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Abstract: We consider high-dimensional multivariate linear regression
models, where the joint distribution of covariates and response variables
is a multivariate normal distribution with a bandable covariance matrix.
The main goal of this paper is to estimate the regression coefficient matrix,
which is a function of the bandable covariance matrix. Although the taper-
ing estimator of covariance has the minimax optimal convergence rate for
the class of bandable covariances, we show that it is sub-optimal for the
regression coefficient; that is, a minimax estimator for the class of bandable
covariances may not be a minimax estimator for its functionals. We propose
the blockwise tapering estimator of the regression coefficient, which has the
minimax optimal convergence rate for the regression coefficient under the
bandable covariance assumption. We also propose a Bayesian procedure
called the blockwise tapering post-processed posterior of the regression co-
efficient and show that the proposed Bayesian procedure has the minimax
optimal convergence rate for the regression coefficient under the bandable
covariance assumption. We show that the proposed methods outperform
the existing methods via numerical studies.
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1. Introduction

Consider the multivariate linear regression model

Yi = CXi + εi, i = 1, . . . , n,

where Yi ∈ R
q is a response vector, Xi ∈ R

p0 is a covariate vector, C ∈ R
q×p0

is a regression coefficient matrix, and εi ∈ R
q, i = 1, 2, . . . , n, are independent

and identically distributed error vectors from a q-dimensional distribution with
mean zero. The multivariate linear regression model has been used for various
fields of applications. For example, [36] analyzed atmospheric data using the
model to forecast PM2.5 concentration, and [29] used the model to analyze the
genomics data.

For the estimation of the multivariate linear regression coefficient C ∈ R
q×p0 ,

one of the most commonly used approaches is a penalized least square method,
which finds the minimizer of the following objective function,

f(C,Ω) = n−1trace((Y− XCT )T (Y− XCT )Ω)− log |Ω|+ P (C,Ω),

where P (C,Ω) is a penalty term, and the X ∈ R
n×p0 and Y ∈ R

n×q are defined
such that the ith row vector of X ∈ R

n×p0 (Y ∈ R
n×q) is Xi (Yi), and Ω is q× q

positive-definite matrix representing the precision matrix of the error vector in
the multivariate regression model. The penalized least square method penalizes
the objective function when the estimate C deviates from the low dimensional
structure which the true coefficient matrix C is assumed to have, and it is
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beneficial under high-dimensional settings, where p0 and q can grow to infinity
as n → ∞.

For example, as the penalty term P (C,Ω), the weighted sums of absolute
value of elements in C and Ω have been suggested in [30], [35] and [24]. These
penalty terms provide sparse estimations on the regression coefficient C and Ω.

There are also researches on the penalized estimation with the additional
rank condition rank(C) = r for r < q. For example, in [10], the coefficient C is
decomposed as CT = BAT where B ∈ R

p0×r and A ∈ R
r×q with ATA = Ir.

Then, they set the group lasso penalty on the row vectors of B to drop irrelevant
predictor variables in the regression model. [9] suggested the penalty term as
the sum of singular values of C and [33] used the penalty term on the singular
vectors of C as well as the sum of singular values of C.

Employing a covariance estimation method is another approach for the esti-
mation of the regression coefficient. The coefficient matrix C can be considered
as a function of the joint covariance matrix of the covariate vector X ∈ R

p0 and
the response vector Y ∈ R

q. Assume that Z = (XT , Y T )T ∈ R
p0+q follows a

joint distribution with a mean vector μ and a covariance matrix Σ such that

μ =

(
μX

μY

)

Σ =

(
ΣXX ΣXY

ΣY X ΣY Y

)
,

where μX ∈ R
p0 , μY ∈ R

q, ΣXX ∈ R
p0×p0 and ΣY Y ∈ R

q×q. Then, we have

(μ0,Ψ0) := (μY − ΣY XΣ−1
XXμX , ΣY XΣ−1

XX)

= argmin(μ,Ψ) E{(Y − μ−ΨX)(Y − μ−ΨX)T },

and μ0 + Ψ0x is the conditional mean of Y given X = x if Z follows the mul-
tivariate Gaussian distribution. Note that μ0 is the zero vector if we assume
that μX and μY are zero vectors. In this case, the coefficient matrix C in the
multivariate regression model corresponds to Ψ0 = ΣY XΣ−1

XX , which is a func-
tion of the covariance matrix Σ and is called the conditional mean operator .
Thus, estimators for covariance matrices can be used for the estimation of the
conditional mean operator, which can be seen as a functional of a covariance
matrix. Estimation methods for various functionals of covariance matrices have
also been investigated in the literature. [13] suggested an optimal estimator for
quadratic and lr functionals of sparse covariance matrices. [14] considered opti-
mal estimation of μTΣ−1μ, where μ is mean vector and Σ is covariance matrix,
under the sparsity assumption of Σ−1μ.

We need to consider a high-dimensional covariance estimation method when
we use a covariance estimator for the multivariate regression model under high-
dimensional settings. Suppose Z1, Z2, . . . , Zn are independent and identically
generated from a p-dimensional distribution with mean zero and covariance ma-
trix Σ. We refer to the estimation of covariance Σ as high-dimensional covariance
estimation when p is assumed to go to infinity as n −→ ∞. Since traditional
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covariance estimation methods, such as the sample covariance matrix and the
Bayesian method by the inverse-Wishart prior, are not consistent when p is
larger than n [18, 22], various structural assumptions on covariance matrices
have been used to reduce the number of effective parameters. For example, the
banded covariances [23], the bandable covariances [2], sparse covariances [5] and
sparse spiked covariances [4] have been considered. These structural assumptions
can be used in the joint covariance matrix of covariates and response variables
when we employ covariance estimation for the multivariate regression under the
high-dimensional settings.

In this paper, we consider the multivariate linear regression model, where the
joint covariance of the covariate vector and the response vector is a bandable
covariance matrix. Under the bandable covariance assumption, the farther apart
two variables are, the smaller their covariance is. On the frequentist side, [6,
7] proved that the tapering estimator of covariance has the minimax optimal
convergence rates for the class of bandable covariances under the spectral norm,
Frobenius norm, and matrix l1 norm. Therefore, a naive approach would be
estimating the conditional mean operator based on the tapering estimator of
covariance (or other minimax covariance estimators).

Unfortunately, even if a covariance estimator Σ̂ has the minimax optimal
convergence rate for the covariance Σ, it does not imply that f(Σ̂) has also
the minimax optimal convergence rate for f(Σ) where f is a function on the
space of covariances. Thus, the estimator for ΣY XΣ−1

XX based on the tapering
estimator of covariance may not have the minimax optimal convergence rate.
Furthermore, there is no Bayesian method achieving the minimax posterior con-
vergence rate for the class of bandable covariances. Note that [31], [20] and [23]
proposed Bayesian procedures for banded covariances, but the class of bandable
covariances considered in this paper is larger than the class of banded covari-
ances.

We investigate the decision-theoretic property of the tapering estimator when
the parameter of interest is the conditional mean operator, ΣY XΣ−1

XX , instead of
the covariance itself under the normality assumption. As a naive plug-in estima-
tor for the conditional mean, we first define the tapering estimator of regression
coefficient , a tapering estimator of covariance plugged into the conditional mean
operator. However, we show that the tapering estimator of the regression coef-
ficient is sub-optimal under the bandable covariance assumption. This implies
that a naive plug-in estimator is not enough to achieve the minimax rate. To re-
solve this issue, we propose a modified plug-in estimator, the blockwise tapering
estimator of regression coefficient , and show that it obtains the minimax rate.

As a Bayesian procedure for the conditional mean operator under the band-
able covariance assumption, we adopt the post-processed posterior method [23].
A post-processed posterior is a posterior constructed by transforming posterior
samples from the initial posterior, which is typically a computationally conve-
nient posterior. This idea is especially useful when it is difficult to impose a
prior distribution on a restricted parameter space due to an unknown normal-
izing constant. For a given parameter space Θ∗, suppose that we are interested
in restricted parameter space, Θ ⊂ Θ∗. A post-processed posterior can be ob-
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tained by generating samples from an initial posterior on Θ∗ and post-processing
the posterior samples so that the transformed post-processed samples belong
to Θ. When the post-processing function is a projection map from Θ∗ to Θ,
the method is called the posterior projection method. The posterior projection
method has been suggested for various settings including [12], [17], [26] and [8],
and was investigated in general aspects by [27]. The idea of transforming poste-
rior samples was also used for the inference on covariance or precision matrices
in [23] and [1].

We suggest two post-processed posteriors for the conditional mean operator.
Both methods use the inverse-Wishart distribution as the initial prior distribu-
tion on the unconstrained covariance matrix space and use the tapering function
and the blockwise tapering function as the post-processing functions for the con-
ditional mean operator ΣY XΣ−1

XX . We present the asymptotic analysis to justify
the proposed post-processed posteriors, and show that the post-processed pos-
terior by the blockwise tapering function has the minimax optimal convergence
rate.

The rest of the paper is organized as follows. In Section 2, we introduce the
blockwise tapering estimator for the inference of the conditional mean operator
under the bandable covariance assumption and show that this estimator has the
minimax convergence rate. In Section 3, we introduce the post-processed poste-
riors for the conditional mean operator, and present the posterior convergence
rates. Simulation studies and real data analysis are given in Section 4. Proofs
of theorems in Sections 2 and 3 are given in Sections 5 and A, respectively. We
conclude this paper with a discussion section.

2. Blockwise tapering estimator and minimax analysis

2.1. Notation

Let q, k and l be positive integers with l∨k ≤ q. For a q×q-matrix Σ and positive
real numbers σij , 1 ≤ i, j ≤ q, let Σ = (σij)1≤i,j≤q = (σij) when σij is equal to

the (i, j) element of Σ. We define sub-matrix operators M
(k)
l : Rq×q �→ R

k∗×k∗
,

where k∗ = {(l + k − 1) ∧ q} − (l ∨ 1) + 1, and M
∗(k)
l : Rq×q �→ R

q×q as

M
(k)
l (Σ) = (σij)(l∨1)≤i,j≤{(l+k−1)∧q}

M
∗(k)
l (Σ) = (σijI[(l ∨ 1) ≤ i, j ≤ {(l + k − 1) ∧ q}])1≤i,j≤q,

for Σ = (σij)1≤i,j≤q. Let Σa:b,c:d be the sub-block matrix of Σ ∈ R
q×q with

(a, a + 1, . . . , b − 1, b) rows and (c, c + 1, . . . , d − 1, d) columns for positive
integers a, b, c and d with 1 ≤ a < b ≤ q and 1 ≤ c < d ≤ q, and let
Σa:b = Σa:b,a:b. We also let Xa:b = (xa, xa+1, . . . , xb−1, xb) ∈ R

b−a+1 for a vector
X = (x1, x2, . . . , xq) ∈ R

q and positive integers a and b with 1 ≤ a < b ≤ q.
For a q×q-matrix Σ = (σij)1≤i,j≤q and a positive integer k with k ≤ q, define

the tapering function Tk(Σ), which was first defined in [6], as

Tk(Σ) = (w
(k)
ij σij)1≤i,j≤q,
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where

w
(k)
ij =

⎧⎪⎨
⎪⎩
1, when |i− j| ≤ k/2

2− |i−j|
k/2 , when k/2 < |i− j| < k

0, otherwise

.

For any sequences an and bn of positive real numbers, we denote an = o(bn)
if lim

n−→∞
an/bn = 0, and an = O(bn) if lim sup

n−→∞
an/bn = C for a positive constant

C. We denote an 
 bn if an ≤ Cbn for all sufficiently large n and a positive
constant C.

Let ||Σ|| = ||Σ||2 = {λmax(ΣΣ
T )}1/2 be the spectral norm of a covariance

matrix Σ, where λmax(Σ) is the maximum eigenvalue of Σ. Given positive inte-
gers p and p0 with p0 < p, let AXX = A1:p0,1:p0 and AY X = A(p0+1):p,1:p0

for
a positive p × p-matrix A. We also let Σ0,XX and Σ0,Y X denote (Σ0)XX and
(Σ0)Y X , respectively.

2.2. Blockwise tapering estimator

Let n, p and p0 be positive integers with p0 < p. Suppose Z1, Z2, . . . , Zn are
independent and identically distributed from a p-dimensional distribution with
mean zero and covariance matrix Σ0, where Zi = (XT

i , Y
T
i )T , Xi ∈ R

p0 and
Yi ∈ R

p−p0 for i ∈ {1, 2, . . . , n}. When only the first p0 elements of Zi, i.e. Xi,
are given, the conditional mean vector for the other p− p0 variables is

Σ0,Y X(Σ0,XX)−1Xi. (1)

The conditional mean operator Σ0,Y X(Σ0,XX)−1 in (1) is the estimand we focus
on in this paper. We define the transformation ψ from a covariance to the
conditional mean operator as

ψ(Σ) := ψ(Σ; p0) = ΣY X(ΣXX)−1,

for Σ ∈ Cp, where Cp is the set of all p×p-dimensional positive definite matrices.
We assume Σ0 belongs to a class of bandable covariances, Fα, which is defined

as

Fα := Fp,α(M,M0,M1)

=
{
Σ = (σij)1≤i,j≤p ∈ Cp :

∑
(i,j):|i−j|≥k

|σij | ≤ Mk−α, ∀k ≥ 1,

λmax(Σ) ≤ M0, λmin(Σ) ≥ M1

}
,

for some positive constants α,M > 0 and 0 < M1 < M0, where λmin(Σ) is the
minimum eigenvalue of Σ. [2] and [6] also considered the same class of bandable
covariances except the minimum eigenvalue condition.

A natural estimator for ψ(Σ0) is the plug-in estimator, the tapering estima-
tor of covariance plugged into ψ, because the tapering estimator achieves the
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minimax optimal convergence rate for the class of bandable covariances under
the spectral norm loss [6]. For the positive-definiteness is necessary for the co-
variance estimator, we modify the tapering estimator of covariance so that it is
positive definite and call it adjusted tapering estimator of covariance:

T
(εn)
k (Sn) := Tk(Sn) + ([εn − λmin{Tk(Sn)}] ∨ 0)Ip,

where εn > 0 is the positive-definite adjustment parameter, Sn is the sample
covariance matrix

∑n
i=1 ZiZ

T
i /n, and Ip is the p × p identity matrix. We call

the plug-in estimator with adjusted tapering estimator of covariance the tapering
estimator of regression coefficient , in short the tapering estimator .

Since every column of the tapering estimator is not the zero vector with
probability one, the tapering estimator uses all variables in a given covariate
vector when the estimator is used as the regression coefficient. In other words,
in the variable selection perspective, all variables are selected when the tapering
estimator is used. Note that selecting out negligible covariates can increase the
accuracy of a regression estimator, and partial correlations between covariates
and responses have been used as a criterion for the variable selection [25, 3].
Theorem 2.1 shows that if a covariance matrix is bandable, then so is its inverse
matrix. It essentially means that, under the bandable covariance assumption,
the variables far away from each other tend to have weak partial correlations.
The proof of Theorem 2.1 is given in Section 5.1.

Theorem 2.1. Suppose Σ0 ∈ Fp,α(M,M0,M1), and let Σ−1
0 = (wij). There

exist some positive constants C and λ depending only on M0, M1 and M such
that

max
j

∑
i

{|wij | : |i− j| > ak log k} ≤ C(k−aλ+1 + k−α),

for all a > 0 and all sufficiently large integer k with p > k ∨ (ak log k).

