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A unified framework for limit results in chemical
reaction networks on multiple time-scales1

Timo Enger2 Peter Pfaffelhuber3

Abstract

If (XN )N=1,2,... is a sequence of Markov processes which solve the martingale prob-
lems for some operators (GN )N=1,2,..., it is a classical task to derive a limit result as
N → ∞, in particular a weak process limit with limiting operator G. For slow-fast
systems XN = (V N , ZN ) where V N is slow and ZN is fast, GN consists of two (or
more) terms, and we are interested in weak convergence of V N to some Markov
process V . In this case, for some f ∈ D(G), the domain of G, depending only on v, the
limit Gf can sometimes be derived by using some gN → 0 (depending on v and z), and
study convergence of GN (f + gN ) → Gf . We develop this method further in order to
obtain functional Laws of Large Numbers (LLNs) and Central Limit Theorems (CLTs).
We then apply our general result to various examples from Chemical Reaction Network
theory. We show that we can rederive most limits previously obtained, but also provide
new results in the case when the fast-subsystem is first order. In particular, we allow
that fast species to be consumed faster than they are produced, and we derive a CLT
for Hill dynamics with coefficient 2.

Keywords: Markov jump process; functional central limit thoerem; stochastic averaging.
MSC2020 subject classifications: 60F17; 60J35; 60J76; 60K35.
Submitted to EJP on January 13, 2022, final version accepted on December 26, 2022.
Supersedes arXiv:2111:15396.

1 Introduction

The motivation for our work and the resulting limiting results comes from recent
publications on multi-scale (Markovian) Chemical Reaction Networks (CRNs). Here,
multi-scale refers to the fact that reaction rates differ by orders of magnitude; see e.g. [1].
In contrast, limit results for single-scale systems, where all species are in the same (high)
abundance, have basically been solved by early work of Tom Kurtz ([13, 12]), providing
both, functional Laws of Large Numbers (LLNs), with the solution of a system of Ordinary
Differential Equations (ODEs) as limit, and functional Central Limit Theorems (CLTs),
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Chemical reaction networks on multiple time-scales

leading to the solution of a system of Itô Stochastic Differential Equations (SDEs) as
limit. For multi-scale reaction networks, frequently the distinction between deterministic
(if all species abundances are large) and stochastic networks (if all species abundances
are small) is made. In deterministic models, the quasi-steady-state assumption is most
important; see e.g. [16]. In early papers on stochastic models [5, 15], the focus was on
simulation techniques of slow-fast systems. Rather than distinguishing strictly between
deterministic and stochastic models, we will use the notions introduced in [2], where
some species are in large and some in small abundance, and reaction rates still differ
by orders of magnitude. Such multi-scale systems still pose interesting fundamental
questions today. LLNs in these systems have been derived using techniques involving
stochastic averaging [14] and approximations of Poisson processes by Brownian motion;
see [2, 10]. The case of LLNs involving fast intermediate species is treated in [3], [17]
using probabilistic arguments, i.e. exit times and probabilities of the fast sub-system.
Here, fast species in low copy number, are produced on a slower time-scale than they
are consumed, and are called intermediate. This concept was recently generalized to
non-interacting species in [7]. Concerning functional CLTs in such multi-scale systems,
[11] use the technique of stochastic averaging, solutions of Poisson equations and the
martingale central limit theorem for proving limit results on CRNs on two or three
time-scales. Their results have been used in various contexts, e.g. for a CRN involving
the heat shock protein of E. coli [9]. In this theory, a central role is played by the
averaging condition (their Condition 2.4), which assumes a unique equilibrium of fast
species when the slow species are fixed. A related condition is the balance condition
from [10], which assumes that all species – in particular fast species – are produced and
consumed on the same time-scale. Both, the averaging condition and the species balance
condition, are violated by the intermediate species from [3], since they are consumed
faster than they are produced and hence no limit averaging distribution exists.

In our setup, we will assume that species in low abundance are fast, and species in
high abundance are slow. For such systems, our goal is threefold: We want to (i) provide
a general framework which provides the possibility to derive limit results for all examples
in the above mentioned papers, in particular (ii) provide a method to derive functional
CLTs for the case of intermediate species, and (iii) obtain CLTs in cases not treated so
far. In order to achieve this, we give in Theorem 2.3 a general result which requires only
an application of a well-known limit result for Markov processes (Theorem 2.1 in [14]).
Applying this general result to specific cases of CRNs leads to a recipe how to obtain
LLNs and CLTs, described in Section 3.2. We provide concrete computations on previous
examples and how our theory applies in these contexts; see Section 4. In particular, we
will treat Michaelis-Menten kinetics (one of the main examples in [2, 11]) in Section 4.1,
but treat also the main example from [3] in Section 4.4. We add to the list of examples
an extension of Michaelis-Menten kinetics, which is known in the literature as dynamics
with Hill coefficient 2; see Examples 3.1–3.7 and Section 4.2.

2 Main results

Before we provide with Theorem 2.3 our main general result, we give some heuristic
arguments and an example. Recall that a stochastic process V with Polish state space E
solves the (G,D(G)) martingale problem for some linear G : D(G) ⊆ Cb(E)→ Cb(E) if(

f(Vt)−
∫ t

0

Gf(Vs)ds
)
t≥0

is a martingale for all f ∈ D(G). Assume that there is a unique (in law) solution, i.e.
the martingale problem is well-posed and V is unique and Markovian, if D(G) is large
enough.
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Chemical reaction networks on multiple time-scales

Our goal is to obtain convergence of a sequence V N to some V as N →∞. Here, V N

is one coordinate in some Markov process (V N , ZN ) with state space E × F (for E,F
Polish). For the description of this process using a martingale problem, we make the
following convention:

Remark 2.1 (Some abuse of notation). Let us introduce a notion which we will use
frequently. If f : E × F → R with z 7→ f(v, z) is constant in z for all v, there is f̃ : E → R

with f(v, z) = f̃(v) for all v, and we will abuse notation and simply say that f does not
depend on z (or f only depends on v) and identify f̃ and f since f̃(v) = f(v, z) holds for
all v, z. In this sense, we also write Cb(E) ⊆ Cb(E × F ), since we identify f ∈ Cb(E) with
(v, z) 7→ f(v).

For the Markov process (V N , ZN ), we assume that the generator has the form

GN = GN0 +N1/2GN1 +NGN2 (2.1)

with GN2 f = 0 if f ∈ D(GN ) ⊇ D(G) only depends on v. In this sense, i.e. the fastest
generator term GN2 only describes the dynamics of ZN , we will call V N slow and ZN fast.
For this convergence, we assume that for every f ∈ D(G) (in particular, f only depends
on v), there are gN , hN ∈ D(GN ) such that (recall GN2 f = 0)

Gf(v) ≈ GN0 f(v) + (GN1 gN +GN2 hN )(v, z) +N1/2(GN1 f +GN2 gN )(v, z) (2.2)

in the sense that for all T > 0

E
[ ∫ T

0

|εNf (V Nt , ZNt )|dt
]
N→∞−−−−→ 0 for

εNf (v, z) := GN0 f(v) + (GN1 gN +GN2 hN )(v, z) +N1/2(GN1 f +GN2 gN )(v, z)−Gf(v).

Then, provided tightness of V N and some boundedness restrictions of gN , hN , GN0 gN ,
GN0 hN and GN1 hN , and V ′ is an accumulation point of V N , it is reasonable to conclude
that

f(V Nt ) + (N−1/2gN +N−1hN )(V Nt , ZNt )−
∫ t

0

GN (f +N−1/2gN +N−1hN )(V Ns , ZNs )ds

≈ f(V Nt )−
∫ t

0

(GN0 f +GN1 gN +GN2 hN +N1/2(GN1 f +GN2 gN ))(V Ns , ZNs )ds

≈ f(V ′t )−
∫ t

0

Gf(V ′s )ds

is a martingale. If the martingale problem for (G,D(G)) is well-posed with unique

solution V , this then shows convergence V N
N→∞
====⇒ V , provided the initial conditions

converge.

Example 2.2 (Convergence to Brownian Motion). For applying the result, let us have
a look at (2.2). Since the term N1/2(GN1 f + GN2 gN ) is the leading term on the right-
hand-side, we first look for gN such that GN1 f + GN2 gN = 0, and then for hN such that
GN1 gN +GN2 hN only depends on v.

Let us consider a simple example outside of Chemical Reaction Networks, which
shows that the above method can work: Let XN = (V N , ZN ) be the Markov process with
state space R×R and generator, for some probability measure π with mean zero and
variance 1

2 , writing f ′ for the derivative with respect to the first coordinate,

GNf(v, z) = N1/2 zf ′(v, z)︸ ︷︷ ︸
=G1f(v,z)

+N

∫
(f(v, z′)− f(v, z))π(dz′)︸ ︷︷ ︸

=G2f(v,z)

,
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i.e. V N is a continuous random walk, which changes slope at rate N . Clearly, V N

converges to a Brownian motion. In order to see this, for f ∈ C∞b (R), we choose

gN (v, z) := g(v, z) := zf ′(v), which implies G1f +G2gN = 0

(since π has mean zero). Next, note that G1g(v, z) = z2f ′′(v), so we choose

hN (v, z) := h(v, z) = z2f ′′(v), which implies (G1g +G2h)(v, z) = Gf(v) := 1
2f
′′(v),

leading to εfN = 0 in (2.9). Hence, provided tightness is shown, the desired convergence
follows.

Theorem 2.3 (Convergence result). Let E,F be Polish and (XN = (V N , ZN ))N=1,2,... be
a sequence of Markov processes with state space E×F , and with generators of the form

GN = GN0 +N1/2GN1 +NGN2 , (2.3)

with D(GN ) = D(GNi ) ⊆ Cb(E × F ), i = 0, 1, 2 and GN2 f = 0 if f only depends on v ∈ E.
(Recall this notion from Remark 2.1.) Assume that (V N )N=1,2,... satisfies the compact
containment condition, i.e. for all ε > 0 and T > 0, there is K ⊆ E compact with

inf
N
P(V Nt ∈ K, 0 ≤ t ≤ T ) > 1− ε,

and let G : D(G) ⊆ Cb(E) ∩ D(GN ) → Cb(E). Assume that for every f ∈ D(G) and
N = 1, 2, ..., there is gN , hN ∈ D(GN ), such that for all T > 0

N−1/2E[sup
t≤T
|gN (V Nt , ZNt )|] +N−1E[sup

t≤T
|hN (V Nt , ZNt )|] N→∞−−−−→ 0,

(2.4)

N−1/2E
[ ∫ T

0

∣∣(GN0 gN +GN1 hN )(V Nt , ZNt )
∣∣dt]+N−1E

[ ∫ T

0

|GN0 hN (V Nt , ZNt )|dt
]
N→∞−−−−→ 0

(2.5)

and

E
[ ∫ T

0

|εNf (V Nt , ZNt )|dt
]
N→∞−−−−→ 0

(2.6)

for

εNf (v, z) = GN0 f(v, z)+GN1 gN (v, z)+GN2 hN (v, z) +N1/2(GN1 f(v) +GN2 gN (v, z))−Gf(v).

(2.7)

Then, (V N )N=1,2,... is tight and for every limit point V ,(
f(Vt)−

∫ t

0

Gf(Vs)ds
)
t≥0

(2.8)

is a martingale for each f ∈ D(G).

Remark 2.4 (Connections to other convergence results). 1. Our proof relies on The-
orem 2.1 of [14], as we will see below. For this result, the occupation measure ΓN

of the fast variable, given by

ΓN ([0, t]×B) =

∫ t

0

1ZNs ∈Bds
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is needed. However, this result is more general since for the limiting generator (A
in the notation of [14]) and some f ∈ D(G), Af still depends on the slow and fast
variable, and the fast variable needs to be integrated over the weak limit of ΓN . In
our setting, the limit of GNf does not depend on the fast variable, and we do not
need the latter integration. So, it is not surprising that Theorem 2.3 holds, since
it treats just a special case where the limit does not depend on the fast variable.
However, it is maybe surprising that Theorem 2.3 is useful in obtaining limit results
in a bunch of examples; see Section 4.

Let us try to give some more details for a generator of the form (2.1): Let f ∈ Cb(E)

(or some appropriate subset), i.e. f only depend on v. For the application of

Theorem 2.1 in [14], assume that ΓN
N→∞
====⇒ Γ, and there is gN withGN1 f+GN2 gN = 0

(or is uniformly in o(N−1/2)). Then, [14] concludes that the limit of

f(V Nt )−
∫ t

0

(GN0 f +GN1 gN )(V Ns , z)ΓN (ds, dz)

is a martingale. In the setting of Theorem 2.3 above, we do not assume convergence
of ΓN , but existence of hN such that GN0 f +GN1 gN +GN2 hN only depends on v (or
can be written as Gf only depending on v and some o(1) error term). Then, the
limit as given by (2.8) is a martingale. This implies that∫ t

0

(GN0 f +GN1 gN )(V Ns , z)ΓN (ds, dz) ≈
∫ t

0

(GN0 f +GN1 gN +GN2 hN )(V Ns )ds,

wich shows the connection of ΓN and hN .

