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Abstract: Ensemble Conditional Variance Estimation (ECVE) is a novel
sufficient dimension reduction (SDR) method in regressions with contin-
uous response and predictors. ECVE applies to general non-additive error
regression models and operates under the assumption that the predictors
can be replaced by a lower dimensional projection without loss of infor-
mation. It is a semiparametric forward regression model-based exhaustive
sufficient dimension reduction estimation method that is shown to be con-
sistent under mild assumptions. ECVE outperforms central subspace mean
average variance estimation (csMAVE), its main competitor, under several
simulation settings and in a benchmark data set analysis.
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1. Introduction

Let (Ω,F ,P) be a probability space, Y a univariate continuous response and X
a p-variate continuous predictor, jointly distributed, with (Y,XT )T : Ω → Rp+1.
We consider the linear sufficient dimension reduction model

Y = gcs(B
TX, ε), (1.1)

where X ∈ Rp is independent of the random variable ε, B is a p × k matrix of
rank k, and gcs : Rk+1 → R is an unknown non-constant function, where the
index cs stands for central subspace and serves to distinguish (1.1) from other
link functions in the sequel.

[29, Thm. 1] showed that if (Y,XT )T has a joint continuous distribution,
(1.1) is equivalent to

Y ⊥⊥ X | BTX, (1.2)
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where the symbol ⊥⊥ indicates stochastic independence. The matrix B is not
unique and can be replaced by any basis of its column space, span{B}. Let S
denote a subspace of Rp, and let PS denote the orthogonal projection onto S
with respect to the usual inner product. If the response Y and predictor vector
X are independent conditionally on PSX, then PSX can replace X as the
predictor in the regression of Y on X without loss of information. Such S’s are
called dimension reduction subspaces and their intersection, provided it satisfies
the conditional independence condition (1.2), is called the central subspace and
denoted by SY |X [see [6, p. 105], [7]].

By their equivalence, under both models (1.1) and (1.2), Y ⊥⊥ X | BTX and
SY |X = span{B}. Since the conditional distribution of Y | X is the same as that
of Y | BTX, BTX contains all the information in X for modeling the target
variable Y , and can replace X without any loss of information.

If the error term in model (1.1) is additive with E(ε | X) = 0, (1.1) reduces
to Y = g(BTX) + ε. Now, E(Y | X) = E(Y | BTX) = E(Y | PSX), where
S = span{B}. The mean subspace, denoted by SE(Y |X), is the intersection of all
subspaces S such that E(Y | X) = E(Y | PSX) [8]. In this case, (1.1) becomes
the classic mean subspace model with span{B} = SE(Y |X). [8] showed that the
mean subspace is a subset of the central subspace, SE(Y |X) ⊆ SY |X.

Several linear sufficient dimension reduction (SDR) methods estimate SE(Y |X)

consistently ([1, 22, 20, 26]). Linear refers to the reduction being a linear
transformation of the predictor vector. Minimum Average Variance Estimation
(MAVE) [26] has been the most accurate, and thus, competitive among them.
MAVE differentiates from the majority of SDR methods in that it is not inverse
regression based such as, for example, the widely used Sliced Inverse Regression
(SIR, [21]). MAVE requires minimal assumptions on the distribution of (Y,XT )T

and is based on estimating the gradients of the regression function E(Y | X)
via local-linear smoothing [5].

The central subspace mean average variance estimation (csMAVE) [25, 13] is
a MAVE extension that consistently and exhaustively estimates the span{B} in
model (1.1) without restrictive assumptions limiting its applicability. csMAVE
has remained largely uncontested since it was proposed by [25]. It is based on
repeatedly applying MAVE on the sliced target variables fu(Y ) = 1{su−1<Y≤su},
for s1 < . . . < sH , where 1A denotes the indicator function of the set A. [25]
showed that the mean subspaces of the sliced Y can be combined to recover the
central subspace SY |X.

Several papers made contributions in establishing a road path from the mean
to the central subspace [see [27] for a list of references]. [27] recognized that
these approaches pointed to the same direction: if one can estimate the mean
subspace of E(f(X) | Y ) for sufficiently many functions f ∈ F for a family of
functions F , then one can recover the central subspace. Such families that are
rich enough to obtain the desired outcome are called characterizing ensembles
by [27], who also proposed and studied them [see [20] for an overview].

In this paper, we extend the conditional variance estimator (CVE) [10] to the
exhaustive ensemble conditional variance estimator (ECVE) for recovering fully
the central subspace SY |X in model (1.1). Conditional variance estimation is a
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semi-parametric method for the consistent estimation of SE(Y |X) under mini-
mal regularity assumptions on the distribution of (Y,XT )T . In contrast to other
SDR approaches, it identifies the orthogonal complement of SE(Y |X). Its gen-
eralization ECVE builds on the ensemble device of [27], adapting and extending
ideas from conditional variance estimation [10], to exhaustively estimate the
sufficient dimension reduction in (1.1). Here we lift the CVE requirement of an
additive independent error regression model and extend it to regressions with
errors that can depend on the predictors.

In [10], CVE was shown to be a consistent estimator for the mean subspace
SE(Y |X) in the model Y = E(Y | PSE(Y |X)

X)+ ε̃ with X ⊥⊥ ε̃, which restricts the
central subspace SY |X to agree with the mean subspace SE(Y |X). Here we show
CVE to be consistent in models with E(ε̃ | X) = 0. This allows the identification
of the mean subspace SE(ft(Y )|X) across regression models, in particular for
transformed responses ft(Y ), where ft are elements of an ensemble F = {ft :
t ∈ ΩT }. We then combine them to form the consistent ECVE estimate of the
central subspace SY |X in much richer models of the form (1.1), where the central
subspace may be a proper superset of the mean subspace, i.e. SE(Y |X) � SY |X.

The paper is organized as follows. In Section 2 we define the notation and
concepts we use throughout the paper. A short motivational example for the
conditional variance estimator (CVE, [10]) is given in Section 2.1. In Section 2.2,
ensembles are introduced. The ensemble conditional variance estimator (ECVE)
is defined in Section 3 and its estimation procedure in Section 4. The consistency
of the ensemble conditional variance estimator for the central subspace is shown
in Section 5. ECVE is seen to perform better or on a par with csMAVE, as well as
several refined ensemble MAVE estimators [27, 20], via simulations in Section 6,
and in the Boston Housing data in Section 7. We conclude in Section 8.

2. Preliminaries

We denote by FZ the cumulative distribution function (cdf) of a random variable
or vector Z. We drop the subscript, when the attribution is clear from the
context. For a vector a and a matrix A, ‖a‖ and ‖A‖ denote the Euclidean and
the Frobenius norm, respectively. Scalar product is the usual Euclidean inner
product and ⊥ denotes orthogonality with respect to it. The probability density
function of X is denoted by fX, and its support by supp(fX). The notation
Y ⊥⊥ X signifies stochastic independence of the random vector X and random
variable Y . The j-th standard basis vector with zeroes everywhere except for
1 on the j-th position is denoted by ej ∈ Rp, ιp = (1, 1, . . . , 1)T ∈ Rp, and
Ip = (e1, . . . , ep) is the identity matrix of order p. For any matrix M ∈ Rp×q,
PM denotes the orthogonal projection matrix on its column or range space
span{M}; i.e., PM = Pspan{M} = M(MTM)−1MT ∈ Rp×p.

For q ≤ p,
S(p, q) = {V ∈ Rp×q : VTV = Iq}, (2.1)

denotes the Stiefel manifold that comprizes of all p×q matrices with orthonormal
columns. S(p, q) is compact with dim(S(p, q)) = pq− q(q+1)/2 [see [4] and [24,
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Sec. 2.1]]. The set

Gr(p, q) = S(p, q)/S(q, q) (2.2)

denotes a Grassmann manifold [12] that contains all q-dimensional subspaces in
Rp. Gr(p, q) is the quotient space of S(p, q) with all q× q orthonormal matrices
in S(q, q).

2.1. CVE

To motivate the development of the ensemble conditional variance estimator
(ECVE) we start this section by a simple example describing the conditional
variance estimator (CVE) [10], which estimates the mean subspace SE(Y |X) =
span{B} in regressions with additive error term, i.e. Y = g(BTX) + ε.

To appreciate the geometric intuition behind CVE, we consider a bivariate
standard normal predictor vector, X = (X1, X2)

T ∼ N(0, I2), and generate the
response from Y = g(BTX) + ε = X1 + ε, with ε ∼ N(0, η2) independent of
X with η = 0.1. In this setting, k = 1, gcs(z, u) = z + u ∈ R and B = (1, 0)T

in model (1.1) is aligned with the first coordinate axis. Since ε is additive and
independent from X, the mean subspace SE(Y |X) is equal to the central subspace
SY |X, i.e. SY |X = SE(Y |X) = span{B}, and CVE, which corresponds to ECVE

with the ensemble containing only the identity function in this case, recovers
the central subspace SY |X.

We see how CVE works in Figure 1, where we plot 100 draws of X1 versus
X2. The color of the points is determined by their corresponding Yi values,
with small Yi values in blue and large in red and the intensity of the color
corresponding to their absolute magnitude. In the direction of B (x-axis), the
color has high variation, whereas in the orthogonal direction (0, 1) (y-axis), the
color has low variation solely due to the error term ε. As it is easier to detect
patterns in directions of low variability, CVE identifies B through its orthogonal
complement by finding the directions in which the response Y varies the least
(right panel) as X ranges in an affine subspace. The same intuition underlies
ECVE, even though it is more difficult to visually capture as the variation may
occur in higher moments of the conditional distribution of the response given
the predictors.

2.2. Ensembles

[27] introduced ensembles as a device to extend mean subspace to central sub-
space SDR methods. The ensemble approach of combining mean subspaces in
order to recover the central subspace comprises of two components: (a) a rich
family of functions of transformations for the response and (b) a sampling mech-
anism for drawing the functions from the ensemble to ascertain coverage of the
central subspace. To distinguish between families of functions and ensembles,
[27] use the term parametric ensemble. Here, we drop the denomination and call
these families ensembles.
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Fig 1. Plot of Xi samples from Y = X1 + ε, i = 1, . . . , 100. The color of the points is
determined by their corresponding Yi values, i.e. low Yi values are assigned blue and the
higher the Yi value the more red the points are. In the left panel V = B = (1, 0)T , and in
the right panel V = (0, 1)T ⊥ B, both with shift point s0 = (0, 0)T denoted as black ×. The
subspace s0 + span{V} is indicated with the black arrow and the black dashed lines delineate
the slice

{
x ∈ Rp : ‖x−Ps0+span{V}x‖2 ≤ hn

}
.

Definition. An ensemble is defined to be a family of measurable functions F =
{ft : t ∈ ΩT } with respect to an index set ΩT in a Euclidean space.

Let Y follow model (1.1), F be an ensemble, and f ∈ F . The space SE(f(Y )|X)

is defined to be the mean subspace of the transformed random variable f(Y )
[see [6] or [8]].

Definition. An ensemble F characterizes the central subspace SY |X, if

span{SE(ft(Y )|X) : ft ∈ F} = SY |X (2.3)

As an example, the ensemble F = {ft : t ∈ ΩT } = {1{z≤t} : t ∈ R} can
characterize the central subspace SY |X. That is, E(ft(Y )|X) is the conditional
cumulative distribution function evaluated at t. To see this, let B ∈ S(p, k) be
such that E(ft(Y ) | X) = E(ft(Y ) | BTX) for all t. Then, FY |X(t) = E(ft(Y ) |
X) = E(ft(Y ) | BTX) = FY |BTX(t) for all t. Varying over the ensemble F , in
this case over t ∈ R, obtains the conditional cumulative distribution function.
This indicator ensemble fully recovers the conditional distribution of Y | X
and, thus, also the central subspace SY |X,

span{SE(ft(Y )|X) : ft ∈ F} = span{S
E(1{Y ≤t}|X) : t ∈ R} = SY |X

We reproduce a list of ensembles F and associated regularity conditions that
can characterize SY |X from [27] next.

Characteristic ensemble: F = {ft : t ∈ ΩT } = {exp(it·) : t ∈ R}
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Indicator ensemble: F = {1{z≤t} : t ∈ R}, where span{SE(ft(Y )|X) : ft ∈ F}
recovers the conditional cumulative distribution function

Kernel ensemble: F = {h−1K ((z − t)/h) : t ∈ R, h > 0}, whereK is a kernel
suitable for density estimation, and span{SE(ft(Y )|X) : ft ∈ F} recovers
the conditional density

Polynomial ensemble: F = {zt : t = 1, 2, 3, ...}, where span{SE(ft(Y )|X) :
ft ∈ F} recovers the conditional moment generating function

Box-Cox ensemble: F = {(zt − 1)/t : t 
= 0} ∪ {log(z) : t = 0} Box-Cox
Transforms

Wavelet ensemble: Haar Wavelets

The characteristic and indicator ensembles describe the conditional char-
acteristic and distribution function of Y | X, respectively, which always exist
and uniquely determine the distribution. If the conditional density function fY |X
of Y | X exists, then the kernel ensemble characterizes the conditional distribu-
tion Y | X. Further, if the conditional moment generating function exists, then
the polynomial ensemble characterizes SY |X. [27] used the ensemble device to
extend MAVE [26], which targets the mean subspace, to its ensemble version that
also estimates the central subspace SY |X consistently.

Theorem 2.1 [27, Thm 2.1] establishes when an ensemble F is rich enough to
characterize SY |X.

Theorem 2.1. Let B = {1A : A is a Borel set in supp(Y )} be the set of indi-
cator functions on supp(Y ), and L2(FY ) be the set of square integrable random
variables with respect to the marginal distribution FY . If F ⊆ L2(FY ) is dense
in B ⊆ L2(FY ), then the ensemble F characterizes the central subspace SY |X.

