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Abstract

This paper provides a general framework for Stein’s density method for multivariate
continuous distributions. The approach associates to any probability density function
a canonical operator and Stein class, as well as an infinite collection of operators and
classes which we call standardizations. These in turn spawn an entire family of Stein
identities and characterizations for any continuous distribution on Rd, among which
we highlight those based on the score function and the Stein kernel. A feature of these
operators is that they do not depend on normalizing constants. A new definition of
Stein kernel is introduced and examined; integral formulas are obtained through a
connection with mass transport, as well as ready-to-use explicit formulas for elliptical
distributions. The flexibility of the kernels is used to compare in Stein discrepancy
(and therefore 2-Wasserstein distance) between two normal distributions, Student
and normal distributions, as well as two normal-gamma distributions. Upper and
lower bounds on the 1-Wasserstein distance between continuous distributions are
provided, and computed for a variety of examples: comparison between different
normal distributions (improving on existing bounds in some regimes), posterior dis-
tributions with different priors in a Bayesian setting (including logistic regression),
centred Azzalini–Dalla Valle distributions. Finally the notion of weak Stein equation
and weak Stein factors is introduced. Bounds for solutions of the weak Stein equation
are obtained for Lipschitz test functions if the distribution admits a Poincaré constant.
We use these bounds to compare different copulas on the unit square in 1-Wasserstein
distance.
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1 Introduction

Stein’s method of approximate computation of expectations is a collection of tools
permitting to bound integral probability metrics or Zolotarev metrics

dH(X,W ) = sup
h∈H
|E[h(W )]− E[h(X)]|

whereH is a measure-determining class of functions and X,W are two random quantities
of interest with X, say, distributed according to the target distribution over which it
is assumed that we have some handles. In order to implement this method for X, one
needs first to find a linear operator A, called a Stein operator, and a class of functions
F(A), called a Stein class, such that (i) the Stein identity E[Af(X)] = 0 holds for all
functions f ∈ F(A) and (ii) for each h ∈ H, there exists a solution f = fh ∈ F(A) of the
Stein equation Af(w) = h(w) − E[h(X)]. Then, upon noting that E[h(W )] − E[h(X)] =

E[Afh(W )] for all h, the problem of bounding dH(X,W ) has been re-expressed in terms
of that of bounding the Stein discrepancy suph∈H |E[Afh(W )]|. The popularity of Stein’s
method lies for a large part in the fact that, in many important cases, Stein discrepancies
are amenable to a wide variety of approaches. Moreover the various equations, operators
and discrepancies appearing in Stein’s method provide mathematical objects which can
be in themselves of intrinsic and independent interest.

There exist many frameworks in which Stein’s method is well understood, particularly
for univariate distributions. Comprehensive introductions to some of the most important
aspects of the theory are available from the monographs [44] as well as [37, 14], with a
particular focus on Gaussian approximation. We also refer to the survey [42] as well as
the papers [33, 32].

Although the univariate case is the most studied, many references also tackle mul-
tivariate distributions. The starting point for a multivariate Stein’s method is a Stein
characterization for the Gaussian law which states that a random vector Z is a multivari-
ate Gaussian d-random vector with mean ν and covariance Σ (short: Z ∼ N (ν,Σ)) if and
only if

E
[ 〈

Σ,∇2g(Z)
〉

HS

]
= E

[
〈Z − ν,∇g(Z)〉

]
, (1.1)

for all absolutely continuous function g : Rd → R for which the expectations exist;
here ∇ denotes the gradient operator for functions which act on Rd (a column vector),
〈A,B〉HS =

∑
i,j AijBij is the Hilbert–Schmidt inner product between d × d matrices

and 〈u, v〉 =
∑
i uivi is the usual inner product between vectors in Rd. From (1.1), one

infers that the second order differential operator Ag(x) =
〈
Σ,∇2g(x)

〉
HS
−〈x− ν,∇g(x)〉

is a Stein operator for the Gaussian distribution N (ν,Σ), with Stein class F(A) the
collection of functions for which (1.1) holds. Classical Markov theory then provides a
solution of the corresponding Stein equation Ag(x) = h(x) − E[h(Z)] via the so-called
Mehler formula, leading to a variety of applications of Stein’s method for multivari-
ate normal approximation as treated e.g. in [9, 26, 23, 40, 36, 11]. Classical Markov
theory also provides Stein operators, equations, and solutions outside the Gaussian
case, e.g. for log-concave densities as well as for ergodic measures of stochastic dif-
ferential equations satisfying regularity conditions, as studied e.g. by [35, 25, 19].
Other references extending the method beyond the multivariate Gaussian setting in-
clude [2, 3] for infinitely divisible distributions with finite first moment, and [7, 8]
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for a framework which is applicable to many discrete multivariate distributions. In
[41], stationary distributions of Glauber Markov chains are characterized. The Dirich-
let distribution has been treated in [22], and the multinomial distribution is consid-
ered in [34]. This literature review is not intended to be exhaustive; more refer-
ences can be found e.g. at the websites https://sites.google.com/site/steinsmethod and
https://sites.google.com/site/malliavinstein.

Several general approaches to finding Stein operators exist in the univariate setting,
among which we highlight Barbour’s generator approach (which makes use of Markov
generator theory, see [26, 9]) and Stein’s density approach (which makes use of the
properties of the underlying density, see [44, 45] as well as [16, 48, 32, 33]). The
generator approach extends naturally to the multivariate setting. The density approach
has, so far, not been extended to the multivariate setting. The aim of this paper is to
fill this gap and to explore implications of Stein’s density method in the multivariate
setting. In particular this paper highlights the considerable flexibility in Stein operator
choice which includes operators which are not gradient operators, thus complementing
the generator approach in the multivariate setting by offering an alternative which does
not require the analysis of a Markov operator.

1.1 Stein’s multivariate density method

The probability distributions in this paper are assumed to admit a probability density
function (pdf) p with respect to Lebesgue measure on Rd. The expectation under p is
denoted by Ep; for a function h, we write Eph = E

[
h(X)

]
with X having pdf p. The

building blocks of our construction are the canonical directional Stein derivatives

f 7→ Te,pf =
∂e(p f)

p
;

the class of functions which satisfy the “elementary” Stein identity Ep[Te,pf ] = 0 is then
denoted F1(p) (Section 3.4 provides many more Stein identities which are perhaps not
as elementary). Such pairs (Te,p,F1(p)) can be defined in any direction e, and we collect
in the canonical Stein class F(p) all functions for which the elementary Stein identity
holds for every component in (almost) every direction. More precise definitions, along
with clarifications of the various functional spaces we consider, will be provided below.
The resulting objects can be combined in virtually endless possibilities. In this spirit,
we introduce the Stein gradient operator • 7→ T∇,p• = ∇ (p•)/p which many authors
call the Stein operator for multivariate p. Similarly, we define the Stein divergence
operator acting on vector- or matrix-valued functions with compatible dimensions as
• 7→ Tdiv,p• = div (p•)/p. More generally, a standardization of the canonical operator

is any operator of the form A• =
∑d
i=1 AiTei,p(Ti•) where ei, i = 1, . . . , d are the unit

vectors in Rd and Ai,Ti, i = 1, . . . , d are some linear operators.
The freedom of choice in the standardizations is only as useful as one can find

operators Ai,Ti leading to tractable expressions for A. Many distributions p have a
tractable score function ∇ log p (including, of course, the Gaussian distribution but also
elliptical distributions, convolutions of independent components, etc.). In such cases a
direct application of the Stein gradient or divergence operators leads to tractable first
order vector-valued operators of the form A1g = T∇,p(Σg) = Σ∇g + (Σ∇ log p)g (where
Σ ∈ Rd×d) with class F(A1) = F1(p), as well as second order scalar-valued operators
Ã1g = Tdiv,p(Σ∇g) =

〈
Σ,∇2g

〉
HS

+ 〈Σ∇ log p,∇g〉 acting on F(Ã1) the collection of
functions such that ∇g ∈ F(A1). The Gaussian Stein operator derived from (1.1) is of
this second order form. Much of the more applied literature on multivariate Stein’s
method focuses on such second order operators, because∇ log p (and hence the resulting
operator) does not depend on the normalizing constants of p, which is very useful e.g.
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in the study of posterior densities in a Bayesian context. This independence of the
normalizing constants is inherited from the nature of the canonical directional Stein
derivatives and is a feature of all operators provided by Stein’s density method.

Another family of standardizations with which much of the paper is concerned relates
to the Stein kernel. First studied in [44] (although already earlier used to tackle a
smooth pdf p, see e.g. [12] where it is referred to as a covariance kernel), this quantity
has become an important component of univariate Stein’s method, see e.g. [37, 17, 43]
for an overview. In dimension d = 1, the Stein kernel for a pdf p is the unique solution
x 7→ τp(x) in F(p) of the ordinary differential equation

Tpτp(x) :=

(
τp(x) p(x)

)′
p(x)

= ν − x

with ν the mean of p. It exists and is unique when the distribution has finite variance –
the Stein kernel is the zero bias density from [24]. Moreover, for X ∼ p, E[τp(X)g′(X)] =

E[(X − ν)g(X)] for all g such that E|(X − ν)g(X)| <∞. Uniqueness of the kernel is lost
for multivariate distributions and several concurrent definitions exist. In [38, 15], a Stein
kernel τ for a pdf p is defined as any matrix-valued function satisfying

E [〈τ (X),∇g(X)〉HS] = E [〈X − ν, g(X)〉] (1.2)

at least for all smooth g : Rd → Rd with compact support. In [30], a Stein kernel τ for a
pdf p is required to satisfy (1.2) only for smooth functions which are gradients, to read

E
[〈
τ (X),∇2g(X)

〉
HS

]
= E [〈X − ν,∇g(X)〉] . (1.3)

Associated with this definition is a second order scalar-valued operator A2g(x) =〈
τ (x),∇2g

〉
HS
− 〈x− ν,∇g(x)〉. Comparing (1.3) with (1.1) shows that the covariance

matrix Σ is a Stein kernel for the N (ν,Σ) distribution; hence the Stein-kernel operator
A2 also generalizes the Gaussian operator. Moreover, the difference τ − Σ has been
used as a Gaussian discrepancy metric, see e.g. [38, 15, 30], where it is shown that it
captures some essential features of the underlying distribution, relating Stein kernels
with log-Sobolev inequalities, Poincaré constants and moment maps.

In this paper we adopt a direct approach and define a directional Stein kernel for
each canonical direction ei ∈ Rd, as any differentiable function x 7→ τp,i(x) ∈ Rd such
that Tdiv,p

(
τp,i
)
(x) = E[〈X, ei〉]− xi for Lebesgue almost all x in the support of p. A Stein

kernel is then any matrix-valued function τ such that each row τ i = (τi1, . . . , τid) is a
kernel in the direction ei, different kernels leading to different associated operators.
This definition opens the way for identifying several Stein kernels (and therefore Stein
operators) for any given pdf, even for the Gaussian N (ν,Σ): Example 4.18 will show that,
aside from the Stein kernel τ = Σ, if d 6= 1 then the matrix-valued functions

τ δ(x) =
1

(2− δ)(d− 1)

[(
d− 1 + (1− δ)xTx

)
Σ− (1− δ)(x− ν)(x− ν)T

]
are Gaussian Stein kernels for all δ 6= 2. More generally, we find Stein kernels for ellipti-
cal distributions and formulas allowing to obtain Stein kernels for smooth multivariate
distributions with densities which are available up to a normalizing constant.

As our formalism provides an infinite family of Stein operators and classes (A,F(A))

for any distribution P having a pdf (even intractable distributions), a variety of versions of
Stein’s method of distributional approximation can be deployed by considering quantities
of the form S(q,A,G) = supg∈G ‖EqAg‖ for q some distribution of interest, A any Stein
operator for P and G a well-chosen class of functions. These quantities are called Stein
discrepancies and have proven to be particularly useful when studying questions of
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convergence to equilibrium, see e.g. [25]. The freedom of choice and ease of use of our
operator approach A now allows for optimization over possible Stein operators A for P
in S(q,A,G).

In a first application, in Section 4.3, we concentrate on differences of Stein kernels,
which provides a general and easy to use discrepancy metric; our examples include
comparison of Gaussians (Example 4.20), comparison of Student and Gaussian (Exam-
ple 4.21), and comparison of normal-gamma distributions (Example 4.22). In the second
example we also exploit the freedom of choice in the Stein kernels to optimize the
resulting discrepancy, hereby demonstrating the use of disposing of several kernels for a
fixed comparison problem.

In a second application, in Section 5 we estimate discrepancies between distributions
P1, P2 with supports Ω1 and Ω2 which are open subsets of Rd and nested, so that Ω2 ⊆ Ω1.
We express the discrepancies in terms of the (1-)Wasserstein distance

W1(P1, P2) = sup
h∈Lip(Ω1,1)

∣∣∣∣∫ hdP1 −
∫
hdP2

∣∣∣∣ ,
where Lip(Ω, 1) is the collection of Lipschitz functions Ω→ R with Lipschitz constant 1.
For P1 and P2 with pdfs p1, p2 and chosen Stein operator and class (Ap1 ,F(Ap1)) for p1

and (Ap2 ,F(Ap2)) for p2, fixing P1 as the target, we consider the Stein equations

Ap1g = h− Ep1h; h ∈ Lip(Ω1,1). (1.4)

Taking expectations with respect to P2 on either side of (1.4) shows that the Wasserstein
distance satisfies

W1(P1, P2) = sup
g∈G(Lip(Ω1,1))

|Ep2 [Ap1 g]| (1.5)

with G(Lip(Ω1,1)) the collection of all solutions of (1.4) which belong to F(Ap1). More-
over, if Ap2 for p2 is chosen such that G(Lip(Ω1,1)) ⊆ F(Ap2) then Ep2 [Ap2 g] = 0 and
W1(P1, P2) = supg∈G(Lip(Ω1,1)) |Ep2 [(Ap1 −Ap2) g]|. The freedom of choice in Api , i = 1, 2,
makes this last expression a good starting point for comparison in Wasserstein dis-
tance: Theorem 5.1 provides a general bound on the Wasserstein distance between
different pdfs on Rd which we particularize in Proposition 5.10 to even obtain lower
bounds (depending on the Stein kernel). We apply these results to a number of con-
crete applications; in Section 5 we compare in Wasserstein distance different normal
distributions (Example 5.9), posterior distributions with different priors in a Bayesian
setting (Examples 5.13 and 5.14); we also study the effect of the skewness parameter on
centred Azzalini–Dalla Valle distributions where our upper and lower lead to an explicit
expression for the Wasserstein distance (Example 5.12).

The above approach to distributional comparisons with Stein’s method relies on
a good understanding of Stein equations (1.4) and their solutions. Much is already
known about the regularity properties (often referred to as Stein factors) of these
solutions in several important settings; see Example 5.5 for Gaussians, Example 5.6
for log-concave pdfs, and Example 5.7 for more general results. Such ready-to-use
regularity properties are not always available and, finally, as a further contribution of
the paper, Proposition 5.15 shows that (1.5) also holds under a weakened form of the
Stein equation (1.4), namely (5.20), which states

Ep2 [Ap1g] = Ep2 [h− Ep1h].

