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Abstract

Let Mγ be a subcritical Gaussian multiplicative chaos measure associated with a
general log-correlated Gaussian field defined on a bounded domain D ⊂ Rd, d ≥ 1.
We find an explicit formula for its singularity spectrum by showing that Mγ satisfies
almost surely the multifractal formalism, i.e., we prove that its singularity spectrum
is almost surely equal to the Legendre–Fenchel transform of its Lq-spectrum. Then
applying this result, we compute the lower singularity spectrum of the multifractal
random walk and of the Liouville Brownian motion.
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1 Introduction

The main goal of this paper is to prove that subcritical Gaussian Multiplicative Chaos
(GMC) measures associated with a large class of log-correlated Gaussian fields in all
dimensions satisfy the multifractal formalism. This has been formally stated in [RV14,
Section 4], but to the best of our knowledge, it has never been proved rigorously. In
order to achieve this result, we perform a careful analysis of the local mass concentration
of GMC measures around thick points of the corresponding underlying field. Moreover,
using this result, we provide an explicit expression for the lower singularity spectrum
of the Multifractal Random Walk (MRW) and of the Liouville Brownian Motion (LBM).
Before entering into the details of the main results, we briefly review the theory of GMC
and of multifractal analysis of measures.

*The author is very grateful to the Royal Society for financial support through Prof. M. Hairer’s research
professorship grant RP\R1\191065.

†Imperial College London, United Kingdom. E-mail: f.bertacco20@imperial.ac.uk

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP893
https://ams.org/mathscinet/msc/msc2020.html
mailto:f.bertacco20@imperial.ac.uk


Multifractal analysis of GMC and applications

Gaussian multiplicative chaos Given a domain D ⊂ Rd, d ≥ 1, the theory of GMC,
originally developed by Kahane [Kah85], aims to define rigorously random measures of
the form

Mγ(dx) = eγX(x)− 1
2γ

2E[X(x)2]dx , (1.1)

where dx denotes the Lebesgue measure, γ is a real parameter, and X is a log-correlated
Gaussian field on D, i.e. a centred Gaussian field whose covariance kernel can be formally
written as

E[X(x)X(y)] = − log |x− y|+ g(x, y) , x, y ∈ D ,

where g : D × D → R is say bounded and continuous. Since the covariance kernel
of X has a logarithmic divergence along the diagonal, we cannot define the field X

pointwise. However, we can make rigorous sense of X by viewing it as a random
Schwartz distribution. Therefore, the definition of (1.1) is non-trivial as, a priori, we
cannot exponentiate a random generalized function. In order to interpret (1.1) rigorously,
we need to approximate X via a regularizing procedure which involves a suitable
collection of regularized random fields (Xε)ε∈(0,1]. The GMC measure associated with X
is then given by the limit of the sequence of approximating measures

Mε
γ (dx) = eγXε(x)− 1

2γ
2E[Xε(x)2]dx .

As long as the parameter γ2 is strictly less than the critical value 2d, which is usually
called subcritical regime, it is well-known [Ber17, Kah85, RV10b] that the sequence
(Mε

γ )ε∈(0,1] converges weakly in probability towards a non-degenerate measure Mγ .
Moreover, it is known that Mγ is almost surely non-atomic, but singular with respect to
the Lebesgue measure. Many further properties of such measures concerning, among
others, moments and multifractal behaviour are known. We refer to Section 2 for more
details.

The original interest in defining GMC measures stemmed from the need of making rig-
orous Mandelbrot’s model for energy dissipation in fully developed turbulence [Man72],
but it has since been found applications in a wide range of fields: from mathematical
finance [DRV12] to mathematical physics [DS11], but also random matrices [BWW18]
as well as number theory [SW20]. For a review on the theory of GMC and for further
references and applications we refer to [RV14].

Multifractal analysis The purpose of multifractal analysis is to finely describe the
heterogeneity in distribution of measures whose mass is concentrated in a highly irregu-
lar way. For µ a non-negative finite measure supported on a domain D ⊂ Rd, d ≥ 1, we
introduce the local Hölder exponent (or local dimension) of µ at x ∈ D by letting

dimµ(x) := lim
r↘0

logµ(B(x, r))

log r
,

provided the limit exists, where B(x, r) denotes the closed ball centred at x with radius r.
Then the irregularity on the mass concentration of µ can be described via the dimension
of the sets

Eµ(α) := {x ∈ D : dimµ(x) = α} , α ≥ 0 .

In particular, we say that µ is a multifractal measure if the sets Eµ(α) have positive Haus-
dorff dimensions for different values of α ≥ 0 belonging to an interval with non-empty
interior. Hence, if µ is a multifractal measure, then the collection of sets (Eµ(α))α≥0

produces a decomposition of D into a family of subfractals.
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Multifractal analysis of GMC and applications

The main objective of multifractal analysis is to compute the size of Eµ(α), i.e. to find
an expression for the singularity spectrum of µ, which is the function dµ : [0,∞)→ [0,∞)

defined by
dµ(α) := dimH(Eµ(α)) , α ∈ [0,∞) ,

where dimH denotes the Hausdorff dimension. To this end, Frisch and Parisi [PF85]
introduced the notion of multifractal formalism, which is a heuristic principle used to
establish an explicit connection between the singularity spectrum dµ and the Lq-spectrum
of the measure µ. We define the Lq-spectrum of µ by

τµ(q) := lim sup
r↘0

log sup
{∑

i∈I µ(B(xi, r))
q
}

− log r
, q ∈ R ,

where (B(xi, r))i∈I is a countable family of disjoint closed balls with radius r centred at
xi ∈ D, and the supremum is taken over all such families. We say that µ satisfies the
multifractal formalism if the following equality holds

dµ(α) = τ∗µ(α) , ∀α ≥ 0 . (1.2)

Here, τ∗µ refers to the Legendre–Fenchel transform of τµ which is defined by setting

τ∗µ(α) := inf
q∈R
{αq + τµ(q)} ∧ 0 , α ≥ 0 .

Let us mention that a rigorous mathematical version of multifractal formalism was
initially developed in [Ols95] and we refer to it for further details.

In order to investigate the local regularity of functions, or in our case of paths of
stochastic processes, we adopt a similar approach. More precisely, if I ⊂ R is an interval
and f : I → Rd, d ≥ 1, is a given function, we define the lower local Hölder exponent (or
lower local dimension) of f at x ∈ I by setting

dimf (x) := lim inf
r↘0

log |f(x+ r)− f(x− r)|
log r

,

and we define the sets in which f has lower local Hölder exponent α ≥ 0 as

Ef (α) :=
{
x ∈ I : dimf (x) = α

}
.

As in the case of measures, we are interested in finding an explicit expression for the
lower singularity spectrum of f , which is the function df : [0,∞)→ [0,∞) defined by

df (α) := dimH(Ef (α)) , α ∈ [0,∞) .

1.1 Main results

We state here the main results of this paper, and we refer to Section 3, 4 and 5 for
the precise statements and for further details.

Multifractal analysis of GMC For a bounded domain D ⊂ Rd, d ≥ 1, we consider a
log-correlated Gaussian field on D, and we show that the associated subcritical GMC
measure Mγ satisfies the multifractal formalism, in the sense of (1.2). This result has
been heuristically discussed in [RV14, Section 4], but to the best of our knowledge it has
never been proved rigorously. To be precise, in Theorem 3.1 we show that for γ2 < 2d

and α ≥ 0, it holds almost surely that

dMγ
(α) = τ∗Mγ

(α) =

d− 1
2

(
d−α
γ + γ

2

)2

, if α ∈
[(√

d− |γ|√
2

)2

,
(√

d+ |γ|√
2

)2
]
,

0 , otherwise ,
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Multifractal analysis of GMC and applications

hence recovering precisely the prediction made in [RV14]. Furthermore, as a by-product,
we also obtain an explicit expression for the Lq-spectrum of Mγ .

Let us briefly flesh out the intuition behind the proof of our main result. The strategy
of the proof is inspired by the multifractal analysis of multiplicative cascades which has
been performed in [Bar99]. The upper bound for dMγ

, i.e. the inequality dMγ
≤ τ∗Mγ

,
follows from the general theory of the multifractal analysis of measures. On the other
hand, the lower bound is more involved to prove and it is based on the following heuristic.
For γ2 < 2d, it is known that the GMC measure Mγ is carried by the set of γ-thick points
of the underlying field X which is defined by

Tγ :=

{
x ∈ D : lim

ε↘0

Xε(x)

− log ε
= γ

}
, (1.3)

where (Xε)ε∈(0,1] is a suitable regularization of X. The key to our proof is to study the
local mass concentration of Mγ around thick points of X. More precisely, following the
idea of [RV14, Theorem 4.1], we show that it exists a non-random exponent αq ≥ 0 such
that Mγ has local dimension αq at points in Tqγ , for all q2 < 2d/γ2. Consequently, this
implies that Mγ has local Hölder exponent αq on a set of full Mqγ-measure. This fact,
together with some known properties of GMC measures, is enough to prove the lower
bound for dMγ

, i.e. the inequality dMγ
≥ τ∗Mγ

.

Multifractal analysis of MRW and LBM The MRW has been first introduced in
[BDM01] as a stochastic volatility model, and it can be simply defined as follows. Fix a
time T > 0 and let d ≥ 1, then the d-dimensional MRW Zγ is defined for γ2 < 2 as

Zγt := BMγ([0,t]) , t ∈ [0, T ] ,

where Mγ is a GMC measure on [0, T ] and B is an independent d-dimensional Brownian
motion. In Theorem 4.3, we find the relation between the lower singularity spectrum
of the paths of Zγ and the singularity spectrum of Mγ . More precisely, for γ2 < 2 and
α ≥ 0, we show that

dZγ (α) = dMγ (2α) =

d− 1
2

(
1−2α
γ + γ

2

)2

, if α ∈
[(

1√
2
− |γ|2

)2

,
(

1√
2

+ |γ|
2

)2
]
,

0 , otherwise ,

almost surely.
The LBM has been simultaneously defined in [Ber15, GRV16] as the canonical planar

diffusion associated with the Liouville quantum gravity metric tensor. In this article, we
will consider the d-dimensional LBM, for d ≥ 2. More precisely, let D ⊂ Rd be a bounded
domain, let B be a d-dimensional Brownian motion started inside D, and let X be an
independent log-correlated Gaussian field on D. Then the LBM Bγ on D can be formally
defined for γ2 < 4 as

Bγt := BF−1
γ (t) , Fγ(t) :=

∫ t∧T

0

eγX(Bs)− 1
2γ

2E[X(Bs)
2]ds , t ≥ 0 ,

where T is the first exit time of B from D. As we will see in Section 5, adapting
the original definition of planar LBM to higher dimensions is a straightforward task.
Then, we focus on computing the lower singularity spectrum of the paths of Bγ , and in
Theorem 5.5, we show that for γ2 < 4 and α ≥ 0, it holds that

dBγ (α) =

2α− 2α
(

2α−1
2αγ + 1

4γ
)2

, if α ∈
[(√

2 + |γ|√
2

)−2

,
(√

2− |γ|√
2

)−2
]
,

0 , otherwise ,
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almost surely. Along the proof of this result, we show that the measure µγ defined by
µγ([s, t]) := Fγ(t)− Fγ(s), for s ≤ t ∈ [0, T ], satisfies the multifractal formalism and we
compute its singularity spectrum.

1.2 Structure of the paper

The reminder of this article is structured as follows. In Section 2, we collect some
definitions and results that are used in the rest of the article. More precisely, we
start by recalling the definition of log-correlated Gaussian field, and we prove a lemma
concerning the fluctuations of its convolution approximation. Then we recall some known
properties of GMC measures, we collect some facts about the Hausdorff dimension, and
finally we state some general results on multifractal analysis of measures. In Section 3,
we state precisely our main result and we perform its proof. Sections 4 and 5 are devoted
to computing the lower singularity spectrum of the MRW and of the LBM, respectively.
In Appendix A, we prove Proposition 3.4, which is the main step of the proof of our
main result. Appendix B contains the proof of the finiteness of positive moments of the
measure involved in the definition of the LBM. Finally, Appendix C collects some general
results on Gaussian fields that are used throughout the paper.

2 Preliminaries

In this section, after introducing the basic notation, we collect some definitions
and results on log-correlated Gaussian fields, on the theory of GMC, on the Hausdorff
dimension, and on multifractal analysis of measures.

Basic notation

We letN := {1, 2, 3, . . . }. For d ≥ 1, we use Rd to indicate the d-dimensional Euclidean
space. If a and b are two quantities, we use a . b to denote the statement a ≤ Cb for
some constant C > 0 independent from the parameters of interest. Given a subset
D ⊂ Rd, we denote by D̄ its closure and by ∂D its boundary.

2.1 Log-correlated Gaussian fields

Given a bounded domain D ⊂ Rd, d ≥ 1, a log-correlated Gaussian field X on D is a
Gaussian field whose covariance kernel takes the form

K(x, y) = − log |x− y|+ g(x, y) , x, y ∈ D , (2.1)

where g ∈ C(D̄ × D̄). We adopt the convention to extend the covariance kernel K to
Rd × Rd by setting K(x, y) = 0 whenever (x, y) 6∈ D × D. Moreover, for (2.1) to be
a covariance kernel, we need to require that it is symmetric and non-negative semi-
definite. Since the covariance kernel K has a singularity on the diagonal, the field X

does not make literal sense as a pointwise defined Gaussian field, but it can be rigorously
interpreted as a random Schwartz distribution. Such a random generalized function
can be characterized by the property that, for any compactly supported test function
φ ∈ C∞c (Rd), the pairing (X,φ) produces a centred Gaussian random variable with
variance

E[(X,φ)(X,φ)] =

∫
Rd×Rd

φ(x)K(x, y)φ(y)dxdy .