Note [21] showed that the partial correlation between the ith and the jth
variables is

rij|[p]\{i,j} =
wij√
wiiwjj

,

where Σ−1
0 = (wij) and [p] = {1, 2, . . . , p}. Since |wii| ≥ M−1

0 for all i ∈ [p],
by Theorem 2.1, each element in response vector (Zi)(p0+1):p has negligibly
weak partial correlations with remote covariates (Zi)j for j ≤ p0 and large |j −
p0|. Thus, selecting out these negligible covariates could yield a more accurate
estimator for the conditional mean operator.

Based on the above argument, we propose the blockwise tapering estimator
of regression coefficient , in short the blockwise tapering estimator . Let Z be the
set of all integers and �x� = max{z ∈ Z : z ≤ x}. For positive real numbers
a and εn, and a positive integer k with 2�ak log k� ≤ p0, define the blockwise
tapering estimator as

φ(Sn; 2�ak log k�, εn) := φ(Sn; p0, 2�ak log k�, εn)
= Tk(Sn)Y XΛ(εn){Tk(Sn)XX ; 2�ak log k�}, (2)
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where Λ(εn)(A; b) is defined as for a p0 × p0 matrix A

Λ(εn)(A; b)

=

(
O(p0−b)×(p0−b) O(p0−b)×b

O(b×(p0−b) {M (b)
p0−b+1(A) + ([εn − λmin{M (b)

p0−b+1(A)}] ∨ 0)Ib}−1

)
,

where Oc×d is the c× d zero matrix for positive integers c and d. The definition
of the blockwise tapering estimator gives

φ(Sn; 2�ak log k�, εn)
=

(
O(p−p0)×(p0−2	ak log k
) Tk(Sn)Y X(2){T (εn)

k (Sn,X(2)X(2))}−1
)
, (3)

where Tk(Sn)Y X(2) = {Tk(Sn)}(p0+1):p,(p0−2	ak log k
+1):p0
and

Sn,X(2)X(2) = (Sn)(p0−2	ak log k
+1):p0
, and we examine the blockwise tapering

estimator using the formula (3). The first p0 − 2�ak log k� columns of the esti-
mator (3) are zero column vector, thus, given a covariate vector x ∈ R

p0 , the
blockwise tapering estimator drops the first p0 − 2�ak log k� covariate variables
x1:p0−2	ak log k
. The remaining part of the estimator

Tk(Sn)Y X(2){T (εn)
k (Sn,X(2)X(2))}−1 (4)

operates as the regression coefficient for the remaining covariate variables
xp0−2	ak log k
+1:p0

, and (4) is almost the same as

ψ(T
(εn)
k (Sn,(X(2),Y )(X(2),Y )); 2�ak log k�) except for the positive-definiteness

adjustment part, where Sn,(X(2),Y )(X(2),Y ) = (Sn)p0−2	ak log k
+1:p.

Note that ψ(T
(εn)
k (Sn,(X(2),Y )(X(2),Y )); 2�ak log k�) is the tapering estimator

of regression coefficient with data {((Xi)
T
p0−2	ak log k
+1:p0

, Y T
i )T ; i = 1, . . . , n}.

These observations show that the blockwise tapering estimator is constructed
based on the variable selection and the idea of the tapering estimator of the
regression coefficient.

2.3. Minimax analysis of blockwise tapering estimator

In this section, we give the convergence rates of the tapering and blockwise ta-
pering estimators under the normality assumption, i.e., Z1, Z2, . . . , Zn are inde-
pendent and identically distributed from a p-dimensional Gaussian distribution
with mean zero and covariance matrix Σ0, which is denoted by Np(0,Σ0). We
also show that the blockwise tapering estimator has the minimax convergence
rate under the normality assumption. We use the loss function on R

(p−p0)×p0

L{Ĉ, ψ(Σ0)} = ||Ĉ − ψ(Σ0)||2, (5)

for a pair of parameter ψ(Σ0) and estimator Ĉ. The loss function gives the
upper bound of the estimation error of E(Y | X = x) given x ∈ R

p0 , because



Estimation of conditional mean operator 1261

the definition of the operator norm gives

||Ĉx− E(Y | X = x)||2 = ||{Ĉ − ψ(Σ0)}x||2
≤ L{Ĉ, ψ(Σ0)}||x||2.

We show that the tapering estimator has a sub-optimal convergence rate under
the loss function (5), while the blockwise tapering estimator has the minimax
optimal convergence rate.

Theorem 2.2 gives the convergence rate of the tapering estimator. If we set
εn such that p1/25k/2n exp(−λn) 
 ε2n 
 (k + log p)/n, then the convergence
rate is (k + log p)/n + k−2α, which is the same rate as the convergence rate of
the tapering estimator of covariance [6]. The proof of this theorem is given in
Section 5.2.

Theorem 2.2. Suppose Σ0 ∈ Fp,α(M,M0,M1). Let k be a positive integer. If
k ∨ log p = o(n), εn = O(1) and �k/2� > {4M/λmin(Σ0)}1/α, then there exist
some positive constants C and λ depending only on M , M0, M1 and α such that

EΣ0(||ψ(Σ0)− ψ{T (εn)
k (Sn)}||2)

≤ C
{
k−2α +

k + log p

n
+ ε2n +

p1/25k/2 exp(−λn)

ε2n

}
,

for all sufficiently large n.

Next, we show the convergence rate of the blockwise tapering estimator.
The blockwise tapering estimator is designed to estimate φ(Σ0; 2�ak log k�, 0)
which approximates ψ(Σ0). Lemma 2.3 gives the approximation error, which
is negligible when k is large enough. Based on the approximation error, the
convergence rate of the blockwise tapering estimator is given in Theorem 2.4.
If we set εn such that (ak log k)1/25k/2n exp(−λn) 
 ε2n 
 k/n, the convergence
rate of the blockwise tapering estimator is k/n + k−2{α∧(aτ−1)}. The proofs of
the lemma and theorem are given in Section 5.3.

Lemma 2.3. Suppose Σ0 ∈ Fp,α(M,M0,M1). There exist some positive con-
stants C and τ depending only on M , M0 and M1 such that

||ψ(Σ0)− Tk(Σ0)Y XΛ(0){Tk(Σ0,XX); 2�ak log k�}|| ≤ C(k−α + k−aτ+1),

for all a > 0 and all sufficiently large integers k and p0 with �ak log k�/2 ≥ k
and 2�ak log k� < p0.

Theorem 2.4. Suppose Σ0 ∈ Fp,α(M,M0,M1).
If k = o(n), �k/2� > {4M/λmin(Σ0)}1/α and εn = O(1), then there exist

some positive constants C, λ and τ depending only on M , M0, M1 and α such
that

EΣ0(||ψ(Σ0)− φ(Sn; 2�ak log k�, εn)||2)

≤ C
{
k−2{α∧(aτ−1)} +

k

n
+ ε2n +

(ak log k)1/25k/2 exp(−λn)

ε2n

}
,
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for all a > 0 and all sufficiently large n, k and p0 with �ak log k�/2 ≥ k and
p0 > 2�ak log k�.

Remark 1. Contrary to Theorem 2.2, Theorem 2.4 does not require the upper
bound of p0 and p. Recall that the blockwise tapering estimator is designed
to estimate Tk(Σ0)Y XΛ(0){Tk(Σ0,XX); 2�ak log k�}, which is independent of p
and p0. The factor Λ

(0){Tk(Σ0,XX); 2�ak log k�} is obviously dependent only on
(Σ0)(p0−2	ak log k
+1):p0

by the definition. Futhermore Tk(Σ0)Y X depends only
on (Σ0)(p0−k):(p0+k) because (i) Tk(Σ0) is a k-banded matrix and (ii) Tk(Σ0)Y X

is an off-diagonal block matrix. Thus, Tk(Σ0)Y XΛ(0){Tk(Σ0,XX); 2�ak log k�}
depends only on (Σ0)(p0−2	ak log k
+1):p0

and (Σ0)(p0−k):(p0+k). Note that the
dimensions of the square matrices (Σ0)(p0−2	ak log k
+1) and (Σ0)(p0−k):(p0+k) are
2�ak log k� and 2k + 1, respectively, which are independent of p and p0. Since
the blockwise tapering estimator is constructed based on the sample covariance
estimators on (Σ0)(p0−2	ak log k
+1):p0

and (Σ0)(p0−k):(p0+k), p0 and p does not
affect the convergence rate of the blockwise tapering estimator.

Next, we give the lower bound of the minimax risk for the conditional mean
operator under the bandable covariance assumption to show that the blockwise
tapering estimator is a minimax optimal estimator. Let Ĉ = Ĉ(X1, X2, . . . , Xn)
be an estimator on R

(p−p0)×p0 . The minimax risk is defined as

inf
Ĉ

sup
Σ0∈Fα

E||ψ(Σ0)− Ĉ||2.

Theorem 2.5 gives a lower bound of the minimax risk as n−2α/(2α+1). If we
set k, a and εn of the blockwise tapering estimator such that k = n1/(2α+1),
a > (α + 1)/τ and (ak log k)1/25k/2n exp(−λn) 
 ε2n 
 k/n, then the conver-
gence rate is the same as the lower bound asymptotically. Thus, the minimax
convergence rate is n−2α/(2α+1), and the blockwise tapering estimator attains
the convergence rate. The proof of Theorem 2.5 is given in Section 5.4.

Theorem 2.5. There exist some positive constants C and γ depending only on
M , M0, M1 and α such that

inf
Ĉ

sup
Σ0∈Fα

E||ψ(Σ0)− Ĉ||2 ≥ Cn−2α/(2α+1),

for all sufficiently large n and p0 with p0 > γn1/(2α+1)

3. Blockwise tapering post-processed posterior

We propose the Bayesian counterparts of the tapering estimator and the block-
wise tapering estimator using the post-processed posterior method [23]. The
algorithm for the post-processed posteriors consists of the following two steps.

(a) (Initial posterior sampling step) First, we obtain the initial conjugate pos-
terior distribution on the unconstrained parameter space. We take the



Estimation of conditional mean operator 1263

inverse-Wishart distribution IWp(B0, ν0) as the initial prior distribution
of which density function is

πi(Σ) ∝ |Σ|−ν0/2e−tr(Σ−1B0)/2, Σ ∈ Cp,
where B0 ∈ Cp and ν0 > 2p. Then, using the likelihood of Gaussian distri-
bution, we obtain the initial posterior distribution πi(Σ|Zn) as IWp(B0 +
nSn, ν0+n), where n is the number of observations, Sn = n−1

∑n
i=1 ZiZ

T
i

and Zn = (Z1, . . . , Zn). We generate Σ(1),Σ(2), . . . ,Σ(N) from the initial
posterior distribution.

(b) (Post-processing step) Second, we post-process the samples from the initial

posterior distribution with ψ{T (εn)
k (·)} or φ(·; 2�ak log k�, εn), which are

called the tapering function and the blockwise tapering function.

We call the post-processed posteriors obtained from the post-processing func-
tions the tapering post-processed posterior (tapering PPP) and the blockwise
tapering post-processed posterior (blockwise tapering PPP).

We use the decision-theoretic framework [22, 23] to prove the minimax op-
timality of the blockwise tapering post-processed posterior. We define P-loss
L(·, ·) and P-risk R(·, ·) for the conditional mean operator as

L{ψ(Σ0), π
pp(· | Zn; f)} := Eπi

(||ψ(Σ0)− f(Σ)||2 | Zn)

R{ψ(Σ0), (π
i, f)} := EΣ0{Eπi

(||ψ(Σ0)− f(Σ)||2 | Zn)},
where πpp(· | Zn; f) is the post-processed posterior distribution derived from
initial prior πi and post-processing function f , and (πi, f) is a pair of initial
prior πi and post-processing function f . Theorems 3.1 and 3.2 give the P-risk
convergence rates of the tapering and the blockwise tapering post-processed
posteriors, respectively. The convergence rates are the same as their frequentist
counterparts. The proofs of these theorems are given in Section A.

Theorem 3.1. Suppose Σ0 ∈ Fp,α(M,M0,M1). Let k be a positive integer, and
let the prior πi of Σ be IWp(An, νn) for An ∈ Cp and νn > 2p. If εn = O(1),
�k/2� > {4M/λmin(Σ0)}1/α and k ∨ ||An|| ∨ (νn − 2p)∨ log p = o(n), then there
exist positive constants C and λ depending only on M , M0 and M1 such that

EΣ0{Eπi

(||ψ(Σ0)− ψ{T (εn)
k (Σ)}||2 | Zn)}

≤ C
{
k−2α +

k + log p

n
+ ε2n +

p1/25k/2 exp(−λn)

ε2n

}
,

for all sufficiently large n and k.

Theorem 3.2. Suppose Σ0 ∈ Fp,α(M,M0,M1). Let the prior πi of Σ
be IWp(An, νn) for An ∈ Cp and νn > 2p. If εn = O(1), �k/2� >
{4M/λmin(Σ0)}1/α and k ∨ ||An|| ∨ (νn − 2p) = o(n), then there exist positive
constants C, τ and λ depending only on M , M0 and M1 such that

EΣ0{Eπi

(||ψ(Σ0)− φ(Σ; 2�ak log k�, εn)||2 | Zn)}

≤ C
{
k−2(α∧(aτ−1)) +

k

n
+ ε2n +

(ak log k)1/25k/2 exp(−λn)

ε2n

}
,
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then for all a > 0 and all sufficiently large n, k and p0 with �ak log k�/2 > k
and p0 > 2�ak log k�.

Note that the P-risk minimax lower bound is n−2α/(2α+1) since the P-risk
convergence rate is slower than or equal to the frequentist minimax rate [22].
Thus, if we set k, a and εn of the blockwise tapering post-processed posterior
such that k = n1/(2α+1), (ak log k)1/25k/2n exp(−λn) 
 ε2n 
 k/n and a >
(α + 1)/τ , then the P-risk convergence rate is the same as the lower bound
asymptotically. Thus, the P-risk minimax convergence rate is n−2α/(2α+1), and
the blockwise tapering post-processed posterior attains the convergence rate.

4. Numerical studies

4.1. Simulation

We compare the blockwise tapering estimator with the tapering estimator using
simulation data. We define the true covariance matrix Σ0 ∈ R

p×p as below. Let
Σ∗

0 = (σ∗
0,ij)1≤i,j≤p, where

σ∗
0,ij =

{
1, 1 ≤ i = j ≤ p

ρ|i− j|−(α+1), 1 ≤ i �= j ≤ p
,

and let Σ0 = Σ∗
0+{0.5−λmin(Σ

∗
0)}Ip, which guarantees the minimum eigenvalue

of Σ0 is bounded away from zero. We set ρ = 0.6 and α = 0.1 for Σ0 and
generate data Z1, . . . , Zn from Np(0,Σ0) independently, where p ∈ {500, 1000}
and n = p/2. Let p0 = 0.8p and fix the positive-definite adjustment parameter
εn as 0.5. We define the error reduction value by choosing the blockwise tapering
estimator over the tapering estimator as

df (Sn; k, a) = ||ψ{T (εn)
k (Sn)} − ψ(Σ0)|| − ||φ(Sn; 2�ak log k�, εn)− ψ(Σ0)||.