In Theorem 2.2 we show that finitely many functions of an ensemble F are
sufficient to characterize the central subspace SY |X.

Theorem 2.2. Let t1, t2, . . . be an i.i.d. sequence of random variables on ΩT .
If an ensemble F characterizes SY |X, then the event

{ω : there exists a finite integer m0(ω) such that for all m > m0(ω),

span{SE(fti (Y )|X) : i ∈ 1, . . . ,m} = SY |X}

has probability 1.

Theorem 2.2 is Theorem 2.2 in [27], where its proof can be found. The impor-
tance of Theorem 2.2 lies in the fact that the search to characterize the central
subspace is over a finite set with probability 1. Theorem 2.2 does not offer tools
for identifying the elements of the ensemble and is not used in any proofs in the
paper.

3. Ensemble CVE for the central subspace

Throughout the paper, we refer to the following assumptions as needed.
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(E.1). Model (1.1), Y = gcs(B
TX, ε), holds with Y ∈ R, gcs : R

k ×R → R non
constant in the first argument, B = (b1, ...,bk) ∈ S(p, k), X ∈ Rp independent
of ε, the distribution of X is absolutely continuous with respect to the Lebesgue
measure in Rp, supp(fX) is convex, and Var(X) = Σx is positive definite.

(E.2). The density fX : Rp → [0,∞) of X is twice continuously differentiable
with compact support supp(fX).

(E.3). The index set ΩT of an ensemble F is endowed with a probability measure
FT such that for all t ∈ ΩT with SE(ft(Y )|X) 
= {0},

PFT

(
{t̃ ∈ ΩT : SE(ft̃(Y )|X) = SE(ft(Y )|X)}

)
> 0.

(E.4). For all f ∈ F , where F is an ensemble, the conditional expectation

E (f(Y ) | X)

is twice continuously differentiable in the conditioning argument. Further, for
all f ∈ F

E(|f(Y )|8) < ∞.

Assumption (E.1) assures the existence and uniqueness of SY |X = span{B}.
Furthermore, it allows the mean subspace to be a proper subset of the cen-
tral subspace, i.e. SE(Y |X) � SY |X. In Assumption (E.2), the compactness re-
quirement for supp(fX) is not as restrictive as it might seem. [28, Prop. 11]
showed that there is a compact set K ⊂ Rp such that SY |X|K = SY |X, where
X|K = X1{X∈K}. Assumption (E.3) implies that the set of indices that char-
acterize the central subspace SY |X is not a null set. In practice, the choice of
the probability measure FT on the index set ΩT of an ensemble F can always
guarantee the fulfillment of this assumption. If the characteristic or indicator
ensemble are used, (E.4) states that the conditional characteristic or distribu-
tion function is twice continuously differentiable. In this case, the 8th moment
exists since the complex exponential and indicator functions are bounded.

Definition. Let F be an ensemble and f ∈ F . For q ≤ p ∈ N, and any V ∈
S(p, q), we define

L̃(V, s0, f) = Var (f(Y ) | X ∈ s0 + span{V}) (3.1)

where s0 ∈ Rp is a non-random shifting point.

Definition. Let FT be a cumulative distribution function on the index set ΩT

of an ensemble F . For q ≤ p, and any V ∈ S(p, q), we define

LF (V) =

∫
ΩT

∫
Rp

L̃(V,x, ft)dFX(x)dFT (t) (3.2)

= Et∼FT

(
EX

(
L̃(V,X, ft)

))
= Et∼FT

(L∗(V, ft)),

where FX is the cdf of X,and

L∗(V, ft) = EX

(
L̃(V,X, ft)

)
. (3.3)
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For the identity function, ft0(z) = z, (3.3) is the target function of the con-
ditional variance estimation proposed in [10]. If the random variable t is con-
centrated on t0; i.e., t ∼ δt0 , then the ensemble conditional variance estimator
(ECVE) coincides with the conditional variance estimator (CVE).

Next we define the ensemble conditional variance estimator (ECVE) for an
ensemble F that characterizes the central subspace SY |X. Following the ensemble
minimum average variance estimation formulation in [27], we extend the original
objective function by integrating over the index random variable t ∼ FT that
indexes F in (3.2).

Definition 1. Let

Vq = argminV∈S(p,q) LF (V) (3.4)

The Ensemble Conditional Variance Estimator with respect to the ensem-
ble F is defined to be any basis Bp−q,F of span{Vq}⊥.

Theorem 3.1. Assume (E.1), (E.2), (E.3), and (E.4) hold, and that the func-
tion h(·) defined in Theorem A.2 in Appendix A is continuous. Let F be an
ensemble that characterizes SY |X, with k = dim(SY |X), and V be an element
of the Stiefel manifold S(p, q) with q = p− k. Then, Vq in (3.4) is well defined
and

SY |X = span{Vq}⊥. (3.5)

4. Estimation of the ensemble conditional variance estimator

Assume (Yi,X
�
i )

�
i=1,...,n is an i.i.d. sample from model (1.1), and let

di(V, s0) = ‖Xi −Ps0+span{V}Xi‖22 = ‖Xi − s0‖22 − 〈Xi − s0,VV�(Xi − s0)〉
= ‖(Ip −VV�)(Xi − s0)‖22 = ‖QV(Xi − s0)‖22 (4.1)

where 〈·, ·〉 is the usual inner product in Rp,PV = VV� andQV = Ip−PV. The
estimators we propose involve a variation of kernel smoothing, which depends
on a bandwidth hn. In our procedure, hn is the squared width of a slice around
the affine subspace s0 + span{V}. In order to obtain pointwise convergence for
the ensemble CVE, we require the following bias and variance assumptions on
the bandwidth, as is typical in nonparametric estimation.

(H.1). hn → 0 as n → ∞.

(H.2). nh
(p−q)/2
n → ∞ as n → ∞.

In order to obtain consistency of the proposed estimator, Assumption (H.2)

will be strengthened to log(n)/nh
(p−q)/2
n → 0.

We also let K, which we refer to as kernel, be a function satisfying the
following assumptions (K.1) and (K.2).
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(K.1). K : [0,∞) → [0,∞) is a continuous, non increasing function, so that
|K(z)| ≤ M1 and

∫
Rq K(‖r‖2)dr < ∞, for q ≤ p− 1.

(K.2). There exist positive finite constants L1 and L2 such that K satisfies
either (1) or (2) below:

(1) K(u) = 0 for |u| > L2 and for all u, ũ, |K(u)−K(ũ)| ≤ L1|u− ũ|
(2) K(u) is differentiable with |∂uK(u)| ≤ L1 and for some ν > 1, |∂uK(u)| ≤

L1|u|−ν for |u| > L2.

The Gaussian kernel K(z) = exp(−z2), for example, fulfills both (K.1) and
(K.2) [see [14]], and is used throughout the paper. For i = 1, . . . , n, we let

wi(V, s0) =
K
(

di(V,s0)
hn

)
∑n

j=1 K
(

dj(V,s0)
hn

) (4.2)

ȳl(V, s0, f) =

n∑
i=1

wi(V, s0)f(Yi)
l for l = 1, 2. (4.3)

We estimate L̃(V, s0, f) in (A.3) with

L̃n(V, s0, f) = ȳ2(V, s0, f)− ȳ1(V, s0, f)
2, (4.4)

and the objective function L∗(V, f) in (3.3) with

L∗
n(V, f) =

1

n

n∑
i=1

L̃n(V,Xi, f), (4.5)

where each data point Xi is a shifting point. For an ensemble F = {ft : t ∈ ΩT }
and (tj)j=1,...,mn an i.i.d. sample from FT with limn→∞ mn = ∞, we use

Ln,F (V) =
1

mn

mn∑
j=1

L∗
n(V, ftj ) (4.6)

to estimate the objective function in (3.2). The ensemble conditional variance

estimator (ECVE) is defined to be any basis of span{V̂q}⊥, where

V̂q = argminV∈S(p,q) Ln,F (V) (4.7)

We use a similar algorithm to that in [10] to solve the optimization problem (4.7).
It requires the explicit form of the gradient of (4.6). Theorem 4.1 provides the
gradient when a Gaussian kernel is used.

Theorem 4.1. The gradient of L̃n(V, s0, f) in (4.4) is given by

∇VL̃n(V, s0, f) =

1

h2
n

n∑
i=1

(L̃n(V, s0, f)− (f(Yi)− ȳ1(V, s0, f))
2)widi∇Vdi(V, s0) ∈ Rp×q,
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and the gradient of Ln,F (V) in (4.6) is

∇VLn,F (V) =
1

nmn

n∑
i=1

mn∑
j=1

∇VL̃n(V,Xi, ftj ).

In the implementation of ECVE, we follow [10] and set the bandwidth to

hn = 1.22
2tr(Σ̂x)

p

(
n−1/(4+p−q)

)2
. (4.8)

where Σ̂x =
∑

i(Xi − X̄)(Xi − X̄)T /n and X̄ =
∑

i Xi/n.

4.1. Weighted estimation of L∗
n(V, f)

The set of points {x ∈ Rp : ‖x − Ps0+span{V}x‖2 ≤ hn} represents a slice in
the subspace of Rp about s0+span{V}. In the estimation of L(V) two different
weighting schemes are used: (a) Within slices: The weights are defined in (4.2)
and are used to calculate (4.4). (b) Between slices: Equal weights (1/n) are used
to calculate (4.5). Another idea for the between slices weighting is to assign more
weight to slices with more points. This can be realized by altering (4.5) to

L(w)
n (V, f) =

n∑
i=1

w̃(V,Xi)L̃n(V,Xi, f), with (4.9)

w̃(V,Xi) =

∑n
j=1 K(dj(V,Xi)/hn)− 1∑n

l,u=1 K(dl(V,Xu)/hn)− n

=

∑n
j=1,j 
=i K(dj(V,Xi)/hn)∑n

l,u=1,l 
=u K(dl(V,Xu)/hn)
(4.10)

The denominator in (4.10) guarantees the weights w̃(V,Xi) sum up to one.
If (4.9) instead of (4.5) is used in (4.6) we refer to this method as weighted

ensemble conditional variance estimation. For example, if a rectangular kernel
is used,

∑n
j=1,j 
=i K(dj(V,Xi)/hn) equals the number of Xj (j 
= i) points in

the slice corresponding to L̃n(V,Xi, f). Therefore, this slice is assigned weight
that is proportional to the number of Xj points in it, and the more observations
we use for estimating L(V,Xi, f), the better its accuracy.

5. Consistency of ECVE

The consistency of ECVE derives from the fact that we can recover SY |X from
SE(ft(Y )|X) by varying over ft ∈ F = {ft : t ∈ ΩT } for an ensemble that
characterizes SY |X. This is achieved in sequential steps, starting from Theorem
5.1, which is the main building block, to Theorem 5.4. The proofs are technical
and lengthy, and are, thus, given in Appendix B.
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Theorem 5.1. Assume conditions (E.1), (E.2), (E.4), (K.1), (K.2), (H.1)

hold, a2n = log(n)/nh
(p−q)/2
n = o(1), and an/h

(p−q)/2
n = O(1). Let F be an

ensemble such that E(|ε̃|l | X = x) is continuous for l = 1, . . . , 4, and the
second conditional moment is twice continuously differentiable, where ε̃ is given
by Theorem A.1 in Appendix A. Then, L∗

n(V, f) in (4.5) converges uniformly
in probability to L∗(V, f) in (3.3) for all f ∈ F . That is,

sup
V∈S(p,q)

|L∗
n(V, f)− L∗(V, f)| −→ 0 in probability as n → ∞.

Next, Theorem 5.2 shows that the ensemble conditional variance estimator
is consistent for SE(ft(Y )|X) for any transformation ft.

Theorem 5.2. Under the same conditions as Theorem 5.1, the conditional
variance estimator span{B̂t

kt
} estimates SE(ft(Y )|X) consistently, for ft ∈ F .

That is,
‖PB̂t

kt

−PSE(ft(Y )|X)
‖ → 0 in probability as n → ∞,

where B̂t
kt

is any basis of span{V̂t
kt
}⊥ with

V̂t
kt

= argminV∈S(p,q) L
∗
n(V, ft),

with q = p− kt and kt = dim(SE(ft(Y )|X)).

A straightforward application of Theorem 5.2, using the identity function,
obtains that SE(Y |X) can be consistently estimated by ECVE.

Theorem 5.3. Assume the conditions of Theorem 5.1 hold. Let F be an ensem-
ble such that supt∈ΩT

|ft(Y )| < M < ∞ almost surely, and let the index random
variable t ∼ FT be independent from the data (Yi,Xi)i=1,...,n. Then Ln,F (V) in
(4.6) converges uniformly in probability to LF (V) in (3.2); i.e.,

sup
V∈S(p,q)

|Ln,F (V)− LF (V)| −→ 0 in probability as n → ∞.

The assumption supt∈ΩT
|ft(Y )| < M < ∞ in Theorem 5.3 is trivially sat-

isfied by the elements of the characteristic and indicator ensembles. Further,

the assumption an/h
(p−q)/2
n = O(1) used for the truncation step in the proof of

Theorem 5.1 (see Appendix B) can be dropped since obviously no truncation is
needed.

The rate of convergence of mn is not characterized in Theorem 5.3. In the
simulation studies of Section 6, we find that mn should be chosen to be very
small relative to the sample size n, roughly at the rate of log(n). The consistency
of ECVE is shown in Theorem 5.4.

