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Abstract: Sufficient dimension reduction (SDR) is an important tool in
regression analysis which reduces the dimension of covariates without losing
predictive information. Several methods have been proposed to handle data
with either censoring in the response or measurement error in covariates.
However, little research is available to deal with data having these two
features simultaneously. In this paper, we examine this problem. We start
with considering the cumulative distribution function in regular settings
and propose a valid SDR method to incorporate the effects of censored data
and covariates measurement error. Theoretical results are established, and
numerical studies are reported to assess the performance of the proposed
methods.
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1. Introduction

Survival analysis has been proven useful in many areas including cancer research,
clinical trials, epidemiological studies, actuarial science, and so on. A primary
interest in survival analysis is to study the association between survival times
and covariates of interests. In addition to traditionally used survival models such
as the Cox proportional hazards model, the accelerated failure time model, the
proportional odds model, and the additive hazards model, many parametric
or semiparametric models have been proposed in recent years to handle more
complex features in survival analysis. Those models include the partially linear
hazard regression [3], the partially linear single-index survival model [11], and
the partially linear transformation model. However, they may still be inadequate
to handle real problems due to the lack of the knowledge of the suitability of a
particular model.

∗Corresponding author.

2082

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/22-EJS1977
mailto:lchen723@nccu.edu.tw
mailto:gyi5@uwo.ca


SDR with error-prone survival data 2083

Motivated by this, non-parametric regression models are employed in appli-
cations to offer the flexibility of modeling and protect against the risk of model
misspecification. However, such models are hampered by the high dimension
of covariates. To offer a flexible yet parsimonious model formulation, sufficient
dimension reduction (SDR) becomes useful in reducing the dimension of covari-
ates as well as preserving their predictive information (e.g., [15]).

For uncensored data, various methods have been proposed to reduce the di-
mension of covariates, including the inverse regression ([16]; [28]), the minimum
average variance estimation [24], and the semiparametric framework [19]; some
details can be found in [7] and [15]. For right-censored survival data, a number of
methods have also been developed for dimension reduction. To name a few, [17]
examined the sliced inverse regression method to estimate the central subspace
(CS) of dimension reduction directions. [25] considered semiparametric models
and proposed the minimum average variance estimation using the inverse cen-
soring weighting scheme. [18] discussed the sliced inverse regression with inverse
probability weights and implemented the variable selection approach for sparse
data with a large dimension.

While those methods are useful for different settings, they are inapplicable
for error-contaminated data, an ubiquitous feature in applications. As noted by
[4], when covariates are subject to measurement error, misleading results are
often yielded if measurement error effects are ignored when performing suffi-
cient dimension reduction. To address measurement error effects in the SDR
framework, [4] proposed the “corrected” covariates for the implementation of
sliced inverse regression. [14] established the invariance law for correcting mea-
surement error effects. [27] developed the cumulative slicing estimation method
using the “corrected” covariates, which extended the development of [28]. In the
presence of both censored data and measurement error in covariates, however,
there has been no available work, to the best of our knowledge.

Driven by the lack of methods for handling such data, in this paper we de-
velop estimation methods for handling dimension reduction for censored data
with covariate measurement error. We consider the single-index conditional dis-
tribution model which covers many useful survival models, and based on them,
we develop a semiparametric estimation procedure. Our method does not require
the usual assumptions such as linearity and constant variance conditions that
are imposed by other authors (e.g., [16]). Our method employs the “corrected”
covariates to correct for measurement error effects and applies the conditional
expectation scheme to remove the bias caused by censoring.

The remainder is organized as follows. In Section 2, we introduce the frame-
work of right-censored survival data, the single-index conditional distribution
model, and the measurement error model. In Section 3, we propose a valid es-
timation procedure to correct for the measurement error effects, estimate the
parameters of interest, and reduce the dimension of covariates. Theoretical re-
sults are established in Section 4. Empirical studies, including simulation results
and real data analysis, are provided in Section 5. We conclude the article with
discussions in Section 6. Technical justifications are included in the appendices.
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2. Preliminaries and framework

In this section, we introduce the preliminaries of SDR, survival analysis, and
measurement error models.

2.1. SDR and conditional distribution

Let T > 0 be the univariate response, and let X be the p-dimensional vector
of covariates having a multivariate normal distribution, where p is often a large
positive integer. The spirit of SDR is to find a p×d matrix, say B = [β1 · · · βd],
such that

T ⊥⊥ X|B�X, (2.1)

where “⊥⊥” stands for the statistical independence, and βj is a p-dimensional
column vector for j = 1, · · · , d. Here d can be viewed as the dimension of the
reduced covariates and is smaller than p, and B is often called a basis.

Let S(B) represent the SDR subspace which is spanned by the column vectors
of B. [6] showed that the intersection of all such S(B) exists. Consequently, such
an intersection is called the central subspace (CS) for the regression of T on X.
Let ST |X denote the CS with the structural dimension d � dim(ST |X) which is
basically unknown.

We now consider the cumulative distribution function of T given X = x,
FT |X(t|x) � P (T ≤ t|X = x), which is written as

FT |X(t|x) = F0(t, x) (2.2)

to show its dependence on both values of T and X, where F0 (·, ·) is an unknown
nonnegative function.

As discussed in [19] and [24], in the absence of censoring, (2.1) yields that

P (T ≤ t|X = x) = P
(
T ≤ t|B�X = B�x

)
for any t ∈ R1 and X ∈ Rp, suggesting that

FT |X(t|x) = F0(t, B
�x). (2.3)

We consider the setting where the response T represents the survival time
for a subject and is associated with the covariates X. We are interested in
finding the CS, ST |X , to study the relationship between the survival time T and
covariates X. As noted by [19], the basis matrix B is not unique. To uniquely
map CS to a basis matrix, we follow [19] and redefine B as

B =
[
Id×d D�]� (2.4)

with D being a (p−d)×d matrix having (p−d)d unknown parameters and Id×d

being the d × d identity matrix. Our objective is to estimate the basis matrix
D. But for ease of exposition, we still refer to B in the following development.
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2.2. Survival data with measurement error

In survival analysis, T is usually incomplete due to the presence of the censoring
time for a subject, denoted C. We assume that given X, C and T are indepen-
dent and that C and X are independent (e.g., [22]); the assumption are listed
as Condition (C2) in Appendix A.

Let Y = min(T,C) and Δ = I(T ≤ C), where I(·) is the indicator function.
Directly implementing the SDR methods to the observed variable Y and covari-
ates X is equivalent to studying SY |X , which is generally not equal to ST |X , as
shown by [18] and [25] that

SY |X ⊆ ST |X + SC|X =
{
v1 + v2 : v1 ∈ ST |X ;v2 ∈ SC|X

}
.

On top of the issue of censoring, another challenge is posed by that covariates
X are commonly error-contaminated. To facilitate this feature, let X∗ denote
the observed surrogate version of X. The dimension of X∗, denoted s, can be
identical to or differ from p, though in applications, s is often equal to p. As in
[4], we consider the measurement error model

X∗ = γ + ΓX + ε, (2.5)

where ε is independent of {X,T,C}, γ is an s-dimensional vector of parameters,
and Γ is an s× p matrix of parameters which may be known, partially known,
or unknown.

As in [14], we assume that ε follows a normal distribution. Let ΣX∗ , ΣX , and
Σε denote the covariance matrices of X∗, X, and ε, respectively. As discussed
in (2.5) of [4], we consider

U = LX∗ (2.6)

as the “corrected” covariates expressed in terms of X∗, where

L � cov(X,X∗)Σ−1
X∗ = ΣXΓ�Σ−1

X∗ . (2.7)

With X and ε following a multivariate normal distribution, [14] showed that
ST |X = ST |U , suggesting that replacing X by U preserves the CS ST |X , and
hence,

T ⊥⊥ X|B�X is equivalent to T ⊥⊥ U |B�U. (2.8)

2.3. Determination of “corrected” covariates

Suppose that we want to collect measurements
{
{Yi,Δi, Xi} : i = 1, · · · , n

}
of a sample of n subjects, where for i = 1, · · · , n, {Yi,Δi, Xi} has the same
distribution as {Y,Δ, X}. Let τ denote a finite value typically larger than the
maximum observed times in the sample. As Xi is subject to measurement er-
ror, rather than having precise measurement of Xi, we often observe surrogate
measurement X∗

i (or repeated measurements) for i = 1, · · · , n, where {X∗
i , Xi}

has the same distribution as {X∗, X}.
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Note that model (2.5) yields that ΣX∗ = ΓΣXΓ� + Σε, and that ΣX∗ can
be estimated by its empirical estimator based on the available measurements of
X∗. To estimate L, we need only to handle Σε and Γ. Consequently, we consider
the following three scenarios.

Scenario I : Both Σε and Γ are known.
In this scenario, L is determined by (2.7), which allows us to directly calcu-
late the “corrected” covariates U using (2.6). Such a scenario is useful for
conducting sensitivity analyses to understand the impacts of measurement
error in X on SDR.

Scenario II : Γ is known, Σε is unknown, and repeated measurements of X are
available.
Suppose that two repeated measurements of X, {X∗

ir : r = 1, 2; i ∈ R},
are collected for additional m � |R| subjects, where R denotes the in-
dex set for those subjects. Consistent with [4], we take Γ to be Ip×p for
ease of discussions. Then the measurement error model based on repeated
measurements is given by

X∗
ir = γ +Xi + εir (2.9)

for i ∈ R and r = 1, 2, where εir ∼ N (0,Σε) and εir is independent of
{Xi, Ti, Ci}.

By direct derivations, we obtain that

Σε =
1

2
var (X∗

i1 −X∗
i2) (2.10)

and

ΣX∗ =
1

4
{var (X∗

i1 +X∗
i2)− var (X∗

i1 −X∗
i2)} , (2.11)

so that L can be expressed as

L = (ΣX∗ − Σε) Σ
−1
X∗ ,

which is estimated by

L̂ =
(
Σ̂X∗ − Σ̂ε

)
Σ̂−1

X∗ (2.12)

with Σ̂ε and Σ̂X∗ being empirical estimators of (2.10) and (2.11), respec-
tively.

Scenario III : Both Σε and Γ are unknown and validation data are available.
Suppose that M is the set of n subjects for the main study and V is
the set of m subjects for the external validation study. That is, M and
V do not overlap, and the available data for the main study and the
validation sample are {{Ti, Ci,Δi, X

∗
i } : i ∈ M} and {{Xi, X

∗
i } : i ∈ V},

respectively. Hence, the measurement error model (2.5) gives that

X∗
i = γ + ΓXi + εi
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for i ∈ M∪ V , where εi ∼ N (0,Σε) and εi is independent of {Xi, Ti, Ci}
for i ∈ M∪V . Here the transportability assumption [5, p. 30] is made for
the validation and main study data.

Let μX = E(Xi) and μX∗ = E(X∗
i ). Then using the validation data

{{Xi, X
∗
i } : i ∈ V}, we estimate μX and μX∗ by μ̂X = 1

m

∑
i∈V Xi and

μ̂X∗ = 1
m

∑
i∈V X∗

i , respectively. Then a consistent estimate of cov(Xi, X
∗
i )

is given by

̂cov(Xi, X∗
i ) =

1

m

∑
i∈V

(Xi − μ̂X) (X∗
i − μ̂X∗)

�
,

and hence, by (2.7), L can be estimated by

L̂ = ̂cov(Xi, X∗
i )Σ̂

−1
X∗ . (2.13)

Once the estimator L̂ is obtained by either repeated measurements or val-
idation data in Scenarios II or III, we adjust the surrogate covariate X∗

i by

Ûi = L̂X∗
i to accommodate measurement error effects in the following develop-

ment.

3. Methodology

In this section, we consider model (2.3) and propose a method to estimate the
basis matrix B for survival data subject to measurement error in covariates.
To be more specific, we first apply (2.6) to correct for the measurement error
effects and also use the inverse probability weighting scheme to adjust for the
censoring effects due to censored responses; next, we propose valid inferential
procedures to estimate B and d without imposing additional conditions, such as
the linearity condition (e.g., [16]) which is commonly used in the conventional
SDR methods.

