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Sparse matrices: convergence of the characteristic
polynomial seen from infinity*
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Abstract

We prove that the reverse characteristic polynomial det(In − zAn) of a random n× n

matrix An with iid Bernoulli(d/n) entries converges in distribution towards the random
infinite product

∞∏
`=1

(1− z`)Y`

where Y` are independent Poisson(d`/`) random variables. We show that this random
function is a Poisson analog of more classical Gaussian objects such as the Gaussian
holomorphic chaos. As a byproduct, we obtain new simple proofs of previous results
on the asymptotic behaviour of extremal eigenvalues of sparse Erdős-Rényi digraphs:
for every d > 1, the greatest eigenvalue of An is close to d and the second greatest
is smaller than

√
d, a Ramanujan-like property for irregular digraphs. For d < 1, the

only non-zero eigenvalues of An converge to a Poisson multipoint process on the unit
circle.

Our results also extend to the semi-sparse regime where d is allowed to grow to
∞ with n, slower than no(1). We show that the reverse characteristic polynomial
converges towards a more classical object written in terms of the exponential of a
log-correlated real Gaussian field. In the semi-sparse regime, the empirical spectral
distribution of An/

√
dn converges to the circle distribution; as a consequence of our

results, the second eigenvalue sticks to the edge of the circle.
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The characteristic polynomial of sparse matrices

1 Introduction

Let An be a square n × n matrix whose n2 entries are independent Bernoulli(dn/n)

random variables. This non-Hermitian matrix arises, for example, as the adjacency
matrix of a directed Erdős-Rényi graph with mean in-degree and mean out-degree dn.
Its empirical spectral distribution is the atomic measure defined by

µn =
1

n

n∑
i=1

δλi(An) (1.1)

where |λi(An)| > · · · > |λn(An)| are the complex eigenvalues of An ordered by decreasing
modulus. It is a striking result that when dn → ∞, the random measure µn suitably
rescaled converges towards the circular law, a uniform distribution on a disk ([2, 30]).
This phenomenon cannot hold when dn is bounded independently of n, because in this
case, any potential limit should have an atom at zero, as noted for example in [30]. In
this dn = O(1) regime called sparse, the existence of a weak limit for (1.1) is not known.
If this limit exists, there are no conjectures on its shape. This is in contrast with the
same problem when An is the adjacency matrix of a random directed d-regular graph
(when d > 3 is an integer); there, the limiting distribution is conjectured to have a
closed-form expression, the oriented Kesten-McKay density. In the Erdős-Rényi model,
there are reasons to think that no closed-form expressions will exist; more generally, the
spectral behaviour of An in the sparse regime is still largely unknown and we refer to the
physics-oriented survey [25] for insights on spectra of sparse, non-Hermitian matrices.
Recently, [9] showed that when dn = d, all the eigenvalues of An are asymptotically close
to the disk D(0,

√
d) except one which is close to d — this is a Ramanujan-like property

for sparse digraphs. It notably implies the tightness of the sequence of random measures
(µn), and the fact that all limit points are supported in D(0,

√
d), but the existence of a

unique limit point is not guaranteed.
In this paper, the main result is that when dn = d > 0, the sequence of random

polynomials

qn : z 7→ det(In − zAn) =

n∏
i=1

(1− zλi),

restricted to the disk D(0, d−1/2), weakly converges towards an explicit random analytic
function F . This is inspired by a recent advance in [7]. As a corollary, we draw a simple
proof of the aforementioned result from [9]. The limiting function F seems to be new;
it is a Poisson analog of the Gaussian holomorphic chaos [26], and has connections
with the combinatorics of multiset-partitions. In this paper, we only sketch some of its
elementary properties, but a deeper study might be of independent interest. Since this
object arises as the limit of the polynomials qn which are themselves linked with the λi,
a better understanding of F might be useful for understanding the asymptotic spectral
properties of An.

In the regime where dn → ∞ slower than no(1), we prove a similar result for the
rescaled polynomials d−1/2n qn(d

−1/2
n z). We show that when restricted to D(0, 1), they con-

verge towards −z
√

1− z2G(z), where G is the exponential of a log-correlated Gaussian
field, and we draw consequences on the eigenvalues of An which show that the second
eigenvalue of An/

√
dn is close to 1: it sticks to the edge of the circular law.

2 Results in the sparse regime

In all this section, we fix d > 0 and we consider a random n× n matrix An whose n2

entries are independent zero-one random variables with Bernoulli(d/n) distribution.
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The characteristic polynomial of sparse matrices

2.1 Convergence of the secular polynomials and eigenvalue asymptotics

The main result of this paper is the convergence of the reverse characteristic polyno-
mial of An, which is defined as

qn(z) = det(I− zAn). (2.1)

This is a sequence of random polynomials. They can explicitly be written in terms of the
eigenvalues of An, namely qn(z) =

∏n
i=1(1− λiz), or alternatively they can be expressed

through their coefficients, that is: qn(z) = 1 +
∑n
k=1(−1)kzk∆k(A), where

∆k(A) =
∑
I⊂[n]
|I|=k

det((ai,j)i,j∈I).

These coefficients are known in the litterature under the name secular coefficients,
see for instance [16] in the context of circular β-ensembles, and sometimes we will
refer to qn as the secular polynomials. Since they are symmetric functions in the λi,
they can be expressed through Newton’s formulas as polynomials in the power sums
λk1 + · · ·+ λkn = tr(Ak): more precisely, there is a polynomial Pk with degree k and real
coefficients such that

∆k(An) = (−1)k
Pk(tr(A1

n), . . . , tr(Akn))

k!
,

this will be recalled in Subsection 6.1. The traces of Akn can be studied using classical
methods in combinatorics, and their limit is identified by the following definition and the
theorem after.

Definition 2.1. Let d > 0, and let (Y` : ` ∈ N∗) be a family of independent random
variables, with Y` ∼ Poi(d`/`). We define a family of (non-independent) random variables
by

Xk :=
∑
`|k

`Y` (k ∈ N∗) (2.2)

where a|b means that b is a nonzero multiple of a.

Theorem 2.2 (trace asymptotics). For every integer k, the following joint weak conver-
gence holds:

(tr(A1
n), . . . , tr(Akn))

law−−−−→
n→∞

(X1, . . . , Xk). (2.3)

In particular, their joint convergence in distribution implies the convergence in
distribution of any polynomial in the tr(Akn), and in particular of the coefficients ∆k(An)

towards (−1)kPk(X1, . . . , Xk)/k!. We define a (formal) series by

F (z) := 1 +

∞∑
k=1

(−1)kPk(X1, . . . , Xk)
zk

k!
, (2.4)

the convergence of which will be justified later. We just saw that for each k, the k-th
coefficient of qn converges when n→∞ towards the k-th coefficient of F : this is called
finite-dimensional convergence. Generally, if fn, f are formal series, we say that fn → f

in the finite-dimensional sense if for every integer k, the k-th coefficient of fn converges
as n→∞ towards the k-th coefficient of f . This is a very loose notion of convergence.