The existence of such a stochastic process follows from a direct construction. Indeed, it
can be easily verified that K, as defined in (2.1), is the kernel of a self-adjoint Hilbert–
Schmidt operator on L2(Rd). In particular, such an operator is symmetric and compact,
so by the spectral theorem there exist a non-increasing sequence (λn)n∈N of strictly
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Multifractal analysis of GMC and applications

positive eigenvalues and corresponding eigenfunctions (φn)n∈N that form an orthonormal
basis of Ker(K)⊥ in L2(Rd). Then the field X can be defined via its Karhunen–Loève
expansion

X(x) =
∑
n∈N

Zn
√
λnφn ,

where (Zn)n∈N is a collection of i.i.d. standard normal random variables defined on a
common probability space (Ω,F ,P). Note that the functions φn are supported on the
domain D. It can be proved that the convergence of the above series takes place in the
space H−α(Rd), for any α > 0. We refer to [JSW20, Section 2] for more details.

In order to give a meaning to GMC measures, we need to define the exponential
of a random Schwartz distribution. This is done through a regularization and limiting
procedure. The most general and natural way to obtain a regularization of X is through
the so-called convolution approximation. If we let ψ ∈ C∞c (Rd) be non-negative, radially
symmetric, with compact support and unit mass, then the ε-convolution approximation
of the field X is defined by

Xε(x) := X ∗ ψε(x) =

∫
Rd
X(x′)ψε(x− x′)dx′ , x ∈ Rd , ε ∈ (0, 1] , (2.2)

where ψε(x) = ε−dψ(ε−1x) for x ∈ Rd. As we observed above, X ∈ H−α(Rd) for any
α > 0, and so the convolution X ∗ ψε is actually well-defined. Moreover, it is easy to
check that the regularized field Xε is a centred Gaussian field with covariance kernel
given by

Kε(x, y) =

∫
Rd×Rd

ψε(x− x′)K(x′, y′)ψε(y − y′)dx′dy′ , x, y ∈ Rd .

Furthermore, the following properties of the convolution approximation (Xε)ε∈(0,1] are
well known (see e.g. [JSW20, Lemma 2.8]):

(P1) for Lebesgue-almost every (x, y) ∈ D ×D,

lim
ε↘0

Kε(x, y) = K(x, y) ;

(P2) there exists a finite constant K > 0 such that,

sup
0<ε′<ε≤1

sup
x,y∈D

|E[Xε(x)Xε′(y)] + log (|x− y|+ ε)| < K ;

(P3) for all ε ∈ (0, 1], the map D 3 x 7→ Xε(x) is almost surely continuous.

Let us mention that for particular types of log-correlated Gaussian fields there are
some other natural approximations having properties (P1), (P2), and (P3). For example,
if X is a two-dimensional Gaussian Free Field (GFF), then one can use the regularization
obtained through the circle average around each point in the domain (cf. [DS11]).

Before proceeding, we state and prove a lemma that allows to control the exponential
moment of the fluctuations of the convolution approximation of log-correlated Gaussian
fields. Such lemma is crucial in the proof of our main result, more specifically in the
proof of Proposition 3.4.

Lemma 2.1. For d ≥ 1, let D ⊂ Rd be a bounded domain. Consider a log-correlated
Gaussian field X on D with covariance kernel (2.1) and let (Xε)ε∈(0,1] be its convolution
approximation, as defined in (2.2). Then there exists a finite constant C > 0 such that,

sup
r∈(0,1]

sup
x∈Dr

E
[
esupu∈B(x,r)Xr(u)−Xr(x)

]
≤ C ,

where Dr := {x ∈ D : dist(x, ∂D) < r}.
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Multifractal analysis of GMC and applications

Proof. Fix r ∈ (0, 1] and x ∈ Dr. Consider the centred Gaussian field (Xx
r (u))u∈B(x,r)

defined by

Xx
r (u) := Xr(u)−Xr(x) , u ∈ B(x, r) ,

and the random variable Ωxr given by

Ωxr := sup
u∈B(x,r)

Xx
r (u) .

The variance of the field (Xx
r (u))u∈B(x,r) can be uniformly bounded in x and r. Indeed,

for u, v ∈ B(x, r), thanks to property (P2), it exists a finite constant K > 0 such that

E[Xx
r (u)Xx

r (v))] ≤ − log(|u− v|+ r) + log(|u− x|+ r) + log(|v − x|+ r)− log r + 4K

≤ −2 log r + 2 log 2r + 4K

= 2 log 2 + 4K , (2.3)

where the last inequality is due to the fact that |u − x| ≤ r and |v − x| ≤ r. Thanks to
property (P3), we know that the the field Xx

r is almost surely continuous and so we can
apply Borell-TIS inequality (cf. Lemma C.3) to obtain that

P (|Ωxr − E[Ωxr ]| > t) ≤ 2e
− t2

2σ2x,r , (2.4)

for all t ≥ 0, where σ2
x,r := supu∈B(x,r)E

[
Xx
r (u)2

]
. We claim that both σ2

x,r and E[Ωxr ] can
be uniformly bounded in x and r. For σ2

x,r, this follows easily from (2.3). For E[Ωxr ], we
can apply Dudley’s entropy bound (cf. Lemma C.4). Indeed, doing computation similar
to the one in (2.3), and using the properties of the convolution approximation (cf. also
[JSW20, Lemma 2.8]), one can easily verify that there exists a finite constant A > 0, that
does not depend on x and r, such that

E[(Xx
r (u)−Xx

r (v))2] = E[(Xr(u)−Xr(v))2] ≤ A |u− v|
r

, ∀u, v ∈ B(x, r) .

Therefore, applying Lemma C.4 to the field (Xx
r (u))u∈B(x,r), one can readily obtain

the desired uniform upper bound. Hence, from (2.4), it follows that there exist finite
constants a0, a1 > 0, independent of x and r, such that

P (Ωxr > t) ≤ 2e−
(t−a0)2

2a1 .

Finally, remembering that for every non-negative random variable X it holds that
E[X] =

∫∞
0
P(X > t)dt, we have that

E
[
eΩxr

]
=

∫ ∞
0

P(eΩxr > t)dt =

∫ ∞
0

P (Ωxr > log t) dt ≤
∫ ∞

0

2e−
(log(t)−a0)2

2a1 dt <∞ ,

uniformly in x and r, which concludes the proof.

2.2 Properties of Gaussian multiplicative chaos

We recall here the main properties of GMC measures that we need in the following
sections. For d ≥ 1, let D ⊂ Rd be a bounded domain. Consider a log-correlated Gaussian
field X defined on D with covariance kernel (2.1) and let (Xε)ε∈(0,1] be its convolution
approximation as defined in (2.2).

We start by recalling the following standard result concerning the existence and the
non-degeneracy of GMC measures.
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Proposition 2.2 ([Ber17, Theorem 1.1]). If γ2 < 2d, then the sequence of approximating
measures

Mε
γ (dx) := eγXε(x)− 1

2E[Xε(x)2]dx , ε ∈ (0, 1] ,

converges in probability and in L1(P) to some non-degenerate limit Mγ , called GMC mea-
sure, in the space of Radon measures with respect to the topology of weak convergence.
Furthermore, Mγ does not depend on the choice of the mollifier ψ used in (2.2).

For γ2 < 2d, it can be easily verified that the random measure Mγ is almost surely
supported on the whole domain D (cf. [RV14]). On the other hand, Mγ gives full measure
to the set of γ-thick points Tγ , defined in (1.3). It is known that the Hausdorff dimension
of Tγ is equal to d− γ2/2 (cf. [RV14, Theorem 4.2]). Immediate consequences of this fact
are that Mγ is almost surely atomless, and that Mγ is singular with respect to Mγ′ for
any γ 6= γ′. In particular, for γ 6= 0, Mγ is singular with respect to the Lebesgue measure.
Let us also observe that when γ2 gets closer to 2d, the measure Mγ is carried by a set
whose Hausdorff dimension gets closer to 0. In particular, this means that Mγ tends to
cluster as γ2 increases, until it degenerates at γ2 = 2d. Let us emphasize that there is a
rich literature on critical GMC measures, i.e. when γ2 = 2d, and we refer to [Pow20] for
a review.

We have the following standard result concerning the existence of uniform bounds on
positive and negative moments of GMC measures.

Proposition 2.3 ([RV14, Theorems 2.11 and 2.12]). Let γ2 < 2d and q < 2d/γ2. Then for
any non-empty compact set A ⊂ D it holds that

sup
ε∈(0,1]

E

[(∫
A

eγXε(x)− 1
2γ

2E[Xε(x)2]dx

)q]
<∞ .

An important feature of GMC measures is their multifractal behaviour. More precisely,
it can be shown that the moments of Mγ have a power law behaviour in which the
exponents can be expressed through a non-linear function ξMγ , called the power law
spectrum, which is defined by

ξMγ (q) :=

(
d+

1

2
γ2

)
q − 1

2
γ2q2 , q ∈ R . (2.5)

More formally, we have the following proposition.

Proposition 2.4 ([RV14, Theorem 2.14]). Let γ2 < 2d and q < 2d/γ2. Then there exists
a finite constant C > 0 such that for all x ∈ D and r ∈ (0, 1] it holds that

E[Mγ(B(x, r))q] ≤ CrξMγ (q) .

Finally, we state below a result on the local modulus of continuity of GMC measures
which is an easy consequence of Proposition 2.4.

Proposition 2.5. Let γ2 < 2d and ε ∈ (0, 1]. Then, almost surely, there exist finite
constants C1, C2 > 0 such that for all x ∈ D and r ∈ (0, 1] it holds that

C1r
(
√
d+|γ|/

√
2)

2
+ε ≤Mγ(B(x, r)) ≤ C2r

(
√
d−|γ|/

√
2)

2−ε

Proof. A proof of the upper bound is given in [GRV16, Theorem 2.2] in the case d = 2.
However, the proof can be easily adapted to all dimensions. The lower bound can
be proved similarly. Indeed, let us assume for simplicity that D = (−1, 1)d and let
α := (

√
d + |γ|/

√
2)2. For n ∈ N, we write Σn := 2−nZd ∩ (−1, 1)d for the lattice 2−nZd
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restricted to the open box (−1, 1)d. Thanks to an union bound, Markov’s inequality, and
Proposition 2.4, it holds for each n ∈ N, ε ∈ (0, 1], and q < 0 that

P

(
min
z∈Σn

Mγ(B(z, 2−n)) ≤ 2−n(α+ε)

)
= P

(
max
z∈Σn

Mγ(B(z, 2−n))q ≥ 2−nq(α+ε)

)
≤
∑
z∈Σn

2nq(α+ε)E[Mγ(B(z, 2−n)q)]

. 2nqε−n(ξMγ (q)−d−αq) ,

where the implicit constant does not depend on n. If we chose q = −
√

2d/|γ|, then one
can easily check that ξMγ (q)− d−αq = 0. Therefore, thanks to the Borel–Cantelli lemma,
we have that it almost surely exists a finite constant C > 0 such that

min
z∈Σn

Mγ(B(z, 2−n) ≥ C2−n(α+ε) , ∀n ∈ N .

To conclude, it is sufficient to notice that for all x ∈ (−1, 1)d and r ∈ (0, 1], there exist
n ∈ N and z ∈ Σn+1 such that 2−n < r ≤ 2−n+1 and B(z, 2−n−1) ⊂ B(x, r).

2.3 Hausdorff dimension

We collect here the definition and some properties of the Hausdorff dimension that
we need in the sequel. We refer to [Fal97] for further details.

Definition 2.6. Let D ⊂ Rd, d ≥ 1, and s ≥ 0. We define the s-dimensional Hausdorff
measure of D by

Hs(D) := lim
δ↘0
Hsδ(D) ,

where

Hsδ(D) := inf

{∑
n∈N

diam(Un)s : (Un)n∈N is a δ-cover of D

}
, δ ∈ (0, 1] .

The Hausdorff dimension of D is defined by the following equivalent formulas

dimH(D) := inf{s ≥ 0 : Hs(D) = 0} = sup{s ≥ 0 : Hs(D) =∞} ,

with the convention that dimH(∅) = 0.

Note that 0 ≤ dimH(D) ≤ d for any D ⊂ Rd, d ≥ 1. Moreover, from the definition
of Hausdorff dimension, it immediately follows that if Hs(D) < ∞, then dimH(D) ≤ s.
Furthermore, the Hausdorff dimension enjoys monotonicity and countable stability, i.e.
dimH(D) ≤ dimH(D′) for any D ⊂ D′, and dimH(∪n∈NDn) = supn∈N dimH(Dn) for any
collection of subsets (Dn)n∈N.

Other useful properties of the Hausdorff dimension are collected in the following
proposition.

Proposition 2.7 ([Jac18, Proposition 2.15]). Let f : [0,∞) → R be a continuous and
increasing function. Consider a set D ⊂ [0,∞) and assume there exist finite constants C,
R, α > 0 such that |f(x+ r)− f(x− r)| ≤ Crα for all r ∈ [0, R) and x ∈ D. Then it holds
that

dimH(f(D)) ≤ 1

α
dimH(D) .

We conclude this subsection with the following result.

Proposition 2.8 ([Fal97, Proposition 2.3]). Let µ be a non-negative finite Radon measure
on Rd supported on a bounded domain D ⊂ Rd, d ≥ 1. Let E ⊂ D such that µ(E) > 0.
For each x ∈ E, we let dimµ(x) to be the local dimension of µ at x as defined in (2.10)
below. If dimµ(x) = s for all x ∈ E, then dimH(E) = s.
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2.4 Multifractal analysis of measures

We collect here some general facts about multifractal analysis of measures. Let µ be
a non-negative finite Radon measure on Rd, d ≥ 1, which may be random or non-random,
supported on a bounded domain D ⊂ Rd.
Definition 2.9. The Lq-spectrum of µ is the function τµ : R→ R defined by

τµ(q) := lim sup
r↘0

log sup
∑
i∈I µ(B(xi, r))

q

− log r
, q ∈ R , (2.6)

where (B(xi, r))i∈I is a countable family of disjoint closed balls with radius r centred
at xi ∈ D, and the supremum is taken over all such families. Moreover, the Legendre–
Fenchel transform of the Lq-spectrum τµ is the function τ∗µ : [0,∞) → [0,∞) defined
by

τ∗µ(α) := inf
q∈R
{αq + τµ(q)} ∧ 0 , α ∈ [0,∞) . (2.7)

We have the following classical result concerning the Lq-spectrum.