We repeat generating the simulation data T times, and let Z
(i)
n and S

(i)
n denote

the data and the sample covariance matrix, respectively, in the ith repetition for
i ∈ {1, 2, . . . , T}. We summarize the error reduction values from the repetitions
as t-value

tf (k, a;T ) =

∑T
i=1 df (S

(i)
n ; k, a)/T

[
∑T

i=1{df (S
(i)
n ; k, a)−

∑T
i=1 df (S

(i)
n ; k, a)/T}2/T ]1/2

,

which is the performance measure for the comparison between the tapering
and blockwise tapering estimators. We also compare the blockwise tapering
PPP with the tapering PPP for the same simulation data. We define the error
reduction value by choosing the blockwise tapering PPP as

db(Zn; k, a) = ||Ĉ(TPPP ) − ψ(Σ0)|| − ||Ĉ(bTPPP ) − ψ(Σ0)||,
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Fig 1. The evaluated t-values tf (k, a; 100), the summarized error reductions by choosing the
blockwise tapering estimator over the tapering estimator, are represented in the upper plots.
The dimension of the covariance p is set to 500 and 1000. As the tuning parameters of the
methods, k ∈ {2, 3, . . . , 10} and a ∈ {5, 10, 20} are used. The evaluated t-values tb(k, a; 100),
the summarized error reductions by choosing the blockwise tapering post-processed posterior
over the tapering post-processed posterior, are represented in the lower plots for the same
parameters.

where Ĉ(TPPP ) and Ĉ(bTPPP ) are the posterior means of the tapering PPP and
the blockwise tapering PPP, respectively. We define the t-value for T repetitions
as

tb(k, a;T ) =

∑T
i=1 db(Z

(i)
n ; k, a)/T

[
∑T

i=1{db(Z
(i)
n ; k, a)−

∑T
i=1 db(Z

(i)
n ; k, a)/T}2/T ]1/2

.

We evaluate tf (k, a; 100) and tb(k, a; 100) for k ∈ {2, 3, . . . , 10} and a ∈
{5, 10, 20}. For the post-processed posteriors we generate 1000 posterior samples
in each setting. We represent the result of the evaluations in Figure 1. When p
is large and k is small, the effects of error reductions by the blockwise tapering
estimator and the blockwise tapering post-processed posterior increase. Note
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that the convergence rates of the tapering estimator and the tapering PPP con-
tain the additional log p/n term. The effect of the additional term is increased
when another term in the convergence rate, k/n, is relatively small. Thus, the
error reduction is effective when p is large compared to k. The figure also shows
that the tapering estimator is slightly better otherwise. If log p is not relatively
large, one does not need to abandon the covariates X1:(p0−2	ak log k
) by using
the blockwise tapering estimator or the blockwise tapering PPP.

Next, we compare the tapering estimator, blockwise tapering estimator, and
their Bayesian versions with two other methods: covariance estimation method
and multivariate regression method. A covariance estimator can be used for the
estimation of the conditional mean operator by applying the transformation (2).
We use the banding estimator [2], dual maximum likelihood estimator [19], and
the banding post-processed posterior [23] as covariance estimators for compari-
son. The multivariate regression method is also used for comparison, since the
multivariate linear regression coefficient is the conditional mean operator. We
adopt the reduced-rank regression [9], the sparse reduced-rank regression [10]
and the method of sparse orthogonal factor regression (SOFAR) [33].

We need to select tuning parameters for the conditional mean operator es-
timators. Based on the tuning parameter selection process, we divide the es-
timation methods into three categories: frequentist covariance-based method,
post-processed posterior method, and multivariate regression method.

The tapering and blockwise tapering estimators belong to the frequentist
covariance-based method, and the process of the tuning parameter selection is
as follows. When a covariance estimator is given, the conditional mean operator
and the conditional variance are derived, which yield the conditional distribution
under the normality assumption. The log-likelihood function of the conditional
distribution is used for the leave-one-out cross-validation. Let Σ̂(Zn,−i, τ) be a
frequentist covariance estimator based on Zn,−i = (Z1, . . . , Zi−1, Zi+1, . . . , Zn)
given a tuning parameter vector τ . The tuning parameter τ is (k, ε) when the
tapering estimator is considered and τ is (k, ε, a) when the blockwise tapering es-
timator is considered. The derived conditional mean operator is ψ{Σ̂(Zn,−i, τ)},
and the conditional variance is

ν{Σ̂(Zn,−i, τ)} := Σ̂(Zn,−i, τ)Y Y

−Σ̂(Zn,−i, τ)Y X{Σ̂(Zn,−i, τ)XX}−1Σ̂(Zn,−i, τ)XY .

We select τ as the minimizer of

R̂(f)(τ) =

n∑
i=1

log p[Yi | ψ{Σ̂(Zn,−i, τ)}Xi, ν{Σ̂(Zn,−i, τ)}],

where (XT
i , Y

T
i )T = Zi and p(x | μ,Σ) is the density function of the multivari-

ate normal distribution with mean μ and covariance Σ. Since the conditional
variance can not be derived from the blockwise tapering estimator, we use the
conditional variance from the tapering estimator in this case.

For the tuning parameter selection of the post-processed posterior meth-
ods, we use the Bayesian leave-one-out cross-validation method [15] to the
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log-likelihood function of the conditional distribution. Let Σ
(i)
1 ,Σ

(i)
2 , . . . ,Σ

(i)
S

be leave-one-out initial posterior samples which are generated from the initial
posterior by Zn,−i for i ∈ {1, 2, . . . , n}. We select the tuning parameter vector
τ as the minimizer of

n∑
i=1

log
1

S

S∑
s=1

p{Yi | ψ∗(Σ(i)
s ; τ)Xi, ν

∗(Σ(i)
s ; τ)},

where ψ∗ and ν∗ are post-processing functions for the conditional mean operator
and conditional variance given the tuning parameter τ , respectively. For the
post-processing function of the conditional variance ν∗, the banding PPP uses

ν{B(εn)
k (Σ

(i)
s )}, where B

(εn)
k is the positive-definite adjusted banding operator

defined as

B
(εn)
k (Σ) = Bk(Σ) + ([εn − λmin{Bk(Σ)}] ∨ 0)Ip,

and the tapering and blockwise tapering PPPs use ν{T (εn)
k (Σ

(i)
s )}.

For the multivariate regression method, we use 10-fold cross-validation method
as [10], [9] and [33] suggested. Note that all the methods contain the rank pa-
rameter in the tuning parameters. While we select the rank from {0, 1, . . . , 10}
for the reduced-rank regression, {1, 2, . . . , 10} is considered for the others. Be-
cause if the rank is zero, all the three methods coincide, we only consider the
[9]’s method for the zero rank case.

We set p = 200, ρ = 0.6 and α = 0.1, 0.3 for Σ0 and generate Z1, Z2, . . . , Zn

from Np(0,Σ0) independently for n ∈ {100, 200}. We repeat generating the
simulation data 100 times for each simulation setting. The performance of each
method is measured as

1

100

100∑
s=1

||ψ(Σ0)− Ĉs||,

where Ĉs is the point estimator for the conditional mean operator in the sth rep-
etition. For the post-processed posterior methods, we use the posterior mean as
the point estimator. Table 1 gives the simulation error. The tapering estimator
and the blockwise tapering estimator, and their Bayesian counterparts are the
best in all settings. The multivariate regression methods, i.e. the reduced-rank
regression, sparse reduced-rank regression and sparse orthogonal factor regres-
sion, are the worst in all settings. Unlike the other covariance-based methods, the
bandable or banded covariance structure is not considered in the multivariate
regression methods. It appears that the multivariate regression framework does
not perform well under the high-dimensional bandable covariance assumption.

4.2. Application to forecasting traffic speed

We apply the proposed methods to multivariate regression analysis for small
area spatio-temporal data, and use this application to forecast traffic speed in
Yeoui-daero, a road in Seoul.
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Table 1

Spectral norm errors of estimators for the conditional mean operator.

n = 100 n = 200
α = 0.1 α = 0.3 α = 0.1 α = 0.3

Tapering estimator 0.255 0.240 0.206 0.188
Blockwise tapering estimator 0.255 0.240 0.206 0.188
Banding estimator 0.319 0.293 0.290 0.247
Dual maximum likelihood estimator 0.365 0.357 0.319 0.273
Tapering post-processed posterior 0.257 0.246 0.208 0.193
Blockwise tapering post-processed posterior 0.257 0.246 0.208 0.193
Banding post-processed posterior 0.323 0.323 0.303 0.256
Reduced-rank regression 0.509 0.488 0.509 0.488
Sparse reduced-rank regression 3.324 3.309 2.818 2.902
Sparse orthogonal factor regression 1.823 1.819 1.679 1.703

Suppose spatio-temporal data are observed in S spatial regions and T times,
where S and T are positive integers. Let Xs,t be a random variable at sth spatial
index and tth time index, s = 1, . . . , S and t = 1, . . . , T . We assume

E[{Xs1,t1 − E(Xs1,t1)}{Xs2,t2 − E(Xs2,t2)}]
≤ r(|t1 − t2|), s1, s2 ∈ {1, . . . , S}, t1, t2 ∈ {1, . . . , T}, (6)

where r is a real-valued function from the non-negative integer space, and is as-
sumed to be a decreasing function. Rearranging (Xs,t)s=1,...,S,t=1,...,T , we define
Z ∈ R

TS as

Z = (X1,1, X2,1, . . . , XS,1, X1,2, X2,2, . . . , XS,T ), (7)

and let E(ZZT ) = Σ0 = (σ0,ij). We show that Σ0 is a bandable covariance, if
the decreasing rate of r(x) is x−α−1. Note that if mS ≤ |i− j| < (m+ 1)S for
m ∈ {0, 1, . . . , T − 1} and i, j ∈ {1, 2, . . . , TS}, then the time index difference
between Zi and Zj is at least m. This observation and assumption (6) give
|σ0,ij | ≤ r(�|i− j|/S�) and

sup
j

∑
i

{|σ0,ij | : |i− j| ≥ k} ≤ sup
j

∑
i

{|σ0,ij | : |i− j| ≥ �k/S�S}

≤ sup
j

T−1∑
m=	k/S
S

∑
i∈I

(j)
m

|σ0,ij |

≤ S

T−1∑
m=	k/S
S

r(m),

where I
(j)
m = {i ∈ {1, 2, . . . , p} : �|i− j|/S� = m}. If the decreasing rate of r(x)

is x−α−1, then

sup
j

∑
i

{|σ0,ij | : |i− j| ≥ k} ≤ Ck−α,



Estimation of conditional mean operator 1269

Fig 2. The eight routes in Yeoui-daero and their index allocation.

for some positive constant C. Thus, Σ0 is a bandable covariance, and the pro-
posed methods for the conditional mean operator under the bandable covariance
assumption can be used to predict X1:S,t0+1:T given X1:S,1:t0 .

Based on the rearrangement (7) and the proposed methods for the conditional
mean operator under the bandable covariance assumption, we forecast traffic
speed in Yeoui-daero using data from TOPIS [32]. In the traffic speed data in
Yeoui-daero, a daily data set consists of observations in 8 spatial indexes and 24-
time indexes. Let a daily traffic speed be (Xs,t)1≤s≤8,1≤t≤24, where time index t
indicates the time interval from (t−1) o’clock to t o’clock, and the allocation of
the spatial index s is given in Figure 2. We rearrange (Xs,t)1≤s≤8,1≤t≤24 as (7),
and apply the proposed estimators to forecast X1:8,18:24 given X1:8,1:17.

In the data from TOPIS, we use data from January to October in 2020, ex-
cluding weekend data sets and missing data sets. We have 172 days observations
which are denoted by Z1, Z2, . . . , Z172 ∈ R

192. To apply the proposed methods,
we use mean-centered observations Z̃1, Z̃2, . . . , Z̃172 ∈ R

192. For the performance
measure, let the training data be Ztrain = (Z̃1, Z̃2, . . . , Z̃86), and the test data
be Ztest = (Z̃87, Z̃88, . . . , Z̃172). The forecast errors are summarized as

1

86

172∑
i=87

||Ĉ(Ztrain)(Z̃i)1:p0 − (Z̃i)(p0+1):p||2,
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Table 2

The root mean square errors of forecast results for traffic speed in Yeoui-daero.

Method Error
Tapering estimator 2.80
Blockwise tapering estimator 2.80
Banding estimator 2.85
Dual maximum likelihood estimator 3.33
Tapering post-processed posterior 2.78
Blockwise tapering post-processed posterior 2.78
Banding post-processed posterior 2.87
Reduced-rank regression 3.59
Sparse reduced-rank regression 3.39
Sparse orthogonal factor regression 4.31

where p0 = 17× 8 and Ĉ(Ztrain) is a point estimator for the conditional mean
operator based on Ztrain. The summarized forecast errors are represented in
Table 2, which shows the tapering and blockwise tapering estimators and their
Bayesian versions are the best among all methods.

5. Proofs of theorems and lemma

In this section, the proofs of Theorems 2.1- 2.5 and Lemma 2.3 are given. The
proofs of the other theorems, Theorems 3.1 and 3.2, are given in Section A. We
give notations for the proofs. Let ||Σ||F = tr(ΣΣT ) and ||Σ||r be the Frobenius
norm and the matrix r-norm for a covariance matrix Σ, respectively. We also
let Wp(B0, ν0) be Wishart distribution of which density function is

π(Σ) ∝ |Σ|(ν0−p−1)/2e−tr(B−1
0 Σ)/2, Σ ∈ Cp,

where B0 ∈ Cp and ν0 > p− 1.
For a q×q-matrix Σ = (σij)1≤i,j≤q and a positive integer k with k ≤ q, define

the banding function Bk(Σ) as Bk(Σ) = (σijI(|i− j| ≤ k))1≤i,j≤q.

5.1. Proof of Theorem 2.1

In this subsection, we give the proof of Theorem 2.1. First, we present Lem-
mas 5.1 and 5.2 which are necessary for the proof of Theorem 2.1. Proofs of
these lemmas are given in Section A.

Lemma 5.1. Let p and k be positive integers with k < p. Suppose Σ ∈ Cp is a
k-band matrix, and let Σ−1 = (wij). For all a > 0 and all sufficiently large k
with p > k ∨ (ak log k),

max
j

∑
i

{|wij | : |i− j| > ak log k} ≤ − 2C

log q
k2a log q+1,

where q = (κ1/2 − 1)/(κ1/2 + 1), C = {||Σ−1|| ∨ (1 + κ1/2)2}/(2||Σ||), and κ is
the spectral condition number of Σ.
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Lemma 5.2. Let p and k be positive integers with k < p and suppose Σ0 ∈
Fp,α(M,M0,M1). There exist some positive constants C1 and C2 depending
only on M , M0 and M1 such that

||Σ−1
0 −Bk(Σ0)

−1||1 ≤ C1k
−α

||Σ−1
0 − Tk(Σ0)

−1||1 ≤ C2(�k/2�)−α,

for all sufficiently large k.

The proofs of these lemmas are given in Section A.

Now we prove Theorem 2.1.

Proof of Theorem 2.1. Let Bk(Σ0)
−1 = (w∗

ij). We have

∑
i∈Ij

|wij | ≤
∑
i∈Ij

|w∗
ij |+

∑
i∈Ij

|wij − w∗
ij |

≤
∑
i∈Ij

|w∗
ij |+ ||Σ−1

0 −Bk(Σ0)
−1||1,

where Ij = {i ∈ {1, 2, . . . , p} : |i − j| > ak log k}. By Lemma 5.2, there exists
some positive constant C1 depending only on M , M0 and M1 such that

||Σ−1
0 −Bk(Σ0)

−1||1 ≤ C1k
−α, (8)

for all sufficiently large k.

For the upper bound of
∑

i∈Ij
|w∗

ij |, Lemma 5.1 gives that, for all sufficiently

large k with p > k ∨ (ak log k),

max
j

∑
i

{|w∗
ij | : |i− j| > ak log k} ≤ − 2C2

log q
k2a log q+1, (9)

where q = (κ1/2 − 1)/(κ1/2 + 1), C2 = {||Σ−1|| ∨ (1 + κ1/2)2}/(2||Σ||) and κ is
the spectral condition number of Σ. By collecting the inequalities (8) and (9),
we complete the proof.

5.2. Proof of Theorem 2.2

In this subsection, we prove Theorem 2.2 which gives the convergence rate of
the tapering estimator. First, we present Lemmas 5.3-5.6 necessary for the proof
of Theorem 2.2. Proofs of these lemmas are given in Section A.