Theorem 5.4. Assume the conditions of Theorem 5.1 and (E.3) hold. Let F
be an ensemble that characterizes SY |X and whose members satisfy supt∈ΩT

|ft(Y )| < M < ∞ almost surely. Also, assume the index random variable t ∼ FT

is independent from the data (Yi,Xi)i=1,...,n. Then, the ensemble conditional
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variance estimator (ECVE) is a consistent estimator for SY |X. That is, for any

basis B̂p−q,F of span{V̂q}⊥, where V̂q is defined in (4.7) with q = p − k and
k = dim(SY |X),

‖PB̂p−q,F
−PSY |X‖ −→ 0 in probability as n → ∞,

where PM denotes the orthogonal projection onto the range space of the matrix
or linear subspace M.

6. Simulation studies

6.1. Influence of mn on ECVE

In Theorem 5.3 and 5.4, how fast mn approaches ∞ is unspecified. In this
section we study the influence of mn, the number of functions of the ensemble
F in (4.6), on the accuracy of the ensemble conditional variance estimation.

We consider the 2-dimensional regression model

Y = (bT
2 X) + (0.5 + (bT

1 X)2)ε, (6.1)

where p = 10, k = 2, X ∼ N(0, I10), ε ∼ N(0, 1) independent of X, b1 =
(1, 0, . . . , 0)T ∈ Rp, and b2 = (0, 1, 0, . . . , 0)T ∈ Rp. Therefore, SE(Y |X) =
span{b2} � SY |X = span{B}, with B = (b1,b2) : p× 2 of rank 2.

We set the sample size to n = 300 and vary m over {4, 8, 10, 26, 50, 76, 100}
for the (a) indicator, Fm,Indicator = {1{x≥qj} : j = 1, . . . ,m}, where qj is the
j/(m + 1)th empirical quantile of (Yi)i=1,...,n; (b) characteristic or Fourier,
Fm,Fourier = {sin(jx) : j = 1, . . . ,m/2} ∪ {cos(jx) : j = 1, . . . ,m/2}; (c)
monomial, Fm,Monom = {xj : j = 1, . . . ,m}, (d) and Box-Cox, Fm,BoxCox =
{(xtj − 1)/tj : tj = 0.1 + 2(j − 1)/(m− 1), j = 1, . . . ,m− 1} ∪ {log(x)}, ensem-
bles.

The accuracy of the estimates throughout this paper is assessed using

err =
‖PB −PB̂‖√

2k
∈ [0, 1], (6.2)

where PB = B(BTB)−1BT is the orthogonal projection on span{B}. The fac-
tor

√
2k normalizes the distance, with values closer to zero indicating better

agreement and values closer to one indicating strong disagreement.
For each ensemble, we form the ensemble conditional variance estimator

and its weighted version as in Section 4.1 (see also [10]). The results of 100
replications for each method and each value of m are displayed in Figure 2.
Specifically, in model (6.1), errj,m = ‖B̂B̂T − BBT ‖/(2k)1/2, j = 1, . . . , 100,
m ∈ {2, 4, 8, 10, 26, 50, 76, 100}. ECVE’s main competitor, csMAVE does not vary
with m. csMAVE’s estimate of the central subspace has median error 0.2 with
a wide range from 0.1 to 0.6. The estimation error of Fourier, Indicator and
Box-Cox ECVE varies over m, and is on par or better than csMAVE’s for some m
values.
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For the Fourier basis, fewer basis functions give the best performance. The
indicator and Box-Cox ensembles are quite robust against varying m, whereas
the errors get rapidly larger if m is increased for the monomial ensemble. The
weighted version of ECVE improves the accuracy for all ensembles.
F4,Fourier weighted, F8,Indicator weighted, F4,BoxCox weighted are on par or more ac-
curate than csMAVE.

In sum, the simulation results support the choice of a small m number of
basis functions. Based on this and further unreported simulations, we set the
default value of m to

mn =

{
�log(n)�, if �log(n)� even

�log(n)�+ 1, if �log(n)� odd
(6.3)

for all simulations in Sections 6.2, 6.3 and the data analysis in Section 7, where
�x� is the smallest integer greater than or equal to x.

6.2. Demonstrating consistency

We explore the consistency rate of the conditional variance estimator (CVE) and
ensemble conditional variance estimator (ECVE), csMAVE and mMAVE in model (6.1).

Specifically, we apply seven estimation methods, the first five targeting the
central subspace SY |X and the last two SE(Y |X), as follows. For SY |X, we com-
pare ECVE for the indicator (I), Fourier (II), monomial (III) and Box-Cox (IV)
ensembles, as in Section 6.1, and csMAVE (V). For SE(Y |X), we use CVE (VI) of
[10] and mMAVE (VII) in [26].

The simulation is performed as follows. We generate 100 i.i.d samples from
(6.1), (Yi,X

T
i )i=1,...,n, for each sample size n = 100, 200, 400, 600, 800, 1000. Re-

call that (6.1) is a two dimensional model with SE(Y |X) = span(b2) � SY |X =
span(B). For methods (I)-(V), we set k = 2 and estimate B ∈ R10×2. For (VI)
and (VII), we set k = 1 and estimate b2 ∈ R10×1. Then, we calculate errj,n =

‖B̂B̂T −BBT ‖/(2k)1/2, j = 1, . . . , 100, n ∈ {100, 200, 400, 600, 800, 1000}.
Figure 3 displays the distribution of errj,n for the seven methods. As the

sample size increases, ECVE Indicator, Fourier and csMAVE are on par with re-
spect to both speed and accuracy. The accuracy of ECVE Box-Cox improves as
the sample size increases but at a slower rate. There is no improvement in the
accuracy of ECVE monomial. This is not surprising as the monomial, as well as
the Box-Cox, do not satisfy the assumption supt∈ΩT

|ft(Y )| < M < ∞ in The-
orem 5.4, in contrast to the Indicator and Fourier ensembles. The Fourier and
Indicator ECVE, and csMAVE estimate SY |X = span{B} consistently. The mean
subspace methods, CVE and mMAVE, estimate SE(Y |X) = span{b2} consistently.

6.3. Evaluating estimation error

We consider seven models M1-M7, defined in Table 1, three different sample
sizes {100, 200, 400}, and three different distributions of the predictor vector
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Fig 2. Box plots of the estimation errors over 100 replications of model (6.1) with n = 300
over m = |F| = 2, 4, 8, 10, 26, 50, 76, 100, across four ensembles and csMAVE.

Fig 3. Box-plots of estimation errors for model (6.1) over n = 100, 200, 400, 600, 800, 1000
for the seven (I-VII) methods in Section 6.2
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X = Σ1/2Z ∈ Rp, where Σ = (Σij)i,j=1,...,p, Σi,j = 0.5|i−j|. Throughout,
p = 10, B are the first k columns of Ip, and ε ∼ N(0, 1) independent of X.

As in [25], we consider three distributions for Z ∈ Rp: (I) N(0, Ip), (II)
p-dimensional uniform distribution on [−

√
3,
√
3]p; i.e., all components of Z

are independent and uniformly distributed, and (III) a mixture-distribution
N(0, Ip)+μ, where μ = (μ1, . . . , μp)

T ∈ Rp with μj = 2, μk = 0, for k 
= j, and
j is uniformly distributed on {1, . . . , p}.

The simple and weighted [see Section 4.1] Fourier and indicator ensembles
are used to form four ensemble conditional variance estimators. The mono-
mial and Box-Cox ensembles were also used but did not give satisfactory re-
sults and are not reported. From these two ensembles, four ECVE estimators
are formed and compared against the reference methods csMAVE [25], as im-
plemented in the R package MAVE, refined ensemble minimum average vari-
ance estimation (reMAVE, [27, 20]), and refined ensemble outer product gradient
(reOPG [27, 20]). The source code for CVE and its ensemble version is available
at https://git.art-ist.cc/daniel/CVE.

We applied reMAVE and reOPG with the Fourier, Box-Cox, and monomial
ensembles. Only the results of the former two are reported as the Monomial en-
semble exhibited non-competitive performance. The same occurred for reOPG,
whose results are also not reported as it was always outperformed by the cor-
responding reMAVE. For example, reMAVE using the Fourier ensemble outper-
formed reOPG using the same ensemble. This is not surprising since reMAVE uses
reOPG as a starting point in its optimization procedure. The source code for
reMAVE and reOPG is taken from [20]. The ensemble size and the number of
iterations are both set to 10. In total, we report the results from seven methods:
ECVE and its weighted version with Fourier ensemble denoted as Fourier and
Fourier weighted, ECVE and its weighted version with Indicator ensemble de-
noted as Indicator and Indicator weighted, csMAVE (which corresponds to
reMAVE with the indicator ensemble), and reMAVE with the Fourier and Box-Cox
ensembles denoted by reMAVEf and reMAVEb.

Table 1

Name Model SE(Y |X) SY |X k

M1 Y = 1
bT
1 X

+ 0.2ε span{b1} span{b1} 1

M2 Y = cos(2bT
1 X) + cos(bT

2 X) + 0.2ε span{b1,b2} span{b1,b2} 2
M3 Y = (bT

2 X) + (0.5 + (bT
1 X)2)ε span{b2} span{b1,b2} 2

M4 Y =
bT
1 X

0.5+(1.5+bT
2 X)2

+ (|bT
1 X|+ (bT

2 X)2 + 0.5)ε span{b1,b2} span{b1,b2} 2

M5 Y = bT
3 X+ sin(bT

1 X(bT
2 X)2)ε span{b3} span{b1,b2,b3} 3

M6 Y = 0.5(bT
1 X)2ε span{0} span{b1} 1

M7 Y = cos(bT
1 X− π) + cos(2bT

1 X)ε span{b1} span{b1} 1

We set q = p−k and generate r = 100 replicates of models M1-M7 in Table 1
with the specified distribution of X and sample size n. We estimate B using the
four ECVE and three reference methods. The accuracy of the estimates is assessed
using (6.2). The results are displayed in Tables 2-8. In M1, which is taken
from [25], even though the mean subspace agrees with the central subspace,

https://git.art-ist.cc/daniel/CVE
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i.e. SE(Y |X) = SY |X, mean subspace estimation methods, such as mean MAVE

and CVE, fail because of the unboundedness of the link function g(x) = 1/x. In
contrast, all four ECVE methods and csMAVE succeed in identifying the minimal
dimension reduction subspace. On the other hand, both reMAVE procedures give
unsatisfactory results, as can be seen in Table 2. Overall, Fourier is the best
performing ensemble method.

csMAVE is the best performing method for the two dimensional mean sub-
space model M2 in Table 3. M3 is the same as model (6.1), where the mean
subspace is a proper subset of the central subspace. In Table 4 we see that
Indicator weighted and csMAVE are the best performers and are roughly on
par. In M4, the two dimensional mean subspace, which also determines the het-
eroskedasticity, agrees with the central subspace. Table 5 shows that this model
is quite challenging for all methods, and only Indicator weighted and csMAVE

give satisfactory results, with Indicator weighted the clear winner.

In M5, heteroskedasticity is induced by an interaction term and the three
dimensional central subspace is a proper superset of the one dimensional mean
subspace. M5 is quite challenging for all five methods, as can be seen In Ta-
ble 6. When we increased the sample size to 800, the two weighted ensemble
conditional variance estimators became the best performing methods followed
by csMAVE.

M6 is a one dimensional pure central subspace model; i.e., the mean subspace
is {0}. In Table 7, we see that for n = 100, the two weighted ECVEs are the best
performing methods. For larger sample sizes, csMAVE is slightly more accurate
than the ECVE methods.

M7 is the model where all ensemble conditional variance estimators clearly
outperform all reference methods (Table 8). Here the one dimensional mean
subspace coincides with the central subspace and the conditional first and second
moments, E(Y l | X) for l = 1, 2, are highly nonlinear periodic functions of the
sufficient reduction.

7. Boston housing data

We apply the ensemble conditional variance estimator and csMAVE to the Boston
Housing data set since the other reference methods are not competitive. This
data set has been extensively used as a benchmark for assessing regression meth-
ods [see, for example, [16]], and is available in the R-package mlbench. The data
contains 506 instances of 14 variables from the 1970 Boston census, 13 of which
are continuous. The binary variable chas, indexing proximity to the Charles
river, is omitted from the analysis since ensemble conditional variance estima-
tion operates under the assumption of continuous predictors. The target variable
is the median value of owner-occupied homes, medv, in $1,000. The 12 predic-
tors are crim (per capita crime rate by town), zn (proportion of residential land
zoned for lots over 25,000 sq.ft), indus (proportion of non-retail business acres
per town), nox (nitric oxides concentration (parts per 10 million)), rm (average
number of rooms per dwelling), age (proportion of owner-occupied units built
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Table 2

Mean and standard deviation (in parenthesis) of estimation errors of M1

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE reMAVEf reMAVEb

I 100 0.172 0.201 0.248 0.265 0.210 0.843 0.972
(0.047) (0.054) (0.064) (0.063) (0.063) (0.177) (0.051)

I 200 0.120 0.142 0.182 0.197 0.128 0.779 0.975
(0.029) (0.037) (0.045) (0.049) (0.037) (0.266) (0.055)

I 400 0.079 0.091 0.126 0.136 0.080 0.678 0.975
(0.020) (0.024) (0.037) (0.040) (0.024) (0.289) (0.062)

II 100 0.174 0.196 0.241 0.254 0.193 0.862 0.980
(0.038) (0.049) (0.055) (0.056) (0.059) (0.164) (0.038)

II 200 0.110 0.127 0.170 0.182 0.121 0.781 0.974
(0.031) (0.033) (0.043) (0.045) (0.036) (0.237) (0.053)

II 400 0.078 0.091 0.122 0.132 0.079 0.663 0.976
(0.021) (0.026) (0.031) (0.033) (0.020) (0.305) (0.059)

III 100 0.187 0.218 0.256 0.263 0.204 0.822 0.975
(0.045) (0.053) (0.060) (0.058) (0.066) (0.200) (0.040)