Solutions of this equation exist under the relatively weak assumption of existence of a
Poincaré constant for P1. This observation allows to provide bounds even when regularity
properties of solutions of Stein equations are hard to establish, e.g. for Wasserstein
distance between copulas on the unit square (Example 5.17).
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1.2 Overview of the paper

The paper is structured as follows. In Section 2 we provide notations that are used
throughout the paper. The multivariate Stein’s density method is presented and studied
in Section 3, first by defining the canonical directional Stein operators and classes
(Section 3.1), then by providing sufficient conditions for obtaining Stein identities and
characterizations (Section 3.2), and finally by making the connection with current litera-
ture through the concept of standardizations of the canonical operators (Section 3.4).
Section 4 is devoted to the study of Stein kernels, first in general (Section 4.1) then
under an assumption of ellipticity of the distribution (Section 4.2); first applications
towards distributional approximation are also outlined (Section 4.3). Section 5 contains
the main applications, namely a flexible set of bounds on Wasserstein distance between
densities admitting a Stein operator under an additional assumption of nested supports
(Section 5.1). The idea of weak Stein equations and weak Stein factors is introduced
in Section 5.2, leading to bounds on Wasserstein distance under the assumption of
existence of a Poincaré constant; these bounds are illustrated by comparing copulas.

This paper is a complete overhaul of a paper that previously appeared on the arXiv
(https://arxiv.org/abs/1806.03478) which includes more material, such as an excursion
into kernelized Stein discrepancies and goodness-of-fit tests.

2 Notations, gradients and product rules

We first settle the notation that will be used throughout the paper. Fix d ∈ N0

and let e1, . . . , ed be the canonical basis for Cartesian coordinates in Rd. Vectors of
Rd are understood as column vectors. Given x, y ∈ Rd the Euclidean inner product is
〈x, y〉 = xT y =

∑d
i=1 xiyi (here ·T denotes the usual transpose) with associated norm

‖x‖ =
√
〈x, x〉. With Tr(·) the trace operator, the Hilbert–Schmidt inner product between

matrices A,B of compatible dimensions is 〈A,B〉HS = Tr(ATB), with associated norm
‖A‖2HS := Tr(ATA). For W ∈ Rd×d a matrix, ‖W‖op =

∑
v∈Rd,‖v‖=1 ‖Wv‖. The identity

function on Rd is denoted by Id, so that Id(x) = x; for a unit vector e, Ide = 〈Id, e〉 denotes
the marginal projection in direction e; we abbreviate Idei(x) = Idi(x)(= xi). The identity
on function spaces is denote I; the d × d identity matrix is denoted by Id. Thus, for a
scalar-valued function f :

• Idf is a vector-valued function mapping x to f(x)x;
• If is a scalar-valued function mapping x to f(x);
• Idf is a matrix-valued function mapping x to f(x) Id.
Let Sd−1 denote the unit sphere in Rd and let e ∈ Sd−1 be a unit vector in Rd. The

directional derivative of a function v : Rd → R in the direction e is denoted by the
real-valued function ∂ev. For i = 1, . . . , d we write ∂iv for the derivative in the direction
of the unit vector ei. Higher order derivatives are denoted accordingly. The directional
derivative of a matrix-valued function F : Rd → Rm+r : x 7→ F(x) =

(
fij(x))16i6m,16j6r

is defined component-wise: (∂eF)16i6m,16j6r = (∂efij)16i6m,16j6r (an m× r matrix).
The gradient of a smooth function v : Rd → R is the d × 1 column vector valued

function ∇v with entries (∇v)i = ∂iv, i = 1, . . . , d, and the Hessian is the symmetric d× d
matrix-valued function ∇2v with entries (∇2v)i,j = ∂ijv, i, j = 1, . . . , d;

∇v =

∂1v
...
∂dv

 and ∇2v =


∂11v ∂12v · · · ∂1dv

∂21v ∂22v · · · ∂2dv
...

...
. . .

...
∂d1v ∂d2v · · · ∂ddv

 .
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The divergence of a d-vector-valued function v : Rd → Rd with components vj , j =

1, . . . , d is the scalar-valued function

divv : Rd → R : x 7→ divv(x) =

d∑
i=1

∂ivi(x).

The divergence of a m× d matrix-valued function F =
(
fij(x))16i6m,16j6d is

divF =


∑d
j=1 ∂jf1j∑d
j=1 ∂jf2j

...∑d
j=1 ∂jfmj


a m-column vector; the divergence acts on the rows. For v : Rd → R we also use the
Laplacian

∆v = div(∇v) =

d∑
i=1

∂2
i v.

Given v and w two sufficiently smooth functions from Rd → R and e ∈ Sd−1, the
directional derivative satisfies the product rule

∂e(vw) = (∂ev)w + v∂ew, (2.1)

at all points in Rd at which all derivatives are defined, implying product rules for
gradients and divergences. We shall mainly consider three instances.

1. For f : Rd → R and g : Rd → R

∇(fg) = (∇f)g + f(∇g). (2.2)

2. For a matrix-valued function F : Rd → Rm×d and g : Rd → R, we have

div(Fg) = (divF) g + F∇g (2.3)

(an m-vector). In particular if F = Id, then div(Idg) = ∇g.

3. For F : Rd → Rd×d and g : Rd → R we have

div(FT ∇g) = 〈divF,∇g〉+
〈
F,∇2g

〉
HS

(2.4)

(a scalar).

Throughout this paper, all random vectors are assumed to live on the same probability
space and, unless explicitly mentioned otherwise, are distributed according to a measure
P which is (i) absolutely continuous with respect to the Lebesgue measure on Rd, and (ii)
with pdf p whose support Ωp= {x ; p(x) > 0} is an open subset of Rd; unless otherwise
stated the pdf is assumed to be continuous on Ωp.

The collection of all functions whose components are integrable with respect to p
is denoted by L1(p). For ease of notation, the Lebesgue measure is often left out in
integrals; thus, for f ∈ L1(p), we use the notations Epf =

∫
Ωp
fp =

∫
Ωp
f(x) p(x) dx. We

shall consider several function spaces on open sets Ω ⊆ Rd:

• Liploc(Ω) denotes the set of all locally Lipschitz functions g : Ω→ R.
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• Ck(Ω) (with possibly k =∞) denotes the set of real-valued functions on Ω with k

continuous derivatives.

• Ckc (Ω) (with possibly k =∞) denotes the set of functions belonging to Ck(Ω) with a
compact support K ⊆ Ω.

• W 1,1(Ω) denotes the Sobolev space of functions g : Ω→ R such that the Sobolev
norm

‖g‖1,1 =

∫
Ω

|g|+
d∑
i=1

∫
Ω

|∂ig|

is finite. Here, ∂i denotes the weak derivative. Following [31], p.320, we denote by
∂i also the usual derivative, the interpretation of ∂i depending on the context. For
Sobolev spaces it is understood as the weak derivative.

• Ẇ 1,1(Ω) denotes the homogeneous Sobolev space of functions g ∈ L1
loc(Ω) with∑d

i=1

∫
Ω
|∂ig| <∞ .

• W 1,1
0 (Ω) denotes the space of all functions g ∈W 1,1(Ω), such that

∫
Ω
∂ig = 0 for all

i = 1, 2, . . . , d or, equivalently,
∫

Ω
∂eg = 0 for all e ∈ Sd−1.

• Ẇ 1,1
0 (Ω) denotes the space of all functions g ∈ Ẇ 1,1(Ω), such that

∫
Ω
∂eg = 0 for all

e ∈ Sd−1.

• ACL(Ω) denotes the set of all Borel measurable functions g : Ω→ R, such that for
each e ∈ Sd−1, it is true that for almost all lines L parallel to e with respect to the
(d− 1)-dimensional Lebesgue measure, the restriction of g to any compact interval
I contained in Ω ∩ L is absolutely continuous. Notice that ACL(Ω) is closed under
multiplication.

• ACL1(Ω) denotes the set of functions g ∈ ACL(Ω) with ∂eg ∈ L1(Ω) for all e ∈ Sd−1.

• ACL1
loc(Ω) denotes the set of all functions g : Ω→ R with the property that each

x ∈ Ω has an open neighbourhood U ⊆ Ω, such that the restriction of g to U belongs
to ACL1(U).

• ACL1
0(Ω) denotes the set of functions g ∈ ACL1(Ω) with

∫
Ω
∂eg = 0 for all e ∈ Sd−1.

Here ACL stands for ‘absolutely continuous on lines’. This concept is closely related
with the concept of almost differentiability used by Stein [46, Definition 1]. Indeed, each
function in ACL(Rd) is almost differentiable, but the converse is not true: take a straight
line in R2 and let g : R2 → R be defined as g ≡ 1 on that line and g ≡ 0 elsewhere. Then
g is almost differentiable, but it is not in ACL(R2).

3 Stein’s multivariate density method

3.1 The canonical operator

All Stein operators to be constructed in this paper have as building blocks the
canonical Stein operator and the canonical Stein class which we now define.

Definition 3.1 (Canonical directional Stein operator). Let e ∈ Sd−1. The canonical Stein
derivative for p in the direction e is the differential operator φ 7→ Te,pφ := ∂e(pφ)/p where
Te,pφ ≡ 0 outside of Ωp. The domain of Te,p is dom(Te,p) the collection of all functions
that are differentiable in direction e.

Definition 3.2 (Canonical Stein class). The canonical scalar Stein class for p is the
collection F1(p) of all functions f : Ωp → R with fp ∈ ACL1

0(Ωp). The canonical Stein
class for p is the collection F(p) of all scalar-, vector-, and matrix-valued functions whose
components belong to F1(p).

To illustrate the Stein class we first give the next result.
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Proposition 3.3. Let u ∈ ACL(Ωp) If, in addition, ∂eu ∈ L1
loc(Ω) and u is compactly

supported, then ∂eu ∈ L1(Ω) and
∫

Ω
∂eu = 0. In particular, any scalar-valued function

φ ∈ C1
c(Ωp) lies in F1(p) as long as the pdf p is continuously differentiable.

Proof. Since u has a compact support, so does ∂eu. Therefore, ∂eu ∈ L1(Ω). Without
loss of generality, we may assume that e = e1. For Lebesgue-almost all x′ ∈ Rd−1, the
function ux′(x1) := u(x1, x

′) is absolutely continuous on all compact intervals contained
in Ωx′ := {x1 ∈ R ; (x1, x

′) ∈ Ω} and u′x′ ∈ L1(Ωx′). Now observe that Ωx′ is a union of
countably many open intervals. If I is such an interval, the restriction of ux′ to I has a
compact support. By the fundamental theorem of calculus, we have

∫
I
u′x′ = 0. Since

u′x′ ∈ L1(Ωx′), we can sum over the intervals to obtain
∫
I
u′x′ = 0. The main assertion

now follows by Fubini’s theorem. The last assertion is immediate by taking u = pφ.

Remark 3.4.

1. The directional Stein operator requires the pdf p to be available only up to a
normalizing constant.

2. For a Borel function f : Ωp → R, a version of f belongs to F1(p) ∩ L1(p) if and only
if fp ∈W 1,1

0 (Ωp).

Example 3.5 (Gaussian directional Stein operators). For the multivariate Gaussian dis-
tribution with location ν ∈ Rd, positive definite covariance matrix Σ ∈ Rd ×Rd and pdf
γ, with ei a unit vector,

Tei,γf(x) =
∂ei(f(x)γ(x))

γ(x)
= ∂if(x)− (Σ−1(x− ν))if(x)

for i = 1, . . . , d and the scalar Stein class is the class of all almost differentiable functions
f : Rd → R such that Eγ [‖∇f‖] < ∞, see [46, Lemma 2]. Indeed the integrability
condition

∫
∂i(fγ) = 0 is automatically satisfied.

Example 3.6 (Student-t operators). For the multivariate Student-t distribution with
k > 1 degrees of freedom, location ν ∈ Rd, shape Σ ∈ Rd ×Rd and pdf

tk(x) = ck,d det(Σ)−1/2

[
1 +

(x− ν)TΣ−1(x− ν)

k

]−(k+d)/2

with normalizing constant ck,d and full support Rd, the directional derivatives are

Tei,tkf(x) = ∂eif(x)− k + d

2

(
1 +

(x− ν)TΣ−1(x− ν)

k

)−1

(Σ−1(x− ν))if(x)

for i = 1, . . . , d. Using a similar argument as in Example 3.5, the scalar Stein class
contains all functions f : Rd → R such that Etk [‖∇f‖] <∞.

We stress the difference between the domain of the canonical directional operator,
which simply consists of differentiable functions, and its Stein class F(p) which contains
all functions F such that Te,p is integrable with respect to p in all directions and, moreover,
satisfy that for all e ∈ Sd−1,

Ep[Te,pF] = 0. (3.1)

Identity (3.1) is our canonical Stein identity in the spirit of (1.1). It is the identity
from which all other Stein identities in this paper will follow. In particular, given any
differentiable F, g, the product rule (2.1) yields the Stein-type product rule:

Te,p(F g) = (Te,pF)g + F ∂eg. (3.2)
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Plugging (3.2), for well-chosen functions F or g (or both), into (3.1), then leads to Stein-
type integration by parts identities which are the basis of many of the forthcoming
results. We first introduce the appropriate sets of functions.

Definition 3.7 (Stein adjoint class). Let F1,loc(p) be the class of all functions f : Ωp → R

with fp ∈ ACL(Ωp), and denote by Floc(p) the class of all scalar-, vector- and matrix-
valued functions F with all components belonging to F1,loc(p). To every (scalar-, vector-,
or matrix-valued) function F ∈ Floc(p) we denote by dom(p,F) the collection of all
functions g ∈ ACL(Ωp) which satisfy (F g) ∈ F(p) and F(∂eg) ∈ L1(p) for all e ∈ Sd−1.

By definition of Floc(p), for all g : Rd → R ∈ dom(p,F), the left-hand side in (3.2)
integrates to 0 under p and the integrals of the summands on the right-hand side may be
taken separately so that

Ep [(Te,pF)g + F ∂eg] = 0 (3.3)

for all e ∈ Sd−1, generalizing (3.1) to a Stein identity which is valid for all g ∈ dom(p,F).
Our approach to the Stein operator machinery for p is to fix some F and study the
operator (in g) that can be obtained from (3.3), viewed through its action on the class
dom(p,F). We call this process a standardization of the canonical operator, and will
dive more deeply into this in the next section. The quality of the operators obtained in
this manner depend on the choice of F. If F has all components in F(p) then dom(p,F)

contains at least the constant functions g ≡ 1. Even if the components of F do not belong
to F(p), dom(p, •) remains actually quite large, as we now show.

Lemma 3.8. Suppose that all components f of F are such that fp ∈ ACL1
loc(Ωp). Then

any function g ∈ Liploc(Ω) such that Fgp is compactly supported belongs to dom(p,F).

Proof. By Proposition A.5, we have fp ∈ L1
loc(Ωp). Since g ∈ Liploc(Ω), it belongs to

ACL(Ωp). Moreover, as g and ∂eg both bounded for any e ∈ Sd−1, fp(∂eg) ∈ L1
loc(Ωp).

Since fp(∂eg) has compact support, it belongs to L1(Ωp). From the product rule for the
classical derivatives and local boundedness of g and ∂eg, it follows that fgp ∈ ACL1

loc(Ωp).
As fgp has compact support, Proposition 3.3 yields that fgp ∈ ACL1

0(Ωp).