Lemma 5.3. Let Σ and Σ0 be p×p-symmetric matrices and Σ(εn) = Σ+[{εn−
λmin(Σ)} ∨ 0]Ip. For all positive integer r and all positive real number εn > 0,

||Σ(εn) − Σ0||r ≤ 22r−1||Σ− Σ0||r + 4r−1|εn|r.
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Lemma 5.4. Let n, k and p be positive integers with k ≤ p and suppose Σ0 ∈
Fp,α(M,M0,M1). If c ≤ λmin(Σ0)/2 and �k/2� > {4M/λmin(Σ0)}1/α, then

PΣ0 [λmin{Tk(Sn)} ≤ c] ≤ 2p5k exp(−λn),

for some positive constant λ depending only on M0 and M1.

Lemma 5.5. Let n, p and k be positive integers with k ≤ p and suppose Σ0 ∈
Fp,α(M,M0,M1). If k ∨ log p = o(n) and εn = O(1), then there exists some
positive constant C depending only on M0 and M1 such that

EΣ0(||T
(εn)
k (Sn)− Σ0||4) ≤ C,

for all sufficiently large n.

Lemma 5.6. Suppose Σ0 ∈ Fp,α(M,M0,M1). Let q and k be positive integers

with k < q ≤ p, and let (Σ0)1:q,1:q and {T (εn)
k (Sn)}1:q,1:q denoted by Σ0,11 and

T
(εn)
k (Sn)11, respectively. If k ∨ log p = o(n), �k/2� > {4M/λmin(Σ0)}1/α and

εn = O(1), then there exist some positive constants C and λ depending only on
M , M0, M1 and α such that

EΣ0(||T
(εn)
k (Sn)

−1
11 − Σ−1

0,11||2)

≤ C
{k + log p

n
+ k−2α + ε2n +

p1/25k/2 exp(−λn)

ε2n

}
,

for all sufficiently large n.

The proofs of these lemmas are given in Section A.
Now, we give the proof of Theorem 2.2.

Proof of Theorem 2.2. We have

E(||Σ0,Y XΣ−1
0,XX − ψ{T (εn)

k (Sn)}||2)

≤ 2E(||T (εn)
k (Sn)Y X − Σ0,Y X ||2||T (εn)

k (Sn)
−1
XX ||2)

+2||Σ0,Y X ||2E(||T (εn)
k (Sn)

−1
XX − Σ−1

0,XX ||2)

≤ 23

M2
1

E(||T (εn)
k (Sn)Y X − Σ0,Y X ||2I[λmin{Tk(Sn)XX} > M1/2]) (10)

+
2

ε2n
E(||T (εn)

k (Sn)Y X − Σ0,Y X ||2I[λmin{Tk(Sn)XX} ≤ M1/2]) (11)

+2M2
0E(||T (εn)

k (Sn)
−1
XX − Σ−1

0,XX ||2), (12)

where the last inequality holds since λmin{T (εn)
k (Sn)XX} ≥ λmin{T (εn)

k (Sn)} ≥
εn. We have that there exists some positive constant C1 depending only on M ,
M0, M1 and α such that

(10) ≤ 23

M2
1

E(||T (εn)
k (Sn)− Σ0||2)
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≤ 23

M2
1

{23E(||Tk(Sn)− Σ0||2) + 4ε2n}

≤ C1

{k + log p

n
+ k−2α + ε2n

}
,

for all sufficiently large n. The second and last inequalities hold by Lemma 5.3
and Theorem 2 of [6], respectively. By Lemmas 5.4 and 5.5, there exist some
positive constants C2 and λ1 depending only on M0 and M1 such that

(11) ≤ 2

ε2n
E(||T (εn)

k (Sn)− Σ0||4)1/2P (λmin(Tk(Sn)XX) ≤ M1/2)
1/2

≤ C2

ε2n
p1/25k/2 exp(−λ1n),

for all sufficiently large n. Finally, by Lemma 5.6, we get the upper bound of (12)
as

(12) ≤ C3

(k + log p

n
+ k−2α + ε2n +

p1/25k/2 exp(−λ2n)

ε2n

)
,

for some positive constants C3 and λ2 depending only on M , M0, M1 and α.
Combining the upper bounds of (10), (11) and (12), we complete the proof.

5.3. Proofs of Lemma 2.3 and Theorem 2.4

In this subsection, we show the convergence rate of the blockwise tapering esti-
mator by proving Lemma 2.3 and Theorem 2.4. First, we present Lemma 5.7.

Lemma 5.7. Let q and k be positive integers with k < q, and A ∈ Cq be a k-
band matrix. For positive real numbers a and b with q > �ak log k�+ �bk log k�,
we express A and A−1 as

A =

[
A11 A12

A21 A22

]
, A−1 = Ω =

[
Ω11 Ω12

Ω21 Ω22

]
,

where A22,Ω22 ∈ R
(	ak log k
+	bk log k
)×(	ak log k
+	bk log k
). There exist some pos-

itive constants λ and C depending only on ||A|| and ||A−1|| such that

||M (	bk log k
)
	ak log k
+1(Ω22)−M

(	bk log k
)
	ak log k
+1(A

−1
22 )|| ≤ Ck−aλ+1,

for all sufficiently large k and q with �ak log k� ≥ k and q > �ak log k� +
�bk log k�.

The proof of this lemma is given in Section A.
Next, we provide the proofs of Lemma 2.3 and Theorem 2.4.

Proof of Lemma 2.3. There exist some positive constants C1 and C2 depending
only on M , M0 and M1 such that

||ψ(Σ0)− Tk(Σ0)Y XTk(Σ0,XX)−1||
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≤ ||Σ−1
0,XX || ||Tk(Σ0)Y X − Σ0,Y X ||

+||Tk(Σ0)Y X || ||Σ−1
0,XX − Tk(Σ0,XX)−1||

≤ M−1
1 M(�k/2�)−α + (||Σ0||+ ||Tk(Σ0)− Σ0||)||Σ−1

0,XX − Tk(Σ0,XX)−1||
≤ M−1

1 M(�k/2�)−α + {M0 +M(�k/2�)−α}C1(�k/2�)−α

≤ C2(�k/2�)−α,

for all sufficiently large k. The third inequality holds by Lemma 5.2 since
Σ0,XX ∈ Fp0,α(M,M0,M1). Then, we have

||ψ(Σ0)− Tk(Σ0)Y XΛ(0){Tk(Σ0,XX); 2�ak log k�}||
≤ ||ψ(Σ0)− Tk(Σ0)Y XTk(Σ0,XX)−1||

+||Tk(Σ0)Y X [Λ(0){Tk(Σ0,XX); 2�ak log k�} − Tk(Σ0,XX)−1]||
≤ C2(�k/2�)−α + ||Tk(Σ0)Y X [Λ(0){Tk(Σ0,XX);

2�ak log k�} − Tk(Σ0,XX)−1]||.

For this upper bound, we have

||Tk(Σ0)Y X [Λ(0){Tk(Σ0,XX); 2�ak log k�} − Tk(Σ0,XX)−1]||
≤ ||Tk(Σ0)Y X [Tk(Σ0,XX)−1 −M

∗(	ak log k
)
p0−	ak log k
+1{Tk(Σ0,XX)−1}]|| (13)

+||Tk(Σ0)Y X [M
∗(	ak log k
)
p0−	ak log k
+1{Tk(Σ0,XX)−1}

− Λ(0){Tk(Σ0,XX); 2�ak log k�}]||, (14)

First, we show the upper bound of (13). Since Tk(Σ0) is a k-band matrix,
Tk(Σ0)Y X is expressed as

Tk(Σ0)Y X =

[
Ok×(p0−k) {Tk(Σ0)Y X}1:k,(p0−k+1):p0

O(p−p0−k)×(p0−k) O(p−p0−k)×k

]
. (15)

Since �ak log k� ≥ k, the definition of M
∗(	ak log k
)
p0−	ak log k
+1 gives

Tk(Σ0,XX)−1 −M
∗(	ak log k
)
p0−	ak log k
+1{Tk(Σ0,XX)−1}

=

[
B∗ C∗

{Tk(Σ0,XX)−1}(p0−k+1):p0,1:(p0−	ak log k
) Ok×	ak log k


]
,

for some (p0 − k)× (p0 − �ak log k�)-matrix B∗ and some (p0 − k)× �ak log k�-
matrix C∗. Thus,

Tk(Σ0)Y X [Tk(Σ0,XX)−1 −M
∗(	ak log k
)
p0−	ak log k
+1{Tk(Σ0,XX)−1}]

=

[
T

(B)
11 Ok×	ak log k


O(p−p0−k)×(p0−	ak log k
) O(p−p0−k)×	ak log k


]
,
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where T
(B)
11 ={Tk(Σ0)Y X}1:k,(p0−k+1):p0

{Tk(Σ0,XX)−1}(p0−k+1):p0,1:(p0−	ak log k
),
and

(13) = ||{Tk(Σ0)Y X}1:k,(p0−k+1):p0
{Tk(Σ0,XX)−1}(p0−k+1):p0,1:(p0−	ak log k
)||

≤ ||Tk(Σ0)Y X || ||{Tk(Σ0,XX)−1}(p0−k+1):p0,1:(p0−	ak log k
)||.

Let {Tk(Σ0,XX)}−1 = (bij)1≤i,j≤p0 . Every element bij
in {Tk(Σ0,11)

−1}(p0−k+1):p0,1:(p0−	ak log k
) satisfies

|i− j| ≥ �ak log k� − k + 1

> �ak log k�/2,

since �ak log k�/2 ≥ k. Thus, by Lemma 5.1, there exist some positive constants
C3 and λ1 depending only on M0 and M1 such that

||{Tk(Σ0,XX)−1}(p0−k+1):p0,1:(p0−	ak log k
)||2
≤ ||{Tk(Σ0,XX)−1}(p0−k+1):p0,1:(p0−	ak log k
)||1

∨||{Tk(Σ0,XX)−1}(p0−k+1):p0,1:(p0−	ak log k
)||∞
≤ C3k

−aλ1+1,

for all sufficiently large k with p0 > k ∨ �ak log k�/2. Since

||Tk(Σ0)Y X || ≤ ||Σ0||+ ||Σ0 − Tk(Σ0)|| ≤ M0 +M�k/2�,

we get

(13) ≤ (M0 +M�k/2�)C2k
−aλ1+1, (16)

for all sufficiently large k with p0 > k ∨ �ak log k�/2.
Next, we show the upper bound of (14). Since Tk(Σ0)Y X is expressed as (15),

we have

(14) ≤ ||Tk(Σ0)|| ||[M∗(	ak log k
)
p0−	ak log k
+1{Tk(Σ0,XX)−1}

−Λ(0){Tk(Σ0,XX); 2�ak log k�}](p0−k+1):p0,1:p0
||. (17)

Note

[M
∗(	ak log k
)
p0−	ak log k
+1{Tk(Σ0,XX)−1} − Λ(0){Tk(Σ0,XX);

2�ak log k�}](p0−k+1):p0,1:p0

=
[
Ok×(p0−2	ak log k
) −D∗

1 D∗
3 −D∗

2

]
,

where D∗
1 , D

∗
2 and D∗

3 are k × �ak log k�-matrices with

D∗
1=[M

(2	ak log k
)
p0−2	ak log k
+1{Tk(Σ0,XX)}−1](2	ak log k
−k+1):2	ak log k
,1:	ak log k


D∗
2=[M

(2	ak log k
)
p0−2	ak log k
+1{Tk(Σ0,XX)}−1](2	ak log k
−k+1):2	ak log k
,(	ak log k
+1):2	ak log k


D∗
3={Tk(Σ0,XX)−1}(p0 − k+1):p0,(p0 −	ak log k
+1):p0

.
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We have

(14) ≤ ||Tk(Σ0)||(||D∗
1 ||+ ||D∗

2 −D∗
3 ||).

First, we show the upper bound of ||D∗
2 −D∗

3 ||. Let

A22 = M
(2	ak log k
)
p0−2	ak log k
+1{Tk(Σ0,XX)}

Ω22 = M
(2	ak log k
)
p0−2	ak log k
+1{Tk(Σ0,XX)−1}.

By Lemma 5.7, there exist some positive constants C4 and λ2 depending only
on M0 and M1 such that

||D∗
2 −D∗

3 || ≤ ||M (	ak log k
)
	ak log k
+1(Ω22)−M

(	ak log k
)
	ak log k
+1(A

−1
22 )||

≤ C3k
−aλ2+1,

for all sufficiently large k with �ak log k� ≥ k and p0 > 2�ak log k�.
Next, we show the upper bound of ||D∗

1 ||. Let M
(2	ak log k
)
p0−2	ak log k
+1

{Tk(Σ0,XX)}−1 = (cij)1≤i,j≤2	ak log k
. Every element cij in D∗
1 satisfies

|i− j| ≥ �ak log k� − k + 1

≥ �ak log k�/2,

since �ak log k�/2 ≥ k. Thus, Lemma 5.1 gives that there exist some positive
constants C5 and λ3 depending only on M0 and M1 such that

||D∗
1 || ≤ C5k

−aλ3+1,

for all sufficiently large k with p0 > k ∨ (ak log k). By combining this inequality
with (17), we have

(14) ≤ (M0 +M(�k/2�)−α)(C2k
−aλ2+1 + C3k

−aλ3+1). (18)

By collecting the inequalities (16) and (18), the proof is completed.

Proof of Theorem 2.4. We have

E(||ψ(Σ0)− Tk(Sn)Y XΛ(εn){Tk(Sn)XX ; 2�ak log k�}||2)
≤ 2||ψ(Σ0)− Tk(Σ0)Y XΛ(0){Tk(Σ0,XX); 2�ak log k�}||2 (19)

+4E(||Tk(Σ0)Y X − Tk(Sn)Y X ||2 ||Λ(εn){Tk(Sn)XX ; 2�ak log k�}||2) (20)

+4||Tk(Σ0)||2E(||Λ(0){Tk(Σ0,XX); 2�ak log k�}
−Λ(εn){Tk(Sn)XX ; 2�ak log k�}||2). (21)

By Lemma 2.3, there exist some positive constants C1 and λ1 depending only
on M , M0, M1 and α such that

(19) ≤ C1k
−2(α∧(aλ1−1)),
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for all sufficientlay large k with �ak log k�/2 ≥ k and p0 > 2�ak log k�.
Next, we show the upper bound of (20). Let M̃ := M

(2	ak log k
)
p0−2	ak log k
+1 in this

proof. By the definition of Λ(εn), we have

||Λ(εn){Tk(Sn)XX ; 2�ak log k�}|| = ||T (εn)
k [M̃{(Sn)XX}]−1||,

and

(20) = 4E(||Tk(Σ0)Y X − Tk(Sn)Y X ||2||T (εn)
k [M̃{(Sn)XX}]−1||2)

≤ 4

ε2n
E{||Tk(Σ0)Y X − Tk(Sn)Y X ||2I(λmin[M̃{(Sn)XX}] < M1/2)}

+
16

M2
1

E(||Tk(Σ0)Y X − Tk(Sn)Y X ||2)

≤ 4

ε2n
E(||Tk{M (2k+1)

p0−k (Σ0)} − Tk{M (2k+1)
p0−k (Sn)}||4)1/2

× P{λmin[M̃{(Sn)XX}] < M1/2}1/2

+
16

M2
1

E(||Tk{M (2k+1)
p0−k (Σ0)} − Tk{M (2k+1)

p0−k (Sn)}||2)

≤ 4

ε2n
E(23||M (2k+1)

p0−k (Σ0)− Tk{M (2k+1)
p0−k (Sn)}||4 + 23M4(�k/2�)−4α)1/2

×P{λmin[M̃{(Sn)XX}] < M1/2}1/2

+
16

M2
1

E(2||M (2k+1)
p0−k (Σ0)− Tk{M (2k+1)

p0−k (Sn)}||2 + 2M2(�k/2�)−2α)

≤ C2

{ 1

ε2n
(ak log k)1/25k/2 exp(−λ2n) +

k + log k

n
+ k−2α

}
,

for some positive constants C2 and λ2 depending only on M , M0, M1 and α.
The first inequality holds since

λmin(T
(εn)
k [M̃{(Sn)XX}]) ≥ εn.