2. As another example, consider (2.1), whereGN0 f only depends on v if f only depends
on v, and the fast variable jumps according to

GN2 f(v, z) =

∫
f(v, z′)πN (dz′)− f(v, z),

i.e. ZN jumps to new states according to the equilibrium measure πN at rate N .
We note that this form of GN2 implies that f + GN2 f does not depend on z (see
Remark 2.1 for this notion. Then, for smooth f , only depending on v, we set
gN = GN1 f and hN := GN1 G

N
1 f . If the limits

A1f(v) := lim
N→∞

N1/2

∫
GN1 f(v, z′)πN (dz′),

A2f(v) := lim
N→∞

GN0 f(v) +

∫
GN1 G

N
1 f(v, z′)πN (dz′)

exist, we then see from Theorem 2.3 that – provided the compact containment
condition of (V N )N=1,2,... and (2.4)–(2.6) hold – the weak limit of V N has generator
G := A1 +A2. This case is actually treated in Corollary 2.5 of [8]. Their main result,
Theorem 2.3, is more general since it allows for more general GN2 , and A2 from
above may arise by an application of stochastic averaging.

Proof. We are going to apply Theorem 2.1 of [14]. In our notation (or their notation), we
will have the special case where Gf (or Af) does not depend on the fast variable z (or y)
for the limiting generator G (or A) and f ∈ D(G) (or f ∈ D(A)).

Since Gf is bounded by assumption, their (2.3) is satisfied and their (2.6) becomes
our (2.8). So, it remains to properly define some δNf (or εNf ) in their (2.2), which satisfies
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their (2.4). Here, we have for f ∈ D(G) the martingale

f(V Nt ) + (N−1/2gN +N−1hN )(V Nt , ZNt )−
∫ t

0

GN (f +N−1/2gN +N−1hN )(V Ns , ZNs )ds

= f(V Nt )−
∫ t

0

Gf(V Ns )ds+ δNf (t)

with (recall GN2 f = 0)

δNf (t) = (N−1/2gN +N−1hN )(V Nt , ZNt )−
∫ t

0

εNf (V Ns , ZNs )ds

−
∫ t

0

(N−1/2(GN0 gN +GN1 hN ) +N−1GN0 hN )(V Ns , ZNs )ds.

By (2.4), (2.5) and (2.6), we find that E[sup0≤t≤T |δNf (t)|] N→∞−−−−→ 0, and we are done.

Remark 2.5 (Generators with two or more than three terms). 1. If we have GN1 = 0

in (2.3), we can choose gN = 0, and have to find hN satisfying some boundedness

restrictions and E
[ ∫ T

0
|εNf (V Nt , ZNt )|dt

]
N→∞−−−−→ 0 for

εNf (v, z) := (GN0 f +GN2 hN −Gf)(v, z). (2.9)

We will use this case in functional LLNs in Section 4.
2. For generators with more than three terms, a similar approach works equally well.

Let XN = (V N , ZN ) be a Markov process with generator

GN = GN0 +N ·GN1 +N2 ·GN2 +N3 ·GN3

and GN3 f = 0 if f only depends on v. For a limiting generator G and f ∈ D(G) (in
particular depending only on v), we assume there are gN , hN , kN ∈ D(GN ) such

that E
[ ∫ T

0
|εNf (V Nt , ZNt )|dt

]
N→∞−−−−→ 0 for

εNf (v, z) = (GN0 f +GN1 gN +GN2 hN +GN3 kN

+N(GN1 f +GN2 gN +GN3 hN ) +N2(GN2 f +GN3 gN )−Gf)(v, z),

as well as the compact containment condition of (V N ) and some boundedness
assumptions for gN , hN , kN , GN0 gN , GNi hN , i = 0, 1, GNi kN , i = 0, 1, 2, convergence
of V N to a solution of the (G,D(G)) martingale problem can be shown as well.

3 Applications to chemical reaction networks (CRNs)

Our goal is to apply Theorem 2.3 to Chemical Reaction Networks. While describing
the framework in Section 3.1, we will introduce a system which leads to Hill dynamics
with coefficient 2 as a first example. After stating the main assumptions (above all, the
fast subsystem is first order) in Section 3.2, we describe in Section 3.3 how to derive
LLNs and in Section 3.4 the corresponding CLTs in this setting. In Section 3.5, we give
some general remarks how to show that the assumptions (e.g. the compact containment
condition) from Theorem 2.3 hold.

3.1 CRNs and their rescaling
Chemical reaction networks can be described as a pair (S,R), consisting of the (finite)

set of species S and the (finite) set of reactions R, where we write∑
S∈S

νRSS
κ̃R−−−−→

∑
S∈S

ν′RSS, R ∈ R
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for some ν, ν′ ∈ NR×S0 . Using this notation, the Markov dynamics X = (XS)S∈S ,
XS = (XS(t))t≥0 can be described through the jump rates: Using the vector of species
consumed and species produced of the reactions,

νR· := (νRS)S∈S , ν′R· := (ν′RS)S∈S , R ∈ R

and the falling factorial

n[k] := n · (n− 1) · · · (n− k + 1), k, n ∈ N0,

starting in x(0), the process jumps

from X = x to x+ (ν′R· − νR·) at rate λR(x)

for some λR. In the sequel, we will be using mass action kinetics, i.e. we assume that

λR(x) := κ̃R
∏
S∈S

(xS)[νRS ]

for some κ̃R ∈ R+. However, different rate functions can be used as well.
In order to obtain limit results, we have to introduce a scaling parameter (denoted

N in the sequel) and rescaled time of the dynamics X. We are not dealing with the
completely general situation (see e.g. [10]), but with a set of species which is either in
low or high abundance. Here, the former are not rescaled, but the latter are rescaled by
a factor of N . This means that (] meaning a disjoint union)

S = S• ] S◦, (3.1)

where S ∈ S• are in high (i.e. O(N)) and S ∈ S◦ are in low (i.e. O(1)) abundance. We set
V N = (V NS )S∈S• and ZN = (ZNS )S∈S◦ with

V NS = N−1XN
S , S ∈ S•, ZNS = XN

S , S ∈ S◦. (3.2)

For the reactions, we assume that there are κR ∈ R+ and βR ∈ R, R ∈ R such that

κ̃R = κRN
βR .

Abbreviating ν′RS• := (νRS)S∈S• , and equivalently for ν′RS◦ , νRS• , νRS◦ ,

ζRS := ν′RS − νRS ,

as well as ζRS• , ζRS◦ , the process (V N , ZN ) then jumps

from (V N , ZN ) = (v, z) to (v +N−1ζRS• , z + ζRS◦),

at rate λNR (v, z) := NβR+
∑
S∈S• νRSκR · z[νRS◦ ] · (vS•)[νRS• ],N−1

(3.3)

where we use

n[k],ε = n · (n− ε) · · · (n− (k − 1)ε), n[k] := n[k],1,

(nS•)[kS• ],ε :=
∏
S∈S•

(nS)[kS ],ε, nS• ∈ RS• , (nS◦)[kS◦ ] :=
∏
S∈S◦

(nS)[kS ], nS◦ ∈ RS◦

and note that (for appropriate δN )

v[k],N−1 = v(v −N−1) · · · (v − (k − 1)N−1) = vk −N−1
(
k

2

)
vk−1 +N−2δN (v, k).
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In other words, writing1

∇•f := (∂f/∂vS)>S∈S• , κ′R := NβR−1+
∑
S∈S• νRSκR (3.4)

for all f ∈ C∞c (RS•×S◦), the process

(
f(V Nt , ZNt )−

∫ t

0

GNf(V Ns , ZNs )ds
)
t≥0

is a martingale, where

GNf(v, z) =
∑
R∈R

Nκ′Rz[νRS◦ ]v[νRS• ],N−1(f(v +N−1ζRS• , z + ζRS◦)− f(v, z))

= (GN0 f +GN2 f)(v, z),

GN0 f(v, z) =
∑
R∈R

κ′Rz[νRS◦ ]
(
vνRS•∇•f(v, z + ζRS◦) · ζRS•

−
(
νRS•

2

)
vνRS•−1(f(v, z + ζRS◦)− f(v, z))

)
+ εNf (v, z),

GN2 f(v, z) =
∑
R∈R

κ′Rz[νRS◦ ]v
νRS• (f(v, z + ζRS◦)− f(v, z)),

|εNf (v, z)| ≤
∑
R∈R

N−1κ′Rz[νRS◦ ]
(
1
2v
νRS• ||∇2

•f ||∞ +

(
νRS•

2

)
vνRS•−1||∇•f ||∞

+ δN (v, νRS•)||f ||∞
)
.

(3.5)

Here ∇2
•f is the Hessian of f ,

(
νRS•

2

)
:=
∏
S∈S•

(
νRS
2

)
and vνRS• :=

∏
S∈S• v

νRS .

Example 3.1 (The simplified Hill dynamics 1). We illustrate our theory with the following
example:

E1 + 2S1

N−1κ1
GGGGGGGGGGBFGGGGGGGGGG

Nβκ2

E3 E3

Nβκ3
GGGGGGGGGAS2 + S1 + E1 (3.6)

with β ≥ 1. This CRN arises e.g. if a macromolecule (E1) has two binding sites for a
substrate (S1), which quickly binds (simultaneously at both binding sites) and forms a
complex (E3). If the ligands are released, one of them is turned into S2. We assume that
the macromolecule (i.e. E1, E3) is in low abundance (O(1)), while substrate and product,
S1, S2, are in high abundance (O(N)), so S• = {S1, S2} and S◦ = {E1, E3}. The dynamics
are similar to Michaelis-Menten kinetics below (see Section 4.1), with the differnce that
two substrate molecules are needed in order to form the product. A similar system was
introduced by A. V. Hill [6] for binding of oxygen to haemoglobin in order to understand
data from osmotic pressure experiments. We will refine this example in Section 4.2,
where the first and second reaction are broken into two separate reactions for binding
of the two substrate molecules. (The intermediate step is the macromolecule bound by a
single substrate, denoted E2, which is missing in (3.6).) For this simplified dynamics, we
derive the LLN and CLT below in Examples 3.3–3.7.

We note that some intuition already gives the correct limit result in the case β > 1.
Here, when an E3-molecule is generated from E1 + 2S1, it only has two options, both
of which occur at a high rate. It either decays to the molecules which generated the
molecule (with no net effect on all numbers of species counts), or it becomes S2 +S1 +E1.

1We make the convention that x denotes a column vector, and x> a row vector.
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Since the latter two options lead to competing exponentials in the dynamics, the system
should behave similar to

E1 + 2S1

N−1κ1κ3/(κ3 + κ2)
GGGGGGGGGGGGGGGGGGGGGGGGGAS2 + S1 + E1 . (3.7)

(For the dynamics of this equation, E1 only enters through its initial state.) As we
will see below, this intuition is correct for both, the LLN (Example 3.5) and the CLT
(Example 3.6). For β = 1, however, this intuition does not work since the rate of
production of E3 depends on the number of available E1, which is random.

We let NV N1 , NV N2 and Z1, Z3 be the processes of the particle numbers of S1, S2 and
E1, E3. Also M := Z1+Z3 is a constant as well as V1+V2+N−1(Z1+3Z3), so we are going
to describe the Markov process (ZN = ZN1 , V

N = V N1 ). Since V N is evolving slower
than ZN , we call V N the slow and ZN the fast variable. If the slow variable is assumed
constant, the fast-subsystem (consisting of E1, E3) is first order; see Assumption 3.2
below. However, the slow sub-system is second order. For the generator of (V N , ZN ) we
have for f ∈ C∞c (R×R), writing f ′ for the derivative according to the first variable, and
(recall from (3.4)) κ′2 = Nβ−1κ2, κ

′
3 = Nβ−1κ3,

GNf(v, z) = Nκ1v(v −N−1)z(f(v − 2N−1, z − 1)− f(v, z))

+Nκ′2(M − z)(f(v + 2N−1, z + 1)− f(v, z))

+Nκ′3(M − z)(f(v +N−1, z + 1)− f(v, z))

= GN0 f(v, z) +NGN2 f(v, z),

GN0 f(v, z) = −2κ1v
2zf ′(v, z − 1) + 2κ′2(M − z)f ′(v, z + 1)

+ κ3(M − z)f ′(v, z + 1)− κ1vz(f(v, z − 1)− f(v, z)) + εNf (v, z),

GN2 f(v, z) = κ1v
2z(f(v, z − 1)− f(v, z)) + κ′2(M − z)(f(v, z + 1)− f(v, z))

+ κ′3(M − z)(f(v, z + 1)− f(v, z)),

|εNf (v, z)| ≤ N−1
((
κ1v

2z + κ′2(M − z) + 1
2κ
′
3(M − z)

)
||f ′′||∞ + 2κ1vz||f ′||∞

)
.