Proposition 2.10 ([LN99, Section 3]). The Lq-spectrum τµ is a decreasing convex func-
tion with τµ(1) = 0. Moreover, dom(τµ) := {q ∈ R : τµ(q) < ∞} = R if and only
if

lim sup
r↘0

log infx∈D{µ(B(x, r))}
log r

<∞ .

Let us collect here some notation. For α ≥ 0, we introduce the sets Eµ(α), Uµ(α) and

Bµ(α) defined by

Eµ(α) := {x ∈ D : dimµ(x) = α} , (2.8)

Uµ(α) := {x ∈ D : dimµ(x) ≤ α} , Bµ(α) := {x ∈ D : dimµ(x) ≥ α} , (2.9)

where

dimµ(x) := lim
r↘0

logµ(B(x, r))

log r
, (2.10)

dimµ(x) := lim inf
r↘0

logµ(B(x, r))

log r
, dimµ(x) := lim sup

r↘0

logµ(B(x, r))

log r
,

which are called the local dimension, the lower local dimension and the upper local
dimension of µ at x, respectively.

Definition 2.11. The singularity spectrum of µ is the function dµ : [0,∞) → [0,∞)

defined by

dµ(α) := dimH(Eµ(α)) , α ∈ [0,∞) . (2.11)

We have the following fundamental result.

Proposition 2.12. For α ≥ 0, it holds that dimH(Uµ(α) ∩ Bµ(α)) ≤ τ∗µ(α).

A proof of Proposition 2.12, in a slightly different setting, can be found in [BMP92,
Theorem 1]. However, the proof we provide here is a simple generalization of [BJ10,
Proposition A.1]. The proof is based on Besicovitch’s covering theorem (cf. [Fal97]).

Lemma 2.13 (Besicovitch’s covering theorem). Consider a set E ⊂ Rd and for each
x ∈ E fix a number rx > 0 such that supx∈E rx < ∞. Then there exists an integer
σd, depending only on the dimension d, for which there exist countable subfamilies
B1, . . . ,Bσd of {B(x, rx) : x ∈ E} such that E ⊂ ∪i∈{1,...,σd} ∪B∈Bi B and Bi is a collection
of disjoint sets for each i ∈ {1, . . . , σd}.
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Proof of Proposition 2.12. Fix α ≥ 0. By definition (2.7) of τ∗µ, it is sufficient to prove
that

dimH(Uµ(α) ∩ Bµ(α)) ≤ αq + τµ(q) , ∀q ∈ R . (2.12)

Without loss of generality, we can assume that τµ(q) < ∞, for all q ∈ R. We split the
proof into two parts. In the first part we prove inequality (2.12) for q ≥ 0, while in the
second part we prove inequality (2.12) for q < 0.

Case q ≥ 0. Define sq,ε := (α + ε)q + τµ(q) + ε, for ε > 0 fixed. Using the notation

introduced in Subsection 2.3, it is sufficient to show that supδ∈(0,1]H
sq,ε
δ (Uµ(α)∩Bµ(α)) <

∞. By definition, for every x ∈ Uµ(α) ∩ Bµ(α), it exists a decreasing sequence (rx,n)n∈N
converging to 0 such that

µ(B(x, rx,n)) ≥ rα+ε
x,n , ∀n ∈ N .

Fix δ ∈ (0, 1], then for each x ∈ Uµ(α) ∩ Bµ(α), we choose nx such that rx,nx ∈ (0, δ). For
each m ∈ N, we let

Fm :=
{
x ∈ Uµ(α) ∩ Bµ(α) : 2−m < rx,nx ≤ 2−m+1

}
.

Thanks to the Besicovitch’s covering theorem (cf. Lemma 2.13), it exists a positive
integer σd such that for every m ∈ N, we can find σd disjoint subsets Fm,1, . . . , Fm,σd
of Fm such that each Fm,j is at most countable, the balls B(x, rx,nx) with centres at
x ∈ Fm,j are pairwise disjoint and((

(B(x, rx,nx))x∈Fm,j

)
j∈{1,...,σd}

)
m∈N

is a δ-cover of Uµ(α) ∩ Bµ(α). Then we have that

Hsq,εδ (Uµ(α) ∩ Bµ(α)) ≤
∑
m∈N

σd∑
j=1

∑
x∈Fm,j

r(α+ε)q+τµ(q)+ε
x,nx

≤
∑
m∈N

σd∑
j=1

∑
x∈Fm,j

µ(B(x, rx,nx))qrτµ(q)+ε
x,nx

.
∑
m∈N

σd∑
j=1

∑
x∈Fm,j

µ(B(x, 2−m+1))q2−m(τµ(q)+ε) ,

where the implicit constant does not depend on m. We observe that, for all j ∈ 1, . . . , σd,
the family (B(x, 2−m+1))x∈Fm,j can be divided into two countable families of disjoint
closed balls with centres in D. Hence, by definition of τµ, for m large enough, we get∑

x∈Fm,j

µ(B(x, 2−m+1))q . 2m(τµ(q)+ε/2) ,

which implies that supδ∈(0,1]H
sq,ε
δ (Uµ(α) ∩ Bµ(α)) <∞.

Case q < 0. Define sq,ε := (α − ε)q + τµ(q) + ε, for ε > 0 fixed. As before, it is

sufficient to show that supδ∈(0,1]H
sq,ε
δ (Uµ(α) ∩ Bµ(α)) < ∞. By definition, for every

x ∈ Uµ(α) ∩ Bµ(α), it exists a decreasing sequence (ux,n)n∈N converging to 0 such that

µ(B(x, ux,n)) ≤ uα−εx,n , ∀n ∈ N .

Proceeding similarly to the previous case, we get

Hsq,εδ (Uµ(α) ∩ Bµ(α)) .
∑
m∈N

σd∑
j=1

∑
x∈Fm,j

µ(B(x, 2−m))q2−m(τµ(q)+ε) ,
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where the implicit constant does not depend on m, and by definition of τµ, for m large
enough, we get ∑

x∈Fm,j

µ(B(x, 2−m))q . 2m(τµ(q)+ε/2) ,

which implies that supδ∈(0,1]H
sq,ε
δ (Uµ(α) ∩ Bµ(α)) <∞.

Since Eµ(α) ⊂ Uµ(α) ∩ Bµ(α), an immediate consequence of Proposition 2.12 is the
following corollary.

Corollary 2.14. For α ≥ 0, it holds that dµ(α) ≤ τ∗µ(α).

In particular, Corollary 2.14 implies that to prove the validity of the multifractal
formalism for a non-negative Radon measure µ, we only need to prove the bound
dµ(α) ≥ τ∗µ(α) for all α ≥ 0.

3 Multifractal analysis of Gaussian multiplicative chaos

Let us now turn to the multifractal analysis of GMC measures. For d ≥ 1, let D ⊂ Rd
be a bounded domain. Consider a log-correlated Gaussian field X on D with covariance
kernel (2.1) and let (Xε)ε∈(0,1] be its convolution approximation, as defined in (2.2). For
every γ2 < 2d, consider the GMC measure Mγ on D associated with X, as defined in
Proposition 2.2.

The main result of this article is contained in the following theorem.

Theorem 3.1. For γ2 < 2d, the GMC measure Mγ satisfies the multifractal formalism.
More precisely, for α ≥ 0 it holds that

dMγ
(α) = τ∗Mγ

(α) =

d− 1
2

(
d−α
γ + γ

2

)2

, if α ∈
[(√

d− |γ|√
2

)2

,
(√

d+ |γ|√
2

)2
]
,

0 , otherwise ,
(3.1)

almost surely. Moreover, the Lq-spectrum of Mγ is given by

τMγ
(q) =


−ξ′Mγ

(q−)q , if q ∈ (−∞, q−] ,

d− ξMγ
(q) , if q ∈ [q−, q+] ,

−ξ′Mγ
(q+)q , if q ∈ [q+,∞) ,

(3.2)

almost surely, where q± := ±
√

2d/|γ| and ξMγ
is the power law spectrum of Mγ as defined

in (2.5).

Remark 3.2. We emphasize that the range of values of α ≥ 0 for which the set EMγ
(α)

is non-empty increases with γ2. This is a consequence of the well known fact that when
γ2 gets closer to the critical value 2d, the concentration of mass of Mγ becomes more
and more clustered and so it gives rise to a larger spectrum of singularities.

Remark 3.3. Since the GMC measure Mγ is almost surely a non-negative finite Radon
measure supported on a bounded domain, Proposition 2.10 implies that the Lq-spectrum
τMγ is a decreasing convex function and τMγ (1) = 0. Moreover, thanks to the lower
bound in Proposition 2.5, one can easily verify that dom(τMγ ) = R.

The rest of this section is devoted to the proof of Theorem 3.1 which is based on the
following result.

Proposition 3.4. Let γ2 < 2d and q2 < 2d/γ2. For Mqγ-almost every x ∈ D, the GMC
measure Mγ satisfies

lim
r↘0

logMγ(B(x, r))

log r
= d+

(
1

2
− q
)
γ2 ,
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almost surely.

Proof. The proof can be found in Appendix A.

Remark 3.5. Roughly speaking, since for q2 < 2d/γ2 the measure Mqγ is carried by the
set of qγ-thick points of X, Proposition 3.4 implies that around such points the measure
Mγ has local dimension equal to

αq := d+

(
1

2
− q
)
γ2 . (3.3)

Thanks to Corollary 2.14, we already know that, for α ≥ 0, it holds almost surely
that dMγ (α) ≤ τ∗Mγ

(α). Therefore, to prove the validity of the multifractal formalism for
Mγ , it suffices to show that for α ≥ 0 the lower bound dMγ (α) ≥ τ∗Mγ

(α) holds almost
surely. Let us start with the following lemma which is an immediate consequence of
Proposition 3.4.

Lemma 3.6. For γ2 < 2d, it holds almost surely that dMγ
(α1) = α1, where α1 is as

in (3.3) with q = 1. Moreover, if E ⊂ D is such that dimH(E) < α1, then Mγ(E) = 0

almost surely.

Proof. For x ∈ EMγ
(α1), it obviously holds that dimMγ

(x) = α1. Furthermore, thanks to
Proposition 3.4, we know that Mγ(EMγ

(α1)) > 0 almost surely. Therefore, the first part
of the lemma follows from Proposition 2.8. Concerning the second part of the lemma,
let us proceed by contradiction. Consider a subset E ⊂ D with dimH(E) < α1 and such
that Mγ(E) > 0. Thanks to Proposition 3.4, we know that the subset EMγ

(α1) is of full
Mγ -measure, and so we have that Mγ(E∩EMγ

(α1)) = Mγ(E) > 0. Moreover, since for all
x ∈ E ∩ EMγ

(α1) it holds that dimMγ
(x) = α1, then Proposition 2.8 and the monotonicity

of Hausdorff dimension imply that

dimH(E) ≥ dimH(E ∩ EMγ (α1)) = α1 ,

which is clearly a contradiction.

Now, we introduce the structure function φMγ
associated with Mγ which is defined by

φMγ
(q) := d− ξMγ

(q) =
1

2
γ2q2 −

(
d+

1

2
γ2

)
q + d , q ∈ R , (3.4)

where we recall that ξMγ
is the power law spectrum of Mγ defined in (2.5). A direct

computation shows that the Legendre–Fenchel transform of φMγ
can be written as

follows

φ∗Mγ
(α) =

(
d− 1

2

(
d− α
γ

+
1

2
γ

)2
)
∧ 0 , α ≥ 0 .

The following two lemmas provide a lower bound for dMγ (αq) in terms of φ∗Mγ
(q), for all

q2 < 2d/γ2, and an upper bound for τMγ
(q) in terms of φMγ

(q), for all q ∈ R, respectively.

Lemma 3.7. Let γ2 < 2d and q2 < 2d/γ2. Then it holds almost surely that dMγ
(αq) ≥

φ∗Mγ
(αq), where αq is as defined in (3.3).

Proof. On one hand, thanks to Proposition 3.4, we know that the set EMγ
(αq) is almost

surely of full Mqγ -measure. On the other hand, Lemma 3.6 implies that Mqγ cannot give
positive measure to a set of Hausdorff dimension strictly less than d− q2γ2/2. Therefore,
it should hold almost surely that

dMγ
(αq) ≥ d−

1

2
q2γ2 = φ∗Mγ

(αq) ,

where the last equality can be checked directly.
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Lemma 3.8. For γ2 < 2d, it holds almost surely that τMγ
(q) ≤ φMγ

(q) for all q ∈ R.

Proof. Thanks to Remark 3.3, the function τMγ
: R→ R is convex and hence continuous.

Therefore, it is sufficient to prove that for all q ∈ R, it holds almost surely that τMγ
(q) ≤

φMγ
(q). For simplicity, we assume that D = (−1, 1)d. We split the proof into two parts.

In the first part we focus on q ≥ 2d/γ2, while in the second part we focus on q < 2d/γ2.
Case q ≥ 2d/γ2. Since 2d/γ2 > 1, the conclusion in this case is trivial. Indeed, since

τMγ
is a decreasing function and τMγ

(1) = 0 (cf. Remark 3.3), it holds almost surely that
τMγ

(q) ≤ 0 ≤ φMγ
(q), where the last inequality can be checked directly.