III 200 0.118 0.137 0.171 0.179 0.118 0.685 0.967
(0.031) (0.038) (0.043) (0.042) (0.033) (0.282) (0.054)

III 400 0.082 0.101 0.127 0.132 0.079 0.627 0.967
(0.020) (0.029) (0.031) (0.032) (0.022) (0.306) (0.065)

Table 3

Mean and standard deviation (in parenthesis) of estimation errors of M2

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE reMAVEf reMAVEb

I 100 0.670 0.601 0.629 0.582 0.575 0.699 0.683
(0.089) (0.135) (0.130) (0.140) (0.176) (0.103) (0.097)

I 200 0.478 0.388 0.436 0.407 0.219 0.558 0.561
(0.201) (0.152) (0.193) (0.162) (0.136) (0.178) (0.179)

I 400 0.226 0.201 0.231 0.236 0.098 0.285 0.288
(0.153) (0.074) (0.127) (0.111) (0.025) (0.209) (0.226)

II 100 0.663 0.652 0.687 0.658 0.544 0.706 0.706
(0.097) (0.104) (0.057) (0.080) (0.176) (0.108) (0.063)

II 200 0.525 0.468 0.601 0.539 0.182 0.576 0.659
(0.171) (0.171) (0.127) (0.148) (0.096) (0.151) (0.087)

II 400 0.267 0.307 0.375 0.357 0.087 0.322 0.510
(0.081) (0.146) (0.154) (0.141) (0.021) (0.203) (0.215)

III 100 0.657 0.590 0.530 0.542 0.603 0.742 0.708
(0.104) (0.148) (0.155) (0.148) (0.193) (0.089) (0.074)

III 200 0.421 0.367 0.306 0.336 0.240 0.637 0.649
(0.203) (0.165) (0.147) (0.151) (0.193) (0.144) (0.130)

III 400 0.170 0.170 0.144 0.170 0.089 0.453 0.482
(0.110) (0.071) (0.053) (0.063) (0.019) (0.237) (0.249)

prior to 1940), dis (weighted distances to five Boston employment centres), rad
(index of accessibility to radial highways), tax (full-value property-tax rate per
$10,000), ptratio (pupil-teacher ratio by town), lstat (percentage of lower
status of the population), and b stands for 1000(B − 0.63)2 where B is the
proportion of blacks by town.

We analyze these data with the weighted and unweighted Fourier and indica-
tor ensembles, and csMAVE. We compute unbiased error estimates by leave-one-
out cross-validation. We estimate the sufficient reduction with the five methods
from the standardized training set, estimate the forward model from the reduced
training set using mars, multivariate adaptive regression splines [11], in the R-
package mda, and predict the target variable on the test set. We report results
for dimension k = 1. The analysis was repeated setting k = 2 with similar re-
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Table 4

Mean and standard deviation (in parenthesis) of estimation errors of M3

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE reMAVEf reMAVEb

I 100 0.744 0.657 0.668 0.561 0.602 0.549 0.697
(0.056) (0.113) (0.083) (0.142) (0.147) (0.142) (0.084)

I 200 0.702 0.472 0.559 0.369 0.374 0.350 0.604
(0.061) (0.177) (0.147) (0.155) (0.148) (0.102) (0.086)

I 400 0.621 0.252 0.408 0.223 0.203 0.221 0.547
(0.148) (0.102) (0.177) (0.064) (0.061) (0.048) (0.102)

II 100 0.751 0.698 0.683 0.570 0.635 0.617 0.707
(0.041) (0.076) (0.080) (0.136) (0.136) (0.139) (0.085)

II 200 0.719 0.521 0.584 0.355 0.387 0.376 0.631
(0.040) (0.163) (0.111) (0.097) (0.144) (0.129) (0.100)

II 400 0.686 0.267 0.452 0.252 0.201 0.238 0.590
(0.079) (0.084) (0.153) (0.052) (0.045) (0.072) (0.099)

III 100 0.739 0.676 0.654 0.563 0.571 0.501 0.666
(0.073) (0.106) (0.105) (0.150) (0.120) (0.131) (0.089)

III 200 0.704 0.546 0.523 0.368 0.330 0.318 0.595
(0.048) (0.162) (0.171) (0.153) (0.131) (0.083) (0.091)

III 400 0.616 0.252 0.297 0.202 0.179 0.215 0.551
(0.151) (0.113) (0.106) (0.055) (0.042) (0.055) (0.104)

Table 5

Mean and standard deviation (in parenthesis) of estimation errors of M4

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE reMAVEf reMAVEb

I 100 0.836 0.794 0.774 0.713 0.803 0.764 0.797
(0.072) (0.076) (0.074) (0.105) (0.087) (0.091) (0.092)

I 200 0.820 0.733 0.747 0.545 0.685 0.631 0.758
(0.066) (0.094) (0.060) (0.150) (0.116) (0.117) (0.094)

I 400 0.782 0.633 0.710 0.364 0.534 0.508 0.664
(0.059) (0.142) (0.081) (0.129) (0.155) (0.142) (0.117)

II 100 0.839 0.828 0.788 0.751 0.818 0.789 0.805
(0.067) (0.064) (0.062) (0.095) (0.095) (0.099) (0.085)

II 200 0.834 0.781 0.759 0.660 0.701 0.654 0.753
(0.171) (0.081) (0.040) (0.117) (0.111) (0.116) (0.093)

II 400 0.812 0.712 0.739 0.511 0.544 0.521 0.681
(0.059) (0.097) (0.038) (0.135) (0.151) (0.116) (0.088)

III 100 0.838 0.815 0.764 0.706 0.786 0.715 0.774
(0.074) (0.077) (0.069) (0.108) (0.109) (0.116) (0.086)

III 200 0.829 0.761 0.726 0.544 0.676 0.616 0.735
(0.071) (0.099) (0.083) (0.149) (0.123) (0.113) (0.099)

III 400 0.796 0.646 0.669 0.317 0.506 0.478 0.700
(0.069) (0.139) (0.113) (0.110) (0.146) (0.122) (0.085)

sults. Table 9 reports the first quantile, median, mean and third quantile of the
out-of-sample prediction errors. The reductions estimated by the ensemble CVE
methods achieve lower mean and median prediction errors than csMAVE. Also,
both ECVE and csMAVE are approximately on par with the variable selection
methods in [16, Section 8.3.3].

We plot the standardized response medv against the reduced Fourier and
csMAVE predictors, BTX, in Figure 4. The sufficient reductions are estimated
using the entire data set. A particular feature of these data is that the response
medv appears to be truncated as the highest median price of exactly $50,000 is
reported in 16 cases. Both methods pick up similar patterns, which is captured
by the relatively high absolute correlation of the coefficients of the two reduc-
tions, |B̂T

FourierB̂csMAVE| = 0.786. The coefficients of the reductions, B̂Fourier and
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Table 6

Mean and standard deviation (in parenthesis) of estimation errors of M5

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE reMAVEf reMAVEb

I 100 0.705 0.682 0.708 0.691 0.709 0.703 0.694
(0.060) (0.067) (0.060) (0.056) (0.069) (0.067) (0.061)

I 200 0.679 0.634 0.688 0.642 0.687 0.691 0.693
(0.061) (0.054) (0.058) (0.060) (0.073) (0.061) (0.059)

I 400 0.644 0.588 0.660 0.591 0.646 0.673 0.685
(0.050) (0.047) (0.056) (0.061) (0.082) (0.064) (0.060)

I 800 0.622 0.543 0.629 0.493 0.553 0.608 0.668
(0.032) (0.078) (0.035) (0.100) (0.077) (0.070) (0.064)

II 100 0.712 0.688 0.713 0.697 0.722 0.731 0.715
(0.060) (0.069) (0.051) (0.057) (0.054) (0.052) (0.054)

II 200 0.693 0.669 0.694 0.669 0.697 0.713 0.714
(0.058) (0.065) (0.054) (0.057) (0.064) (0.054) (0.060)

II 400 0.670 0.614 0.681 0.633 0.687 0.700 0.705
(0.054) (0.059) (0.052) (0.050) (0.067) (0.056) (0.053)

II 800 0.660 0.584 0.672 0.585 0.589 0.680 0.691
(0.053) (0.045) (0.052) (0.055) (0.074) (0.067) (0.053)

III 100 0.706 0.687 0.703 0.691 0.724 0.731 0.720
(0.062) (0.062) (0.061) (0.061) (0.051) (0.052) (0.057)

III 200 0.701 0.655 0.702 0.668 0.703 0.708 0.693
(0.063) (0.069) (0.058) (0.074) (0.080) (0.067) (0.060)

III 400 0.659 0.603 0.664 0.604 0.682 0.684 0.701
(0.062) (0.072) (0.059) (0.077) (0.081) (0.071) (0.056)

III 800 0.657 0.562 0.651 0.513 0.602 0.639 0.668
(0.064) (0.068) (0.052) (0.109) (0.087) (0.076) (0.057)

Table 7

Mean and standard deviation (in parenthesis) of estimation errors of M6

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE reMAVEf reMAVEb

I 100 0.304 0.294 0.492 0.299 0.539 0.577 0.888
(0.092) (0.082) (0.135) (0.087) (0.255) (0.193) (0.105)

I 200 0.217 0.213 0.329 0.205 0.194 0.371 0.826
(0.057) (0.054) (0.107) (0.059) (0.061) (0.094) (0.125)

I 400 0.142 0.146 0.199 0.138 0.114 0.259 0.796
(0.036) (0.035) (0.069) (0.039) (0.034) (0.073) (0.100)

II 100 0.308 0.293 0.479 0.299 0.488 0.572 0.891
(0.094) (0.073) (0.129) (0.086) (0.248) (0.193) (0.115)

II 200 0.205 0.210 0.321 0.210 0.192 0.343 0.842
(0.058) (0.057) (0.095) (0.058) (0.061) (0.092) (0.090)

II 400 0.144 0.150 0.190 0.142 0.111 0.247 0.786
(0.039) (0.042) (0.055) (0.045) (0.032) (0.081) (0.114)

III 100 0.373 0.375 0.504 0.322 0.562 0.546 0.889
(0.152) (0.175) (0.143) (0.083) (0.273) (0.167) (0.088)

III 200 0.226 0.230 0.340 0.218 0.218 0.370 0.838
(0.065) (0.070) (0.100) (0.060) (0.083) (0.102) (0.082)

III 400 0.149 0.151 0.194 0.146 0.114 0.260 0.807
(0.039) (0.038) (0.068) (0.042) (0.032) (0.088) (0.111)

B̂csMAVE, are reported in Table 10. For the Fourier ensemble, the variables rm
and lstat have the highest influence on the target variable medv. This agrees
with the analysis in [16, Section 8.3.4] where it was found that these two vari-
ables are by far the most important using different variable selection techniques,
such as random forests and boosted regression trees. In contrast, the reduction
estimated by csMAVE has a lower coefficient for rm and higher ones for crim and
rad.
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Table 8

Mean and standard deviation (in parenthesis) of estimation errors of M7

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE reMAVEf reMAVEb

I 100 0.273 0.237 0.241 0.252 0.790 0.968 0.973
(0.169) (0.050) (0.136) (0.158) (0.316) (0.056) (0.043)

I 200 0.160 0.159 0.143 0.153 0.425 0.960 0.954
(0.093) (0.041) (0.083) (0.093) (0.391) (0.115) (0.120)

I 400 0.098 0.104 0.088 0.102 0.127 0.770 0.742
(0.024) (0.025) (0.021) (0.093) (0.202) (0.364) (0.383)

II 100 0.233 0.260 0.236 0.265 0.902 0.980 0.975
(0.057) (0.134) (0.142) (0.185) (0.219) (0.0310) (0.039)

II 200 0.154 0.176 0.145 0.150 0.649 0.952 0.951
(0.058) (0.124) (0.093) (0.094) (0.414) (0.125) (0.138)

II 400 0.097 0.110 0.087 0.099 0.295 0.837 0.868
(0.025) (0.094) (0.022) (0.093) (0.391) (0.295) (0.271)

III 100 0.274 0.303 0.238 0.298 0.933 0.979 0.977
(0.201) (0.237) (0.160) (0.242) (0.163) (0.037) (0.041)

III 200 0.167 0.188 0.159 0.167 0.678 0.971 0.973
(0.120) (0.159) (0.150) (0.144) (0.408) (0.050) (0.041)

III 400 0.100 0.116 0.089 0.112 0.375 0.955 0.949
(0.023) (0.090) (0.023) (0.129) (0.431) (0.130) (0.146)

Table 9

Summary statistics of the out of sample prediction errors for the Boston Housing data
obtained by LOO cross validation

Fourier Fourier weighted Indicator Indicator weighted csMAVE

25% quantile 0.766 0.785 0.973 0.916 0.851
median 3.323 3.358 3.844 3.666 4.515
mean 19.971 19.948 19.716 19.583 24.309
75% quantile 11.129 10.660 11.099 10.429 16.521

Table 10

Rounded coefficients of the estimated reductions for B̂Fourier and B̂csMAVE from the full
Boston Housing data

crim zn indus nox rm age dis rad tax ptratio b lstat

Fourier 0.21 -0.01 0.04 0.1 -0.62 0.16 0.2 0 0.2 0.27 -0.25 0.57
csMAVE 0.5 -0.05 -0.06 0.14 -0.27 0.11 0.24 -0.43 0.3 0.19 -0.15 0.51

8. Discussion

In this paper, we extend the mean subspace conditional variance estimation
(CVE) of [10] to the ensemble conditional variance estimation (ECVE), which
exhaustively estimates the central subspace, by applying the ensemble device
introduced by [27]. We show that the new estimator is consistent for the central
subspace. The regularity conditions for consistency require the joint distribution
of the target variable and predictors, (Y,XT )T , be sufficiently smooth. They are
comparable to those under which the main competitor, csMAVE [25], is consistent.