3.1. Adjustment for measurement error and censoring effects

In the presence of measurement error, X in (2.3) is often unavailable for estima-
tion of B. We want to use the observed surrogate measurement X∗ to estimate
B with measurement error effects accounted for. The equivalence (2.8) suggests
us to consider SDR based on U . Analogous to (2.2), we write P (T ≤ t|U), or
E {I(T ≤ t)|U} as

E {I(T ≤ t)|U} = F (t, u)

for a nonnegative unknown function F (·, ·). By (2.8), we have that

E {I(T ≤ t)|U} = E
{
I(T ≤ t)|B�U

}
(3.1)

for any t > 0, and hence, yielding that

E {I(T ≤ t)|U} = F
(
t, B�u

)
. (3.2)
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The equality (3.2) offers us the basis of estimating B using the surrogate
measurements of Xi together with the survival times Ti. In survival analysis,
however, Ti is usually incomplete due to censoring; we have only (Yi,Δi) as
described in Section 2.1. To accommodate censored responses, a useful strategy
is to proceed with the inverse weighted scheme.

For any given c > 0, let G (c) � P (C ≥ c). Then for given y > 0 and U = u,

E

{
ΔI(Y ≤ y)

G (Y )

∣∣∣∣B�U = B�u

}
= E

{
ΔI(Y ≤ y)

G (Y )

∣∣∣∣U = u

}
= E

{
I (T ≤ C) I (Y ≤ y)

G (Y )

∣∣∣∣U = u

}
= E

[
E

{
I (T ≤ C) I (T ≤ y)

G (T )

∣∣∣∣T, U = u

}∣∣∣∣U = u

]
= E { I (T ≤ y)|U = u}
= F (y,B�u),

where the first step is due to (2.8), and the last step comes from (3.2). That is,

F (y,B�u) = E

{
ΔI(Y ≤ y)

G (Y )

∣∣∣∣B�U

}
(3.3)

for given y > 0 and u.

The identity (3.3) allows us to estimate B using the observed time Y by
examining an expectation conditional on the observed surrogate covariate X∗,
where the weight Δ

G(Y ) is imposed to correct for the censoring effect, and U

adjusts for the measurement error effects.

3.2. Estimation procedures

With (3.3), we estimate the function F (·, ·) using the kernel estimation method:

F̂
(
y,B�u

)
=

n∑
i=1

Δi

Ĝ(Yi)
I (Yi ≤ y)Kh

(
B�Ui −B�u

)
n∑

i=1

Kh (B�Ui −B�u)
(3.4)

with B given by (2.4), where Ĝ(·) is a consistent estimator of G(·) which can be
obtained from the nonparametric Kaplan-Meier estimator (e.g., [22]); Kh(u) =∏d

j=1
1
hK
(uj

h

)
; h is a positive bandwidth to be determined; K (v) is a user-

specified qth-order kernel function with
∫
K(v)dv = 1,

∫
vkK(v)dv = 0 for

k = 1, · · · , q − 1,
∫
vqK(v)dv < ∞; and q is a positive integer.
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With the estimator of F (·, ·) by (3.4), we use the leave-one-out cross-validation
(CV) criterion to calculate the CV value

CV (B, d, h) =
1

n

n∑
i=1

∫ τ

0

{
Δi

Ĝ (Yi)
I (Yi ≤ y)− F̂ (−i)(y,B�Ui)

}2

dF̂Y (y), (3.5)

where F̂Y (·) is the empirical distribution function of Yi

F̂Y (y) =
1

n

n∑
i=1

I(Yi ≤ y)

and F̂ (−i)(y,B�u) is the estimator of (3.4) with the ith subject being deleted.
In the degenerate case with d = 0, B is null, and the CV value in (3.5) can be
calculated as

1

n

n∑
i=1

∫ τ

0

{
Δi

Ĝ (Yi)
I (Yi ≤ y)− F̂

(−i)
0 (y)

}2

dF̂Y (y),

where F̂
(−i)
0 (y) = 1

n−1

∑
j �=i

Δj

Ĝ(Yj)
I(Yj ≤ y).

The estimator of (B, d, h) can be derived by minimizing (3.5):(
B̂, d̂, ĥ

)
= argmin

B,d,h
CV (B, d, h) . (3.6)

The implementation of the minimization problem (3.6) may proceed as follows.

First, for given d ≥ 1, let
(
B̂d, ĥd

)
denote the estimators which are obtained by

minimizing (3.5): (
B̂d, ĥd

)
= argmin

B,h
CV (B, d, h) . (3.7)

We start with d = 1 and implement (3.7) until d = d̂ with

CV
(
B̂d̂+1, d̂+ 1, ĥd̂+1

)
> CV

(
B̂d̂, d̂, ĥd̂

)
.

Then the final estimator is given by
(
B̂, d̂, ĥ

)
=
(
B̂d̂, d̂, ĥd̂

)
.

4. Theoretical results

In this section, we present theoretical results of the proposed method, and the
proofs of the theoretical results are deferred to Appendix C.

Let vec(·) denote the vectorization operation that stacks the columns of a
matrix from left to right, and let ‖ · ‖ represent the Frobenius norm of a ma-
trix. Define a⊗2 = aa� for any vector a. To emphasize the involvement of the
estimator L̂, we write Ûi = L̂X∗

i as defined in Section 2.3. For a differentiable
function f(α), let ∇j

αf(α) denote the jth order derivative of the function f(α)
with respect to α. Let B0 and d0 denote the true values of the parameter and
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its structural dimension, respectively. Let h0 be the optimal bandwidth. We
first present the consistency of the estimators (B̂, d̂, ĥ) whose proof is placed in
Appendix C.1.

Theorem 4.1. Under regularity conditions in Appendix A, for any η > 0, as
n → ∞,

B̂
p−→ B0 and P

(
d̂ = d0,

∣∣∣∣∣ ĥh0
− 1

∣∣∣∣∣ < η

)
→ 1.

Theorem 4.1 says that the estimator B̂ converges in probability to its true
value as n goes to infinity, and both estimated structural dimension and band-
width are close to the true structural dimension and the optimal bandwidth
with probability approaching one, respectively.

For l = 0, 1 and j = 0, 1, 2, let

F̂
(j)
l,B,L(y, u) =

1

n

n∑
i=1

{
Δi

Ĝ (Yi)
I(Yi ≤ y)

}l

∇j
vec(B)K

(
B�Ui − u

)
(4.1)

and

F̂
(j)

l,B,L̂
(y, u) =

1

n

n∑
i=1

{
Δi

Ĝ (Yi)
I(Yi ≤ y)

}l

∇j
vec(B)K

(
B�Ûi − u

)
. (4.2)

Furthermore, let fB�U (B
�u) denote the density function of B�U , and define

F
(j)
l,B,L(y, u)

= ∇j
vec(B)

[{
F (y,B�u)

}l]
E
{
(Ui − u)

⊗j
∣∣∣B�Ui = B�u

}
fB�U (B

�u), (4.3)

and

F̃
(j)
i,l,B,L(y, u) =

{
Δi

Ĝ (Yi)
I (Yi ≤ y)

}l

∇j
vec(B)K

(
B�Ui − u

)
− F

(j)
l,B,L(y, u).

Define

ζ
(0)
i,B0

(y, u) =

1∑
l=0

F̃
(0)
i,l,B,L(y, u)

{
−F
(
y,B�

0 u
)}1−l

F
(0)
0,B,L

(
y,B�

0 u
) . (4.4)

We now present the theoretical result for (3.4) with B replaced by its esti-
mator, and the proof is deferred to Appendix C.2.

Theorem 4.2. Under regularity conditions in Appendix A, then

sup
y,u

∣∣∣∣∣F̂ (y, B̂�u
)
− F (y,B�

0 u)− 1

n

n∑
i=1

ζ
(0)
i,B0

(y, u)

∣∣∣∣∣ = Op

(
1√
n

)
.

Theorem 4.2 indicates that the difference between the estimated function and
the true function is of order Op

(
n−1/2

)
if the biased term (i.e., the third term

in the left-hand-side of the identity) is removed.
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Finally, we present the asymptotic distribution of the estimator B̂. Define

F (0)(y, u) =
F
(1)
1,B,L(y, u)

F
(0)
0,B,L(y, u)

, (4.5)

F (1)(y, u) =

1∑
l=0

{−F (y, u)}l F(1)
1−l,B,L(y, u)

F
(0)
0,B,L(y, u)

, (4.6)

and

F (2)(y, u) =

1∑
l1=0

1∑
l2=0

2l1

{
−F

(2−l1)
0,B,L (y, u)

F
(0)
0,B,L(y, u)

}l1+l2 (
F
({2−l1}{1−l2})
1,B,L (y, u)

F
(0)
0,B,L(y, u)

)
.

Let

U(B0) =

∫ τ

0

{
Δi

G (Yi)
I (Yi ≤ y)− F (0)(y,B�

0 Ui)

}
F (1)(y,B�

0 Ui)dFY (y)

and

A = 2E

(∫ τ

0

[{
F (1)

(
y,B�

0 Ui

)}⊗2

−F (2)
(
y,B�

0 Ui

){ Δi

G (Yi)
I (Yi ≤ y)− F (0)

(
y,B�

0 Ui

)}]
dFY (y)

)
.

We define

T (B0) = E

[∫ τ

0

{
F (1)(y,B�

0 Ui)
}⊗2

dFY (y)

]
ΣX∗ .

Theorem 4.3. Suppose that regularity conditions in Appendix A hold.

(a) Assume that L is known, then as n → ∞,

√
n
{
vec(B̂)− vec(B0)

}
d−→ N

(
0,A−1BA−1

)
,

where B = E
{
U⊗2(B0)

}
.

(b) Assume that L is unknown and estimated based on either repeated mea-
surements or validation data. Let Φi be{

(X∗
i1 −X∗

i2) (X
∗
i1 −X∗

i2)
� − 2Σε

}
if L is estimated based on repeated measurements, and let Φi be{

(Xi − μX) (X∗
i − μX∗)

� − ΣXX∗

}
if L is estimated from validation data. Then as n → ∞,

√
n
{
vec(B̂)− vec(B0)

}
d−→ N

(
0,A−1BLA−1

)
,

where BL = E
[
{U(B0) + T (B0)Φi}⊗2

]
.
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Theorem 4.3 shows the asymptotic normality of the proposed estimator B̂
under three different scenarios in Section 2.3. In particular, when Σε is unknown
and additional information is available, there exist an additional term T (B0)Φi

in the asymptotic variance.

5. Numerical studies

In this section, we conduct simulation studies to assess the performance of the
proposed estimators for a variety of settings. We first design the simulation
settings and then present the simulation results. Finally, the methods are im-
plemented to analyze a real dataset.

5.1. Simulation studies

5.1.1. Simulation design

Let B0 be the true p× d0 matrix. The p-dimensional covariates X is generated
from the multivariate normal distribution N(0,ΣX), where ΣX is the covariance
matrix with diagonal entries being one and off-diagonal entries being 0.4. Given
the covariates X and B0, we use three models, the proportional hazards (PH),
proportional odds (PO), and additive hazards (AH) models, to generate survival
times. Specifically, the corresponding cumulative distribution functions F (·, ·)
are formulated, respectively, as

FPH(t, B�
0 X) = 1− exp

[
−t2 exp {ϕ(X,B0)}

]
,

FPO(t, B
�
0 X) =

exp [t− {ϕ(X,B0)}]
1 + exp [t− {ϕ(X,B0)}]

,

and
FAH(t, B�

0 X) = 1− exp
[
−
{
t2 + t {ϕ(X,B0)}

}]
,

where ϕ(·, ·) is a given function.
Let U be generated from the uniform distribution UNIF(0, 1). Then survival

times T based on the PH and PO models can be generated from

T =
√
exp {−ϕ(X,B0)} log (1− U)

and
T = log

{
(1 + U)−1 − 1

}
+ {ϕ(X,B0)} ,

respectively, and survival times T based on the AH model can be obtained by
solving the following equation

T 2 + T {ϕ(X,B0)}+ log (1− U) = 0.

We consider the following two settings:
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Setting 1: p = 10; d0 = 2 with B0 = [β10 β20] being a p × d0 matrix, β10 =

(1, 0, 1, 0, 0p−4)
�
and β20 = (0, 1, 0, 1, 0p−4)

�
; and ϕ(X,B0) =

(
X�β10

)2
+

2
(
X�β20

)
, where 0r represents a zero vector of dimension r.

Setting 2: p = 30; d0 = 3 with B0 = [β10 β20 β30] being a p×d0 matrix, β10 =

(1, 0, 0, 1, 0p−4)
�
, β20 = (0, 1, 0, 0, 1, 0p−5)

�
, and β30 = (0, 0, 1, 0, 0, 1,

0p−6)
�; and ϕ(X,B0) =

(
X�β10

)2
+ 2
(
X�β20

)
+
(
X�β30

)
.