Case q < 2d/γ2. For n ∈ N, we write Σn := 2−n−1Zd ∩ (−1, 1)d for the lattice 2−n−1Zd

restricted to the open box (−1, 1)d. Then for each n ∈ N and ε > 0, by Markov’s inequality
and Proposition 2.4, we have that

P

(∑
z∈Σn

Mγ(B(z, 2−n))q ≥ 2n(φMγ (q)+ε)

)
≤ 2−n(φMγ (q)+ε)

∑
z∈Σn

E
[
Mγ(B(z, 2−n))q

]
. 2−n(φMγ (q)+ε)2−nξMγ (q)2nd = 2−nε ,

where the implicit constant does not depend on n. Hence, it holds that

∑
n∈N

P

(∑
z∈Σn

Mγ(B(z, 2−n))q ≥ 2n(φMγ (q)+ε)

)
<∞ ,

and so, thanks to the Borel–Cantelli lemma, we have that it almost surely exists a finite
constant C > 0 independent of n such that∑

z∈Σn

Mγ(B(z, 2−n))q ≤ C2n(φMγ (q)+ε) , ∀n ∈ N . (3.5)

Let (B(xi, r))i∈I be a countable family of disjoint closed balls with radius r ∈ (0, 1]

centred at xi ∈ (−1, 1)d, and fix n ∈ N such that 2−n < r ≤ 2−n+1. We observe that
there exists a finite constant σd > 0 depending only on the dimension d, such that every
ball B(xi, r) is contained in the union of at most σd balls of the form B(zij , 2

−n+1), for
some zij ∈ Σn−1, j = 1, . . . , σd. Here, we adopt the convention that if for i ∈ I, the
ball B(xi, r) is contained in ∪j=1,...,JB(zij , 2

−n+1) for some J < σd, then zij = ziJ for
j = J + 1, . . . , σd. Furthermore, since the balls (B(xi, r))i∈I are disjoint, we can choose
the balls (B(zij , 2

−n+1))i∈I,j∈1,...,σd in such a way that for fixed i1 6= i2 ∈ I, it holds that
zi1j 6= zi2j for j = 1, . . . , σd. Now, if q ∈ (0, 1], thanks to (3.5) and the sub-additivity of the
function x 7→ xq, it holds almost surely that∑

i∈I
Mγ(B(xi, r))

q ≤
∑

j=1,..,σd

∑
z∈Σn−1

Mγ(B(z, 2−n+1))q . 2n(φMγ (q)+ε) . r−(φMγ (q)+ε) ,

(3.6)
where the implicit constant does not depend on n. Similarly, if q ∈ (1, 2d/γ2), thanks
to (3.5) and the convexity of the function x 7→ xq for q > 1, using Jensen’s inequality, it
holds almost surely that∑
i∈I

Mγ(B(xi, r))
q ≤ σq−1

d

∑
j=1,..,σd

∑
z∈Σn−1

Mγ(B(z, 2−n+1))q . 2n(φMγ (q)+ε) . r−(φMγ (q)+ε) ,

(3.7)
where the implicit constant does not depend on n. Moreover, for every ball B(xi, r), we
have that B(z, 2−n−1) ⊂ B(xi, r) for some z ∈ Σn+1. Therefore, if q ≤ 0, then thanks
to (3.5) it holds almost surely that∑

i∈I
Mγ(B(xi, r))

q ≤
∑

z∈Σn+1

Mγ(B(z, 2−n−1))q . 2n(φMγ (q)+ε) . r−(φMγ (q)+ε) , (3.8)
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where the implicit constant does not depend on n. Finally, the conclusion follows by
taking logs in (3.6), (3.7), (3.8), and thanks to the arbitrariness of ε > 0.

Thanks to Corollary 2.14, Lemmas 3.7 and 3.8, we obtain that for q2 < 2d/γ2 it holds
almost surely that

0 < φ∗Mγ
(αq) ≤ dMγ

(αq) ≤ τ∗Mγ
(αq) ≤ φ∗Mγ

(αq) , (3.9)

which implies that dMγ
(αq) = τ∗Mγ

(αq) and τMγ
(q) = φMγ

(q). For q2 < 2d/γ2, we observe
that the range of values of α ≥ 0 of the form αq is equal to the interval (α−, α+), where

α− =

(√
d− |γ|√

2

)2

, α+ =

(√
d+
|γ|√

2

)2

.

Thanks to Corollary 2.14 and Lemma 3.8, we can easily observe that for α 6∈ (α−, α+)

we have that dMγ
(α) ≤ τ∗Mγ

(α) ≤ φ∗Mγ
(α) = 0. Therefore, these results imply that for all

α ≥ 0, it holds almost surely that

dMγ
(α) = τ∗Mγ

(α) =

d− 1
2

(
d−α
γ + γ

2

)2

, if α ∈
[(√

d− |γ|√
2

)2

,
(√

d+ |γ|√
2

)2
]
,

0 , otherwise ,

which coincides with (3.1).
To conclude the proof of Theorem 3.1 we need to show the validity of (3.2). This is

exactly the objective of the subsequent lemma whose proof follows similar steps of those
in [BJ10, Section 2.3].

Lemma 3.9. If γ2 < 2d, then for q ∈ R it holds almost surely that

τMγ
(q) =


−ξ′Mγ

(q−)q , if q ∈ (−∞, q−] ,

d− ξMγ
(q) , if q ∈ [q−, q+] ,

−ξ′Mγ
(q+)q , if q ∈ [q+,∞) ,

where q± = ±
√

2d/|γ|.

Proof. From (3.9), we know that τMγ
(q) = φMγ

(q) for q ∈ (q−, q+). Thanks to the
continuity of the convex function τMγ

, the above equality can be extended to the close
interval [q−, q+]. Therefore, it remains to prove that τMγ

is derivable at q+ and linear on
[q+,∞), and the same also for q− and (−∞, q−]. Thanks to the equality τMγ

(q) = φMγ
(q)

on the interval [q−, q+], we know that

τ ′Mγ
(q−+) = φ′Mγ

(q+) =
φMγ

(q+)

q+
, τ ′Mγ

(q+
−) = φ′Mγ

(q−) =
φMγ

(q−)

q−
,

where τ ′Mγ
(q−+) (resp. τ ′Mγ

(q+
−)) denotes the left-hand (resp. right-hand) derivative of τMγ

at q+ (resp. at q−). Since the function τMγ
is convex, we have that

τMγ
(q) ≥ τMγ

(q+) + τ ′Mγ
(q−+)(q − q+) = φ′Mγ

(q+)q ,

and similarly τMγ
(q) ≥ φ′Mγ

(q−)q. For q ≥ q+, the reverse inequality can be obtained

using the fact that q+/q ∈ (0, 1] and the sub-additivity of the function x 7→ xq+/q. Indeed,
if we consider a countable family (B(xi, r))i∈I of disjoint closed balls with radius r

centred at xi ∈ D, then(∑
i∈I

Mγ(B(xi, r))
q

) q+
q

≤
∑
i∈I

Mγ(B(xi, r))
q+ .
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Hence, taking logs and by definition of τMγ
, we have that

τMγ (q) ≤
τMγ

(q+)

q+
q =

φMγ
(q+)

q+
q = φ′Mγ

(q+)q .

Therefore, for all q ≥ q+ it holds that τMγ
(q) = φ′Mγ

(q+)q, and the same exact computation
yields also that τMγ

(q) = φ′Mγ
(q−)q for all q ≤ q−. Since φMγ

(q) = d − ξMγ
(q), for all

q ∈ R, the result is proved.

This concludes the proof of Theorem 3.1.

4 Multifractal analysis of multifractal random walk

Theorem 3.1 gives a full characterization of the singularity spectrum of GMC mea-
sures. A natural question that may arise is whether we can use this result to perform the
multifractal analysis of objects that are built by means of these random measures. In
particular, in this section, we investigate the multifractal behaviour of the Multifractal
Random Walk (MRW).

4.1 Definition of the MRW

Let T > 0 and consider a log-correlated Gaussian field X on [0, T ] with covariance
kernel of the from (2.1). For γ2 < 2, consider the GMC measure Mγ on [0, T ] associated
with X, as defined in Proposition 2.2. In addition, for d ≥ 1, let B be a Brownian motion
on Rd independent from the field X.

Remark 4.1. As the Brownian motion B is independent from the log-correlated Gaussian
field X, it will be useful to decompose the probability measure P as follows

P = PB ⊗ PX .

When we write “almost surely”, we mean P-almost surely. If we need to specify that a
property holds almost surely with respect to the Brownian motion (resp. the field X), we
write PB-almost surely (resp. PX -almost surely).

Definition 4.2. Fix γ2 < 2 and d ≥ 1. The d-dimensional MRW on [0, T ] associated with
the field X is the stochastic process (Zγt )t∈[0,T ] defined by

Zγt := BMγ([0,t]) , t ∈ [0, T ] . (4.1)

The MRW has been originally introduced in [BDM01] as a stochastic volatility model.
Indeed, assuming that the Brownian motion B is one-dimensional, the MRW is used
for modelling the price fluctuations of financial assets since it accounts for most of the
stylized facts of financial time series. For example, it reproduces the sudden jumps and
the periods of intense activity usually observed in stock prices. We refer to [BKM08] for
a short overview on this topic.

4.2 Study of the lower singularity spectrum

The main goal of this section is to analyse the local fluctuations of the paths of the
MRW Zγ . More precisely, we introduce for α ≥ 0 the sets

EZγ (α) := {t ∈ [0, T ] : dimZγ (t) = α} ,

where dimZγ (t) is the lower local dimension of Zγ at t ∈ [0, T ] defined by

dimZγ (t) := lim inf
r↘0

log |Zγt+r −Z
γ
t−r|

log r
.
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We want to compute the Hausdorff dimension of EZγ (α) for each α ≥ 0, i.e. we are
interested in finding an explicit expression for the lower singularity spectrum dZγ :

[0,∞)→ [0,∞) defined by

dZγ (α) := dimH(EZγ (α)) , α ∈ [0,∞) .

In particular, we want to find the relation between dZγ (α) and dMγ
(α). This is exactly

the content of the subsequent theorem.

Theorem 4.3. Let γ2 < 2 and d ≥ 1. Then, for α ≥ 0, the lower singularity spectrum of
the d-dimensional MRW Zγ is given by

dZγ (α) = dMγ
(2α) =

1− 1
2

(
1−2α
γ + γ

2

)2

, if α ∈
[(

1√
2
− |γ|2

)2

,
(

1√
2

+ |γ|
2

)2
]
,

0 , otherwise ,

almost surely.

For α ≥ 0, we define the set EMγ
(α) as in (2.8), and the sets UMγ

(α), BMγ
(α) as

in (2.9). Then Theorem 4.3 is an easy consequence of the following lemma.

Lemma 4.4. If γ2 < 2, then for α ≥ 0, it holds PB-almost surely that

(i) EMγ
(2α) ⊂ EZγ (α);

(ii) EZγ (α) ⊂ UMγ
(2α) ∩ BMγ

(2α).

Proof. Let (Zγt )t∈[0,T ] be the d-dimensional MRW as defined in (4.1). Thanks to well-
known properties of Brownian motion, the following facts holds PB-almost surely. Fix
ε > 0, then it exists a finite constant C > 0 such that, for every t ∈ [0, T ] and r > 0 small
enough, it holds that

|Zγt+r −Z
γ
t−r| = |BMγ([0,t+r]) −BMγ([0,t−r])| ≤ CMγ(B(t, r))

1
2−ε . (4.2)

Moreover, we also know that for each ε > 0 and t ∈ [0, T ], for h > 0 small enough, it
holds that

sup
0<r≤h

|Zγt+r −Z
γ
t−r| = sup

0<r≤h
|BMγ([0,t+r]) −BMγ([0,t−r])| ≥Mγ(B(t, r))

1
2 +ε . (4.3)

Proof of item (i). For α ≥ 0, we fix t ∈ EMγ (2α). For every ε > 0, we know that for
r > 0 small enough, it holds that

r2α+ε ≤Mγ(B(t, r)) ≤ r2α−ε . (4.4)

Consequently, thanks to (4.2) and the right-hand side of (4.4), we get that for r > 0 small
enough, it holds that

|Zγt+r −Z
γ
t−r| ≤ CMγ(B(t, r))

1
2−ε ≤ Cr(2α−ε)( 1

2−ε) .

On the other hand, thanks to (4.3) and the left-hand side of (4.4), there exists a decreasing
sequence (rn)n∈N converging to 0 such that

|Zγt+rn −Z
γ
t−rn | ≥Mγ(B(t, rn))

1
2 +ε ≥ r(2α+ε)( 1

2 +ε)
n , ∀n ∈ N .

Therefore, taking logs, by arbitrariness of ε > 0, this implies that

lim inf
r↘0

log |Zγt+r −Z
γ
t−r|

log r
= α .
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which means that t ∈ EZγ (α), PB-almost surely.
Proof of item (ii). For α ≥ 0, we fix t ∈ EZγ (α). Similarly as above, for each ε > 0,

there exist decreasing sequences (rn)n∈N, (r′n)n∈N both converging to 0 such that

rα+ε
n ≤ |Zγt+rn −Z

γ
t−rn | ≤ CMγ(B(t, rn))

1
2−ε , ∀n ∈ N ,

where the last inequality is given by (4.2), and

r′n
α−ε ≥ |Zγt+r′n −Z

γ
t−r′n
| ≥Mγ(B(t, r′n))

1
2 +ε , ∀n ∈ N ,

where the last inequality is given by (4.3). By arbitrariness of ε > 0, these facts imply
that t ∈ UMγ

(2α) ∩ BMγ
(2α), PB-almost surely.

Finally, we show how the proof of Theorem 4.3 follows immediately from Lemma 4.4.

Proof of Theorem 4.3. From item (i) of Lemma 4.4, for all α ≥ 0, we have the inequality

dZγ (α) ≥ dMγ (2α) ,

almost surely. On the other hand, item (ii) of Lemma 4.4, Proposition 2.12 and Theo-
rem 3.1 imply that, for all α ≥ 0, it holds

dZγ (α) ≤ dimH

(
UMγ

(2α) ∩ BMγ
(2α)

)
≤ τ∗Mγ

(2α) = dMγ
(2α) ,

almost surely. Since Theorem 3.1 gives a full characterization of the singularity spectrum
dMγ

, this concludes the proof.