ECVE identifies the central subspace via the orthogonal complement and thus
circumvents the estimation and inversion of the variance matrix of the predictors
X. This renders the method formally applicable to settings where the sample
size n is small, or smaller than p, the number of predictors, and leads to potential
future research.
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Fig 4. Panel A: Y vs. B̂T
FourierX. Panel B: Y vs. B̂T

csMAVEX

ECVE is either on par with csMAVE or attains substantial performance improve-
ment with respect to estimation accuracy in certain models. Yet, characterizing
the defining features of the models for which the ensemble conditional variance
estimation outperforms csMAVE entails further research. The nature of ECVE, i.e.
the lack of closed-form solution and the lack of independence of all quantities in
its calculation, presents many technical obstacles in deriving its statistical prop-
erties, such as the rate of convergence, estimation of the structural dimension,
and the limiting distribution of the estimator. This can be seen from the techni-
cal difficulty of proving its consistency. An exception could be the dimension of
the central subspace, k = dim(SY |X). We assumed k to be known throughout.
Alternatively, the dimension can be estimated via cross-validation, as in [25]
and [10], or information criteria.

Appendix A

For any V ∈ S(p, q), defined in (2.1), we generically denote a basis of the orthog-
onal complement of its column space span{V}, by U. That is, U ∈ S(p, p− q)
such that span{V} ⊥ span{U} and span{V} ∪ span{U} = Rp, UTV = 0 ∈
R(p−q)×q,UTU = Ip−q. For any x, s0 ∈ Rp we can always write

x = s0 +PV(x− s0) +PU(x− s0) = s0 +Vr1 +Ur2 (A.1)

where r1 = VT (x− s0) ∈ Rq, r2 = UT (x− s0) ∈ Rp−q.
The following theorem will be used in establishing the main result of this

paper, which obtains the exhaustive sufficient reduction of the conditional dis-
tribution of Y given the predictor vector X.

Theorem A.1. Assume (E.1) and (E.2) hold, in particular model (1.1) holds.

Let B̃ be a basis of SE(ft(Y )|X); i.e. span{B̃} = SE(ft(Y )|X) ⊆ SY |X = span{B}.
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Then, for any f ∈ F for which the statements in assumption (E.4) holds,

f(Y ) = g(B̃TX) + ε̃, (A.2)

with E(ε̃ | X) = 0 and g : Rkt → R is a twice continuously differentiable
function, where kt = dim(SE(ft(Y )|X)).

By Theorem A.1, any response Y can be written as an additive error via
the decomposition (A.2). The predictors and the additive error term are only
required to be conditionally uncorrelated in model (A.2). The conditional vari-

ance estimator [10] also estimated B̃ in (A.2) but under the more restrictive
condition of predictor and error independence.

Proof of Theorem A.1.

f(Y ) = E (f(Y ) | X) + f(Y )− E (f(Y ) | X)︸ ︷︷ ︸
ε̃

= E (f(Y ) | X) + ε̃

= E
(
f(Y )|B̃TX

)
+ ε̃ = g(B̃TX) + ε̃

where g(B̃TX) = E
(
f(Y )|B̃TX

)
. By the tower property of the conditional

expectation, E(ε̃ | X) = E(f(Y ) | X) − E(E(f(Y ) | X) | X) = E(f(Y ) |
X) − E(f(Y ) | X) = 0. The function g is twice continuous differentiable by
(E.4).

Theorem A.2. Assume (E.1) and (E.2) hold. Let F be an ensemble, s0 ∈
supp(fX) ⊂ Rp, V ∈ S(p, q) defined in (2.1). Then, for any f ∈ F for which
the statements in assumption (E.4) holds,

L̃(V, s0, f) = μ2(V, s0, f)− μ2
1(V, s0, f) + Var(ε̃ | X ∈ s0 + span{V}) (A.3)

where

μl(V, s0, f) =

∫
Rq

g(B̃T s0 + B̃TVr1)
l fX(s0 +Vr1)∫

Rq fX(s0 +Vr)dr
dr1 =

t(l)(V, s0, f)

t(0)(V, s0, f)
,

(A.4)
for g given in (A.2) with

t(l)(V, s0, f) =

∫
Rq

g(B̃T s0 + B̃TVr1)
lfX(s0 +Vr1)dr1, (A.5)

and

Var(ε̃ | X ∈ s0 + span{V}) = E(ε̃2 | X ∈ s0 + span{V})

=

∫
supp(fX)∩Rq

h(s0 +Vr1)fX(s0 +Vr1)dr1/

∫
Rq

fX(s0 +Vr)dr =
h̃(V, s0, f)

t(0)(V, s0, f)

(A.6)
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with E(ε̃2 | X = x) = h(x) and h̃(V, s0, f) =
∫
supp(fX)∩Rq h(s0 + Vr1)fX(s0 +

Vr1)dr1. Further assume h(·) to be continuous, then L∗(V, ft) in (3.3) is well
defined and continuous,

Vt
q = argminV∈S(p,q) L

∗(V, ft) (A.7)

is well defined, and the conditional variance estimator of the transformed re-
sponse ft(Y ) identifies SE(ft(Y )|X),

SE(ft(Y )|X) = span{Vt
q}⊥. (A.8)

Proof of Theorem A.2. The density of X | X ∈ s0 + span{V} is given by

fX|X∈s0+span{V}(r1) =
fX(s0 +Vr1)∫

Rq fX(s0 +Vr)dr
(A.9)

where X is the p-dimensional continuous random covariate vector with density
fX(x), s0 ∈ supp(fX) ⊂ Rp, and V belongs to the Stiefel manifold S(p, q)
defined in (2.1). Equation (A.9) follows from Theorem 3.1 of [19] and the fact
that (Rp,B(Rp)), where B(Rp) denotes the Borel sets on Rp, is a Polish space,
which in turnguarantees the existence of the regular conditional probability of
X | X ∈ s0 + span{V} [see also [9]]. Further, the measure is concentrated on
the affine subspace s0 + span{V} ⊂ Rp with density (A.9), which follows from
Definition 8.38, Theorem 8.39 of [18], the orthogonal decomposition (A.1), and
the continuity of fX (E.2).

By assumption (E.1), Y = gcs(B
TX, ε) with ε ⊥⊥ X. Assume f ∈ F for which

assumption (E.4) holds and let B̃ be a basis of SE(ft(Y )|X); that is, span{B̃} =

SE(ft(Y )|X) ⊆ SY |X = span{B}. By Theorem A.1, f(Y ) = g(B̃TX) + ε̃, with
E(ε̃ | X) = 0 and g twice continuously differentiable. Therefore,

L̃(V, s0, f) = Var (f(Y ) | X ∈ s0 + span{V})

= Var
(
g(B̃TX) | X ∈ s0 + span{V}

)
+ 2cov

(
ε̃, g(B̃TX) | X ∈ s0 + span{V}

)
+Var (ε̃ | X ∈ s0 + span{V})

= Var
(
g(B̃TX) | X ∈ s0 + span{V}

)
+ Var (ε̃ | X ∈ s0 + span{V}) (A.10)

The covariance term in (A.10) vanishes since

cov
(
ε̃, g(B̃TX) | X ∈ s0 + span{V}

)
= E

⎛⎝E(ε̃ | X)︸ ︷︷ ︸
=0

g(B̃TX) | X ∈ s0 + span{V}

⎞⎠
−E
(
g(B̃TX) | X ∈ s0 + span{V}

)
E

⎛⎝E(ε̃ | X)︸ ︷︷ ︸
=0

| X ∈ s0 + span{V}

⎞⎠ = 0
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i.e. the sigma field generated by X ∈ s0+span{V} is a subset of that generated
by X. By the same argument and using (A.9)

Var (ε̃ | X ∈ s0 + span{V}) = E(ε̃2 | X ∈ s0 + span{V})
= E(E(ε̃2 | X) | X ∈ s0 + span{V}) = E(h(X) | X ∈ s0 + span{V})

=

∫
supp(fX)∩Rq

h(s0 +Vr1)× fX(s0 +Vr1)dr1/t
(0)(V, s0, f))

where E(ε̃2 | X = x) = h(x). Using (A.9) again for the first term in (A.10)
obtains formula (A.3) and (A.6).

To see that (3.2), (A.3), and (A.6) are well defined and continuous, let
g̃(V, s0, r) = g(BT s0+BTVr)lfX(s0+Vr) for l = 1, 2 or g̃(V, s0, r) = h(BT s0+
BTVr)fX(s0 +Vr) (for (A.6)) which are continuous by assumption. In conse-
quence, the parameter depending integrals (A.5) and (A.6) are well defined and
continuous if (1) g̃(V, s0, ·) is integrable for all V ∈ S(p, q), s0 ∈ supp(fX), (2)
g̃(·, ·, r) is continuous for all r, and (3) there exists an integrable dominating
function of g̃ that does not depend on V and s0 [see [15, p. 101]].

Furthermore, for some compact set K, t(l)(V, s0) =
∫
K g̃(V, s0, r)dr, since

supp(fX) is compact by (E.2). The function g̃(V, s0, r) is continuous in all inputs
by the continuity of g (E.4) and fX by (E.2), and therefore it attains a maximum.
In consequence, all three conditions are satisfied so that t(l)(V, s0) is well defined
and continuous. By the same argument (A.6) is well defined and continuous.

Next, μl(V, s0) = t(l)(V, s0)/t
(0)(V, s0) is continuous since t(0)(V, s0) > 0

for all interior points s0 ∈ supp(fX) by the continuity of fX, convexity of the
support and Σx > 0. Then, L̃(V, s0, f) in (A.3) is continuous, which results in
(3.3) also being well defined and continuous by virtue of it being a parameter
depending integral following the same arguments as above. Moreover, (A.7)
exists as the minimizer of a continuous function over the compact set S(p, q).
Then, (3.3) can be writen as

L∗(V, f) = Es0∼X

(
μ2(V, s0, f)− μ1(V, s0, f)

2
)

+ Es0∼X (Var (ε̃ | X ∈ s0 + span{V})) (A.11)

where s0 ∼ X signifies that s0 is distributed as X and the expectation is with
respect to the distribution of s0.

It now suffices to show that the second term on the right hand side of (A.11)
is constant with respect to V. By the law of total variance,

Var(ε̃) = E (Var(ε̃ | X ∈ s0 + span{V})) + Var (E(ε̃ | X ∈ s0 + span{V}))
= E (Var(ε̃ | X ∈ s0 + span{V})) (A.12)

since E(ε̃ | X ∈ s0+span{V}) = E(E(ε̃ | X)︸ ︷︷ ︸
=0

| X ∈ s0+span{V}) = 0. Inserting

(A.12) into (A.11) obtains

L∗(V, ft) = E
(
μ2(V,X, ft)− μ1(V,X, ft)

2
)
+ Var(ε̃)
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= Es0∼X

(
Var

(
g(B̃TX) | X ∈ s0 + span{V}

))
+ Var(ε̃) (A.13)

Next we show that (3.3), or, equivalently (A.13)), attains its minimum at V ⊥
B̃. Let s0 ∈ supp(fX) and V = (v1, ...,vq) ∈ Rp×q, so that vu ∈ span{B} for
some u ∈ {1, ..., q}. Since X ∈ s0 + span{V} ⇐⇒ X = s0 +PV(X− s0), by the
first term in (A.13)

Var
(
g(B̃TX) | X ∈ s0 + span{V}

)
= Var

(
g(B̃TX) | X = s0 +VVT (X− s0)

)
= Var

(
g(B̃T s0 + B̃TVVT (X− s0)) | X = s0 +VVT (X− s0)

)
≥ 0 (A.14)

If (A.14) is positive, i.e. B̃TVVT (X − s0) 
= 0 with positive probability, then

the lower bound is not attained. If it is zero; i.e., for V such that V and B̃T are
orthogonal, then L∗(V, f) = Var(ε̃). Since s0 is arbitrary yet constant, the same
inequality holds for (3.3); that is, (3.3) attains its minimum for V such that V

and B̃T are orthogonal. Since span{B̃T } = SE(ft(Y )|X), (A.7) follows.

[10] assumed model Y = g(BTX) + ε with ε ⊥⊥ X, which implies SE(Y |X) =
span{B} = SY |X, and showed that the conditional variance estimator (CVE)
can identify SE(Y |X) at the population level.

Theorem A.2 extends this result to obtain that the conditional variance es-
timator (CVE) identifies the mean subspace SE(Y |X) also in models of the form
Y = g(BTX) + ε̃, where ε̃ is simply conditionally uncorrelated with X. This
allows CVE to apply to problems where the mean subspace is a proper subset
of the central subspace, i.e. SE(Y |X) � SY |X.

Vt
q in (A.7) is not unique since for all orthogonal O ∈ Rq×q, L∗(Vt

qO, ft) =
L∗(Vt

q, ft) as L
∗(Vt

q, ft) depends on Vt
q only through span{Vt

q} by (3.1). Never-
theless, it is a unique minimizer over the Grassmann manifold Gr(p, q) in (2.2).
To see this, supposeV ∈ S(p, q) is an arbitrary basis of a subspaceM ∈ Gr(p, q).
We can identify M through the projection PM = VVT . By (A.1), we write
x = Vr1 +Ur2. Application of the Fubini-Tonelli Theorem yields

t̃(l)(PM, s0, f) =

∫
supp(fX)

g(BT s0 +BTPMx)lfX(s0 +PMx)dx (A.15)

= t(l)(V, s0, f)

∫
supp(fX)∩Rp−q

dr2.

Therefore t̃(l)(PM, s0, f)/t̃
(0)(PM, s0, f) = t(l)(V, s0, f)/t

(0)(V, s0, f) and
μl(·, s0, f) in (A.4) can also be viewed as a function from Gr(p, q) to R.

