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A central limit theorem for the length of the longest
common subsequences in random words*
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Abstract

Let (Xi)i≥1 and (Yi)i≥1 be two independent sequences of independent identically
distributed (iid) random variables taking their values in a common finite alphabet and
having the same law. Let LCn be the length of the longest common subsequences of
the two random words X1 · · ·Xn and Y1 · · ·Yn. Under a lower bound assumption on
the order of its variance, LCn is shown to satisfy a central limit theorem. This is in
contrast to the limiting distribution of the length of the longest common subsequences
in two independent uniform random permutations of {1, . . . , n}, which is shown to be
the Tracy-Widom distribution.

Keywords: longest common subsequences; random words; central limit theorem; optimal
alignments; last passage percolation; Stein’s method; Ulam’s problem; random permutations;
Tracy-Widom distribution; edit/Levenshtein distance; supersequences.
MSC2020 subject classifications: 05A05; 60C05; 60F05; 60F10.
Submitted to EJP on May 19, 2022, final version accepted on December 16, 2022.

1 Introduction

We explore here the asymptotic behavior, in law, of the length of the longest common
subsequences of two random words. Although the study of this length is decade-old, and
extensive from an algorithmic point of view, in various disciplines such as, computer
science, bioinformatics, or statistical physics, its mathematically rigorous results are
rather sparse. Below, we obtain the first result on the limiting law of this length, when
properly centered and scaled.

To begin with, let us present our framework. Throughout, let X = (Xi)i≥1 and
Y = (Yi)i≥1 be two infinite sequences whose coordinates take their values in Am =

{α1,α2, . . . ,αm}, a finite alphabet of size m. Next, let LCn be the length of the longest
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common subsequences (LCSs) of the random words X1 · · ·Xn and Y1 · · ·Yn, i.e., LCn
is the maximal integer k ∈ {1, . . . , n}, such that there exist 1 ≤ i1 < · · · < ik ≤ n and
1 ≤ j1 < · · · < jk ≤ n, for which:

Xis = Yjs , for all s = 1, 2, . . . , k.

As well known, LCn is a measure of the similarity/dissimilarity of the two words/strings
which is often used in pattern matching, e.g., in computer science the edit (or Leven-
shtein) distance is the minimal number of indels (insertions/deletions) to transform one
string into the other and is therefore given by 2(n− LCn). (The reader will find in [9],
[32], [36] and [40] numerous examples of the relevance of longest common subsequences
in various applications.)

The asymptotic study of LCn began with the well known result of Chvátal and Sankoff
[13] asserting, via a superadditivity argument, that

lim
n→∞

ELCn
n

= γ∗m, (1.1)

whenever, for example, (Xi)i≥1 and (Yi)i≥1 are two independent sequences of indepen-
dent identically distributed (iid) random variables having the same law.

However, to this day, the exact value of γ∗m = supn≥1ELCn/n (which depends on the
distribution of X1 and on the size of the alphabet) is unknown, even in “simple cases”,
such as for uniform Bernoulli random variables. Nevertheless, its asymptotic behavior,
as the alphabet size grows, is known (see Kiwi, Loebl and Matous̆ek ([26])) and given,
for X1 uniformly distributed, by:

lim
m→∞

√
mγ∗m = 2. (1.2)

Chvátal and Sankoff’s law of large numbers was further sharpened by Alexander ([2])
who proved that

γ∗mn−KA

√
n lnn ≤ ELCn ≤ γ∗mn, (1.3)

where KA > 0 is a universal constant (which depends neither on n nor on the distribution
of X1). Next, Steele [37] obtained via the Efron–Stein inequality the first upper bound
on the variance of LCn proving, in particular, that:

VarLCn ≤

(
1−

m∑
k=1

p2k

)
n, (1.4)

where pk = P(X1 = αk), k = 1, . . . ,m. However, finding the order of the lower bound is
much more illusive and remains unknown in many instances, in particular for iid uniform
Bernoulli random variables. Some of the instances in which, and methods for which, a
variance lower bound matching the linear upper bound have been obtained are further
described below. Before doing so, let us state our main result:

Theorem 1.1. Let (Xi)i≥1 and (Yi)i≥1 be two independent sequences of iid random
variables with values in Am = {α1,α2, . . . ,αm} and having the same law. Assume that
VarLCn ≥ Kn, for some positive constant K independent of n ≥ 1. Let 0 < η < 1/10,
then for all n ≥ 1,

dW

(
LCn − ELCn√

VarLCn
,G
)
≤ C 1

n
1
10−η

, (1.5)

where dW is the Monge-Kantorovich-Wasserstein distance, where G a standard normal
random variable and where C > 0 is a constant depending on K, on m, and on the
distribution of X1, but is independent of n.
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A central limit theorem for the length of the longest common subsequences

Recall next that the Kolmogorov and Monge-Kantorovich-Wasserstein distances, dK
and dW , between two probability distributions µ1 and µ2 on R, are respectively defined
as

dK(µ1, µ2) = sup
h∈H1

∣∣∣∣∫ hdµ1 −
∫
hdµ2

∣∣∣∣ ,
where H1 = {1(−∞,x] : x ∈ R}, and

dW (µ1, µ2) = sup
h∈H2

∣∣∣∣∫ hdµ1 −
∫
hdµ2

∣∣∣∣ ,
where H2 = {h : R→ R : |h(x)− h(y)| ≤ |x− y|}. Recall, further, that if µ2 is absolutely
continuous, with respect to the Lebesgue measure, and with density µ2(dx)/dx essentially
bounded, i.e., such that ‖µ2(dx)/dx‖∞ < +∞, then,

dK(µ1, µ2) ≤
√

2‖µ2(dx)/dx‖∞dW (µ1, µ2), (1.6)

e.g., see Ross [35] or the Appendix in [3]. Thus, Theorem 1.1 implies via (1.6), that

dK

(
LCn − ELCn√

VarLCn
,G
)
≤ C1/2

(
2

π

)1/4
1

n
1
20−

η
2

, (1.7)

and so, properly centered and normalized, LCn converges in distribution to a standard
normal random variable as long as VarLCn is assumed to be of linear order.

Let us carefully review and discuss the assumption on the variance of LCn present in
the statement of our main theorem. As indicated in (1.4), VarLCn ≤ n, however contra-
dictory conjectures on the order of this variance have also appeared in the literature: A
sub-linear conjecture (of order o(n2/3)) in [13] and a linear one in Waterman [39] (see
also [2]). The linear order, which we believe to be the correct one, has been verified in a
few situations that we briefly describe next:
• This linear lower bound is proved in [28] or [22] for iid random variables (Bernoulli

or finite-alphabet ones) which are highly biased, in that a single letter is taken with very
high (but fixed) probability. In that case, changing in any configuration, a low probability
letters into the high probability one, is more likely to increase LCn by one unit than
to decrease it by one unit. This change (which clearly has no effect for uniformly
distributed letters) reduces variability and the new longest common subsequences
provide the variance lower bound.
• Beyond the strongly biased cases just mentioned, a linear order for the variance

has been obtained in other situations closer to the iid uniform case. In particular, in
a framework where either a letter is missing or long blocks are added within the iid
uniform framework or in various other settings, as seen in the many references given
in ([4], [6], [18], [21], [23], . . . ).. Within these frameworks, modifications of the tools
presented in our current approach would also lead to a central limit theorem, without
any further assumption on the variance. In all these situations, the central r-th, r ≥ 1,
moments of LCn can also be shown to be of order nr/2 (see the concluding remarks
in [22]). This last fact might hint at the asymptotic normality of LCn, although similar
moments estimates can lead to a non-Gaussian limiting law in a closely related problem,
i.e., in the study of LCIn, the length of the longest common and increasing subsequences
of two random words, over a totally ordered finite alphabet (see [8], [16]).
• Early extensive simulations (with n of order 104) by Boutet de Monvel [7] seemed