5 Multifractal analysis of Liouville Brownian motion

The main goal of this section is to study the multifractal behaviour of the Liouville
Brownian motion (LBM). Roughly speaking, the LBM can be defined as the canonical
diffusion associated with the Liouville quantum gravity metric tensor given by

eγX(dx2 + dy2) ,

where X is a GFF on a domain D ⊂ R2 and dx2 + dy2 is the Euclidean metric tensor.
The LBM has been introduced simultaneously in [Ber15, GRV16], and it can be built as a
time changed planar Brownian motion with respect to a GMC measure associated with
the field X. We refer to the above mentioned references for more details.

In what follows, we take a slightly more general approach, and we generalize the
construction of the LBM in dimension d ≥ 2. Once this is done, we consider the problem
of studying the lower singularity spectrum of the d-dimensional LBM.

5.1 Definition of the LBM

For d ≥ 2, consider a bounded domain D ⊂ Rd containing the ball B(0, 1). Let B be a
d-dimensional Brownian motion started from the origin and define T to be its first exit
time from D, i.e.

T := inf {t ≥ 0 : Bt 6∈ D} . (5.1)

Moreover, consider a log-correlated Gaussian field X on D with covariance kernel of the
form (2.1) and independent from the Brownian motion B. Then the d-dimensional LBM
on D can be formally defined by

Bγt := BF−1
γ (t) , t ≥ 0 ,
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where the clock process Fγ is given by

Fγ(t) :=

∫ t∧T

0

eγX(Bs)− 1
2γ

2E[X(Bs)
2]ds , t ≥ 0 .

In the section, we adopt the same notation specified in Remark 4.1, i.e., we decompose
P as PB ⊗ PX .

To give rigorous sense to the definition of the LBM, it is sufficient to show the
existence of the clock process Fγ . Following [Ber15, GRV16], we proceed with a regular-
ization and limiting procedure. Let (Xε)ε∈(0,1] be the convolution approximation of the
field X as defined in (2.2), then we have the following lemma.

Lemma 5.1. If γ2 < 4, then PB-almost surely, for all t ≥ 0, the sequence

F εγ (t) :=

∫ t∧T

0

eγXε(Bs)−
1
2γ

2E[Xε(Bs)
2]ds , ε ∈ (0, 1] ,

converges in PX -probability and in L1(PX) towards a non-degenerate limit Fγ(t) that
does not depend on the choice of the mollifier ψ used in (2.2).

Proof. This fact is a standard result and it is an easy consequence of [Ber17, Theo-
rem 1.1]. Indeed, for t ≥ 0, let νTt be the occupation measure between time 0 and time
t ∧ T of the Brownian motion B, so that

F εγ (t) =

∫
Rd
eγXε(x)− 1

2γ
2E[Xε(x)2]νTt (dx) , ε ∈ (0, 1] .

Then it is sufficient to prove that PB-almost surely, for all t ≥ 0, the measure νTt has
dimension two, i.e., we need to show that for α ∈ (0, 2), it holds that∫

Rd×Rd
|x− y|−ανTt (dx)νTt (dy) <∞ .

Fix t ≥ 0 and let νt be the occupation measure of the (unstopped) Brownian motion B
between time 0 and time t, then it obviously holds that∫

Rd×Rd
|x− y|−ανTt (dx)νTt (dy) ≤

∫
Rd×Rd

|x− y|−ανt(dx)νt(dy) .

Therefore, taking expectation, it is enough to prove that for α ∈ (0, 2), it holds that

EB

[∫
Rd×Rd

|x− y|−ανt(dx)νt(dy)

]
= EB

[∫ t

0

∫ t

0

|Br −Bs|−αdrds

]
<∞ . (5.2)

Using Fubini’s theorem, we have that

EB

[∫
Rd×Rd

|x− y|−ανt(dx)νt(dy)

]
=

∫ t

0

∫ t

0

EB
[
|Br −Bs|−α

]
drds

= EB
[
|B1|−α

] ∫ t

0

∫ t

0

|r − s|−α2 drds

≤ 2tEB
[
|B1|−α

] ∫ t

0

r−
α
2 dr

which is clearly finite if α ∈ (0, 2). Therefore, this implies that for fixed t ≥ 0, the measure
νTt has dimension two, PB-almost surely. To prove that the measure νTt has dimension
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two for all t ≥ 0, PB-almost surely, it is sufficient to take a sequence (tn)n∈N converging
to infinity and noting that for 0 ≤ s ≤ t, it holds that∫

Rd×Rd
|x− y|−ανTs (dx)νTs (dy) ≤

∫
Rd×Rd

|x− y|−ανTt (dx)νTt (dy) .

The conclusion follows thanks to [Ber17, Theorem 1.1].

Definition 5.2. Fix γ2 < 4 and d ≥ 2. The d-dimensional LBM on D associated with the
field X is the stochastic process (Bγt )t≥0 defined by

Bγt := BF−1
γ (t) , t ≥ 0 , (5.3)

where Fγ is defined as in Lemma 5.1.

Remark 5.3. Let us emphasize that when d ≥ 3, Lemma 5.1 yields a construction of the
LBM only for γ2 < 4, and not for γ2 < 2d as for the case of GMC measures. Therefore,
there is a gap, for 4 ≤ γ2 < 2d, where a construction of the LBM does not follow from
the general theory of GMC. This is due to the well-known fact that the dimension of the
occupation measure of the d-dimensional Brownian motion is at most two, for all d ≥ 2

(see e.g. [MP10, Chapter 4]). To the best of our knowledge, if d ≥ 3, a construction of
the d-dimensional LBM for 4 ≤ γ2 < 2d has not be done yet.

Before proceeding, let us introduce some notation. For γ2 < 4, we can define on the
interval [0, T ] the measure µγ by setting

µγ([s, t]) := Fγ(t)− Fγ(s) , s ≤ t ∈ [0, T ] . (5.4)

It may be worth emphasizing that an immediate consequence of Lemma 5.1 is that
the measure µγ can be interpreted as the weak limit of the sequence of approximating
measures (µεγ)ε∈(0,1], where

µεγ(dt) := eγXε(Bt)−
1
2γ

2E[Xε(Bt)
2]1{T>t}dt , ε ∈ (0, 1] . (5.5)

Similarly, we can define on the interval [0, Fγ(T )] the measure µ−γ by letting

µ−γ ([s, t]) := F−1
γ (t)− F−1

γ (s) , s ≤ t ∈ [0, Fγ(T )] , (5.6)

so that for all t ∈ [0, Fγ(T )], we can write Bt = Bµ−γ ([0,t]).

Proposition 5.4. For γ2 < 4, the random function Fγ : [0, T ] → R is almost surely
continuous and strictly increasing on the interval [0, T ].

Proof. The function Fγ is continuous and strictly increasing as long as the measure µγ
has no atoms and it has full support on the interval [0, T ]. To verify that µγ is almost surely
atomless on [0, T ], one needs to use the power law behaviour of µγ (cf. Proposition 5.6
below). We refer to [Ber15, Remark 3.5] for details. The proof of the fact that µγ has
almost surely full support on [0, T ] can be found in [GRV16, Theorem 2.7]. To be precise,
in the above mentioned references the proofs are given in the planar case. However,
they immediately generalize to all dimensions and hence the details are omitted.

5.2 Study of the lower singularity spectrum

In the same spirit as in Section 4, our goal is to study the local regularity of the paths
of the LBM Bγ defined in (5.3). More precisely, we are interested in the lower singularity
spectrum dBγ : [0,∞)→ [0,∞) defined by

dBγ (α) := dimH(EBγ (α)) , α ∈ [0,∞) ,
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where EBγ (α) denotes the set of times at which Bγ has lower local dimension equal to
α ≥ 0, i.e.

EBγ (α) := {t ∈ [0, Fγ(T )] : dimBγ (t) = α} ,

where

dimBγ (t) := lim inf
r↘0

log |Bγt+r − B
γ
t−r|

log r
.

Theorem 5.5. Let γ2 < 4 and d ≥ 2. Then, for α ≥ 0, the lower singularity spectrum of
the LBM Bγ is given by

dBγ (α) =

2α− 2α
(

2α−1
2αγ + 1

4γ
)2

, if α ∈
[(√

2 + |γ|√
2

)−2

,
(√

2− |γ|√
2

)−2
]
,

0 , otherwise ,

almost surely.

Since the LBM Bγ is a time changed Brownian motion, the lower singularity spectrum
dBγ can be obtained through the singularity spectrum of the measure µ−γ defined in (5.6),
as in the case of the MRW. However, in this setting the situation is less trivial since we do
not know the singularity spectrum of µ−γ at this point. Instead of working directly with
µ−γ , we start by proving that the measure µγ , defined in (5.4), satisfies the multifractal
formalism, and we find an explicit formula for its singularity spectrum. Once this is done,
we can move to the proof of Theorem 5.5 which consists in finding the relations between
dBγ , dµ−γ and dµγ .

5.2.1 Multifractal analysis of µγ

The main goal of this section is to prove that the measure µγ defined in (5.4) satisfies the
multifractal formalism. We will follow a strategy similar to that developed in Section 3.
As we will see, the presence of the Brownian motion creates some more technical
difficulties, but the underlying ideas are the same.

We start by computing the power law spectrum of the measure µγ .

Proposition 5.6. Let γ2 < 4 and q < 4/γ2. For r ∈ (0, 1], define the stopping time
τ√r := inf{t ≥ 0 : Bt 6∈ B(0,

√
r)}. Then there exists a finite constant C > 0 such that for

all r ∈ (0, 1], it holds that
E[µγ([0, τ√r])

q] ≤ Crξµγ (q) ,

where

ξµγ (q) :=

(
1 +

1

4
γ2

)
q − 1

4
γ2q2 , q ∈ R ,

is the power law spectrum of µγ .

Proof. Thanks to Kahane’s convexity inequality (cf. Lemma C.2), it is sufficient to prove
the result only for the d-dimensional exactly scale invariant field (X(x))x∈Rd defined in
[RV10a]. More precisely, for ε ∈ (0, 1], we let (Xε(x))x∈Rd be the approximation of X as
defined in [BP21, Lemma 3.19]. Then, for λ ∈ (0, 1), we can assume that

(Xλε(λx))x∈B(0,1)
d
= (Xε(x) + Ωλ)x∈B(0,1) , (5.7)

where Ωλ is an independent centred Gaussian random variable with variance − log λ (cf.
[BP21, Corollay 3.20]). Let 0 ≤ ε <

√
r, then scaling time by a factor r and using (5.7),

we get that

µεγ([0, τ√r]) =

∫ τ√r

0

eγXε(Bs)−
1
2γ

2E[Xε(Bs)
2]ds

EJP 28 (2023), paper 2.
Page 21/36

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP893
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multifractal analysis of GMC and applications

= r

∫ τ√r/r

0

eγXε(Brs)−
1
2γ

2E[Xε(Brs)
2]ds

d
= r

∫ τ̃

0

eγXε(
√
rB̃s)− 1

2γ
2E[Xε(

√
rB̃s)

2]ds

d
= reγΩ√r− 1

2γ
2E[Ω2√

r]

∫ τ̃

0

eγXε/
√
r(B̃s)− 1

2γ
2E[Xε/

√
r(B̃s)

2]ds ,

where B̃ is an independent Brownian motion and τ̃ is the first exit time of B̃ from B(0, 1).
Now, raising to the power q < 4/γ2 and taking expectations, one can easily verify that

E[µεγ([0, τ√r])
q] = rξ(q)E

[(∫ τ̃

0

eγXε/
√
r(B̃s)− 1

2γ
2E[Xε/

√
r(B̃s)

2]ds

)q]
Removing the approximation, i.e. taking the limit when ε ↘ 0, gives us the desired

result provided that the quantities µεγ([0, τ√r]) and µε/
√
r

γ ([0, τ̃ ])q are uniformly integrable
in ε ∈ (0, 1], for q < 4/γ2. For q ≤ 0 this fact is proved in the planar case in [GRV16,
Proposition 2.12]), but the proof generalizes almost verbatim in higher dimensions. For
q ∈ (0, 4/γ2) a proof of this fact can be found in Appendix B.

We now state the main result that allows to prove that µγ satisfies the multifractal
formalism. Let us emphasize that such a result is the analogue of Proposition 3.4, but
for the measure µγ .

Proposition 5.7. Let γ2 < 4 and q2 < 4/γ2. For µqγ -almost every t ∈ [0, T ], the measure
µγ satisfies

lim
r↘0

logµγ(B(t, r))

log r
= 1 +

(
1

2
− q
)
γ2

2
,

almost surely.

Proof. The case in which the underlying field is a zero-boundary GFF on a bounded
domain D ⊂ R2 has already been treated in [Jac18]. The proof follows similar lines as
the proof of Proposition 3.4 in Appendix A. Therefore, we only highlight here the main
changes that one needs to do in order for the proof to work in the general setting of a
log-correlated Gaussian field X on a bounded domain D ⊂ Rd, d ≥ 2.

The main steps of the proof in [Jac18] are [Jac18, Lemmas 3.9 and 3.11]. Let us
focus on [Jac18, Lemma 3.9]. The only main change that one needs to do is in [Jac18,
Equation 3.19]. Indeed, in that step the author uses the domain Markov property of
the GFF to bound the exponential moment of the fluctuations of the circle average
approximation. However, in the case of a general log-correlated Gaussian field, we can
bypass the use of such a property by using instead Lemma 2.1 in order to control the
fluctuations of the convolution approximation. To be more precise, let us briefly introduce
some notation. Let B and B̃ be two independent d-dimensional Brownian motions started
from the origin, let Ft := σ(Bs : s ≤ t) be the natural filtration associated with B up to a
certain fixed time t ≥ 0, and define the stopping time

τ̃ := inf{s ≥ 0 :
√
rB̃s +Bt 6∈ B(0, 1/2)} ∧ inf{s ≥ 0 : B̃s 6∈ B(0, 1/2)} ,

where r ∈ (0, 1]. Then, letting ΩBt√
r

:= infx∈B(Bt,
√
r)X

√
r(x)−X√r(Bt) the following lower

bound trivially holds on the interval [0, τ̃ ],

Xε
√
r(
√
rB̃s +Bt) ≥ (Xε

√
r(
√
rB̃s +Bt)−X√r(

√
rB̃s +Bt)) + ΩBt√

r
+X√r(Bt) .