Proof of Theorem 3.1. Under assumptions (E.1), (E.2), and (E.3), (3.2) is well
defined and continuous by arguments analogous to those in the proof of Theo-
rem A.2. Therefore (3.4) exists as a minimizer of a continuous function over the
compact set S(p, q).
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To show SY |X = span{Vq}⊥, let S̃ 
= SY |X with dim(S̃) = dim(SY |X) = k.

Also, let Z ∈ Rp×(p−k) be an orthonormal base of S̃⊥. Suppose LF (Z) =
minV ∈S(p,p−k) LF (V). By (A.7) and (A.8) in Theorem A.2, L∗(V, ft), consid-

ered as a function from Rp×(p−kt), is minimized by an orthonormal base of
S⊥
E(ft(Y )|X) with p − kt elements, where kt = dim(SE(ft(Y )|X)) ≤ k. By (E.1),

SE(ft(Y )|X) ⊆ SY |X = span{B}. As in the proof of Theorem A.2, we obtain that

L∗(V, ft), as a function from Rp×(p−k), is minimized by an orthonormal base
U ∈ Rp×(p−k) of span{B}⊥.

Since S̃ = span{Z} 
= span{U} = SY |X, we can rearrange the bases U =
(U1,U2) and Z = (Z1,Z2) such that span{U1} = span{Z1} and span{U2} 
=
span{Z2}. Since F characterizes SY |X, the set A = {t ∈ ΩT : span{U2} ⊆
SE(ft(Y )|X)} is non empty and by (E.3) A is not a null set with respect to the
probability measure FT .

Thus,

min
V ∈S(p,p−k)

LF (V) = LF (Z) = Et∼FT
(L∗(Z, ft))

=

∫
A

L∗(Z, ft)︸ ︷︷ ︸
>L∗(U,ft)

dFT (t) +

∫
Ac

L∗(Z, ft)︸ ︷︷ ︸
=L∗(U,ft)

dFT (t) > Et∼FT
(L∗(U, ft)) ,

which contradicts our assumption that LF (Z) = minV ∈S(p,p−k) LF (V).

Appendix B

Next we introduce notation and auxiliary lemmas for the proof of Theorem 5.1.
We suppose all assumptions of Theorem 5.1 hold. We generically use the letter
“C” to denote constants.

Suppose f is an arbitrary element of F and let

Ỹi = f(Yi) = g(B̃TXi) + ε̃i (B.1)

with span{B̃} = S
E(Ỹ |X) = SE(f(Y )|X). Condition (E.4) yields that g is twice

continuously differentiable, and E(|Ỹ |8) < ∞. Since f is fixed, we suppress it in
t(l)(V, s0, f) and h̃(V, s0, f), so that

t(l)n (V, s0, f) = t(l)n (V, s0) =
1

nh
(p−q)/2
n

n∑
i=1

K

(
di(V, s0)

hn

)
Ỹ l
i , (B.2)

which is the sample version of (A.5) for l = 0, 1, 2. Eqn. (4.3) can be expressed
as

ȳl(V, s0) =
t
(l)
n (V, s0)

t
(0)
n (V, s0)

, (B.3)
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Lemma 2. Assume (E.2) and (K.1) hold. For a continuous function g, we let

Zn(V, s0) =
(∑

i g(Xi)
lK(di(V, s0)/hn)

)
/(nh

(p−q)/2
n ). Then,

E (Zn(V, s0)) =

∫
supp(fX)∩Rp−q

K(‖r2‖2)
∫
supp(fX)∩Rq

g̃(r1, h
1/2
n r2)dr1dr2

where g̃(r1, r2) = g(s0+Vr1+Ur2)
lfX(s0+Vr1+Ur2), x = s0+Vr1+Ur2

in (A.1).

Proof of Lemma 2. By (A.1), ‖PU(x− s0)‖2 = ‖Ur2‖2 = ‖r2‖2. Further

E (Zn(V, s0)) =
1

h
(p−q)/2
n

∫
supp(fX)

g(x)lK(‖PU(x− s0)/h
1/2
n ‖2)fX(x)dx

=
1

h
(p−q)/2
n

∫
supp(fX)∩Rp−q

∫
supp(fX)∩Rq

g(s0 +Vr1 +Ur2)
lK(‖r2/h1/2

n ‖2)×

fX(s0 +Vr1 +Ur2)dr1dr2

=

∫
supp(fX)∩Rp−q

K(‖r2‖2)
∫
supp(fX)∩Rq

g(s0 +Vr1 + h1/2
n Ur2)

l

×fX(s0 +Vr1 + h1/2
n Ur2)dr1dr2,

where the substitution r̃2 = r2/h
1/2
n , dr2 = h

(p−q)/2
n dr̃2 was used to obtain the

last equality.

Lemma 3. Assume (E.1), (E.2), (E.3), (E.4), (H.1) and (K.1) hold. Then,
there exists a constant C > 0, such that

Var
(
nh(p−q)/2

n t(l)n (V, s0, f)
)
≤ nh(p−q)/2

n C

for n > n� and t
(l)
n (V, s0), l = 0, 1, 2, in (B.2).

Proof of Lemma 3. Since a continuous function attains a finite maximum over
a compact set, supx∈supp(fX) |g(B̃Tx)| < ∞. Therefore,

|Ỹi| ≤ |g(B̃TXi)|+ |ε̃i| ≤ sup
x∈supp(fX)

|g(B̃Tx)|+ |ε̃i| = C + |ε̃i|

and |Ỹi|2l ≤
∑2l

u=0

(
2l
u

)
Cu|ε̃i|2l−u. Since (Ỹi,Xi) are i.i.d.,

Var
(
nh(p−q)/2

n t(l)n (V, s0, f)
)
= nVar

(
Ỹ lK

(
di(V, s0)

hn

))
≤ nE

(
Ỹ 2lK2

(
di(V, s0)

hn

))
= nE

(
|Ỹ |2lK2

(
di(V, s0)

hn

))
≤ n

2l∑
u=0

(
2l

u

)
CuE

(
|ε̃i|2l−uK2

(
di(V, s0)

hn

))
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= n

2l∑
u=0

(
2l

u

)
CuE

(
E(|ε̃i|2l−u | Xi)K

2

(
di(V, s0)

hn

))
(B.4)

for l = 0, 1, 2. Let E(|ε̃i|2l−u | Xi) = g2l−u(Xi) for a continuous (by assumption)
function g2l−u(·) with finite moments for l = 0, 1, 2 by the compactness of
supp(fX). Using Lemma 2 with

Zn(V, s0) =
1

nh
(p−q)/2
n

∑
i

g2l−u(Xi)K
2 (di(V, s0)/hn) ,

where K2(·) fulfills (K.1), we calculate

E

(
E(|ε̃i|2l−u | Xi)K

2

(
di(V, s0)

hn

))
= h(p−q)/2

n E(Zn(V, s0))

= h(p−q)/2
n

∫
supp(fX)∩Rp−q

K2(‖r2‖2)×∫
supp(fX)∩Rq

g2l−u(s0 +Vr1 + h1/2
n Ur2)fX(s0 +Vr1 + h1/2

n Ur2)dr1dr2

(B.5)

≤ h(p−q)/2
n C

since all integrands in (B.5) are continuous and over compact sets by (E.2) and
the continuity of g2l−u(·) and K(·), so that the integral can be upper bounded
by a finite constant C. Inserting (B.5) into (B.4) yields

Var
(
nh(p−q)/2

n t(l)n (V, s0, f)
)
≤ nh(p−q)/2

n

2l∑
u=0

(
2l

u

)
CuC︸ ︷︷ ︸

=C

= nh(p−q)/2
n C (B.6)

In Lemma 4 we show that di(V, s0) in (4.1) is Lipschitz in its inputs under
assumption (E.2).

Lemma 4. Under assumption (E.2) there exists a constant 0 < C2 < ∞ such
that for all δ > 0 and V,Vj ∈ S(p, q) with ‖PV − PVj‖ < δ and for all
s0, sj ∈ supp(fX) ⊂ Rp with ‖s0 − sj‖ < δ,

|di(V, s0)− di(Vj , sj)| ≤ C2δ

for di(V, s0) given by (4.1)

Proof of Lemma 4.

|di(V, s0)− di(Vj , sj)| ≤
∣∣‖Xi − s0‖2 − ‖Xi − sj‖2

∣∣+∣∣〈Xi − s0,PV(Xi − s0)〉 − 〈Xi − sj ,PVj (Xi − sj)〉
∣∣ = I1 + I2 (B.7)
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where 〈·, ·〉 is the scalar product in Rp. We bound the first term on the right
hand side of (B.7) as follows using ‖Xi‖ ≤ supz∈supp(fX) ‖z‖ = C1 < ∞ with
probability 1 by (E.2).

I1 =
∣∣‖Xi − s0‖2 − ‖Xi − sj‖2

∣∣ ≤ 2 |〈Xi, s0 − sj〉|+
∣∣‖s0‖2 − ‖sj‖2

∣∣
≤ 2‖Xi‖‖s0 − sj‖+ 2C1‖s0 − sj‖ ≤ 2C1δ + 2C1δ = 4C1δ

by Cauchy-Schwartz and the reverse triangular inequality for which∣∣‖s0‖2 − ‖sj‖2
∣∣ = |‖s0‖ − ‖sj‖| (‖s0‖+ ‖sj‖) ≤ ‖s0 − sj‖2C1. The second term

in (B.7) satisfies

I2 ≤
∣∣〈Xi, (PV −PVj )Xi〉

∣∣
+2
∣∣〈Xi,PVs0 −PVjsj〉

∣∣+ ∣∣〈s0,PVs0〉 − 〈sj ,PVjsj〉
∣∣

≤ ‖Xi‖2‖PV −PVj‖+ 2‖Xi‖
∥∥PV(s0 − sj) + (PV −PVj )sj

∥∥
+ |〈s0 − sj ,PVs0〉|+

∣∣〈sj ,PVs0 −PVjsj〉
∣∣

≤ C2
1δ + 2C1(δ + C1δ) + C1δ + C1(δ + C1δ) = 4C1δ + 4C2

1δ

Collecting all constants into C2 (i.e. C2 = 8C1 + 4C2
1 ) yields the result.

To show Theorems 5.1 and 5, we use the Bernstein inequality [3]. Let
{Zi, i = 1, 2, . . .}, be an independent sequence of bounded random variables
with |Zi| ≤ b. Let Sn =

∑n
i=1 Zi, En = E(Sn) and Vn = Var(Sn). Then,

P (|Sn − En| > t) < 2 exp

(
− t2/2

Vn + bt/3

)
(B.8)

Assumption (K.2) yields

|K(u)−K(u′)| ≤ K∗(u′)δ (B.9)

for all u, u′ with |u−u′| < δ ≤ L2 and K∗(·) is a bounded and integrable kernel
function [see [14]]. Specifically, if condition (1) of (K.2) holds, then K∗(u) =
L11{|u|≤2L2}. If condition (2) holds, then K∗(u) = L11{|u|≤2L2}+1{|u|>2L2}|u−
L2|−ν .

Let A = S(p, q)× supp(fX). In Lemma 5 and 6 we show that (B.2) converges
uniformly in probability to (A.5) by showing that the variance and bias terms
vanish uniformly in probability, respectively.

Lemma 5. Under the assumptions of Theorem 5.1,

sup
V×s0∈A

∣∣∣t(l)n (V, s0)− E
(
t(l)n (V, s0)

)∣∣∣ = OP (an), l = 0, 1, 2 (B.10)

Proof of Lemma 5. The proof proceeds in 3 steps: (i) truncation, (ii) discretiza-
tion by covering A = S(p, q) × supp(fX), and (iii) application of Bernstein’s
inequality (B.8). If the function f in (B.1) is bounded, the truncation step and

the assumption an/h
(p−q)/2
n = O(1) are not needed.
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(i) We let τn = a−1
n and truncate Ỹ l

i by τn as follows. We let

t
(l)
n,trc(V, s0) = (1/nh(p−q)/2

n )
∑
i

K(‖PU(Xi − s0)‖2/hn)Ỹ
l
i 1{|Ỹi|l≤τn} (B.11)

be the truncated version of (B.2) and R̃
(l)
n = (1/nh

(p−q)/2
n )

∑
i |Ỹi|l1{|Ỹi|l>τn}

be the remainder of (B.2). Therefore R
(l)
n (V, s0) = t

(l)
n (V, s0) − t

(l)
n,trc(V, s0) ≤

M1R̃
(l)
n due to (K.1) and

sup
V×s0∈A

∣∣∣t(l)n (V, s0)− E
(
t(l)n (V, s0)

)∣∣∣ ≤ M1(R̃
(l)
n + ER̃(l)

n )

+ sup
V×s0∈A

∣∣∣t(l)n,trc(V, s0)− E
(
t
(l)
n,trc(V, s0)

)∣∣∣
(B.12)

By Cauchy-Schwartz and the Markov inequality, P(|Z| > t) = P(Z4 > t4) ≤
E(Z4)/t4, we obtain

ER̃(l)
n =

1

h
(p−q)/2
n

E
(
|Ỹi|l1{|Ỹi|l>τn}

)
≤ 1

h
(p−q)/2
n

√
E(|Ỹi|2l)

√
P(|Ỹi|l > τn)

≤ 1

h
(p−q)/2
n

√
E(|Ỹi|2l)

(
E(|Ỹi|4l)

a−4
n

)1/2

= o(an), (B.13)

where the last equality uses the assumption an/h
(p−q)/2
n = O(1) and the expec-

tations are finite due to (E.4) for l = 0, 1, 2. No truncation is needed for l = 0
or if Ỹi = f(Yi) ≤ supf∈F |f(Yi)| < C < ∞.