An in-depth discussion of dom(p,F) in the one-dimensional case, along with simple
sufficient conditions, can be found in [17, Section 2.3].

3.2 Standardizations

The canonical operators are our building blocks for a large family of Stein operators,
as follows.

Definition 3.9. A differential operator G 7→ AG acting on scalar-, or vector-, or matrix-
valued valued functions is a standardization of the canonical operators Tei,p, i = 1, . . . , d

if there exist linear operators {A1, . . . ,Ad} and {T1, . . . ,Td} such that

AG =

d∑
i=1

AiTei,p(TiG).

The associated Stein class is the collection F(p,A) of all functions G of appropriate
dimension such that AG is integrable with mean 0 under p.

Remark 3.10. We have kept the definition vague in our assumptions on the operators
A1, . . . ,Ad and T1, . . . ,Td which are allowed to be any linear operators on the corre-
sponding function spaces. In particular, they are allowed to be multiplications by fixed
functions, shift or differential operators which typically shrinks the associated Stein
class F(p,A) to a very small set: if Eph = 0, we typically do not have EpAih = 0. In
practice, however, the operators A1, . . . ,Ad we consider are in fact left compositions
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by linear maps acting between scalars, vectors or matrices. This preserves the size of
the associated Stein class F(p,A). In particular if Ai = Ti = I (the identity functional
operator) for i = 1, . . . , d, then the canonical Stein class F(p) is a subset of F(p,A).

In the sequel, we will say that a linear operator is a Stein operator for p if it is
a standardization of the canonical operators obtained through Definition 3.9. Such
standardizations were studied in [33] in dimension d = 1. Among the many possible
options, two stand out most naturally:

• Ai = ei and Ti = 1 for i = 1, . . . , d leading to what we call the gradient operator,
• Ai = Ti = 1 for i = 1, . . . , d leading to what we call the divergence operator.

Definition 3.11 (Gradient and divergence operator). The Stein gradient operator acting
on real-valued functions g : Rd → R is

T∇,pg=

d∑
i=1

eiTei,pg =
∇(pg)

p
.

The Stein divergence operator acting on vector-valued functions g : Rd → Rd is

Tdiv,pg =

d∑
i=1

Tei,pgi =
div(pg)

p
.

The Stein divergence operator acting on matrix-valued functions G : Rd → Rm×d is

(Tdiv,pG)i =

d∑
j=1

Tej ,pGi =
div(pGi)

p
for i = 1, . . . ,m.

Example 3.12 (Gaussian operators). Take ν ∈ Rd and Σ an invertible matrix in Rd×d.
For N (ν,Σ) with pdf γ,

T∇,γg(x) = ∇g(x)− Σ−1(x− ν)g(x) (3.4)

for all g : Rd → R (T∇,γg(x) is a vector) and

Tdiv,pg(x) = div g(x)−
〈
Σ−1(x− ν),g(x)

〉
(3.5)

for all g : Rd → Rd (Tdiv,γg(x) is a scalar).

From (3.3) we thus inherit an entire collection of Stein identities for functions defined
on an open set Ω and with components belonging to ACL(Ω). In the sequel we will make
use of the following instances:

1. For all scalar-valued functions f, g : Ω→ R we have from (2.2)

T∇,p(fg) = (T∇,pf) g + f ∇g . (3.6)

For each f ∈ F1,loc(p) we obtain the Stein identity

Ep
[
(T∇,pf) g

]
= −Ep[f ∇g] , (3.7)

which holds for all g ∈ dom(p, f).

2. For all matrix-valued functions F : Ω→ Rm×d and all g : Rd → R, using (2.3),

Tdiv,p(F g) = (Tdiv,pF) g + F∇g . (3.8)

For each F ∈ Floc(p) we obtain the Stein identity

Ep
[
(Tdiv,pF) g

]
= −Ep[F∇g] , (3.9)

which holds for all g ∈ dom(p,F).
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3. For all vector-valued function f : Ω→ Rd and all g : Rd → R, using (3.8),

Tdiv,p(fg) = (Tdiv,pf) g + 〈f ,∇g〉 . (3.10)

For each f ∈ Floc(p) we obtain the Stein identity

Ep
[
(Tdiv,pf) g

]
= −Ep

[
〈f ,∇g〉

]
, (3.11)

which holds for all g ∈ dom(p, f).

4. For all matrix-valued functions F : Ω→ Rd×d and all g : Rd → R, using (2.4),

Tdiv,p

(
FT ∇g

)
= 〈Tdiv,pF,∇g〉+

〈
F,∇2g

〉
HS
. (3.12)

For each F ∈ Floc(p) we obtain the Stein identity

Ep
[
〈Tdiv,pF,∇g〉

]
= −Ep

[〈
F,∇2g

〉
HS

]
, (3.13)

which holds for all g with ∇g ∈ dom(p,F).

Example 3.13 (Gaussian Stein identities). Following up on Examples 3.5 and 3.12, take
ν ∈ Rd and an invertible matrix Σ ∈ Rd×d and let γ denote the pdf of N (ν,Σ). Taking the
constant function f = 1 in (3.7), which is in F1(γ), we reap

Eγ [Σ−1(Id− ν)g] = Eγ [∇g] (3.14)

for all g : Rd → R belonging to dom(γ, 1). We could have also obtained this directly from
operator (3.4). Similarly, now taking the constant function F = Σ in (3.13), which is also
in F(γ), we recover the classical second order Stein identity (1.1) for the Gaussian. This
could have been obtained directly from operator (3.5) applied to functions g = Σ∇g.
Example 4.18 provides other choices of F.

3.3 Stein characterizations

Identity (3.3) (and the corresponding identities from Section 3.2) holds when inte-
grating under p. Our purpose now is to deduce “reverse” implications when changing
the measure p to some other measure q. The starting point is the following “directional”
observation.

Proposition 3.14 (Stein characterizations). Let p and q be pdfs with Ωq ⊆ Ωp. Suppose
that Ωp is connected and q/p ∈ Liploc (Ωp). Fix f ∈ F1,loc(p) with f 6= 0 over Ωp. Then
p = q if and only if Eq[gTe,pf ] = −Eq[f∂eg] for all e ∈ Sd−1 and all g ∈ dom(p, f) with
g(Te,pf), f(∂eg) ∈ L1(q).

Proof. If p = q, then the identity follows from (3.3). For the opposite direction, assume
that Eq[gTe,pf ] = −Eq[f ∂eg]. Then with (3.2), we have

0 = Eq
[
Te,p(fg)

]
= Ep

[(
Te,p(fg)

) q
p

]
= −Ep

[
fg ∂e

(
q

p

)]
,

where the last identity follows by (3.3) applied with q/p in place of g and F = fg,
provided that fg ∈ F1,loc(p) and q/p ∈ dom(p, fg). In particular, by Lemma 3.8, the latter
condition is satisfied by all g ∈ C∞c (Ωp). Therefore, fp ∂e(q/p) vanishes Lebesgue-almost
everywhere over Ωp. The same is true for ∂e(q/p) because fp vanishes nowhere over Ωp.
Since this is true for all e ∈ Sp−1 and Ωp is connected, the ratio q/p is Lebesgue-almost
everywhere constant on Ωp by Proposition A.2. However, as q/p is continuous, it must
be constant on the entire Ωp. In particular, Ωp = Ωq automatically. Since both p and q

integrate to 1 on their support, p = q follows.
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Remark 3.15. Proposition A.2, which was applied in the proof, can be regarded as the
extreme case of the Poincaré inequality – see Definition 4.5 – in which the inequality
turns to an equality. Similarly, Stein characterizations can be regarded as the extreme
case of inequalities for Stein disrepancies in which the Stein discrepancy takes on the
value 0. In Section 5.2, we derive bounds which are based precisely on the Poincaré
inequality.

The directional characterizations from Proposition 3.14 lead to a wide variety of
characterizations, among which we highlight the following two.

Proposition 3.16 (Some Stein characterizations). Let p and q be as in Proposition 3.14.

1. Let f : Rd → R ∈ F1,loc(p). Then p = q if and only if

Eq
[
gT∇,pf

]
= −Eq

[
f ∇g

]
for all g : Rd → R ∈ dom(p, f).

2. Let F : Rd → Rm×d ∈ Floc(p) be such that the matrix F(x) has zero nullity for
Lebesgue-almost all x ∈ Ωp. Then p = q if and only if

Eq [gTdiv,pF] = −Eq
[
F∇g

]
for all g : Rd → R ∈ dom(p,F).

Proof. The first part follows directly from Proposition 3.14. The second one can be
proved similarly: if p = q, the desired equality follows from (3.9). For the opposite
direction, (3.8) and (3.9) give Ep

[
Fg∇(q/p)

]
= 0 for all g ∈ C∞c (Ωp). Therefore, F∇(q/p)

vanishes Lebesgue-almost everywhere over Ωp. Since F(x) has zero nullity for Lebesgue-
almost all x ∈ Ωp, ∇(q/p) also vanishes Lebesgue-almost everywhere. As a result, q/p is
constant on Ωp and the result follows.

3.4 The score function and the Stein kernel

We conclude the section with three key examples of Stein operators.

3.4.1 Gradient based first order operators and the score function

We first focus on operator (3.6) and its companion Stein identity (3.7). We deduce a
family of Stein operators for p obtained by fixing some differentiable f and considering
the first order operator Ap := Af,p given by

g 7→ Apg := T∇,p(fg)

with associated Stein class g : Rd → R ∈ F(Ap) = dom(p, f). Each particular a.s.
differentiable f thus gives rise to a particular operator, acting on a particular class of
functions, entailing a particular Stein identity. One choice for f stands out: f = 1.

Definition 3.17 (Score function and operator). Let p be differentiable. The score func-
tion of p is the function

ρp = T∇,p1 = ∇ log p =
∇p
p

(still with the convention that ρp ≡ 0 outside of Ωp). The score-Stein operator is the
vector-valued operator

Ap = ∇+ ρpI (3.15)

acting on differentiable functions g : Rd → R.
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Operator (3.15) is the most classical Stein operator for multivariate p. It is particularly
useful in the context of Stein’s method when F1(p) contains all constant functions. The
latter assumption holds if p is a differentiable pdf such that ∂ip is integrable for all
i = 1, . . . , d and

∫
∂ip = 0 (this is not guaranteed if we only assume that p is continuously

differentiable: consider for example p(x) ∝ x2 sin(x−2) on (0, 1)). Then we can take
F(Ap) = dom(p, 1); the resulting (characterizing) Stein identity is

Ep [ρp g] = −Ep [∇g] for all g ∈ F(Ap).

If 1 /∈ F1(p) then a version of this identity still holds, but with integration constants
which must be taken into account in the various identities, see Theorem 5.1.

Example 3.18 (Gaussian score operator). For N (ν,Σ) with pdf γ, we have ργ(x) =

∇ log γ(x) = −Σ−1(x− ν); the corresponding operator is

Aγg(x) = ∇g(x)− Σ−1(x− ν)g(x).

The flexibility of choice of functions f clarifies a relationship between Stein operators,
as follows.

Example 3.19 (Gradient based operators and change of measure). Suppose that f is
such that fp is a pdf which is continuously differentiable on its support Ωp. Then, for any
g which is continuously differentiable on Ωp,

T∇,p (fg) =
∇(gfp)

p
= f
∇(gfp)

fp
= f T∇,fp(g) .

Such a change of measure operation can be useful for finding solutions of Stein equations.
The Stein equation

T∇,p(fg) = h− Eph

then translates into

T∇,fp(g) =
1

f
(h− Eph) .

For instance, if p is log-concave then, under additional regularity conditions, solutions of
the Stein equation with bounded derivatives are available (see [35]). In Proposition 5.15
we shall show a similar result under the assumption of a Poincaré constant. Such bounds
may also be applied even when p is not log-concave or does not possess a Poincaré
constant, but there exists f such that fp is has this desired property and the change
of measure illustrated above can be applied. As an illustration, the one-dimensional
Beta distribution with pdf p(x) = xα−1(1 − x)β−1/B(α, β) on (0, 1) is not log-concave
if min(α, β) < 1. Choosing f(x) = B(α, β)x(1 − x)/B(α + 1, β + 1) results in fp being
log-concave. However, as a different Stein equation is being solved, Stein’s method
need not bound the error in the same metric. For log-concave densities, such as fp, one
can for instance obtain bounds in the Wasserstein distance, while for p, the bound is
expressed in a different metric. This change of measure leads to p and fp to be nested
in the sense of Section 5.1, where the focus is on Wasserstein distance.

3.4.2 Divergence based first order operators and Stein kernels

We now start from the product rule (3.8) and the corresponding Stein identity (3.9), with
F : Rd → Rm×d and g : Rd → R. We deduce a family of Stein operators for p obtained by
fixing F and considering

g 7→ Apg = Tdiv,p

(
Fg
)

= (Tdiv,pF)g + F∇g
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with associated Stein class F(Ap) := dom(p,F).
Taking F = Id the identity matrix results in (3.15). If p has finite covariance Σ, a more

natural choice may be F ≡ Σ, but the resulting operator is not intrinsically different
from (3.15). A different group of choices for F stands out: Stein kernels, which we define
as follows.

Definition 3.20 (Stein kernel and operator). Suppose p has finite mean ν ∈ Rd. For each
unit vector ei ∈ Rd, i = 1, . . . , d, a Stein kernel for p in direction ei is any vector field
x 7→ τi(x) ∈ Rd such that τip ∈ ACL1

loc(Ωp) and, for Lebesgue-almost all x ∈ Ωp,

Tdiv,p

(
τi
)
(x) = νi − xi.

A Stein kernel is any square matrix-valued function τ = (τi,j)16i,j6d such that each row
τ i = (τi1, . . . , τid) is a Stein kernel for p in direction ei;

Tdiv,pτ = ν − Id a.e. on Ωp. (3.16)

For a given Stein kernel τ the τ -kernel-Stein operator acting on scalar-valued functions
g is the Rd-valued operator

Apg(x) = Tdiv,p

(
τg
)
(x) = τ (x)∇g(x)− (x− ν)g(x)

with domain F(Ap).
Example 3.21 (Gaussian Stein kernel). For N (ν,Σ) with pdf γ, as we shall see in Sec-
tion 4, the constant function with value Σ is a Stein kernel for γ; the corresponding
operator is

Aγg(x) = Σ∇g(x)− (x− ν)g(x).

The only difference to the score-Stein operator from Example 3.18 is the position of the
covariance matrix Σ.

We note that the definition of a Stein kernel does not make any assumption about
its nullity, but in view of Proposition 3.14, often a Stein kernel with zero nullity may be
desirable.

As argued in the Introduction, Stein kernels play an important role in the study of
probability distributions. We defer a detailed study (existence, construction, examples,
applications) to Section 4.