Let C be the censoring time generated from the uniform distribution
UNIF(0, c), where c is a constant that is chosen to yield about 50% censor-
ing. Consequently, we calculate Y = min{T,C} and Δ = I (T ≤ C).

We consider three scenarios to generate surrogate measurements of X and
estimate B using the methods described in Section 2.3 accordingly.

Scenario 1: Both Σε and Γ are assumed known.
For i = 1, · · · , n, X∗

i is generated from (2.5) where γ = 0, Γ is the iden-
tity matrix, and εi assumes a distribution, denoted f(εi). To obtain the

estimate B̂ of B, we employ (3.6) in combination with Scenario I in Sec-
tion 2.3.

Scenario 2: Γ is known, Σε is unknown, and repeated measurements of Xi are
available.
Suppose that two repeated measurements

{
X∗

ir : r = 1, 2; i ∈ R
}

are
generated for additional m subjects with m = 100, where Xi and εir are
independently generated from N(0,ΣX) and f(εi), respectively, and X∗

ir

is generated from
X∗

ir = Xi + εir

for i ∈ R and r = 1, 2. To obtain the estimate B̂ of B, we employ (3.6) in
combination with Scenario II in Section 2.3.

Scenario 3: Both Σε and Γ are unknown and validation data are available.
For i = 1, · · · , n, we generate εi from f(εi) independently and set X∗

i =
Xi + εi. The main study data then consist of

{
{Ti, Ci,Δi, X

∗
i } : i ∈

M
}

with M = {1, · · · , n}. To generate an external validation sample{
{Xi, X

∗
i } : i ∈ V

}
, we set |V| to be 100, and for i ∈ V , independently

generate Xi from N(0,ΣX) and εi from f(εi). Setting X∗
i = Xi + εi for

i ∈ V gives the validation data
{
{Xi, X

∗
i } : i ∈ V

}
. Then we obtain the es-

timator B̂ of B using (3.6) in combination with Scenario III in Section 2.3.

We compare the performance of the proposed methods to the naive estima-
tors of F (·) and B, which are derived by directly implementing the observed
covariates X∗

i in (3.4) and (3.5). As a reference for comparisons, we also use
the true values of X for the estimation, and denote this method as “true”. In
implementing our methods, we take the kernel function to be the Epanechnikov
function, given by

K(v) =
3

4
(1− v2) for |v| ≤ 1.

Consider the sample size n = 200, 300, or 400. We repeat simulations 500
times for each setting. To assess the accuracy of the estimator B̂ of B, we
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consider the Frobenius norm

‖ΔB‖ =

√√√√ p∑
j=1

d∑
k=1

∣∣∣B̂ij −B0,ij

∣∣∣2
for ΔB = B̂−B0, where B̂ij and B0,ij represent the (i,j ) element of B̂ and B0,
respectively. To examine the performance of the estimator of F (·), we consider
the mean integrated squared error (MISE)

MISE(F̂ ) =
1

n

n∑
i=1

∫ τ

0

{
F̂
(
y, B̂�ui

)
− F (y,B�

0 ui)
}2

dF̂Y (y).

Further, we evaluate the standard error (S.E.) for the estimators of B and
F (·) which are calculated as the sample standard deviation for those estimates
obtained from the 500 simulations.

For each setting, we report four proportions of the estimator d̂ for 500 simu-
lations, given by

1

500

500∑
k=1

I (Akj) for j = 1, 2, 3, 4,

where Ak1, Ak2, Ak3 and Ak4 represent d̂k ≤ 1, d̂k = 2, d̂k = 3, and d̂k ≥ 4,
respectively, with d̂k standing for the estimate of d at the kth simulation. Those
proportions are displayed under the headings d̂ ≤ 1, d̂ = 2, d̂ = 3, and d̂ ≥ 4,
respectively.

5.1.2. Performance under normally distributed measurement errors

In this subsection we evaluate the performance of the proposed method under
the circumstance where the distribution of measurement error term is correctly
specified. That is, we set f(εi) to be a normal distribution in the three scenarios
of generating surrogate measurements. Specifically, we set f(εi) to be N(0,Σε)
with Σε being a diagonal matrix having diagonal entry σ2

ε = 0.15, 0.5, or 0.75.
We present the simulation results in the top panels of Tables 1-9. In terms

of estimation of B and F (·), the naive method produces biased results, and the
finite sample bias increases as the degree of measurement error increases; the
proposed methods greatly outperform the naive approach, yielding results that
are fairly close to those produced from the reference method by using the true
measurements of the covariates. Agreeing with the phenomenon we observed in
the literature of measurement error models, the standard errors associated with
the proposed methods are larger than those obtained from the naive method,
which is the price paid to correct for biases induced from measurement error in
covariates. While the differences for estimation of h and d are not very striking
between the naive method and our proposed methods, our approaches perform
better than the naive approach.
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Table 1: Simulation results under the PH model: Scenario 1 where Σε and Γ are
assumed known.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.300 0.014 0.188 0.018 0.806 0.015 0.090 0.910 0.000 0.000

Corrected 0.021 0.023 0.072 0.025 0.802 0.015 0.000 1.000 0.000 0.000
0.50 Naive 0.315 0.016 0.191 0.021 0.839 0.014 0.096 0.904 0.000 0.000

Corrected 0.023 0.027 0.073 0.026 0.798 0.015 0.020 0.980 0.000 0.000
0.75 Naive 0.319 0.019 0.206 0.022 0.824 0.016 0.103 0.897 0.000 0.000

Corrected 0.033 0.030 0.076 0.034 0.744 0.017 0.019 0.981 0.000 0.000
True 0.019 0.019 0.062 0.021 0.808 0.016 0.000 1.000 0.000 0.000

2 0.15 Naive 0.345 0.017 0.193 0.018 0.987 0.016 0.005 0.085 0.910 0.000
Corrected 0.021 0.028 0.075 0.025 0.994 0.017 0.000 0.000 1.000 0.000

0.50 Naive 0.351 0.020 0.198 0.020 0.989 0.016 0.005 0.090 0.905 0.000
Corrected 0.024 0.029 0.078 0.027 1.002 0.017 0.002 0.012 0.986 0.000

0.75 Naive 0.356 0.024 0.207 0.026 0.993 0.018 0.008 0.093 0.899 0.000
Corrected 0.035 0.030 0.081 0.038 0.987 0.020 0.003 0.013 0.984 0.000

True 0.018 0.019 0.068 0.020 0.978 0.015 0.000 0.000 1.000 0.000
Uniform 1 0.15 Naive 0.316 0.017 0.189 0.017 0.913 0.018 0.088 0.912 0.000 0.000

Corrected 0.020 0.025 0.075 0.019 0.946 0.019 0.001 0.999 0.000 0.000
0.50 Naive 0.322 0.020 0.195 0.023 0.926 0.018 0.090 0.910 0.000 0.000

Corrected 0.023 0.027 0.079 0.028 0.952 0.019 0.009 0.991 0.000 0.000
0.75 Naive 0.336 0.024 0.212 0.026 0.934 0.020 0.093 0.907 0.000 0.000

Corrected 0.035 0.037 0.083 0.037 0.958 0.022 0.014 0.986 0.000 0.000
2 0.15 Naive 0.351 0.019 0.196 0.019 0.894 0.018 0.000 0.091 0.909 0.000

Corrected 0.022 0.025 0.077 0.022 0.965 0.020 0.000 0.007 0.993 0.000
0.50 Naive 0.360 0.023 0.207 0.024 0.899 0.022 0.000 0.095 0.905 0.000

Corrected 0.028 0.026 0.081 0.027 1.001 0.028 0.000 0.010 0.990 0.000
0.75 Naive 0.373 0.029 0.224 0.028 0.933 0.025 0.000 0.098 0.902 0.000

Corrected 0.037 0.038 0.087 0.031 0.978 0.030 0.000 0.015 0.985 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.
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Table 2: Simulation results under the PO model: Scenario 1 where Σε and Γ are
assumed known.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.279 0.016 0.197 0.014 0.387 0.017 0.091 0.909 0.000 0.000

Corrected 0.016 0.032 0.079 0.016 0.544 0.018 0.000 1.000 0.000 0.000
0.50 Naive 0.297 0.017 0.198 0.017 0.409 0.018 0.096 0.904 0.000 0.000

Corrected 0.020 0.034 0.086 0.019 0.580 0.017 0.005 0.995 0.000 0.000
0.75 Naive 0.305 0.018 0.199 0.012 0.377 0.019 0.096 0.904 0.000 0.000

Corrected 0.028 0.036 0.094 0.022 0.576 0.021 0.010 0.990 0.000 0.000
True 0.010 0.019 0.068 0.010 0.558 0.018 0.000 1.000 0.000 0.000

2 0.15 Naive 0.293 0.020 0.203 0.014 0.974 0.019 0.003 0.090 0.907 0.000
Corrected 0.019 0.033 0.081 0.016 0.991 0.025 0.000 0.000 1.000 0.000

0.50 Naive 0.304 0.024 0.211 0.017 0.978 0.023 0.006 0.094 0.900 0.000
Corrected 0.024 0.036 0.086 0.020 0.880 0.027 0.000 0.003 0.997 0.000

0.75 Naive 0.315 0.027 0.223 0.020 0.980 0.025 0.006 0.096 0.894 0.000
Corrected 0.030 0.037 0.095 0.024 0.933 0.027 0.000 0.005 0.995 0.000

True 0.014 0.021 0.073 0.015 0.678 0.020 0.000 0.000 1.000 0.000
Uniform 1 0.15 Naive 0.282 0.020 0.205 0.015 0.806 0.019 0.089 0.911 0.000 0.000

Corrected 0.022 0.033 0.086 0.016 0.967 0.022 0.003 0.997 0.000 0.000
0.50 Naive 0.290 0.024 0.211 0.020 0.814 0.021 0.093 0.907 0.000 0.000

Corrected 0.024 0.036 0.093 0.025 0.970 0.024 0.010 0.990 0.000 0.000
0.75 Naive 0.297 0.029 0.223 0.023 0.829 0.023 0.097 0.903 0.000 0.000

Corrected 0.030 0.038 0.096 0.026 0.975 0.026 0.016 0.984 0.000 0.000
2 0.15 Naive 0.289 0.025 0.212 0.015 0.827 0.022 0.000 0.091 0.909 0.000

Corrected 0.025 0.031 0.088 0.017 0.922 0.027 0.000 0.004 0.996 0.000
0.50 Naive 0.297 0.029 0.226 0.021 0.827 0.022 0.000 0.096 0.904 0.000

Corrected 0.031 0.034 0.095 0.027 0.928 0.029 0.000 0.013 0.987 0.000
0.75 Naive 0.304 0.033 0.234 0.025 0.850 0.026 0.000 0.102 0.898 0.000

Corrected 0.037 0.039 0.099 0.029 0.916 0.029 0.000 0.018 0.982 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.
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Table 3: Simulation results under the AH model: Scenario 1 where Σε and Γ are
assumed known.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.286 0.017 0.184 0.013 0.605 0.020 0.088 0.912 0.000 0.000

Corrected 0.017 0.028 0.064 0.018 0.743 0.022 0.000 1.000 0.000 0.000
0.50 Naive 0.295 0.018 0.191 0.016 0.590 0.019 0.092 0.908 0.000 0.000

Corrected 0.023 0.028 0.061 0.020 0.733 0.027 0.000 1.000 0.000 0.000
0.75 Naive 0.305 0.018 0.196 0.018 0.568 0.021 0.092 0.908 0.000 0.000

Corrected 0.028 0.030 0.060 0.023 0.710 0.031 0.009 0.991 0.000 0.000
True 0.012 0.023 0.037 0.015 0.745 0.017 0.000 1.000 0.000 0.000

2 0.15 Naive 0.295 0.023 0.195 0.016 0.855 0.021 0.003 0.085 0.912 0.000
Corrected 0.017 0.029 0.067 0.020 0.985 0.025 0.000 0.001 0.999 0.000

0.50 Naive 0.304 0.027 0.203 0.019 0.884 0.026 0.006 0.088 0.906 0.000
Corrected 0.021 0.032 0.070 0.025 0.987 0.030 0.000 0.004 0.996 0.000

0.75 Naive 0.312 0.029 0.211 0.023 0.903 0.028 0.006 0.090 0.904 0.000
Corrected 0.029 0.034 0.072 0.028 0.993 0.032 0.000 0.006 0.994 0.000