The second inequality holds since Tk(A)Y X for a matrix A is determined only

by M
(2k+1)
p0−k (A). Note that Tk(A) is a k-banded matrix and Tk(A)Y X is the

off-diagonal block matrix. The third inequality holds since

||Tk(Σ0)− Σ0||1 ≤ ||B	k/2
(Σ0)− Σ0||1
≤ M(�k/2�)−α. (22)

The last inequality holds by Lemmas 5.4, 5.5 and Theorem 2 of [6]. For the upper
bound of (21), we have that there exists some positive constant C3 depending
only on M , M0 and M1 such that

E(||Λ(0){Tk(Σ0,XX); 2�ak log k�} − Λ(εn){Tk(Sn)XX ; 2�ak log k�}||2)
= E(||Tk{M̃(Σ0,XX)}−1 − T

(εn)
k [M̃{(Sn)XX}]−1||2)
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≤ 2E(||M̃(Σ0,XX)−1 − T
(εn)
k [M̃{(Sn)XX}]−1||2)

+2||Tk{M̃(Σ0,XX)}−1 − M̃(Σ0,XX)−1||2

≤ 2E(||M̃(Σ0,XX)−1 − T
(εn)
k [M̃{(Sn)XX}]−1||2) + C3(�k/2�)−2α,

for all sufficiently large k. The first equality is satisfied by the definition of
Λ(0) and Λ(εn). The last inequality holds by Lemma 5.2 since M̃(Σ0,XX) ∈
F2	ak log k
,α(M,M0,M1). We apply Lemma 5.6 and obtain that there exist some
positive constants C4 and λ3 depending only on M , M0, M1 and α such that

E(||M̃(Σ0,XX)−1 − T
(εn)
k [M̃{(Sn)XX}]−1||2)

≤ C4

{k + log(2ak log k)

n
+ ε2n + k−2α +

(2ak log k)1/25k/2 exp(−λ1n)

ε2n

}
,

for all sufficiently large n. Thus, there exists some positive constant C5 depend-
ing only on M , M0, M1 and α such that

(21) ≤ C5

{k + log(2ak log k)

n
+ ε2n + k−2α +

(2ak log k)5k exp(−λ1n)

ε2n

}
,

for all sufficiently large n and k. Collecting the upper bounds of (19), (20)
and (21), we complete the proof.

5.4. Proof of Theorem 2.5

In this subsection, we prove Theorem 2.5 which gives the lower bound of the
minimax risk for the conditional mean operator under the bandable covariance
assumption. For probability measures Pθ and Pθ′ , we define

||Pθ − Pθ′ ||1 =

∫
|pθ′ − pθ|dν

||Pθ ∧ Pθ′ || =

∫
pθ′ ∧ pθdν,

where pθ and pθ′ are probability density functions of Pθ and Pθ′ , respectively,
with respect to the reference measure ν. First, we provide Lemma 5.8 which is
a reformulation of the proof of Lemma 6 in [6].

Lemma 5.8. Suppose Σ and Σ′ are p× p-positive definite matrices. Let PΣ be
the joint distribution of X1, X2, . . . , Xn, which are independent and identically
generated from Np(0,Σ). If ||Σ− Σ′||2(||Σ−1||2 ∧ ||Σ′ −1||2) < 1/2, then

||PΣ − PΣ′ ||21 ≤ n(||Σ−1||2 ∧ ||Σ′ −1||2)2||Σ− Σ′||2F .

The proof of this lemma is given in Section A.

Proof of Theorem 2.5. Let Cp,p0 = {A ∈ R
p×p : A1:p0,1:p0 ∈ Cp0}, and (Cp,p0)

χ

be the space of estimators on Cp,p0 , where χ is the sample space. Since for an
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arbitrary B ∈ R
(p−p0)×p0 there exists AB ∈ Cp,p0 such that ψ(AB; p0) = B, it

suffices to show

inf
Â∈(Cp,p0 )

χ

sup
Σ0∈Fp,α

E(||ψ(Σ0; p0)− ψ(Â; p0)||2) ≥ Cn−2α/(2α+1),

for some positive constant C. Let d(Σ̂,Σ0) = ||Σ̂Y XΣ̂−1
XX − Σ0,Y XΣ−1

0,XX ||2,
which is a semimetric on Cp,p0 . For a positive integer k with k < p0/2, let
Θ = {0, 1}k, and let H(θ, θ′) be the Hamming distance on Θ. We define

Σ(θ) = M̄Ip + τ

k∑
m=1

θmB(m+ p0; k), θ = (θ1, θ2, . . . , θk) ∈ Θ,

where τ = {M(2k)−α−1} ∧ {(M0 − M̄)/(2k)}, M̄ = (M0 + M1)/2, B(l; k) =
(bij)1≤i,j≤p and

bij = I(i = l and l − 2k ≤ j ≤ l − 1, or j = l and l − 2k ≤ i ≤ l − 1).

Note that Σ(θ) ∈ Fp,α(M,M0,M1) for all θ ∈ Θ. Thus,

inf
Â∈(Cp,p0 )

χ

sup
Σ0∈Fp,α

E||ψ(Σ0; p0)− ψ(Â; p0)||2

≥ inf
Â∈(Cp,p0 )

χ

sup
θ∈Θ

E||ψ(Σ(θ); p0)− ψ(Â; p0)||2

= inf
Â∈(Cp,p0 )

χ

sup
θ∈Θ

E[d2{Σ(θ), Â}] (23)

By the Assouad lemma [6, Lemma 4], we have, for all s > 0,

sup
θ∈Θ

2sE[ds{Â,Σ(θ)}] ≥ min
H(θ,θ′)≥1

ds{Σ(θ),Σ(θ′)}
H(θ, θ′)

k

2
min

H(θ,θ′)=1
||Pθ ∧ Pθ′ ||, (24)

where Pθ is the joint distribution of n independent observations from the mul-
tivariate normal distribution with mean zero and covariance Σ(θ).

First, we show the lower bound of

ds{Σ(θ),Σ(θ′)}
H(θ, θ′)

.

For vector v = {I(p0−k < i ≤ p0)}1≤i≤p0 and all θ, θ′ ∈ Θ with θ �= θ′, we have

d2{Σ(θ),Σ(θ′)} ≥ ||{Σ(θ)Y X − Σ(θ′)Y X}(M̄Ip0)
−1v||2

||v||2

≥ M̄−2 ||{Σ(θ)Y X − Σ(θ′)Y X}v||2
||v||2

≥ M̄−2H(θ, θ′)τ2k,
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which implies

min
H(θ,θ′)≥1

d2{Σ(θ),Σ(θ′)}
H(θ, θ′)

≥ M̄−2τ2k. (25)

Next, we consider the lower bound of minH(θ,θ′)=1 ||Pθ ∧ Pθ′ ||. We assume

H(θ, θ′) = 1, 2τk < M̄ , 2τk/(M̄ −2τk) < 1/2 and (
√
2n1/2k1/2τ)/(M̄ −2τk) ≤

1/2. We have

||Σ(θ)− Σ(θ′)||2 ≤ ||Σ(θ)− Σ(θ′)||1
≤ 2τk,

and

||Σ(θ)−1|| = λmin{Σ(θ)}−1

≤ 1

M̄ − ||Σ(θ)− M̄Ip||

≤ 1

M̄ − 2τk
,

where the first inequality holds by Lemma 4.14 in [23]. Since 2τk/(M̄ − 2τk) <
1/2, Lemma 5.8 gives

min
H(θ,θ′)=1

||Pθ ∧ Pθ′ || = 1− max
H(θ,θ′)=1

||Pθ − Pθ′ ||1/2

≥ 1− n1/2||Σ(θ)− Σ(θ′)||F
2(M̄ − 2τk)

≥ 1−
√
2n1/2k1/2τ

M̄ − 2τk
, (26)

where the last inequality holds since ||Σ(θ)− Σ(θ′)||F ≤ (8kτ2)1/2.
Since (

√
2n1/2k1/2τ)/(M̄ − 2τk) ≤ 1/2,

min
H(θ,θ′)=1

||Pθ ∧ Pθ′ || ≥ 1/2.

Thus, collecting inequalities (23), (24) and (25), we get

inf
Σ̂

max
θ∈{0,1}k

22Eθd
2{Σ̂,Σ(θ)} ≥ ck2τ2,

for some positive constant c. Since τ ≤ M(2k)−α−1 we obtain the desired min-
imax lower bound by setting k = (γn)1/(2α+1)/2, where γ = 16M2/(M̄2).

Finally, we check the assumed conditions on k:

2k < p0

2τk < M̄

2τk/(M̄ − 2τk) < 1/2
√
2n1/2k1/2τ

M̄ − 2τk
≤ 1/2.
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Note τ ≤ M(2k)−α−1 and k = (γn)1/(2α+1)/2. The first condition is satisfied
when (γn)1/(2α+1) < p0. For the other conditions, we have

2τk ≤ M(γn)−α/(2α+1)

2τk/(M̄ − 2τk) ≤ M(γn)−α/(2α+1)

M̄ −M(γn)−α/(2α+1)

√
2n1/2k1/2τ

M̄ − 2τk
≤ M/γ1/2

M̄ −M(γn)−α/(2α+1)
.

The first and second upper bounds of these inequalities can be arbitrary small
numbers for all sufficiently large n. The last upper bound is smaller than 1/2
for all sufficiently large n since γ = 16M2/(M̄2). Thus, the assumed conditions
on k are satisfied for all sufficiently large n.

6. Discussion

We have considered the estimation of the conditional mean operator under the
bandable covariance assumption, which is useful for the multivariate linear re-
gression when there is a natural order in the variables. We showed that the
plug-in estimator by the tapering estimator of covariance, which is the minimax
optimal estimator for the class of bandable covariance, is sub-optimal for the
conditional mean operator. This observation implies that when a function of
the covariance matrix is to be estimated, the plug-in estimator by a minimax
optimal covariance estimator may not be optimal. We have proposed the block-
wise tapering estimator and the blockwise tapering post-processed posterior as
minimax-optimal estimators for the conditional mean operator under the band-
able covariance assumption. We constructed the estimators by modifying the
tapering estimator and the tapering post-processed posterior to exclude the co-
variates which have small partial correlations with the response variables. Using
the numerical studies, we also showed that the blockwise tapering estimator and
the blockwise tapering post-processed posterior have smaller errors when p is
large enough.

The tapering estimator and blockwise tapering estimator are constructed
from the tapered sample covariance, and we can make similar estimators for
the regression coefficient by replacing the tapered sample covariance with the
banded sample covariance. Futhermore, the banding versions of these estimators
also have the same convergence rates as their tapering versions. When we obtain
the convergence rates of the tapering estimator and blockwise tapering estimator
(Theorems 2.2 and 2.4), we rely on the concentration inequality for the tapered
sample covariance Tk(Sn),

E(Tk(Sn − Σ0) > t) ≤ C1p(1 + C2)
k exp(−λnt2),

for some positive constants C1, C2 and λ. According to inequality (5.5) in [34],
the banded sample covariance Bk(Sn) also has the same form of concentra-
tion inequality. Thus, the same convergence rates are obtained for the banding
versions of the proposed frequentist methods.
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Appendix A: Proofs of remaining lemmas and theorems

In this section, we give the proofs of Theorems 3.1 and 3.2 and lemmas given
in Section 5.

A.1. Proofs of Theorems 3.1 and 3.2

In this section, we prove Theorems 3.1 and 3.2 which give the P-risk conver-
gence rates of the tapering and blockwise tapering post-processed posteriors,
respectively. First, we present Lemmas A.1-A.4 necessary for the proofs of The-
orems 3.1 and 3.2.

Lemma A.1. Let k and p be positive integers with k ≤ p. Suppose Σ0 ∈
Fp,α(M,M0,M1), and let the prior πi of Σ be IWp(An, νn) for An ∈ Cp and
νn > 2p. If k ∨ ||An|| ∨ (νn − 2p) ∨ log p = o(n) and εn = O(1), then for all

sufficiently large n, EΣ0{Eπi

(||T (εn)
k (Σ)−Σ0||4 | Zn)} is bounded above by some

positive constant depending only on M , M0, M1 and α.

Lemma A.2. Suppose the same setting of Lemma A.1. If c ≤ λmin(Σ0)/2,
�k/2� > {4M/λmin(Σ0)}1/α and k ∨ ||An|| ∨ (νn − 2p)∨ log p = o(n), then there
exist some positive constants C and λ depending only on M0 and M1 such that

EΣ0(P
πi

[λmin{Tk(Σ)} ≤ c | Zn]) ≤ Cp5k exp(−λn),

for all sufficiently large n.

Lemma A.3. Suppose the same setting of Lemma A.1. If ||An||∨(νn−2p)∨k∨
log p = o(n) and εn = O(1), then there exist some positive constant C depending
only on M , M0, M1 and α such that

EΣ0{Eπi

(||Σ0 − T
(εn)
k (Σ)||2 | Zn)} ≤ C

(
k−2α +

k + log p

n
+ ε2n

)
,

for sufficiently large n.

Lemma A.4. Suppose the same setting of Lemma A.1. Let q and k be positive

constants with k < q ≤ p, and let {T (εn)
k (Σ)}1:q,1:q and (Σ0)1:q,1:q be denoted

by T
(εn)
k (Σ)11 and Σ0,11, respectively. If �k/2� > {4M/λmin(Σ0)}1/α and k ∨

||An|| ∨ (νn − 2p) ∨ log p = o(n), then there exist positive constants C and λ
depending only on M , M0, M1 and α such that

EΣ0{Eπi

(||Σ−1
0,11 − T

(εn)
k (Σ)−1

11 ||2 | Zn)}

≤ C
{k + log p

n
+ k−2α + ε2n +

p1/25k/2 exp(−λn)

ε2n

}
,

for all sufficiently large n.
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The proofs of Lemmas A.1-A.4 are given in Section A.6.
Now we give the proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Since λmin{T (εn)
k (Σ)−1

XX} ≥ λmin{T (εn)
k (Σ)−1} ≥ εn, we

have

EΣ0{Eπi

(||ψ(Σ0)− ψ{T (εn)
k (Σ)}||2 | Zn)}

= EΣ0{Eπi

(||Σ0,Y XΣ−1
0,XX − T

(εn)
k (Σ)Y XT

(εn)
k (Σ)−1

XX ||2 | Zn)}

≤ 2EΣ0{Eπi

(||T (εn)
k (Σ)Y X − Σ0,Y X ||2||T (εn)

k (Σ)−1
XX ||2 | Zn)}

+2||Σ0,Y X ||2EΣ0{Eπi

(||T (εn)
k (Σ)−1

XX − Σ−1
0,XX ||2 | Zn)}

≤ 23

M2
1

EΣ0{Eπi

(||T (εn)
k (Σ)Y X − Σ0,Y X ||2 | Zn)} (27)

+
2

ε2n
EΣ0{Eπi

(||T (εn)
k (Σ)Y X − Σ0,Y X ||2

× I[λmin{Tk(Sn)} ≤ M1/2] | Zn)} (28)

+2||Σ0,Y X ||2EΣ0{Eπi

(||T (εn)
k (Σ)−1

XX − Σ−1
0,XX ||2 | Zn)}. (29)

Lemmas A.3 and A.4 give that there exist some positive constants C1 and λ1

depending only on M , M0, M1 and α such that

(27) + (29) ≤ C1

{k + log p

n
+ k−2α + ε2n +

p1/25k/2 exp(−λ1n)

ε2n

}
,

for all sufficiently large n. Next we show the upper bound of (28). By Lem-
mas A.1 and A.2, there exist positive constants C2 and λ2 depending only on
M , M0, M1 and α such that

(28) ≤ 2

ε2n
EΣ0{Eπi

(||T (εn)
k (Σ)Y X − Σ0,Y X ||4 | Zn)}1/2

×EΣ0{Pπi

(I[λmin{Tk(Sn)} ≤ M1/2] | Zn)}1/2

≤ C2
p1/25k/2

ε2n
exp(−λ2n),

for all sufficiently large n. Collecting the upper bounds of (27), (28) and (29),
we complete the proof.