3.4.3 Divergence based second order operators

Finally we consider the product rule (3.12) and corresponding Stein identity (3.13), for
some differentiable matrix valued function F. We deduce the family of operators

g 7→ Apg = Tdiv,p

(
FT ∇g

)
= 〈Tdiv,pF,∇g〉+

〈
F,∇2g

〉
HS

(3.17)

with corresponding class F(Ap) the collection of g such that ∇g ∈ dom(p,F).
In line with the previous considerations, two choices for F stand out:

(i) F ≡ Id, so that
Apg = 〈∇ log p,∇g〉+ ∆g (3.18)

with class F(Ap) the collection of g such that ∇g ∈ dom(p, Id);

(ii) F = τ , a Stein kernel for p, so that

Apg = 〈ν − Id,∇g〉+ 〈τ ,∇2g〉HS (3.19)

with domain F(Ap) the collection of g such that ∇g ∈ dom(p, τ ).
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Example 3.22 (Gaussian second order operator). For N (ν,Σ) with pdf γ, (3.18) yields

Aγg(x) = ∆g(x)−
〈
Σ−1(x− ν),∇g(x)

〉
whereas (3.19) with τ = Σ yields

Aγg(x) =
〈
Σ,∇2g

〉
HS
− 〈x− ν,∇g(x)〉 .

Example 3.23 (Generators of diffusions). [Gaussian second order operator] Infinitesimal
generators of multivariate diffusions as studied e.g. in [25, 19] are of the form (3.17),
with F imposed by the properties of the underlying process. Indeed consider a measure
µ with pdf p in C2(Rd) which is the ergodic measure of the Itô stochastic differential
equation

dZt = b(Zt) dt+ σ(Zt) dBt, Z0 = x,

where Bt is a standard d-dimensional Brownian motion, b : Rd → Rd is a sufficiently
regular (typically Lipschitz) drift coefficient and σ : Rd → Rd×m is a sufficiently regular
(again, typically Lipschitz) diffusion coefficient. Let a = σσT denote the covariance
coefficient of the process. The Stein operators from [25, Theorem 2] are of the form

Apg =
1

2
Tdiv,p ((a + c)∇g)

where c is a differentiable skew-symmetric matrix-valued function such that Tdiv,pc(x) is
nonreversible.

4 More about Stein kernels

In this section we study constructions of Stein kernels and give some applications
towards distributional comparisons.

4.1 Existence and construction

From Definition 3.20, a matrix-valued function τ is a Stein kernel for a continuously
differentiable pdf p if and only if τ p is continuously differentiable on Ωp and (3.16) holds.
By the product rule (2.3), the score function and the divergence operator are linked
through

Tdiv,pF = Fρp + div(F). (4.1)

Hence for a pdf p with mean ν, any continuously differentiable matrix-valued function τ

satisfying Lebesgue-almost surely on Ωp,

τ ρp + div(τ ) = ν − Id

is a Stein kernel for p. This leads to the following simple explicit construction of a family
of Stein kernels.

Lemma 4.1. A Stein kernel can be constructed as

τ =
1

α+ β
F

where F is a continuously differentiable matrix-valued function such that for some
constant α, β ∈ R, α+ β 6= 0 and a function r : Rd → Rd,

F(x) ρp(x) = α(ν − x) + r(x) (4.2)

divF(x) = β(ν − x)− r(x). (4.3)
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Proof. Inserting (4.2) and (4.3) into (4.1) gives the assertion.

Remark 4.2. Using product rule (3.8) and a density argument, it is straightforward to
see that showing some differentiable matrix valued function is a Stein kernel can be
done equivalently by checking that the Stein identity

Ep [τ ∇g] = Ep [(Id− ν)g] (4.4)

holds at least for g ∈ C∞c (Ωp); this concurs with the original definitions of multivariate
Stein kernels as proposed e.g. in [38].

Remark 4.3. Equation (4.4) can be used to relate the moments of p with the moments
of a Stein kernel. For instance, if τ is a Stein kernel for p, if p has finite variance Σ, and
if Id− ν ∈ dom(p, τ ) (a mild condition), it follows directly from (4.4) that E [τ ] = Σ.

Example 4.4 (Gaussian Stein kernel). For N (ν,Σ), (3.14) entails that τ (x) = Σ is a
Gaussian Stein kernel. Example 4.18 will illustrate that it is not the only one.

In the one-dimensional case, the first order differential equation corresponding
to (4.4) is easy to solve. If Ωp is an interval (possible infinite), then

τ(x) =
1

p(x)

∫ x

−∞
(ν − u) p(u) du = − 1

p(x)

∫ ∞
x

(ν − u) p(u) du

is the unique Stein kernel with τ(x) p(x) tending to zero as x approaches the boundary of
Ωp or infinity. We refer to [17, 43] for an overview and bibliography on one-dimensional
Stein kernels. In higher dimensions, given that there exist infinitely many functions
which share a divergence, the Stein kernel is by no means uniquely defined. Aside from
the construction in Lemma 4.1, we also have a result, due to [15], which provides a
characterizing Stein kernel under the assumption that the distribution admits a Poincaré
constant, as follows.

Definition 4.5. A probability distribution P satisfies a Poincaré inequality if there
exists a constant C < ∞ such that for every locally Lipschitz function ϕ ∈ L2(P ) with
expectation EPϕ = 0, we have EPϕ2 6 CEP ‖∇ϕ‖2. The smallest constant for which this
inequality holds is the Poincaré constant of P , denoted CP ; it is also referred to as P ’s
spectral gap.

Example 4.6 (Stein kernels under a Poincaré inequality). In [15] a Stein kernel is defined
as any matrix τ such that (1.2) holds for all g : Rd → Rd in the Sobolev space W 1,2

p . With
this definition it is shown that if p satisfies a Poincaré-type inequality then it possesses a
Stein kernel such that each row is the gradient of a vector field.

Our next main result, Theorem 4.12, provides another explicit construction which is
valid under very weak assumptions. We start with a formula for bivariate distributions.
For a bivariate density p, denote by p1 the marginal density of the first component (i. e.,
in direction e1) and by p2|1(x2 | x1) := p(x1, x2)/p1(x1) the conditional density of the
second component given the first one. Next, define ∂1p2|1 and ∂2p2|1 as ∂1p2|1(x2 | x1) :=

∂x1
(x2 | x1) and ∂2p2|1(x2 | x1) := ∂x2

(x2 | x1).

Lemma 4.7 (Bivariate Stein kernels). Let p be a continuous pdf on R2 which is C1

on its support Ωp. Suppose that each x1 ∈ Ωp1 has a neighbourhood U such that∫∞
−∞ supu∈U

∣∣∂1p2|1(v | u)
∣∣dv <∞. Moreover, suppose that p1 has finite mean ν1, and let

τ1 be the corresponding univariate kernel. Set τ11(x1, x2) = τ1(x1) and

τ12(x1, x2) = − τ1(x1)

p2|1(x2 | x1)

∫ x2

−∞
∂1p2|1(v | x1) dv

=
τ1(x1)

p2|1(x2 | x1)

∫ ∞
x2

∂1p2|1(v | x1) dv .

(4.5)
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Then the vector (x1, x2) 7→ (τ11(x1, x2), τ12(x1, x2)) is a Stein kernel for p in the direction
e1. A Stein kernel for p in the direction e2 is defined similarly, by reversing the roles of
x1 and x2.

Proof. First, we observe that both expressions in the right-hand side of (4.5) agree
because

∫∞
−∞ ∂1p2|1(v | x1) dv = ∂x1

∫∞
−∞ p2|1(v | x1) dv = 0: the stated conditions allow

us to differentiate under the integral sign. The fact that
∑2
j=1 ∂xj

[
τ1j(x1, x2) p(x1, x2)

]
=

(ν1 − x1) p(x1, x2) for all (x1, x2) ∈ Ωp follows easily from the definitions of τ11 and τ12

and some straightforward manipulations. Finally, to check differentiability of (τ11, τ12)p,
we rewrite (4.5) as

τ12(x1, x2) p(x1, x2) = τ1(x1) p1(x1)

∫ ∞
x2

∂1p2|1(v | x1) dv .

Remark 4.8. The inspiration for formula (4.5) is [6, Equation (9)], where a similar
quantity is introduced via a transport argument. To see the connection, assume that
Ωp = Ω× Ω for an open set Ω ⊆ R. Fix i = 1 and, for each t, t′, x2 ∈ Ω let x2 7→ Tt,t′(x2)

be the map Ω → Ω transporting the conditional pdf at x1 = t to that at x1 = t′. By the
transformation formula, we have

p2|1(x2 | t) = p2|1
(
Tt,t′(x2 | t′)

)
∂x2

Tt,t′(x2). (4.6)

In particular Tt,t(x2) = x2 and ∂x2
Tt,t(x2) = 1. Assume that the function (t, t′, x2) 7→

Tt,t′(x2) is twice continuously differentiable. Taking derivatives in (4.6) with respect to t′

and setting t′ = t = x1 we deduce that

∂2p2|1(x2 | x1) ∂t′Tt,t′(x2)
∣∣
t′=t=x1

+ ∂1p2|1(x2 | x1)

+ p2|1(x2 | x1) ∂t′∂x2
Tt,t′(x2)

∣∣
t′=t=x1

= 0 .

Interchanging the differentiation in the last term and applying the product rule, we
obtain

∂x2

[
p2|1(x2 | x1) ∂t′Tt,t′(x2)

∣∣
t′=t=x1

]
+ ∂1p2|1(x2 | x1) = 0 .

Integrating by x2, applying (4.5) and multiplying by p1(x1), we find that the functions

p(x1, x2) ∂t′Tt,t′(x2)
∣∣
t′=t=x1

and p(x1, x2)
τ12(x1, x2)

τ1(x1)

differ only by a function of x1. Thus, the ratio of the Stein kernel components corresponds
to the direction of the transport from x1 to x2 at t. Another construction connected to
optimal transport considerations is provided in [20].

Next we compute this bivariate kernel for several examples.

Example 4.9 (Bivariate Gaussian). For the bivariate Gaussian distribution N (ν,Σ) direct
computations of the kernel in Lemma 4.7 lead to τ (x) = Σ.

Example 4.10 (Bivariate Student). For the bivariate Student distribution tk(ν,Σ) direct
computations of the kernel in Lemma 4.7 give τ (x) = 1

k−1

(
(x− ν)(x− ν)T + kΣ

)
which

we shall encounter again in Example 4.19. See also example 3.6. Note that this Stein
kernel cannot be written as a gradient.

Example 4.11 (Bivariate normal-gamma). Direct computations of the kernel in Lemma
4.7 for the bivariate normal-gamma distribution NG(µ, λ, α, β) with pdf

p(x1, x2) =
βα
√
λ

Γ(α)
√

2π
x
α− 1

2
2 e−x2β− 1

2x2λ(x1−µ)2
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on (x1, x2) ∈ R×R+ give

τ (x1, x2) =

(
κ(x1−µ)2+2β
κ(2α−1)

2(x1−µ)x2

2α−1
x1−µ

2β
x2

β

)
where, for the second line, we simply exchange the roles of x1 and x2 in Lemma 4.7.
Notably, this Stein kernel is not symmetric.

Next, we state and prove Theorem 4.12, which, inspired by [4], gives a mechanism
extending the bivariate construction from Lemma 4.7 to arbitrary dimensions.

Theorem 4.12. Let p : Rd → (0,∞) be a continuously twice differentiable pdf on Rd

with ∫
‖∇p‖2

p
<∞ and

∫ ∥∥∇2(p)
∥∥ <∞

and such that p has finite variance. Denote by τ (1)
i , i = 1, . . . , d the marginal Stein kernels.

Then, for any direction ei, i = 1, . . . , d there exists a Stein kernel τ (d)
p,i (x) for p in direction

ei,

τ
(d)
p,i (x) = τ

(1)
i (xi)

(
τ

(d)
i,1 (x | xi) · · · τ (d)

i,i−1(x | xi) 1 τ
(d)
i,i+1(x | xi) · · · τ (d)

i,d (x | xi)
)
T

such that τ (d)
i (x | xi) =

(
τ

(d)
i,1 (x | xi), . . . , τ (d)

i,d (x | xi)
)T

as a function of x solves the
equation

Tdiv,p(τ
(d)
i (x | xi)) = ρi(xi). (4.7)

Here ρi(xi) = p′i(xi)/pi(xi) is the score function of the marginal of p in direction ei and

x = (x1, . . . , xd). Moreover, τ (d)
i,i (x | xi) = τ

(1)
i (xi).

Proof. Let ei be a unit vector and pi the marginal of p in direction ei. The result is almost
immediate from [4, Theorem 4], where it is proved (see middle of page 978) that, under
the stated conditions, there exist continuously differentiable vector fields τ (d)

i (x | xi) as
functions of x such that

divx
(
τ

(d)
i (x | xi)(x) p(x)

)
p(x)

=
p′i(xi)

pi(xi)

and such that the component of τ (d)
i (x | xi) in direction ei equals 1: 〈τ (d)

i (x | xi), ei〉 = 1

for all x. Thus, (4.7) holds. To see the connection with Stein kernels, write τ (d)
ij (x) =

τ
(1)
i (xi) τ

(d)
ij (x | xi). Then

d∑
j=1

∂xj

(
τ

(d)
ij (x) p(x)

)
=

d∑
j=1

∂xj

(
τ

(d)
ij (x | xi) p(x) τ

(1)
i (xi)

)

=

d∑
j=1

∂xj

(
τ

(d)
ij (x | xi) p(x)

)
τ

(1)
i (xi)

+

d∑
j=1

τ
(d)
ij (x | xi) p(x) ∂xj

(
τ

(1)
i (xi)

)
= ρi(xi) p(x) τ

(1)
i (xi) + p(x) ∂iτ

(1)
i (xi) ,

where in the last line we use (4.7) in the first sum and ∂xj (τ
(1)
i (xi)) = 0 for all j 6= i in

the second sum. By the definition of the univariate Stein kernel,

∂iτi
(1)(xi) = −ρi(xi)τi(1)(xi) + E[Xi]− xi .

The claim follows.
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Remark 4.13. The proof of [4, Theorem 4] provides an explicit solution of (4.7), allowing
us to generalize the bivariate construction from Lemma 4.7 to the d-variate case under
the same conditions. A Stein kernel in direction e1 can be constructed in terms of the
conditional densities

pj,j+1,...,d|1(xj , xj+1, . . . , xd | x1) =
p1,j,j+1,...,d(x1, xj , xj+1, . . . , xd)

p1(x1)

and marginal cumulative distribution functions Pi(xi) =
∫ xi

−∞ pi(v) dv as follows: firstly,

set τ (d)
1,1 (x1, x2, . . . , xd) = τ1(x1). For j = 2, 3, . . . , d− 1, set

τ
(d)
1,j (x1, x2, . . . , xd) = τ1(x1)

p1(x1) p2(x2) · · · pj−1(xj−1)

p(x1, x2, . . . , xd)

×
∫ ∞
xj

∂1pj,j+1,...,d|1(v, xj+1, xj+2, . . . , xd | x1) dv

+ τ1(x1)
p1(x1) p2(x2) · · · pj−1(xj−1)Pj(xj)

p(x1, x2, . . . , xd)

× ∂1pj+1,j+2,...,d|1(xj+1, xj+2, . . . , xd | x1) .