3.2 Main assumptions

We continue to work using the assumptions from the last section. In particular,
species are either fast and in low abundance (S◦), or slow and in high abundance (S•);
see (3.1), (3.2). In addition, our main assumption is that the fast sub-system is first order.
This means that if all S ∈ S• are assumed to be constant, the remaining CRN on S◦ is
first order, i.e. at most a single molecule is consumed and produced in each reaction;
see Assumption 3.2.3 below. All our examples are of this kind. For S ∈ S, we set

Γ+
S := {R ∈ R : ν′RS > νRS}, Γ−S := {R ∈ R : νRS > ν′RS}

as the sets of reactions effectively producing and consuming species S, respectively. For
a leaner notation, we set

β̃R := βR +
∑
S∈S•

νRS .

Assumption 3.2. 1. The reaction rates λNR are of the form given in (3.3).

2. The fast sub-system is first order, i.e.∑
S∈S◦

νRS ≤ 1,
∑
S∈S◦

ν′RS ≤ 1, R ∈ R.

We write
R = R0 ]R1 = R′0 ]R′1,

EJP 28 (2023), paper 21.
Page 9/33

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP897
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Chemical reaction networks on multiple time-scales

where

R0 :=
{
R ∈ R :

∑
S∈S◦

νRS = 0
}
, R1 :=

{
R ∈ R :

∑
S∈S◦

νRS = 1
}
,

R′0 :=
{
R ∈ R :

∑
S∈S◦

ν′RS = 0
}
, R′1 :=

{
R ∈ R :

∑
S∈S◦

ν′RS = 1
}
.

For R ∈ R1 and S ∈ S◦, we set SR = S if νRS = 1, i.e. R consumes SR as single fast
species. For R ∈ R′1 and S ∈ S◦, we set S′R = S if ν′RS = 1, i.e. R produces S′R as
single fast species.

3. For S ∈ S◦, we require that

ϕS := max
{
β̃R : R ∈ Γ−S

}
≥ 1, (3.8)

and for

β̂R :=

{
β̃R, R ∈ R0,

β̃R + 1− ϕSR , R ∈ R1.
(3.9)

that

ψS := max{β̂R : R ∈ Γ+
S } = 1, (3.10)

4. For S ∈ S•, the time-scale constraint applies, i.e.

max
{
β̂R : R ∈ Γ+

S ∪ Γ−S

}
= 1. (3.11)

Note that species S ∈ S◦ is consumed at rate O(NϕS ) by (3.8), and is produced at
rate O(N) by (3.10). Hence, the occupation measure of S ∈ S◦ is O(N1−ϕS ), which
is the reason why we introduce β̂R in (3.9). In other words, if R ∈ R1, it consumes
species SR, which is present only a fraction O(N1−ϕSR ) of the time. This implies that the

process counting how often reaction R occured increases by one at rate O(N β̃R+1−ϕSR ) =

O(N β̂R).

Example 3.3 (The simplified Hill dynamics 2). Here, the fast sub-system, i.e. the sub-
system only involving E1, E3, is first order, i.e. Assumption 3.2.2 applies. In (3.6), we
find β̃1 = 1, β̃2 = β̃3 = β. Here, we have that R = R1 = R′1, since all reactions
consume and produce some S ∈ S◦ = {E1, E3}. We find ϕE1 = 1, ϕE3 = β, and therefore
β̂2 = β̂3 = β+ 1−β = 1, to the effect that ψE1 = ψE3 = 1, i.e. (3.10) holds. For S = S1, S2,
we find that (3.11) holds for the same reason.

Remark 3.4 (Some connections to previous work). In the setting above, there are two
aspects which lead to more general CRNs than in previously published papers:

1. In previous work of Kurtz and co-authors on multi-scale CRNs, fast species need
to be produced and consumed at rates of the same order of magnitude. This can
be seen from both, the balance condition (3.2) of [10] and the prerequisites of the
averaging condition (Condition 2.4) of [11].

In [10], it is required that the production rate of every species is on the same order
as its consumption rate (see their (3.2)), or its abundance is at least comparable
to the fastest reaction it is involved in (see their (3.3)). For the fast species from
above, if ϕS > 1, neither is the case. Condition 2.4 of [11] requires that there is a
limiting operator L2 (not depending on N ) which describes the evolution of fast
species. If these are consumed faster than they are produced, L2 would depend on
N , so the only possibility is that ϕS = 1 (i.e. β̂R = β̃R). So, the analysis from above
is more general since ϕS > 1 is allowed for fast species S.
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2. Recently, [7] extended the approach of intermediate species from [3] to non-
interacting species and the existence of a fast chain of reactions. As above, a set of
species is non-interacting if its reaction network is at most first order if all other
species are held constant. Assuming that the set of fast species and non-interacting
species are equal, another restriction is imposed. Precisely, the existence of a fast
chain of reaction requires that every fast species is created only via slow species,
which does not allow for conserved quantities within the fast species. As we will
discuss below, this is possible in our setting; e.g. as discussed in Example 3.1,
Z1 + Z3 is conserved.

3.3 The law of large numbers (LLN)

We wish to show that V N
N→∞
====⇒ V for some Markov process V . The goal of this

section is to compute the possible generator G of V . Let us consider some smooth f

only depending on v. Note that Gf may only depend on v (and not on z). With the above
Assumption 3.2, the terms GN0 f and GN2 f in (3.5) can be split in sums over R ∈ R0 and
R ∈ R1. The generator terms corresponding to R ∈ R0 do not depend on z, but the
terms corresponding to R ∈ R1 do. Therefore, in order to obtain Gf , we are looking for
gN such that GN0 f +GN2 gN only depends on v, and quantities which are constant for the
evolution. We make the ansatz

gN (v, z) = ∇•f(v) · aN (v) · z (3.12)

for some aN = aS•S◦ = (aSS′)S∈S•S′∈S◦ with aSS′ ∈ C∞(RS•+ ), S ∈ S•, S′ ∈ S◦. We obtain
from (3.5)

(GN0 f +GN2 gN )(v, z) =
∑
R∈R0

κ′Rv
νRS•
S• ∇•f(v) · (ζRS• + aS•S◦(v) · ζRS◦)

+
∑
R∈R1

κ′RzSRv
νRS•
S• ∇•f(v) · (ζRS• + aS•S◦(v) · ζRS◦) + εNf (v, z)

(3.13)
and we note that it may be possible to choose aN such that all terms proportional to
all zSR ’s in the sum over R1 on the right hand side vanish. Another option is that there
are conserved linear combinations of fast species, i.e. some set C and ξC = (ξC)C∈C with
ξC ∈ ZS◦ all linearly independent, such that ξC · ζRS◦ = 0 for all R ∈ R. In this case,
z · ξC is a constant under the evolution, and there is a chance that we pick aS◦S• such
that the right hand side only depends on z via z · ξC := (z · ξC)C∈C.

In the sequel, we will assume that gN (v, z) is chosen such that there is some smooth
`•, taking values in RS• with

(GN0 f +GN2 g)(v, z) = HNf(v) + εNf (v, z),

HNf(v) =
∑
R∈R0

κ′Rv
νRS•
S• ∇•f(v) · (ζRS• + aS•S◦(v) · ζRS◦)

+∇•f(v) · `•(κ′R, z · ξC , v).

(3.14)

Note that z · ξC is constant, so we can use `• with ZN (0) · ξC as a global constant.
Moreover, since κ′ still depends on N , the right hand side depends on N , but may have a
proper limit as N →∞, which we will denote Gf(v). Then, if (V N )N=1,2,... satisfies the
compact containment condition and (2.4)–(2.6) hold (to be discussed in Section 3.5), a
weak limit of V N solves the (G,D(G)) martingale problem.

Example 3.5 (The simplified Hill dynamics 3). We will now make the generator calcula-
tions leading to the LLN for (3.6). Note that M = ZN1 + ZN2 does not change over time,
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i.e. the limiting generator may still depend on M . Provided the required assumptions
(compact containment of (V N )N=1,2,... and (2.4)–(2.6) hold), we will show the following:

Let v ∈ R+,

pN (v) := − Mκ1κ
′
3v

2

κ′2 + κ′3 + κ1v2
N→∞−−−−→ p(v) :=


− Mκ1κ3v

2

κ2 + κ3 + κ1v2
, β = 1,

−Mκ1κ3v
2

κ2 + κ3
, β > 1

(3.15)

and V the solution of the ODE

dV = p(V )dt, V0 = v. (3.16)

Then, letting V N as above and if V N0
N→∞
====⇒ v, then V N

N→∞
====⇒ V .

In the case β = 1, this result can be proved using the technique of stochastic
averaging: Fixing the amount of slow species, we see that the fast network reduces to

E1

Nκ1v
2

GGGGGGGGGGBFGGGGGGGGGG

N(κ2 + κ3)
E3. In its equilibrium, E3 is binomially distributed with M and κ1v

2

κ1v2+κ2+κ3
.

From this, the LLN can be derived, e.g. by applying the main result from [14]. However,
it is unclear if the same technique gives a result for β > 1. Here, we follow the route
from above, which will in addition pay dividends when deriving the CLT in the next
subsection.

For the proof, take some smooth f depending only on v and find gN such that
GN0 f + GN2 g − ε

f
N only depends on v. Following (3.12), we take gN (v, z) = zaN (v)f ′(v).

We find (abbreviating aN := aN (v))

(GN0 f +GN2 gN )(v, z)− εNf (v, z)

= M(κ′2(2 + aN ) + κ′3(1 + aN ))f ′(v)

+ z
(
− κ1v2(2 + aN )− κ′2(2 + aN )− κ′3(1 + aN )

)
f ′(v).

Setting

aN = −2κ1v
2 + 2κ′2 + κ′3

κ′2 + κ′3 + κ1v2
= −1− κ1v

2 + κ′2
κ′2 + κ′3 + κ1v2

= −2 +
κ′3

κ′2 + κ′3 + κ1v2
, (3.17)

this leads to

HNf(v) := (GN0 f +GN2 gN )(v, z)− εNf (v, z) = −M κ1κ
′
3v

2

κ′2 + κ′3 + κ1v2
f ′(v) = pN (v)f ′(v).

Note that R0 = ∅ in (3.6) since all reactions use a molecule from a fast species. This
leads to `• = pN . Taking N →∞ then shows the result.

3.4 The functional central limit theorem (CLT)

Next, let us study fluctuations, i.e. we are going to study the limit of UN := N1/2(V N−
WN ), where WN has generator HN (recall from (3.14)). For this, we study the generator
for the Markov process (UN , ZN ,WN ), where (UN ,WN ) are slow and ZN is fast. When
doing so, we have to exchange V N = WN + N−1/2UN in (3.5). In particular, writing
v = V N , u = UN , w = WN ,

v[k],N−1 = (w +N−1/2u)(w +N−1/2u−N−1) · · · (w +N−1/2u− (k − 1)N−1)

= wk +N−1/2kwk−1u+N−1
((k

2

)
wk−2u2 − kwk−1

)
+N−3/2δN (u,w, k)
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where δN (u,w, k) is defined appropriately. Now, assume that f only depends on (u, z).
Looking at (3.5), we can write the generator (denoting by ∇• the derivative with respect
to u)

LNf(u, z, w) =
∑
R∈R

Nκ′Rz[νRS◦ ](w +N−1/2u)[νRS• ],N−1 ·

· (f(u+N−1/2ζRS• , z + ζRS◦)− f(u, z))−N1/2HNf(u, z, w)

= (LN0 +N1/2LN1 +NLN2 )f(u, z, w),

LN0 f(u, z, w) =
∑
R∈R

κ′Rz[νRS◦ ]
(
(νRS•w

νRS•−1u)∇•f(u, z + ζRS◦) · ζRS•

+ 1
2w

νRS• ζ>RS• · ∇
2
•f(u, z + ζRS◦) · ζRS•

)
+
((νRS•

2

)
wνRS•−2u2 − νRS•wνRS•−1

)
(f(u, z + ζRS◦)− f(u, z))

+ εNf (u, z, w)

LN1 f(u, z, w) =
∑
R∈R

κ′Rz[νRS◦ ]

(
wνRS•∇•f(u, z + ζRS◦) · ζRS•

+ (νRS•w
νRS•−1u)(f(u, z + ζRS◦)− f(u, z))

)
−HNf(u, z, w)

LN2 f(u, z, w) =
∑
R∈R

κ′Rz[νRS◦ ]w
νRS• (f(u, z + ζRS◦)− f(u, z)),

HNf(u, z, w) =
∑
R∈R0

κ′Rw
νRS•
S• ∇•f(u, z) · (ζRS• + aS•S◦(w) · ζRS◦)

+∇•f(u, z) · `•(κ′R, z · ξC , w),

|εNf (u, z, w)| ≤
∑
R∈R

N−1/2κ′Rz[νRS◦ ]
(
1
2νRS•w

νRS−1u||∇2f ||∞

+

(
νRS•

2

)
wνRS•−2(u2 + w)||∇•f ||∞ 1

6w
νRS• ζ>RS• · ζRS• ||∇

3
•f ||∞

+ δN (u,w, νRS•)||f ||∞
)
.

(3.18)
Now, let f depend only on u (hence LN2 f = 0) and

gN (u, z) = ∇•f(u) · aN (w) · z

with aN as in (3.12) such that (3.14) holds. Then, looking at (3.5) and (3.18), we see
by the similarity between GN0 and LN1 (noting the additional term −HN in LN1 ), and the
similarity between GN2 and LN2 that

LN1 f + LN2 gN = 0.