Proof of Theorem 3.2. We have

EΣ0{Eπi

(||ψ(Σ0)− Tk(Σ)Y XΛ(εn){Tk(Σ)XX ; 2�ak log k�}||2 | Zn)}
≤ 2||ψ(Σ0)− Tk(Σ0)Y XΛ(0){Tk(Σ0,XX); 2�ak log k�}||2 (30)

+4EΣ0{Eπi

(||{Tk(Σ0)Y X − Tk(Σ)Y X}
× Λ(εn){Tk(Σ)XX ; 2�ak log k�}||2 | Zn)} (31)

+4||Tk(Σ0)Y X ||2EΣ0{Eπi

(Λ(0){Tk(Σ0,XX); 2�ak log k�}
−Λ(εn){Tk(Σ)XX ; 2�ak log k�}||2 | Zn)}. (32)
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Lemma 2.3 gives that there exist positive constants C1 and λ1 depending only
on M , M0, M1 and α such that

(30) ≤ C1k
−2{α∧(aλ1−1)}

for all sufficiently large k with �ak log k�/2 > k and p0 > 2�ak log k�. Let M̃ =

M
(2	ak log k
)
p0−2	ak log k
+1 in this proof. By the definition of Λ(εn), we have

||Λ(εn){Tk(ΣXX); 2�ak log k�}|| = ||T (εn)
k {M̃(ΣXX)}−1||.

Thus, there exist positive constants C2 and λ2 depending only on M , M0, M1

and α such that

(31) ≤ 4EΣ0{Eπi

(||Tk(Σ0)Y X − Tk(Σ)Y X ||2||T (εn)
k {M̃(ΣXX)}−1||2 | Zn)}

≤ 4

ε2n
EΣ0{Eπi

(||Tk(Σ0)Y X

−Tk(Σ)Y X ||2I[λmin{M̃(ΣXX)} < M1/2] | Zn)}

+
16

M2
1

EΣ0{Eπi

(||Tk(Σ0)Y X − Tk(Σ)Y X ||2 | Zn)}

≤ 4

ε2n
EΣ0{Eπi

(||Tk{M (2k+1)
p0−k (Σ0)} − Tk{M (2k+1)

p0−k (Σ)}||4 | Zn)}1/2

×EΣ0 [P
πi{λmin{M̃(ΣXX)} < M1/2 | Zn}]1/2

+
16

M2
1

EΣ0{Eπi

(||Tk{M (2k+1)
p0−k (Σ0)} − Tk{M (2k+1)

p0−k (Σ)}||2 | Zn)}

≤ C2

( 1

ε2n
(ak log k)1/25k/2 exp(−λ2n) +

k + log k

n
+ k−2α

)
,

for all sufficiently large n. The third inequality holds since λmin{M̃(ΣXX)} ≥
λmin(Σ). The last inequality holds by Lemma A.1, A.2 and A.3. For the upper
bound of (32), we have

EΣ0{Eπi

(Λ(0){Tk(Σ0,XX); 2�ak log k�}
− Λ(εn){Tk(Σ)XX ; 2�ak log k�}||2 | Zn)}

= EΣ0{Eπi

(||Tk{M̃(Σ0,XX)}−1 − T
(εn)
k {M̃(ΣXX)}−1||2 | Zn)}

≤ 2EΣ0{Eπi

(||M̃(Σ0,XX)−1 − T
(εn)
k {M̃(ΣXX)}−1||2 | Zn)} (33)

+2||M̃(Σ0,XX)−1 − Tk{M̃(Σ0,XX)}−1||2 (34)

where the first equality holds by the definition of Λ(0) and Λ(εn). Since
M̃(Σ0,XX) ∈ F2	ak log k
,α(M,M0,M1), Lemma 5.2 gives that there exists some
positive constant C3 depending only on M , M0 and M1 such that

(34) ≤ C3(�k/2�)−2α
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for all sufficiently large k. Lemma A.4 gives that there exist some positive con-
stants C4 and λ3 depending only on M , M0, M1 and α such that

(33) ≤ C4

{k + log(2ak log k)

n
+ k−2α + ε2n +

(2ak log k)1/25k/2 exp(−λ3n)

ε2n

}
,

for all sufficiently large n. Thus, there exists some positive constant C5 depend-
ing only on M , M0, M1 and α such that

(32) ≤ C5

{k + log(2ak log k)

n
+ k−2α + ε2n +

(2ak log k)1/25k/2 exp(−λ3n)

ε2n

}
,

for all sufficiently large n and k. Collecting the upper bounds of (30), (31)
and (32), we complete the proof.

A.2. Proofs of lemmas in Section 5.1

In this section, we give the proofs of lemmas in Section 5.1.

Proof of Lemma 5.1. Since Σ is a k-band matrix,

|wij | ≤ Cq2|i−j|/k, i, j ∈ {1, 2, . . . , p},

where q = (κ1/2 − 1)/(κ1/2 + 1), C = {||Σ−1|| ∨ (1 + κ1/2)2}/(2||Σ||) and κ is
the spectral condition number of Σ defined as λmax(Σ)/λmin(Σ) [11, Theorem
2.4]. Note that

max
j

∑
{i:|i−j|>ak log k}

q2|i−j|/k ≤ 2

1− q2/k
q2a log k

=
2

k(1− q2/k)
klog q2a+1,

and

lim
k−→∞

k(q2/k − 1) =
(dq2x

dx

)
x=0

= 2 log q.

Thus, we get

max
j

∑
{i:|i−j|>ak log k}

q2|i−j|/k ≤ 2

− log q
klog q2a+1

for all sufficiently large k.

Proof of Lemma 5.2. By Thorem 2.3.4 of [16], we have

||Σ−1
0 −Bk(Σ0)

−1||1 ≤ ||Bk(Σ0)
−1||21||Σ0 −Bk(Σ0)||1

1− ||Bk(Σ0)−1{Σ0 −Bk(Σ0)}||1
, (35)
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when ||Bk(Σ0)
−1{Σ0 − Bk(Σ0)}||1 < 1. This inequality condition holds for all

sufficiently large k, since ||Bk(Σ0)
−1||1 is bounded above by a constant and

||Σ0 − Bk(Σ0)||1 ≤ Mk−α. We show the boundedness of ||Bk(Σ0)
−1||1 be-

low. Note that Bk(Σ0) ∈ Cp for all sufficiently large k since λmin{Bk(Σ0)} ≥
λmin(Σ0)− ||Bk(Σ0)− Σ0|| [23, Lemma 4.14]. Thus, Theorem 2.4 of [11] gives

||Bk(Σ0)
−1||1 ≤ max

j

p∑
i=1

|wij |

≤ C1 sup
j

p∑
i=1

(q
2/k
1 )|i−j|

≤ 2C1

1− q
2/k
1

, (36)

where Bk(Σ0) = (wij), C1 = {||Bk(Σ0)
−1|| ∨ (1 + κ

1/2
1 )2}/(2||Bk(Σ0)||), q1 =

(κ
1/2
1 − 1)/(κ

1/2
1 + 1) and κ1 is the spectral condition number of Bk(Σ0). To

show that (36) is bounded, it suffices to show that ||Bk(Σ0)
−1||2 is bounded. By

Lemma 4.14 in [23], we have

||Bk(Σ0)
−1||2 = λmin{Bk(Σ0)}−1

≤ 1

λmin(Σ0)− ||Bk(Σ0)− Σ0||

≤ 1

λmin(Σ0)−Mk−α
, (37)

which is bounded for all sufficiently large k. Thus, for all sufficiently large k,
||Bk(Σ0)

−1{Σ0−Bk(Σ0)}||1 < 1 and the inequality (35) is satisfied. By combin-
ing (35) and (36), we have that there exists some positive constant C2 depending
only on M , M0 and M1 such that

||Σ−1
0 −Bk(Σ0)

−1||1 ≤
( 2C1

1− q
2/k
1

)2 Mk−α

1− 2C1Mk−α/(1− q
2/k
1 )

≤ C2Mk−α,

for all sufficiently large k.
Next, we consider the upper bound of ||Σ−1

0 −Tk(Σ0)
−1||1. Note that Tk(Σ0)

is a k-band matrix and

||Tk(Σ0)− Σ0||1 ≤ ||B	k/2
(Σ0)− Σ0||1
≤ M(�k/2�)−α. (38)

In the same way as deriving the inequalties (36) and (37), we have

||Tk(Σ0)
−1||1 ≤ 2C3

1− q
2/k
2

(39)

||Tk(Σ0)
−1||2 ≤ 1

λmin(Σ0)−M(�k/2�)−α
,
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where C3 = ||Tk(Σ0)
−1||∨(1+κ

1/2
2 )2/(2||Tk(Σ0)||), q2 = (κ

1/2
2 −1)/(κ

1/2
2 +1) and

κ2 is the spectral condition number of Tk(Σ0). Thus, we have ||Tk(Σ0)
−1(Σ0 −

Tk(Σ0))||1 < 1 for all sufficiently large k, and apply Theorem 2.3.4 of [16]. By
Theorem 2.3.4 of [16], there exists some positive constant C4 depending only on
M , M0 and M1 such that

||Σ−1
0 − Tk(Σ0)

−1||1 ≤ ||Tk(Σ0)
−1||21||Σ0 − Tk(Σ0)||1

1− ||Tk(Σ0)−1(Σ0 − Tk(Σ0))||1
≤ C4(�k/2�)−α,

for all sufficiently large k. The last inequality holds by the inequalities (38)
and (39).

A.3. Proofs of lemmas in Section 5.2

In this section, we give the proofs of the lemmas in Section 5.2. First, we present
Lemmas A.5 and A.6 which are necessary for the proofs of these lemmas.

Lemma A.5. Let p and k be positive integers with k ≤ p. For an arbitrary
covariance matrix Σ ∈ Cp,

||Tk(Σ)||r ≤ 3 max
1≤l≤p

||M (k)
l (Σ)||r,

where || · ||r is the matrix r-norm.

Proof. [6] in Lemma 1 shows

Tk(Σ) = (k/2)−1{S∗(k)(Σ)− S∗(k/2)(Σ)},

where S∗(k)(Σ) =
∑p

l=1−k M
∗(k)
l (Σ). Thus, we have

||Tk(Σ)||r ≤ (2/k)(||S∗(k)(Σ)||r + ||S∗(k/2)(Σ)||r). (40)

Note that

S∗(k)(Σ) =
k∑

l=1

∑
−1≤j≤	p/k


M
∗(k)
jk+l(Σ).

We have ∣∣∣∣∣∣ ∑
−1≤j≤	p/k


M
∗(k)
jk+l(Σ)

∣∣∣∣∣∣
r
= max

−1≤j≤	p/k

||M∗(k)

jk+l(Σ)||r,

for l ∈ {1, 2, . . . , k}, since the sum of matrices is a block diagonal matrix. Thus,
we get

||S∗(k)(Σ)||r ≤
k∑

l=1

∣∣∣∣∣∣ ∑
−1≤j≤	p/k


M
∗(k)
jk+l(Σ)

∣∣∣∣∣∣
r

≤ k max
1≤l≤k

∣∣∣∣∣∣ ∑
−1≤j≤	p/k


M
∗(k)
jk+l(Σ)

∣∣∣∣∣∣
r
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≤ k max
1−k≤l≤p

||M∗(k)
l (Σ)||r,

= k max
1≤l≤p

||M∗(k)
l (Σ)||r, (41)

and

||S∗(k/2)(Σ)||r ≤ (k/2) max
1≤l≤p

||M∗(k/2)
l (Σ)||r.

Since ||M∗(k/2)
l (Σ)||r ≤ ||M∗(k)

l (Σ)||r for l ∈ {1, 2, . . . , p}, we have

||S∗(k/2)(Σ)||r ≤ (k/2) max
1−k≤l≤p

||M∗(k)
l (Σ)||r. (42)

Collecting (40), (41) and (42), we get

||Tk(Σ)||r ≤ 3 max
1≤l≤p

||M (k)
l (Σ)||r.

Lemma A.6. Let k and r be positive integers, and τ and M0 be positive real
numbers with τ ≥ k−1. Suppose Σ0 ∈ Ck and T ∼ Wk(Σ0, τ). If λmax(Σ0) ≤ M0,
then there exists some positive constant C depending only on M0 and r such that

E(||T/τ − Σ0||r2) ≤ C
5k

τ r/2
.

Proof. Let Ω
(k)
τ = Σ

−1/2
0 TΣ

−1/2
0 /τ . We have

E(||T/τ − Σ0||r2) ≤ ||Σ0||r2E(||Ω(k)
τ − Ik||r2).

Since ||Σ0||r2 is bounded by Mr
0 , it suffices to show the upper bound of E(||Ω(k)

τ −
Ik||r2). By a property of Wishart distribution, we have

Ω(k)
τ = Σ

−1/2
0 TΣ

−1/2
0 /τ ∼ Wk(Ik/τ, τ),

and

E(||Ω(k)
τ − Ik||r)

≤
∫ 1

0

xr−1P (||Ω(k)
τ − Ik|| > x)dx+

∫ ∞

1

xr−1P (||Ω(k)
τ − Ik|| > x)dx

≤ 2× 5k
{∫ 1

0

xr−1 exp(−τx2/27)dx+

∫ ∞

1

xr−1 exp(−τx/27)dx
}
,

where the last inequality is satisfied by Lemma 4.4 in [23]. Integration by sub-
stitution and the definition of Gamma function give the inequalities∫ 1

0

xr−1 exp(−τx2/27)dx ≤ 27r/2−1

τ r/2

∫ ∞

0

tr/2−1 exp(−t)dt

=
27r/2−1

τ r/2
Γ(r/2)
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∫ ∞

1

xr−1 exp(−τx/27)dx ≤
(27
τ

)r
∫ ∞

0

tr−1 exp(−t)dx

=
(27
τ

)r

Γ(r).

Thus,

E(||Ω(k)
τ − Ik||r) ≤ C1

5k

τ r/2
,

for some positive constant C1 depending only on r.

Proof of Lemma 5.3. By Lemma 4.14 in [23], we have

λmin(Σ) = λmin(Σ− Σ0 +Σ0)

≥ λmin(Σ0)− ||Σ− Σ0||.