To upgrade this result to functional weak convergence, we need to introduce some
tools. Let Hr the space of analytic functions on the open disk D(0, r), for r > 0. This set
is endowed with the topology of uniform convergence on compact subsets, and with the
corresponding Borel sigma-algebra (all the technical details regarding random analytic
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The characteristic polynomial of sparse matrices

Figure 1: An illustration of Theorem 2.3 when d > 1. The color scheme used for these
domain colourings is depicted in the small inset of the right picture. Left is the domain
colouring of z 7→ det(I − zA), where A is an n × n random matrix with independent
entries equal to 1 with probability d/n and 0 otherwise (n = 500 and d = 2). The inverse
eigenvalues of A are in white and the two circles have radius 1/d and 1/

√
d. Right is

the colouring of the random analytic function F in (2.4). What we see inside D(0, 1/
√
d)

in the left picture converges in distribution towards what we see in the right picture.

functions will be recalled in Section 5). The sum representation in (2.4) is not very
informative, and some effort will be deployed for getting more explicit representations
of F in the next subsection, including infinite product representations in terms of the Y`.
For the moment, we will only need that

almost surely, F is in Hd−1/2 . (2.5)

We can now state our main result, where for completeness all the definitions are recalled.

Theorem 2.3 (weak convergence). Let d > 0 and let An be a random n×n matrix whose
n2 entries are independent Bernoulli random variables with parameter d/n, and let
qn(z) = det(In − zAn). Then,

qn
law−−−−→
n→∞

F (2.6)

where the convergence is the weak convergence of probability measures on Hd−1/2 , and
F is the random element in Hd−1/2 defined in (2.4).

2.2 Eigenvalue asymptotics

The zeros of analytic functions are continuous with respect to the uniform conver-
gence of compact sets (Hurwitz’s theorem). It is thus natural to study the zeroes of F .
We introduce a random multiset, or equivalently a Radon measure with integer values.
Let U` be the set of `-th roots of unity. If A,B are two multisets, their multiset union is
noted A ]B; we note Am = A ] · · · ]A (m times), which means the multiset containing
each element of A exactly m times.

Definition 2.4. Let (Y` : ` > 1) be the family of independent Poisson(d`/`) random
variables in Definition 2.1. We set Zd(`) = UY`` , and

Zd =
⊎
`>1

Zd(`). (2.7)
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The characteristic polynomial of sparse matrices

In other words, each `-th root of unity is put in Zd with multiplicity Y`. Note that the
same root of unity can be added multiple times: in fact, if x = e

k2iπ
` with k, ` mutually

primes, then x is a primitive `-th root of unity, and the total multiplicity of x in Zd will be

M` =

∞∑
j=1

Yj`.

When d < 1, this sum is almost surely finite, because E[M`] =
∑∞
j=1 d

j`/(j`) <∞. When
d = 1, then E[M`] = ∞ and we will see that this sum is also almost surely infinite. We
can now describe the random multiset of zeroes of F .

Proposition 2.5. The following trichotomy holds.

• When d > 1, the random analytic function F has exactly one zero in D(0, d−1/2). It
is located at 1/d and it is simple.

• When d = 1, the random analytic function F does not vanish in D(0, 1).

• When d < 1, F is a polynomial and its zeroes have the same distribution as the
random multiset described in Definition 2.4.

The proof is a straightforward consequence of the representations of F given in
Theorem 2.7 below. Now, with this proposition and a simple probabilistic analysis of
the weak convergence on Hd−1/2 done in the inspiring papers [3, 7], we will almost
effortlessly show the following result which was already partially proved in [9, 15] using
a different, ad hoc method.

Theorem 2.6. Let |λ1| > · · · > |λn| be the eigenvalues of the random matrix An defined
in the preceding theorem. If d > 1, then for any ε > 0 the following holds:

lim
n→∞

P(|λ1 − d| > ε) = 0 lim
n→∞

P(|λ2| >
√
d+ ε) = 0. (2.8)

If d = 1, then
lim
n→∞

P(|λ1| > 1 + ε) = 0.

Finally, if d < 1, then the eigenvalues of An are either zero or roots of unity. The random
multiset Φn of the non-zero eigenvalues of An satisfies

Φn
law−−−−→
n→∞

Zd (2.9)

where Zd is the random multiset of zeroes of F and the convergence is the vague
convergence of Radon measures on C.

In the case d > 1, it is supposed that |λ2| actually converges in probability towards√
d, but to the knowledge of the author this has not been proved yet; we refer to the

related work section on this topic.
Incidentally, when d < 1 there is a positive probability that An has no non-zero

eigenvalues, that is, An is nilpotent. We will see in the proof that this probability is
asymptotically equal to 1−d. As soon as d > 1, this is no longer the case and An must have
at least one non-zero eigenvalue with probability going to 1 as n→∞. Regarding the
d = 1 case, we could not extract further information from our proof, the only conclusion
we have is that all the eigenvalues asymptotically have modulus smaller then 1 + oP(1),
but some numerical experiments tend to show that there is a circle of eigenvalues with
modulus close to 1 (and not equal to 1 as in the d < 1 case), as well as other smaller
non-zero eigenvalues, see the middle picture in Figure 2.
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The characteristic polynomial of sparse matrices

Figure 2: Complex eigenvalues of a realization An for n = 2000 and different values of d.
The circles have radii max{1, d}.

2.3 The Poisson multiplicative function and its secular coefficients

We now study the random analytic function F . The results in this section will notably
imply (2.5) or Proposition 2.5, but they are also interesting on their own.

The log-generating function of the random variables Xk will play a central role, as
well as its centered version:

f(z) =

∞∑
k=1

Xk
zk

k
, P(z) =

∞∑
n=1

(τk −Xk)
zk

k
where τk = E[Xk] =

∑
`|k

d`. (2.10)

Theorem 2.7 (limiting object). Almost surely, for all z inside the disk of convergence of
f , we have

F (z) = e−f(z) (2.11)

and

F (z) =

∞∏
`=1

(1− z`)Y` . (2.12)

We now turn to the radius of convergence of f and F .

(i) If d < 1, then the following alternative holds true. With probability 1 − d, the
function f is identically zero. Or, with probability d, the radius of convergence of f
is equal to 1. In both cases F is a polynomial so its radius of convergence is∞.

(ii) If d = 1, almost surely the radius of convergence of f is 1, hence the radius of
convergence of F is not smaller than 1. Moreover, F is not a polynomial.