Then, we are looking for hN such that LN0 f + LN1 gN + LN2 hN only depends on (u,w), and
the linear combinations z · ξC which are constant in time. We make the ansatz

hN (u, z, w) = ∇•f(u) · bN (u,w) · z +∇2
•f(u) · (cN (u,w) · z + z> · dN (u,w) · z) (3.19)

for some functions

bN = (bSS′)S∈S•,S′∈S◦ , cN = (cS,S′,S′′)S,S′∈S•,S′′∈S◦ , dN = (dSS′,S′′S′′′)S,S′∈S•,S′′,S′′′∈S◦ ,
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which depend on N,w, u. Then, since the fast subsystem is first order, we can write

(LN0 f + LN1 gN + LN2 hN )(u, z, w)

=
∑
R∈R

κ′Rz[νRS◦ ]

(
(νRS•w

νRS•−1u)∇•f(u) · (ζRS• + aN (w) · ζRS◦

+ wνRS•∇•f(u) · bN (u,w) · ζRS◦)
+ wνRS• ζ>RS• · ∇

2
•f(u) · ( 1

2ζRS• + aN (w) · (z + ζRS◦))

+ wνRS•
(
∇2
•f(u) · (cN (u,w) · ζRS◦

+ (ζ>RS · dN (u,w) · (z + ζRS◦) + z> · dN (u,w) · ζ>RS)
))
−HNgN (u, z, w) + εNf (u, z, w).

(3.20)
Then, splitting the sum in (3.20) into R ∈ R0 and R ∈ R1, we see that for R ∈ R1 there
are terms proportional to zSR∇•f(u), and there is a chance to choose bN such that these
terms vanish or depend only on (z · ξC)C∈C . In a second step, we choose cN and dN such
that the remaining terms, all of which are proportional to ∇2

•f , vanish or depend only on
(z · ξC)C∈C. Assuming that gN , hN have proper limits as N →∞, this leaves us with

Lf(u,w) := lim
N→∞

(LN0 f + LN1 gN + LN2 hN )(u, z, w)− εNf (u, z, w),

where L is the generator of the limiting process. Provided the compact containment
condition of (UN )N=1,2,... and (2.4)–(2.6) hold, this shows convergence with Theorem 2.3.

Example 3.6 (The simplified Hill dynamics 4). Let u ∈ R, pN and p as in (3.15), V as
in (3.16), and WN the solution of the ODE

dWN = pN (WN )dt, W0 = v.

(So, V = WN for β = 1.) Moreover, let U be the solution of the SDE

dU = µ(U, V )dt+ σ(V )dB,

µ(U, V ) =

−2M
κ1(κ2 + κ3)κ3UV

(κ2 + κ3 + κ1V 2)2
, β = 1,

p′(V )U, β > 1,

σ2(V ) =


(κ21V

4 + 2κ1κ2V
2 + (κ2 + κ3)2)Mκ1κ3V

2

(κ2 + κ3 + κ1V 2)3
, β = 1,

|p(V )|, β > 1

(3.21)

for some Brownian motion B. Then, letting V N as in Example 3.3, and UN = N1/2(V N −
WN ). If UN0

N→∞
====⇒ u, then UN

N→∞
====⇒ U .

Consider the generator of the Markov process (UN , ZN ,WN ), which is for f ∈
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C∞c (R3), only depending on (u, z),

LNf(u, z, w) = κ1N
−1(Nw +N1/2u)(Nw +N1/2u− 1)z(f(u− 2N−1/2, z − 1)− f(u, z))

+Nκ′2(M − z)(f(u+ 2N−1/2, z + 1)− f(u, z))

+Nκ′3(M − z)(f(u+N−1/2, z + 1)− f(u, z))

−N1/2pN (w)f ′(u, z)

= LN0 f(u, z) +N1/2LN1 f(u, z) +NLN2 f(u, z),

LN0 f(u, z) = 2κ1w
2zf ′′(u, z − 1)− 4κ1wuzf

′(u, z − 1)

+ κ1(u2 − w)z(f(u, z − 1)− f(u, z))

+ 2κ′2(M − z)f ′′(u, z + 1) + 1
2κ
′
3(M − z)f ′′(u, z + 1) + εNf (u, z, w),

LN1 f(u, z) = −2κ1w
2zf ′(u, z − 1) + 2κ1wuz(f(u, z − 1)− f(u, z))

+ 2κ′2(M − z)f ′(u, z + 1) + κ′3(M − z)f ′(u, z + 1)− pN (w)f ′(u, z),

LN2 f(u, z) = κ1w
2z(f(u, z − 1)− f(u, z)) + (κ′2 + κ′3)(M − z)(f(u, z + 1)− f(u, z)),

|εNf (u, z, w)| ≤ N−1/2
(
( 2
3κ1w

2z + 2
3κ
′
2(M − z) + 1

6κ
′
3(M − z))||f ′′′||∞ + 2κ1uwz||f ′′||∞

+ κ1(u2 + w)||f ||∞
)
.

With f only depending on u and gN (u, z, w) = zaN (w)f ′(u) as above, we have that

LN1 f + LN2 gN = 0. Then we use the ansatz hN (u, z, w) = zbNf
′(u) +

(
zcN +

(
z
2

)
dN

)
f ′′(u),

for some functions bN , cN , dN (which might depend on N, u,w). We receive at (writing
a := aN , b := bN , c := cN , d := dN )

(LN0 f + LN1 gN + LN2 hN )(u, z, w)− εNf (u, z, w)

=
(
M(κ′2 + κ′3)b− z(4κ1wu+ 2κ1wua+ (κ1w

2 + κ′2 + κ′3)b)
)
f ′(u)

+
(
M(2κ′2(1 + a) + 1

2κ
′
3(1 + 2a) +M(κ′2 + κ′3)c)

+ z(2κ1w
2 − 2κ′2 − 1

2κ
′
3 − 2κ1wua− (2κ′2 + κ′3)(M − 2)a− pN (w)a

− (κ1w
2 + κ′2 + κ′3)c+ (M − 1)(κ′2 + κ′3)d)

+ z(z − 1)(−2κ1w
2a− (2κ′2 + κ′3)a)− (κ1w

2 + κ′2 + κ′3)d
)
f ′′(u).

With aN from (3.17), we immediately see that only through

b = − 2κ1wu(2 + a)

κ1w2 + κ′2 + κ′3
− = − 2κ1κ

′
3wu

(κ1w2 + κ′2 + κ′3)2

the term proportional to zf ′(u) on the right hand side vanishes. Then, using that
pN (w) = Mκ′2(2 + a) +Mκ′3(1 + a), finding the roots of the terms proportional to zf ′′(u)

and z(z − 1)f ′′(u) on the right hand side for c, d, we find

(LN0 f + LN1 gN + LN2 hN )(u, z, w)− εNf (u, z, w)

=−2M
κ1(κ′2 + κ′3)κ′3uw

(κ′2 + κ′3 + κ1w2)2
f ′(u)+

1

2

(κ21w
4 + 2κ1κ

′
2w

2 + (κ′2 + κ′3)2)Mκ1κ
′
3w

2)

(κ′2 + κ′3 + κ1w2)3
f ′′(u).

Since WN N→∞
====⇒ V , the limit of the right hand side for N →∞ gives the generator of U

and we are done.

3.5 Checking the conditions of Theorem 2.3

If the calculations from the last section go through, we still have to verify the
conditions of Theorem 2.3, i.e. the compact containment condition of (V N )N=1,2,... for
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the LLN and (UN )N=1,2,... for the CLT, as well as the corresponding conditions (2.4)–(2.6).
Checking these might depend on the concrete example, but here, we give a general
strategy. In all steps, note that we require the fast network to be first order. This means
that either (i) fast species only appear on both sides of each R ∈ R of the fast network
or (ii) one fast species S ∈ S◦ is produced only from slow species. (The case where one
fast species produces some slow species only appears in (ii), since otherwise fast species
will quickly be consumed.) In (i), there are conserved quantities in the fast network,
i.e. (using the notation from above) there is ξC such that z · ξC is constant. In (ii), the
discussion after (3.11) applies: the fast species S is created at some rate CN0 N , and
is consumed at rate CN1 N

βZNS for β ≥ 1. For such processes, Lemma A.1 is useful for
bounding moments. The number of other fast species will be bounded by ZNS .

As for (2.4), recall from (3.12) and (3.19), that both, gN and hN are polynomials in
the fast species. So, from (A.2),

N−1/2E[ sup
0≤t≤T

(ZNS (t))k]
N→∞−−−−→ 0, T > 0, k = 1, 2, ...

provides the required argument for (2.4) to hold if f has compact support and aN , bN , cN ,
dN are continuous. For the integrals in (2.5) and (2.6), we use (A.1) for

sup
N∈N

E
[ ∫ T

0

Nβ−1(ZNS (t))kdt
]
<∞, T > 0, k = 1, 2, ...

if the corresponding terms again come as a polynomial of fast species. So, we are
left with showing the compact containment condition for (V N )N=1,2,... and (UN )N=1,2,....
Focusing on (UN )N=1,2,..., we start by the same generator calculations as in the last
section, using f(u) = uS for some S ∈ S•. This gives some gN and hN such that

LN (f +N−1/2gN +N−1hN )

=N1/2(LN1 f+LN2 gN )+(LN0 f + LN1 gN + LN2 hN )+N−1/2(LN0 gN + LN1 hN )+N−1LN0 hN

= Lf + εNf +N−1/2(LN0 gN + LN1 hN ) +N−1LN0 hN .

Then, provided that (2.4)–(2.6) also hold for f(u) = uS , we have that

UNS (t) = MN
S (t)−N−1/2gN (UNt , Z

N
t ,W

N
t )−N−1hN (UNt , Z

N
t ,W

N
t )

+

∫ t

0

(Lf + εNf +N−1/2(LN0 gN + LN1 hN ) +N−1LN0 hN )(UNs , Z
N
s ,W

N
s )ds

for the martingale MN
S := (MN

S (t))t≥0 with

MN
S (t) = UNS (t) + (N−1/2gN+N−1hN )(UNt , Z

N
t ,W

N
t )

−
∫ t

0

LN (f +N−1/2gN +N−1hN )(UNs , Z
N
s ,W

N
s )ds.

Then, if we can bound sup0≤t≤T |MN
S (t)| (e.g. by bounding the quadratic variation of this

martingale) uniformly in N , and if Lf grows at most linearly in UN , we see using (2.4)–
(2.6) that there are bounded functions aS , bS ≥ 0 such that

E[sup
s≤t
|UNS (s)|] ≤ bS(t) +

∫ t

0

aS(s) · E[sup
r≤s
|UN (r)|]ds. (3.22)

With the Gronwall lemma, we obtain E[sups≤t |UN (t)|] ≤ bS(t) +
∫ t
0
bS(s)aS(s)e

∫ t
s
aS(r)drds

and Markov’s inequality shows the compact containment condition for (UNS )N=1,2,....
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Example 3.7 (The simplified Hill dynamics 5). While we provided the necessary gen-

erator calculations needed for convergence V N
N→∞
====⇒ V with V as given in (3.16)

and UN
N→∞
====⇒ U with U as in (3.21), we still need to check the corresponding condi-

tions (2.4)–(2.6) and the comopact containment conditions. We note that in this example,
for T, k > 0, using Lemma A.1,

E
[ ∫ T

0

(M − ZNt )kdt
]

= O(N1−β). (3.23)

In addition 0 ≤ ZN ≤ M , so lim supN→∞N−1/2ZN = 0. These properties already
imply (2.4)–(2.6) in both, the LLN and the CLT. For the compact containment condition in
the LLN, note that V N + 2ZN/N is a decreasing process, which already implies compact
containment (provided V N0 converges). The hardest work is required by the compact
containment condition in the CLT. For this, let gN (t) := gN (ZNt ,W

N
t ) = ZNt aN (WN

t ) and
h(t) := hN (UNt , Z

N
t ,W

N
t ) = ZNt bN (UNt ,W

N
t ) (i.e. as above with f(u) = u). Then, (2.4)–

(2.6) also hold in this case (since the (u2 + w)-term in εNf vanishes in this case, leading

to εNf = 0). Then,

UNt = MN
t −N−1/2gN (t)−N−1hN (t) +

∫ t

0

2M
κ1(κ′2 + κ′3)κ′3U

N
s Ws

(κ′2 + κ′3 + κ1W 2
s )2

ds,

MN
t := UNt +N−1/2gN (t) +N−1hN (t)−

∫ t

0

2M
κ1(κ′2 + κ′3)κ′3U

N
s Ws

(κ2 + κ′3 + κ1W 2
s )2

ds,

where, (MN
t )t≥0 is a martingale with quadratic variation

[MN ]t = N [V N +N−1gN ]t

≈
∫ t

0

(2 + aN (Ws))
2(κ1(V Ns )2ZNs + κ′2(M − ZNs )) + (1 + aN (Ws))

2κ′3(M − ZNs )ds.

Since V N , ZN ,W are bounded, gN and hN are bounded as well. Moreover, from (3.23)
we see that the quadratic variation of MN is locally bounded, so we can conclude that
there are aS and bS such that (3.22) holds, and the compact containment condition for
(UN )N=1,2,... follows.