Using this inequality, we get

||Σ− Σ0|| ≥ ||Σ− Σ0||I(λmin(Σ) < 0)

≥ {||Σ− Σ0|| − λmin(Σ0)}I(λmin(Σ) < 0)

≥ −λmin(Σ)I(λmin(Σ) < 0). (43)

We also have

{εn − λmin(Σ)} ∨ 0 ≤ {εn − λmin(Σ)I(λmin(Σ) < 0)} ∨ 0

= εn − λmin(Σ)I(λmin(Σ) < 0). (44)

Thus, we have

||Σ(εn) − Σ0||r

= ||Σ− Σ0 + [{εn − λmin(Σ)} ∨ 0]Ip||r

≤ 2r−1||Σ− Σ0||r + 2r−1|εn − λmin(Σ)I(λmin(Σ) < 0)|r

≤ 2r−1||Σ− Σ0||r + 4r−1|εn|r + 4r−1| − λmin(Σ)I(λmin(Σ) < 0)|r

≤ 2r−1||Σ− Σ0||r + 4r−1|εn|r + 4r−1||Σ− Σ0||r

≤ 22r−1||Σ− Σ0||r + 4r−1|εn|r,

where the first and third inequalities are satisfied inequalities (44) and (43),
respectively.

Proof of Lemma 5.4. Two inequalities in Lemma 4.14 of [23],

λmin{Tk(Sn)} ≥ λmin{Tk(Σ0)} − ||Tk(Sn)− Tk(Σ0)||
λmin{Tk(Σ0)} ≥ λmin(Σ0)− ||Σ0 − Tk(Σ0)||,

imply

I[λmin{Tk(Sn)} ≤ c]
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≤ I{λmin(Σ0)− ||Tk(Σ0)− Σ0|| − ||Tk(Sn)− Tk(Σ0)|| ≤ c}
≤ I(||Tk(Sn)− Tk(Σ0)|| ≥ ck), (45)

where ck = λmin(Σ0) − M(�k/2�)−α − c. The last inequality holds by the in-
equality (38). Since c ≤ λmin(Σ0)/2 and �k/2� > {4M/λmin(Σ0)}1/α, we have
ck ≥ λmin(Σ0)/4. By Lemma A.5, we have

P (||Tk(Sn)− Tk(Σ0)|| ≥ ck) ≤ P ( max
1≤l≤p

||M (k)
l (Sn − Σ0)|| ≥ ck/3)

≤ P (||Σ0|| max
1≤l≤p

||Ω∗(k)
n,l − Ik|| ≥ ck/3)

≤ P (M0 max
1≤l≤p

||Ω∗(k)
n,l − Ik|| ≥ ck/3)

≤ p max
1≤l≤p

P{||Ω∗(k)
n,l − Ik|| ≥ ck/(3M0)},

where Ω
∗(k)
n,l = M

(k)
l (Σ0)

−1/2M
(k)
l (Sn)M

(k)
l (Σ0)

−1/2 of which distribution is
Wk(Ik/n, n). Since ck/(3M0) < 1, Lemma 4.4 in [23] gives

P{||Ω∗(k)
n,l − Ik|| ≥ ck/(3M0)} ≤ 2× 5k exp[−n{ck/(3M0)}2/27]

Thus, combining this inequality with (45), we get

E(I[λmin{Tk(Sn)} ≤ c]) ≤ E{I(||Tk(Sn)− Tk(Σ0)|| ≥ ck)}
≤ p max

1≤l≤p
P{||Ω∗(k)

n,l − Ik|| ≥ ck/(3M0)}

≤ 2p5k exp(−λn),

for some positive constant λ depending only on M0 and M1.

Proof of Lemma 5.5. Note, by Lemmas A.5 and 5.3,

E(||T (εn)
k (Sn)− Σ0||4)

≤ 27E(||Tk(Sn)− Σ0||4) + 43ε4n

≤ 210E(||Tk(Sn)− Tk(Σ0)||4) + 210||Σ0 − Tk(Σ0)||4 + 43ε4n

≤ 21034E( max
1≤l≤p

||M (k)
l (Sn − Σ0)||4) + 210||Σ0 − Tk(Σ0)||4 + 43ε4n.

It suffices to show E(max1≤l≤p ||M (k)
l (Sn − Σ0)||4) is bounded above. There

exist some positive constants ρ1 and C1 depending only on M0 such that

E( max
1≤l≤p

||M (k)
l (Sn − Σ0)||4)

≤ x4 + E{max
1≤l≤p

||M (k)
l (Sn − Σ0)||4I( max

1≤l≤p
||M (k)

l (Sn − Σ0)|| > x)}

≤ x4 + p1/2 max
1≤l≤p

E(||M (k)
l (Sn − Σ0)||8)1/2P ( max

1≤l≤p
||M (k)

l (Sn − Σ0)|| > x)1/2

≤ x4 + C1p
1/2 5

k/2

n2
{2p5k exp(−nx2ρ1)}1/2,
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for all 0 < x < ρ1. The last inequality is satisfied by Lemma A.6 and Lemma
3 of [6]. We set x = {2(log p+ k) log 5/(nρ1)}1/2, which can be smaller than an
arbitrary positive constant for all sufficiently large n. Then, we have

E( max
1≤l≤p

||M (k)
l (Sn − Σ0)||4)

≤
{2(log p+ k) log 5

nρ1

}2

+

√
2C1p5

k

n2
exp{−(log p+ k) log 5}

=
{2(log p+ k) log 5

nρ1

}2

+

√
2C1

n2
exp(−(log 5− 1) log p),

which is bounded by some positive constant depending only on M0 for all suf-
ficiently large n.

Proof of Lemma 5.6. Let c = λmin(Σ0)/2.

Since λmin{T (εn)
k (Sn)11} ≥ λmin{T (εn)

k (Sn)} ≥ εn, we have

E(||T (εn)
k (Sn)

−1
11 − Σ−1

0,11||2)

≤ ||Σ−1
0,11||2E(||T (εn)

k (Sn)
−1
11 ||2||T

(εn)
k (Sn)11 − Σ0,11||2)

≤
||Σ−1

0,11||2

ε2n
E(||T (εn)

k (Sn)11 − Σ0,11||2I[λmin{Tk(Sn)} ≤ c]) (46)

+
||Σ−1

0,11||2

c2
E(||T (εn)

k (Sn)11 − Σ0,11||2). (47)

By Lemmas 5.4 and 5.5, there exist some positive constants C1 and λ1 depending
only on M0 and M1 such that

(46) ≤ 1

M2
1 ε

2
n

E(||T (εn)
k (Sn)11 − Σ0,11||4)1/2P [λmin{Tk(Sn)} ≤ c]1/2

≤ C1

M2
1 ε

2
n

p1/25k/2 exp(−λ1n), (48)

for all sufficiently large n. We also have

(47) ≤ 1

M2
1 c

2
E(||T (εn)

k (Sn)− Σ0||2)

≤ 23

M2
1 c

2
E(||Tk(Sn)− Σ0||2) +

4

M2
1 c

2
ε2n

≤ C2

{k + log p

n
+ k−2α + ε2n

}
, (49)

for some positive constant C2 depending only on M , M0, M1 and α. The second
and last inequalities hold by Lemma 5.3 and Theorem 2 of [6], respectively.
Collecting (48) and (49), we complete the proof.
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A.4. Proof of lemma in Section 5.3

In this section, we give the proof of Lemma 5.7 in Section 5.3.

Proof of Lemma 5.7. Let {B	ak log k
(Ω)}12 = {B	ak log k
(Ω)}1:q∗,(q∗+1):q, where
q∗ = q−�ak log k�− �bk log k� and B	ak log k
 is �ak log k�-banding operator de-
fined in [2]. First, we show the equality

M
(	bk log k
)
	ak log k
+1(A

−1
22 [I −A21{B	ak log k
(Ω)}12]) = M

(	bk log k
)
	ak log k
+1(A

−1
22 ). (50)

Since �ak log k� ≥ k and A is a k-band matrix, A21 is expressed as

A21 =

[
O{	ak log k
×(q∗−	ak log k
)} A∗

O{	bk log k
×(q∗−	ak log k
)} O(	bk log k
×	ak log k
)

]
,

for some �ak log k� × �ak log k�-matrix A∗. Likewise, {B	ak log k
(Ω)}12 is ex-
pressed as

{B	ak log k
(Ω)}12 =

[
O{(q∗−	ak log k
)×	ak log k
} O{(q∗−	ak log k
)×	bk log k
}

B∗
(	ak log k
×	ak log k
) O(	ak log k
×	bk log k
)

]
,

for some �ak log k� × �ak log k�-matrix B∗. Thus,

A21{B	ak log k
(Ω)}12 =

[
A∗B∗ O(	ak log k
×	bk log k
)

O(	bk log k
×	ak log k
) O(	bk log k
×	bk log k
)

]
,

and M
(	bk log k
)
	ak log k
+1(A

−1
22 [A21{B	ak log k
(Ω)}12]) is the zero matrix, which gives the

equality (50).
Next, we show the upper bound of

||M (	bk log k
)
	ak log k
+1(A

−1
22 [I −A21{B	ak log k
(Ω)}12])−M

(	bk log k
)
	ak log k
+1(Ω22)||. (51)

By the block matrix inversion formula, Ω22 = A−1
22 (I −A21Ω12), we have

(51) = ||M (	bk log k
)
	ak log k
+1(A

−1
22 A21[{B	ak log k
(Ω)}12 − Ω12])||

≤ ||A−1
22 A21|| ||{B	ak log k
(Ω)}12 − Ω12||

≤ λmin(A22)
−1||A21|| ||B	ak log k
(Ω)− Ω||1

≤ ||A|| ||A−1|| ||B	ak log k
(Ω)− Ω||1.

By Lemma 5.1, there exist some positive constants λ1 and C1 depending only
on ||A|| and ||A−1|| such that

||B	ak log k
(Ω)− Ω||1 ≤ C1k
−aλ1+1,

for all sufficiently large k with p > k ∨ (ak log k). By combining this inequality
with the equality (50), we get

||M (	bk log k
)
	ak log k
+1(A

−1
22 )−M

(	bk log k
)
	ak log k
+1(Ω22)|| ≤ C1||A|| ||A−1||k−aλ1+1,

for all sufficiently large k.
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A.5. Proof of lemma in Section 5.4

In this section, we give the proof of Lemma 5.8 in Section 5.4.

Proof of Lemma 5.8. Let c = ||Σ−1||2 ∧ ||Σ′ −1||2 and D = Σ′−Σ. Without loss
of generality we suppose ||Σ−1||2 = c. The Pinsker inequality gives

||PΣ − PΣ′ ||21 ≤ 2KL(PΣ′ | PΣ)

= n{tr(Σ′Σ−1)− log det(Σ′Σ−1)− p},
= n{tr(DΣ−1)− log det(Ip +DΣ−1)}, (52)

where KL(· | ·) is the Kullback-Leibler divergence. Before showing the upper
bound of (52), we show

log(1 + x) ≥ x− x2, for x > −1/2. (53)

Let g(x) = log(1 + x)− x+ x2. Note

g(0) = 0

g′(x) < 0, if − 1/2 < x < 0

g′(x) > 0, if x > 0,

where g′(x) is the derivative of g(x). Thus, inequality (53) holds.
Now we give the upper bound of (52). Note that DΣ−1 is a similar matrix

of Σ−1/2DΣ−1/2 and the set of eigenvalues of DΣ−1 coincides with that of
Σ−1/2DΣ−1/2. Let {λ1, λ2, . . . , λp} be the set of eigenvalues of DΣ−1. If λi >
−1/2 for all i ∈ {1, . . . , p}, then inequality (53) gives

− log det(Ip +DΣ−1) = −
p∑

i=1

log(1 + λi)

≤ −
p∑

i=1

λi +

p∑
i=1

λ2
i

= −tr(DΣ−1) +

p∑
i=1

λ2
i .

By applying this inequality to (52), we have

||PΣ − PΣ′ ||21 ≤ n

p∑
i=1

λ2
i .

It suffices to show maxi=1,...,p |λi| < 1/2 and
∑p

i=1 λ
2
i ≤ c2||D||2F . Since ||D||2 <

1/(2c),

max
i=1,...,p

|λi| ≤ ||Σ−1/2DΣ−1/2||2

≤ ||D||2 ||Σ−1||2
< 1/2.

Next, we show the upper bound of
∑p

i=1 λ
2
i . we have Σ−1 = UV UT for some

orthogonal matrix U and some diagnoal matrix V , and
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p∑
i=1

λ2
i = ||Σ−1/2DΣ−1/2||2F

= ||V UTDUV ||2F
≤ ||V ||2 ||UTDU ||2F
= ||Σ−1||2 ||D||2F .

The second and third equalities hold since U is an orthogonal matrix. The first
inequality holds since V is a diagonal matrix.

A.6. Proofs of lemmas in Section A.1

In this section, we give the proofs of the lemmas in Section A.1. First, we present
Lemmas A.7 and A.8 which are necessary for the proofs of these lemmas.

Lemma A.7. Let n, k and r be positive integers and M0 be a positive real
number. Suppose Σ0 ∈ Ck and let the prior distribution π on Ck be IW (An, τn)
for An ∈ Ck and τn > 2k. If (τn − 2k)∨ ||An|| ∨ k = o(n) and ||Σ0|| ≤ M0, then
there exists some positive constant C depending only on M0 and r such that

EΣ0{Eπ(||Σ− Σ0||r | Zn)} ≤ Ckr
53k/2

nr/2
,

for all sufficiently large n.

Proof. Let Σ̂ = (nSn +An)/(n+ τn − k − 1). We have

EΣ0{Eπ(||Σ− Σ0||r | Zn)} ≤ 2r−1EΣ0{Eπ(||Σ− Σ̂||r | Zn)} (54)

+2r−1EΣ0(||Σ̂− Σ0||r). (55)

For the upper bound of (55), we have

EΣ0(||Σ̂− Σ0||r)

≤ 2r−1EΣ0

(∣∣∣∣∣∣ n

n+ τn − k − 1
(Sn − Σ0)

∣∣∣∣∣∣r)+ 2r−1
∣∣∣∣∣∣An − (τn − k − 1)Σ0

n+ τn − k − 1

∣∣∣∣∣∣r.
Since (τn − k − 1)/n = O(k/n) and ||An|| = o(n), there exists some positive
constant C1 depending only on M0 and r such that∣∣∣∣∣∣An − (τn − k − 1)Σ0

n+ τn − k − 1

∣∣∣∣∣∣r ≤ C1

(k
n

)r

,

for all sufficiently large n. Lemma A.6 gives

EΣ0

(∣∣∣∣∣∣ n

n+ τn − k − 1
(Sn − Σ0)

∣∣∣∣∣∣r) ≤ C2
5k

nr/2
,

for some positive constant C2 depending only on M0 and r. Thus, we have

(55) ≤ 4r−1C1

(k
n

)r

+ 4r−1C2
5k

nr/2
. (56)
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Next, we show the upper bound of (54). We have

EΣ0{Eπ(||Σ− Σ̂||r | Zn)}
= EΣ0{Eπ(||Σ̂1/2(Ω

(k)
n∗ )−1(Ik − Ω

(k)
n∗ )Σ̂1/2||r | Zn)}

≤ EΣ0{||Σ̂||rEπ(||(Ω(k)
n∗ )−1||r||Ik − Ω

(k)
n∗ ||r | Zn)}

≤ EΣ0{||Σ̂||rEπ(||(Ω(k)
n∗ )−1||2r | Zn)

1/2Eπ(||Ik − Ω
(k)
n∗ ||2r | Zn)

1/2}, (57)

where Ω
(k)
n∗ = Σ̂1/2Σ−1Σ̂1/2. Note that [Σ | Zn] ∼ IWk(An +nSn, n+ τn). Since

[Σ−1 | Zn] ∼ Wk{(An+nSn)
−1, n+τn−k−1} [28], we have (n+τn−k−1)Ω

(k)
n∗ ∼

Wk(Ik, n+ τn − k − 1). Lemma A.6 gives

Eπ(||Ik − Ω
(k)
n∗ ||2r | Sn)

1/2 ≤ C3
5k/2

(n+ τn − k − 1)r/2

≤ C3
5k/2

nr/2
, (58)

for some positive constant C3 depending only on M0 and r. Since [(Ω
(k)
n∗ )−1 |

Zn] ∼ IWk{(n+ τn − k − 1)Ik, n+ τn}, we have

Eπ(||(Ω(k)
n∗ )−1||2r | Zn)

≤ Eπ([

k∑
i=1

{(Ω(k)
n∗ )−1}ii]2r | Zn)

≤ k2r−1
k∑

i=1

Eπ[{(Ω(k)
n∗ )−1}2rii | Zn]

≤ k2r(n+ τn − k − 1)2r
1

22r
Γ{(n+ τn − 2k)/2− 2r}

Γ{(n+ τn − 2k)/2}

= k2r(n+ τn − k − 1)2r
1

22r

2r∏
i=1

{(n+ τn − 2k)/2− i}−1

≤
(k
2

)2r{ n+ τn − k − 1

(n+ τn − 2k)/2− 2r

}2r

, (59)

where {(Ω(k)
n∗ )−1}ii is the ith diagonal element of (Ω

(k)
n∗ )−1. The third inequality

holds by Lemma 4.9 of [23]. By collecting (57), (58) and (59), we have that there
exists some positive constant C4 depending only on M0 and r such that

(54) ≤ C4k
r 5

k/2

nr/2
EΣ0(||Σ̂||r), (60)

for all sufficiently large n.
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For the upper bound of EΣ0(||Σ̂||r), there exist some positive constants C5

and C6 depending only on M0 and r such that

EΣ0(||Σ̂||r) ≤ 2r−1EΣ0(||Sn||r) +
2r−1

nr
||An||r

≤ 4r−1EΣ0(||Sn − Σ0||r) + 4r−1||Σ0||r +
2r−1

nr
||An||r

≤ C5 + C6
5k

nr/2
, (61)

for all sufficiently large n. The last inequality holds by Lemma A.6. Collect-
ing (60) and (61), we have

(54) ≤ C7k
r
(5k/2
nr/2

+
53k/2

nr

)
,

for some positive constant C7 depending only on M0 and r. Combining this
inequality with (56), we complete the proof.