Finally, set

τ
(d)
1,d (x1, x2, . . . , xd) = τ1(x1)

p1(x1) p2(x2) · · · pd−1(xd−1)

p(x1, x2, . . . , xd)

∫ ∞
xd

∂1pd|1(v | x1) dv

(the partial derivative ∂1 is defined as in the bivariate case). A straightforward, though

somewhat involved calculation shows that
(
τ

(d)
1,1 , . . . , τ

(d)
1,d

)T
is indeed a Stein kernel in

direction e1. Stein kernels in other directions can be obtained analogously by rotating
the indices.

4.2 Stein kernels for elliptical distributions

In this subsection we construct a family of Stein kernels for any member of the family
of elliptical distributions.

Definition 4.14. The multivariate elliptical distribution Ed(ν,Σ, φ) on Rd has pdf

p(x) = κ [det(Σ)]−1/2φ

(
1

2
(x− ν)TΣ−1(x− ν)

)
, x ∈ Rd, (4.8)

for φ : R+ → R+ a measurable function, ν ∈ Rd, Σ = (σij) a symmetric positive definite
d× d matrix, and κ the normalizing constant.

Note that the matrix Σ in (4.8) is not necessarily the covariance matrix; also not all
choices of φ lead to well-defined densities, see [29] for a discussion and references.

Some prominent members of the elliptical family are the Gaussian distribution
Nd(ν,Σ), with φ(t) = e−t; the power exponential distribution, with φ(t) = exp(−bp,ζtζ)
for ζ > 0 and bp,ζ a scale factor; the multivariate Student-t distribution, with φ(t) =

(1 + 2t/k)
−(k+d)/2; and the spherical distributions Ed(0, Id, φ). For simplicity, we assume

that φ(t) > 0 for all t ≥ 0 so that Ωp = Rd. Example 2.1 in [21] shows that in order to find
Stein kernels for elliptical distributions, it suffices to consider spherical distributions, so
that Σ = Id and ν = 0. However as the notion of Stein kernel is not as broad in [21] we
provide a proof here.

Proposition 4.15. The application τ 7→
[
x 7→ Σ1/2τ (Σ−1/2(x− ν))Σ1/2

]
maps Stein ker-

nels of Ed(0, Id, φ) to Stein kernels of Ed(ν,Σ, φ) and is a bijection.

EJP 28 (2023), paper 59.
Page 20/40

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP883
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stein’s density method for multivariate continuous distributions

Proof. Fix a matrix A and a vector b of a proper dimension, define Ã(x) := Ax+ b. By the
chain rule, we have div(F ◦ Ã) =

(
div(FAT )

)
◦ Ã for any suitable matrix-valued function

F. Alternatively, one can write div
(
(FA−T ) ◦ Ã

)
= (divF) ◦ Ã. Letting F = pτ , where

p is a scalar-valued function, we obtain Tdiv,p◦Ã
(
(τA−T ) ◦ Ã

)
= (Tdiv,pτ ) ◦ Ã. Now let

Ã(x) := Σ−1/2(x−ν) and let p be the density of Ed(0, Id, φ). Clearly, q := [det(Σ)]−1/2(p◦Ã)

is the density of Ed(ν,Σ, φ). If τ is a Stein kernel for Ed(0, Id, φ), then Tdiv,pτ (z) = −z.
Letting z = Ã(x), we then have Tdiv,q

(
(τΣ1/2) ◦ Ã

)
(x) = Tdiv,p◦Ã

(
(τΣ1/2) ◦ Ã

)
(x) =

(Tdiv,pτ )
(
Ã(x)

)
= Σ−1/2(ν − x). Multiplying by Σ1/2 from the left, we conclude that

x 7→ Σ1/2τ
(
Σ−1/2(x− ν)

)
Σ1/2 is a Stein kernel for Ed(ν,Σ, φ).

The score function for Ed(ν,Σ, φ) is

ρp(x) = Σ−1(x− ν)
φ′
(
(x− ν)TΣ−1(x− ν)/2

)
φ
(
(x− ν)TΣ−1(x− ν)/2

) , x ∈ Rd.

Combining this special form with Lemma 4.1 yields a family of Stein kernels for members
of the elliptical distributions.

Proposition 4.16. For d ≥ 2, letting t = (x − ν)TΣ−1(x − ν)/2, the matrix-valued
functions

τ δ(x) =

φ′′(t)/φ′(t)
φ′(t)/φ(t) − δ

(2− δ)(d− 1)

 d− 1

δ φ
′(t)
φ(t) −

φ′′(t)
φ′(t)

+ 2t

Σ− (x− ν)(x− ν)T

 (4.9)

are Stein kernels for Ed(ν,Σ, φ) for all δ 6= 2, as long as τ δ ∈ ACL1
loc(Rd).

Proof. We first set ν = 0 and Σ = Id. Using the temporary notation ψ(t) = φ(t)/φ′(t), the
score function is ρp(x) = x/ψ(t) with t = xTx/2. To use (4.2) with r = 0, the equation

F(x)x = −αψ(t)x

is solved for example by F(x) = −αψ(t)
2t xx

T . More generally a family of solutions of (4.2)
with r = 0 is given by matrix-valued functions of the form

F(x) = −α ψ(t)

2(t+ f(t))

(
xxT + 2f(t) Id

)
for some f : R→ R: it is easy to check that F(x)ρp(x) = −αx. For (4.3) with r = 0 the
flexibility in the choice of f enters: we introduce b(t) = −αψ(t)/

(
2(t + f(t))

)
so that

F(x) = b(t)
(
xxT + 2f(t) Id

)
. By (2.3) and straightforward calculation, we obtain

divx

[
b(t)

(
xxT + 2f(t) Id

)]
=
[
2tb′(t) + 2

(
b′(t)f(t) + b(t)f ′(t)

)
+ (d+ 1)b(t)

]
x .

For (4.3) with r = 0 to hold, it suffices to choose f such that, for all t ∈ R,

2
(
t+ f(t)

)
b′(t) +

(
2f ′(t) + (d+ 1)

)
b(t) = −β (4.10)

for some β. Since b(t) = −αψ(t)/
(
2(t+f(t))

)
, simple calculations lead to the requirement

that

t+ f(t) = − (d− 1)ψ(t)

2ψ′(t)− 2β/α

at all t. With this in hand, we easily obtain

F(x) =
−β + αψ′(t)

d− 1

(
xxT −

(
(d− 1)ψ(t)

ψ′(t)− β/α
+ 2t

)
Id

)
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Plugging in ψ(t) = φ(t)/φ′(t) whose derivative is ψ′(t) = 1 − φ(t)φ′′(t)/(φ′(t))2, and
dividing by α + β, then setting δ = 1 − β/α, Proposition 4.16 ensues for ν = 0,Σ = Id;
the general formula follows from Proposition 4.15.

The equation (4.10) can be reparameterized as follows.

Corollary 4.17. Let a, b : Rd → R be two continuously differentiable functions such that,
for all t > 0,

(a(t)φ(t))′

φ(t)
+ 2t

(b(t)φ(t))′

φ(t)
+ (d+ 1)b(t) + 1 = 0. (4.11)

Then
τ a,b(x) = a(t)Σ + b(t) (x− ν)(x− ν)T

with t = 1
2 (x− ν)TΣ−1(x− ν) is a Stein kernel for Ed(ν,Σ, φ).

Proof. In (4.10) take β = −1 and require that a(t) satisfies

(aφ)′(t) = 2φ(t)(bf)′(t) +
tφ(t)

t+ f(t)
.

Then the assertion follows from Proposition 4.16.

Many options in (4.11) are possible. For instance, setting b ≡ 0 gives a(t) =
1
φ(t)

∫ +∞
t

φ(u) du, and the matrix-valued function

τ (x) =

(
1

φ((x− ν)TΣ−1(x− ν)/2)

∫ +∞

(x−ν)T Σ−1(x−ν)/2

φ(u) du

)
Σ (4.12)

is a Stein kernel for Ed(ν,Σ, φ) (provided it is continuously differentiable). This recovers
[29, Theorem 2]. Setting a ≡ 0 leads to:

τ (x) =

(
t−

d+1
2

2φ(t)

∫ +∞

t

u
d−1
2 φ(u) du

)
(x− ν)(x− ν)T ,

is a Stein kernel for Ed(ν,Σ, φ); we have so far not found any use for this formula.

Example 4.18 (Stein kernels for the multivariate Gaussian distribution). As the multivari-
ate Gaussian has φ(t) = e−t and φ′(t)/φ(t) = −1, we recover that

ργ(x) = −Σ−1(x− ν)

is the score function of γ. Since 1
φ(t)

∫∞
t
φ(u) du = 1 for all t, (4.12) shows that τ 1 = Σ

is a Stein kernel for γ. Moreover, (4.9) yields, after some simplifications, the following
family τ δ(x) given for δ 6= 2 by

τ δ(x) =
1

(2− δ)(d− 1)

(
(d− 1 + 2t(1− δ)) Σ− (1− δ)(x− ν)(x− ν)T

)
(4.13)

are all Stein kernels for γ. In particular, the choice δ = 1 recovers τ 0(x) = Σ, although
many other choices are possible. First explorations indicate that in this example the free-
dom of choice in τ δ does not provide improvement over the most natural choice τ (x) = Σ,
for comparison of normal distributions in Wasserstein distance, see Example 4.20.

Example 4.19 (Stein kernels for the multivariate Student t-distribution). This distribution
is an elliptical distribution with φ(t) = (1 + 2t/k)−(k+d)/2 and hence φ′(t)/φ(t) = −(d +

k)/(k + 2t). From k > 1 it follows that d+ k > 2 and

1

φ(t)

∫ +∞

t

φ(u) du =
k + 2t

d+ k − 2
.
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Hence (4.12) gives that

τ 1(x) =
(x− ν)TΣ−1(x− ν) + k

d+ k − 2
Σ (4.14)

is a Stein kernel for the multivariate Student distribution for k > 2; here k > 2 guar-
antees that tk has finite variance. Also, we note that τ 1 ∈ F(tk). Similarly, using that
φ′′(t)/φ′(t) = −(d+k+2)/(k+2t), (4.9) gives a family of Stein kernels which are indexed
by δ 6= 2:

τ δ(x) =
1

(2− δ)(d+ k)(d− 1)

[
{(d− 1)(k + 2t) + 2t((1− δ)(d+ k) + 2)}Σ

− {(1− δ)(d+ k) + 2} (x− ν)(x− ν)T
]
.

(4.15)

We note that τ δ ∈ F(tk) for k > 2. The particular choice of δ such that d− 1 + (1− δ)(d+

k) + 2 = 0, i.e. δ = 1− (d+ 1)/(d+ k), eliminates t from (4.15) and, after simplifications,
we obtain for k > 2

τ 2(x) =
1

k − 1

(
(x− ν)(x− ν)T + kΣ

)
. (4.16)

This agrees with the kernel already identified in Example 4.10. When d = 1, then both
τ 1 and τ 2 simplify to τ(x) = (x2 + kσ2)/(k − 1), the univariate kernel for the Student-t
distribution with k degrees of freedom and centrality parameter σ2, see e.g. [33, page
30]. We will see in Example 4.21 that, when comparing with a Gaussian pdf, neither τ 1

nor τ 2 are “better” choices; in fact optimizing over δ in (4.15) provides possibilities for
strict improvement.

4.3 Stein kernel discrepancies

Stein kernels provide a natural means for comparing distributions through the
discrepancy

S(p2 | p1) = inf
τ1,τ2

Ep2 [‖τ 2 − τ 1‖2HS]1/2

where the infimum is taken over all Stein kernels for p1 and for p2. In, fact, the specific
case p1 = γ the standard normal distribution has been studied in detail e.g. in [38, 30, 15]
where connections with various classical probability metrics as well as information-type
discrepancies are identified. In particular it is shown in [30] that

W2(γ, p2) 6 S(p2 | γ)

(hereW2 denotes the classical 2-Wasserstein distance). We shall see in Example 5.4 in
the next section that, outside a Gaussian context, S(p2 | p1) also bounds 1-Wasserstein
distance, under some additional assumptions on p1.

Example 4.20 (Comparison between Gaussians). For i = 1, 2 let pi be a centred Gaussian
pdf with covariance Σi. Then

S(p2 | p1)2 6 ‖Σ2 − Σ1‖HS. (4.17)

If the Σi are of the form Σi =

(
1 ρi
ρi 1

)
for some ρi ∈ [0, 1], i = 1, 2, then

‖Σ2 − Σ1‖HS =
√

2|ρ1 − ρ2|

which is exactly the value of the 2-Wasserstein distance in this case, see [47, Theorem 2.4].
A legitimate question in this context is whether there is some optimization to be reaped
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from the freedom of choice in the Gaussian Stein kernels from (4.13), and considering
Epj‖τ 1,δ − τ 2,δ‖HS with j = 1, 2 and optimizing over δ. Explicit numeric computations
with the various kernels indicate that the answer is negative; they show that the smallest
bound is attained at δ = 1 and τ i,1 = Σi, i = 1, 2. The covariance matrix is therefore,
in this sense, the “best” Stein kernel for the Gaussian pdf. In the next example we will
exhibit a situation where optimization is in fact possible.

Example 4.21 (Student vs Gaussian). Let p1 = γ be the standard Gaussian pdf for which
we fix τ 1 = Id, and p2= tk the centred Student pdf with k degrees of freedom and shape
Σ = Id. The Stein kernels for this distribution from Example 4.19 provide a variety of
possible differences τ 1 − τ 2. For instance we get

τ 1(x)− τ 2(x) =

(
1− xTx+ k

d+ k − 2

)
Id and τ 1(x)− τ 2(x) = − 1

k − 1

(
xxT + Id

)
where the first is obtained by taking τ 2 as given in (4.14) and the second by taking τ 2 as
given in (4.16). These expressions lead to

S1(γ | tk) =

√
2d(d+ 2)

d+ k − 2
and S2(γ | tk) =

√
d(5 + d)

k − 1
,

respectively. When d = 1 we get S1(γ | tk) = S2(γ | tk) =
√

6/(k − 1) which concurs with
[33, Section 6.3]. In dimension d ≥ 2, both bounds tell a similar story, although for fixed
d the bound S2(γ | tk) is slightly smaller for large k than S1(γ | tk). However dependence
of S1(γ | tk) on the dimension is more informative, as this last bound does not explode as
d goes to infinity. For the sake of illustration, in the case d = 2, we also computed the
discrepancy provided by comparing τ 1 = Id with the kernel τ δ given in (4.15). Then one
can see that an optimal choice of parameters is δ = 1− 4(2k − 3)/(3k2 + 4k − 4) leading
to a third discrepancy given by

S3(γ | tk) =

√
40

8 + k(3k − 4)

which improves S1(γ | tk) and S2(γ | tk) for all k > 1. Similar manipulations will be
possible in higher dimensions; this may be of independent interest. Finally we remark
that we have also computed Sj(tk | γ), j = 1, 2, 3; however this results in bounds which
are hard to read and which we do not reproduce here.

Thanks to the results in Sections 4.1 and 4.2, manipulation of Stein kernels can be
surprisingly easy even for densities which are not elliptical and do not satisfy the usual
regularity assumptions (such as being log-concave, stationary distributions of diffusions,
having a spectral gap, etc.). This final example serves as an illustration.