to indicate, in the uniform case, a variance of order at least n2ω
′

with ω′ ≈ 0.418 and
even a normal asymptotic law. More recent extensive simulations (with n of order 106)
(see [29]) seem to indicate (in both the uniform and non-uniform binary cases) that the
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variance is of order n as the lengths of the sequences are the larger to date, an order
one-hundred times bigger than the ones in [7].
• As it will become clear from the proof of the theorem just stated, a mere sublinear

lower bound on the variance will also lead to a normal limiting law, e.g., a lower bound
of order at least n9/10+η, η > 0 will do (although, and again, it is our belief that the
variance of LCn is linear in n, but nevertheless 9/10 > 2ω′). Note also that the proof of
this theorem provides for α (to be defined) such that 4/5 < α < 1, a rate of 1/n(1−α)/2,
while for 2/3 < α < 4/5, a different rate, of order 1/n1−3(1−α/2)/2, can be obtained in a
similar way (see (2.40)), under a linear variance lower bound.

Remark 1.1. Theorem 1.1 is the first of its kind. It contrasts, in particular, with the
corresponding result in the related Bernoulli matching problem where, as shown by
Majumdar and Nechaev ([31]), the limiting law is the Tracy-Widom one. Both the
LCS and Bernoulli matching models are directed last passage vertex/site percolation
models with respectively dependent and independent weights, possibly explaining the
different limiting laws. In both cases, the expectation is linear in n, but the variance
in the Bernoulli matching problem is sublinear (of order n2/3), while in our LCS case
it is assumed linear. (The assumption on the order of the LCS-variance is additionally
described at length in the next two paragraphs.) Let us describe how the LCS problem
can be represented as a directed last passage percolation (LPP) problem with dependent
weights. Indeed, let the set of vertices be

V := {0, 1, 2, . . . , n} × {0, 1, 2, . . . , n},

and let the set of oriented edges E ⊂ V × V contain horizontal, vertical and diagonal
edges. The horizontal edges are oriented to the right, while the vertical edges are
oriented upwards, both having unit length. The diagonal edges point up-right at a
π/4-angle and have length

√
2. Hence,

E := {(v, v + e1), (v, v + e2), (v, v + e3) : v ∈ V } ,

where e1 := (1, 0), e2 := (0, 1) and e3 := (1, 1). With the horizontal and vertical edges, we
associate a weight of 0. With the diagonal edge from (i, j) to (i+ 1, j + 1) we associate
the weight 1 if Xi+1 = Yj+1 and 0 (or −∞) otherwise. In this manner, we obtain that
LCn is equal to the total weight of the heaviest paths going from (0, 0) to (n, n). (An-
other directed LPP representation can be obtained via LCn = maxπ∈SI

∑
(i,j)∈π 1{Xi=Yj},

where SI refers to the set of all paths with strictly increasing steps, i.e., paths with both
coordinates strictly increasing from a step to another, from (0, 0) to the East, x = n, or
North, y = n, boundary. A third representation would be as above but where now the
paths going from (0, 0) to (n, n) have either strictly increasing steps or North or East
unit steps. Again to the strictly increasing steps the associated weight is 1{Xi=Yj} while
to the North as well as to the East unit steps is associated a weight value of 0. As a
final representation one could still proceed with strictly increasing paths but with the
requirement that one ends the paths with a 1.) Note that the weights in our percolation
representations are not “truly 2-dimensional” and, in our opinion, this could be a further
reason for the order of magnitude of the mean, variance as well as the limiting law in
the LCS problem to be different from other first/last passage-related models.

Theorem 1.1 further contrasts with the corresponding limiting law for the length of
the longest common subsequences in a pair of independent uniform random permutations
of {1, . . . , n}. Indeed, in sequence comparison problems, the emergence of the Tracy–
Widom distribution has sometimes been contemplated/speculated, e.g., see [1]. We show,
in the last section of the present paper, that this is correct when analyzing the asymptotic
behavior of the length of the longest common subsequences of two independent uniform
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random permutations of {1, . . . , n} (the expectation there is of order
√
n and the variance

of order n1/3).
Finally, let us remark that some of the ideas/techniques developed to prove lower

bounds on V arLCn have been further developed in the context of first passage percola-
tion, providing, to date, the best lower bound available on the variance of the passage
time (see [14]).

As far as the content of the paper is concerned, the lengthy next section contains the
proof of Theorem 1.1, which is preceded by a discussion of some elements of its proof.
Then, in the third section, various extensions and generalizations as well as some related
open questions are discussed. In particular, the proof, that the length of longest common
subsequences in two independent uniform random permutations of {1, . . . , n} converges
to the Tracy-Widom distribution, is included there.

2 Proof of Theorem 1.1

The aim of this section is to provide a proof of the main theorem by a three-step
method. The first step makes use of a relatively recent theorem of Chatterjee ([10]) on
Stein’s method (see [12] for an overview of the method, including Chatterjee’s normal
approximation results via exchangeable pairs); the second uses simple moment estimates
for LCn derived from our lower bound variance assumption; and the third develops
lengthy correlation estimates based, in part, on short string-lengths genericity results
obtained in [24]. We start by fixing notation and recalling some preliminaries.

Throughout this section, X = (Xi)i≥1 and Y = (Yi)i≥1 are two independent se-
quences whose coordinates are iid, with a common law, and taking their values in
Am = {α1,α2, . . . ,αm}, a finite alphabet of size m.

Let us continue by introducing some more notation following those of [10]. Let
W = (W1,W2, . . . ,Wn) and W ′ = (W ′1,W

′
2, ...,W

′
n) be two iid Rn-valued random vectors

whose components are also independent. For A ⊂ [n] := {1, 2, . . . , n}, define the random
vector WA by setting

WA
i =

{
W ′i if i ∈ A
Wi if i /∈ A,

with for A = {j}, and further ease of notation, W j is short for W {j}, while W ∅ = W .
For a given Borel measurable function f : Rn → R and A ⊂ [n], let

TA :=
∑
j /∈A

∆jf(W )∆jf(WA),

where
∆jf(W ) := f(W )− f(W j),

and again, T∅ =
∑n
j=1(∆jf(W ))2. Finally, let

T =
1

2

∑
A([n]

TA(
n
|A|
)
(n− |A|)

,

where |A| denotes the cardinality of A, and where the sum above is taken over all the
proper subsets (including T∅) of [n]. Here is Chatterjee’s result.

Theorem 2.1. [10] Let all the terms be defined as above, and let 0 < σ2 := Var f(W ) <

∞. Then,

dW

(
f(W )− Ef(W )√

Var f(W )
,G

)
≤
√

VarT

σ2
+

1

2σ3

n∑
j=1

E|∆jf(W )|3, (2.1)

where G is a standard normal random variable.
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Remark 2.2. (i) In [10], the variance term as displayed in (2.1) is actually replaced by
VarE(T |f(W )) but the above bound, with the larger VarT , already presented in [10], is
enough for our purpose.

(ii) Our proof bounds the right-hand side of (2.1) and next, using (1.6), bounds
the corresponding Kolmogorov distance. An alternate way to obtain convergence in
distribution would be to first use a more recent result of Lachièze-Rey and Peccati [27],
directly bounding the Kolmogorov distance, which could then be estimated by adapting
the techniques presented below.

Two small comments are in order before beginning the proof of Theorem 1.1.