(iii) If d > 1, almost surely the radius of convergence of f is 1/d. The radius of
convergence of P is d−1/2. For every z ∈ D(0, d−1/2),

F (z) = eP(z) ×
∞∏
`=1

(1− dz`) 1
` (2.13)

where the infinite product is uniformly convergent on compact subsets D(0, d−1/2),
hence the radius of convergence of F is not smaller than d−1/2.

There is not so much to say about F when d < 1: the expression (2.12) says that F is
a polynomial with roots located on the unit circle. However, when d > 1 the situation
is richer. Let cn be the (random) coefficients of F = e−f , so that F (z) =

∑∞
n=0 cnz

n.
The cn are also called the secular coefficients of F ; with the definition in (2.4) they
are given by cn = Pk(X1, . . . , Xk)/k! but this expression will not be very useful. The cn
are random variables, and since F is analytic inside D(0, 1/

√
d), Hadamard’s formula
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says that lim sup |cn|1/n 6
√
d almost surely, and it is natural to ask what happens at the

border of this disk, a question similar to the construction of the Gaussian Multiplicative
Chaos on the circle, see [29] for a survey (as a side note, we will also see that f is itself
a log-correlated field).

Remark 2.8. The preceding theorem does not prove that the radius of convergence of
F is equal to d−1/2, but only greater than d−1/2. We strongly suppose that it is indeed an
equality.

Now, Cauchy’s formula says that for any m ∈ Z and r < d−1/2,

1

2π

∫ 2π

0

F (reit)r−me−imtdt =

{
cm if m > 0

0 if m < 0.
.

Consequently, the limit

lim
r→d−1/2

1

2π

∫ 2π

0

F (reit)ϕ(reit)dt

exists for every ϕ(z) =
∑d2
k=d1

akz
k with d1, d2 ∈ Z, ie for every trigonometric polynomial

ϕ on the circle Td−1/2 = {|z| = d−1/2}. This provides us with a simple construction of
F extended to Td−1/2 : we see it as a random distribution, that is, a continuous linear
function on the set of trigonometric polynomials on Td−1/2 .

Definition 2.9. The Poisson Holomorphic Chaos of index d > 1, noted PHCd, is the
random distribution on Td−1/2 almost surely defined by

(PHCd, ϕ) = lim
r→d−1/2

1

2π

∫ 2π

0

F (reit)ϕ(reit)dt. (2.14)

A distribution D on Td−1/2 is entirely characterized by its Fourier coefficients D̂(m) :=

(D, em) where em(t) = d−1/2e−imt. Consequently, we can define the s-Sobolev norm
(s ∈ R) by

‖D‖2s =
∑
n∈Z

(1 + n2)s|D̂(n)|2. (2.15)

A distribution is s-Sobolev when the sum above is finite. Since the Fourier coefficients
of the Poisson holomorphic chaos are given by P̂HCd(m) = d−m/2cm if m > 0 and 0 if
m < 0, the Sobolev norm is simply given by

∑
m∈N(1 + n2)sd−n/2|cn|2.

Proposition 2.10. Let d > 1. Almost surely, the random distribution PHCd is s-Sobolev
for every s < −1/2.

Future work will be devoted to a wider analysis of the Sobolev-regularity of F .
Studying the Sobolev norms of F requires a good understanding of the integrability
properties of the secular coefficients cn. We saw that these coefficients are polynomials
in the Xk (hence of the Y`), but this expression is difficult to manipulate; however, we
have access to their moments by means of a combinatorial analysis. For every integer
k > 0, we note Oddk the set of nonempty subsets of [k] = {1, . . . , k} with an odd number
of elements, and Evenk the set of nonempty subsets of [k] = {1, . . . , k} with an even
number of elements.

Theorem 2.11. For any z1, . . . , zk in the domain of definition of F , one one has

E[F (z1) · · ·F (zk)] =

∏
S∈Oddk

(1− d
∏
s∈S zs)∏

S∈Evenk
(1− d

∏
s∈S zs)

. (2.16)
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To give a few examples,

E[F (z)] = 1− zd

E[F (y)F (z)] =
(1− dy)(1− dz)

1− dyz

E[F (x)F (y)F (z)] =
(1− dx)(1− dy)(1− dz)(1− dxyz)

(1− dxy)(1− dxz)(1− dyz)
.

In particular, we see the cn are centered random variables except c0 and c1, and the
analytic series (1−z)−1 =

∑
zn gives E[|cn|2] = dn(d+1) — in particular E[|cn|2] = O(dn).

The formula given above is our analog of the generating-function formula for the
Gaussian Holomorphic Chaos in [26]. Therein, the combinatorial interpretation of the
secular coefficients was easily linked with the enumeration of magic squares. A similar
simple interpretation of the coefficients of (2.16) is not clear for the moment, but some
thoughts are gathered in Subsection 8.6 at page 26.

3 Results in the denser regime where dn →∞
The primary interest of this paper was to study random zero-one matrices with a

constant mean degree dn = d > 0 not depending on n, a regime which is more difficult
than the ‘semi-sparse’ regime where dn is allowed to grow to infinity. This is what we
study now, and our results essentially have the same flavour as [7] in that the spectral
limits of An are Gaussian. We emphasize that this method gives a unified point of view
on the convergence of the characteristic polynomial in all regimes of d, sparse or not.
Our results are stated and proved in the regime where d goes to infinity but not too fast;
in fact, we will from now on suppose

lim
n→∞

dn = +∞ and lim
n→∞

log(dn)

log(n)
= 0. (H)

There is no doubt that the result will still hold for denser regimes such as d = nα, α < 1;
we did not pursue this route further.

Our first result is on the identification of traces of An/
√
dn when dn → ∞; in the

sparse regime, everything was essentially Poisson; in this semi-sparse regime, everything
is essentially Gaussian.

Theorem 3.1. Let (Nk : k > 1) be a family of iid standard real Gaussian random
variables. Then, under (H), for any k,(

tr(A)√
dn
−
√
dn, . . . ,

tr(Ak)
√
dn

k
−
√
dn

k

)
law−−−−→
n→∞

(N1, . . . ,
√
kNk) + (0, 1, 0, 1, . . . ,1k is even).

(3.1)

The proof is at Section 10. It is well known that if Zλ is a Poi(λ) random variable, then
λ−1/2(Zλ − λ) converges in distribution towards a standard Gaussian. From this, it is
almost immediate to see that if the Xk are the random variables arising in Definition 2.1
in the sparse regime, then d−1/2(X1, . . . , Xk) converges in distribution as d→∞ to the
RHS in (3.1).

We now define

G(z) = exp

{ ∞∑
k=1

Nk
zk√
k

}
.

It is easily seen that the analytic function inside the exponential, say g(z), almost surely
has a radius of convergence equal to 1, hence G is in H1 (analytic functions in D(0, 1)).
On a side note, it is not difficult to check that if g is a log-correlated Gaussian field, in
that Cov(g(z), g(w)) = − log(1− zw̄).
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Figure 3: Same plot as in Figure 1, but for det(I− zA/
√
dn); here we took n = 2000 and

dn = 100. The function on the right is the phase portrait of z 7→ −z
√

1− z2G(z) as in
Theorem 3.2.