True 0.015 0.022 0.060 0.017 0.749 0.020 0.000 0.002 0.998 0.000
Uniform 1 0.15 Naive 0.293 0.023 0.190 0.017 0.855 0.019 0.089 0.911 0.000 0.000

Corrected 0.023 0.026 0.068 0.021 0.989 0.021 0.002 0.998 0.000 0.000
0.50 Naive 0.298 0.024 0.195 0.019 0.879 0.021 0.094 0.906 0.000 0.000

Corrected 0.025 0.026 0.069 0.024 0.987 0.025 0.007 0.993 0.000 0.000
0.75 Naive 0.307 0.027 0.203 0.021 0.894 0.022 0.095 0.905 0.000 0.000

Corrected 0.030 0.031 0.074 0.025 0.989 0.025 0.010 0.990 0.000 0.000
2 0.15 Naive 0.310 0.023 0.199 0.019 0.893 0.020 0.000 0.086 0.914 0.000

Corrected 0.026 0.027 0.074 0.023 0.974 0.024 0.000 0.003 0.997 0.000
0.50 Naive 0.318 0.025 0.207 0.023 0.916 0.022 0.000 0.089 0.911 0.000

Corrected 0.028 0.028 0.076 0.028 0.980 0.025 0.000 0.006 0.994 0.000
0.75 Naive 0.325 0.028 0.214 0.025 0.934 0.023 0.000 0.093 0.907 0.000

Corrected 0.033 0.031 0.082 0.029 0.972 0.026 0.000 0.009 0.991 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.
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Table 4: Simulation results under the PH model: Scenario 2 where Γ is assumed
known and Σε is unknown.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.292 0.013 0.193 0.017 0.712 0.015 0.010 0.990 0.000 0.000

Corrected 0.017 0.021 0.064 0.022 0.759 0.016 0.000 1.000 0.000 0.000
0.50 Naive 0.295 0.015 0.196 0.020 0.777 0.015 0.015 0.985 0.000 0.000

Corrected 0.025 0.024 0.070 0.024 0.610 0.018 0.000 1.000 0.000 0.000
0.75 Naive 0.298 0.016 0.207 0.021 0.765 0.016 0.016 0.984 0.000 0.000

Corrected 0.029 0.026 0.077 0.028 0.386 0.025 0.000 1.000 0.000 0.000
True 0.010 0.016 0.058 0.021 0.816 0.015 0.000 1.000 0.000 0.000

2 0.15 Naive 0.301 0.019 0.200 0.017 0.886 0.016 0.002 0.018 0.980 0.000
Corrected 0.022 0.023 0.077 0.021 0.990 0.019 0.000 0.000 1.000 0.000

0.50 Naive 0.313 0.021 0.211 0.020 0.893 0.020 0.003 0.020 0.977 0.000
Corrected 0.030 0.025 0.080 0.024 0.985 0.023 0.000 0.000 1.000 0.000

0.75 Naive 0.321 0.023 0.224 0.023 0.898 0.020 0.003 0.025 0.972 0.000
Corrected 0.039 0.028 0.086 0.026 0.982 0.024 0.000 0.002 0.998 0.000

True 0.018 0.019 0.071 0.018 0.789 0.017 0.000 0.000 1.000 0.000
Uniform 1 0.15 Naive 0.303 0.017 0.200 0.018 0.820 0.016 0.009 0.991 0.000 0.000

Corrected 0.021 0.026 0.092 0.022 0.945 0.019 0.000 1.000 0.000 0.000
0.50 Naive 0.310 0.020 0.211 0.020 0.846 0.018 0.014 0.986 0.000 0.000

Corrected 0.028 0.029 0.100 0.025 0.921 0.021 0.002 0.998 0.000 0.000
0.75 Naive 0.318 0.026 0.223 0.023 0.851 0.020 0.017 0.983 0.000 0.000

Corrected 0.031 0.033 0.104 0.027 0.858 0.025 0.008 0.998 0.000 0.000
2 0.15 Naive 0.309 0.020 0.206 0.019 0.886 0.018 0.003 0.019 0.978 0.000

Corrected 0.027 0.026 0.090 0.022 0.961 0.020 0.000 0.002 0.998 0.000
0.50 Naive 0.314 0.024 0.215 0.022 0.891 0.021 0.003 0.023 0.974 0.000

Corrected 0.029 0.029 0.096 0.027 0.916 0.025 0.000 0.003 0.997 0.000
0.75 Naive 0.322 0.028 0.229 0.025 0.905 0.024 0.004 0.026 0.970 0.000

Corrected 0.030 0.031 0.105 0.027 0.819 0.027 0.000 0.005 0.995 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.



S
D
R

w
ith

erro
r-p

ro
n
e
su

rviva
l
d
a
ta

2
0
9
9

Table 5: Simulation results under the PO model: Scenario 2 where Γ is assumed
known and Σε is unknown.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.263 0.013 0.189 0.010 0.420 0.018 0.009 0.991 0.000 0.000

Corrected 0.012 0.026 0.044 0.013 0.514 0.020 0.000 1.000 0.000 0.000
0.50 Naive 0.305 0.016 0.194 0.011 0.429 0.020 0.011 0.989 0.000 0.000

Corrected 0.016 0.028 0.053 0.014 0.017 0.021 0.002 0.997 0.001 0.000
0.75 Naive 0.313 0.016 0.194 0.011 0.492 0.020 0.013 0.987 0.000 0.000

Corrected 0.024 0.028 0.061 0.019 0.142 0.024 0.003 0.996 0.001 0.000
True 0.009 0.016 0.041 0.010 0.576 0.020 0.000 1.000 0.000 0.000

2 0.15 Naive 0.288 0.017 0.195 0.013 0.804 0.014 0.001 0.014 0.985 0.000
Corrected 0.026 0.024 0.050 0.016 0.913 0.017 0.000 0.000 1.000 0.000

0.50 Naive 0.310 0.022 0.206 0.014 0.822 0.021 0.005 0.020 0.975 0.000
Corrected 0.031 0.030 0.054 0.016 0.981 0.026 0.000 0.002 0.998 0.000

0.75 Naive 0.319 0.025 0.215 0.019 0.835 0.022 0.005 0.024 0.971 0.000
Corrected 0.032 0.034 0.063 0.024 0.972 0.026 0.000 0.003 0.997 0.000

True 0.018 0.017 0.045 0.014 0.779 0.015 0.000 0.000 1.000 0.000
Uniform 1 0.15 Naive 0.277 0.018 0.195 0.011 0.902 0.015 0.012 0.988 0.000 0.000

Corrected 0.018 0.029 0.053 0.015 0.947 0.017 0.000 1.000 0.000 0.000
0.50 Naive 0.285 0.023 0.211 0.013 0.911 0.016 0.014 0.986 0.000 0.000

Corrected 0.019 0.032 0.059 0.015 0.925 0.019 0.003 0.997 0.000 0.000
0.75 Naive 0.285 0.023 0.211 0.013 0.911 0.016 0.017 0.983 0.000 0.000

Corrected 0.023 0.034 0.065 0.024 0.817 0.025 0.004 0.996 0.000 0.000
2 0.15 Naive 0.291 0.024 0.212 0.014 0.945 0.019 0.002 0.018 0.980 0.000

Corrected 0.018 0.031 0.056 0.016 0.833 0.020 0.000 0.000 1.000 0.000
0.50 Naive 0.307 0.028 0.228 0.015 0.959 0.020 0.002 0.023 0.975 0.000

Corrected 0.021 0.033 0.058 0.016 0.885 0.022 0.000 0.002 0.998 0.000
0.75 Naive 0.326 0.031 0.240 0.021 0.974 0.023 0.003 0.026 0.971 0.000

Corrected 0.026 0.037 0.064 0.027 0.933 0.026 0.000 0.004 0.996 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.
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Table 6: Simulation results under the AH model: Scenario 2 where Γ is assumed
known and Σε is unknown.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.270 0.016 0.176 0.013 0.620 0.020 0.005 0.994 0.001 0.000

Corrected 0.013 0.023 0.052 0.017 0.652 0.022 0.000 1.000 0.000 0.000
0.50 Naive 0.275 0.017 0.184 0.015 0.618 0.020 0.010 0.989 0.001 0.000

Corrected 0.015 0.025 0.055 0.017 0.460 0.022 0.006 0.994 0.000 0.000
0.75 Naive 0.295 0.018 0.186 0.016 0.638 0.019 0.011 0.987 0.002 0.000

Corrected 0.016 0.026 0.059 0.018 0.313 0.029 0.007 0.992 0.001 0.000
True 0.010 0.019 0.036 0.009 0.681 0.019 0.000 1.000 0.000 0.000

2 0.15 Naive 0.283 0.019 0.185 0.018 0.943 0.018 0.002 0.010 0.988 0.000
Corrected 0.017 0.024 0.055 0.023 0.996 0.021 0.000 0.000 1.000 0.000

0.50 Naive 0.290 0.022 0.192 0.020 0.956 0.021 0.004 0.016 0.980 0.000
Corrected 0.024 0.028 0.058 0.025 0.966 0.026 0.000 0.002 0.998 0.000

0.75 Naive 0.307 0.023 0.205 0.022 0.961 0.025 0.004 0.020 0.976 0.000
Corrected 0.028 0.028 0.063 0.026 0.998 0.032 0.000 0.004 0.996 0.000

True 0.015 0.018 0.048 0.019 0.890 0.018 0.000 0.000 1.000 0.000
Uniform 1 0.15 Naive 0.288 0.019 0.190 0.018 0.901 0.022 0.006 0.994 0.000 0.000

Corrected 0.016 0.025 0.056 0.021 0.962 0.027 0.000 1.000 0.000 0.000
0.50 Naive 0.295 0.024 0.205 0.020 0.919 0.024 0.008 0.992 0.000 0.000

Corrected 0.017 0.029 0.063 0.023 0.937 0.029 0.002 0.998 0.000 0.000
0.75 Naive 0.310 0.027 0.221 0.021 0.935 0.027 0.011 0.989 0.000 0.000

Corrected 0.019 0.031 0.065 0.024 0.854 0.030 0.005 0.995 0.000 0.000
2 0.15 Naive 0.297 0.021 0.208 0.019 0.908 0.023 0.003 0.012 0.985 0.000

Corrected 0.017 0.025 0.060 0.021 0.964 0.025 0.000 0.000 1.000 0.000
0.50 Naive 0.306 0.024 0.214 0.022 0.925 0.025 0.003 0.017 0.980 0.000

Corrected 0.018 0.026 0.064 0.027 0.930 0.027 0.000 0.002 0.998 0.000
0.75 Naive 0.321 0.025 0.227 0.026 0.940 0.026 0.004 0.022 0.974 0.000

Corrected 0.022 0.028 0.066 0.030 0.833 0.028 0.000 0.004 0.996 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.
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Table 7: Simulation results under the PH model: Scenario 3 where Γ and Σε are
unknown.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.249 0.012 0.156 0.016 0.715 0.012 0.010 0.985 0.005 0.000

Corrected 0.014 0.018 0.058 0.019 0.820 0.013 0.000 1.000 0.000 0.000
0.50 Naive 0.251 0.013 0.163 0.019 0.747 0.016 0.020 0.973 0.007 0.000

Corrected 0.018 0.022 0.063 0.023 0.825 0.014 0.000 1.000 0.000 0.000
0.75 Naive 0.272 0.016 0.176 0.020 0.778 0.016 0.017 0.978 0.005 0.000

Corrected 0.017 0.024 0.066 0.025 0.863 0.013 0.000 1.000 0.000 0.000
True 0.009 0.014 0.040 0.017 0.813 0.016 0.000 1.000 0.000 0.000

2 0.15 Naive 0.253 0.013 0.165 0.016 0.876 0.011 0.001 0.013 0.986 0.000
Corrected 0.019 0.017 0.072 0.017 0.991 0.014 0.000 0.000 1.000 0.000

0.50 Naive 0.261 0.016 0.171 0.018 0.883 0.014 0.002 0.016 0.982 0.000
Corrected 0.023 0.021 0.083 0.020 0.989 0.017 0.000 0.000 1.000 0.000

0.75 Naive 0.269 0.022 0.189 0.021 0.897 0.019 0.002 0.020 0.978 0.000
Corrected 0.025 0.026 0.084 0.024 0.991 0.025 0.000 0.002 0.998 0.000