Lemma A.8. Suppose the same setting of Lemma A.7. If (τn−2k)∨||An||∨k =
o(n), ||Σ0|| ≤ M0 and x < 4||Σ0||, then there exist some positive constants C
and λ depending only on M0 such that

EΣ0{Pπ(||Σ− Σ0|| > x | Zn)} ≤ C5k{exp(−λnx2) + exp(−λn)},

for all sufficiently large n.

Proof. Let Σ̂ = (nSn +An)/(n+ τn − k − 1). We have

EΣ0{Pπ(||Σ− Σ0|| > x | Zn)} ≤ EΣ0{Pπ(||Σ− Σ̂|| > x/2 | Zn)}
+PΣ0(||Σ̂− Σ0|| > x/2).

The upper bound of PΣ0(||Σ̂− Σ0|| > x/2) is given as

PΣ0(||Σ̂− Σ0|| > x/2)

= P
(∣∣∣∣∣∣ n

n+ τn − k − 1
(Sn − Σ0) +

An − (τn − k − 1)Σ0

n+ τn − k − 1

∣∣∣∣∣∣ > x/2
)

≤ P (||Sn − Σ0|| > x/4) + I
(
||An||/n+

τn − k − 1

n+ τn − k − 1
||Σ0|| > x/4

)
≤ P (||Σ0|| ||Ω(k)

n − Ik|| > x/4) + I
(
||An||/n+

τn − k − 1

n+ τn − k − 1
||Σ0|| > x/4

)
= P{||Ω(k)

n − Ik|| > x/(4||Σ0||)}+ I
(
||An||/n+

τn − k − 1

n+ τn − k − 1
||Σ0|| > x/4

)
,

where Ω
(k)
n = Σ

−1/2
0 SnΣ

−1/2
0 , of which distribution isWk(Ik/n, n). Since ||An|| =

o(n) and (τn − k − 1)/(n+ τn − k − 1) = o(1), we have

I
(
||An||/n+

τn − k − 1

n+ τn − k − 1
||Σ0|| > x/4

)
= 0,
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for all sufficiently large n. Since x < 4||Σ0||, Lemma 4.4 in [23] gives

P{||Ω(k)
n − Ik|| > x/(4||Σ0||)} ≤ 2× 5k exp{−nx2/(211||Σ0||2)}.

Thus, we have

PΣ0(||Σ̂− Σ0|| > x/2) ≤ 2× 5k exp{−nx2/(211||Σ0||2)}, (62)

for all sufficiently large n.
Next, we show the upper bound of EΣ0{Pπ(||Σ−Σ̂|| > x | Zn)}. For arbitrary

positive constants R1 and R2, we have

EΣ0{Pπ(||Σ− Σ̂|| > x/2 | Zn)}
= E{Pπ(||Σ̂1/2(Ω

(k)
n∗ )−1(Ik − Ω

(k)
n∗ )Σ̂1/2|| > x/2 | Zn)}

≤ E{Pπ(||Σ̂|| ||(Ω(k)
n∗ )−1|| ||Ik − Ω

(k)
n∗ || > x | Zn)}

≤ E{Pπ(R1||(Ω(k)
n∗ )−1|| ||Ik − Ω

(k)
n∗ || > x | Zn)}+ P (||Σ̂|| > R1)

≤ E{Pπ(R1R2||Ik − Ω
(k)
n∗ || > x | Zn)}

+E[Pπ{λmin(Ω
(k)
n∗ ) < R−1

2 | Zn}] + P (||Σ̂|| > R1), (63)

where Ω
(k)
n∗ = Σ̂1/2Σ−1Σ̂1/2, of which distribution is Wk(Ik/(n+ τn−k−1), n+

τn − k− 1). If we set R−1
2 ≤ [1−{k/(n+ τn − k− 1)}1/2]2/4, Lemma 4.2 in [23]

gives that there exists some positive constant λ1 depending only on M0 and M1

such that

Pπ{λmin(Ω
(k)
n ) < R−1

2 | Zn}
≤ 2 exp{−(n+ τn − k − 1)[1− {k/(n+ τn − k − 1)}1/2]2/8}
≤ 2 exp(−λ1n), (64)

for all sufficiently large n. If R1 ∈ (||Σ0||, 3||Σ0||), then

P (||Σ̂|| > R1) ≤ P (||Σ̂− Σ0|| > R1 − ||Σ0||)
≤ 2× 5k exp{−n(R1 − ||Σ0||)2/(29||Σ0||2)}, (65)

where the second inequality holds by (62). Since we can set R2 large enough to
satisfy x/(R1R2) < 1, Lemma 4.4 in [23] gives

Pπ(R1R2||Ik − Ω
(k)
n∗ || > x | Zn)

= Pπ(||Ik − Ω
(k)
n∗ || > x/(R1R2) | Zn)

≤ 2× 5k exp
{
− (n+ τn − k − 1)x2

27(R1R2)2

}
. (66)

By collecting the inequalities (63)-(66), we obtain that there exist some positive
constants C1 and λ2 depending only on M0 and M1 such that

EΣ0{Pπ(||Σ− Σ̂|| > x/2 | Zn)} ≤ C15
k{exp(−λ2nx

2) + exp(−λ2n)},

for all sufficiently large n. Combining this inequality with (62), we complete the
proof.
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Proof of Lemma A.1. By Lemma 5.3 and A.5, we have

EΣ0{Eπi

(||T (εn)
k (Σ)− Σ0||4 | Zn)}

≤ 27EΣ0(E
πi

[||Tk(Σ)− Σ0||4 | Zn]) + 26ε4n

≤ 210EΣ0{Eπi

(||Tk(Σ− Σ0)||4 | Zn)}+ 210||Tk(Σ0)− Σ0||4 + 26ε4n

≤ 21034EΣ0{Eπi

( max
1≤i≤p

||M (k)
i (Σ− Σ0)||4 | Zn)}

+210{M(�k/2�)−α}4 + 26ε4n. (67)

Next, we have

EΣ0{Eπi

( max
1≤i≤p

||M (k)
i (Σ− Σ0)||4 | Zn)}

≤ x4 + EΣ0{Eπi

( max
1≤i≤p

||M (k)
i (Σ− Σ0)||4

I( max
1≤i≤p

||M (k)
i (Σ− Σ0)|| > x) | Zn)}

≤ x4 + EΣ0{Eπi

( max
1≤i≤p

||M (k)
i (Σ− Σ0)||8 | Zn)}1/2

× EΣ0{Pπi

( max
1≤i≤p

||M (k)
i (Σ− Σ0)|| > x | Zn)}1/2

≤ x4 + p max
1≤i≤p

EΣ0{Eπi

(||M (k)
i (Σ− Σ0)||8 | Zn)}1/2

× max
1≤i≤p

EΣ0{Pπi

(||M (k)
i (Σ− Σ0)|| > x | Zn)}1/2.

Note thatM
(k)
l (Σ0) ∈ Fk,α(M,M0,M1) and [M

(k)
l (Σ) | Zn] ∼ IWk(M

(k)
l (nSn+

An), n+ νn−2p+2k) [28]. If x < 4||M (k)
l (Σ0)||, then Lemmas A.7 and A.8 give

that there exist some positive constants C1 and λ1 depending only on M0 and
M1 such that

p max
1≤i≤p

EΣ0{Eπi

(||M (k)
i (Σ− Σ0)||8 | Zn)}1/2

max
1≤i≤p

EΣ0{Pπi

(||M (k)
i (Σ− Σ0)|| > x | Zn)}1/2

≤ C1pk
455k/2n−2{exp(−λ1nx

2) + exp(−λ1n)}, (68)

for all sufficiently large n. By setting x = 3 log p/(λ1n), which is smaller than an
arbitrary positive constant for sufficiently large n, We show that (68) is bounded
above by some positive constant for all sufficiently large n. Since εn = O(1), (67)
is bounded by some positive constant depending only on M0, M1, M and α.

Proof of Lemma A.2. By inequality (45), we have

I[λmin{Tk(Σ)} ≤ c] ≤ I(||Tk(Σ− Σ0)|| ≥ ck)

where ck = λmin(Σ0) − M(�k/2�)−α − c. Since c ≤ λmin(Σ0)/2 and �k/2� >
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{4M/λmin(Σ0)}1/α, we have ck ≥ λmin(Σ0)/4. There exist some positive con-
stants C and λ depending only on M0 and M1 such that

EΣ0(P
πi

[λmin{Tk(Σ)} ≤ c | Zn])

≤ EΣ0{Pπi

(λmin(||Tk(Σ− Σ0)|| ≥ ck | Zn)}
≤ p max

1≤l≤p
EΣ0{Pπi

(||M (k)
l (Σ− Σ0)|| ≥ ck/3 | Zn)}

≤ pC5k[exp{−λn(ck/3)
2}+ exp(−λn)],

for all sufficiently large n. The second inequality is satisfied by Lemma A.5. For

the third inequality, Lemma A.8 is used. Note M
(k)
l (Σ0) ∈ Fk,α(M,M0,M1),

[M
(k)
l (Σ) | Zn] ∼ IWk{M (k)

l (nSn +An), n+ νn − 2p+ 2k} and ck/3 satisfies

ck/3 ≤ λmin(Σ0)

≤ λmin{M (k)
l (Σ0)}

≤ 4||M (k)
l (Σ0)||,

for all l ∈ {1, 2, . . . , p}.
Proof of Lemma A.3. By Lemmas 5.3 and A.5, we have

EΣ0{Eπi

(||Σ0 − T
(εn)
k (Σ)||2 | Zn)}

≤ 23EΣ0{Eπi

(||Σ0 − Tk(Σ)||2 | Zn)}+ 4ε2n

≤ 24EΣ0{Eπi

(||Tk(Σ0)− Tk(Σ)||2 | Zn)}+ 24||Tk(Σ0)− Σ0||2 + 4ε2n

≤ 2432EΣ0{Eπi

( max
1≤l≤p

||M (k)
l (Σ0 − Σ)||2 | Zn)}

+24(M�k/2�−α)2 + 4ε2n. (69)

NoteM
(k)
l (Σ0) ∈ Fk,α(M,M0,M1), [M

(k)
l (Σ) | Zn] ∼ IWk{M (k)

l (nSn+An), n+
νn − 2p+ 2k}. Thus, for an arbitrary positive real number x

with x < 4min1≤l≤p ||M (k)
l (Σ0)||, there exist some positive constants C1 and

λ1 depending only on M0 such that

EΣ0{Eπi

( max
1≤l≤p

||M (k)
l (Σ0 − Σ)||2 | Zn)}

≤ x2 + EΣ0 [E
πi{max

1≤l≤p
||M (k)

l (Σ0 − Σ)||2I

( max
1≤l≤p

||M (k)
l (Σ0 − Σ)|| > x) | Zn}]

≤ x2 + p max
1≤l≤p

EΣ0{Eπi

(||M (k)
l (Σ0 − Σ)||4 | Zn)}1/2

× max
1≤l≤p

EΣ0{Eπi

(||M (k)
l (Σ0 − Σ)|| > x | Zn)}1/2

≤ x2 + C1pk
2 5

3

n
5k{exp(−λ1nx

2) + exp(−λ1n)},

for all sufficiently large n. The last inequality holds by Lemmas A.7 and A.8.
By setting x2 = 2(log p+ k log 5)/nλ1, which is lower than an arbitrary positive
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constant for all sufficiently large n, we have

EΣ0{Eπi

( max
1≤l≤p

||M (k)
l (Σ0 − Σ)||2 | Zn)} ≤ C2

( log p+ k

n

)
,

for some positive constants C2 depending only onM0. Combining this inequality
with (69), we complete the proof.

Proof of Lemma A.4. Let c = λmin(Σ0)/2.

Since λmin{T (εn)
k (Σ)11} ≥ λmin{T (εn)

k (Σ)} ≥ εn, we have

EΣ0{Eπi

(||Σ−1
0,11 − T

(εn)
k (Σ)−1

11 ||2 | Zn)}

≤ ||Σ−1
0 ||2EΣ0{Eπi

(||T (εn)
k (Σ)−1

11 ||2 ||Σ0,11 − T
(εn)
k (Σ)11||2 | Zn)}

≤ 1

M2
1 c

2
EΣ0{Eπi

(||Σ0,11 − T
(εn)
k (Σ)11||2 | Zn)}

+
1

M2
1 ε

2
n

EΣ0{Eπi

(||Σ0,11 − T
(εn)
k (Σ)11||2I[λmin{Tk(Σ)} ≤ c] | Zn)}

≤ 1

M2
1 c

2
EΣ0{Eπi

(||Σ0,11 − T
(εn)
k (Σ)11||2 | Zn)} (70)

+
1

M2
1 ε

2
n

EΣ0{Eπi

(||Σ0,11 − T
(εn)
k (Σ)11||4 | Zn)}1/2

EΣ0{Eπi

(I[λmin{Tk(Σ)} ≤ c] | Zn)}1/2. (71)

For the upper bound of (70), Lemma A.3 gives

EΣ0{Eπi

(||Σ0,11 − T
(εn)
k (Σ)11||2 | Zn)} ≤ EΣ0{Eπi

(||Σ0 − T
(εn)
k (Σ)||2 | Zn)}

≤ C1

(k + log p

n
+ k−2α + ε2n

)
,

for some positive constant C1 depending only onM ,M0,M1 and α. Lemmas A.1
and A.2 gives that there exist positive constants C2 and λ depending only on
M , M0, M1 and α such that

(71) ≤ C2
p1/25k/2

ε2n
exp(−λ1n),

for all sufficiently large n. Collecting the upper bound of (70) and (71), we
complete the proof.
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