Theorem 3.2 (weak convergence). Let (dn) be a sequence satisfying (H) and let An be
a random n × n matrix whose n2 entries are independent Bernoulli random variables
with parameter dn/n, and let qn(z) = det(In − zAn/

√
dn). Then,

qn(z)√
dn

law−−−−→
n→∞

−z
√

1− z2G(z) (3.2)

weakly on H1.

We note that the limit in (3.2) is nearly the same as the one in [7]. The main difference
is in the presence of this z factor, and it is due to the fact that the entries in our matrix
are not centered. If we replaced A with A−E[A], this term would not be present.

We now give the analog of Theorem 2.6 in the dn →∞ setting.

Theorem 3.3. Let |λ1| > · · · > |λn| be the eigenvalues of the random matrix An defined
in the preceding theorem, under hypothesis (H). Then, λ1/

√
dn →∞ almost surely and

for any ε > 0,

lim
n→∞

P(||λ2/
√
dn| − 1| > ε) = 0. (3.3)

In any regime where dn → ∞, the circle law was proved in [2, 30]: the empirical
spectral distribution of the λi/

√
dn converges weakly towards the uniform distribution

on D(0, 1). The convergence in (3.3) says that apart from the first eigenvalue, there
are no outliers in the spectrum, ie the second eigenvalue cannot wander away from the
boundary of the support D(0, 1) of the limiting distribution.

Since the circular distribution puts a strictly positive mass c(ε) on any domain
C\D(0, 1− ε), then by the Portemanteau theorem, the fraction of eigenvalues of An/

√
dn

which are bigger than 1− ε is asymptotically > c(ε), and in particular is strictly positive:
not only is |λ2/

√
dn| greater than 1− ε, but also a linearly growing number of |λk/

√
dn|.

Plan of the paper

In Section 4, we give an overview of the origins of our method and various related
work. We mention a set of questions and possible extensions. Section 5 is a summary
of classical notions on random analytic functions; the specific properties of the Poisson
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multiplicative function which are stated in Subsection 2.3 are proved in Section 8. The
core results of the paper, namely Theorem 2.3 and 2.6, are proved in Section 6 as
consequences of Theorem 2.2, which identifies the limits of the traces. This theorem is
proved in Section 9. Section 10 deals with our results in the dn →∞ regime.

4 Related work and comments

Convergence of the reverse characteristic polynomial Our work is inspired by the
recent paper [7]. There, the authors prove the convergence of det(In − zXn/

√
n), where

Xn is a random matrix whose entries are iid random variables, with mean 0 and variance
1, and whose law does not depend on n; for instance, Ginibre matrices. The circular law
phenomenon holds for this model; that is, the empirical spectral distribution of Xn/

√
n

converges weakly towards the uniform distribution over D(0, 1). The goal of [7] was
to prove the ‘no outliers phenomenon’: that the greatest eigenvalue of Xn/

√
n, noted

ρn, converges in probability towards 1, with no extra assumptions on the moments of
the entries of X. We refer to the introduction of [6] and references therein for some
history on this theorem. In our paper we closely follow the method introduced in [7].
This method is itself inspired by [3] and Appendix A therein. The crucial addition of
[7] was a truncation procedure and the identification of a trace CLT, which allowed
to identify the limiting distribution. However, the model studied in [3] is completely
different (perturbations of banded matrices).

Eigenvalue asymptotics for sparse matrices and trace methods Theorem 2.6
was already proved in [9], following a long line of research initiated in [5, 10] and
continued, for example, in [13, 8, 12]. These papers reach results like (2.8) by using a
very sophisticated high-trace method, namely, they study the asymptotics of tr(Aknn ), with
kn allowed to grow to∞. This technique dates back at least to [20]. In our method, (2.8)
is a direct consequence of Theorem 2.3, which is itself proved using the classical trace
method with k fixed as in Theorem 2.2. It is considerably simpler. Trace asymptotics are
standard in random matrix theory, even for non-Hermitian random matrices; however, we
could not find Theorem 2.2 in the litterature and to the knowledge of the authors, there
are very few similar results for other models of sparse matrices. The closest result can
be seen in [18] (or in its bipartite version [33]) for traces of non-backtracking matrices
on regular graphs: see the definition of CNBW∞k at page 15 in [18].

Sparse models: extension to regular graphs Our paper only treats the case of
Erdős-Rényi directed graphs, whose edges are independent. The other main model for
sparse non-Hermitian matrices is the random regular digraph model mentioned in the
introduction. For an integer d > 3, one samples A uniformly from the set of adjacency
matrices of d-regular directed graphs. A statement similar to Theorem 2.6 for this model
was proven in [13] using the high-trace method, but the method in our paper should also
provide a simpler proof. In fact, the limits of the traces as in Theorem 2.2 is thought
to be the same for random regular, with a similar proof; but the main difficulty lies in
the tension of the polynomials qn, where our method and Proposition 6.2 are not easily
generalized. This exploration was recently done in the preprint [14].

Similarly, one can be interested in applying this model to random undirected regular
graphs. The asymptotics of the second eigenvalue, in this case, is given by the Alon-
Friedman theorem and the proofs relied on delicate subgraphs asymptotics [19], or the
use of the non-backtracking matrix B, see [5]. The asymptotics of the traces of B are
known, see [18], but here again the tension of the family of polynomials det(I− zB) on
H1/2

√
d−1 is not proved for the moment.

EJP 28 (2023), paper 8.
Page 10/40

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP875
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The characteristic polynomial of sparse matrices

Sparse models: extensions to inhomogeneous graphs The inhomogeneous ran-
dom digraph is defined as follows: instead of appearing with probability p = d/n, an
edge (i, j) appears with probability pi,j depending on i and j. When the mean matrix P
has low rank and has delocalized entries, a theorem similar to Theorem 2.6 was proved
in [15]. Since this model encompasses popular generative models in network science
(such as the directed Stochastic Block-Model, its weighted, labelled or degree-corrected
variants, or the rank-1 inhomogeneous random graph), our method could provide an
interesting alternative to [10] and the high-trace methods; however, as it is now our
method cannot provide information on the eigenvectors of An, and it could be interesting
to see if any refinement can achieve this.