(1) In the proof, we do not keep track of the constants since doing so would make the
arguments a lot lengthier. Therefore, a constant C may vary from an expression to
another. Note, however, that C will always be positive and independent of n.

(2) We do not worry about having quantities (e.g. length of longest common subse-
quences of two random words) like nα, lnn, etc. which should actually be bnαc,
blnnc, etc. This does not cause any problems as we are interested in asymptotic
bounds. The proof can be revised with minor changes (and some further notational
burden) to make the statements more precise.

Let us start with a sketch of proof Theorem 1.1 and to do so, set

W := (X1, . . . , Xn, Y1, . . . , Yn), (2.2)

and set
f(W ) := LCn(X1 · · ·Xn;Y1 · · ·Yn).

We begin by estimating the second term on the right-hand side of (2.1). To do so, recall
our assumption:

σ2 := E(LCn − ELCn)2 ≥ Kn. (2.3)

Therefore,
σ3 ≥ Cn3/2, n ≥ 1, (2.4)

yielding

1

2σ3

2n∑
j=1

E|∆jf(W )|3 ≤ C 1√
n
, (2.5)

since |∆jf(W )| ≤ 1. This last estimate takes care of the second term on the right-hand
side of (2.1).

Next, let us move to the estimation of the variance term in (2.1). Setting

S1 := {(A,B, j, k) : A ( [2n], B ( [2n], j /∈ A, k /∈ B}, (2.6)

VarT can be expressed as

VarT =
1

4
Var

 ∑
A([2n]

∑
j /∈A

∆jf(W )∆jf(WA)(
2n
|A|
)
(2n− |A|)


=

1

4

∑
A([2n],j /∈A

∑
B([2n],k/∈B

Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

=
1

4

∑
(A,B,j,k)∈S1

Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

. (2.7)
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Our strategy is now to further divide S1 into two main pieces by conditioning on a,
yet to be defined, high probability event Enε,s1,s2 , ensuring that LCSs are made of an
accumulation of relatively short strings. More precisely,

Lemma 2.3. Let Z = 1Enε,s1,s2 , then

4 VarT =
∑

(A,B,j,k)∈S1

Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

P(Z = 0) (2.8)

+
∑

(A,B,j,k)∈S1

Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

P(Z = 1). (2.9)

To estimate each of the two terms in the above lemma, the following proposition, and
a conditional version of it, which easily follows from similar arguments, will be used
repeatedly throughout the proof.

Proposition 2.4. Let R be a subset of [2n]2, and let

S∗ = {(A,B, j, k) : A ( [2n], B ( [2n], j /∈ A, k /∈ B, (j, k) ∈ R}.

Let g : S∗ → R with ‖g‖∞ < +∞, then

∑
(A,B,j,k)∈S∗

∣∣∣∣∣ g(A,B, j, k)(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

∣∣∣∣∣ ≤ ‖g‖∞|R|.
Proof. First, since ‖g‖∞ < +∞,

∑
(A,B,j,k)∈S∗

∣∣∣∣∣ g(A,B, j, k)(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

∣∣∣∣∣
≤ ‖g‖∞

∑
(A,B,j,k)∈S∗

(
1(

2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

)
.

Next, expressing
∑

(A,B,j,k)∈S∗ in terms of R, using basic results about binomial coeffi-
cients and performing some elementary manipulations lead to∑

(A,B,j,k)∈S∗

1(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

=
∑

(j,k)∈R

∑
A([2n]:A63j
B([2n]:B 63k

1(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

=
∑

(j,k)∈R

2n−1∑
s,r=0

∑
A 63j,|A|=s
B 63k,|B|=r

1(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)



=
∑

(j,k)∈R

2n−1∑
s,r=0

∑
A 63j,|A|=s
B 63k,|B|=r

1(
2n
s

)
(2n− s)

(
2n
r

)
(2n− r)


=

∑
(j,k)∈R

(
2n−1∑
s,r=0

(
2n−1
s

)(
2n−1
r

)(
2n
s

)
(2n− s)

(
2n
r

)
(2n− r)

)
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=
∑

(j,k)∈R

2n−1∑
s,r=0

(2n−1)!
(2n−1−s)!s!

(2n−1)!
(2n−1−r)!r!

(2n)!
(2n−s)!s! (2n− s)

(2n)!
(2n−r)!r! (2n− r)


=

∑
(j,k)∈R

(
2n−1∑
s,r=0

1

(2n)2

)
= |R|,

from which the result follows.

Taking R = [2n]2, g(A,B, j, k) = Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB)) which is
such that ‖g‖∞ ≤ 1, Proposition 2.4 yields the estimate

∑
(A,B,j,k)∈S1

(
Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(

2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

)
≤ 4n2. (2.10)

Hence, VarT ≤ n2 giving a suboptimal result for our purposes, and we therefore begin a
detailed estimation study to improve the variance upper bound to o(n2).

To do so, we start by giving a slight variation of a result from [24] which can be
viewed as a microscopic short-lengths genericity principle, and which will turn out to be
an important tool in our proof. This principle, valid not only for common sequences but
in much greater generality (see [24]), should prove useful in other contexts.

Assume that n = vd, and let the integers

r0 = 0 ≤ r1 ≤ r2 ≤ r3 ≤ ... ≤ rd−1 ≤ rd = n, (2.11)

be such that

LCn =

d∑
i=1

|LCS(Xv(i−1)+1Xv(i−1)+2 · · ·Xvi;Yri−1+1Yri−1+2 · · ·Yri)|, (2.12)

where |LCS(Xv(i−1)+1Xv(i−1)+2 · · ·Xvi;Yri−1+1Yri−1+2 · · ·Yri)| is the length of the longest
common subsequences of the words/strings Xv(i−1)+1Xv(i−1)+2 · · ·Xvi and Yri−1+1Yri−1+2

· · ·Yri (with the understanding that this length is zero if none of the letters of the X-part
are aligned with letters of the Y -part, i.e., if the X-part is only aligned with gaps). Next,
let ε > 0 and let 0 < s1 < 1 < s2, be two reals such that

γ̃(s1) < γ̃(1) = γ∗m and γ̃(s2) < γ̃(1) = γ∗m,

where

γ̃(s) = lim
n→∞

ELCn(X1 · · ·Xn;Y1 · · ·Ysn)

n(1 + s)/2
, s > 0.

(See [24] for the existence of, and estimates on, s1 and s2.)
Finally, let Enε,s1,s2 be the event that for all integer vectors (r0, r1, ..., rd) satisfy-

ing (2.11) and (2.12), we have

|{i ∈ [d] : vs1 ≤ ri − ri−1 ≤ vs2}| ≥ (1− ε)d. (2.13)

In words, Enε,p1,p2 is the (random) set of optimal alignments of X1 · · ·Xn and Y1 · · ·Yn
satisfying (2.11), for which a proportion of at least 1− ε of the integer intervals [ri−1 +

1, ri]N, i = 1, 2, . . . , d, have their length between vs1 and vs2.
As stated next, Enε,s1,s2 holds with high probability. Broadly, our next theorem asserts

that for any ε > 0, there exists v large enough, but fixed, such that if X is divided into
segments of length v then, typically (at least a fraction 1− ε of segments), and with high
probability, the LCSs match these segments to segments of similar length in Y .
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A central limit theorem for the length of the longest common subsequences

Theorem 2.5. [24] Let ε > 0. Let 0 < s1 < 1 < s2 be such that γ̃(s1) < γ̃(1) = γ∗m and
γ̃(s2) < γ̃(1) = γ∗m, and let δ ∈ (0,min(γ∗m − γ̃(s1), γ∗m − γ̃(s2))). Let the integer v be such
that

1 + ln (1 + v)

v
≤ δ2ε2

16
. (2.14)

Then,

P(Enε,s1,s2) ≥ 1− exp

(
−n
(
−1 + ln (1 + v)

v
+
δ2ε2

16

))
, (2.15)

for all n = n(ε, δ) large enough.