Therefore, the first two terms of the right hand side of (B.12) converge to
0 with rate an by (B.13) and Markov’s inequality. From this point on, Ỹi will
denote the truncated version Ỹi1{|Ỹi|≤τn} and we do not distinguish the trun-

cated from the untruncated tn(V, s0) since this truncation results in an error of
magnitude an.

(ii) For the discretization step we cover the compact set A = S(p, q) ×
supp(fX) by finitely many balls, which is possible by (E.2) and the compactness
of S(p, q). Let δn = anhn and Aj = {V : ‖PV−PVj‖ ≤ δn}×{s : ‖s−sj‖ ≤ δn}
be a cover of A with ball centers Vj × sj . Then, A ⊂

⋃N
j=1 Aj and the number

of balls can be bounded by N ≤ C δ−d
n δ−p

n for some constant C ∈ (0,∞), where
d = dim(S(p, q)) = pq − q(q + 1)/2. Let V × s0 ∈ Aj . Then by Lemma 4 there
exists 0 < C2 < ∞, such that

|di(V, s0)− di(Vj , sj)| ≤ C2δn (B.14)

for di in (4.1). Under (K.2), which implies (B.9), inequality (B.14) yields∣∣∣∣K (di(V, s0)

hn

)
−K

(
di(Vj , sj)

hn

)∣∣∣∣ ≤ K∗
(
di(Vj , sj)

hn

)
C2an (B.15)

for V × s0 ∈ Aj and K∗(·) an integrable and bounded function.
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Define r
(l)
n (Vj , sj) = (1/nh

(p−q)/2
n )

∑n
i=1 K

∗(di(Vj , sj)/hn)|Ỹi|l. For nota-
tional convenience we next drop the dependence on l and j and observe that
(B.15) yields

|t(l)n (V, s0)− t(l)n (Vj , sj)| ≤ C2anr
(l)
n (Vj , sj) (B.16)

Since K∗ fulfills (K.1) except for continuity, an analogous argument as in the

proof of Lemma 2 yields that E
(
r
(l)
n (Vj , sj)

)
< ∞. By subtracting and adding

t
(l)
n (Vj , sj), E(t

(l)
n (Vj , sj)), the triangular inequality, (B.16) and integrability of

rln, we obtain∣∣∣t(l)n (V, s0)− E
(
t(l)n (V, s0)

)∣∣∣ ≤ ∣∣∣t(l)n (V, s0)− t(l)n (Vj , sj)
∣∣∣

+
∣∣∣E(t(l)n (Vj , sj)− t(l)n (V, s0)

)∣∣∣+ ∣∣∣t(l)n (Vj , sj)− E
(
t(l)n (Vj , sj)

)∣∣∣
≤ C2an (|rn|+ |E (rn) |) +

∣∣∣t(l)n (Vj , sj)− E
(
t(l)n (Vj , sj)

)∣∣∣
≤ C2an(|rn − E(rn)|+ 2|E(rn)|) +

∣∣∣t(l)n (Vj , sj)− E
(
t(l)n (Vj , sj)

)∣∣∣
≤ 2C3an + |rn − E(rn)|+

∣∣∣t(l)n (Vj , sj)− E
(
t(l)n (Vj , sj)

)∣∣∣ (B.17)

for any constant C3 > C2E(r
(l)
n (Vj , sj)) and n such that C2an ≤ 1, since a2n =

o(1), which in turn yields that there exists 0 < C3 < ∞ such that (B.17) holds.

Since supx∈A f(x) = max1≤j≤N supx∈Aj
f(x) ≤

∑N
j=1 supx∈Aj

f(x) for any
cover of A and continuous function f ,

P

(
sup

V×s0∈A
|t(l)n (V, s0)− E

(
t(l)n (V, s0)

)
| > 3C3an

)

≤
N∑
j=1

P

(
sup

V×s0∈Aj

|t(l)n (V, s0)− E
(
t(l)n (V, s0)

)
| > 3C3an

)

≤ N max
1≤j≤N

P

(
sup

V×s0∈Aj

|t(l)n (V, s0)− E
(
t(l)n (V, s0)

)
| > 3C3an

)
(B.18)

≤ N

(
max

1≤j≤N
P
(
|t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)
| > C3an

)
(B.19)

+ max
1≤j≤N

P(|rn − E(rn)| > C3an)

)
≤

C δ−(d+p)

(
max

1≤j≤N
P
(
|t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)
| > C3an

)
(B.20)

+ max
1≤j≤N

P(|rn − E(rn)| > C3an)

)

by the subadditivity of probability for the first inequality and (B.17) for the
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third inequality above, where the last inequality is due to N ≤ C δ−d
n δ−p

n for a
cover of A.

Finally, we bound the first and second term in the last line of (B.18) by
the Bernstein inequality (B.8). For the first term in the last line of (B.18), let

Zi = Y l
i K(di(Vj , sj)/hn) and Sn =

∑
i Zi = nh

(p−q)/2
n t

(l)
n (Vj , sj). Then, Zi are

independent with |Zi| ≤ b = M1τn = M1/an by (K.1) and the truncation step

(i). For Vn = Var(Sn), Lemma 3 yields nh
(p−q)/2
n C ≥ Vn with C > 0, and set

t = C3annh
(p−q)/2
n . The Bernstein inequality (B.8) yields

P
(∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣ > C3an

)
< 2 exp

(
−t2/2

Vn + bt/3

)
≤

2 exp

(
− (1/2)C2

3a
2
nn

2h
(p−q)
n

nh
(p−q)/2
n C + (1/3)M1τnC3annh

(p−q)/2
n )

)

≤ 2 exp

(
− (1/2)C3 log(n)

C/C3 +M1/3

)
= 2n−γ(C3)

where a2n = log(n)/(nh
(p−q)/2
n ) and γ(C3) = C3 (2(C/C3 +M1/3))

−1
that is an

increasing function that can be made arbitrarily large by increasing C3.
For the second term in the last line of (B.18), set Zi = Y l

i K
∗(di(Vj , sj)/hn)

in (B.8) and proceed similarly to obtain

P
(∣∣∣r(l)n (Vj , sj)− E

(
r(l)n (Vj , sj)

)∣∣∣ > C3an

)
< 2n

− (1/2)C3
C/C3+(1/3)M2 = 2n−γ(C3)

By (H.1), h
(p−q)/4
n ≤ 1 for n large and (H.2) implies 1/(nh

(p−q)/2
n ) ≤ 1 for n

large, therefore h−1
n ≤ n2/(p−q) ≤ n2 since p − q ≥ 1. Then, δ−1

n = (anhn)
−1 ≤

n1/2h−1
n h

(p−q)/4
n ≤ n5/2. Therefore, (B.18) is smaller than 4C δ

−(d+p)
n n−γ(C3) ≤

4Cn5(d+p)/2−γ(C3). For C3 large enough, we have 5(d + p)/2 − γ(C3) < 0 and
n5(d+p)/2−γ(C3) → 0. This completes the proof.

If we assume |Ỹi| < M2 < ∞ almost surely, the requirement an/h
(p−q)/2
n =

O(1) for the bandwidth can be dropped and the truncation step of the proof of
Lemma 5 is no longer necessary.

Lemma 6. Under (E.1), (E.2), (E.3), (E.4), (H.1), (K.1), and
∫
Rp−q K(‖r2‖2)

dr2 = 1,

sup
V×s0∈A

∣∣∣t(l)(V, s0) + 1{l=2}h̃(V, s0)− E
(
t(l)n (V, s0)

)∣∣∣ = O(hn), l = 0, 1, 2

(B.21)
where t(l)(V, s0) and h̃(V, s0) are defined in Theorem A.2.

Proof of Lemma 6. Let g̃(r1, r2) = g(B̃T s0 + B̃TVr1 + B̃TUr2)
lfX(s0 +Vr1 +

Ur2), where r1, r2 satisfy the orthogonal decomposition (A.1).

E
(
t(0)n (V, s0)

)
= E (K(di(V, s0)/hn)) /h

(p−q)/2
n
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E(t(1)n (V, s0)) = E
(
K(di(V, s0)/hn)g(B̃

TXi)
)
/h(p−q)/2

n

+ E

⎛⎝K(di(V, s0)/hn)E(ε̃i | X)︸ ︷︷ ︸
=0

⎞⎠ /h(p−q)/2
n

E(t(2)n (V, s0)) = E
(
K(di(V, s0)/hn)g(B̃

TXi)
2
)
/h(p−q)/2

n

+ 2E

⎛⎝K(di(V, s0)/hn)E(ε̃i | X)︸ ︷︷ ︸
=0

⎞⎠ /h(p−q)/2
n

+ E

⎛⎜⎝K(di(V, s0)/hn)E(ε̃
2
i | X)︸ ︷︷ ︸

=h(Xi)

⎞⎟⎠ /h(p−q)/2
n

Then

E
(
t(l)n (V, s0)

)
=

∫
Rp−q

K(‖r2‖2)
∫
Rp

g̃(r1, hn
1/2r2)dr1dr2 (B.22)

holds by Lemma 2 for l = 0, 1. For l = 2, Ỹ 2
i = g2i +2giεi+ε2i with gi = g(B̃TXi)

and can be handled as in the case of l = 0, 1. Plugging in (B.22) the second

order Taylor expansion for some ξ in the neighborhood of 0, g̃(r1, hn
1/2r2) =

g̃(r1, 0) + hn
1/2∇r2 g̃(r1, 0)

T r2 + hnr
T
2 ∇2

r2 g̃(r1, ξ)r2, yields

E
(
t(l)n (V, s0)

)
=

∫
Rq

g̃(r1, 0)dr1

+
√

hn

(∫
Rq

∇r2 g̃(r1, 0)dr1

)T ∫
Rp−q

K(‖r2‖2)r2dr2+

hn
1

2

∫
Rp−q

K(‖r2‖2)
∫
Rp

rT2 ∇2
r2 g̃(r1, ξ)r2dr1dr2 = t(l)(V, s0) + hn

1

2
R(V, s0)

since
∫
Rq g̃(r1, 0)dr1 = t(l)(V, s0) and

∫
Rp−q K(‖r2‖2)r2dr2 = 0 ∈ Rp−q due to

K(‖ · ‖2) being even. Let R(V, s0) =
∫
Rp−q K(‖r2‖2)

∫
Rp r

T
2 ∇2

r2 g̃(r1, ξ)r2dr1dr2.
By (E.4) and (E.2), |rT2 ∇2

r2 g̃(r1, ξ)r2| ≤ C‖r2‖2 for C = supx,y ‖∇2
r2 g̃(x,y)‖ <

∞, since a continuous function over a compact set is bounded. Then, R(V, s0) ≤
CC4

∫
Rp−q K(‖r2‖2)‖r2‖2dr2 < ∞ for some C4 > 0, since the integral over r1 is

over a compact set by (E.2).

Lemma 7 follows directly from Lemmas 5 and 6 and the triangle inequality.

Lemma 7. Suppose (E.1), (E.2), (E.3), (E.4), (K.1), (K.2), (H.1) hold. If

a2n = log(n)/nh
(p−q)/2
n = o(1), and an/h

(p−q)/2
n = O(1), then for l = 0, 1, 2

sup
V×s0∈A

∣∣∣t(l)(V, s0) + 1{l=2}h̃(V, s0)− t(l)n (V, s0)
∣∣∣ = OP (an + hn)
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Theorem B.1. Suppose (E.1), (E.2), (E.3), (E.4), (K.1), (K.2), (H.1) hold.

Let a2n = log(n)/nh
(p−q)/2
n = o(1), an/h

(p−q)/2
n = O(1), then

sup
V×s0∈A

∣∣∣ȳl(V, s0)− μl(V, s0)− 1{l=2}h̃(V, s0)
∣∣∣ = oP (1), l = 0, 1, 2

and
sup

V×s0∈A

∣∣∣L̃n(V, s0)− L̃(V, s0)
∣∣∣ = oP (1) (B.23)

where ȳl(V, s0), μl(V, s0), L̃n(V, s0) and L̃(V, s0) are defined in (4.3), (A.4),
(4.4) and (A.3), respectively.

Proof of Theorem B.1. Let δn = infV×s0∈An t(0)(V, s0), where t
(0)(V, s0) is de-

fined in (A.5), and An = S(p, q) × {x ∈ supp(fX) : |x − ∂supp(fX)| ≥ bn},
where ∂C denotes the boundary of the set C and |x−C| = infr∈C |x− r|, for a
sequence bn → 0 so that δ−1

n (an + hn) → 0 for any bandwidth hn that satisfies
the assumptions. Then,

ȳl(V, s0) =
t
(l)
n (V, s0)

t
(0)
n (V, s0)

=
t
(l)
n (V, s0)/t

(0)(V, s0)

t
(0)
n (V, s0)/t(0)(V, s0)

(B.24)

We consider the numerator and enumerator of (B.24) separately. By Lemma 7

sup
V×s0∈An

∣∣∣∣∣ t(0)n (V, s0)

t(0)(V, s0)
− 1

∣∣∣∣∣ ≤ supA |t(0)n (V, s0)− t(0)(V, s0)|
infAn t(0)(V, s0)

= OP (δ
−1
n (an + hn))

sup
V×s0∈An

∣∣∣∣∣ t(l)n (V, s0)

t(0)(V, s0)
− μl(V, s0)

∣∣∣∣∣ ≤ supA |t(l)n (V, s0)− t(l)(V, s0)|
infAn t(0)(V, s0)

= OP (δ
−1
n (an + hn)),

and therefore by An ↑ A = S(p, q)× supp(fX),

lim
n→∞

sup
V×s0∈An

∣∣∣∣∣ t(l)n (V, s0)

t(0)(V, s0)
− μl(V, s0)

∣∣∣∣∣ = lim
n→∞

sup
V×s0∈A

∣∣∣∣∣ t(l)n (V, s0)

t(0)(V, s0)
− μl(V, s0)

∣∣∣∣∣
Substituting in (B.24), we obtain

ȳl(V, s0) =
t
(l)
n (V, s0)/t

(0)(V, s0)

t
(0)
n (V, s0)/t(0)(V, s0)

=
μl +OP (δ

−1
n (an + hn))

1 +OP (δ
−1
n (an + hn))

= μl +OP (δ
−1
n (an + hn)).