Alon-Boppana for non-normal matrices In the theory of sparse non-Hermitian ma-
trices, there is still a crucial lack of lower bounds for the second eigenvalue. For instance,
our result in Theorem 2.6 states that when d > 1 the second eigenvalue of Erdős-Rényi
graphs satisfies |λ2| 6

√
d + oP(1). However, the matching lower bound, namely that

|λ2| >
√
d+ oP(1), is only conjectured; in fact, it is generally believed that for any fixed k,

|λk| >
√
d+ oP(1). We call this kind of upper bounds ‘Alon-Boppana bounds’, in reference

of the famous lower bound for λ2 in [27] in the context of regular graphs. For Hermitian
or normal matrices, they are easily reachable thanks to the min-max characterizations
of eigenvalues, but this tool is not available for non-normal matrices such as adjacency
matrices of random digraphs. In many models of sparse random matrices such as [15],
Alon-Boppana bounds are conjectured, but at the moment they are not proved.

One possible way to prove these bounds is to directly prove that the ESD of A
converges towards a limiting measure supported in D(0,

√
d), but as mentioned in the

introduction this seems very difficult in sparse settings.

The method developed in [2, 7] and this paper suggests another strategy. The
limiting function F is conjectured to have a radius of convergence of 1/

√
d. If we had

lim sup |λ2| < c for some c <
√
d on an event with positive probability, then on this

event all the roots of qn except 1/λ1 would be outside the circle of radius 1/c. It seems
reasonnable to say that this should imply that the radius of convergence of F would then
be greater than 1/c on this event, a contradiction. We could not formalize this idea.

The Poisson analog of the GHC Exponentials of Gaussian fields have a very rich
history, see the survey [29]. Of special interest is the Gaussian holomorphic chaos, ie

C(z) = exp

( ∞∑
k=0

Nk
zk√
k

)
(4.1)

where the Nk are iid standard complex Gaussian variables. This random analytic function
onD(0, 1) was proved to be the limit of the secular polynomials in the circular β-ensemble
for β = 2 in [17], and then for every β > 0 in [23]. This link between characteristic
polynomials and Gaussian functions was also central in a series of conjectures in [21] and
subsequent work. The remarkable paper [26] thoroughly studies more refined properties
of the GHC linked with the circular ensembles; therein, the very clear combinatorial
interpretation of the moments of the GHC already seen in [16] is proven by elementary
means ([26, Theorem 1.6]). For the moment, we could not reach such an elegant
description for our Poisson analog, see Theorem 2.7.

Subsequent work should be devoted to a less shallow study of the Poisson multiplica-
tive function F and its extension to the circle Td−1/2 as in Definition (2.1). The following
questions arise.
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1. We strongly suppose that the radius of convergence of F is d−1/2, we did only prove
that is it > d−1/2.

2. Proposition 2.10 only gives a tiny information on the regularity of PHC. Can we
fully characterize the Sobolev regularity of this object? As noted in Subsection 8.4,
the answer could depend on the limit of

∫
|F (reit)|2dt — the total mass of a putative

random measure on {|z| = d−1/2} defined by limr→d−1/2 e2Re(f(reit))dt.

3. Is there a simple combinatorial interpretation of the generating functions for the
moments of PHCd in (2.16)?

4. What can be said about the convergence of the secular coefficients ∆k(An) when k
is allowed to go to infinity with n?

5 General facts about random analytic functions

In this section, we recall some basic facts on random analytic functions.
Let Hr be the set of analytic functions on the open disk D(0, r). A textbook treatment

of the properties of Hr is in [32, vol. 2a, ch. 6]. A classical consequence of Cauchy’s
formula is that the elements in Hr can be represented as power series

∞∑
k=0

akz
k (5.1)

with lim sup |ak|1/k 6 1/r (Hadamard’s formula). The space Hr is endowed with the
compact-convergence topology: we say that a sequence fn converges to f if, for every
compact set K ⊂ D(0, r),

‖fn − f‖K = sup
z∈K
|fn(z)− f(z)| → 0.

Endowed with this topology, H (D) is topolish — it is separable, complete and there is a
metric distance generating the topology.

We now turn to random variables in Hr. We endow this space with the Borel sigma-
algebra. Random variables in Hr are random analytic functions; equivalently, they are
series as in (5.1), where the ai are random variables satisfying Hadamard’s limsup
condition. The laws of two random functions

∑
akz

k and
∑
bkz

k are equal if and only

if the finite-dimensional distributions of (ai) and (bi) agree, that is, if (a0, . . . , ak)
law
=

(b0, . . . , bk) for every k. The classical text on random analytic functions is [24], especially
Chapter 3.

We endow the space of probability distributions on Hr with the topology of weak
convergence of measures, that is: the law of fn converges weakly towards the law of f if
and only if E[Φ(fn)] → E[Φ(f)] for every continuous bounded function Φ : Hr → [0,∞[.
With a common abuse of language, when we say that random variables converge in law,
we mean that their distributions converge in law as described above. The following
theorem summarizes the results in [31]. See also [7, Lemma 3.2].

Theorem 5.1. Let f, f1, f2, . . . be random variables in Hr. Then, fn converges weakly
towards f if and only if

(i) The sequence of random variables ‖fn‖Ki is tight for every i, where Ki is a sequence
of compacts exhausting D(0, r).

(ii) The finite-dimensional laws of fn converge in law towards those of f .
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Proving the tightness of ‖fn‖K when fn is a random sequence of analytic function
can be simplified by the following device, a statement close to [31], Lemma 2.6 and the
remark just after.

Lemma 5.2 (Hardy-type criterion). Let fn(z) =
∑
an,kz

k be a sequence of random
analytic functions on D(0, r). If there is a sequence (ak) such that supnE[|an,k|2] 6 ak
for every k and such that lim sup |ak|1/2k 6 1/r, then (fn) is tight in Hr.

Proof. Let K ⊂ D(0, r) be a compact set and let s < r be the radius of an open disk
containing it. By Cauchy’s formula, for every z ∈ K,

|fn(z)|2 =

∣∣∣∣∣ 1

2iπ

∫
|z|=s

fn(w)

w − z
dw

∣∣∣∣∣
2

=
1

(2π)2

∣∣∣∣∫ 2π

0

fn(seit)sieit

seit − z
dt

∣∣∣∣2
6

s2

2πδ2

∫ 2π

0

|fn(seit)|2dt

where we used Cauchy-Schwarz’s inequality and we set δ = s−maxx∈K |x| > 0. Using
Parseval’s formula, we obtain

∀z ∈ K, |fn(z)|2 6
s2

δ2

∞∑
k=0

|an,k|2s2k.

The expectation of the RHS is by hypothesis smaller than (s2/δ2)
∑
k aks

2k, a continuous
function in s ∈ [0, r) because we supposed that lim sup |ak|1/2k 6 1/r. Consequently,
E[supz∈K |fn(z)|2] 6 cK for some constant cK depending on K. It readily implies the
tightness of the sequence.