Remark 2.6. In [24], instead of (2.11), the corresponding condition is:

r0 = 0 < r1 < r2 < r3 < ... < rd−1 < rd = n. (2.16)

which is made up of strict inequalities becoming weak inequalities in (2.11). The
rationale for this difference is that, in general, there is no guarantee that there exists an
optimal alignment, i.e., a longest common subsequence, satisfying both conditions (2.12)
and (2.16). Indeed, for a simple counterexample, let n = 4, A = [2], d = v = 2, and let

X = (1, 1, 0, 0), Y = (0, 0, 1, 1).

Then, any optimal alignment satisfying (2.12) must have a piece (soon to be called a
“cell”) with no terms in the Y -part and this is clearly incompatible with (2.16). (This
counterexample can easily be extended to n = 6, A = [2], d = 3, v = 2, letting X =

(1, 1, 0, 0, 1, 1), Y = (0, 0, 1, 1, 0, 0), and so on.)
In general, there always exists an optimal alignment (r0, r1, r2, ..., rd) satisfying

both (2.11) and (2.12) with, say, v = nα, 0 < α < 1, as above. (Consider any one
of the longest common subsequences and choose the ri’s so that these two conditions
are satisfied.) Therefore, we slightly change the framework of [24] as forthcoming
arguments require the existence of an optimal alignment satisfying (2.12) for any value
of X and Y . However, the proof of Theorem 2.5, above, proceeds as the proof of the cor-
responding result (Theorem 2.2!) in [24], and is therefore omitted. (The only difference
is that counting the cases of equality, an upper estimate on the number of integer-vectors
(0 = r0, r1, . . . , rd−1, rd = n) satisfying (2.11) is now given by(

n+ d

d

)
≤ (n+ d)d

d!
≤
(
e(n+ d)

d

)d
= (e(1 + v))d, (2.17)

leading to the terms involving ln (1 + v) rather than just ln v [24], when using (2.16) and
the estimate nd/d! ≤ (ev)d to upper-bound

(
n
d

)
.)

Remark 2.7. In [24], the statement corresponding to Theorem 2.5 is given for “all n
large enough”. However, as indicated at the end of the proof there, it is possible to
find a more quantitative estimate using Alexander’s result (1.3). In fact a lower bound,
in terms of ε and δ, is valid for all n ≥ 1. Indeed, at first, from the end of the proof of
Lemma 3.1 there, preceding the main theorem in [24], one can easily verify that the
following relation between n and ε is sufficient for (2.15) to hold:

4K2
A

(δ∗ − δ)2
lnn

n
≤ ε2,

where 0 < δ < δ∗ := min(γ∗m − γ̃(s1), γ∗m − γ̃(s2)) is a fixed positive quantity and KA is a
positive constant such that γ∗mn−KA

√
n lnn ≤ ELCn. (One can find explicit numerical

estimates on KA using Rhee’s [33] proof of (1.3).)
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A central limit theorem for the length of the longest common subsequences

In our context, here is how to choose ε so that the estimate in (2.15) holds true for all
n ≥ 1 and v = nα, 0 < α < 1. Let c1 > 0 be a constant such that

c21 ≥
32

δ2
,

and

c21

(
1 + ln (1 + nα)

nα

)
≥ 4K2

A

(δ∗ − δ)2
lnn

n
, for all n ≥ 1.

Setting,

ε2 = c21
1 + ln (1 + nα)

nα
,

(2.14) holds for v = nα and therefore,

P(Enε,s1,s2) ≥ 1− e−n
1−α(1+ln (1+nα)) ≥ 1− e−(1+ln 2), (2.18)

for all n ≥ 1.

Let us return to the proof of Theorem 1.1, and the estimation of (2.7). First, for
notational convenience, below we write

∑
S1 in place of Σ(A,B,j,k)∈S1 . Also, for random

variables U, V and a random variable Z taking its values in R ⊂ R, and with another
abuse of notation, we write CovZ=z(U, V ) for E((U − EU)(V − EV )|Z = z), z ∈ R.

Let, now, the random variable Z be the indicator function of the event Enε,s1,s2 , where

ε = c1
√

(1 + ln (1 + v))/v, i.e., let Z = 1Enε,s1,s2 , with v = nα and with c1 as in Remark 2.7.
Then, we arrive at the decomposition of Lemma 2.3∑

S1

Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

=
∑
S1

CovZ=0(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

P(Z = 0)

+
∑
S1

CovZ=1(∆jf(W )∆jf(WA),∆kf(W)∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

P(Z = 1). (2.19)

To estimate the first term on the right-hand side of (2.19), first note that

CovZ=0(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB)) ≤ 1,

which when combined with the estimate in (2.18) and (2.10), immediately leads to∑
S1

CovZ=0(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

P(Z = 0)

≤ 4n2e−n
1−α(1+ln (1+nα)). (2.20)

For the second term on the right-hand side of (2.19), begin with the trivial bound on
P(Z = 1) to get∑

S1

CovZ=1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

P(Z = 1)

≤
∑
S1

CovZ=1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

. (2.21)

Finer decompositions are then needed to handle this last summation, and for this
purpose, we specify an optimal alignment with certain properties.
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A central limit theorem for the length of the longest common subsequences

Recall from Remark 2.6 that there always exists an optimal alignment r = (r0, r1, r2,
..., rd) satisfying both (2.11) and (2.12) with v = nα, 0 < α < 1. In the sequel, r

denotes such a (fixed) optimal alignment which also specifies the pairs, in the strings
X1 · · ·Xn and Y1 · · ·Yn, contributing to the longest common subsequence.1 Such an
alignment always exists, as just noted, and so we can define an injective map from
(X1 · · ·Xn, Y1 · · ·Yn) to the set of alignments, making various definitions (such as the
ones for S1,1 and S1,2 on page 12) below well defined. This abstract construction is
enough for our purposes, since the argument below is independent of the choice of the
alignment. Note also that conditionally on the event {Z = 1}, r satisfies (2.13).

To continue, we need another definition and some more notation.

Definition 2.8. For the optimal alignment r, each of the sets

{Xv(i−1)+1Xv(i−1)+2 · · ·Xvi;Yri−1+1Yri−1+2 · · ·Yri}, i = 1, ..., d,

is called a cell of r.

In particular, any optimal alignment with v = nα has d = n1−α cells.
Let us next introduce some more notation which will be used below. For any

given j ∈ [2n], let Pj be the cell containing Wj where, again, W = (W1, . . . ,W2n) =

(X1, . . . , Xn, Y1, . . . , Yn). We write Pj = (P 1
j ;P 2

j ) where P 1
j (resp. P 2

j ) is the subword of X
(resp. Y ) corresponding to Pj . Note that, for each j ∈ [2n], P 1

j contains nα letters but
that P 2

j might be empty, as the following example shows:

Example 2.9. Let n = 12 and A = [3], and let

X = (1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1),

Y = (2, 1, 1, 3, 2, 3, 1, 2, 1, 1, 1, 2).

and W = (X,Y ). Then, LC12 = 8, obtained for example through (1, 1, 2, 1, 2, 1, 1, 1), while
choosing v = 3, the number of cells in the optimal alignment is d = 4. One possible
choice for these cells is

(X1X2X3;Y1Y2Y3Y4Y5) = (112; 21132),

(X4X5X6; ∅) = (121; ∅),

(X7X8X9;Y6Y7Y8Y9) = (121; 3121),

and

(X10X11X12;Y10Y11Y12) = (131; 112).

