-product between two tensors can be considered as matrix-matrix
multiplication, with the exception that the operation between the scalars is now
replaced by circular convolution between the tubes. Here, for any two vectors p
and q, circular convolution between them is defined as Circ(p) · q
Fact C.2. t-product can be computed efficiently in three steps. First, apply
FFT on A and B along each tube and denote the resulting tensors as Ã and B̃

respectively. Then multiply each frontal slice of Ã by the corresponding frontal
slice of B̃. Finally, apply inverse FFT along the tubes of the result.

Next we discuss the notion of Identity tensor, inverse and transpose of a tensor
and orthogonal tensor.

Definition C.2. The n× n× l Identity Tensor, denoted by Innl, is defined to
be a tensor, whose first frontal slice is a n× n identity matrix and all the other
frontal slices are zeros.
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One can easily verify that A ∗ I = A = I ∗ A

Definition C.3. A ∈ R
n×n×l is said to have an inverse B, if A ∗ B = I =

B ∗ A

Definition C.4. Transpose of A ∈ R
d1×d2×d3 , denoted by AT , is the d2×d1×d3

tensor obtained by transposing each of the frontal slices and then reversing the
order of the transposed frontal slices 2 through d3.

Example C.2. Suppose d3 = 4. Then from the above definition,

AT = fold

⎛
⎜⎜⎝
⎡
⎢⎢⎣
AT

1

AT
4

AT
3

AT
2

⎤
⎥⎥⎦
⎞
⎟⎟⎠

Definition C.5. Q ∈ R
n×n×l is said to be orthogonal tensor if QT ∗ Q =

Q ∗QT = I

Definition C.6. The collection of lateral slices Q:1:, Q:2:, · · · ,Q:n: of Q is
said to form an orthogonal set if

QT
:i: ∗Q:j: =

{
αie1, if i = j

0, if i �= j

where αi is a nonzero scalar. The set is orthonormal if αi = 1.

Fact C.3. Q ∈ R
n×n×l is orthogonal tensor iff the collection of the lateral slices

{Q:1:,Q:2:, · · · ,Q:n:} forms an orthonormal set.

Suppose an orthogonal set of elements in R
m×1×l contains m elements. Com-

paring this framework to usual matrix algebra, it would be of great use, if one
could reconstruct any element in R

m×1×l from those m elements. As discussed
in [13], one could achieve this by extending the concept of usual linear combi-
nation to t-linear combination, where, lateral slices act as columns and tubal
scalars play the role of scalars.

Definition C.7. Given d2 lateral slices, X:1:, X:2:,· · · , X:d2: of X ∈ R
d1×d2×d3

and d2 tubal scalars c1, c2, ..., cd2 , the t-linear combination of the lateral slices
is defined as X:1: ∗ c1 + X:2: ∗ c2 +...+ X:d2: ∗ cd2 , where, the tubal-scalars
are the elements in R

1×1×d3 and ∗ denote the t-product defined above.

Employing the definition of t-linear combination, one can now define the range
of the tensor A ∈ R

d1×d2×d3 , denoted by R(A), as the set of all possible t-linear
combinations of its lateral slices. Similarly, extending the notion of usual linear
dependence of two columns, one can say that the lateral slice A:j2: is t-linearly
dependent on the lateral slice A:j1:, if there exist a tubal scalar c, such that,
A:j2: =A:j1: ∗ c. Figure 3 furnishes further clarity of this idea by demonstrating
a simple example. keeping this framework in mind, it would be very useful if
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one would know the minimum number of elements in R
d1×1×d3 , that is required

to construct any arbitrary element in R(A). As described in [13], this number
is characterized by Tubal Rank, which is the last topic of our discussion under
this section. Before moving on to that discussion, we need to describe one more
notation.

Notation C.1. An f-diagonal tensor, denoted by F, is a third-order tensor,
whose each frontal slice is a diagonal matrix. In terms of notation, Fijk = 0,
for i �= j, ∀k.

Definition C.8. For any A ∈ R
d1×d2×d3 , t-SVD of A is given as follows:

A = U ∗ S ∗ VT

Here U and V are orthogonal tensors in R
d1×d1×d3 and R

d2×d2×d3 respectively.
S is a f-diagonal tensor in R

d1×d2×d3 .