4 Examples

In this section we give some more concrete applications of our theory. We start with
Michaelis-Menten kinetics in Section 4.1, i.e. we rederive the results from [11] using
the approach from Section 3. These kinetics is similar to the simplified Hill dynamics
from Examples 3.1–3.7. Still, we extend results from [11] by allowing that the balance
condition for the fast species to fail, and from [3] by proving the CLT. The simplified Hill
example is extended in Section 4.2 to account for separate effects of binding of the two
ligands to the macromolecule. In Section 4.3, we are dealing with an example using two
fast species where the number of molecules of the fast species is unbounded. For some
parameter combinations (β, γ > 1), the fast species are called intermediate by [3], so
we extend their results by the CLT. Then, in Section 4.4, we are dealing with the main
example in [3], but again add to their results the CLT.

We note that not all calculations were carried out by hand. The approach that the
right hand sides of (3.13) and (3.20) do not depend on the fast variables leads to linear
systems of equations with up to 15 equations in Section 4.4. Therefore, we produced
an ancillary file with sagemath-commands [4], which can be found on arxiv. This file
contains the computations not printed, but necessary for Examples 3.1–3.7 and for
Sections 4.1, 4.2, 4.3 and 4.4.
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4.1 Michaelis-Menten kinetics

Our first example is the famous Michaelis-Menten kinetics. It arises for the Chemical
Reaction Network

E1 +S1

κ1
GGGGGBFGGGGG

Nγκ2
E2

Nγκ3
GGGGGGGGGAE1 +S2 (4.1)

for γ ≥ 1, where S1, S2 are in high abundance (order N ) and E1, E2 are in low abundance
(order 1). The balance condition for E2 only holds if γ = 1, since γ > 1 implies that E2

is produced slower than it is consumed. Chemically, E2 is a complex formed out of E1

(enzyme) and S1 (substrate), and S2 is frequently described as product of the reaction.
Denoting by ZN1 , Z

N
2 the number of molecules E1 and E2, we note that ZN1 +ZN2 =: M is

a constant. Further, we define NV N1 , NV N2 to be the number of molecules of S1 and S2,
and we find that V N1 + V N2 + ZN2 /N is a constant. So, since we will have that ZN2 = O(1),
the dynamics of V N2 can be read off from the dynamics of V N1 (up to an O(1/N)-error).
So, the system can be described through V N := V N1 and ZN := ZN1 . We obtain the
following.

Proposition 4.1 (LLN and CLT for (4.1)). Let u ∈ R and v ∈ R+,

pN (v) := −M Nγ−1κ3κ1v

Nγ−1(κ2 + κ3) + vκ1

N→∞−−−−→ p(v) :=


− Mκ3κ1v

κ2 + κ3 + vκ1
, for γ = 1,

−Mκ3κ1v

κ2 + κ3
, for γ > 1,

V and WN the solutions of the ODEs

dV = p(V )dt, dWN = pN (WN )dt, WN
0 = V0 = v.

Moreover, let U be the solution of the SDE

dU=− Mκ1κ3(κ2 + κ3)

(κ1V + κ2 + κ3)2
Udt+

√
Mκ1V κ3(κ1V + κ2)2

2(κ1V + κ2 + κ3)3
+
Mκ23κ1V (2κ2 + κ3)

2(κ1V + κ2 + κ3)3
dB, if γ = 1,

dU=p(U)dt+
√
|p(V )|dB, if γ > 1,

for some Brownian motion B. Then, letting V N be as above, and UN = N1/2(V N −WN ).

If V N0
N→∞
====⇒ v and UN0

N→∞
====⇒ u, then

V N0
N→∞
====⇒ V, UN0

N→∞
====⇒ U.

Remark 4.2 (Previous results on Michaelis-Menten kinetics). The above LLN has been
obtained various times; see e.g. Section 6.4 of [10] for γ = 1, or Example 4.5 of [3] for
γ > 1. (They in fact consider two differnt scalings for κ2 and κ3.) In the case γ = 1, the
CLT has first been obtained in Section 5.2 of [11].

Proof. We set κ′2 = Nγ−1κ2 and κ′3 = Nγ−1κ3. For the Markov process XN = (V N , ZN ),
the generator is given for f ∈ C∞c (R×R, writing f ′ for the derivative according to the
first variable,

GNf(v, z) = κ1Nvz(f(v −N−1, z − 1)− f(v, z)) + κ′2N(M − z)(f(v +N−1, z + 1)

− f(v, z)) + κ′3N(M − z)(f(v, z + 1)− f(v, z))

= GN0 f(v, z) +NGN2 f(v, z),

GN0 f(v, z) = −κ1vzf ′(v, z − 1) + κ′2(M − z)f ′(v, z + 1) + εNf (v, z),

GN2 f(v, z) = κ1vz(f(v, z − 1)− f(v, z)) + (κ′2 + κ′3)(M − z)(f(v, z + 1)− f(v, z)),

|εNf (v, z)| ≤ 1
2N
−1(κ1vz + κ′2(M − z))||f ′′||∞.
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We mention here that 0 ≤ ZN (t) ≤ M by construction and that for all T, a, k (using
similar arguments as in Lemma A.1)

E
[ ∫ T

0

(M − ZNt )kdt
]

= O(N1−γ). (4.2)

1. For the LLN of V N as N →∞, take f ∈ C∞c (R). Our task is to look for gN (depending
on v, z) such that GN0 f +GN2 gN only depends on v. Choosing

gN (v, z) = zaN (v)f ′(v),

for some (function) aN , we obtain (collecting terms proportional to z in the second line)

GN0 f(v, z) +GN2 hN (v, z)− εNf (v, z)

=
(
− κ1vz + κ′2(M − z)− κ1vzaN (v) + (κ′2 + κ′3)(M − z)aN (v)

)
f ′(v)

=
(
M(κ′2 + aN (v)(κ′2 + κ′3))− z

(
vκ1 + κ′2 + aN (v)(κ1v + κ′2 + κ′3)

)
f ′(v).

(4.3)

Choosing

aN (v) = − vκ1 + κ′2
κ′2 + κ′3 + vκ1

= −1 +
κ′3

κ′2 + κ′3 + vκ1
, (4.4)

the last line of (4.3) does not depend on z, and we have

(GN0 f +GN2 hN )(v, z)− εNf (v, z) = −M
(
κ′3 −

κ′3(κ′2 + κ′3)

κ′2 + κ′3 + vκ1

)
f ′(v) = pN (v)f ′(v).

With Gf(v) = p(v)f ′(v), we see that εNf (v, z) + (p(v) − pN (v))f ′(v) is as in (2.7). Since

pN
N→∞−−−−→ p, the compact containment condition for (V N )N=1,2,... holds since V N (t) is

bounded by V N (0) +M/N , and (2.4)–(2.6) hold due to 0 ≤ ZN ≤M and (4.2), we have

shown that V N
N→∞
====⇒ V .

2. For the CLT, we write UN = N1/2(V N −WN ), and have for the Markov process
(UN , ZN ,WN ) the generator for smooth f , only depending on u, z, writing f ′ for the
derivative with respect to u,

LNf(u, z) = (Nw +N1/2u)κ1z(f(u−N−1/2, z − 1)− f(u, z))

+ κ′2N(M − z)(f(u+N−1/2, z + 1)− f(u, z))

+ κ′3N(M − z)(f(u, z + 1)− f(u, z)) +N1/2MpN (w)f ′(u, z)

= LN0 f(u, z) +N1/2LN1 f(u, z, w) +NLN2 f(u, z),

LN0 f(u, z) = 1
2κ1wzf

′′(u, z − 1) + 1
2κ
′
2(M − z)f ′′(u, z + 1)− κ1uzf ′(u, z − 1) + εNf (u, z),

LN1 f(u, z, w) = −κ1wzf ′(u, z − 1) + κ1uz(f(u, z − 1)− f(u, z))

+ κ′2(M − z)f ′(u, z + 1) +MpN (w)f ′(u, z),

LN2 f(u, z) = κ1wz(f(u, z − 1)− f(u, z)) + (κ′2 + κ′3)(M − z)(f(u, z + 1)− f(u, z)),

|εNf (u, z)| ≤ N−1/2
(
1
2κ1uz||f

′′||∞ + 1
6 (κ1wz + κ′2(M − z))||f ′′′||∞).

Then, for some smooth f depending only on u, taking gN (u, z, w) = zaN (w)f ′(u) with aN
from (4.4) (but depending on w), we have LN1 f + LN2 gN = 0. So, we need to look for hN
such that LN0 f + LN1 gN + LN2 hN only depends on u,w and has a proper limit as N →∞.
Choosing

hN (u, z, w) = bN (u,w)zf ′(u) +
(
cN (w)z + dN (w)

(
z

2

))
f ′′(u),
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for some bN , cN , dN , we find, collecting terms proportional to z and z2 after the second
equality, abbreviating a := aN (w), b := bN (u, z, w), ...

(LN0 f + LN1 gN + LN2 hN )(u, z, w)− εNf (u, z, w)

=
(
− κ1uz − κ1uza− κ1zwb+ (κ′2 + κ′3)(M − z)b

)
f ′(u)

+
(

1
2κ1wz + 1

2κ
′
2(M − z)− κ1wz(z − 1)a+ κ′2(M − z)a(z + 1) +MzpN (w)a

− κ1zw(c+ d(z − 1)) + (κ′2 + κ′3)(M − z)(c+ dz)
)
f ′′(u)

=
(
M(κ′2 + κ′3)b− z

(
κ1u(1 + a) + b(κ1w + κ′2 + κ′3

))
f ′(u)

+
(
M
(
κ′2( 1

2 + a) + (κ′2 + κ′3)c
)

+ z
(

1
2 (κ1w − κ′2) + (κ1w + (M − 1)κ′2 +MpN (w))a

− (κ1w + κ′2 + κ′3)c+ (κ1w +M(κ′2 + κ′3))d
)

− z2
(

(κ1w + κ′2)a+ (κ1w + κ′2 + κ′3)d
))
f ′′(u).

Choosing b, c, d such that the right hand side does not depend on z, we arrive after some
rearrangements at

(LN0 f + LN1 gN + LN2 hN )(u,w) = Lf(u,w) + εNf (u, z, w)

Lf(u,w) = −Mκ1κ
′
3(κ′2 + κ′3)

(κ1w + κ′2 + κ′3)2
uf ′(u)

+
(Mκ1wκ

′
3(κ1w + κ′2)2

2(κ1w + κ′2 + κ′3)3
+
M(κ′3)2κ1w(2κ′2 + κ′3)

2(κ1w + κ′2 + κ′3)3

)
f ′′(u),

where Lf is the generator of U . Now, (2.4)–(2.6) follow from (4.2) and 0 ≤ ZNt ≤M and
we are left with showing the compact containment condition for (UN )N=1,2,.... For this,
let gN (t) := gN (ZNt ,W

N
t ) = ZNt aN (WN

t ) and h(t) := hN (UNt , Z
N
t ,W

N
t ) = ZNt bN (UNt ,W

N
t )

(i.e. as above with f(u) = u). Then,

UNt = MN
t −N−1/2gN (t)−N−1hN (t)−

∫ t

0

Mκ1κ
′
3(κ
′
2+κ

′
3)

(κ1WN
s +κ′2+κ

′
3)

2U
N
s ds,

MN
t := UNt +N−1/2gN (t) +N−1hN (t) +

∫ t

0

Mκ1κ
′
3(κ
′
2+κ

′
3)

(κ1WN
s +κ′2+κ

′
3)

2U
N
s ds.

Here, (MN
t )t≥0 is a martingale with quadratic variation

[MN ]t = N [V N +N−1gN ]t

≈
∫ t

0

(1 + aN (WN
s ))2(κ1V

N
s ZNs + κ′2(M − ZNs )) + aN (WN

s )2κ′3(M − ZNs )ds.

Since V N , ZN ,WN are bounded, gN and hN are bounded as well. Moreover, from (4.2)
we see that the quadratic variation of MN is locally bounded, so we can conclude that
there are aS and bS such that (3.22) holds, and the compact containment condition for
(UN )N=1,2,... follows.

4.2 Hill coefficient dynamics

We now pick up Example 3.1, but extend the CRN in order to capture all required re-
actions for binding of two ligands. This also generalizes the Michaelis-Menten dynamics,
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where the macromolecule (enzyme) can only be bound by a single ligand. Specifically,
we study

E1 + S1

κ1
GGGGGBFGGGGG

Nγκ2
E2 S1 + E2

Nγ−1κ3
GGGGGGGGGGGGBFGGGGGGGGGGGG

Nκ4
E3

Nκ5
GGGGGGGGAS2 + E2 (4.5)

for γ > 1. Here, similar to Michaelis-Menten kinetics, E1 (the macromolecule) and S1

(the ligand) form a short-lived complex E2, but only after forming another complex E3

together with another S1, the product S2 is formed and E2 is released. We will assume
that S1, S2 are in high abundance (order N ) and E1, E2, E3 are in low abundance (order
1). Since γ > 1, the balance condition fails for E1, E2 and E3. Let NV N1 , NV N2 and
Z1, Z2, Z3 be the processes of the particle numbers of S1, S2 and E1, E2, E3, respectively.
Since M := Z1 +Z2 +Z3 is a constant, and V1 + V2 +N−1(Z1 + 2Z2 + 3Z3) is constant as
well, we are going to describe the Markov process (ZN = (ZN1 , Z

N
3 ), V N = V N1 ).