Remark 5.3. The 2-Hardy norm on a disk D(0, s) is
(∑
|ak|2s2k

)1/2
. The preceding

statement says that if (fn) has a uniformly bounded 2-Hardy norm in every D(0, s) for
s < r then the sequence is tight. This is slightly more specific than the criterion in [31],
in which one directly proves that E[|fn(z)|2] is bounded by a continuous function. The
reason why we do this is the following: if we directly want to study E[|fn(z)|2], we obtain

E[|fn(z)|2] =
∑
k,`

zkz̄`E[an,kan,`]

and in most study cases, the random variables an,` and an,k are independent or decorre-
lated for k 6= `, as in [7], but this is not the case for us, see the examples in Subsection 6.3.

6 Proof of Theorem 2.3

6.1 Proof of the finite-dimensional convergence

To prove Theorem 2.3, namely that qn converges weakly towards F , we use The-
orem 5.1. The key for the finite-dimensional convergence is the identification of the
distributional limits of the traces of Ak in Theorem 2.2. Given this theorem which will be
proved in Section 9, we can classically link the traces of Ak with the secular coefficients,
the coefficients of det(I− zA).

To do this we introduce a family of polynomials Pk, each Pk having k variables. We
note Sk the group of permutations of [k]; each permutation σ can be uniquely written as
a composition of ` cycles with disjoint support, say σ = c1 ◦ · · · ◦ c`; the length of a cycle c
is noted |c|. Then, we define Pk as

Pk(z1, . . . , zk) =
∑
σ∈Sk

(−1)`z|c1| . . . z|c`|. (6.1)
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Proposition 6.1. For any f(z) =
∑
anz

n analytic in some disk D(0, r),

e−
∑∞
k=1 ak

zk

k = 1 +

∞∑
k=1

Pk(a1, . . . , ak)
zk

k!
. (6.2)

Moreover, for any n× n matrix B, for any z,

det(I− zB) = 1 +

n∑
k=1

Pk(tr(B), . . . , tr(Bk))
zk

k!
. (6.3)

Proof. Part (6.2) can be found in [1, Corollary 3.6]. For the second statement, we note
C(z) the matrix logarithm of I− zB, which exists if |z| < 1/‖B‖ and is defined by

C(z) = −
∞∑
k=1

Bk

k
zk.

Then det(I − zB) = det(eC(z)) = etr(C(z)) = e−
∑∞

1
tr(Bk)
k zk . This proves (6.3) (we can

truncate the sum at n since it is a polynomial of degree n) for |z| < 1/‖B‖, and it extends
analytically for all z.

The coefficients of qn are ∆k(An) = Pk(tr(A), . . . , tr(Ak))/k! and polynomials are
continuous with respect to weak convergence, so Theorem 2.2 implies that

(∆1(An), . . . ,∆k(An))
law−−→ (P1(X1), . . . , Pk(X1, . . . , Xk)/k!).

Thanks to (6.2) and the definition of F in (2.4), this is exactly the finite-dimensional
convergence of qn towards F = e−f , ie the second point in Theorem 5.1. To complete
the proof, we need to check the first point of this theorem.

6.2 Proof of the tightness

We now have to prove the first point on Theorem 5.1, that is, the tightness of (qn),
and to do this we use the Hardy-type criterion in Lemma 5.2. We recall that qn(z) =

det(I− zA) = 1 +
∑n
k=1(−1)kzk∆k(A) where the ∆k(A) are the secular coefficients; from

now on, we’ll simply note them ∆k, and they are given by

∆k =
∑
I⊂[n]
|I|=k

det(A(I)) (6.4)

with A(I) = (ai,j)i,j∈I. Our goal for Lemma 5.2 is to give an upper bound for

E[|∆k|2] =
∑
|I|=k
|J|=k

E[det(A(I)) det(A(J))] (6.5)

which does not depend on n. For any finite set E, we note S(E) the group of its bijections
and ε : S(E)→ {−1,+1} the signature (the unique nonconstant group morphism). If I, J

are fixed, then

E[det(A(I)) det(A(J))] =
∑

σ∈S(I)
τ∈S(J)

ε(σ)ε(τ)E

∏
i∈I
j∈J

ai,σ(i)aj,τ(j)

 (6.6)

and when the entries ai,j are centered and have a common variance, the former expres-
sion is easy to study: if I 6= J, the expectation is the sum is always zero by independence,
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so the whole expression is nonzero iff I = J and the only nonzero contribution in the sum
comes from σ = τ . This is the situation studied in [3] or [9]. It is not the case for us since
we deal with non-centered entries. For instance, let us take n = 2, I = {1} and J = {1, 2},
so that

E[det(A(I)) det(A(J))] = E[a21,1a2,2 − a1,1a1,2a2,1].

If the ai,j are standard real Gaussian random variables, this is zero. But if they are
Ber(p), this is p2 − p3. Fortunately, the computations are accessible.

Proposition 6.2. Set p = d/n. With the preceding notations,

E[|∆k|2] = (n)kp
k(1− p)k−1(1− p+ np). (6.7)

The proof will be in Section 6.3. We did not succeed in finding a simpler proof. Now,
since p 6 1 and np = d, we can bound E[|∆k|2] by ak := dk(1 + d), which does not depend
on n; we also have

lim sup |ak|1/2k =
√
d.

Lemma 5.2 applies and shows that (qn) is a tight sequence in Hd−1/2 .

6.3 Proof of Proposition 6.2

For any two nonempty subsets I, J ⊂ [n], we will note

δ(I, J) = E[det(A(I)) det(A(J))]. (6.8)

Proposition 6.2 is a direct consequence of the following theorem which could be of
independent interest.

Theorem 6.3. If I has k elements and J has h elements (wlog, k 6 h), then the followings
holds for any matrix A with independent Ber(p) entries.

(i) If J \ I or I \ J has more than two elements, then δ(I, J) = 0.

(ii) If I = J, then
δ(I, J) = k!pk(1− p)k−1(1− p+ kp). (6.9)

(iii) If I ⊂ J and J \ I has only one element, then δ(I, J) = k!pk+1(1− p)k.

(iv) If |I| = |J| and if |I ∩ J| = k − 1, then

δ(I, J) = (k − 1)!pk+1(1− p)k−1.

We now prove Proposition 6.2, and we will only need the cases (i), (ii), (iv) — case (iii)
is only included for completeness. We have

E[|∆k|2] =
∑

|I|=|J|=k

δ(I, J)

and in this sum, the only non-zero contributions come from couples I = J and couples
I, J with |I ∩ J| = k − 1, so

E[|∆k|2] =
∑

|I|=|J|=k
I=J

δ(I, J) +
∑

|I|=|J|=k
|I∩J|=k−1

δ(I, J)

=

(
n

k

)
k!pk(1− p)k−1(1− p+ kp) +

(
n

k

)
(n− k)k(k − 1)!pk+1(1− p)k−1

= (n)kp
k(1− p)k−1(1− p+ kp) + (n)k(n− k)pk+1(1− p)k−1

= (n)kp
k(1− p)k−1(1− p+ kp+ p(n− k))

= (n)kp
k(1− p)k−1(1− p+ np).
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Before jumping to the proof of Theorem 6.3, let us illustrate the 3× 3 case for which
computations can be checked by hand.