Therefore, plugging this estimate into the second line of [Jac18, Equation 3.19], using the
fact that in [Jac18, Equation 3.20] the probability is conditioned on Ft, and proceeding
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in the same exact way as in the proof of Proposition A.1 below, we can reach the same
conclusion of [Jac18, Lemma 3.9] also in our more general setting.

Finally, the changes that one needs to do in the proof of [Jac18, Lemma 3.11] are
similar and therefore not discussed.

We can now state the following proposition concerning the singularity spectrum of
µγ .

Proposition 5.8. If γ2 < 4, then the measure µγ satisfies the multifractal formalism.
More precisely, for α ≥ 0 it holds that

dµγ (α) = τ∗µγ (α) =

1−
(

1−α
γ + 1

4γ
)2

, if α ∈
[(

1− |γ|2
)2

,
(

1 + |γ|
2

)2
]
,

0 , otherwise ,

almost surely.

Proof. Given Propositions 5.6 and 5.7, and defining the structure function φµγ (q) :=

1 − ξµγ (q), for all q ∈ R, one can proceed similarly to Section 3 to prove this result.
Therefore, the details are omitted.

5.2.2 Conclusion of the proof

Now that we have found an explicit formula for the singularity spectrum of µγ , we can
study the relations between the various (lower) singularity spectra. For α ≥ 0, we define
the set Eµγ (α) as in (2.8), the sets Uµγ

(α), Bµγ (α) as in (2.9), and similarly also for µ−γ .
Let us start with the following lemma.

Lemma 5.9. If γ2 < 4, then for α ≥ 0, it holds PB-almost surely that

(i) Eµ−γ (2α) ⊂ EBγ (α);

(ii) EBγ (α) ⊂ Uµ−γ
(2α) ∩ Bµ−γ (2α).

Proof. Since for all t ∈ [0, T ], it holds that Bγt = Bµ−γ ((0,t]), one can use the same argument
used in the proof of Lemma 4.4 to prove this result.

Thanks to Lemma 5.9, the problem has been reduced to computing the Hausdorff
dimensions of Eµ−γ (α) and of Uµ−γ

(α) ∩ Bµ−γ (2α), for α ≥ 0. We start with the following
trivial lemma.

Lemma 5.10. If γ2 < 4, then for α > 0, it holds almost surely that

(i) Eµ−γ (α) = Fγ(Eµγ (α−1));

(ii) Uµ−γ
(α) ∩ Bµ−γ (α) = Fγ(Uµγ

(α−1) ∩ Bµγ (α−1)).

Proof. The proof follows thanks to the fact that random function Fγ is almost surely
continuos and strictly increasing on the interval [0, T ] (cf. Proposition 5.4).

The following lemma is concerned with the relation between dµγ and dµ−γ .

Lemma 5.11. If γ2 < 4, then for α > 0, it holds almost surely that dµ−γ (α) = αdµγ (α−1).

Proof. Thanks to item (i) of Lemma 5.10, we know that for α > 0, it holds almost surely
that Eµ−γ (α) = Fγ(Eµγ (α−1)). Fix ε > 0, and let t ∈ Eµγ (α−1), then we define δt > 0 as
follows

δt := sup
{
δ > 0 : |Fγ(t+ r)− Fγ(t− r)| ≤ rα

−1−ε, ∀r ∈ (0, δ)
}
∧ 1 .
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We define the collection of sets (Enµγ (α−1))n∈N by letting

Enµγ (α−1) :=
{
t ∈ Eµγ (α−1) : 2−n < δt ≤ 2−n+1

}
, n ∈ N .

Then Eµγ (α−1) = ∪n∈NEnµγ (α−1), and for all t ∈ Enµγ (α−1), it holds that |Fγ(t + r) −
Fγ(t − r)| ≤ rα

−1−ε for all r ∈ (0, 2−n). Thanks to Proposition 5.4, we know that the
random function Fγ is almost surely continuous and strictly increasing. Hence, using
the countable stability of the Hausdorff dimension and Proposition 2.7, it holds almost
surely that

dµ−γ (α) = sup
n∈N

dimH(Fγ(Enµγ (α−1))) ≤ α

1− αε
sup
n∈N

dimH(Enµγ (α−1)) =
α

1− αε
dµγ (α−1) .

The reverse inequality can be obtained similarly. Indeed, if we fix ε > 0 and we let
t ∈ Eµ−γ (α), then we can define δt > 0 as follows

δt := sup
{
δ > 0 : |F−1

γ (t+ r)− F−1
γ (t− r)| ≤ rα−ε, ∀r ∈ (0, δ)

}
∧ 1 .

Defining the collection of sets (En
µ−γ

(α))n∈N similarly as above, and proceeding in the

same exact way, we obtain that it holds almost surely that

dµγ (α−1) ≤ 1

α− ε
dµ−γ (α) .

The conclusion follows by arbitrariness of ε > 0.

We also need the following lemma which allows to conclude the proof.

Lemma 5.12. If γ2 < 4, then for α > 0 it holds almost surely that dimH(Uµ−γ
(α) ∩

Bµ−γ (α)) ≤ ατ∗µγ (α−1).

Proof. Thanks to item (ii) of Lemma 5.10 and to the definition of τ∗µγ , it is sufficient to
prove that for α > 0 it holds that

dimH(Fγ(Uµγ
(α−1) ∩ Bµγ (α−1))) ≤ q + ατµγ (q) , ∀q ∈ R , (5.8)

almost surely. We will be brief here since this result can be proved using the same
procedure used in the proof of Proposition 2.12. We will only focus in the case q ≥ 0. Fix
ε > 0 and let sq,ε := q + (τµγ (q) + ε)/(α−1 − ε). By definition, for every t ∈ Uµγ

(α−1) ∩
Bµγ (α−1), it exists a decreasing sequence (rt,n)n∈N converging to 0 such that

|Fγ(t+ rt,n)− Fγ(t− rt,n)| = µγ(B(t, rt,n)) ≤ rα
−1−ε

t,n , ∀n ∈ N .

Fix δ ∈ (0, 1], then for each t ∈ Uµγ
(α−1)∩Bµγ (α−1), we choose nt such that rt,nt ∈ (0, δ).

For each m ∈ N, we let

Fm :=
{
t ∈ Uµγ

(α−1) ∩ Bµγ (α−1) : 2−m < rt,nt ≤ 2−m+1
}
.

Proceeding as in the proof of Proposition 2.12, it exists a positive integer σ1 such that for
every m ∈ N, we can find σ1 disjoint subsets Fm,1, . . . , Fm,σ1 of Fm such that each Fm,j is
at most countable, the balls B(t, rt,nt) with centres at t ∈ Fm,j are pairwise disjoint, and
the collection of sets ((

(Fγ(B(t, rt,nt)))t∈Fm,j

)
j∈{1,...,σ1}

)
m∈N
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is a δ-cover of Fγ(Uµγ
(α−1) ∩ Bµγ (α−1)). Then, thanks to the definition of µγ and to the

fact that Fγ is almost surely strictly increasing, we have that

Hsq,εδ (Fγ(Uµγ (α−1) ∩ Bµγ (α−1))) ≤
∑
m∈N

σ1∑
j=1

∑
t∈Fm,j

|Fγ(t+ rt,nt)− Fγ(t− rt,nt)|sq,ε

≤
∑
m∈N

σ1∑
j=1

∑
t∈Fm,j

µγ(B(t, rt,nt))
qr

(τµ(q)+ε)
t,nt

.
∑
m∈N

σ1∑
j=1

∑
t∈Fm,j

µγ(B(t, 2−m+1))q2−m(τµ(q)+ε) ,

where the implicit constant does not depend on m. Hence, the conclusion follows as in
the proof of Proposition 2.12. Similarly, we can prove inequality (5.8) for q < 0.

Finally, let us see how we can put everything together in order to prove Theorem 5.5.

Proof of Theorem 5.5. Let us start by observing that almost surely it holds that dBγ (0) =

0 since Bγ is almost surely continuous. Thanks to item (i) of Lemma 5.9 and Lemma 5.11,
for α > 0, we have that

dBγ (α) ≥ dµ−γ (2α) = 2αdµγ ((2α)−1) ,

almost surely. On the other hand, item (ii) of Lemma 5.9, Lemma 5.12 and Proposition 5.8
imply that, for all α > 0, it holds that

dBγ (α) ≤ dimH

(
Uµ−γ

(2α) ∩ Bµ−γ (2α)
)
≤ 2ατ∗µγ ((2α)−1) = 2αdµγ ((2α)−1) ,

almost surely. Since the singularity spectrum dµγ is known, this concludes the proof.

A Proof of Proposition 3.4

The proof of Proposition 3.4 follows similar steps of the proof in [RV14, Theorem 4.1].
However, our proof accommodates general log-correlated Gaussian fields. Indeed, it is
not enough to prove the result for an exactly stochastically scale invariant field, and then
deduce the result for all log-correlated fields, by means of Kahane’s convexity inequality
(cf. Lemma C.2). This is due to the fact that in the proof we need to consider moments of
certain integrals of the field that involve indicator functions depending on the field itself.

Since the conclusion of Proposition 3.4 trivially holds for γ = 0, we may assume
γ 6= 0. The proof is essentially based on the following proposition and on a standard
Borel–Cantelli argument.

Proposition A.1. Let γ2 < 2d, q2 < 2d/γ2 and define α := d+ (1/2− q)γ2. For β > 0 and
E > 0, there exist constants C, b, C ′, b′ > 0 such that for r ∈ (0, 1] small enough it holds
that

E
[
Mqγ

({
x ∈ Dr : Mγ(B(x, r)) > Erα−β

})]
≤ Crb , (A.1)

and
E
[
Mqγ

({
x ∈ Dr : Mγ(B(x, r)) < Erα+β

})]
≤ C ′rb

′
, (A.2)

where Dr := {x ∈ D : dist(x, ∂D) < r}.

Proof. The proof can be found in Subsection A.1.

We are now ready to prove Proposition 3.4.
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Proof of Proposition 3.4. Fix β > 0 and let α = d+ (1/2− q)γ2. For n ∈ N, we define the
following sets

Unγ :=
{
x ∈ D2−n : Mγ(B(x, r)) ≤ rα−β , ∀r ∈ [0, 2−n)

}
,

and
Lnγ :=

{
x ∈ D2−n : Mγ(B(x, r)) ≥ rα+β ∀r ∈ [0, 2−n)

}
,

where we recall that, for r ∈ (0, 1], Dr := {x ∈ D : dist(x, ∂D) < r}. We claim that for
every ε ∈ (0, 1], it exists almost surely a finite N ∈ N such that

Mqγ

((
UNγ
)c)

< ε , Mqγ

((
LNγ
)c)

< ε .

Thanks to Proposition A.1 with E = 2−(α−β) and to Markov’s inequality, we know that
there exist constants C > 0 and b > 0 such that for r ∈ (0, 1] small enough, it holds that

P
(
Mqγ

({
x ∈ Dr : Mγ(B(x, r)) > 2−(α−β)rα−β

})
≥ r b2

)
≤ r− b2E

[
Mqγ

({
x ∈ Dr : Mγ(B(x, r)) > 2−(α−β)rα−β

})]
≤ Cr b2 .

For n ∈ N, taking r = 2−n, thanks to the Borel–Cantelli lemma, we get that the events({
Mqγ

({
x ∈ D2−n : Mγ(B(x, 2−n)) > (2−n−1)α−β

})
≥ (2−n)

b
2

})
n∈N

occur only finitely often almost surely. Therefore, for all ε ∈ (0, 1], it exists almost surely
a finite N ∈ N such that

Mqγ

 ⋃
n≥N

{
x ∈ D2−n : Mγ(B(x, 2−n)) > (2−n−1)α−β

} ≤ ∑
n≥N

(2−n)
b
2 < ε .

Let x ∈ (UNγ )c, then it exists r ∈ [0, 2−N ) such that Mγ(B(x, r)) > rα−β. Since it exists
n ≥ N such that 2−n−1 ≤ r < 2−n, we get

Mγ(B(x, 2−n)) ≥Mγ(B(x, r)) > rα−β ≥ (2−n−1)α−β ,

which implies that

Mqγ

((
UNγ
)c) ≤Mqγ

 ⋃
n≥N

{
x ∈ D2−n : Mγ(B(x, 2−n)) > (2−n−1)α−β

} < ε .

A similar argument can be used to prove that for every ε ∈ (0, 1], it exists almost surely a
finite N ∈ N such that Mqγ((LNγ )c) < ε. Therefore, introducing the sets

Uγ :=
⋃
n∈N

Unγ =

{
x ∈ D : lim inf

r↘0

logMγ(B(x, r))

log r
≥ α− β

}
,

Lγ :=
⋃
n∈N

Lnγ =

{
x ∈ D : lim sup

r↘0

logMγ(B(x, r))

log r
≤ α+ β

}
,

since ε > 0 is arbitrary and UNγ , LNγ are increasing sets, we obtain that

Mqγ ((Lγ ∩ Uγ)
c
) = 0 .

The conclusion then follows from the arbitrariness of β > 0.
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A.1 Proof of Proposition A.1

The objective of this subsection is to prove Proposition A.1. For simplicity, but without
loss of generality, we assume that D = (−1, 1)d. The proof is based on Lemma 2.1 and on
the following two lemmas.