Example 4.22 (Normal-gamma prior). Now consider a Bayesian model where the prior
distribution of θ is bivariate normal-gamma NG(µ0, λ0, α0, β0) (see Example 4.11). Let
ξ = 1/σ2 denote the precision and θ = (ν, ξ) ∈ R×R+ be the parameter of interest. For θ2

following the posterior distribution given X1 = x1, X2 = x2, . . . , Xn = xn (independently
sampled from a univariate Gaussian N (ν, σ2) distribution) it is known that the resulting
posterior distribution P2 of θ2 is

θ2 ∼ NG

(
λ0µ0 + nx̄

n+ λ0
, n+ λ0, α0 +

n

2
, β0 +

n

2
s2 +

1

2

nλ0

n+ λ0
(x̄− µ0)2

)
where x̄ = 1

n

∑n
i=1 xi denotes the sample mean and s2 = 1

n

∑n
i=1(xi − x̄)2. Similarly if θ

has (improper) prior the uniform distribution then it is easy to see that the corresponding
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Figure 1: The Stein discrepancy S(p2 | p1) comparing the effect of normal-gamma
NG(µ0, λ0, α0, β0) prior vs uniform prior on the posterior in a normal N (ν, σ2) model for
µ0 = 1 (blue circles), 3 (orange squares), 10 (green diamonds) and the fixed arbitrary
choice λ0 = 1, α0 = 2, β0 = 3, and s2 = 1.2. The Stein discrepancy to the normal
decreases superlinearly with increasing n, and with increasing distance |x̄− µ0|.

posterior distribution θ1 is

θ1 ∼ NG

(
x̄, n,

n+ 1

2
,
n

2
s2

)
.

Example 4.11 gives a family of Stein kernels, each of which results in a bound on the
Stein discrepancy which we do not detail here but but illustrate its behavior numerically
for certain choices of parameter in Figure 1. The Stein discrepancy to the normal
decreases superlinearly with increasing n, and with increasing distance |x̄− µ0|.

5 Comparing distributions in Wasserstein distance

The main motivation behind Stein’s method is the quantitative comparison of proba-
bility distributions. Consider two probability measures Pi on the same probability space,
with Stein operator Ai and Stein class F(Ai), for i = 1, 2. Given some class G of suit-
able test functions, Stein’s method uses supg∈G min {|EP2A1g|, |EP1A2g|} as a measure
of difference between P1 and P2. Given this premise, there are a variety of possible
routes, including couplings, exchangeable pairs, and comparison of operators. Here we
explore the latter approach; we focus on supg∈G |EP2A1|, the other bound following by
exchanging the roles of P1 and P2.

5.1 Comparing Stein operators with nested support

Recalling that Ep2A2g = 0 for all g ∈ F(A2), for any G ⊆ F(A2) it holds that

sup
g∈G

∣∣EP2A1g
∣∣ = sup

g∈G

∣∣EP2(A1 −A2)g
∣∣

so that the difference A1 − A2 controls the Stein discrepancy and, consequently, any
metric controlled by the latter. There is much freedom in the choice of operators
and classes for this purpose. For transparency of exposition we focus here on using
operators (3.17) to control Wasserstein distance W1(P1, P2), recalling (1.5). The main
general result of the section then follows from previous developments.

Theorem 5.1. Let P1 and P2 be two probability measures on Rd with respective pdfs
p1 and p2 having nested support Ωp2 ⊆ Ωp1 . Assume that Ep1 |h| < ∞ for every h ∈
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Lip(Ωp1 , 1). Associate to pi, i = 1, 2 the second order operator (3.17)

Aig = 〈Tdiv,piFi,∇g〉+
〈
Fi,∇2g

〉
HS

; i = 1, 2

for some matrix-valued functions Fi ∈ Floc(pi), i = 1, 2; let F(Ai), i = 1, 2 be the corre-
sponding Stein classes. Consider a collection G2(F1,F2) ⊆ F(A1) such that

(i) Ep2 |Aig| <∞ for i = 1, 2,

(ii)
∫

Ωp2

∣∣div
(
FT2 ∇g p2

)∣∣ <∞
for all g ∈ G2(F1,F2). Suppose that the matrix-valued functions F1 and F2 are such that,
for every h ∈ Lip(Ωp1 , 1), we can find a solution g ∈ G2(F1,F2) of the Stein equation

〈Tdiv,p1F1,∇g〉+
〈
F1,∇2g

〉
HS

= h− Ep1h . (5.1)

Then

W1(P1, P2) 6 sup
g∈G2(F1,F2)

∣∣∣Ep2[〈Tdiv,p1F1 − Tdiv,p2F2,∇g〉+
〈
F1 − F2,∇2g

〉
HS

]∣∣∣
+ κ2(F1,F2)

where κ2(F1,F2) = supg∈G2(F1,F2)

∣∣∣∫Ωp2
div
(
FT2 ∇g p2

)∣∣∣.
Proof. We use (3.12) to calculate

Ep2

[
〈Tdiv,p2F2,∇g〉+

〈
F2,∇2g

〉
HS

]
= Ep2

[
Tdiv,p2

(
FT2 ∇g

)]
=

∫
Ωp2

div
(
FT2 ∇g p2

)
.

If h ∈ Lip(Ω, 1) and g ∈ G2(F1,F2) is a solution of (5.1), then the assumptions of the
theorem guarantee that the Ep2h is well defined and

Ep2h− Ep1h = Ep2

[
〈Tdiv,p1F1 − Tdiv,p2F2,∇g〉

]
+ Ep2

[〈
F1 − F2,∇2g

〉
HS

]
+

∫
Ωp2

div
(
FT2 ∇g p2

)
.

Taking suprema leads to the claims.

Remark 5.2.

• Taking g as in (5.1), it is not guaranteed that g ∈ F(A2), so that Ep2A2g need not be
zero. It is assured that g is in dom(A2), the set of functions for which A2 is defined.

• As we shall see, in many cases of interest, it will be easy to verify that the assump-
tions of Theorem 5.1 are satisfied and, moreover, the solutions g belong to F(A2),
i.e. G2(F1,F2) ⊆ F(A2). Then κ2(F1,F2) = 0.

There is considerable flexibility in the bounds that can be obtained from Theorem 5.1;
two particular cases are illustrated in the next examples.

Example 5.3 (Wasserstein distance and Fisher information distance). Suppose that the
assumptions of Theorem 5.1 are satisfied for some F1 = F2 then

W1(P1, P2) 6 sup
g∈G2(F1,F1)

∣∣∣Ep2[〈(Tdiv,p1 − Tdiv,p2)F1,∇g
〉]∣∣∣+ κ2(F1,F1) . (5.2)

Suppose that F1 = Id is allowed in (5.2), then

W1(P1, P2) 6 sup
g∈G2(Id,Id)

(
Ep2‖∇g‖2

)1/2
I(p2 | p1) + κ2(Id, Id) (5.3)
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where I(p2 | p1) =
(
Ep2

[
‖∇ log p1 −∇ log p2‖2

])1/2
is a Fisher information distance which

is well-known to metrize convergence in distribution, see e.g. [28]. Thus bounds on the
Fisher information (which scales well over convolutions, see e.g. in [6, 28, 38]) translate
immediately into bounds on Wasserstein distance. We will study inequality (5.2) in more
detail in Section 5.1.

Example 5.4 (Wasserstein distance and Stein kernel discrepancy). Suppose that the
assumptions of Theorem 5.1 are satisfied for some F1,F2 such that Tdiv,p1F1 = Tdiv,p2F2.
Then

W1(P1, P2) 6 sup
g∈G2(F1,F2)

∣∣Ep2 [〈F1 − F2,∇2g
〉

HS

]∣∣+ κ2(F1,F2). (5.4)

If p1 and p2 share a common mean and if the Stein kernels F1 = τ 1 and F2 = τ 2 are
allowed in (5.4), then

W1(P1, P2) 6 sup
g∈G2(F1,F2)

∣∣Ep2 [〈τ 1 − τ 2,∇2g
〉

HS

]∣∣+ κ2(F1,F2) (5.5)

which provides a direct connection between Wasserstein distance, Stein’s method and
the Stein kernel discrepancies studied in Section 4.3.

Applicability of Theorem 5.1 (or inequalities (5.2) and (5.4)) rests on a good under-
standing of the properties of solutions g ∈ G2(F1,F2) of Stein equations, and more
particularly on ∇g and ∇2g. Bounds on these quantities are called Stein factors. For
ease of use here we collect relevant estimates from the literature; a new result, under
the assumption of Poincaré constant, will be provided in Section 5.2.

Example 5.5 (Gaussian Stein factors). Let Σ be a d × d positive-definite matrix. The
Stein equation resulting from (1.1) for N (0,Σ) is〈

Σ,∇2g(x)
〉

HS
− 〈x,∇g(x)〉 = h(x)− E[h(Σ1/2Z)]; x ∈ Rd, (5.6)

with Z a standard normal random vector. Letting Zx,t = e−tx +
√

1− e−2tΣ1/2Z, a
solution of (5.6) is identified in [9] as g(x) = −

∫∞
0
E[h̄(Zx,t)] dt where h̄ = h− E[Σ1/2Z],

see also [26]. In [23, 40] it is shown that if h is n times differentiable then g is also n
times differentiable, and ∣∣∣∣∣ ∂kg(x)∏k

j=1 ∂xij

∣∣∣∣∣ ≤ 1

k

∣∣∣∣∣ ∂kh(x)∏k
j=1 ∂xij

∣∣∣∣∣
for all k = 1, . . . , n and all x ∈ Rd. Moreover, if h ∈ Lip(Rd,1) then g ∈ F(A1) and

sup
x∈Rd

‖∇g(x)‖ 6 1 and sup
x∈Rd

∥∥∇2g(x)
∥∥

HS
6

√
2

π

∥∥∥Σ−1/2
∥∥∥

op
. (5.7)

Much more is known on the properties of these solutions, and we refer to [36] for an
overview.

Example 5.6 (Log-concave Stein factors, [35]). Let P1 have pdf p1 with full support
Ωp1 = Rd, and consider the Stein equation

∆g + 〈∇ log p1,∇g〉 = h− Ep1h (5.8)

with h ∈ Lip(Rd,1). For a function g : Rd → R introduce Mj , j = 2, 3 as

Mj(g) := sup
x,y∈Rd,x 6=y

‖∇k−1g(x)−∇k−1g(y)‖op

‖x− y‖
.
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Recall that a function f ∈ C2(Rd) is k-strongly concave for k > 0 if for all x, y ∈
Rd, yT ∇2f(x)y 6 −k‖y‖2. Suppose that log p1 ∈ C4(Rd) is k-strongly concave with
M3(log p) 6 L3. Then (5.8) has a solution g ∈ F(A1) which satisfies

sup
x∈Rd

‖∇g(x)‖ 6 2

k
and sup

x∈Rd

∥∥∇2g(x)
∥∥

HS
6

2L3

k2
+

1

k
M2(h) .

Example 5.7 (More general Stein factors, [25, 19]). Let P1 with support Ωp1 = Rd be the
invariant measure of an Itô diffusion as in Example 3.23 and consider the strong Stein
equation (using the notations from that example)〈

a(x) + c(x),∇2g(x)
〉

HS
− 〈Tdiv,p1a(x) + f(x),∇g(x)〉 = h(x)− Ep1h (5.9)

with h ∈ Lip(Rd,1). In [25], it is assumed that the transition semigroup of the diffusion
satisfies a condition of Wasserstein decay rate (see their Definition 4), while [19] make
more analytical assumptions (see their Assumption 2.1); under these assumptions,
Equation (5.9) has a solution g ∈ F(A1) which is twice continuously differentiable and
Stein factors are available (see [25, Theorem 5] and [19, Theorem 3.1]).

For the remainder of the section we focus on the case where p1 is the pdf of N (0,Σ1)

with positive definite covariance Σ1. Then the bounds on ∇g and ∇2g can be read from
Example 5.5 and the following two observations follow directly. First, by (5.3), if P2 has
full support Rd then κ2(Id, Id) = 0 and the first bound in (5.7) gives

W1(P1, P2) 6 I(p2 | p1).

Hence, in particular, for P2 with support Rd then any central limit theorem (CLT) in
Fisher information directly translates to one in Wasserstein distance; if the support is
not Rd then some adaptations are necessary in order to incorporate the integration
constants. Second, if P2 is centred with a Stein kernel τ 2 which is allowed as F2 in (5.4),
choosing τ 1 = Σ1 in (5.5) the Cauchy–Schwarz inequality and the second bound in (5.7)
give

W1(p1, p2) 6

√
2

π

∥∥∥Σ
−1/2
1

∥∥∥
op
Ep2‖τ 2 − Σ1‖HS + κ2(Σ1, τ 2) . (5.10)

Thus, any CLT in Stein kernel discrepancy leads to a CLT in Wasserstein distance. For
instance, using known properties of Stein kernels, the following result is straightforward.

Example 5.8 (CLT in Wasserstein). Suppose that p2 is the pdf of the random variable
Wn = (

∑n
i=1Xi)/

√
n where the Xi ∼ p are i.i.d. random vectors with mean 0, variance

Id and (common) Stein kernel τ . Then, following [15, Theorem 3.2], one shows that

τ 2(x) = n−1
n∑
i=1

E
[
τ (Xi) |Wn = x

]
is a Stein kernel for p2 and Ep2‖τ 2 − Id‖HS 6 1√

n
Ep‖τ − Id‖HS. If furthermore p has

support Rd then κ2(Σ1, τ 2) = 0 and (5.10) yields

W1(γ, p2) 6
1√
n

√
2

π
Ep‖τ − Id‖HS .

Under the same conditions as in [15, Corollary 2.5] this leads to a CLT in Wasserstein
distance with correct dependence on the dimension and on the sample size n.

The next example serves to compare our approach with standard results.
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Figure 2: Comparison between Gaussians. We fix d = 2 and Σi =

(
1 ρi
ρi 1

)
for i = 1, 2.

Both plots report the bounds (5.11) (blue dots), (5.12) (orange dashes), and (5.13) (a
green line) for ρ2 ∈ (0, 1). For the left plot, ρ1 = 0; for the right plot, ρ1 = 0.5. The new
bound (5.11) outperforms both (5.13) and (5.12) when ρ1 = 0.5 and ρ2 is large.

Example 5.9 (Comparison between Gaussians). For i = 1, 2 let pi be a centred Gaussian
pdf with covariance Σi. Inequality (5.10) applies with κ2(Σ1,Σ2) = 0 so that

W1(p1, p2) 6

√
2

π
min

{∥∥∥Σ
−1/2
1

∥∥∥
op
,
∥∥∥Σ
−1/2
2

∥∥∥
op

}
‖Σ1 − Σ2‖HS .

A general bound for Wasserstein distance between Gaussians is also given in [13, Lemma

2.4]. For the sake of illustration, take d = 2 and Σi =

(
1 ρi
ρi 1

)
for some ρi ∈ [0, 1]. Then

our bound reads

W1(p1, p2) 6
2√
π

min

{
1√

1 + ρ1
,

1√
1 + ρ2

}
|ρ2 − ρ1| (5.11)

whereas that from [13, Lemma 2.4] is

W1(p1, p2) 6
√

4− 2
√

1− ρ1

√
1− ρ2 − 2

√
1 + ρ1

√
1 + ρ2 . (5.12)

Finally, an efficient coupling can be constructed directly (simply write Xj = Σ
1/2
j N for N

standard normal), proving that

W1(p1, p2) 6

√
π

2
|ρ1 − ρ2| . (5.13)

We provide illustrations of the comparison of these bounds in Figure 2. In this scenario,
the bound (5.13) is outperformed by the bounds from (5.11) and (5.12), with our new
bound (5.11) outperforming (5.12) when ρ1 = 0.5 and ρ2 is large.