True 0.013 0.013 0.066 0.015 0.745 0.012 0.000 0.000 1.000 0.000
Uniform 1 0.15 Naive 0.263 0.014 0.170 0.018 0.833 0.014 0.014 0.986 0.000 0.000

Corrected 0.018 0.018 0.089 0.020 0.977 0.016 0.000 1.000 0.000 0.000
0.50 Naive 0.285 0.020 0.184 0.023 0.865 0.016 0.019 0.981 0.000 0.000

Corrected 0.025 0.027 0.091 0.028 0.988 0.018 0.000 1.000 0.000 0.000
0.75 Naive 0.294 0.023 0.190 0.026 0.890 0.016 0.023 0.977 0.000 0.000

Corrected 0.028 0.027 0.094 0.030 0.964 0.018 0.002 0.998 0.000 0.000
2 0.15 Naive 0.271 0.016 0.183 0.020 0.845 0.014 0.002 0.018 0.980 0.000

Corrected 0.020 0.019 0.098 0.021 0.986 0.016 0.000 0.000 1.000 0.000
0.50 Naive 0.280 0.023 0.191 0.022 0.866 0.017 0.002 0.023 0.975 0.000

Corrected 0.028 0.029 0.107 0.025 0.983 0.022 0.000 0.002 0.998 0.000
0.75 Naive 0.293 0.026 0.205 0.026 0.893 0.023 0.003 0.024 0.973 0.000

Corrected 0.031 0.029 0.112 0.032 0.988 0.028 0.000 0.003 0.997 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.
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Table 8: Simulation results under the PO model: Scenario 3 where Γ and Σε are
unknown.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.253 0.012 0.164 0.009 0.306 0.019 0.008 0.992 0.000 0.000

Corrected 0.011 0.023 0.040 0.012 0.506 0.021 0.002 0.998 0.000 0.000
0.50 Naive 0.259 0.016 0.172 0.011 0.374 0.021 0.011 0.989 0.000 0.000

Corrected 0.016 0.025 0.042 0.014 0.597 0.021 0.003 0.997 0.000 0.000
0.75 Naive 0.276 0.016 0.176 0.011 0.415 0.022 0.013 0.987 0.000 0.000

Corrected 0.021 0.027 0.047 0.017 0.618 0.022 0.003 0.997 0.000 0.000
True 0.009 0.015 0.030 0.010 0.467 0.019 0.003 0.997 0.000 0.000

2 0.15 Naive 0.266 0.017 0.176 0.011 0.901 0.019 0.002 0.018 0.980 0.000
Corrected 0.020 0.021 0.040 0.015 0.953 0.025 0.000 0.001 0.999 0.000

0.50 Naive 0.271 0.020 0.188 0.012 0.915 0.022 0.002 0.022 0.976 0.000
Corrected 0.025 0.025 0.044 0.015 0.942 0.026 0.000 0.000 1.000 0.000

0.75 Naive 0.284 0.023 0.195 0.014 0.920 0.024 0.003 0.025 0.972 0.000
Corrected 0.030 0.029 0.050 0.017 0.958 0.029 0.000 0.003 0.997 0.000

True 0.018 0.016 0.034 0.012 0.765 0.020 0.000 0.000 1.000 0.000
Uniform 1 0.15 Naive 0.260 0.018 0.175 0.012 0.856 0.019 0.010 0.990 0.000 0.000

Corrected 0.016 0.024 0.045 0.015 0.956 0.023 0.002 0.998 0.000 0.000
0.50 Naive 0.269 0.023 0.182 0.015 0.867 0.022 0.012 0.988 0.000 0.000

Corrected 0.019 0.032 0.050 0.018 0.971 0.024 0.004 0.996 0.000 0.000
0.75 Naive 0.280 0.029 0.195 0.020 0.893 0.024 0.015 0.985 0.000 0.000

Corrected 0.023 0.035 0.050 0.024 0.991 0.028 0.005 0.995 0.000 0.000
2 0.15 Naive 0.278 0.022 0.189 0.013 0.898 0.021 0.001 0.019 0.980 0.000

Corrected 0.018 0.026 0.056 0.016 0.954 0.025 0.000 0.002 0.998 0.000
0.50 Naive 0.286 0.027 0.197 0.015 0.914 0.024 0.001 0.022 0.977 0.000

Corrected 0.020 0.035 0.057 0.019 0.958 0.026 0.000 0.005 0.995 0.000
0.75 Naive 0.297 0.033 0.213 0.020 0.935 0.026 0.003 0.026 0.971 0.000

Corrected 0.026 0.038 0.065 0.026 0.944 0.030 0.000 0.005 0.995 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.
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Table 9: Simulation results under the AH model: Scenario 3 where Γ and Σε are
unknown.

Distributiona Settingb σ2
ε Method Estimator of B Estimator of F (·) Estimator of h Estimator of d

‖ΔB‖ S.E. MISE(F̂ ) S.E. ĥ S.E. d̂ ≤ 1 d̂ = 2 d̂ = 3 d̂ ≥ 4
Normal 1 0.15 Naive 0.263 0.012 0.159 0.013 0.631 0.018 0.010 0.990 0.000 0.000

Corrected 0.010 0.022 0.044 0.015 0.742 0.018 0.003 0.997 0.000 0.000
0.50 Naive 0.261 0.014 0.168 0.014 0.594 0.022 0.012 0.988 0.000 0.000

Corrected 0.014 0.023 0.046 0.016 0.704 0.019 0.003 0.997 0.000 0.000
0.75 Naive 0.281 0.016 0.172 0.014 0.652 0.019 0.011 0.989 0.000 0.000

Corrected 0.015 0.025 0.053 0.017 0.779 0.015 0.003 0.997 0.000 0.000
True 0.010 0.014 0.034 0.014 0.685 0.018 0.002 0.998 0.000 0.000

2 0.15 Naive 0.278 0.015 0.163 0.016 0.911 0.017 0.000 0.012 0.988 0.000
Corrected 0.016 0.021 0.045 0.020 0.994 0.018 0.000 0.002 0.998 0.000

0.50 Naive 0.285 0.018 0.176 0.019 0.923 0.020 0.001 0.015 0.984 0.000
Corrected 0.020 0.022 0.047 0.022 0.995 0.024 0.000 0.002 0.998 0.000

0.75 Naive 0.291 0.022 0.184 0.020 0.935 0.023 0.002 0.023 0.975 0.000
Corrected 0.021 0.025 0.060 0.023 0.989 0.029 0.000 0.003 0.997 0.000

True 0.013 0.016 0.038 0.016 0.745 0.016 0.000 0.001 0.999 0.000
Uniform 1 0.15 Naive 0.281 0.022 0.170 0.016 0.911 0.018 0.011 0.989 0.000 0.000

Corrected 0.016 0.031 0.045 0.020 0.995 0.019 0.002 0.998 0.000 0.000
0.50 Naive 0.293 0.027 0.184 0.019 0.923 0.019 0.014 0.986 0.000 0.000

Corrected 0.019 0.032 0.048 0.023 0.997 0.022 0.005 0.995 0.000 0.000
0.75 Naive 0.313 0.029 0.196 0.022 0.948 0.023 0.019 0.981 0.000 0.000

Corrected 0.021 0.034 0.055 0.025 0.982 0.026 0.006 0.994 0.000 0.000
2 0.15 Naive 0.297 0.026 0.181 0.017 0.940 0.019 0.000 0.013 0.987 0.000

Corrected 0.022 0.035 0.048 0.018 0.989 0.021 0.000 0.003 0.997 0.000
0.50 Naive 0.302 0.031 0.196 0.017 0.963 0.021 0.000 0.018 0.982 0.000

Corrected 0.023 0.037 0.053 0.019 0.985 0.024 0.000 0.004 0.996 0.000
0.75 Naive 0.316 0.034 0.207 0.023 0.978 0.025 0.002 0.022 0.976 0.000

Corrected 0.028 0.039 0.058 0.027 0.989 0.028 0.000 0.007 0.993 0.000

a: “Normal” and “Uniform” correspond to distributions of εi in Sections 5.1.1 and 5.1.2, respectively.
b: Setting 1 has p = 10 and d0 = 2; Setting 2 has p = 30 and d0 = 3.
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5.1.3. Misspecification of the measurement error distribution

To assess the sensitivity of the proposed methods to misspecification of the mea-
surement error distribution, we repeat the simulation studies in Section 5.1.2,
except that the normal distribution N(0,Σε) of εi or εir is replaced by the uni-
form distribution UNIF(0,

√
12σε) when we generate data. Simulation results

are summarized in the bottom panels of Tables 1-9.

The results demonstrate the same patterns observed in Section 5.1.2. The
estimators of B and F (·) produced from the proposed methods still outperform
those without suitable correction for the measurement error effects. Standard
errors for the associated methods exhibit the same patterns as those shown in
Section 5.1.2. Compared to the results in Section 5.1.2, the performance of the
proposed estimators appears to be fairly insensitive under the misspecification
of the measurement error distribution we consider.

In summary, in the presence of measurement error, the naive method yields
unsatisfactory results. The proposed methods appear to successfully correct for
the measurement error effects for various settings.

5.2. Analysis of ACTG 175 dataset

We implement the proposed method to analyze the AIDS Clinical Trials Group
(ACTG) 175 data which were discussed by [10]. The ACTG 175 study was
a double-blind randomized clinical trial which evaluated the HIV treatment
effects. The dataset is available in R package “speff2trial”. The dataset con-
tains measurements on 26 variables for 2139 individuals; these variables are
age, wtkg, hemo, homo, drugs, karnof, oprior, z30, zprior, preanti, race,
gender, str2, strat, symptom, treat, offtrt, cd40, cd420, cd496, r, cd80,
cd820, cens, days, and arms. Since the variable cd496 contains missing values
and r is its missing indicator, so we remove those two variables. In addition,
we remove variables zprior and treat because zprior is the constant 1 for all
subjects and treat indicates whether or not the subject received the zidovudine
treatment, overlapping with arms. As a result, in addition to the survival time
days and the censoring indicator cens, we have p = 20 covariates in the dataset
where cd40 is error-prone. The censoring rate of this dataset is approximately
75.6%.

Fourty-four subjects were measured once for cd40 at the baseline, while 2095
subjects had two replicated baseline measurements of cd40. As discussed in [26,
Section 3.6.4], let X denote log(cd40+1). To implement the proposed method,
we consider the measurement error model (2.9) to facilitate the availability
of repeated measurements. Consequently, based on the discussion of Scenario
II in Section 2.3, the estimates of Σε and ΣX∗ are given by Σ̂ε = 0.035 and
Σ̂X∗ = 0.114, respectively, yielding L̂ = 0.693 as indicated by (2.12). In this

study, we consider the entire data with error correction by L̂. In addition to
X, let Z denote the vector of the remaining 19 covariates that are assumed to
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Fig 1. Scatter plots of the observed time Y against β�
j U with j = 1, 2. The left panel is β�

1 U

and the right panel is β�
2 U . The first row with black boxes (�) is obtained from the naive

approach, and the second row with red triangles (�) is obtained from the proposed method.

be precisely measured. Consequently, we let U =
(
L̂X∗�, Z�

)�
denote a 20-

dimensional vector of covariates to be implemented with the proposed method.
The naive method and the proposed method give d̂ = 2, suggesting that

there are two directions in the central subspace, say β1 and β2. In Figure 1, we
present the scatter plots of the observed time Yi and β̂�

j Ui with j = 1, 2. While
the naive method and the proposed method show fairly similar patterns, the
scatter plot based on the naive method seems slightly more variable than that
for the proposed method. The similarity may be pertinent to the small degree of
measurement error, indicated by the estimate Σ̂ε = 0.035 of Σε obtained from
the replicate measurements. The more variability of the results obtained from
the naive method agrees with the phenomenon that often exhibits in settings
with measurement error (e.g., [4]; [5]; [26]). We also examine the estimated

functions 1−F̂ (·) for subjects i = 1, 7 and 23, and display the curves in Figure 2.
It is seen that the estimated curves based on the naive and the proposed methods
have similar patterns.

6. Discussion

Sufficient dimension reduction is a useful tool in regression models, which mainly
reduces the dimension of variables with the predictive information of covariates
preserved. In this paper, we deal with SDR for censored data with measure-
ment error using cumulative distribution models. We propose valid inferential
procedures to correct for the measurement error effects and estimate the cen-
tral subspace. Our methods are justified theoretically, and their finite sample
performance is demonstrated to be satisfactory through simulation studies.