Lemma A.2. For γ2 < 2d and q2 < 2d/γ2, there exist ā ∈ (0, 1] and C > 0 such that

sup
ε∈(0,1]

E

[(∫
(−1,1)d

eγXε(x)− 1
2γ

2E[Xε(x)2]

(|x|+ ε)qγ2 dx

)ā]
≤ C

Proof. The proof can be found in Subsection A.2.

Lemma A.3. For γ2 < 2d and q2 < 2d/γ2, there exists C > 0 such that

sup
ε∈(0,1]

E

(∫
[−1/2,1/2]d

eγXε(x)− 1
2γ

2E[Xε(x)2]

(|x|+ ε)qγ2 dx

)−1
 ≤ C .

Proof. The proof can be found in Subsection A.2.

Proof of Proposition A.1. We split the proof into two parts. We start by proving (A.1)
and then we move to the proof of (A.2). For simplicity, but without loss of generality, we
consider the case E = 1.

Proof of (A.1). Let r ∈ (0, 1] and x ∈ Dr, where we recall that we are assuming that
D = (−1, 1)d. Fix ε, ε′ > 0 so that ε′ < rε. Then by Girsanov’s theorem (cf. Lemma C.1),
we have that

E

[
1{∫

B(x,r)
eγXrε(u)−

1
2
γ2E[Xrε(u)2]du>rα−β

}eqγXε′ (x)− 1
2 q

2γ2E[Xε′ (x)2]

]
= P

(∫
B(x,r)

eγXrε(u)+qγ2E[Xrε(u)Xε′ (x)]− 1
2γ

2E[Xrε(u)2]du > rα−β

)

≤ P

(
eγ

2K|q|
∫
B(x,r)

eγXrε(u)− 1
2γ

2E[Xrε(u)2]

(|u− x|+ rε)qγ2 du > rα−β

)
, (A.3)

where the last inequality is justified by the fact that, thanks to property (P2), for x,
y ∈ (−1, 1)d, it exists K > 0 such that

− log (|x− y|+ rε)−K ≤ E[Xrε(x)Xε′(y)] ≤ − log (|x− y|+ rε) +K .

Now, let Ωxr := supu∈B(x,r)Xr(u) −Xr(x), then by changing variables, we see that the
integral in (A.3) can be upper bounded as follows∫

B(x,r)

eγXrε(u)− 1
2γ

2E[Xrε(u)2]

(|u− x|+ rε)qγ2 du

≤ e|γ|(Ω
x
r+Xr(x))

∫
B(x,r)

eγ(Xrε(u)−Xr(u))− 1
2γ

2E[Xrε(u)2]

(|u− x|+ rε)qγ2 du

= rd−qγ
2

e|γ|(Ω
x
r+Xr(x))

∫
B(0,1)

eγ(Xrε(ru+x)−Xr(ru+x))− 1
2γ

2E[Xrε(ru+x)2]

(|u|+ ε)qγ2 du

≤ rd+(1/2−q)γ2

e
1
2γ

2K+|γ|(Ωxr+Xr(x))

∫
B(0,1)

eγ(Xrε(ru+x)−Xr(ru+x))+ 1
2γ

2 log ε

(|u|+ ε)qγ2 du

≤ rαeγ
2Kc+|γ|(Ωxr+Xr(x))

∫
B(0,1)

eγX
′
ε(u)− 1

2γ
2E[X′ε(u)2]

(|u|+ ε)qγ2 du , (A.4)

EJP 28 (2023), paper 2.
Page 27/36

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP893
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multifractal analysis of GMC and applications

for some log-correlated field X ′ in B(0, 1), and some finite constant c > 0 depending only
on K. Substituting the last expression of (A.4) back into (A.3), we obtain that

E

[
1{∫

B(x,r)
eγXrε(u)−

1
2
γ2E[Xrε(u)2]du>rα−β

}eqγXε′ (x)− 1
2 q

2γ2E[Xε′ (x)2]

]
(A.5)

≤ P

(
eγ

2K(c+|q|)+|γ|(Ωxr+Xr(x))

∫
B(0,1)

eγX
′
ε(u)− 1

2γ
2E[X′ε(u)2]

(|u|+ ε)qγ2 du > r−β

)
≤ P

(
eγ

2K(c+|q|)+|γ|Ωxr > r−
β
3

)
+ P

(
e|γ|Xr(x) > r−

β
3

)
+ P

(∫
B(0,1)

eγX
′
ε(u)− 1

2γ
2E[X′ε(u)2]

(|u|+ ε)qγ2 du > r−
β
3

)
.

Let us notice that all the three terms decay polynomially in r, for r ∈ (0, 1] small enough,
uniformly in x ∈ Dr and ε, ε′ ∈ (0, 1]. Indeed, for the first term this follows from
Lemma 2.1 and Markov’s inequality. For the second term, this follows from the fact that
Xr(x) is a centred Gaussian random variable with variance E[Xr(x)2] = − log r +O(1)

(cf. [MP10, Lemma 12.9]). Finally, for the third term this follows from Lemma A.2 and
Markov’s inequality again. Therefore, for r ∈ (0, 1] small enough, integrating over x ∈ Dr

the expression in (A.5) and putting everything together, we can see that there exist finite
constants C, b > 0 such that for all ε, ε′ ∈ (0, 1], it holds that

E

[∫
Dr

1{∫
B(x,r)

eγYrε(u)−
1
2
γ2E[Yrε(u)2]du>rα−β

}eqγYε′ (x)− 1
2 q

2γ2E[Yε′ (x)2]dx

]
≤ Crb .

Now, thanks to Proposition 2.2, we know that the sequence of measures (Mε′

qγ)ε′∈(0,1]

converges to Mqγ in L1(P) in the topology of weak convergence of measures. Therefore,
thanks to Portmanteau lemma and Fatou’s lemma, we get that

E

[∫
Dr

1{∫
B(x,r)

eγYrε(u)−
1
2
γ2E[Yrε(u)2]du>rα−β

}Mqγ(dx)

]
≤ lim inf

ε′↘0
E

[∫
Dr

1{∫
B(x,r)

eγYrε(u)−
1
2
γ2E[Yrε(u)2]du>rα−β

}eqγYε′ (x)− 1
2 q

2γ2E[Yε′ (x)2]dx

]
.

Therefore, since C and b are independent from ε′ ∈ (0, 1], we have that

E

[∫
Dr

1{∫
B(x,r)

eγYrε(u)−
1
2
γ2E[Yrε(u)2]du>rα−β

}Mqγ(dx)

]
≤ Crb . (A.6)

Finally, since C and b are independent also from ε ∈ (0, 1], using (A.6) and Fatou’s lemma,
we see that

E

[∫
Dr

1{Mγ(B(x,r))>rα−β}Mqγ(dx)

]
≤ lim inf

ε↘0
E

[∫
Dr

1{∫
B(x,r)

eγYrε(u)−
1
2
γ2E[Yrε(u)2]du>rα−β

}Mqγ(dx)

]
≤ Crb .

Proof of (A.2). We shall be brief here since the argument is similar to that used in
the proof of (A.1). Let r ∈ (0, 1] and x ∈ Dr, where we recall that we are assuming
that D = (−1, 1)d. Fix ε, ε′ ∈ (0, 1] so that ε′ < rε. Then by Girsanov’s theorem (cf.
Lemma C.1) and property (P2), we have

E

[
1{∫

B(x,r)
eγXrε(u)−

1
2
γ2E[Xrε(u)2]du<rα+β

}eqγXε′ (x)− 1
2 q

2γ2E[Xε′ (x)2]

]
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≤ P

(
e−γ

2K|q|
∫
B(x,r)

eγXrε(u)− 1
2γ

2E[Xrε(u)2]

(|u− x|+ rε)qγ2 du < rα+β

)
. (A.7)

Now, let Ωxr := infu∈B(x,r)Xr(u)−Xr(x), then by proceeding in the same way as in the
proof of (A.1), we can see that the right-hand side of (A.7) can be lower bounded as
follows ∫

B(x,r)

eγXrε(u)− 1
2γ

2E[Xrε(u)2]

(|u− x|+ rε)qγ2 du

≥ rαe−γ
2Kc+|γ|(Ωxr+Xr(x))

∫
B(0,1)

eγX
′
ε(u)− 1

2γ
2E[X′ε(u)2]

(|u|+ ε)qγ2 du , (A.8)

for some log-correlated field X ′ in B(0, 1), and some finite constant c > 0 depending only
on K. Substituting the last expression of (A.8) back into (A.7), we obtain that

E

[
1{∫

B(x,r)
eγXrε(u)−

1
2
γ2E[Xrε(u)2]du<rα+β

}eqγXε′ (x)− 1
2 q

2γ2E[Xε′ (x)2]

]
≤ P

(
e−γ

2K(c+|q|)+|γ|Ωxr < r
β
3

)
+ P

(
e|γ|Xr(x) < r

β
3

)
+ P

(∫
B(0,1)

eγX
′
ε(u)− 1

2γ
2E[X′ε(u)2]

(|u|+ ε)qγ2 du < r
β
3

)
.

Thanks to Lemmas 2.1 and A.3, the conclusion then follows as in the proof of (A.1).

A.2 Proofs of Lemmas A.2 and A.3

Let us finish by proving Lemmas A.2 and A.3. We recall once again that, for simplicity,
we are assuming that D = (−1, 1)d.

Proof of Lemma A.2. For ε ∈ (0, 1] and a ∈ (0, 1], we define the quantity

Uaε := E

[(∫
(−1,1)d

eγXε(x)− 1
2γ

2E[Xε(x)2]

(|x|+ ε)qγ2 dx

)a]
,

and we need to prove that it exists ā ∈ (0, 1] such that U āε can be uniformly bounded in
ε ∈ (0, 1]. We split the proof into two parts. In the first part we focus on q ∈ (−

√
2d/|γ|, 0],

while in the second part we focus on q ∈ (0,
√

2d/|γ|).
Case q ∈ (−

√
2d/|γ|, 0]. Since |x| + ε ≤

√
d + 1 for all x ∈ (−1, 1)d and ε ∈ (0, 1], we

can write

Uaε ≤ (
√
d+ 1)−aqγ

2

E

[(∫
(−1,1)d

eγXε(x)− 1
2γ

2E[Xε(x)2]dx

)a]
≤ C(

√
d+ 1)−aqγ

2

,

where the existence of the constant C > 0, independent of ε ∈ (0, 1], follows from Jensen’s
inequality.

Case q ∈ (0,
√

2d/|γ|). If ε ∈ (1/2, 1], then we have that

Uaε ≤ 2aqγ
2

E

[(∫
(−1,1)d

eγXε(x)− 1
2γ

2E[Xε(x)2]dx

)a]
≤ C2aqγ

2

.

where the existence of the constant C > 0, independent of ε ∈ (1/2, 1], follows from
Jensen’s inequality. Let us now assume that ε ∈ (0, 1/2]. Then it exists a unique n ∈ N
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such that 2−n−1 < ε ≤ 2−n. For all k ∈ {0, 1, . . . , n}, we let Qk := (−2−k, 2−k)d. Then by
sub-additivity of the function x 7→ xa for a ∈ (0, 1], we have that

Uaε ≤ E

[(∫
Qn

eγXε(x)− 1
2γ

2E[Xε(x)2]

(|x|+ ε)qγ2 dx

)a]
+

n−1∑
k=0

E

[(∫
Qk\Qk+1

eγXε(x)− 1
2γ

2E[Xε(x)2]

(|x|+ ε)qγ2 dx

)a]

≤ 2na(qγ2−d)E

[(∫
(−1,1)d

eγXε(2
−nx)− 1

2γ
2E[Xε(2

−nx)2]

(|x|+ 2nε)qγ2 dx

)a]

+

n−1∑
k=0

2(k+1)aqγ2

E

[(∫
Qk\Qk+1

eγXε(x)− 1
2γ

2E[Xε(x)2]dx

)a]

≤ 2na(qγ2−d)E

[(∫
(−1,1)d

eγXε(2
−nx)− 1

2γ
2E[Xε(2

−nx)2]dx

)a]

+ 2ad
n−1∑
k=0

2(k+1)a(qγ2−d)E

[(∫
(−1,1)d

eγXε(2
−kx)− 1

2γ
2E[Xε(2

−kx)2]dx

)a]
. (A.9)

Now let k ∈ {0, 1, . . . , n}, then we want to estimate the following quantity

E

[(∫
(−1,1)d

eγXε(2
−kx)− 1

2γ
2E[Xε(2

−kx)2]dx

)a]
.

Thanks to property (P2), for x, y ∈ (−1, 1)d, it exists K > 0 such that

E[Xε(2
−kx)Xε(2

−ky)] ≥ − log
(
|x− y|+ 2kε

)
+ log

(
2k
)
−K ,

and therefore, if we let Z and Ω2−k be two real normal random variables independent
from everything else with variance 2K and log 2k, respectively, then

E[(Xε(2
−kx) + Z)(Xε(2

−ky) + Z)] ≥ E[(X2kε(x) + Ω2−k) (X2kε(y) + Ω2−k)] .

Since the function x 7→ xa for a ∈ (0, 1] is concave, thanks to Kahane’s convexity
inequality (cf. Lemma C.2), we have that

E

[(∫
(−1,1)d

eγXε(2
−kx)− 1

2γ
2E[Xε(2

−kx)2]dx

)a]

= eγ
2aK(1−a)E

[(∫
(−1,1)d

e
γ(Xε(2−kx)+Z)− 1

2γ
2E

[
(Xε(2−kx)+Z)

2
]
dx

)a]

≤ eγ
2aK(1−a)E

[(∫
(−1,1)d

e
γ(X2kε

(x)+Ω
2−k)− 1

2γ
2E

[
(X2kε

(x)+Ω
2−k)

2
]
dx

)a]

= eγ
2aK(1−a)E

[
eγaΩ

2−k−
1
2aγ

2E[Ω2

2−k ]
]
E

[(∫
(−1,1)d

eγX2kε
(x)− 1

2γ
2E[X2kε

(x)2]dx

)a]
≤ Ceγ

2aK(1−a)2
1
2γ

2ka(a−1) ,

where the existence of the constant C > 0, independent of ε ∈ (0, 1/2], follows from
Jensen’s inequality. Hence, going back to (A.9), letting

sa :=

(
d+

1

2
γ2 − qγ2

)
a− 1

2
γ2a2 , (A.10)

we obtain that

Uaε .
n∑
k=0

2−ksa ,
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where the implicit constant does not depend on n. It can be easily verified that for each
γ2 < 2d and q ∈ (0,

√
2d/|γ|) it exists ā ∈ (0, 1] such that sā > 0. In particular, this implies

that U āε is uniformly bounded in ε ∈ [0, 1/2), which proves the result.