For example, focusing on W8 = X8, we have

P8 = (P 1
8 ;P 2

8 ) = (121; 3121).

Returning to the proof of Theorem 1.1, define the following subsets of S1 with respect
to the alignment r:

S1,1 = {(A,B, j, k) ∈ S1 : Wj and Wk are in the same cell of r},

and

S1,2 = {(A,B, j, k) ∈ S1 : Wj and Wk are in different cells of r}.
1This alignment might change according to different realizations of the words X1 · · ·Xn and Y1 · · ·Yn,

i.e., it is random; but, for each realization and although there are possibly more than one choice of optimal
alignments, we just fix one of those.
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Clearly, S1,1 ∩ S1,2 = ∅ and S1 = S1,1 ∪ S1,2. Now, for a given subset S of S1, and for
(A,B, j, k) ∈ S1, define CovZ=1,(A,B,j,k),S to be

CovZ=1,(A,B,j,k),S(X,Y ) = E
(
(X − EX)(Y − EY )1(A,B,j,k)∈S |Z = 1

)
,

and, moreover, write CovZ=1,S(X,Y ) instead of CovZ=1,(A,B,j,k),S(X,Y ) when the value
of (A,B, j, k) is clear from the context.

Continuing with the decomposition of the right-hand side of (2.21),

∑
S1

CovZ=1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

=
∑
S1

CovZ=1,S1,1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

+
∑
S1

CovZ=1,S1,2(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

, (2.22)

where to further clarify the notation note that, for example,

∑
S1

CovZ=1,S1,1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

=
∑
S1

E

(
g(A,B, j, k)1(A,B,j,k)∈S1,1(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

∣∣∣Z = 1

)
,

where

g(A,B, j, k) =
(
∆jf(W )∆jf(WA)− E(∆jf(W )∆jf(WA))

)
×
(
∆kf(W )∆kf(WB)− E(∆kf(W )∆kf(WB))

)
. (2.23)

To glimpse into the proof, let us stop for a moment to present some of its key steps.
Our first intention is to show that, thanks to our conditioning on the event Enε,s1,s2 , the
number of terms contained in S1,1 is “small”, while a further next step will be based
on estimations for the indices in S1,2. Here we will observe that, as the letters are in
different cells, we have enough independence (see the decomposition in (2.29)) to show
that the contributions of the covariance terms from S1,2 are “small”.

Let us now focus on the first term on the right-hand side of (2.22). Letting g be as
in (2.23), and using arguments similar to those used in the proof of Proposition 2.4, we
have,

∑
S1

∣∣CovZ=1,S1,1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))
∣∣(

2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤ E

(∑
S1

|g(A,B, j, k)|1(A,B,j,k)∈S1,1(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

∣∣∣Z = 1

)

≤ 4E

(∑
S1

1(A,B,j,k)∈S1,1(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

∣∣∣Z = 1

)
= 4E (|R||Z = 1) , (2.24)

where

R = {(j, k) ∈ [2n]2 : Wj and Wk are in the same cell of r}.
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To estimate (2.24), for each i = 1, . . . , d, let |Ri| be the number of pairs of indices
(j, k) ∈ [2n]2 that are in the ith-cell, and let Ti be the event that s1nα ≤ ri − ri−1 ≤ s2nα.
Then,

E (|R| |Z = 1) =

n1−α∑
i=1

E(|Ri| |Z = 1)

=

n1−α∑
i=1

E(|Ri|1Ti |Z = 1) +

n1−α∑
i=1

E(|Ri|1T ci |Z = 1). (2.25)

For the first term on the right-hand side of (2.25), note that, when Ti holds true, the
X-part of the i-th cell can contain at most nα letters while the Y -part can contain at most
s2n

α ones. Thus,
|Ri|1Ti ≤ s2n2α,

and this leads to:
n1−α∑
i=1

E(|Ri|1Ti
∣∣Z = 1) ≤ s2n1+α. (2.26)

For the estimation of the second term on the right-hand side of (2.25), we first observe
that letting I := {i ∈ [n1−α] : Ti does not occur}, we have

n1−α∑
i=1

E(|Ri|1T ci
∣∣Z = 1) = E

n1−α∑
i=1

|Ri|1T ci |Z = 1

 = E

(∑
i∈I
|Ri|

∣∣Z = 1

)
.

Noting that |Ri| ≤ 4n2, we have

E

(∑
i∈I
|Ri|

∣∣Z = 1

)
≤ 4n2E

(∑
i∈I

1
∣∣Z = 1

)
≤ 4n2E

(
|I|
∣∣ Z = 1

)
.

Next, by definition, given that Z = 1, |I| ≤ εn1−α and so

E
(
|I|
∣∣ Z = 1

)
≤ εn1−α = c1

(
1 + ln(1 + nα)

nα

)1/2

n1−α ≤ Cn1−3α/2(lnnα)1/2.

Thus, we obtain

n1−α∑
i=1

E(|Ri|1T ci
∣∣Z = 1) ≤ 4n2E

(
|I|
∣∣ Z = 1

)
≤ Cn3−3α/2(lnnα)1/2,

and when α > 2/3, the above right-hand side is o(n2).
Hence, using also (2.26), it follows that:

E(|R||Z = 1) ≤ Cn1+α + Cn3−3α/2(lnnα)1/2, (2.27)

which, in turn, yields via (2.24),

∑
S1

∣∣CovZ=1,S1,1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))
∣∣(

2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤ Cn1+α + Cn3−3α/2(lnnα)1/2. (2.28)

This last estimate takes care of the first sum on the right-hand side of (2.22) as, again,
this last right-hand side is o(n2), when 2/3 < α < 1.
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Hence, from here on, we henceforth assume that α is a real greater than 2/3 and
smaller than 1.

We move next to estimating the second term on the right-hand side of (2.22), which
is given by: ∑

S1

CovZ=1,S1,2(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

.

To estimate the summands in the above expression, we decompose the covariance
terms in such a way that (conditional) independence of certain random variables occurs,
therefore simplifying the estimates themselves. For this purpose, for each i ∈ [2n], let
f(Pi) = LC(Pi) be the length of the longest common subsequences of P 1

i and P 2
i , the

coordinates of the cell Pi = (P 1
i ;P 2

i ). Now, set

∆̃if(W ) := f(Pi)− f(P ′i ),

where P ′i is the same as Pi except that Wi is now replaced with the independent copy
W ′i . In words, ∆̃if(W ) is the difference between the length of the longest common
subsequences of the two random words forming Pi, and the length of their modified
versions at coordinate i, i.e., the words forming P ′i . Now for (A,B, j, k) ∈ S1,

CovZ=1,S1,2(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB)) =

CovZ=1,S1,2((∆jf(W )− ∆̃jf(W ))∆jf(WA),∆kf(W )∆kf(WB))

+CovZ=1,S1,2(∆̃jf(W )(∆jf(WA)− ˜̃∆jf(WA)),∆kf(W )∆kf(WB))

+CovZ=1,S1,2(∆̃jf(W ) ˜̃∆jf(WA), (∆kf(W )− ∆̃kf(W ))∆kf(WB))

+CovZ=1,S1,2(∆̃jf(W ) ˜̃∆jf(WA), ∆̃kf(W )(∆kf(WB)− ˜̃∆kf(WB))

+CovZ=1,S1,2(∆̃jf(W ) ˜̃∆jf(WA), ∆̃kf(W ) ˜̃∆kf(WB)), (2.29)

where, for any i /∈ A, we also set ˜̃∆if(WA) = f(WA
∣∣
Pi

)− f(WA∪{i}
∣∣
Pi

), with WA
∣∣
Pi

and

WA∪{i}
∣∣
Pi

being the restrictions of WA and WA∪{i} to the cell Pi, respectively. Above,
we used the bilinearity of CovZ=1,S1,2 to express the left-hand side as a telescoping
sum. (Except for the conditioning step, this decomposition is akin to a decomposition
developed in [11].)