Some further extensions are worth exploring. In the development here the
censoring time Ci is assumed to be independent of the covariates Xi. This con-
sideration is basically driven by its common use in the literature, which enables
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Fig 2. Estimated curves of 1 − F̂ (y|Ui). The solid curve is for subject i = 1, the dash curve
is for subject i = 7, and the dot curve is for subject i = 23. The left panel is given by the
proposed method, the right panel is given by the naive method.

us to use the Kaplan-Meier estimator to consistently estimate the survivor func-
tion of the censoring process. This assumption, however, is not essential. One
may relax it by replacing the unconditional survivor function G(c) of Ci with
the conditional survivor function, G(c|Xi) � P (Ci > c|Xi), of Ci given Xi,
and modify the development here accordingly. Estimation of G(c|Xi) may be
performed with parametric or semiparametric regression models imposed (e.g.,
[18]).

As shown in Section 2.2, the normal distribution for X and ε is required when
replacing X∗ by U , which ensures the invariance law to hold ([14]). When X
does not follow a normal distribution but has a large dimension, Li and Yin [14,
Section 6] discussed approximate invariance using the low dimensional projec-
tions of covariates. It would be interesting to examine whether this scheme can
be combined with the estimation procedure in Section 3 to handle non-normally
distributed and error-contaminated covariates. Another interesting topic is to
relax the normality assumption of X by assuming X to be elliptical symmetric
[8], as suggested by the Associate Editor.

The development here considers the case where the components of X are
all continuous random variables. In applications, however, error-prone vector
X may contain discrete components. It is interesting to generalize our meth-
ods to accommodating this circumstance, and such research warrants careful
explorations.

Appendix A: Regularity conditions

(C1) P (Yi < τ) > 0, where τ is an upper bound of survival times assumed to
be finite.

(C2) The survival time and the censoring time are conditionally independent,
given the covariates. The censoring time Ci is independent of the covariates
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Xi.
(C3) For any t > 0, the {I(Yi ≤ t), X∗

i } are independent and identically dis-
tributed for i = 1, · · · , n.

(C4) The bandwidth h is chosen from the interval Hκ;n = [hln
−κ, hun

−κ] for
some constants hl and hu and κ ∈ (1/(4q), 1/max{2d+ 2, d+ 4}).

(C5) A in Section 4 is a positive definite matrix.

(C6) Ĝ(·) is a consistent estimator of G(·) which is bounded away from zero.

Conditions (C1) to (C3) are regular assumptions in survival analysis for the
establishment of the asymptotic properties (e.g., [1]). The independence of Ci

and Xi is commonly imposed in survival analysis (e.g., [22]). Condition (C4)
guides the choice of a suitable bandwidth and is used to establish the

√
n-

consistency of B̂ [13]. Condition (C5) is a routine requirement that is used to

establish the asymptotic distribution of B̂. Consistency of Ĝ(·) in Condition
(C6) is imposed to establish the asymptotic properties, which was also used by
other authors such as [18]. Requiring it to be bounded away from zero avoids
numerical instability in extreme situations, as noted by [29].

Appendix B: Technical Lemmas

Taking the difference between (4.1) and (4.3) and between (4.2) and (4.3), we
further define

F̃
(j)
l,B,L(y, u) = F̂

(j)
l,B,L(y,B

�u)− F
(j)
l,B,L(y, u) (B.1)

and
F̃
(j)

l,B,L̂
(y, u) = F̂

(j)

l,B,L̂
(y,B�u)− F

(j)
l,B,L(y, u) (B.2)

for l = 0, 1 and j = 0, 1, 2.
Define

F̃ (j)(y, u) = ∇j
vec(B)F̂ (y,B�u)− F (j)(y, u) (B.3)

for j = 0, 1, where F̂ (y,B�u) is given by (3.4), and F (j)(y, u) with j = 0 and 1
is defined in (4.5) and (4.6).

Noting that ∇j
vec(B)F̂ (y,B�u) involves the measurement error correction

term L which is assumed to be known or estimated, so here we add the sub-
script (B,L) or (B, L̂) in (B.3) to show each case. That is, if L is known, then
we re-write (B.3) as

F̃
(j)
B,L(y, u) = ∇j

vec(B),LF̂ (y,B�u)− F
(j)
B,L(y, u);

if L is unknown and is estimated by L̂, then we express (B.3) as

F̃
(j)

B,L̂
(y, u) = ∇j

vec(B),L̂
F̂ (y,B�u)− F

(j)
B,L(y, u).

In the following lemmas, we present the convergence rates of (B.1) and (B.3).
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Lemma B.1. Suppose that regularity conditions in Appendix A hold. For j =
0, 1, 2 and l = 0, 1, if L is known, then

sup
y,u,B

∥∥∥F̃(j)
l,B,L(y, u)

∥∥∥ = Op (h
q) + op

(
log n√
nhj+d

)
; (B.4)

if L is unknown and is estimated by an estimator L̂, then

sup
y,u,B

∥∥∥F̃(j)

l,B,L̂
(y, u)

∥∥∥ = op

(
p logm√

m

)
+Op (h

q) + op

(
logn√
nhj+d

)
. (B.5)

Proof:

We first show (B.4). Since {I(Yi ≤ y) : y ≥ 0},
{
K(B�Ui − u) : B ∈ Rp×d

}
and {(Ui − u)⊗j : j = 0, 1, 2} are the Vapnik-C̆ervonenkis (VC) classes by
[9, p.911] and Lemma 2.4 in [20]. Further, Lemma 2.12 in [20] implies that
those three classes are Euclidean, and thus, Lemma 2.14 in [20] indicates that{{

Δi

G(Yi)
I(Yi ≤ y)

}l
∇j

vec(B)K
(
B�Ûi − u

)
: y, u,B

}
is also a Euclidean. As a

result, by Theorem II.37 in [21] and derivations similar to [9], we have that

F̂
(j)
l,B,L(y,B

�u)− E
{
F̂
(j)
l,B,L(y,B

�u)
}
= op

(
logn√
nhj+d

)
(B.6)

and
E
{
F̂
(j)
l,B,L(y,B

�u)
}
− F

(j)
l,B,L(y,B

�u) = Op (h
q) (B.7)

for l = 0, 1 and j = 0, 1, 2. Therefore, combining (B.6) and (B.7) gives (B.4).
We next show (B.5). Consider

F̂
(j)

l,B,L̂
(y, u)− F̂

(j)
l,B,L(y, u)

=
1

n

n∑
i=1

⎡⎣{ Δi

Ĝ (Yi)
I(Yi ≤ y)

}l

∇j
vec(B)

{
K
(
B�Ûi − u

)
−K
(
B�Ui − u

)}⎤⎦
=

1

n

n∑
i=1

⎡⎣{ Δi

Ĝ (Yi)
I(Yi ≤ y)

}l

∇j
vec(B)

{
∇1

LK
(
B�Ui − u

)}⎤⎦(L̂− L
)
.

Since L̂ is estimated by either repeated measurements or a validation sample,
by similar derivations of Theorem 1 in [27], we have that

L̂− L = op

(
p logm√

m

)
.

As the result, we have

sup
y,u,B

∥∥∥F̂(j)

l,B,L̂
(y, u)− F̂

(j)
l,B,L(y, u)

∥∥∥ = op

(
p logm√

m

)
,
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and combining the result (B.4) gives the desired result of (B.5).

Next, let ζ
(0)
i,B0

(y, u) be as defined in (4.4), and define

ζ
(1)
i,B0

(y, u) (B.8)

=
1∑

j,l=0

{
F̃
(j)
i,l,B,L(y, u)

(−1)1+lF
(0)
1−l,B,L(y,B

�u)

F
(0)3−l
0,B,L (y,B�u)

×
(

1∑
l′=0

(l + l′ − 2)Fl′

1−l′,B,L(u,B
�u)Fl′

l′,B,L(y,B
�u)F1

l′,B,L(y,B
�u)

)1−j
⎫⎬⎭ .

Lemma B.2. Suppose that regularity conditions in Appendix A holds. For j =
0, 1, if L is known, then

sup
y,u,B

∥∥∥∥∥F̃ (j)
B,L(y, u)−

1

n

n∑
i=1

ζ
(j)
i,B(y, u)

∥∥∥∥∥ = op

(
1√
n

)
; (B.9)

if L is unknown and L̂ is the estimator, then

sup
y,u,B

∥∥∥∥∥F̃ (j)

B,L̂
(y, u)− 1

n

n∑
i=1

ζ
(j)
i,B(y, u)

∥∥∥∥∥ = op

(
1√
n

)
+ op

(
1√
m

)
. (B.10)

Proof:

For j = 0, by expressions (3.4) and (4.1), we observe that

F̃
(0)
B,L(y, u) = ∇0

vec(B),LF̂ (y,B�u)− F
(0)
B,L(y, u)

=
F̂
(0)
1,B,L(y,B

�u)

F̂
(0)
0,B,L(y,B

�u)
−

F
(0)
1,B,L(y, u)

F
(0)
0,B,L(y, u)

=
F̂
(0)
1,B,L(y,B

�u)F
(0)
0,B,L(y, u)− F̂

(0)
0,B,L(y, u)F

(0)
1,B,L(y, u)

F̂
(0)
0,B,L(y,B

�u)F
(0)
0,B,L(y, u)

=
F
(0)
0,B,L(y, u)

{
F̂
(0)
1,B,L(y,B

�u)− F
(0)
1,B,L(y,B

�u)
}

F̂
(0)
0,B,L(y,B

�u)F
(0)
0,B,L(y, u)

−
F
(0)
1,B,L(y, u)

{
F̂
(0)
0,B,L(y,B

�u)− F
(0)
0,B,L(y,B

�u)
}

F̂
(0)
0,B,L(y,B

�u)F
(0)
0,B,L(y, u)

=
F̃
(0)
1,B,L(y,B

�u)

F̂
(0)
0,B,L(y,B

�u)
−

F (y, u)F̃
(0)
0,B,L(y,B

�u)

F̂
(0)
0,B,L(y,B

�u)
, (B.11)

where the fourth equality is due to adding and subtracting the term F
(0)
0,B,L(y,

u)F
(0)
1,B,L(y, u), the fifth equality comes from (B.1) with j = 0 and l = 0, 1.
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Moreover, applying the Taylor series expansion to
{
F̂
(0)
0,B,L(y,B

�u)
}−1

gives

1

F̂
(0)
0,B,L(y,B

�u)
=

1

F
(0)
0,B,L(y,B

�u)
−

F̃
(0)
0,B,L(y,B

�u)

F
(0)2
0,B,L(y,B

�u)

+2

{
F̃
(0)
0,B,L(y,B

�u)
}2

F̂
(0)∗3
0,B,L(y,B

�u)
, (B.12)

where F̂
(0)∗
0,B,L(y,B

�u) is “between” F̂
(0)
0,B,L(y,B

�u) and F
(0)
0,B,L(y,B

�u). Com-
bining (B.11) with (B.12) and applying Lemma B.1 give that

F̃
(0)
B,L(y, u) =

1

n

n∑
i=1

ζ
(0)
i,B(y, u)−

F̃
(0)
0,B,L(y, u)F̃

(0)
1,B,L(y, u)

F
(0)2
0,B,L(y,B

�u)

+
2F̃

(0)
1,B,L(y,B

�u)
{
F̃
(0)
0,B,L(y, u)

}2
F̂
(0)∗3
0,B,L(y,B

�u)
, (B.13)

where ζ
(0)
i,B(y, u) is given by (4.4).

By Lemma B.1, we have that

sup
y,u,B

∥∥∥∥∥∥∥
F̃
(0)
0,B,L(y, u)F̃

(0)
1,B,L(y, u)

F
(0)2
0,B,L(y,B

�u)
−

2F̃
(0)
1,B,L(y,B

�u)
{
F̃
(0)
0,B,L(y, u)

}2
F̂
(0)∗3
0,B,L(y,B

�u)

∥∥∥∥∥∥∥
= op

(
1√
n

)
. (B.14)

Therefore, combining with (B.13) and (B.14) gives (B.9) with j = 0. Similar
procedure gives (B.9) with j = 1.