Proof of Lemma A.3. For every ε ∈ (0, 1], we define

U−1
ε := E

(∫
[−1/2,1/2]d

eγXε(x)− 1
2γ

2E[Xε(x)2]

(|x|+ ε)qγ2 dx

)−1
 .

We need to prove that U−1
ε can be uniformly bounded in ε ∈ (0, 1]. We split the proof into

two cases.
Case q ∈ [0,

√
2d/|γ|). In this case, since |x| + ε ≤

√
d/2 + 1 for all x ∈ [−1/2, 1/2]d

and ε ∈ (0, 1], we can write

sup
ε∈(0,1]

U−1
ε ≤ (

√
d/2 + 1)qγ

2

sup
ε∈(0,1]

E

(∫
[−1/2,1/2]d

eγXε(x)− 1
2γ

2E[Xε(x)2]dx

)−1


≤ C(
√
d/2 + 1)qγ

2

,

where the existence of the constant C > 0, independent of ε ∈ (0, 1], follows from
Proposition 2.3.

Case q ∈ (−
√

2d/|γ|, 0). In this case, we can simply proceed as follows

U−1
ε ≤ E

(∫
B(1/4,1/8)

eγXε(x)− 1
2γ

2E[Xε(x)2]

(|x|+ ε)qγ2 dx

)−1
 ,

and since |x|+ ε ≥ 1/8 for all x ∈ B(1/4, 1/8) and ε ∈ (0, 1], we can write

sup
ε∈(0,1]

U−1
ε ≤ (1/8)−qγ

2

sup
ε∈(0,1]

E

(∫
B(1/4,1/8)

eγXε(x)− 1
2γ

2E[Xε(x)2]dx

)−1
 ≤ C(1/8)−qγ

2

,

and also in this case the existence of the constant C > 0, independent of ε ∈ (0, 1], follows
from Proposition 2.3.

B Finiteness of positive moments of µγ

In this section, we adopt the same notation used in Section 5. The main goal is to
prove that the moments of order q ∈ (0, 4/γ2) of the measure µγ , defined in (5.4), are
uniformly bounded. The techniques used in the proof of this result are inspired from
[BP21, Section 3]. Moreover, let us mention that this result has been proved in the
planar case in [Ber15, Subsection 3.2], but the proof does not trivially generalize to
all dimensions. Before stating and proving the result, it may be worth recalling that
the measure µγ can be interpreted as the weak limit of the sequence of approximated
measures (µεγ)ε∈(0,1] defined in (5.5).

Proposition B.1. Let γ2 < 4 and q ∈ (0, 4/γ2). Then it holds that

sup
ε∈(0,1]

E

[(∫ T

0

eγXε(Bs)−
1
2E[Xε(Bs)

2]]ds

)q]
<∞ ,

where we recall that T denotes the first exit time of B from the bounded domain D.
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Proof. As in the proof of Proposition 5.6, thanks to Kahane’s convexity inequality (cf.
Lemma C.2), we can assume X to be the d-dimensional exactly scale invariant field.
Moreover, without loss of generality, we can consider q > 1. In order to keep the notation
not too cumbersome, we will give the proof only for q ∈ (1, 2 ∧ 4/γ2). Notice that this is
not restrictive if γ2 ∈ [2, 4). The case in which γ2 < 2 and q ∈ [2, 4/γ2) is discussed at the
end.

For simplicity, we consider the case D = (0, 1)d. Let us fix ε ∈ (0, 1], then letting
a = q − 1 ∈ (0, 1), using Fubini’s theorem, Girsanov’s theorem (cf. Lemma C.1), and the
analogue of property (P2) for the exactly scale invariant field Xε, we obtain that

E

[(∫ T

0

eγXε(Bs)−
1
2γ

2E[Xε(Bs)
2]ds

)q]

= EB

[∫ T

0

EX

[
eγXε(Bs)−

1
2γ

2E[Xε(Bs)
2]

(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]dr

)a]
ds

]

= EB

[∫ T

0

EX

[(∫ T

0

eγXε(Br)+γ2EX [Xε(Bs)Xε(Br)]− 1
2γ

2E[Xε(Br)2]dr

)a]
ds

]

. EB

[∫ T

0

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]

(|Br −Bs|+ ε)γ2 dr

)a]
ds

]
. (B.1)

If ε ∈ (1/2, 1], then thanks to the concavity of the function x 7→ xa for a ∈ (0, 1), using
Jensen’s inequality, we have that

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]

(|Br −Bs|+ ε)γ2 dr

)a]
≤ 2aγ

2

EX

[∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]dr

]a
= 2aγ

2

T a .

Therefore, substituting this estimate into (B.1), we get that

E

[(∫ T

0

eγXε(Bs)−
1
2γ

2E[Xε(Bs)
2]ds

)q]
≤ 2aγ

2

EB [T 1+a] <∞ ,

where the last inequality follows from the fact that T has exponentially decaying tail. Let
us now assume that ε ∈ (0, 1/2]. Then it exists a unique n ∈ N such that 2−n−1 < ε ≤ 2−n.
For x ∈ Rd and k ∈ {0, 1, . . . , n}, we let Qk(x) be the open box of side length 2−k+1

centred at x, i.e. Qk(x) = (−2−k, 2−k) + x. Then by sub-additivity of the function x 7→ xa

for a ∈ (0, 1), we have that

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]

(|Br −Bs|+ ε)γ2 dr

)a]

≤ EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]

(|Br −Bs|+ ε)γ2 1{Br∈Qn(Bs)}dr

)a]

+

n∑
k=1

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]

(|Br −Bs|+ ε)γ2 1{Br∈Qk−1(Bs)\Qk(Bs)}dr

)a]

≤ 2naγ
2

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(B
2
r ]

(2n|Br −Bs|+ 2nε)γ2 1{Br∈Qn(Bs)}dr

)a]

+

n∑
k=1

2kaγ
2

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]1{Br∈Qk−1(Bs)}dr

)a]
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≤ 2naγ
2

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]1{Br∈Qn(Bs)}dr

)a]

+

n∑
k=1

2kaγ
2

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]1{Br∈Qk−1(Bs)}dr

)a]
. (B.2)

Now let k ∈ {0, 1, . . . , n}, then we want to estimate the following quantity

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]1{Br∈Qk(Bs)}dr

)a]
.

Using the translation and scaling invariance of the field Xε, Jensen’s inequality, and
Fubini’s theorem, we can proceed as follows

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]1{Br∈Qk(Bs)}dr

)a]

≤ 2k( 1
2γ

2a2− 1
2γ

2a)EX

[∫ T

0

eγX2kε
(2k(Br−Bs))− 1

2γ
2E[X

2kε
(2k(Br−Bs))2]1{2k(Br−Bs)∈Q0(0)}dr

]a

= 2k( 1
2γ

2a2− 1
2γ

2a)

(∫ T

0

1{2k(Br−Bs)∈Q0(0)}dr

)a
. (B.3)

Therefore, plugging estimate (B.3) into (B.2), we obtain that

EX

[(∫ T

0

eγXε(Br)− 1
2γ

2E[Xε(Br)2]

(|Br −Bs|+ ε)γ2 dr

)a]

.
n∑
k=0

2k( 1
2γ

2a2+ 1
2γ

2a)

(∫ T

0

1{2k(Br−Bs)∈Q0(0)}dr

)a
.

Hence, integrating the previous expression over s ∈ [0, T ] and then taking expectation
with respect to B, recalling inequality (B.1), we have that

E

[(∫ T

0

eγXε(Bs)−
1
2γ

2E[Xε(Bs)
2]ds

)q]

.
n∑
k=0

2k( 1
2γ

2a2+ 1
2γ

2a)EB

[∫ T

0

(∫ T

0

1{2k(Br−Bs)∈Q0(0)}dr

)a
ds

]
. (B.4)

Let us now estimate the expectation with respect to B on the right-hand side of the
above expression. For all k ∈ {0, 1, . . . , n}, applying Jensen’s inequality two times, we
obtain that

EB

[∫ T

0

(∫ T

0

1{2k(Br−Bs)∈Q0(0)}dr

)a
ds

]

≤ EB

[
T

1−a
a

∫ T

0

∫ T

0

1{2k(Br−Bs)∈Q0(0)}drds

]a
.

In particular, letting α ∈ (0, 2), using Markov’s inequality, Cauchy–Schwarz’s inequality,
and proceeding similarly to the proof of Lemma 5.1, we have that

EB

[
T

1−a
a

∫ T

0

∫ T

0

1{2k(Br−Bs)∈Q0(0)}drds

]
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=
∑
n∈N

EB

[
1{n−1≤T<n}T

1−a
a

∫ T

0

∫ T

0

1{2k(Br−Bs)∈Q0(0)}drds

]

≤
∑
n∈N

n
1−a
a EB

[
1{n−1≤T<n}

∫ n

0

∫ n

0

1{2k(Br−Bs)∈Q0(0)}drds

]
≤
∑
n∈N

n
1−a
a PB(T ≥ n− 1)

1
2

∫ n

0

∫ n

0

PB(|Br −Bs| < 2−k+1)
1
2 drds

≤ 2−α(k−1)EB [|B1|−2α]
1
2

∑
n∈N

2n
1−a
a +1PB(T ≥ n− 1)

1
2

∫ n

0

r−
α
2 dr ,

and the latter series is obviously finite since we chose α ∈ (0, 2) and T has exponentially
decaying tail. Therefore, going back to (B.4), we have that

E

[(∫ T

0

eγXε(Bs)−
1
2γ

2E[Xε(Bs)
2]ds

)q]
.

n∑
k=0

2ka( 1
2γ

2a+ 1
2γ

2−α) ,

where the implicit constant does not depend on n. To conclude it is sufficient to notice
that for a < 4/γ2 − 1, there exists α ∈ (0, 2) such that γ2a/2 + γ2/2− α < 0.

As a final remark, we emphasize that, if γ2 < 2, we only proved the existence of
moments of order q ∈ (0, 2). However, the strategy of the proof could be adapted
to treat the general case q ∈ (0, 4/γ2). In this case, one has to choose n ∈ N such
that n ≤ q < n + 1. Then applying Girsanov’s theorem n times in (B.1), one obtain
an expression similar to the last line of (B.1) except that we get an integral with n

singularities. Then, we can reproduce the argument up to modifications that are obvious
but notationally heavy.

C Gaussian toolbox

We collect here some well-known results on Gaussian fields. In all the subsequent
lemmas, we assume D to be a bounded domain of Rd, d ≥ 1.

Lemma C.1 ([RV16, Theorem 2.1]). Consider an almost surely continuous centred Gaus-
sian field (X(x))x∈D and a Gaussian random variable Z which belongs to the L2 closure
of the vector space spanned by (X(x))x∈D. Let F : C(D)→ R be a bounded continuos
functional. Then the following equality holds

E

[
eZ−

E[Z2]
2 F (X(·))

]
= E [F (X(·) + E[X(·)Z])] .

Let us observe that Lemma C.1 is equivalent to the fact that under the probability
measure eZ−E[Z2]/2dP the field (X(x))x∈D has the same law of the shifted field (X(x) +

E[X(x)Z])x∈D under P, which is the usual Girsanov’s theorem.
We now present a fundamental tool in the study of GMC measures, which is Kahane’s

convexity inequality. Essentially, this is an inequality that allows to compare GMC
measures associated with two slightly different fields.

Lemma C.2 ([RV16, Theorem 2.2]). Consider two almost surely continuous centred
Gaussian fields (X(x))x∈D and (Y (x))x∈D such that

E[X(x)X(y)] ≤ E[Y (x)Y (y)] , ∀x, y ∈ D .

Let f : (0,∞)→ R a convex function with at most polynomial growth at 0 and∞, and let
ν be a Radon measure on D as in [Ber17, Equation 1.3]. Then it holds that

E

[
f

(∫
D

eX(x)− 1
2E[X(x)2]ν(dx)

)]
≤ E

[
f

(∫
D

eY (x)− 1
2E[Y (x)2]ν(dx)

)]
.
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We have the following standard concentration inequality for Gaussian fields which is
known as Borell-TIS inequality.

Lemma C.3 ([AT07, Theorem 2.1.1]). Consider an almost surely continuous centred
Gaussian field (X(x))x∈D. Then it holds that

P

(∣∣∣∣sup
x∈D

X(x)− E
[

sup
x∈D

X(x)

]∣∣∣∣ > t

)
≤ 2e

− t2

2σ2
D ,

for all t ≥ 0, where σ2
D := supx∈D E[X(x)2].

We finish this appendix with Dudley’s entropy bound.

Lemma C.4 ([AT07, Theorem 1.3.3]). Consider an almost surely continuous centred
Gaussian field (X(x))x∈D. Consider the pseudo-metric on D ×D defined as follows

dX(x, y) :=
√
E[|X(x)−X(y)|2], (x, y) ∈ D ×D,

and let diamX(D) := sup(x,y)∈D×D dX(x, y). Let N(ε,D, dX) be the number of balls of
radius ε with respect to dX needed to cover D. Then there exists a universal constant C
such that

E

[
sup
x∈D

X(x)

]
< C

∫ diamX(D)/2

0

√
log(N(ε,D, dX))dε .
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