For l = 2, Ỹ 2
i = g(B̃TXi)

2+2g(B̃TXi)ε̃i+ ε̃2i , and (B.23) follows from (A.3).

Lemma 8. Under (E.1), (E.2), (E.4), there exists 0 < C5 < ∞ such that

|μl(V, s0)− μl(Vj , s0)| ≤ C5‖PV −PVj‖ (B.25)

for all interior points s0 ∈ supp(fX)
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Proof. From the representation t̃(l)(PV, s0) in (A.15) instead of t(l)(V, s0), we
consider μl(V, s0) = μl(PV, s0) as a function on the Grassmann manifold since
PV ∈ Gr(p, q). Then,

∣∣μl(PV, s0)− μl(PVj , s0)
∣∣ = ∣∣∣∣∣ t̃(l)(PV, s0)

t̃(0)(PV, s0)
−

t̃(l)(PVj , s0)

t̃(0)(PVj , s0)

∣∣∣∣∣
≤ sup |t̃(0)(PV, s0)|

(inf t̃(0)(PV, s0))2

∣∣∣t̃(l)(PV, s0)− t̃(l)(PVj , s0)
∣∣∣

+
sup t̃(l)(PV, s0)

(inf t̃(0)(PV, s0))2

∣∣∣t̃(0)(PV, s0)− t̃(0)(PVj , s0)
∣∣∣

(B.26)

with supPV∈Gr(p,q) t̃
(0)(PV, s0) ∈ (0,∞) and infPV∈Gr(p,q) t̃

(0)(PV, s0) ∈ (0,∞)

since t̃(l) is continuous, Σx > 0 and s0 ∈ supp(fX) an interior point.

By (E.2) and (E.4), g̃(x) = g(B̃Tx)fX(x) is twice continuous differentiable
and therefore Lipschitz continuous on compact sets. We denote its Lipschitz
constant by L < ∞. Therefore,∣∣∣t̃(l)(PV, s0)− t̃(l)(PVj , s0)

∣∣∣ ≤ ∫
supp(fX)

∣∣g̃(s0 +PVr)− g̃(s0 +PVjr)
∣∣ dr

≤ L

∫
supp(fX)

‖(PV −PVj )r‖dr ≤ L

(∫
supp(fX)

‖r‖dr
)
‖PV −PVj‖ (B.27)

where the last inequality is due to the sub-multiplicativity of the Frobenius norm
and the integral being finite by (E.2). Plugging (B.27) in (B.26) and collecting
all constants into C5 yields (B.25).

Proof of Theorem 5.1. By (4.5) and (3.2),

|L∗
n(V, f)− L∗(V, f)| ≤

∣∣∣∣∣ 1n∑
i

(
L̃n(V,Xi, f)− L̃(V,Xi, f)

)∣∣∣∣∣
+

∣∣∣∣∣ 1n∑
i

(
L̃(V,Xi, f)− E(L̃(V,X, f))

)∣∣∣∣∣ (B.28)

By Theorem B.1,∣∣∣∣∣ 1n∑
i

L̃n(V,Xi, f)− L̃(V,Xi, f)

∣∣∣∣∣ ≤ sup
V×s0∈A

∣∣∣L̃n(V, s0, f)− L̃(V, s0, f)
∣∣∣

= oP (1)

The second term in (B.28) converges to 0 almost surely for all V ∈ S(p, q)
by the strong law of large numbers. In order to show uniform convergence the
same technique as in the proof of Theorem 5 is used. Let Bj = {V ∈ S(p, q) :
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‖VVT − VjV
T
j ‖ ≤ ãn} be a cover of S(p, q) ⊂

⋃N
j=1 Bj with N ≤ C ã−d

n =

C (n/ log(n))d/2 ≤ C nd/2, where d = dim(S(p, q)) is defined in the proof of
Theorem 5. By Lemma 8,

|μl(V,Xi)− μl(Vj ,Xi)| ≤ C5‖PV −PVj‖ (B.29)

Let Gn(V, f) =
∑

i L̃(V,Xi, f)/n with E(Gn(V )) = L∗(V, f). Using (B.29)
and following the same steps as in the proof of Lemma 5 we obtain

|Gn(V, f)− L∗(V, f)| ≤ |Gn(V, f)−Gn(Vj , f)|
+ |Gn(Vj , f)− L∗(Vj , f)|+ |L∗(V, f)− L∗(Vj , f)|
≤ 2C6ãn + |Gn(Vj , f)− L∗(Vj , f)| (B.30)

for V ∈ Bj and some C6 > C5. Inequality (B.30) leads to

P

(
sup

V∈S(p,q)

|Gn(V, f)− L∗(V, f)| > 3C6ãn

)
≤ C N P( sup

V∈Bj

|Gn(V, f)− L∗(V, f)| > 3C6ãn)

≤ C nd/2P(|Gn(Vj , f)− L∗(Vj , f)| > C6ãn)

≤ C nd/2n−γ(C6) → 0 (B.31)

where the last inequality in (B.31) is due to (B.8) with Zi = L̃(Vj ,Xi, f), which
is bounded since (·, ·, f) is continuous on the compact set A, and γ(C6) a mono-
tone increasing function of C6 that can be made arbitrarily large by choosing
C6 accordingly. Therefore, supV∈S(p,q) |L∗

n(V, f)− L∗(V, f)| ≤ oP (1)+OP (ãn)
which implies Theorem 5.1.

Proof of Theorem 5.2. We apply [2, Thm 4.1.1] to obtain consistency of the
conditional variance estimator. This theorem requires three conditions that
guarantee the convergence of the minimizer of a sequence of random func-
tions L∗

n(PV, ft) to the minimizer of the limiting function L∗(PV, ft); i.e.,
Pspan{B̂t

kt
}⊥ = argminL∗

n(PV, f) → Pspan{B}⊥ = argminL∗(PV, ft) in proba-

bility. To apply the theorem three conditions have to be met: (1) The parameter
space is compact; (2) L∗

n(PV, ft) is continuous in PV and a measurable func-
tion of the data (Yi,X

T
i )i=1,...,n, and (3) L∗

n(PV, ft) converges uniformly to
L∗(PV, ft) and L∗(PV, ft) attains a unique global minimum at S⊥

E(ft(Y )|X).

Since L∗
n(V, ft) depends on V only through PV = VVT , L∗

n(V, ft) can be
considered as functions on the Grassmann manifold, which is compact, and the
same holds true for L∗(V, ft) by (A.15). Further, L∗

n(V, ft) is by definition
a measurable function of the data and continuous in V if a continuous kernel,
such as the Gaussian, is used. Theorem 5.1 obtains the uniform convergence and
Theorem A.2 that the minimizer is unique when L(V) is minimized over the

Grassmann manifold G(p, q), since SE(ft(Y )|X) = span{B̃} is uniquely identifi-

able and so is span{B̃}⊥ (i.e. ‖Pspan{B̂t
kt

}−Pspan{B̃}‖ = ‖B̂t
kt
(B̂t

kt
)T −B̃B̃T ‖ =
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‖(Ip−B̃B̃T )−(Ip−B̂t
kt
(B̂t

kt
)T )‖ = ‖Pspan{B̃}⊥ −Pspan{B̂t

kt
}⊥‖). Thus, all three

conditions are met and the result is obtained.

Proof of Theorem 5.3. Let (tj)j=1,...,mn be an i.i.d. sample from FT and write

|Ln,F (V)− LF (V)| =

∣∣∣∣∣∣ 1

mn

mn∑
j=1

(
L∗
n(V, ftj )− L∗(V, ftj )

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

mn

mn∑
j=1

(
L∗(V, ftj )− Et∼FT

(L∗(V, ft)
)∣∣∣∣∣∣ (B.32)

Then, supV∈S(p,q) |L∗
n(V, ft)− L∗(V, ft)| ≤ 8M2, by the triangle inequality and

the assumption that supt∈ΩT
|ft(Y )| < M < ∞. That is, L∗

n(V, ft) estimates a
variance of a bounded response ft(Y ) ∈ [−M,M ] and is therefore bounded by
the squared range 4M2 of ft(Y ). The same holds true for L∗(V, ft). Further,
8M2 is an integrable dominant function so that Fatou’s Lemma applies.

Consider the first term on the right hand side of (B.32) and let δ > 0. By
Markov’s and triangle inequalities and Fatou’s Lemma,

lim sup
n

P

⎛⎝ sup
V∈S(p,q)

∣∣∣∣∣∣ 1

mn

mn∑
j=1

L∗
n(V, ftj )− L∗(V, ftj )

∣∣∣∣∣∣ > δ

⎞⎠
≤ 1

δ
lim sup

n
EFT

⎛⎝E( sup
V∈S(p,q)

∣∣∣∣∣∣ 1

mn

mn∑
j=1

L∗
n(V, ftj )− L∗(V, ftj )

∣∣∣∣∣∣
⎞⎠

≤ 1

δ
lim sup

n
EFT

⎛⎝ 1

mn

mn∑
j=1

E( sup
V∈S(p,q)

|L∗
n(V, ftj )− L∗(V, ftj )|

⎞⎠
=

1

δ
lim sup

n
EFT

(
E( sup

V∈S(p,q)

|L∗
n(V, ftj )− L∗(V, ftj )|)

)

≤ 1

δ
EFT

(
E(lim sup

n
sup

V∈S(p,q)

|L∗
n(V, ftj )− L∗(V, ftj )|

)
=

1

δ
Et∼FT

(E(0)) = 0

since by Theorem 5.1 it holds lim supn supV∈S(p,q) |L∗
n(V, ftj )−L∗(V, ftj )| = 0.

The first inequality results from applying the Markov inequality.
For the second term on the right hand side of (B.32) we apply Theorem 2 of

[17] in [23, p. 40]:

Theorem B.2. Let tj be an i.i.d. sample and L∗(V, ft) : Θ × ΩT → R where
Θ is a compact subset of an euclidean space. L∗(V, ft) is continuous in V and
measurable in t by Theorem A.2. If L∗(V, ftj ) ≤ h(tj), where h(tj) is integrable
with respect to FT , then

1

mn

mn∑
j=1

L∗(V, ftj ) −→ EFT
(L∗(V, ft)) uniformly over V ∈ Θ a.s. as n → ∞
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Here V ∈ S(p, q) = Θ ⊆ Rpq, by supt∈ΩT
|ft(Y )| < M < ∞ and an analogous

argument as for the first term in (B.32), Zj(V) = L∗(V, ftj ) < 4M2. Therefore,
E(supV∈S(p,q) |Zj(V)|) < 4M2, which is integrable. Further, since tj are an
i.i.d. sample from FT , Zj(V) is a i.i.d. sequence of random variables, Zj(V) is
continuous in V by Theorem A.2 and the parameter space S(p, q) is compact.
Then by Theorem B.2,

sup
V∈S(p,q)

∣∣∣∣∣∣ 1

mn

mn∑
j=1

L∗(V, ftj )− Et∼FT
(L∗(V, ft))

∣∣∣∣∣∣ −→ 0 a.s. as n → ∞

if limn→∞ mn = ∞. Putting everything together it follows that supV∈S(p,q)

|Ln,F (V)− LF (V)| → 0 in probability as n → ∞.

Proof of Theorem 5.4. The proof is directly analogous to the proof of Theo-
rem 5.2. The uniform convergence of the target function Ln,F (V) is obtained
by Theorem 5.3. The minimizer over Gr(p, q) and its uniqueness derive from
Theorem 3.1.

Proof of Theorem 4.1. In this proof we supress the dependence on f in the nota-
tion. The Gaussian kernelK satisfies ∂zK(z) = −zK(z). From (4.2) and (4.4) we
have L̃n = ȳ2 − ȳ21 where ȳl =

∑
i wiỸ

l
i , l = 1, 2. We let Kj = K(dj(V, s0)/hn),

suppress the dependence on V and s0 and write wi = Ki/
∑

j Kj . Then,

∇Ki = (−1/h2
n)Kidi∇di and ∇wi = −

(
Kidi∇di(

∑
j Kj)−Ki

∑
j Kjdj∇dj

)
/

(hn

∑
j Kj)

2. Next,

∇ȳl = − 1

h2
n

∑
i

Ỹ l
i

Kidi∇di −Ki(
∑

j Kjdj∇dj)

(
∑

j Kj)2

= − 1

h2
n

∑
i

Ỹ l
i wi

⎛⎝di∇di −
∑
j

wjdj∇dj

⎞⎠
= − 1

h2
n

⎛⎝∑
i

Ỹ l
i widi∇di −

∑
j

Ỹ l
jwj

∑
i

widi∇di

⎞⎠
= − 1

h2
n

∑
i

(Ỹ l
i − ȳl)widi∇di (B.33)

Then, ∇L̃n = ∇ȳ2 − 2ȳ1∇ȳ1, and inserting ∇ȳl from (B.33) yields

∇L̃n = (−1/h2
n)
∑
i

(Y 2
i − ȳ2 − 2ȳ1(Yi − ȳ1))widi∇di

= (1/h2
n)

(∑
i

(
L̃n − (Yi − ȳ1)

2
)
widi∇di

)
,

since Y 2
i − ȳ2 − 2ȳ1(Yi − ȳ1) = (Yi − ȳ1)

2 − L̃n.
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