Example 6.4. We study

A =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 .

Case (i): let us take for instance I = {1} and J = {1, 2, 3}, so

δ(I, J)

= E[a1,1 det(A)]

= E[a1,1(a1,1a2,2a3,3 + a1,2a2,3a3,1+a1,3a2,1a3,2−a1,1a2,3a3,2−a1,2a2,1a3,3−a1,3a2,2a3,1)]

= E[a1,1a2,2a3,3 + a1,1a1,2a2,3a3,1

+ a1,1a1,3a2,1a3,2 − a1,1a2,3a3,2 − a1,1a1,2a2,1a3,3 − a1,1a1,3a2,2a3,1]

= p3 + p4 + p4 − p3 − p4 − p4

= 0.

For case (ii) let us take I = J = {1, 2}, so that

δ(I, J) = E[(a1,1a2,2 − a1,2a2,1)2]

= E[a1,1a2,2 + a1,2a2,1 − 2a1,1a2,2a1,2a2,1]

= 2p2 − 2p4.

For case (iii) we take I = {1, 2} and J = {1, 2, 3}, we obtain

δ(I, J) = E[(a1,1a2,2 − a1,2a2,1)×
(a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,1a2,3a3,2 − a1,2a2,1a3,3 − a1,3a2,2a3,1)]

and this is equal to 2p5 − 4p4 + 2p3.
Finally for case (iv) we take I = {1, 2} and J = {2, 3} and we obtain

δ(I, J) = E[(a1,1a2,2 − a1,2a2,1)(a2,2a3,3 − a2,3a3,2)]

= E[a1,1a2,2a3,3 − a1,1a2,2a2,3a3,2 − a1,2a2,1a2,2a3,3 + a2,1a1,2a2,3a3,2]

= p3 − p4.

A tedious (but still doable) computation shows that case (iv), when k = 3 (that is, two
3× 3 matrices overlapping on a 2× 2 matrix), leads to the expression 2p4 − 4p5 + 2p6.

For the proof, we will prove case (i), then cases (ii)-(iii) together, then case (iv).

Proof of case (i). For simplicity, suppose that there are two elements, say k and `, which
are in I but not in J. Let A′ be the matrix A, where the lines corresponding to k and
` have been exchanged. This operation does not change the distribution of A, that is,
A and A′ have the same distribution (because the rows of A are exchangeable), and in
particular

det(A(I)) det(A(J))
law
= det(A′(I)) det(A′(J)). (6.10)

Additionnally, this operation leaves A(J) completely unchanged, ie A′(J) = A(J), hence
det(A′(J)) = det(A(J)), but since it swaps two rows of A(I), we have det(A(I)) =

−det(A′(I)). Consequently,

E[det(A(I) det(A(J)))] = E[det(A′(I)) det(A′(J))] = −E[det(A(I)) det(A(J))].
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We deduce that this is equal to zero. On a sidenote which will be used later, this is
true for any expression like E[detX detY ] where X,Y are sub-matrices of A who differ
from at least two rows (ie, there are two rows of X which do not intersect Y , or the
reverse).

Proof of cases (ii)-(iii). We consider the situation where I ⊂ J. Case (ii) corresponds to
I = J while case (iii) corresponds to J \ I is only one element. In both cases, I ∩ J = I. Let
us fix some notations. For any discrete set D ⊂ [n], the set of permutations of D is noted
S(D). If σ ∈ S(I) and τ ∈ S(J), we introduce

cp(σ, τ) = {i ∈ I : σ(i) = τ(i)}
fp(τ) = {i ∈ I : τ(i) = i}

the sets of (respectively) common points of σ, τ in I, and fixed points of τ in I. We will
need the following observation. For completeness, if I is strictly included in J, we extend
σ from I to J by naturally defining σ(j) = j where j is the element of J not in I.

Lemma 6.5. |fp(τ ◦ σ−1)| = |cp(σ, τ)| (if I ⊂ J).

Proof. We fix i ∈ I. If i is a common point of τ and σ, ie τ(i) = σ(i), then τ◦σ−1◦σ(i) = σ(i).
Consequently, σ(i) (which is an element of I) is a fixed point of τ ◦σ−1, in short σ(cp) ⊂ fp

and consequently |fp(τ ◦ σ−1)| > |cp(σ, τ)|. Conversely, if i is a fixed point of τ ◦ σ−1, then
for j = σ−1(i) ∈ I one has

τ(j) = τ(σ−1(σ(j))) = τ(σ−1(i)) = i = σ(j)

so j is a common point of τ, σ, in short σ−1(fp) ⊂ cp and |fp(τ ◦ σ−1)| 6 |cp(σ, τ)|.

Equipped with this lemma, we prove (ii)-(iii). By the definition of the determinant,

δ(I, J) = E [det(A(I)) det(A(J))] =
∑

σ∈S(I)
τ∈S(J)

ε(σ)ε(τ)E

∏
i∈I

ai,σ(i)
∏
j∈J

aj,τ(j)

 . (6.11)

In (6.11), we note that for fixed σ, τ , the expectation inside the sums is equal to
pk+h−|cp(σ,τ)|. Since ε(τ ◦ σ−1) = ε(τ)ε(σ−1) = ε(τ)ε(σ) and τ → τ ◦ σ−1 is a bijection of
S(J), we obtain

E [det(A(I)) det(A(J))] = pk+h
∑

σ∈S(I)

∑
τ∈S(J)

ε(σ)ε(τ)p−|fp(τ◦σ
−1)|

= pk+h
∑

σ∈S(I)

∑
τ∈S(J)

ε(τ ◦ σ−1)p−|fp(τ◦σ
−1)|

= pk+h
∑

σ∈S(I)

∑
τ∈S(J)

ε(τ)p−|fp(τ)|

= pk+hk!
∑

τ∈S(J)

ε(τ)p−|fp(τ)|.

Let M = MJ,I(p) be the matrix whose rows and columns are indexed by J, and with all
entries equal to 1 except the diagonal entries mi,i with i ∈ I, which are equal to p−1.
Then, ∑

τ∈S(J)

ε(τ)p−|fp(τ)| = detMJ,I(p). (6.12)

Thanks to this representation we can finish the proof of cases (ii)-(iii). For this, we
introduce some final notations. We note E` the `× ` matrix with ones everywhere, and
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we denote by χ` its characteristic polynomial χ`(z) = det(E` − z). Since the eigenvalues
of E` are ` and `− 1 zeroes, we have χ`(z) = (`− z)(−z)`−1. Finally, we set w = 1− p−1.