We now concentrate on (5.2) in the special case F2 = F1 in Theorem 5.1. Similar
arguments as for Theorem 5.1 lead to the following result.

Proposition 5.10. Suppose that P1 and P2 have pdfs p1 and p2 with nested supports
Ωp2 ⊆ Ωp1 . Instate the notations and assumptions from Theorem 5.1, but with F2 = F1.
Then, letting π0 = p2/p1, it holds that

W1(P1, P2) 6 sup
g∈G2(F1,F1)

|Ep1〈F1∇π0,∇g〉|+ κ2(F1,F1). (5.14)

In particular,

W1(P1, P2) 6 sup
g∈G2(F1,F1)

sup
x∈Rd

‖∇g(x)‖Ep1‖F1∇π0‖+ κ2(F1,F1) (5.15)

W1(P1, P2) 6 sup
g∈G2(F1,F1)

(Ep1‖∇g‖
2
)1/2

√
Ep1‖F1∇π0‖2 + κ2(F1,F1). (5.16)
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If, furthermore, τ 1 is a Stein kernel for p1 then

W1(P1, P2) > ‖Ep1 [τ 1∇π0]‖. (5.17)

Proof. Since p1 and p2 have nested supports, it follows from (3.8) that

Tdiv,p2F = Tdiv,p1F + F∇ log(p2/p1) (5.18)

(over Ωp2) for any F. The bound (5.14) now follows directly from Theorem 5.1. Inequali-
ties (5.15) and (5.16) follow from different applications of the Cauchy–Schwarz inequality.
For (5.15), one bounds

∑d
i=1 |∂ig| by ‖∇g‖ and for (5.16) one uses the Cauchy–Schwarz

inequality inside the expectation.
For (5.17), let e be a unit vector. Let ν1 = Ep1Id be the mean of p1, recalling that Id is

the identity function and that Ide = 〈Id, e〉 denotes the marginal projection in direction e.
Noting that Ide is 1-Lipschitz and using the nested structure we have with νe = Ep1 [Ide]:

W1(P1, P2) > |Ep1 [Ide]− Ep2 [Ide]| = |νe,1 − Ep1 [Ideπ0]|
= |Ep1 [(νe,1 − Ide)π0)]| = |Ep1 [〈(ν − Id)π0, e〉]| = |〈Ep1 [τ 1∇π0], e〉|

where the last identity follows from (4.4). Taking e = Ep1 [τ 1∇π0]/‖Ep1 [τ 1∇π0]‖ gives
the claim.

For evaluating expectations it may be useful to note that the expectations Ep1 in
Proposition 5.10 can be expressed in terms of Ep2 , because

Ep1 [〈F1∇π0,∇g〉] = Ep2 [〈F1∇ log π0,∇g〉] .

Remark 5.11. Let τ 1 be a Stein kernel for p1 and suppose, for simplicity, that G2(τ 1, τ 1) ⊆
F(A2) so that κ2(τ 1, τ 1) = 0. When d = 1, in [32, Equation (4.2)], the following bound is
provided:

|Ep1 [τ 1π
′
0]| 6W1(P1, P2) 6 Ep1 [τ 1|π′0|].

If F = τ 1 satisfies the assumptions of Theorem 5.1, then, combining (5.17) and (5.15),

‖Ep1 [τ 1∇π0]‖ 6W1(P1, P2) 6 CEp1 [‖τ 1∇π0‖] . (5.19)

with C = supg∈G2(τ1,τ1) supx∈Rd ‖∇g(x)‖, yielding a similar bound as in the case d = 1.
In particular, if p1 is the Gaussian distribution then C = 1 (recall Example 5.5) which
leads to the same bound as in the univariate case, whereas if p1 is only assumed to be
k-strongly log-concave with log p1 ∈ C4(Rd) then the best available bound is, to the best
of our knowledge, C 6 2/k (recall Example 5.6). Bounds in more general cases are also
available (recall Example 5.7).

Example 5.12 (Azzalini–Dalla Valle skew-normal distributions vs multivariate normal).
The pdf of the centred Azzalini–Dalla Valle type r.v. X ∈ Rd is given by

pα(x) = 2ωd(x; Σ)Φ(αTx),

where ωd(x; Σ) is the pdf of the d-dimensional normal distribution N (0,Σ), Φ the c.d.f.
of the standard normal on R, and α ∈ Rd is a skewness parameter, see [5]. In [33], an
exact expression for the Wasserstein distance between p2 = pα and p1 = ωd is given
for d = 1; here we extend this result to general d. We aim to apply Proposition 5.10
with F1 = Σ the covariance (a Stein kernel for the Gaussian) and π0(x) = 2Φ(αTx).
Solutions of the Gaussian Stein equations exist, recall Example 5.5; these solutions
also belong to F(A2) because π0 is bounded, hence κ2(Σ,Σ) = 0. It is easy to see

EJP 28 (2023), paper 59.
Page 30/40

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP883
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stein’s density method for multivariate continuous distributions

that 2Φ(αTx) − EN (0,Σ)[2Φ(αTx)] ∈ W 1,2
0 (N (0,Σ)). Then (5.19) can be applied with

C = supg∈G2(Σ,Σ) supx∈Rd ‖∇g(x)‖ = 1 (recall Example 5.5). Since ∇π0(x) = 2αγ(αTx)

with γ the one-dimensional standard normal pdf, the upper and lower bounds coincide
in (5.19), leading to

W1(pα, ωd) = 2‖Σα‖Eωd

[
γ(αT Id)

]
= 2‖Σα‖(2π)−(d+1)/2 1√

det(Σ)

∫
exp

(
−1

2

(
xT (ααT + Σ−1)x

))
dx

=
2‖Σα‖√

2π(1 + αTΣα)
.

where the second equation follows from the matrix determinant lemma. In particular we
recover the univariate result from [33] when d = 1.

The nestedness assumption is naturally satisfied in a Bayesian setting when compar-
ing the effect of a specific prior against the uniform prior on the posterior distribution.
We use this context to illustrate our bounds on two last examples.

Example 5.13 (Normal versus uniform prior in normal model). Consider a normal N (θ,Σ)

model with mean θ ∈ Rd and positive definite covariance matrix Σ. Let P1, with pdf
p1, denote the posterior distribution of θ with uniform prior and P2, with pdf p2, the
posterior distribution with prior N (ν,Σ2); Σ2 is assumed positive definite. Suppose that
a sample (x1, . . . , xn) with xi ∈ Rd for all i is observed. Inequality (5.19) applies with
P1 = N (x̄, n−1Σ), with x̄ = 1

n

∑n
i=1 xi, and P2 = N (µ̃n, Σ̃n) with

µ̃n = ν + nΣ̃nΣ−1(x̄− ν) and Σ̃n = (Σ−1
2 + nΣ−1)−1

and C2(τ 1, p1) = 1. Since p2(θ) ∝ p1(θ) exp
(
(θ−ν)TΣ−1

2 (θ−ν)
)
, it holds that∇ log π0(θ) =

−Σ−1
2 (θ − ν). Since τ 1 = n−1Σ is a Stein kernel for p1, inequality (5.19) (re-expressed in

terms of p2) becomes∥∥n−1ΣΣ−1
2 Ep2 [Id− ν]

∥∥ 6W1(P1, P2) 6 Ep2
[∥∥n−1ΣΣ−1

2 (Id− ν)
∥∥] .

These expectations can be evaluated and after some calculations we find∥∥(Id + nΣ−1Σ2)−1(x̄− ν)
∥∥ 6W1(P1, P2) 6

∥∥(Id + nΣ−1Σ2)−1(x̄− ν)
∥∥

+ n−1
∥∥∥ΣΣ−1

2 (Σ−1
2 + nΣ−1)−1/2

∥∥∥
op

√
2Γ(d/2 + 1/2)

Γ(d/2)
.

The multivariate bound indeed simplifies to the univariate bound from [32] when d = 1.

Example 5.14 (Bayesian logistic regression with Gaussian prior). We follow [25, Example
1]. Consider the log pdf of a Bayesian logistic regression posterior based on a dataset
of L observations x` = (v`, y`), ` = 1, . . . , L, with v` ∈ Rd a vector of covariates and
y` ∈ {0, 1} and a d-dimensional N (ν,Σ) prior on the parameter β ∈ Rd of the logistic
regression:

log p2(β) = κ(x)− 1

2

∥∥∥Σ−1/2(β − ν)
∥∥∥2

−
L∑
`=1

log
(

1 + exp
(
−y` 〈v`, β〉

))
where κ(x) is an irrelevant normalizing constant, the first summand is the multivariate
Gaussian prior on β and the second term is the logistic regression likelihood. Treating
the Gaussian prior as the target p1 (and therefore the logistic likelihood as π0), it follows
from (5.19) and Ep1(g∇π0) = Ep2(g∇ log π0), with C2(Σ, p1) ≤ 1, τ 1 = Σ and

∇ log π0 =

L∑
`=1

−y`
1 + exp

(
−y` 〈v`, β〉

) v` exp
(
−y` 〈v`, β〉

)
,
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that ∥∥∥∥∥Ep2
[
L∑
`=1

−y`Σv` exp (−y` 〈v`, β〉)
1 + exp (−y` 〈v`, β〉)

]∥∥∥∥∥ 6W1(P1, P2)

6 Ep2

[∥∥∥∥∥
L∑
`=1

−y`Σv` exp (−y` 〈v`, β〉)
1 + exp (−y` 〈v`, β〉)

∥∥∥∥∥
]

(expectation is over β ∼ p2). Similarly the roles can be reversed, with p1 now the logistic
regression likelihood and π0 the Gaussian prior; here a Stein kernel is available as well,
see [25, Example 1].

5.2 Weak Stein equations and a bound under a Poincaré condition

Unlike in the 1-dimensional case, bounds such as those in Examples 5.5, 5.6 or 5.7 are
not available for general target p1, and even existence, let alone regularity, of a solution
of the Stein equation is often out of reach. One way to bypass the necessity for solving
Stein equations is to work directly with Fisher information distance I(p2 | p1) or Stein
kernel discrepancies S(p2 | p1) and then use non-Stein’s method related connections
with classical discrepancies such as Total Variation, 1-Wasserstein or 2-Wasserstein. This
approach was used e.g. in [38, 30, 15, 20]. We conclude the paper by introducing an
alternative route via the notion of weak Stein equations (and corresponding weak Stein
factors), as follows.

In this subsection we instate the notation and assumptions of Proposition 5.10. In the
proof of Theorem 5.1, the Stein equation (5.1) is only used in a weak form, namely

Ep2
[
Ap1g

]
= Ep2

[
〈Tdiv,p1F1,∇g〉+

〈
F1,∇2g

〉
HS

]
= Ep2

[
h− Ep1h

]
. (5.20)

Now recall that p2 = π0p1 and that the Stein operator has actually been obtained
by (3.17), leading to

Ep2
[
Ap1g

]
= Ep2

[
Tdiv,p1

(
FT1 ∇g

)]
= Ep1

[
Tdiv,p1

(
FT1 ∇g

)
π0

]
.

Applying (3.11), we find that

Ep2
[
Ap1g

]
= −Ep1

[〈
FT1 ∇g,∇π0

〉]
= −Ep1

[〈
F1∇π0,∇g

〉]
.

Thus (5.20) is equivalent to

− Ep1
[〈
F1∇π0,∇g

〉]
= Ep1

[
(h− Ep1h)π0

]
. (5.21)

Classical results from functional analysis provide handles on expressions such as (5.21).
We follow [15] and introduce W 1,2(p), the natural (weighted) Sobolev space of weakly
differentiable functions u : Ω→ R with finite (squared) Sobolev norm

‖u‖2W 1,2(p) := ‖u‖2L2(p) + ‖∇u‖2L2(p) , (5.22)

see also [21]. In the rest of the paper, we shall assume that p is continuous on Ωp.
Then W 1,2(p) is complete under ‖ · ‖W 1,2(p). We also introduce the space W 1,2

0 (p) of all
functions u ∈W 1,2(p) such that

∫
Ω
∂eu = 0 for all e ∈ Sd−1.

Next, motivated by (5.21), following intuition from [15], under the condition that P
admits a Poincaré constant, in the sense of definition 4.5, the following holds.

Proposition 5.15 (Weak Stein equation and factor). Let P1 be as in Theorem 5.1.
Suppose furthermore that P1 has finite variance and Poincaré constant CP1

. Let
h ∈ Lip(Ωp1 ,1). Then there exists a function g ∈W 1,2

0 (p1), which solves

Ep1
[
〈∇v,∇g〉

]
= Ep1

[
(h− Ep1(h))v

]
(5.23)
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for all v ∈W 1,2
0 (p1) and is such that√

Ep1‖∇g‖
2 6 CP1 . (5.24)

Proof. Let h ∈ Lip(Ωp1 ,1). The set H1 = {v ∈ L2(P1) ; Ep1v = 0} with inner product
〈u, v〉p1 = Ep1 [uv] is a Hilbert space and h̄ = h − Ep1h ∈ H1 as P1 admits a variance.
Moreover,

‖h‖p1 =
√
Ep1h

2 6
√
CP1

Ep1‖∇h‖
2 6

√
CP1

.

In particular we have that W 1,2
0 (p1) ⊆ H1. We endow the space W 1,2

0 (p1) with the
symmetric bilinear form Ep1(u, v) = Ep1 [〈∇u,∇v〉]. This bilinear form is coercive as due
to the Poincaré inequality

Ep1(u, u) = Ep1 [〈∇u,∇u〉] > 1

CP1

Ep1 [u2] =
1

CP1

‖u‖2p1 . (5.25)

From (5.25) it follows that 〈·, ·〉Ep is also an inner product on W 1,2
0 (p) and ‖ · ‖Ep is a norm

which is uniformly equivalent to ‖ · ‖W 1,2(p). Therefore, W 1,2
0 (p) is complete under ‖ · ‖Ep ,

so that 〈u, v〉Ep makes it a Hilbert space.
Now let φp1(v) := Ep1

[
(h − Ep1h)v

]
. By the Cauchy–Schwarz inequality and the

Poincaré inequality and using that h ∈ Lip(Ωp1 ,1) we can bound

|φp1(v)| ≤ ‖h− Ep1h‖L2(p1)‖v‖L2(p1) ≤ CP1
‖h‖Ep1‖v‖Ep1 ≤ CP1

‖v‖Ep1 .

Hence, by the Riesz representation theorem, there exists g ∈ W 1,2
0 (p1), such that

φp1(v) = 〈v, g〉Ep1 for all v ∈W 1,2
0 (p1), and ‖g‖Ep1 ≤ CP1 . This completes the proof.

Obviously if g is a solution of the strong Stein equation satisfying all the assumptions
from Proposition 5.10, then it will also satisfy (5.23). However, in Corollary 5.16 we need
not solve the equation, nor require any form of regularity. Equations (5.21) and (5.23) are
akin to “weak Stein equations” (and thus would encourage us to consider “weak Stein
operators” ) and inequality (5.24) is a form of “weak Stein factor”. This approach seems
promising for tackling Stein’s method in more general multivariate settings, without
needing to solve Stein equations explicitly. For instance, the next result follows easily.