We next discuss the derivation of (B.10). Since

F̃
(j)

B,L̂
(y, u) = ∇j

vec(B),L̂
F̂ (y,B�u)− F

(j)
B,L(y, u)

=
(
∇j

vec(B),L̂
F̂ (y,B�u)−∇j

vec(B),LF̂ (y,B�u)
)

+
(
∇j

vec(B),LF̂ (y,B�u)− F
(j)
B,L(y, u)

)
=
(
∇j

vec(B),L̂
F̂ (y,B�u)−∇j

vec(B),LF̂ (y,B�u)
)

+F̃
(j)
B,L(y, u) (B.15)

for j = 0, 1. The second term of (B.15) is derived, so the remaining target is

the first term of (B.15). By the Taylor series expansion on ∇j

vec(B),L̂
F̂ (y,B�u)

with respect to L gives

∇j

vec(B),L̂
F̂ (y,B�u)−∇j

vec(B),LF̂ (y,B�u) =
(
∇1

L∇j
vec(B),LF̂ (y,B�u)

)(
L̂− L

)
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for j = 0, 1. By the result in Lemma B.1, we have

sup
y,u,B

∥∥∥∇j

vec(B),L̂
F̂ (y,B�u)−∇j

vec(B),LF̂ (y,B�u)
∥∥∥ = op

(
1√
m

)
. (B.16)

Consequently, combining (B.16) and (B.9) with (B.15) gives (B.10).
Let

σ2
0 = E

{∥∥I (Yi ≤ y)− F (y,B�
0 Ui)

∥∥2}
b20(B) = E

{∥∥F (y,B�
0 Ui)− F (y,B�Ui)

∥∥2}
BB(y, u) =

∫
vqK(v)dv

q!
(dhq)

1∑
l=0

{−F (y, u)}1−l ∇qF
(0)
0,B,L(y, u)

F
(0)
0,B,L (y, u)

VB(y, u) =

(∫
K(v)dv

)d
F (y, u) {1− F (y, u)}

nhdfB�U (u)
.

In addition, define

AMISEB(h) = E
{
B2
B(y,B

�u) + VB(y,B
�u)
}

and

ECV (B, d, h) =

{
σ2
0 +AMISEB(h) if ST |U ⊆ S(B)

σ2
0 + b20(B) +AMISEB(h) if ST |U �⊆ S(B).

In the next lemma, we examine the behavior of the CV value.

Lemma B.3. Under regularity conditions in Appendix A, if ST |U ⊆ S(B), then

sup
B,d,h

|CV (B, d, h)− ECV (B, d, h)|
AMISEB(h)

= op(1); (B.17)

if ST |U �⊆ S(B), then

sup
B,d,h

|CV (B, d, h)− ECV (B, d, h)|
b0(B)AMISEB(h)

= Op(1). (B.18)

Proof:

Let

E1;i,Yj = I (Yi ≤ y)− F (Yj , B
�
0 Ui),

E2;i,Yj = F (Yj , B
�
0 Ui)− F (Yj , B

�Ui),

E3;i,Yj = F (Yj , B
�Ui)− F̂ (−i)(Yj , B

�Ui),

and
E4;i,Yj = F̂ (−i)(Yj , B

�Ui)− F̂ (−i)(Yj , B
�Ûi).
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Then the cross-validation criterion (3.5) can be decomposed by

CV (B, d, h)

=
1

n2

n∑
i,j=1

E2
1;i,Yj

+
1

n2

n∑
i,j=1

E2
2;i,Yj

+
1

n2

n∑
i,j=1

E2
3;i,Yj

+
1

n2

n∑
i,j=1

E2
4;i,Yj

+
1

n2

n∑
i,j=1

E1;i,YjE2;i,Yj +
1

n2

n∑
i,j=1

E1;i,YjE3;i,Yj +
1

n2

n∑
i,j=1

E1;i,YjE4;i,Yj

+
1

n2

n∑
i,j=1

E2;i,YjE3;i,Yj +
1

n2

n∑
i,j=1

E2;i,YjE4;i,Yj +
1

n2

n∑
i,j=1

E3;i,YjE4;i,Yj

� S1 + S2 + S3 + S4 +R1 +R2 +R3 +R4 +R5 +R6. (B.19)

To study the uniform consistency of CV (B, d, h) and ECV (B, d, h), we con-
sider the following two scenarios.

Case 1: ST |U ⊆ S(B).

In this case, we have that F (y,B�
0 u) = F (y,B�u) (e.g., [13]). Thus, we

immediately have that
S2 = R1 = R4 = R5 = 0.

Since S1 is the form of U-statistic, then applying the convergence property
of U-statistic (e.g., [23, Ch 12]) gives that as n → ∞,

S1
p−→ σ2

0 . (B.20)

By Lemmas B.1 and B.2, S3 can be expressed as

S3 =

⎧⎨⎩ 1

n2(n− 1)2

∑
i �=j1 �=j2

n∑
k=1

ζj1,B
(
Yk, B

�Ui

)
ζj2,B

(
Yk, B

�Ui

)

+
1

n2(n− 1)2

∑
i �=j

n∑
k=1

ζ2j,B
(
Yk, B

�Ui

)⎫⎬⎭ {1 + op(1)}

� {K1(B) +K2(B)} {1 + op(1)} .

Since the class {ζj1,B (y, u)} is Euclidean ([20, Theorems 2.13 and 2.14]), then
by the derivations similar to Theorem of [13], we can show that

sup
B

∣∣K1(B)− E
{
B2
B

(
Yk, B

�Ui

)}∣∣ = op(1). (B.21)

and
sup
B

∣∣K2(B)− E
{
VB

(
Yk, B

�Ui

)}∣∣ = op(1). (B.22)

As a result, by (B.21) and (B.22), we have

sup
B

|S3 −AMISEB(h)| = op

(
dh2q +

1

nhd

)
. (B.23)
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On the other hand, for the parameter corresponding to measurement error
model, if L is known, then S4 = R3 = R6 = 0. If L is unknown and L̂ is the
corresponding estimator, then

S4 =
1

n

n∑
i=1

∫ {
F̂ (−i)

(
y,B�Ui

)
− F̂ (−i)

(
y,B�Ûi

)}2
dFY (y)

=
1

n

n∑
i=1

∫ {
∇1

LF̂
(−i)
(
y,B�Ui

)}2
dFY (y)

(
L̂− L

)2
. (B.24)

As shown in [14], L̂ is the estimator of L with
√
m-rate. It means that L̂−L =

Op

(
1√
m

)
. As a result, applying Lemma B.1 gives S4 = op(1).

ForR3 andR6, similar to the derivations, we have that supB |R3| = supB |R6|=
op(1). Combining all results (B.20) – (B.24) with (B.19), we have that

CV (B, d, h) = σ2
0 + S3 + op(1)

= σ2
0 + S3 −AMISE(h) +AMISEB(h) + op(1)

= ECV (B, d, h) + {S3 −AMISEB(h)}+ op(1),

where ECV (B, d, h) = σ2
0 +AMISEB(h). Consequently, by (B.23) and similar

derivations of Proposition 2 in [13] that AMISEB(h) = Op

(
dh2q + 1

nhd

)
, we

have that

sup
d,B,h

∣∣∣∣CV (B, d, h)− ECV (B, d, h)

AMISEB(h)

∣∣∣∣ = op(1).

Case 2: ST |U �⊆ S(B).
In this case, the derivations of S1, S3, R2, R3, and R6 can be determined in

Case 1, but S2, R1, R4, and R5 do not equal zero. The main goal in this case is
to discuss those remaining parts.

Noting that by Theorem 3.1 in [2], we have that

sup
B

∣∣S2 − b20(B)
∣∣ = op(1),

which is equivalent to

sup
B

∣∣∣∣ S2

b20(B)
− 1

∣∣∣∣ = op(1). (B.25)

By the Cauchy–Schwarz inequality, we have that R2
1 ≤ S1S2. Then dividing

b0(B) on both sides and applying (B.20) and (B.25) yield

sup
B

|R1|
b0(B)

= Op

(
1√
n

)
.

Furthermore, by the Cauchy-Schwarz inequality again, Lemma B.1 and (B.25),
we have that

sup
B

|R4|
b0(B)

= Op (h
q) + op

(
logn√
nhd

)
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and

sup
B

|R5|
b0(B)

= op

(
p logm√

m

)
.

Consequently, combining those results with (B.19) yields

sup
B,d,h

|CV (B, d, h)− ECV (B, d, h)|
b0(B)AMISE(h)

= Op(1),

where ECV (B, h) = σ2
0 + b20(B) +AMISE(h).

Appendix C: Proofs of Theorems in Section 4

Appendix C.1. Proof of Theorem 4.1

Note that L̂ is the consistent estimator in the sense that L̂ = L + op(1), then

we have that Ûi = Ui+ op(1). Hence, in the remaining proof, we focus on Ui. In
addition, we divide this proof into two steps. In step 1, we discuss the consistency
of B̂, and then discuss the asymptotic performances of ĥ and d̂ in Step 2.

Step 1: The consistency of B̂.
Let B̂ denote the minimizer of CV (B, d, h0) with d ≥ d0 and h = h0. Then

we have that
P
{
CV
(
B̂, d, h0

)
< CV (B0, d, h0)

}
= 1. (C.1)

LetDCV (B, d, h0) = |CV (B, d, h0)− ECV (B, d, h0)|. For any ξ > 0, we further
have that {

CV
(
B̂, d, h0

)
< CV (B0, d, h0)

}
=
{
b20(B̂) < ξ, b20(B̂) > ξ,CV

(
B̂, d, h0

)
< CV (B0, d, h0)

}
⊆
{
b20(B̂) < ξ

}
∪
{
b20(B̂) > ξ,DCV

(
B̂, d, h0

)
+DCV (B0, d, h0)

> ECV
(
B̂, d, h0

)
− ECV (B0, d, h0)

}
. (C.2)

By (C.1) and (C.2), we have that

1 ≤ P
{
b20(B̂) < ξ

}
+P
{
b20(B̂) > ξ,DCV

(
B̂, d, h0

)
+DCV (B0, d, h0)

> ECV
(
B̂, d, h0

)
− ECV (B0, d, h0)

}
. (C.3)

In particular, for the second term of (C.3), we further have that

P
{
b20(B̂) > ξ,DCV

(
B̂, d, h0

)
+DCV (B0, d, h0)
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> ECV
(
B̂, d, h0

)
− ECV (B0, d, h0)

}
= P

{
b20(B̂) > ξ,

DCV
(
B̂, d, h0

)
b0(B̂)

+
DCV (B0, d, h0)

b0(B̂)

>
ECV

(
B̂, d, h0

)
b0(B̂)

− ECV (B0, d, h0)

b0(B̂)

}

≤ P

{
b20(B̂) > ξ,

DCV
(
B̂, d, h0

)
√
ξ

+
DCV (B0, d, h0)√

ξ

>
ECV

(
B̂, d, h0

)
√
ξ

− ECV (B0, d, h0)√
ξ

}
,

(C.4)

where the last step is due to the consideration of the event b−1
0 (B̂) < ξ−1/2.

Moreover, since the event b20(B̂) > ξ > 0 in (C.4) implies ST |U �⊆ S(B), then
ECV (B, d, h) = σ2

0 + b20(B) +AMISE(h). Therefore, (C.4) becomes

P
{
b20(B̂) > ξ,DCV

(
B̂, d, h0

)
+DCV (B0, d, h0)

> ECV
(
B̂, d, h0

)
− ECV (B0, d, h0)

}
≤ P

{
b20(B̂) > ξ,Op

{
AMISEB̂(h)

}
+ op {AMISEB0(h)}

>
√

ξ +
AMISEB̂(h)−AMISEB0(h)√

ξ

}
→ P

{
b20(B̂) > ξ, 0 >

√
ξ
}

= 0 (C.5)

as n → ∞, where the first step is due to (B.17) and (B.18), and the second step
is due to both Op {AMISEB0(h)} → 0 and op {AMISEB0(h)} → 0 as n → ∞.
As a result, combining (C.3) and (C.5), we have that as n → ∞,

P
{
b20(B̂) < ξ

}
→ 1. (C.6)

Therefore, by (C.6), we have that as n → ∞,

B̂
p−→ B0.

Step 2: The asymptotic performance of
(
d̂, ĥ
)
.

In (C.6), set ξ = infB:d<d0 b
2
0(B). Then we have that

P

{
b20(B̂) < inf

B:d<d0

b20(B)

}
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≤ P

{
b20(B̂) < inf

B:d<d0

b20(B), d̂ < d0

}
+ P

{
b20(B̂) < inf

B:d<d0

b20(B), d̂ ≥ d0

}
≤ P

{
d̂ ≥ d0

}
≤ 1, (C.7)

where the second inequality is due to the fact

P

{
b20(B̂) < inf

B:d<d0

b20(B), d̂ ≥ d0

}
≤ P

{
d̂ ≥ d0

}
as well as that P

{
b20(B̂) < infB:d<d0 b

2
0(B), d̂ < d0

}
= 0 by the definition of B̂.