Let us start by estimating the last term on the right-hand side of (2.29). Letting

ξj := ∆̃jf(W ) ˜̃∆jf(WA) and ξk := ∆̃kf(W ) ˜̃∆kf(WB), with a slight abuse of notation as
ξj depends on A, while ξk depends on B, we have

CovZ=1,S1,2(∆̃jf(W ) ˜̃∆jf(WA), ∆̃kf(W ) ˜̃∆kf(WB))

= E((ξj − Eξj)(ξk − Eξk)1((A,B, j, k) ∈ S1,2)|Z = 1)

=
E((ξj − Eξj)(ξk − Eξk)1((A,B, j, k) ∈ S1,2, Z = 1))

P(Z = 1)

=
E((ξj − Eξj)(ξk − Eξk)1((A,B, j, k) ∈ S1,2))

P(Z = 1)

−E((ξj − Eξj)(ξk − Eξk)1((A,B, j, k) ∈ S1,2, Z = 0))

P(Z = 1)

Note that the second term on the right-most equality is, in absolute value, at most

Ce−n
1−α(1+ln (1+nα)),

as from (2.18), P(Z = 1) ≥ 1− 1/(2e) and P(Z = 0) ≤ e−n1−α(1+ln (1+nα)).

EJP 28 (2023), paper 3.
Page 14/24

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP894
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A central limit theorem for the length of the longest common subsequences

So we focus on the other term and evaluate E((ξj−Eξj)(ξk−Eξk)1((A,B, j, k) ∈ S1,2)).
We have

E((ξj − Eξj)(ξk − Eξk)1((A,B, j, k) ∈ S1,2))

= E((ξj − Eξj)(ξk − Eξk) | 1((A,B, j, k) ∈ S1,2)P((A,B, j, k) ∈ S1,2),

and, by conditional independence, the above right-hand side is equal to

E((ξj−Eξj) |1((A,B, j, k) ∈ S1,2)))E((ξk−Eξk) |1((A,B, j, k) ∈ S1,2)))P((A,B, j, k)∈S1,2).

Now,

E((ξj − Eξj) | 1((A,B, j, k) ∈ S1,2))

= E((ξj | 1((A,B, j, k) ∈ S1,2))− Eξj
= E((ξj | 1((A,B, j, k) ∈ S1,2))

− E((ξj | 1((A,B, j, k) ∈ S1,2))P((A,B, j, k) ∈ S1,2)

− E((ξj | 1((A,B, j, k) ∈ S1,1))P((A,B, j, k) ∈ S1,1).

Using elementary manipulations, the last equality can be rewritten as

(E((ξj | 1((A,B, j, k) ∈ S1,2))− E((ξj | 1((A,B, j, k) ∈ S1,1)))P((A,B, j, k) ∈ S1,1).

Following exactly the same steps, write E((ξk − Eξk) | 1((A,B, j, k) ∈ S1,2)) as

(E((ξk | 1((A,B, j, k) ∈ S1,2))− E((ξk | 1((A,B, j, k) ∈ S1,1)))P((A,B, j, k) ∈ S1,1).

Combining these observations, and using again (2.18), P(Z = 1) ≥ 1− 1/(2e), n ≥ 1,
we obtain

CovZ=1,S1,2(∆̃jf(W ) ˜̃∆jf(WA), ∆̃kf(W ) ˜̃∆kf(WB))

≤ CP((A,B, j, k) ∈ S1,2)(P((A,B, j, k) ∈ S1,1))2

P(Z = 1)
+ CP(Z = 0)

≤ CP((A,B, j, k) ∈ S1,1) + CP(Z = 0)

≤ C(P((A,B, j, k) ∈ S1,1, Z = 1) + P((A,B, j, k) ∈ S1,1, Z = 0)) + CP(Z = 0)

≤ CP((A,B, j, k) ∈ S1,1 | Z = 1)P(Z = 1) + CP(Z = 0).

We therefore arrive at:

∑
S1

∣∣∣CovZ=1,S1,2(∆̃jf(W ) ˜̃∆jf(WA), ∆̃kf(W ) ˜̃∆kf(WB))
∣∣∣(

2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤
∑
S1

CP((A,B, j, k) ∈ S1,1|Z = 1)P(Z = 1) + CP(Z = 0)(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤
∑
S1

CE(1((A,B, j, k) ∈ S1,1)|Z = 1) + CP(Z = 0)(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤ Cn1+α + Cn2e−n
1−α(1+log (1+nα)), (2.30)

where for the last step (2.27) is used, as well as the estimates in (2.10) and (2.18).
We continue by obtaining upper bounds for the first four summands in (2.29). We

just focus on the estimation of the first of these four terms since the other three can be
estimated in a similar way. Indeed, it will be clear from the discussion below that the
third of these four terms can be estimated in exactly the same way as done for the first
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of the four. Also, with steps similar to the ones performed in estimating this first term,
one can easily see that the estimation of the second and fourth of these terms reduces to
the estimation of

EZ=1,S1,2 |∆jf(WA)− ˜̃∆jf(WA)|.

(Again, and throughout, EZ=1 is short for conditional expectation given {Z = 1}, while
EZ=1,S1,2(·) = EZ=1(·1(A,B,j,k)∈S1,2).) Next,

EZ=1,S1,2 |∆jf(WA)− ˜̃∆jf(WA)|

= E
(
|∆jf(WA)− ˜̃∆jf(WA)|1((A,B, j, k) ∈ S1,2)

∣∣Z = 1
)

=
E
(
|∆jf(WA)− ˜̃∆jf(WA)|1((A,B, j, k) ∈ S1,2)1(Z = 1)

)
P(Z = 1)

≤
E
(
|∆jf(WA)− ˜̃∆jf(WA)|1((A,B, j, k) ∈ S1,2)

)
P(Z = 1)

.

Now, writing SA1,2 in place of S1,2 when using the sequence WA instead of W , the last
inequality, just above, leads to:

EZ=1,S1,2 |∆jf(WA)− ˜̃∆jf(WA)|

≤
E
(
|∆jf(WA)− ˜̃∆jf(WA)|

)
P(Z = 1)

=
E
(
|∆jf(WA)− ˜̃∆jf(WA)|1((A,B, j, k) ∈ SA1,2)

)
P(Z = 1)

+
E
(
|∆jf(WA)− ˜̃∆jf(WA)|1((A,B, j, k) /∈ SA1,2)

)
P(Z = 1)

. (2.31)

Then, since

|∆jf(WA)− ˜̃∆jf(WA)|1((A,B, j, k) ∈ SA1,2)

=d |∆jf(W )− ∆̃jf(W )|1((A,B, j, k) ∈ S1,2),

the first term on the right-hand side of (2.31) is equal to

E
(
|∆jf(W )− ∆̃jf(W )|1((A,B, j, k) ∈ S1,2)

)
P(Z = 1)

, (2.32)

which we will estimate further, below, when working out the estimation of the first
term on the right-hand side of (2.31). Also, for the second term in (2.31), noting that

|∆jf(W ) − ˜̃∆jf(W )| ≤ 2, and that by the iid assumption W and WA are identically
distributed, we have

E
(
|∆jf(WA)− ˜̃∆jf(WA)|1((A,B, j, k) /∈ SA1,2)

)
P(Z = 1)

=
E
(
|∆jf(W )− ˜̃∆jf(W )|1((A,B, j, k) /∈ S1,2)

)
P(Z = 1)

≤ CE(1(A,B,j,k)∈S1,1 | Z = 1),
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and then

∑
S1

E
(
|∆jf(WA)− ˜̃∆jf(WA)|1((A,B, j, k) /∈ SA1,2)

)
P(Z = 1)

(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤ C
∑
S1

E(1(A,B,j,k)∈S1,1 | Z = 1)(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

.