Proposition 4.3 (LLN and CLT for (4.5)). Let u ∈ R and v ∈ R+,

pN (v) :=− κ1N
γ−1κ3κ5v

2

(κ1v +Nγ−1κ2)(κ4 + κ5) +Nγ−1κ1κ3v2
N→∞−−−−→ p(v) :=− κ1κ3κ5v

2

κ2(κ4 + κ5) + κ1κ3v2

and V and WN the solutions of the ODEs

dV = p(V )dt, dWN = pN (WN )dt, V0 = WN
0 = v,

Moreover, let U be the solution of the SDE

dU = −2M
κ1κ2κ3(κ4 + κ5)κ5uV

(κ2(κ4 + κ5) + κ1κ3V 2)2
dt

+

√
(κ22(κ4 + κ5)2 + 2κ2κ3κ5(κ4 + κ5)V + (κ1κ3V 2 + 2κ2κ4)κ1κ3V 2)Mκ1κ3κ5V 2

(κ2(κ4 + κ5) + κ1κ3V 2)3
dB

for some Brownian motion B. Then, let V N as above, and UN = N1/2(V N −WN ). If

V N0
N→∞
====⇒ v and UN0

N→∞
====⇒ u, then

V N
N→∞
====⇒ V, UN

N→∞
====⇒ U.

Remark 4.4. 1. Instead of the rates Nκ4, Nκ5, we could use a scaling Nβκ4, N
βκ5

for β ≥ 1. This would change the result, but not the proof, except for taking the
limits in the last equalities in (4.7) for the LLN and in (4.8) for the CLT.

2. The same holds for the case γ = 1: In fact, γ > 1 only plays a role in taking the last
limits in (4.7) and (4.8).

3. In the CLT, if γ > 3/2, we find

N1/2(pN (v)− p(v))
N→∞−−−−→ 0,

and – by an application of Gronwalls lemma – N1/2(Ṽ N − V )
N→∞
====⇒ 0. Therefore, in

this case, we find in addition that N1/2(V N − V )
N→∞
====⇒ U .

Proof. We set

κ′1 := Nγ−1κ2, κ′2 = Nγ−1κ3.
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The generator of (V N , ZN ) is for smooth f , writing f ′ for the derivative according to the
first variable,

GNf(v, z) = Nκ1vz1(f(v −N−1, z − e1)− f(v, z))

+Nκ′1(M − z1 − z3)(f(v +N−1, z + e1)− f(v, z))

+Nκ′2v(M − z1 − z3)(f(v −N−1, z + e3)− f(v, z))

+Nκ4z3(f(v +N−1, z − e3)− f(v, z)) +Nκ5z3(f(v, z − e3)− f(v, z))

= GN0 f(v, z) +NGN1 f(v, z) + εN + (M − z1 − z3)O(Nγ−2) + z3O(Nβ−2)

+ o(1),

GN0 f(v, z) = −κ1vz1f ′(v, z − e1) + κ′1(M − z1 − z3)f ′(v, z + e1)

− κ′2v(M − z1 − z3)f ′(v, z + e3) + κ4z3f
′(v, z − e3),

GN1 f(v, z) = κ1vz1(f(v, z − e1)− f(v, z)) + κ′1(M − z1 − z3)(f(v, z + e1)− f(v, z))

+ κ′2v(M − z1 − z3)(f(v, z + e3)− f(v, z)) + κ4z3(f(v, z − e3)− f(v, z))

+ κ5z3(f(v, z − e3)− f(v, z)),

εN1 = N−1
(
1
2κ1vz1f

′′(v, z − e1) + 1
2κ
′
1(M − z1 − z3)f ′′(v, z + e1)

+ 1
2κ
′
2v(M − z1 − z3)f ′′(v, z + e3) + 1

2κ4z3f
′′(v, z − e3)

)
.

1. For the LLN, take some smooth f depending only on v. We need to find g such that
the limit of GN0 f +GN1 g exists and only depends on v. Choosing

g(v, z) = (z1a1 + z3a3)f ′(v)

for some functions a1, a3, we find

(GN0 f +GN1 g)(v, z) =
(
M
(
κ′1 − κ′2v + κ′1a1 + κ′2va3

)
+ z1

(
− κ1v − κ′1 + κ′2v − (κ1v + κ′2)a1 − κ′2va3

)
+ z3

(
− κ′1 + κ′2v + κ4 − κ′1a1 − (κ′2v + κ4 + κ5)a3

))
f ′(v).

(4.6)

With

a1 := − (κ1κ
′
2v

2 + κ′1(κ4 + κ5) + (κ1(κ4 + κ5)− κ′2κ5)v

κ1κ′2v
2 + κ1(κ4 + κ5)v + κ′1(κ4 + κ5)

,

a3 :=
κ1κ

′
1v

2 + κ1κ4v + κ′1κ4
κ1κ′2v

2 + κ1(κ4 + κ5)v + κ′1(κ4 + κ5)
,

the last two lines in (4.6) vanish and we obtain the generator of the limit

Gf(v) = lim
N→∞

(GN0 f +GN1 g)(v) = M lim
N→∞

(κ′1 − κ′2v + κ′1a1 + κ′2va3)f ′(v)

= −M lim
N→∞

κ1κ
′
3κ5v

2

κ′2(κ4 + κ5) + κ1(κ4 + κ5)v + κ1κ′3v
2
f ′(v)

= −M κ1κ3κ5v
2

κ2(κ4 + κ5) + κ1κ3v2
f ′(v).

(4.7)

2. For the fluctuations, consider U = N1/2(V N−Ṽ N ) and the generator of the Markov
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process (U,Z) is

LNf(u, z) = κ1z1(Nv +N1/2u)(f(u−N−1/2, z − e1)− f(u, z))

+Nκ′1(M − z1 − z3)(f(u+N−1/2, z + e1)− f(u, z))

+ κ′2(Nv +N1/2u)(M − z1 − z3)(f(u−N−1/2, z + e3)− f(u, z))

+Nκ4z3(f(u+N−1/2, z − e3)− f(u, z))

+Nκ5z3(f(u, z − e3)− f(u, z))

−N1/2pN (v)f ′(u, z)

= LN0 f(u, z) +N1/2LN1 f(u, z) +NLN2 f(u, z) + o(1),

LN0 f(u, z) = −κ1uz1f ′(u, z − e1) + 1
2κ1vz1f

′′(u, z − e1)

+ 1
2κ
′
1(M − z1 − z3)f ′′(u, z + e1)− κ′2u(M − z1 − z3)f ′(u, z + e3)

+ 1
2κ
′
2v(M − z1 − z3)f ′′(u, z + e3) + 1

2κ4z3f
′′(u, z − e3)

LN1 f(u, z) = −κ1vz1f ′(u, z − e1) + κ1uz1(f(u, z − e1)− f(u, z))

+ κ′1(M − z1 − z3)f ′(u, z + e1)− κ′2v(M − z1 − z3)f ′(u, z + e3)

+ κ′2u(M − z1 − z3)(f(u, z + e3)− f(u, z3)) + κ4z3f
′(u, z − e3)

− pN (v)f ′(u, z)

LN2 f(u, z) = κ1vz1(f(u, z − e1)− f(u, z)) + κ′1(M − z1 − z3)(f(u, z + e1)− f(u, z))

+ κ′2v(M − z1 − z3)(f(u, z + e3)− f(u, z))

+ κ4z3(f(u, z − e3)− f(u, z))

+ κ5z3(f(u, z − e3)− f(u, z)).

With f only depending on u and g(u, z) = (z1a1 + z3a3)f ′(u) as above but depending on u
instead of v, we have that LN1 f + LN2 g = 0. Then, we make the ansatz

h(u, z) =
(
z1b1 + z3b3

)
f ′(u) +

(
z1c1 + z3c2 +

(
z1
2

)
d1 +

(
z3
2

)
d2 +

(
z1 + z3

2

)
d3

)
f ′′(u)

for some b1, b3, c1, . . . , d3 and obtain

(LN0 f + LN1 g + LN2 h)(u, z)

=
(
M
(
κ′3u(a3 − 1) + κ′2b1 + κ′3vb3

)
+ z1

(
− κ1u+ κ′3u− κ1ua1 − κ′3ua3 − κ1vb1 − κ′2b1 − κ′3vb3

)
+ z3

(
κ′3u− κ′3a3u− κ′2b1 − κ′3vb3 − κ4b3 − κ5b3

))
f ′(u)

+
(
M
(
1
2 (κ′2 + κ′3v) + κ′2a1 − κ′3va3 + κ′2c1 + κ′3vc2

)
+ z1

(
1
2 (κ1v − κ′2 − κ′3v) + κ1va1 + κ2Ma1 − κ2a1 − κ3Mva1 − νa1 − κ1vc1

+ κ1vd1 + κ1vd3 − κ′2c1 + κ′2Md1 + κ′2Md3 − κ′3vc2 + κ′3Mvd3 + κ′3vb
)

+ z3
(1

2
(−κ′2 − κ′3 + κ4) + κ′2Mb− κ′2a− κ′3Mvb+ κ′3vb

− κ4b− νb− κ′2c1 + κ′2Md3 − κ′3vc2 + κ′3Mvd2 + κ′3Mvd3

− κ4c2 + κ4d2 + κ4d3 − κ5c2 + κ5d2 + κ5d3
)

+ z21
(
− κ1va1 − κ′2a1 + κ′3va1 − κ1vd1 − κ1vd3 − κ′2d1 − κ′2d3 − κ′3vd3

)
+ z23

(
− κ′2a3 + κ′3va3 + κ4b− κ′2d3 − κ′3vd2 − κ′3vd3 − (κ4 + κ5)(d2 + d3)

)
+ z1z3

(
− κ1va3 − (κ′2 − κ′3v)(a1 + a3) + κ4a1 − κ1vd3 − κ′2(d1 + 2d3)
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− κ3v(d2 + 2d3)− κ4d3 − κ5d3
))
f ′′(u).

We can choose b1, b3, c1, ..., c5 such that the right hand side only depends on v. Plugging
these into the last display gives, in the limit N →∞

Lf(u) = lim
N→∞

(LN0 f + LN1 g + LN2 h)(u, z))

= lim
N→∞

M
(
κ′3u(a3 − 1) + κ′2b1 + κ′3vb3

)
· f ′(u)

+M
(
1
2 (κ′2 + κ′3v) + κ′2a1 − κ′3va3 + κ′2c1 + κ′3vc2

)
· f ′′(u)

= −2Mκ1κ2κ3(κ4 + κ5)κ5uv

(κ1κ3v2 + κ2(κ4 + κ5)2
f ′(u)

+
1

2

(κ22(κ4 + κ5)2+2κ2κ3κ5(κ4+κ5)v+(κ1κ3v
2+2κ2κ4)κ1κ3v

2)Mκ1κ3κ5v
2

(κ1κ3v2 + κ2(κ4 + κ5))3
f ′′(u).

(4.8)
Conditions (2.4)–(2.6) as well the compact containment condition for (UN )N=1,2,... can
be shown as in Example 3.7.

4.3 Extending the first example from Section 6.5 of [11]

Here, we extend the first example in Section 6.5 of [10]. Precisely, we study

S1

κ1
GGGGGGBFGGGGGG

Nγκ2
E1

Nγκ3
GGGGGGGGGBFGGGGGGGGG

Nβκ4

E2

Nβκ5
GGGGGGGGGGAS2 . (4.9)

for β, γ ≥ 1. Here, Si is in high abundance (order N ), and Ei is in low abundance (order
1), i = 1, 2, so we set Zi as the copy number of Ei and NVi as the copy numbers of
species Si, i = 1, 2. Since V N1 + V N2 + (ZN1 + ZN2 )N−1 is constant, it suffices to study
(V N = V N1 , ZN = (ZN1 , Z

N
2 )).

Looking at Assumption 3.2, we note that β̃0 = 1, β̃1 = β̃2 = γ, β̃3 = β̃4 = β, as well as
ϕE1 = γ, ϕE2 = β, leading to β̂1 = β̂2 = β̂2 + 1− ϕE1 = 1, β̂3 = β̂4 = β̂4 + 1− ϕE2 = 1 and
ψE1 = ψE2 = 1 and (3.11) is satisfied.

Proposition 4.5 (LLN and CLT for (4.9)). Let u ∈ R and v ∈ R+, V the solution of the
ODE

dV = − κ1κ3κ5v

κ2(κ4 + κ5) + κ3κ5
dt, V0 = v,

and U the solution of the SDE

dU = − κ1κ3κ5u

κ2(κ4 + κ5) + κ3κ5
dt+

√
κ1κ3κ5v

κ2(κ4 + κ5) + κ3κ5
dB, U0 = u,

for some Brownian motion B. Then, letting V N be as above, setting UN = N1/2(V N −V ),

and if V N0
N→∞
====⇒ v and UN0

N→∞
====⇒ u, we have

V N
N→∞
====⇒ V, UN

N→∞
====⇒ U.