Corollary 5.16. Let P1, P2 be as in Theorem 5.1 and suppose furthermore that P1

satisfies the conditions of Proposition 5.15. Also assume that p2 = π0 p1 with π0−Ep1π0 ∈
W 1,2

0 (p1). Then

W1(P1, P2) 6 CP1

√
Ep1‖∇π0‖2. (5.26)

Proof. Let h ∈ Lip(Ωp1 ,1). From Proposition 5.15 applied with v = π0, it follows that
there exists g ∈W 1,2

0 (p1) which is solution of the weak Stein equation

Ep2 [h]− Ep1 [h] = Ep1
[
〈∇π0,∇g〉

]
.

Since, furthermore, g satisfies (5.24) which does not depend on h, the claim follows by
the Cauchy–Schwarz inequality.

There is a large literature regarding Poincaré inequalities and their optimal associated
Poincaré constant. For example, when P has k-log-concave pdf p such that log p ∈ C4(Rd)

then CP 6 2/k; for P the uniform distribution on [0, 1]2 it is known that CP = 2/π2

is an optimal Poincaré constant, see [39]. These bounds allow to obtain bounds on
1-Wasserstein distance via Stein’s method even in cases where Stein factors are not
available.
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Example 5.17 (Comparing copulas). Let V = (V1, V2) be a 2-dimensional random vector
such that the marginals V1 and V2 have a uniform distribution on (0, 1). This distribution is
described by the copula of V defined as C(x1, x2) = P[V1 6 x1, V2 6 x2], (x1, x2) ∈ (0, 1)

2.
We want to bound the Wasserstein distance between PV , the law of V and PU the law
of U = (U1, U2), where U1 and U2 are uniform on (0, 1) and independent. First we recall
that an optimal Poincaré constant for the uniform distribution on (0, 1)2 is CP = 2/π2.
Assume that V has a pdf c = ∂2

x1x2
C. Then the densities of V and U have nested supports,

with π0 = c. If c − EU(0,1)2c ∈ W 1,2
0 (U(0, 1)2) then, a simple application of (5.26) with

CP = 2/π2 yields

W1(PV , PU ) 6
2

π2

√
EU(0,1)2‖∇c‖

2
.

In some cases, one can compute the gradient of c in a closed form. For instance, the
Ali–Mikhail–Haq copula [1] has pdf

c(x1, x2) =
(1− θ){1− θ(1− x1)(1− x2)}+ 2θx1x2

{1− θ(1− x1)(1− x2)}3
.

Then EU(0,1)2 [c] = 1 and

EU(0,1)2‖∇c‖
2

=
2

105

θ

(1− θ)2

(
θ(2− θ)(52(1− θ) + 17θ2)− 36 log(1− θ)

)
so that c − EU(0,1)2c ∈ W 1,2

0 (U(0, 1)2). Here θ ∈ (−1, 1) is a measure of association
between the two components V1 and V2 of the vector (V1, V2) with uniform marginals
each. If θ = 0 then the uniform copula (x1, x2) 7→ x1x2 is recovered. Using Corollary 5.16
we can assess the Wasserstein distance between the Ali–Mikhail–Haq copula and the
uniform copula in terms of θ. For −1 < θ < 1 we bound EU(0,1)2‖∇c‖

2 6 8
3

θ2

(1−|θ|)4 and

W1(PV , PU ) 6
2
√

8

π2
√

3
|θ|{1− |θ|}−2.

This bound decreases to 0 for θ → 0, indicating agreement with the uniform copula for
θ = 0. To our knowledge there is no explicit formula for W1(PV , PU ) available; [27]
simulate the Wasserstein distance under Gaussian marginals and discuss simulation
strategies.
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A Some more remarks about our function spaces

As indicated in Remark 3.4, here is a more detailed discussion about our choices
of ACL-type function classes, with ACL standing for ‘absolutely continous on lines’. In
particular, we discuss relationships to the Sobolev spaces.

Proposition A.1. Let Ω ⊆ Rd be an open set and let u ∈ ACL(Ω) or u ∈ W 1,1
loc (Ω).

Suppose that u is constant on some set A ⊆ Ω. Then for each e ∈ Sd−1, ∂eu(x) = 0 for
Lebesgue-almost all x ∈ A.

Proof. Let u(x) = c for all x ∈ A. Taking a line L parallel to e, observe that almost all
x ∈ A∩L (with respect to the one-dimensional Lebesgue measure) are points of Lebesgue
density 1 for the set A∩L and consequently for the set {x ∈ Ω∩L ; u(x) = c}, considering
the one-dimensional Lebesgue density in direction e (see, e. g., Corollary B.121 of [31] or
Corollary 3 in Section 1.7.1 of [18]). However, if x is such a point and u is differentiable at
x in direction e, we have ∂eu(x) = 0. The proof is now completed by Fubini’s theorem.

The next result, which is a counterpart of Proposition A.1, shows that the ACL
functions ‘almost’ preserve a fundamental property of the C1 functions. This property is
crucial to the proof of Proposition 3.14.

Proposition A.2. Let Ω ⊆ Rd be a connected open set and let u ∈ ACL(Ω) be such that
∂iu = 0 Lebesgue-almost everywhere on Ω for all i = 1, 2, . . . , n. Then u is Lebesgue-
almost everywhere constant on Ω.

Proof. First, consider the case where Ω is a cube parallel to the coordinate directions.
Then the result can be proved by induction. The case d = 1 is immediate. For the
induction step from d−1 to d, observe that by Fubini’s theorem, there exists a hyperplane
H perpendicular to ed and intersecting Ω, such that for all i = 1, 2, . . . , d − 1, ∂iu = 0

almost everywhere on H with respect to the (d − 1)-dimensional Hausdorff measure.
By the induction hypothesis, u is constant Lebesgue-almost everywhere on H. Next,
for almost all lines L parallel to ed and intersecting Ω, u is absolutely continuous and
therefore constant on L. The proof is now completed by Fubini’s theorem.

For the general case, observe that Ω can be covered by a countable family Q of open
cubes contained in Ω. By the above, there exists a Lebesgue-null set N , such that for
any Q ∈ Q, u is constant on Q \ N . Since Ω is connected, any two points x, y ∈ Ω \ N
are linked by a finite sequence of overlapping cubes belonging to Q. Clearly, if two
open cubes overlap, they also contain a common point which is not in N . Therefore,
u(x) = u(y).

Proposition A.3. Let Ω ⊆ Rd be an open set and let u ∈ W 1,1
loc (Ω) be compactly sup-

ported. Then we have u ∈W 1,1(Ω) and
∫

Ω
∂eu = 0 for all e ∈ Sd−1.

Proof. Since u has a compact support, so does ∂eu. Therefore, u ∈ W 1,1(Ω). By Ex-
ercise C.23 in [31], there exists a cut-off function v ∈ C∞c (Ω), which equals 1 on the
supports of u and ∂eu. By the very definition of the weak derivative, we then have∫

Ω

∂eu =

∫
Ω

(∂eu)v = −
∫

Ω

u(∂ev) = 0 .

In the case that Ω = Rd we have the following result.

Proposition A.4. For all u ∈W 1,1(Rd) and all e ∈ Sd−1, we have
∫
∂eu = 0.

Proof. By Proposition A.3, the assertion is true for all u ∈ C∞c (Rd). However, by Theo-
rem 11.35 of [31], C∞c (Rd) is dense in W 1,1(Rd) with respect to the appropriate Sobolev
norm. This completes the proof.
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The next group of results clarifies relationships between the ACL-type spaces and
the Sobolev spaces.

Proposition A.5. For any open set Ω ⊆ Rd, we have ACL1
loc(Ω) ⊆ L1

loc(Ω).

Proof. We need to prove that each x ∈ Ω has an open neighbourhood U , such that the
restriction of u to U belongs to L1(U). Now choose U to be a bounded rectangle and
apply the basic Poincaré inequality for rectangles (see, e. g., Exercise 13.34 in [31]),
noting that the restriction of u to U belongs to ACL1(U).

Proposition A.6. For an open set Ω ⊆ Rd, Ẇ 1,1(Ω) is precisely the set of all Borel
measurable functions u : Ω → R which have a version ū ∈ ACL1(Ω). Moreover, the
classical directional derivatives of ū are also its corresponding weak derivatives.

Proof. The result is essentially Theorem 11.45 of [31], but we need to modify it from
the usual Sobolev space W 1,1 to the homogeneous Sobolev space Ẇ 1,1 and, most impor-
tant, from functions which are absolutely continuous on almost all lines parallel to the
coordinate axes to ACL functions.

Firstly, suppose that u has a version ū ∈ ACL1(Ω). By Proposition A.5, ū ∈ L1
loc(Ω),

so that each x ∈ Ω has an open neighbourhood U such that the restriction of ū to U

belongs to L1(U). By Theorem 11.45 of [31], the classical directional derivatives of ū are
then also its corresponding weak derivatives considered on U . However, as the weak
derivative is a local concept, the weak derivatives can be considered on the whole Ω. By
assumption, all directional derivatives belong to L1(Ω). Therefore, ū, and therefore u,
belongs to Ẇ 1,1(Ω).

Now we turn to the non-trivial part, the converse. Thus, take u ∈ Ẇ 1,1(Ω). As in
Step 1 of the proof of Theorem 11.45 of [31], the function ū is constructed by means of
the standard mollifier:

η(z) :=

{
ad exp

(
− 1

1−‖z‖2

)
if ‖z‖ ≤ 1,

0 if ‖z‖ ≥ 1,

where cd is chosen so that
∫
Rd η(z) dz = 1. As usual, the mollified functions are then

defined as uε(x) :=
∫
Rd u(x+ εz) η(z) dz.

In Step 1 of the proof of Theorem 11.45 of [31], a function ū, which is locally
absolutely continuous on Lebesgue-almost all lines parallel to the coordinate directions,
is constructed as the limit of the sequence uεn for some sequence {εn}n. However, we
claim that the function

ū(x) :=

{
lim
ε↓0

uε(x) if this limit exists,

0 otherwise

is already locally absolutely continuous on Lebesgue-almost all lines parallel to e for all
e ∈ Sd−1. Before turning to the proof of this claim, notice that ū is Borel measurable, as
the limit can be taken only over rational ε (the map ε 7→ ηε is continuous in the supremum
norm).

Now fix e ∈ Sd−1. Without loss of generality, we may assume that e = ed. The crucial
reason why the function ū works for all directions is that the set {x ∈ Ω ; ū(x) 6= u(x)}
has (d− 1)-dimensional Hausdorff measure zero. This essentially follows from Theorem 1
in Section 4.8 of [18] and Theorem 3 in Section 5.6.3 ibidem. However, the first one
cannot be applied directly and some additional thought is needed:
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• Theorem 1 in Section 4.8 of [18] concerns convergence of the functions

(u)x,r := bd

∫
B

u(x+ ry) dy

rather than the functions uε(x) (here, B denotes the unit ball in Rd and bd its
reciprocal volume). However, a routine application of Fubini’s theorem yields

uε(x) =
2ad
bd

∫ 1

0

(u)x,tε
td+1

(1− t2)2
exp

(
− 1

1− t2

)
dt .

Now if limr↓0(u)x,r = u(x) for a fixed x, the values (u)x,r must be bounded for
sufficiently small r, so that the values (u)x,tε are uniformly bounded in t ∈ [0, 1] for

sufficiently small ε. Since
∫ 1

0
td+1

(1−t2)2 exp
(
− 1

1−t2

)
dt <∞, the desired convergence

follows from the dominated convergence theorem.

• Theorem 1 in Section 4.8 of [18] assumes that u ∈ W 1,1(Rd), but here, we only
have u ∈ Ẇ 1,1(Ω). Although the convergence of uε towards u is an entirely local
property, we still need to construct appropriate functions which are, along with
their weak first-order partial derivatives, globally integrable. Thus, expressing
Ω as a countable union of open balls Un, it suffices to prove that for each n, the
(d − 1)-dimensional Hausdorff measure of the set {x ∈ Un ; ū(x) 6= u(x)} equals
zero. Clearly, the restriction of u to Un belongs to W 1,1(Un). By Theorem 1 in
Section 4.4 of [18] or Theorem 13.17 of [31], the latter restriction can be extended
to a function in W 1,1(Rd), so that, finally, by Theorem 1 in Section 4.8 of [18] and
Theorem 3 in Section 5.6.3 ibidem, the (d− 1)-dimensional Hausdorff measure of
the set {x ∈ Un ; ū(x) 6= u(x)} vanishes.

Once we know that (d − 1)-dimensional Hausdorff measure of the set {x ∈ Ω ;

ū(x) 6= u(x)} equals zero, Corollary 1 in Section 2.4.1 of [18] yields that there exists a
Borel set E1 ⊆ Rd−1, such that the Lebesgue measure of Rd−1 \ E1 vanishes and that
ū(x′, xd) = u(x′, xd) for all x′ ∈ E1 and all xd ∈ R with (x′, xd) ∈ Ω.

Following Step 1 of the proof of Theorem 11.45 of [31], we find that there exist a
sequence {εn}n converging to zero and a Borel set E2 ⊆ Rd−1, such that the Lebesgue
measure of Rd−1 \ E2 vanishes and such that∫

(x′,xd)∈Ω

∥∥∇u(x′, xd)
∥∥dxd <∞

and

lim
n→∞

∫
(x′,xd)∈Ωεn

∥∥∇uεn(x′, xd)−∇u(x′, xd)
∥∥ dxd = 0

for all x′ ∈ E2; here, Ωεn is the set of all points Ω with the distance from Rd \ Ω strictly
greater than ε (for Ω = Rd, we take Ωεn = Rd).

Now take x′ ∈ E1 ∩ E2 and claim that the function xd 7→ ū(x′, xd) is absolutely
continuous on all compact intervals I with {(x′, xd) ∈ Ω} for all xd ∈ I. Take a, b ∈ I.
Since the functions uεn are in C∞(Ωεn), we have, by the fundamental theorem of calculus,

uεn(x′, b)− uεn(x′, a) =

∫ b

a

∂duεn(x′, t) dt

for all n with {x′} × [a, b] ⊆ Ωεn (which is true for all sufficiently large n). Taking the
limit, we find that

ū(x′, b)− ū(x′, a) =

∫ b

a

∂du(x′, t) dt .
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As
∣∣∂du(x′, t)

∣∣dt < ∞, the function xd 7→ ū(x′, xd) is absolutely continuous on I and its
classical derivative (extended arbitrarily to the whole set {xd ; (x′, xd) ∈ Ω} and possibly
altered on a Lebesgue-null set) are also its corresponding weak derivatives. This proves
the result.

Corollary A.7. For an open set Ω ⊆ Rd, W 1,1
loc (Ω) is precisely the set of all Borel measur-

able functions Ω→ R which have a version in ACL1
loc(Ω).

Corollary A.8. For an open set Ω ⊆ Rd, Ẇ 1,1
0 (Ω) is precisely the set of all Borel measur-

able functions Ω→ R which have a version in ACL1
0(Ω).
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