But, this last term on the right-hand side was already shown to be bounded by Cn1+α +

Cn3−3α/2(lnnα)1/2, while reaching out (2.28). Therefore, focusing on the estimation of
ES1,2 |∆jf(W )−∆̃jf(W )|/P(Z=1) or, indeed, merely on the estimation of ES1,2 |∆jf(W )−
∆̃jf(W )|, will suffice for our purposes for the second and the fourth of the terms in (2.29).
This will be done while discussing the estimation of the first term below as noted earlier.

So, we can now focus on estimating the first term in (2.29) (and as already indicated,
similar arguments will provide a similar estimate for the other three terms) which is
given by:

CovZ=1,S1,2((∆jf(W )− ∆̃jf(W ))∆jf(WA),∆kf(W )∆kf(WB)).

To do so, let
U := (∆jf(W )− ∆̃jf(W ))∆jf(WA),

and
V := ∆kf(W )∆kf(WB),

so that we wish to estimate CovZ=1,S1,2(U, V ). But,∣∣CovZ=1,S1,2(U, V )
∣∣

=
∣∣E((U − EU)(V − EV )1(A,B,j,k)∈S1,2 |Z = 1)

∣∣
≤ E(|UV |1(A,B,j,k)∈S1,2 |Z = 1) + E|V |E(|U |1(A,B,j,k)∈S1,2 |Z = 1)

+ E|U |E(|V |1(A,B,j,k)∈S1,2 |Z = 1) + E|U |E|V |E(1(A,B,j,k)∈S1,2 |Z = 1)

:= T1 + T2 + T3 + T4,

and note here that Ti, i = 1, 2, 3, 4 are functions of (A,B, j, k). Let us begin by estimating

T1 = EZ=1|((∆jf(W )− ∆̃jf(W ))∆jf(WA))(∆kf(W )∆kf(WB))1(A,B,j,k)∈S1,2 |.

Since |∆jf(WA)(∆kf(W )∆kf(WB))| ≤ 1,

T1 ≤ EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
. (2.33)

A similar estimate also reveals that

T2 ≤ EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
. (2.34)

Next, for T3 and T4, and since |V | ≤ 1,

T3 + T4 ≤ 2E|U | ≤ 2E|∆jf(W )− ∆̃jf(W )|

= 2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
P(Z = 1)

+2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
P(Z = 1)

+2EZ=0

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
P(Z = 0)
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+2EZ=0

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
P(Z = 0)

≤ 2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
+2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
+Ce−n

1−α(1+ln (1+nα)), (2.35)

where EZ=0 (resp. EZ=1) is short for the conditional expectation given {Z = 0} (resp.
given {Z = 1}), and where we used the trivial bound on P(Z = 1), and also (2.18), for
the last inequality.

Now, denote by h(A,B, j, k) the sum of the first four terms on the right-hand side
of (2.29). Then, performing estimations as in getting (2.33), (2.34) and (2.35), for the
first and third term of this sum, and keeping in mind the discussion following (2.31),
so that similar estimates also hold true for the second and fourth term of the sum, we
obtain ∑

S1

∣∣∣∣∣ h(A,B, j, k)(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

∣∣∣∣∣
≤ C

∑
S1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

+C
∑
S1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

+C
∑
S1

EZ=1

(
|∆kf(W )− ∆̃kf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

+C
∑
S1

EZ=1

(
|∆kf(W )− ∆̃kf(W )|1(A,B,j,k)∈S1,1

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

+C
∑
S1

e−n
1−α(1+ln (1+nα))(

2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

.

Noting that the sums involving k’s are identical to the sums involving j’s, we rewrite
this last upper bound as∑

S1

∣∣∣∣∣ h(A,B, j, k)(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

∣∣∣∣∣
≤ C

∑
S1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

+C
∑
S1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

+C
∑
S1

e−n
1−α(1+ln (1+nα))(

2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

.

As with previous computations, using (2.10) and (2.18), the third sum on the above
right-hand side is itself upper-bounded by

Cn2e−n
1−α(1+ln (1+nα)), (2.36)
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while, using (2.24) and (2.27), the middle sum is upper-bounded by

Cn1+α. (2.37)

Therefore, we are just left with estimating

∑
S1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

.

Noting that

∑
S1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤
∑
S1

EZ=1|∆jf(W )− ∆̃jf(W )|(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

, (2.38)

we can just focus on estimating EZ=1|∆jf(W )− ∆̃jf(W )|. To do so, the following simple
proposition will be useful.

Proposition 2.10. For any j ∈ [2n],

∆jf(W ) ≤ ∆̃jf(W ).

Proof. Assume not, and that ∆jf(W ) > ∆̃jf(W ). Then either ∆jf(W ) = 1 and ∆̃jf(W )=

0, or ∆jf(W ) = 0 and ∆̃jf(W ) = −1. Consider the former. Then, changing the jth
coordinate does not affect the length of the longest common subsequence of the cell
containing j. Since the coordinates outside that particular cell have not been changed,
the overall length of the longest common subsequence cannot decrease, that is, ∆j

cannot be 1. The other case is similar.

Returning to the estimation of EZ=1|∆jf(W )− ∆̃jf(W )|, using the domination prop-
erty obtained in Proposition 2.10, we have

EZ=1|∆jf(W )− ∆̃jf(W )| = EZ=1(∆̃jf(W ))− EZ=1(∆jf(W )).

We now claim that both terms on the right-hand side of the last expression are
exponentially small in n. Let us first deal with EZ=1(∆jf(W )), the other term, which is
similar, is dealt with afterwards.

We have

EZ=1(∆jf(W )) = EZ=1(∆jf(W )1(Zj = 1)) + EZ=1(∆jf(W )1(Zj = 0))

=
E(∆jf(W )1(Z = 1)1(Zj = 1))

P(Z = 1)

+
E(∆jf(W )1(Z = 1)1(Zj = 0))

P(Z = 1)
,

where Zj is the indicator random variable defined in the same way as Z, except that the
jth coordinate of W is replaced by the independent copy W ′j . Note that, for any j ∈ [2n],
Z and Zj are identically distributed but that they are certainly not independent.

Looking, first, at the second term in the last expression, we have, with the help
of (2.18), and since Z and Zj are identically distributed,
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∣∣E(∆jf(W )1(Z = 1)1(Zj = 0))
∣∣

P(Z = 1)
≤ P(Zj = 0)

P(Z = 1)
≤ Ce−n

1−α(1+ln (1+nα)).

Also, writing

E(∆jf(W )1(Z = 1)1(Zj = 1)) = E((f(W )− f(W j))1(Z = 1)1(Zj = 1))

= E(f(W )1(Z = 1)1(Zj = 1))

− E(f(W j)1(Z = 1)1(Zj = 1))

= 0,

since, again, Z and Zj are identically distributed. These observations yield

|EZ=1(∆jf(W ))| ≤ Ce−n
1−α(1+ln (1+nα)).

Similarly, noting that the expectation is conditional on Z = 1, replacing n by nα, we have

|EZ=1(∆̃jf(W )1((A,B, j, k) ∈ S1,2))| ≤ Ce−n
(1−α)α(1+log(1+nα

2
)).