Proof. We define

κ′1 := Nγ−1κ2, κ′2 := Nγ−1κ3, κ′3 := Nβ−1κ4, κ′4 := Nβ−1κ5. (4.10)

Then, (V N , ZN ) has the generator for f ∈ C∞c (R×R2), where f ′ is the derivative with
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respect to the first variable,

GNf(v, z) = Nvκ1(f(v −N−1, z + e1)− f(v, z))

+Nκ′1z1(f(v +N−1, z − e1)− f(v, z)) +Nz1κ
′
2(f(v, z + e2 − e1)− f(v, z))

+Nκ′3z2(f(v, z + e1 − e2)− f(v, z)) +Nκ′4z2(f(v, z − e2)− f(v, z))

= GN0 f(v, z) +NGN2 f(v, z),

GN0 f(v, z) = −κ1vf ′(v, z + e1) + z1κ
′
1f
′(v, z − e1) + εNf (v, z),

GN2 f(v, z) = κ1v(f(v, z + e1)− f(v, z)) + κ′1z1(f(v, z − e1)− f(v, z))

+ κ′2z1(f(v, z + e2 − e1)− f(v, z)) + κ′3z2(f(v, z + e1 − e2)− f(v, z))

+ κ′4z2(f(v, z − e2)− f(v, z)),

|εNf (v, z)| ≤ N−1 1
2 (κ1v + κ′1z1)||f ′′||∞.

For bounding the two fast variables, a calculation similar to the proof of Lemma A.1
gives, for all T, a, k > 0

E
[ ∫ T

0

(ZN1 (t))kdt
]

= O(N1−γ), E
[ ∫ T

0

(ZN2 (t))kdt
]

= O(N1−β),

N−aE[ sup
0≤t≤T

(ZN1 (t))k]
N→∞−−−−→ 0, N−aE[ sup

0≤t≤T
(ZN2 (t))k]

N→∞−−−−→ 0.
(4.11)

1. Again, GN1 = 0, and we take gN = 0. The compact containment condition for
(V N )N=1,2,... is straight-forward, since V N + (ZN1 + ZN2 )/N) is non-increasing and (4.11)
bounds (ZN1 )N=1,2,... and (ZN2 )N=1,2,.... Using the same arguments, conditions (2.4)–(2.6)
will hold, such that we can concentrate on generator calculations:

Take f ∈ C∞c (R) only depending on v. We are looking for hN such that GN0 f(v, z) +

GN2 hN (v, z) only depends on N, v and has a limit for N →∞. Choosing (see (3.12))

g(v, z) = (a1z1 + a2z2)f ′(v)

for some a1, a2 (which might depend on N ), we find

GN0 f(v, z) +GN1 hN (v, z) = −κ1vf ′(v) + z1κ
′
1f
′(v) + κ1va1f

′(v)− κ′1z1a1f ′(v)

+ κ′2z1(a2 − a1)f ′(v) + κ′3z2(a1 − a2)f ′(v)− κ′4z2a2f ′(v) + εNf (v, z)

=
(
κ1v(a1 − 1) + z1(κ′1 − (κ′2 + κ′3)a1 + κ′3a2) + z2(κ′3a1 − (κ′4 + κ′4)a2

)
f ′(v)+εNf (v, z).

Choosing a1, a2 such that the terms proportioal to z1 and z2 vanish, i.e.

a1 =
κ′1(κ′3 + κ′4)

κ′1(κ′3 + κ′4) + κ′2κ
′
4

=
κ2(κ4 + κ5)

κ2(κ4 + κ5) + κ3κ5
,

a2 =
κ′1κ

′
3

κ′1(κ′3 + κ′4) + κ′2κ
′
4

=
κ2κ4

κ2(κ4 + κ5) + κ3κ5
,

where we have used (4.10), we obtain

(GN0 f +GN1 hN )(v, z) = κ1v(a1 − 1)f ′(v) + εNf (v, z) = Gf(v) + εNf (v, z),

with Gf(v) = − κ1κ3κ5v

κ2(κ4 + κ5) + κ3κ5
f ′(v).

Since G is the generator of V , we are done.
2. For the functional CLT, we start with generator calculations. Writing U =

N1/2(V N − V ) and have for the generator of (UN , ZN , V ) (again, ZN = (ZN1 , Z
N
2 )),
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using v from the LLN, for f ∈ C∞c (R×R2), only depending on u, z, with a1 from above,

LNf(u, z, v) = (Nv +N1/2u)κ1(f(u−N−1/2, z + e1)− f(u, z))

+Nκ′1z1(f(u+N−1/2, z − e1)− f(u, z))+Nκ′2(f(u, z + e2 − e1)− f(u, z))

+Nκ′3z2(f(u, z + e1 − e2)− f(u, z))+Nκ′4z2(f(u, z − e2)− f(u, z))

−N1/2κ1v(a1 − 1)f ′(u, z)

= LN0 f(u, z, v) +N1/2LN1 f(u, z, v) +NLN2 f(u, z, v),

LN0 f(u, z, v) = 1
2κ1vf

′′(u, z + e1)− κ1uf ′(u, z + e1) + 1
2κ
′
1z1f

′′(u, z − e1) + εNf (u, z, v),

LN1 f(u, z, v) = −κ1vf ′(u, z + e1) + κ1u(f(u, z + e1)− f(u, z)) + κ′1z1f
′(u, z − e1)

− κ1v(a1 − 1)f ′(u, z),

LN2 f(u, z) = κ1v(f(u, z + e1)− f(u, z)) + κ′1z1(f(u, z − e1)− f(u, z))

+ κ′2z1(f(u, z − e1 + e2)− f(u, z)) + κ′3z2(f(u, z + e1 − e2)− f(u, z))

+ κ′4z2(f(u, z − e2)− f(u, z)),

|εNf (u, z, v)| ≤ 1
6N
−1/2(κ1v + κ′2z1)||f ′′′||∞.

With g(u, z) = (a1z1 + a2z2)f ′(u) as above, LN1 f + LN2 gN = 0. Next, let us look for hN
such that LN0 f + LN1 gN + LN2 hN doesn’t depend on z and has a limit for N → ∞. With
(recall from (3.19), where we set c = 0)

hN (u, z) =
(
z1b1 + z2b2 +

(
z1
2

)
d1 +

(
z2
2

)
d2 +

(
z1 + z2

2

)
d3

)
f ′′(u)

for some b1, b2, d1, d2, d3, we have

LN0 f(u, z, v) + LN1 gN (u, z, v) + LN2 hN (u, z, v)− εNf (u, z, v)

= 1
2κ1vf

′′(u)− κ1uf ′(u) + 1
2κ
′
1z1f

′′(u)− κ1v(a1(z1 + 1) + a2z2)f ′′(u)

+ κ1ua1f
′(u) + κ′1z1(a1(z1 − 1) + a2z2)f ′′(u)− κ1v(a1 − 1)(a1z1 + a2z2)f ′′(u)

+ κ1v(b1 + z1d1 + (z1 + z2)d3)f ′′(u)

− κ′1z1(b1 + (z1 − 1)d1 + (z1 + z2 − 1)d3)f ′′(u)

+ κ′2z1(−b1 + b2 − (z1 − 1)d1 + z2d2)f ′′(u)

+ κ′3z2(b1 − b2 + z1d1 − (z2 − 1)d2)f ′′(u)

− κ′4z2(b2 + (z2 − 1)d2 + (z1 + z2 − 1)d3)f ′′(u)

= κ1u(a1 − 1)f ′(u) +
(

1
2κ1v(1− 2a1 + 2b1)

+ z1
(
1
2κ
′
2 − vκ1a21 − (κ′2 + κ′3)b1 + κ′3b2 + vκ1d1 + vκ1d3

)
+ z2

(
− vκ1a1a2 + κ′4b1 − (κ′4 + κ′5)b2 + vκ1d3

)
+ z1(z1 − 1)

(
κ′2a1 − (κ′2 + κ′3)d1 − κ′2d3

)
+ z2(z2 − 1)

(
− (κ′3 + κ′5)d2 − κ′4d3

)
+ z1z2

(
κ′1a2 + κ′3d1 + κ′3d2 − (κ′1 + κ′5)d3

))
f ′′(u).

Now, we need to find b1, b2, d1, d2, d3 such that the last five lines vanish. This leads to

b1 = 1
2 ·

κ′2(κ′4 + κ′5)

κ′2(κ′4 + κ′5) + κ′3κ
′
5

= 1
2a1.
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E1 + S1

E2

E3

E1 + S2

E1 + S3

κ1

κ2

Nκ3

N3κ4

N3κ5

N2κ6

N2κ7

κ8

Figure 1: Main example from [3].

For the limiting generator, we thus have, using (4.10),

(LN0 f + LN1 gN + LN2 hN )(u, z, v)

= κ1u(a1 − 1)f ′(u) + 1
2κ1v(1− 2a1 + 2b1)f ′′(u) + εfN (u, z, v)

= Lf(u, v) + εfN (u, z, v),

Lf(u, v) = − κ1κ3κ5u

κ2(κ4 + κ5) + κ3κ5
f ′(u) + 1

2

κ1κ3κ5v

κ2(κ4 + κ5) + κ3κ5
f ′′(u).

So, L is the generator of U . We also see from (4.11) that (2.4)–(2.6) are satisfied. Finally,
the compact containment condition for (UN )N=1,2,... follows as in Example 3.7.

4.4 Main example from Cappelletti und Wiuf (2016)

We will now study the main example from [3], as given in Figure 1. Here, E1, E2

and E3 are enzymes which help to transform S1 into S2 and S3. For the abundances,
we have that E1, E2, E3 are in low abundance (order 1), and S1, S2, S3 are in high
abundance (order N ). We denote the number of E1, E2, E3 by ZN1 , Z

N
2 , Z

N
3 , respectively,

and the number of S1, S2, S3 by NV N1 , NV N2 , NV N3 , respectively. A close inspection of
the reactions shows that M := ZN1 + ZN2 + ZN3 is a constant, and it suffices to study
ZN = (ZN1 , Z

N
2 ). Moreover, the reaction rates are such that Z1 = M at most times. If

some molecule E2 or E3 is created, it reacts through either reaction 4 or 6, both of which
occur at faster rates than the creation reactions of E2 and E3. For this reason, [3] call
these species intermediate. Moreover, we also note that V N1 + V N2 + V3 +N−1(ZN2 +ZN3 )

is a constant, such that it suffices to study V N = (V N1 , V N3 ). Moreover it is easy to check
that ψE1

= ψE2
= ψE3

= 1, so our general theory applies.

Proposition 4.6 (LLN and CLT for the system from Figure 1). Let

λ1 := κ1
κ4(κ6 + κ7)

κ4(κ6 + κ7) + κ5κ6
+ κ2

κ4κ7
κ4(κ6 + κ7) + κ5κ6

,

λ2 := κ1
κ5κ6

κ4(κ6 + κ7) + κ5κ6
+ κ2

(κ4 + κ5)κ6
κ4(κ6 + κ7) + κ5κ6

,

(4.12)
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E1 + S1

E1 + S2

E1 + S3

λ1

λ2

κ8

Figure 2: Reduced system in the main example from [3].

u = (u1, u3) ∈ R2 and v = (v1, v3) ∈ R2
+, V = (V1, V3) the solution of the ODE

dV1 = (−M(λ1 + λ2)V1 +Mκ8V3)dt,

dV3 = (Mλ2V1 −Mκ8V3)dt,

and U = (U1, U3) solution of the SDE

dU1 = (−M(λ1 + λ2)U1 +Mκ8U3)dt+
√
Mλ1V1dB1 +

√
Mλ2V1dB2 +

√
Mκ8V3dB3,

dU3 = (Mλ2U1 −Mκ8U3)dt−
√
Mλ2V1dB2 +−

√
Mκ8V3dB3

for independent Brownian motions B1, B2, B3. Then, letting V N be as above, setting

UN = N1/2(V N − V ), and if V N0
N→∞
====⇒ v and UN0

N→∞
====⇒ u, we have

V N
N→∞
====⇒ V, UN

N→∞
====⇒ U.

Remark 4.7. 1. The limiting system of the above proposition is the same as the
(single-scale) system given in Figure 2. For the LLN, this is the same limit as
obtained in [3]. The fact that the CLT follows the same single-scale system is new.

2. We note that our proof not only gives the limit of the system in Figure 1, but also
for different scalings. For example, if we use Nκ4 (instead of N3κ4), Nκ5 (instead
of N3κ5), Nκ6 (instead of N2κ6), and Nκ7 (instead of N2κ7), the techniques we use
give a limit result as well. However, this limit is much more complex than Figure 2.