Applying (C.6) to (C.7) gives that as n → ∞,

P
{
d̂ ≥ d0

}
→ 1. (C.8)

Furthermore, define

W1 =

{
b20(B̂) <

logn

n
, d̂ = d0,

∣∣∣∣∣ ĥh0
− 1

∣∣∣∣∣ < η

}
,

W2 =

{
b20(B̂) ≥ log n

n

}
,

W3 =
{
d̂ < d0

}
,

W4 =

{
b20(B̂) <

logn

n
, d̂ ≥ d0,

∣∣∣∣∣ ĥh0
− 1

∣∣∣∣∣ ≥ η

}
,

W5 =

{
b20(B̂) <

logn

n
, d̂ > d0,

∣∣∣∣∣ ĥh0
− 1

∣∣∣∣∣ < η

}
,

and

WCV =

{
DCV

(
B̂, d0, h0

)
+DCV (B0, d0, h0)

> ECV
(
B̂, d0, h0

)
− ECV (B0, d0, h0)

}
.

By (C.8) and the partition of events WCV and Wk for k = 1, · · · , 5, we have
that

1 ≤ P (W1) +

5∑
k=2

P (Wk ∩WCV ) . (C.9)

For k = 2, applying (C.6) with ξ = logn
n gives that as n → ∞,

0 < P (W2 ∩WCV ) ≤ P (W2) → 0. (C.10)
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For k = 3, applying (C.8) gives that as n → ∞,

0 < P (W3 ∩WCV ) ≤ P (W3) → 0. (C.11)

For k = 4, we have that as n → ∞,

P (W4 ∩WCV ) → 0. (C.12)

For k = 5, we have that as n → ∞,

P (W5 ∩WCV ) → 0. (C.13)

Therefore, combining (C.10)-(C.13) with (C.9) yields that as n → ∞,

P

{
b20(B̂) <

logn

n
, d̂ = d0,

∣∣∣∣∣ ĥh0
− 1

∣∣∣∣∣ < η

}
→ 1,

and we conclude that
(
d̂, ĥ
)
are consistent estimators.

Appendix C.2. Proof of Theorem 4.2

Note that L̂ is a consistent estimator in the sense that L̂ = L+ op(1), then we

have that Ûi = Ui + op(1). Hence, in the remaining proof, we focus on Ui.

By adding and subtracting an additional term F̂
(
y,B�

0 u
)
, we have that

F̂
(
y, B̂�u

)
− F (y,B�

0 u)

=
{
F̂
(
y, B̂�u

)
− F̂
(
y,B�

0 u
)}

+
{
F̂
(
y,B�

0 u
)
− F (y,B�

0 u)
}

� A1 +A2. (C.14)

For A1, applying the first order Taylor series expansion at B0 gives

A1 = F̂ (1)
(
y,B�

0 u
) (

B̂ −B0

)
=
{
F̂ (1)

(
y,B�

0 u
)
− F (1)

(
y,B�

0 u
)}(

B̂ −B0

)
+ F (1)

(
y,B�

0 u
) (

B̂ −B0

)
= op(1), (C.15)

where the third equality is due to Lemma B.1 and Theorem 4.1. On the other
hand, applying Lemma B.2 with j = 0 for A2 gives that

sup
y,u

∣∣∣∣∣F̂ (y,B�
0 u
)
− F (y,B�

0 u)− 1

n

n∑
i=1

ζ
(0)
i,B0

(y, u)

∣∣∣∣∣ = Op

(
1√
n

)
. (C.16)

Finally, combining (C.15) and (C.16) with (C.14) gives the desired result in
Theorem 4.2.
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Appendix C.3. Proof of Theorem 4.3

Let B̂ denote the minimizer of CV (B, d0, h0) which also satisfies ∇1
vec(B)CV (B̂,

d0, hd0) = 0. Then by the first order Taylor series expansion, we have that

0 = ∇1
vec(B)CV (B̂, d0, h0)

= ∇1
vec(B)CV (B0, d0, h0) +∇2

vec(B)CV (B∗, d0, h0)
{
vec(B̂)− vec(B0)

}
,

where B∗ is “between” B̂ and B0. Equivalently, we have that

√
n
{
vec(B̂)− vec(B0)

}
=
{
∇2

vec(B)CV (B∗, d0, h0)
}−1 √

n∇1
vec(B)CV (B0, d0, h0). (C.17)

We first discuss the asymptotic result of ∇2
vec(B)CV (B∗, d0, h0). By Theo-

rem 4.1, we have thatB∗ p−→ B0 as n → ∞. By simple calculations,∇2
vec(B)CV (B0,

d0, h0) can be written as

∇2
vec(B)CV (B0, d0, h0)

=
2

n

n∑
i=1

∫ τ

0

[{
∇1

vec(B)F̂
(−i)
(
y,B�

0 Ui

)}⊗2

− ∇2
vec(B)F̂

(−i)
(
y,B�

0 Ui

){ Δi

Ĝ (Yi)
I (Yi ≤ y)− F̂ (−i)

(
y,B�

0 Ui

)}]
dF̂Y (y).

By Lemma B.1 and the Law of Large Numbers, we have that as n → ∞,

∇2
vec(B)CV (B0, d0, h0)

p−→ A, (C.18)

where

A = 2E

(∫ τ

0

[{
F (1)

(
y,B�

0 Ui

)}⊗2

−F (2)
(
y,B�

0 Ui

){ Δi

G (Yi)
I (Yi ≤ y)− F

(
y,B�

0 Ui

)}]
dFY (y)

)
.

On the other hand, if L is known, then ∇1
vec(B)CV (B0, d0, h0) can be ex-

pressed as

∇1
vec(B)CV (B0, d0, h0)

=
2

n

n∑
i=1

∫ τ

0

[{
Δi

Ĝ (Yi)
I (Yi ≤ y)− F̂ (−i)(y,B�

0 Ui)

}
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×
{
−∇1

vec(B)F̂
(−i)(y,B�

0 Ui)
}]

dF̂Y (y)

=
2

n

n∑
i=1

∫ τ

0

[{
Δi

Ĝ (Yi)
I (Yi ≤ y)− F (y,B�

0 u) + F (y,B�
0 u)

−F̂ (−i)(y,B�
0 Ui)

}

×
{
−∇1

vec(B)F̂
(−i)(y,B�

0 Ui) + F (1)(y,B�
0 u)− F (1)(y,B�

0 u)
}]

dF̂Y (y)

= − 2

n

n∑
i=1

∫ τ

0

E1;iyF (1)(y, Ui)dF̂Y (y) +
2

n

n∑
i=1

∫ τ

0

E3;iyF (1)(y, Ui)dF̂Y (y)

− 2

n

n∑
i=1

∫ τ

0

E1;iy
{
∇1

vec(B)F̂
(−i)(y,B�

0 Ui)− F (1)(y, Ui)
}
dF̂Y (y),

where the second equality comes from adding and subtracting additional terms
F (y,B�

0 u) and F (1)(y,B�
0 u), and the last step is due to

2

n

n∑
i=1

∫ τ

0

[{
F̂ (−i)(y,B�

0 Ui)− F (y,B�
0 u)
}

×
{
∇1

vec(B)F̂
(−i)(y,B�

0 Ui)− F (1)(y, Ui)
}]

dF̂Y (y)

=
1

n
∇1

vec(B)

n∑
i=1

∫ τ

0

{
F̂ (−i)(y,B�

0 Ui)− F (y,B�
0 u)
}2

dF̂Y (y)

= 0.

By the result in Lemma B.2, ∇1
vec(B)CV (B0, d0, h0) can be further written

as

∇1
vec(B)CV (B0, d0, h0)

= − 2

n2

∑
i �=j

E1;iyF (1)(Yj , Ui) +
2

n2(n− 1)

∑
i �=j �=k

F (1)(Yj , Ui)ζ
(0)
j,B(Yk, Ui)

− 2

n2(n− 1)

∑
i �=j �=k

E1;iyζ(1)j,B(Yk, Ui) + op

(
1√
n

)

� T1 + T2 + T3 + op

(
1√
n

)
. (C.19)

For T1, applying the convergence property of U-statistic in [12], we have that
as n → ∞,

√
nT1

d−→ N (0,B) , (C.20)
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where B = E
{
U⊗2(B0)

}
with

U(B0) =

∫ τ

0

{
Δi

G (Yi)
I (Yi ≤ y)− F (y,B�

0 Ui)

}
F (1)(y, Ui)dFY (y).

Since T2 and T3 contain ζ
(0)
i,B0

(y, u) and ζ
(1)
i,B0

(y, u) in (4.4) and (B.8), respec-

tively, and involve F̃
(j)
i,l,B0,L

(y, u) with j = 0, 1. Then by Lemma B.1, we can
show that √

nTk
p−→ 0 for k = 2, 3. (C.21)

Consequently, combining (C.20) and (C.21) with (C.19), we have that as n → ∞,

∇1
vec(B)CV (B0, d0, h0)

d−→ N (0,B) . (C.22)

Finally, combining (C.18) and (C.22) with (C.17) gives that as n → ∞,

√
n
{
vec(B̂)− vec(B0)

}
d−→ N

(
0,A−1BA−1

)
.

If L is unknown and L̂ is the estimator, then ∇1
vec(B)CV (B0, d0, h0) can be

written as

√
n∇1

vec(B)CV (B0, d0, h0) =
√
nT1 +

√
nT2 +

√
nT2 +

√
nT4 + op(1),

where
√
nTk with k = 1, 2, 3 have been derived in (C.20) and (C.21), and T4 is

T4 =
2

n

n∑
i=1

∫ τ

0

E4;iyF (1)(y,B�
0 Ui)dF̂Y (y) (C.23)

=
2

n

n∑
i=1

∫ τ

0

{
F̂ (−i)(y,B�

0 Ui)− F̂ (−i)(y,B�
0 Ûi)

}
F (1)(y,B�

0 Ui)dF̂Y (y)

= − 2

n

n∑
i=1

∫ τ

0

{
∇1

vec(B0)
F̂ (−i)(y,B�

0 Ui)
}
F (1)(y,B�

0 Ui)dF̂Y (y)
(
L̂− L

)
.

If L̂ is determined by repeated measurements, then

L̂− L =
(
Is×s − Σ̂εΣ̂

−1
X∗

)
−
(
Is×s − ΣεΣ

−1
X∗
)

= −
(
Σ̂εΣ̂

−1
X∗ − ΣεΣ

−1
X∗

)
= −Σ−1

X∗

(
Σ̂ε − Σε

)
= −Σ−1

X∗
1

2m

m∑
i=1

{
(x∗

i1 − x∗
i2) (x

∗
i1 − x∗

i2)
� − 2Σε

}
+ op(1),

and if L̂ is obtained by validation data, then

L̂− L = ̂cov(Xi, X∗
i )Σ̂

−1
X∗ − cov(Xi, X

∗
i )Σ

−1
X∗
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= −Σ−1
X∗

{
̂cov(Xi, X∗

i )− cov(Xi, X
∗
i )
}

= −Σ−1
X∗

1

m

m∑
i=1

{
(xi − μX) (x∗

i − μX∗)
� − ΣXX∗

}
+ op(1),

where ΣXX∗ = cov(Xi, X
∗
i ).

Applying Lemma B.1 and combining (C.23) with the expression of L̂−L give
that

√
nT4 =

√
n

m

m∑
i=1

T (B0)Φi + op(1), (C.24)

where

T (B0) = E

[∫ τ

0

{
F (1)(y,B�

0 Ui)
}⊗2

dFY (y)

]
ΣX∗ ,

Φi = (x∗
i1 − x∗

i2) (x
∗
i1 − x∗

i2)
� − 2Σε if L is estimated based on repeated mea-

surements, and Φi = (xi − μX) (x∗
i − μX∗)

� −ΣXX∗ if L is estimated based on
validation data.

Therefore, combining (C.20), (C.21), and (C.24) with (C.23) gives that as
n → ∞,

∇1
vec(B)CV (B0, d0, h0)

d−→ N (0,BL) , (C.25)

where BL = E
[
{U(B0) + T (B0)Φi}⊗2

]
. As a result, by the Slusky Theorem on

(C.18) and (C.25), we have that as n → ∞,

√
n
{
vec(B̂)− vec(B0)

}
d−→ N

(
0,A−1BLA−1

)
.
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