Definition C.9. For any third-order tensor, Tubal-rank, denoted by r, is defined
to be the number of non zero tubes in the f-diagonal tensor S in its t-SVD
factorization. Hence, r = # {i: sii: �= 0}, where sii: denote the ith diagonal
tube of S.

Like matrix singular value decomposition, in this case too, R(A) can be
written unambiguously by the lateral slices of U. Also, the number of elements
in Rd1×1×d3 , required to construct any element in R(A), is same as the tubal
rank of A. The reader may visit [13] for the proofs and further details. Hence,
as rank of a matrix decides the number of linearly independent columns of a
matrix, tubal rank plays similar role in case of a third order tensor. Indeed, lower
the value of tubal rank, higher the number of t-linearly dependent lateral slices.
Figure 4 displays the tubal ranks and the lateral slices of three different tensors.
In the first case, only the first slice from the left is t-linearly independent. Both
the remaining slices are t-linear combination of the first one. Hence the tubal
rank in this case is one. Similar justification follows for the other two cases too.

It is possible to compute t-SVD by performing matrix SVD d3 times in the
Fourier domain. The reader may see [14] for more details. However, [26] recently
proposed a more efficient algorithm for computing t-SVD. This algorithm re-
quires one to perform matrix SVD only �d3+1

2 � times, instead of d3 times. [26]
defines the elements of the first frontal slice of the f-diagonal tensor S, that is
S::1, as the Singular values of the tensor A and argues that, the number of non-
zero singular values is equivalent to the tubal-rank defined in C.9. In terms of
the notations used here, r = # {i: sii: �= 0} = # {i: Sii1 �= 0}. So, by penalizing
high value of

∑r
i=1 Sii1, one can actually restrict the value of the tubal-rank to

an upper bound. In [26], the quantity
∑r

i=1 Sii1 is defined as Tensor Nuclear
Norm of the tensor A. Just as a side note, this definition of Tensor Nuclear
Norm is slightly different from the one in [41]. However using Definition 7 of
[26] and equation 12 of [25], one can derive the following relationship between
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Tensor Nuclear Norm and Block Circulant matrix.

r∑
i=1

Sii1 =
1

d3
‖Circ(A)‖∗ (31)

It is evident that, in order to restrict the tubal rank of a tensor, one can
impose penalty on the right hand side of the above equation. We utilize this
fact while we discuss the convex relaxation of our proposed model in Section
2.1.

Appendix D: Additional tables

Table 8

AIC Values for different choices of λL ans λS

λS λL 0.14 0.16 0.18 0.20 0.22 0.25 0.30 0.35

0.15 2053.95 2023.95 1923.95 1873.95 1800.36 1845.90 2406.37 2843.36
0.20 1404.88 1374.88 1274.88 1224.88 1141.90 1704.99 2376.26 2633.37
0.25 1292.50 1262.50 1162.50 1112.50 1034.37 1188.46 2285.26 2501.69
0.30 1314.68 1284.68 1184.68 1134.68 1064.73 1244.81 1812.72 2024.89
0.35 1404.16 1374.16 1274.16 1224.16 1134.12 1228.47 1714.84 1927.86
0.40 1512.23 1482.23 1382.23 1332.23 1250.18 1303.01 1716.18 1944.16
0.45 1621.33 1591.33 1491.33 1441.33 1357.01 1407.52 1797.11 2032.39
0.50 1733.60 1703.60 1603.60 1553.60 1466.13 1482.57 1858.72 2098.66
0.55 1845.40 1815.40 1715.40 1665.40 1577.37 1589.02 1933.68 2157.46
0.60 1914.18 1884.18 1784.18 1734.18 1649.76 1652.96 1930.98 2137.56

Table 9

Values of the estimated coefficients of the sparse component

Variable Teaching Experience Level Academic Year Coefficient

tys EXP2 Year1 -1.05
logins EXP2 Year1 -0.17
Video EXP3 Year1 -0.48
tys EXP3 Year1 -1.06

Pre Score EXP3 Year1 -0.04
logins EXP1 Year2 -0.01
logins EXP2 Year2 -1.15
Video EXP3 Year2 -0.39
Video EXP1 Year3 -0.89
logins EXP1 Year3 -0.16
Video EXP2 Year3 -0.15
logins EXP2 Year3 -0.16
logins EXP3 Year3 -1.99
Video EXP1 Year4 -0.04
logins EXP2 Year4 -2.13
Video EXP3 Year4 -0.51
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