Proof. Setting κ′4 := N2κ4, κ′5 := N2κ5, κ′6 := Nκ6, κ′7 := Nκ7, the resulting Markov
process has the generator for f ∈ C∞c (R2 ×R2)

GNf(v, z) = Nκ1v1z1(f(v −N−1e1, z − e1 + e2)− f(v, z))

+ κ2Nv1z1(f(v −N−1e1, z − e1)− f(v, z))

+Nκ3z2(f(v +N−1e1, z + e1 − e2)− f(v, z))

+Nκ′4z2(f(v, z + e1 − e2)− f(v, z))

+Nκ′5z2(f(v, z − e2)− f(v, z))

+Nκ′6(M − z1 − z2)(f(v +N−1e3, z + e1)− f(v, z))

+Nκ′7(M − z1 − z2)(f(v, z + e2)− f(v, z))

+Nκ8v3z1(f(v +N−1(e1 − e3), z)− f(v, z))

= (GN0 +N ·GN2 )f(v, z)
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with (writing D1f and D3f for the derivatives with respect to v1 and v3, and by ||D2f ||∞
the supremum of all second derivatives of f ),

GN0 f(v, z) = −v1z1
(
κ1D1f(v, z − e1 + e2) + κ2D1f(v, z − e1)

)
+ κ3z2D1f(v, z + e1 − e2)

+ κ′6(M − z1 − z2)D3f(v, z + e1) + κ8v3z1(D1 −D3)f(v, z) + εNf (v, z),

GN2 f(v, z) = κ1v1z1(f(v, z − e1 + e2)− f(v, z)) + κ2v1z1(f(v, z − e1)− f(v, z))

+ κ3z2(f(v, z + e1 − e2)− f(v, z)) + κ′4z2(f(v, z + e1 − e2)− f(v, z))

+ κ′5z2(f(v, z − e2)− f(v, z)) + κ′6(M − z1 − z2)(f(v, z + e1)− f(v, z))

+ κ′7(M − z1 − z2)(f(v, z + e2)− f(v, z)),

|εNf (v, z)| ≤ 1
2N
−1(v1z1(κ1 + κ2) + κ3z2 + κ′6(M − z1 − z2) + κ8v3z1)||D2f ||∞.

(4.13)
For bounding the two fast variables, we have that 0 ≤ ZN1 , ZN2 ≤M , and∫ T

0

(Z1
N (t))kdt = O(1),

∫ T

0

(Z2
N (t))kdt = O(N−2),∫ T

0

(M − (Z1
N + Z2

N )(t))kdt = O(N−1).

1. The compact containment condition for (V N )N=1,2,... follows from the fact that
V N1 + V N2 + V N3 + N−1(ZN2 + ZN3 ) is a constant. Moreover, (2.4)–(2.6) will follow from
the above boundedness assertions. So, for the generator calculations, assume that
f ∈ C∞c (R2) only depends on v. Taking, for some functions a1, ..., a4 (recall this ansatz
from (3.12))

gN (v, z) = (a1z1 + a2z2)D1f(v) + (a3z1 + a4z2)D3f(v),

we find

(GN0 f +GN2 gN )(v, z)− εNf (v, z)

= −v1z1
(
κ1D1f(v) + κ2D1f(v)

)
+ κ3z2D1f(v) + κ′6(M − z1 − z2)D3f(v)

+ κ8v3z1(D1 −D3)f(v) + κ1v1z1((a2 − a1)D1f(v) + (a4 − a3)D3f(v))

+ κ2v1z1(−a1D1f(v)− a3D3f(v)) + κ3z2((a1 − a2)D1f(v) + (a3 − a4)D3f(v))

+ κ′4z2((a1 − a2)D1f(v) + (a3 − a4)D3f(v)) + κ′5z2(−a2D1f(v)− a4D3f(v))

+ κ′6(M − z1 − z2)(a1D1f(v) + a3D3f(v)) + κ′7(M − z1 − z2)(a2D1f(v) + a4D3f(v))

= M((κ′6a1 + κ′7a2)D1f(v) + (κ′6(a3 + 1) + κ′7a4)D3f(v))

+ z1

(
D1f(v)

(
− v1κ1 − v1κ2 + κ8v3 + κ2v1(a2 − a1)− κ2v1a1 − κ′6a1 − κ′7a2

)
+D3f(v)

(
− κ′6 − κ8v3 + κ1v1(a4 − a3)− κ2v1a3 − κ′6a3 − κ′7a4

))
+ z2

(
D1f(v)

(
κ3 + κ3(a1 − a2) + κ′4(a1 − a2)− κ′5a2 − κ′6a1 − κ′7a2

)
+D3f(v)

(
− κ′6 + κ3(a3 − a4) + κ′4(a3 − a4)− κ′5a4 − κ′6a3 − κ′7a4

))
.

If we set a1, ..., a4 such that the terms proportional to z1D1, z1D3, z3D1 and z3D3 vanish,
we obtain

Gf(v) := lim
N→∞

(GN0 f +GN1 g)(v, z)− εNf (v, z)

= M lim
N→∞

(a1κ
′
6 + a2κ

′
7)D1f(v) +M(κ′6(a3 + 1) + κ′7)D3f(v)

= M(−λ1v1D1f + λ2v1(D3f −D1f) + κ8v3(D1f −D3f))
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for λ1, λ2 as in (4.12). Since G is the generator of V , we are done.
2. The generator of (UN , ZN ) reads

LNf(u, z) = κ1(Nv1 +N1/2u1)z1(f(u−N−1/2e1, z − e1 + e2)− f(u, z))

+ κ2(Nv1 +N1/2u1)z1(f(u−N−1/2e1, z − e1)− f(u, z))

+Nκ3z2(f(u+N−1/2e1, z + e1 − e2)− f(u, z))

+Nκ′4z2(f(u, z + e1 − e2)− f(u, z))

+Nκ′5z2(f(u, z − e2)− f(u, z))

+Nκ′6(M − z1 − z2)(f(u+N−1/2e3, z + e1)− f(u, z))

+Nκ′7(M − z1 − z2)(f(u, z + e2)− f(u, z))

+ κ8(Nv3 +N1/2u3)z1(f(u+N−1/2(e1 − e3), z)− f(u, z))

−MN1/2((−(λ1 + λ2)v1 + κ8v3)D1f(u) + (λ2v1 − κ8v3)D3f(u))

= (LN0 f +N1/2LN1 f +NLN2 f)(u, z)

with (writing D11, D13 and D33 for all the second derivatives with respect to v1 and v3,
and ||D3f ||∞ for the supremum of all third derivatives of f)

LN0 f(u, z) = −κ1u1z1D1f(u, z − e1 + e2) + 1
2κ1v1z1D11f(u, z − e1 + e2)

− κ2u1z1D1f(u, z − e1)

+ 1
2κ2v1z1D11f(u, z − e1) + 1

2κ3z2D11f(u, z + e1 − e2)

+ 1
2κ
′
6(M − z1 − z2)D33f(u, z + e1) + κ8u3z1(D1 −D3)f(u, z)

+ 1
2κ8v3z1(D11 − 2D13 +D33)f(u, z) + εNf (u, z, v),

LN1 f(u, z) = −κ1v1z1D1f(u, z − e1 + e2) + κ1u1z1(f(u, z − e1 + e2)− f(u, z))

− κ2v1z1D1f(u, z − e1) + κ2u1z1(f(u, z − e1)− f(u, z))

+ κ3z2D1f(u, z + e1 − e2)

+ κ′6(M − z1 − z2)D3f(u, z + e1) + κ8v3z1(D1 −D3)f(u, z)

−M((−(λ1 + λ2)v1 + κ8v3)D1f(u, z) + (λ2v1 − κ8v3)D3f(u, z)),

LN2 f(u, z) = κ1v1z1(f(u, z − e1 + e2)− f(u, z)) + κ2v1z1(f(u, z − e1)− f(u, z))

+ κ3z2(f(u, z + e1 − e2)− f(u, z)) + κ′4z2(f(u, z + e1 − e2)− f(u, z))

+ κ′5z2(f(u, z − e2)− f(u, z)) + κ′6(M − z1 − z2)(f(u, z + e1)− f(u, z))

+ κ′7(M − z1 − z2)(f(u, z + e2)− f(u, z)),

|εNf (u, z, v)| ≤ N−1/2(((κ1 + κ2)u1z1 + κ8u3z1)||D2f ||∞
+ 1

6 (v1z1(κ1 + κ2) + κ3z2 + κ′6(M − z1 − z2) + κ8v3z1)||D3f ||∞).

With gN (u, z) = (a1z1 + a2z2)D1f(u) + (a3z1 + a4z2)D3f(u), this time depending on u

instead of v we obtain, if f only depends on u, that LN1 f + LN2 g = o(N−1/2). We choose
the ansatz (compare with (3.19))

hN (u, z) = (b1z1 + b2z2)D1f(u) + (b3z1 + b4z2)D3f(u)

+
(
c1z1 + c2z2 +

(
z1
2

)
d1 +

(
z2
2

)
d2 +

(
z1 + z2

2

)
d3

)
D11f(u)

+
(
c3z1 + c4z2 +

(
z1
2

)
d4 +

(
z2
2

)
d5 +

(
z1 + z2

2

)
d6

)
D33f(u)

+
(
c5z1 + c6z2 +

(
z1
2

)
d7 +

(
z2
2

)
d8 +

(
z1 + z2

2

)
d9

)
D13f(u)
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for some b1, ..., b4, c1, ..., c6, d1, ..., d9. As in the above examples, plugging f , gN with
a1, ..., a4 as above, and hN in L0f + L1gN + L2hN leads to a term which depends only on
u for the correct choice of b1, ..., b4, c1, ..., c6, d1, ..., d9. The corresponding linear system
can readily be solved, and the result is (leaving all computations to a computer algebra
system such as sagemath) leads for N →∞ to the limit

Lf(u) = lim
N→∞

(LN0 f + LN1 g + LN2 h− εNf )(u)

= M(−(λ1 + λ2)u1 + κ8u3)D1f(u) +M(λ2u1 − κ8u3)D3f(u)

+ 1
2 (λ1v1D11f(u) + (λ2v1 + κ8v3)(D11 − 2D13 +D33)f(u).

This is the generator of (U1, U2). Again, showing the compact containment condition of
(UN )N=1,2,... as well as (2.4)–(2.6) works with the same arguments we already saw in the
first examples.

A An immigration death process

We will now give a tool which helps to derive the conditions (2.4)–(2.6) in concrete
examples.

Lemma A.1 (A process with immigration and death). Let β ≥ α ≥ 0, C0 ≥ 0, C1 > 0, and
k, T, a > 0, and for each N ∈ N, let XN = (XN

t )t≥0 be a Markov-jump-process which
increases at time t by 1 at rate CN0 N

α and decreases at time t by 1 at rate CN1 N
βXN (t)

and XN
0 = 0, where 0 ≤ CN0 ≤ C0 and CN1 ≥ C1. Then,

sup
N∈N

E
[ ∫ T

0

Nβ−α(XN
t )kdt

]
<∞ (A.1)

and

N−aE[ sup
0≤t≤T

(XN
t )k]

N→∞−−−−→ 0. (A.2)

Proof. We use some constant C, which does not depend on N , but which may change
from line to line. With Fubini, we see that (A.1) follows from

E[(XN
t )k] ≤ CNα−β , t ≥ 0.

We start the proof of this assertion by calculating

d

dt
E[(XN

t )k] = CN0 N
αE[(XN

t + 1)k − (XN
t )k] + CN1 N

βE[XN
t (XN

t − 1)k − (XN
t )k+1].

Using induction, we start with k = 1 and can solve this differential equation with
E[XN

0 ] = 0, i.e.

E[XN
t ] =

CN0
CN1

Nα−β(1− e−C
N
1 N

βt) ≤ CNα−β .

From here, if we have shown the case k− 1, we see that E[(XN
t + 1)k − (XN

t )k] ≤ C, and
the differential equation yields

d

dt
E[(XN

t )k] ≤ CNα + C1N
βE[(XN

t )k].

From here, Gronwall’s Lemma shows the assertion for k.
For (A.2), we only need to consider the case β = α since this process dominates the

process with β > α. Note that XN can be seen as the size of a population undergoing
immigration (at individual rate C0N

α) and death (at individual rate C1N
β = C1N

α).
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Let τn := inf{t : XN
t > n} and consider XN

τn . At this time, the population consists of
individuals immigrating at times before τn, and we consider the oldest such individual.
Necessarily, this individual has seen n individuals immigrating before τn which has prob-
ability γnN for γN := CN0 /(C

N
0 + CN1 ) ≤ C0/(C0 + C1) =: γ. The rate by which individuals

immigrate which see n immigration events before their own death is CN0 N
αγnN , i.e.

P( sup
0≤t≤T

XN
t > n) ≤ 1− exp

(
− C1N

αγnNT
)
.

We therefore write

E[ sup
0≤t≤T

(XN
t )k] = k

∫ ∞
0

xk−1P( sup
0≤t≤T

XN (t) > x)dx

≤ k
∫ (logN)2

0

xk−1dx+ 2kC1N
α

∫ ∞
(logN)2

xk−1γxdx ≤ C(logN)2k,

and the assertion follows.

Supplementary Material

Accompanying commands for automated computation. The ancillary file with
sagemath-commands [4], used for various computations in examples, can be found on
https://arxiv.org/src/2111.15396v1/anc/ancillary.sage.
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