(The reason for this last inequality is the fact that the configurations belong to S1,2 and,
in that case, we just deal with a scaled version of the LCS problem.)

Now, note that∣∣∣EZ=1(∆̃jf(W ))
∣∣∣ ≤ |EZ=1(∆̃jf(W )1((A,B, j, k) ∈ S1,1))|,

+ |EZ=1(∆̃jf(W )1((A,B, j, k) ∈ S1,2))|,

and, via Proposition 2.4,∑
S1

|EZ=1(∆̃jf(W )1((A,B, j, k) ∈ S1,1))|(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤ Cn1+α,

and ∑
S1

|EZ=1(∆̃jf(W )1((A,B, j, k) ∈ S1,2))|(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤ Cn2e−n
(1−α)α(1+log(1+nα

2
)),

which, when combined, yields∑
S1

|EZ=1(∆̃jf(W ))|(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤ Cn1+α.

Thus, from (2.38) and the above estimates,

∑
S1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|
)
(2n− |A|)

(
2n
|B|
)
(2n− |B|)

≤ Cn1+α. (2.39)

Combining (2.20), (2.28), (2.30), (2.36), (2.37) and (2.39) finally gives

VarT ≤ C
(
n2e−n

1−α(1+ln (1+nα)) + n1+α + n3−3α/2(lnnα)1/2
)
. (2.40)

Therefore, Theorem 2.1 and (2.5), ensure that:

dW

(
LCn − ELCn√

VarLCn
,G
)
≤ C 1

n
1−α
2

,

holds for every n ≥ 1, with C > 0 a constant independent of n, and for α > 4/5 as then
1 + α > 3− 3α/2.
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Remark 2.11. (i) The constant C in Theorem 1.1 is independent of n but depends on m,
on α, on s1 and s2 of Theorem 2.5, which in turn depend on the distribution of X1, as
well as on the quantities involved in the constant K and C in (2.3)–(2.5).

(ii) Of course, there is no reason for our rate 1/n(1−α)/2 to be sharp (as previously
mentioned, for 2/3 < α < 4/5, the rate 1/n1−3(1−α/2)/2 is possible). Also, instead of the
choice v = nα, a choice such as v = h(n), for some optimal function h would improve this
rate. Can we conjecture that the optimal rate in Kolmogorov distance is 1/

√
n?

(iii) From a known duality between the length of a longest common subsequence of
two random words and the length of a shortest common supersequence (see Danc̆ík [15]),
our result also implies a central limit theorem for this latter case.

3 Concluding remarks

We conclude the paper with a brief discussion on longest common subsequences
in random permutations and, in a final remark, present some potential extensions,
perspectives and related questions we believe are of interest.

Theorem 1.1 shows that the Gaussian distribution appears as the limiting law for
the length of the longest common subsequences of two random words. However, the
Tracy-Widom distribution has also been hypothesized as the limiting law in sequence
comparison problems, e.g., [1]. It turns out, as shown next, that it is indeed the case for
certain distributions on permutations.

First, it is folklore that, if π = (π1, . . . , πn) is any element of the symmetric group Sn,
then

LIn(π) = LCn((1, 2, . . . , n), (π1, π2, . . . , πn)), (3.1)

where LIn(π) is the length of the longest increasing subsequence in π = (π1, . . . , πn),
while LCn((1, 2, . . . , n), (π1, π2, . . . , πn)), is the length of the longest common subsequence
of the identity permutation id and of the permutation π. In the equality (3.1), replacing
id with an arbitrary permutation ρ and taking for π a uniform random permutation in Sn

lead to:

Proposition 3.1. (i) Let ρ = (ρ1, ρ2, . . . , ρn) be a fixed permutation in Sn and let π be a
uniform random permutation in Sn. Then,

LIn(π) =d LCn((ρ1, ρ2, . . . , ρn), (π1, π2, . . . , πn)), (3.2)

where =d denotes equality in distribution.
(ii) Let ρ and π be two independent uniform random permutations in Sn, and let

x ∈ R. Then,

P(LCn(ρ, π) ≤ x) = P(LIn(π) ≤ x). (3.3)

Proof. To begin the proof of (i), let π′ ∈ Sn be such that π′i = ρi. Then, π′′ := ππ′ is still a
uniform random permutation of [n], and so

LCn((ρ1, ρ2, . . . , ρn), (π1, π2, . . . , πn))

=d LCn((ρ1, ρ2, . . . , ρn), (π′′1 , π
′′
2 , . . . , π

′′
n))

= LCn((ρ1, ρ2, . . . , ρn), (πρ1 , πρ2 , . . . , πρn)),

where for the second equality we used π′′i = ππ′i = πρi . Clearly,

LCn((ρ1, ρ2, . . . , ρn), (πρ1 , πρ2 , . . . , πρn))=dLCn((1, 2, . . . , n), (π1, π2, . . . , πn)),

and so (3.1) finishes the proof of (i).
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Now, for (ii),

P(LCn(ρ, π) ≤ x) =
∑
γ∈Sn

P(LCn(γ, π) ≤ x|ρ = γ)P(ρ = γ)

=
1

n!

∑
γ∈Sn

P(LCn((γ1, . . . , γn), (π1, . . . , πn)) ≤ x)

=
1

n!

∑
γ∈Sn

P(LIn(π) ≤ x)

= P(LIn(π) ≤ x),

where the third equality follows from (3.2). This proves (ii).

Clearly, the identity (3.3), which, in fact, is easily seen to remain true if ρ is a random
permutation in Sn with an arbitrary distribution, shows that the probabilistic behavior of
LCn(ρ, π) is identical to the probabilistic behavior of LIn(π). Among the many results on
LIn(π) presented in Romik [34], the mean asymptotic result of Vershik and Kerov [38],
and Logan and Shepp [30] thus implies that (is equivalent to):

lim
n→+∞

ELCn(ρ, π)

2
√
n

= 1.

Moreover, the distributional asymptotic result of Baik, Deift and Johansson [5] implies
that (is equivalent to), as n→ +∞,

LCn(ρ, π)− 2
√
n

n1/6
−→ F2, in distribution,

where F2 is the Tracy-Widom distribution whose cdf is given by

F2(t) = exp

(
−
∫ ∞
t

(x− t)u2(x)dx

)
,

where u is the solution to the Painlevé II equation:

uxx = 2u3 + xu with u(x) ∼ Ai(x) as x→∞.

To finish, let us list a few venues for future research that we find of potential interest.

Remark 3.2. (i) First, the methods of the present paper can also be used to study
sequence comparison with a general scoring functions S. Namely, S : Am ×Am → R+

assigns a score to each pair of letters (the LCS corresponds to the special case where
S(a, b) = 1 for a = b and S(a, b) = 0 for a 6= b). This requires more work, but is possible,
and is presented in a separate publication (see [17]), where multiple words are also
tackled. Such a result requires, at first, to use variance estimates, generalizing [23], as
stated in the concluding remarks of [22] and then to extend to higher dimensions the
closeness to the diagonal results obtained in [24].

(ii) Challenging, is the the loss of independence both between and inside the se-
quences and the loss of identical distributions both within and between the sequences.
Results for this type of frameworks will also be presented elsewhere. Already for hidden
Markov models (HMM), convergence results, with rates, are obtained for ELCn/n in [19],
while [20] shows how to transfer iid normal approximation results such as Theorem 2.1
to the HMM case.

(iii) It would, similarly, also be of interest to study the random permutations versions
of (i) and (ii) above. As in the previous section, and as far as the multiple sequences
framework is concerned, the study of the length of the longest common subsequences
reduces to the study of the length of the longest common and increasing subsequences
with one less sequence, e.g., see [25].
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