Case (ii). Here I = J, k = h, and by definition, (6.12) is nothing but the characteristic
polynomial of Ek evaluated at w, so

δ(I, J) = p2kk!χk(w) = p2kk!(k − 1 + p−1)(p−1 − 1)k−1

which simplifies to the expression in the theorem.
Cases (iii). Here J \ I only has one element, say i, hence k = |I| = |J| − 1 = h − 1;

without loss of generality we can suppose that i is the last element in J, so that we can
do the following manipulations:

detMJ,I(p) = det



p−1 1 . . . . . . 1

1 p−1
. . .

...
...

. . .
. . .

. . .
...

... . . .
. . . p−1 1

1 . . . . . . 1 1



= det



p−1 1 . . . . . . 1

1 p−1
. . .

...
...

. . .
. . .

. . .
...

... . . .
. . . p−1 1

1 . . . . . . 1 p−1 + w



= det



p−1 1 . . . . . . 1

1 p−1
. . .

...
...

. . .
. . .

. . .
...

... . . .
. . . p−1 1

1 . . . . . . 1 p−1


+ det



p−1 1 . . . 1 0

1 p−1
. . .

...
...

...
. . .

. . . 1
...

... . . .
. . . p−1 0

1 . . . . . . 1 w



= det



p−1 1 . . . . . . 1

1 p−1
. . .

...
...

. . .
. . .

. . .
...

... . . .
. . . p−1 1

1 . . . . . . 1 p−1


+ (−1)i+iw det


p−1 1 . . . 1

1 p−1
. . .

...
...

. . .
. . . 1

1 . . . 1 p−1



and this is equal to χh(w) + wχh−1(w) = (−1)h−1wh−1 = (−1)kwk, since in case (iii) we
have h = k + 1. Overall, we obtain that in case (iii), δ(I, J) = k!pk+1(1− p)k.

Proof of case (iv). First of all, our proof will be valid only for k > 2, but the formula
is still valid for k = 2 and yields p3 − p4 as checked in the end of Example 6.4. When
k > 2, case (iv) actually reduces to the preceding cases. For simplicity, we will only
treat the case where I = {1, . . . , k} and J = {2, . . . , k + 1}. For notational simplicity, we
note Ja,b,c... = J \ {a, b, c, . . . } and we recall that A[X,Y ] is the sub-matrix of A with rows
indices in X and column indices in Y , and that A(X) = A[X,X]. Let us develop the
determinant of A(J) according to its last column:

det(A(J)) = ak+1,k+1 detA(Jk+1) +

k∑
`=2

a`,k+1(−1)`−1+k det(A[J`, Jk+1]).
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Multiplying by det(A(I)) and taking the expectation,

δ(I, J) = E[ak+1,k+1 det(A(I)) det(Jk+1)]+

k∑
`=2

(−1)`−1+kE[a`,k+1 det(A(I)) det(A[J`, Jk+1])].

(6.13)
Let us consider each element in the sum. First, a`,k+1 is independant of the couple
A(I), A(J`, Jk+1), hence

E[a`,k+1 det(A(I)) det(A[J`, Jk+1])] = pE[det(A(I)) det(A[J`, Jk+1])].

Second, if ` ∈ {2, . . . , k}, there are two rows of A(I) which are not in A[J`, Jk+1]: these are
the first and `-th rows of A. Consequently, we can swap them exactly as in the proof of
case (i) without changing the distribution of det(A(I)) det(A[J`, Jk+1]) but still changing
its sign, resulting in E[det(A(I)) det(A[J`, Jk+1])] = 0. The sum in the RHS of (6.13) thus
vanishes, and only the first term remains. Now we get

δ(I, J) = E[ak+1,k+1 det(A(I)) det(Jk+1)] = pδ(I, Jk+1)

which falls under the analysis of case (iii), since Jk+1 = {2, . . . , k} ⊂ I = {1, . . . k}, and is
therefore equal to

p× (k − 1)!pk(1− p)k−1.

7 Proof of Theorem 2.6

We identify multisets with integer-valued Radon measures as in [31] and endow the
space of multisets with the topology of vague convergence, and the space of random
multisets with the topology of weak convergence with respect to the vague topology.

Proposition 7.1. Let fn be a sequence of random elements in Hr converging in law
towards f which is supposed to be nonzero, and let Φn,Φ be the random multisets of
the zeroes of fn, f . Then, Φn converges in law towards Φ. Additionnaly, if Φ is almost
surely equal to {ρ} for some deterministic ρ ∈ D(0, r), then for every ε > 0, for n is
large enough depending on ε, fn has a unique zero ρn in D(0, r − ε), it is simple, and
|ρn − ρ| < ε.

Proof. The first statement is exactly [31], Proposition 2.3. For the second statement
we detail the proof: by Skorokhod’s representation theorem, on a possibly enlarged
probability space, we can find random analytic functions g, g1, g2, . . . such that g has
the same law as f and gn has the same law as fn for every n, and such that gn → g

in Hr almost surely on an event Ω0 with probability 1. On Ω0, we can apply Hurwitz’s
continuity theorem as in [32], Theorem 6.4.1, cases (b)-(c): for every ω ∈ Ω0, for every
ε > 0, there is an Nω such that ∀n > Nω, the function gn has exactly one zero in D(ρ, ε),
and has no other zeroes in D(0, r − ε).

Proof of Theorem 2.6, case d > 1. The statements in Theorem 2.6 about the largest
eigenvalues are direct consequences of Propositions 2.5 and 7.1.

Proof of Theorem 2.6, case d < 1. In this case we must additionnally prove that all the
eigenvalues of A are either zero or roots of unity, which will entirely close the proof of
the theorem. Let G be the digraph associated with A. We say that a directed graph is
strongly connected if for any two vertices i, j, there is a directed path from i to j and a
directed path from j to i. Let g1, . . . , gr be the maximal strongly connected subgraphs
(MSCS) of G — we also say that vertices with either no out-going edge or no in-going
edge or both are MSCS of their own (they only have one vertex), and we call them trivial.
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It is always possible to label the n vertices of G so that A is a block matrix with diagonal
blocks given by the adjacency matrices of the gi, and lower-diagonal blocks are only
filled with zeroes. Consequently, the eigenvalues of A are the eigenvalues of all the gi.
The eigenvalues of trivial MSCS are zero, so non-zero eigenvalues in the spectrum of A
must be eigenvalues of non-trivial MSCS.

Lemma 7.2. If d < 1, with high probability, G does not contain any non-trivial strongly
connected subgraph other than cycles.

Proof of the lemma. The argument is similar to the one for undirected graphs, see [22,
Theorem 5.5]. The only strongly connected subgraphs with exactly as many edges as
vertices are the directed cycles. Now, if a strongly connected subgraph contains strictly
more edges than vertices, then it must contain a subgraph which is either a directed
cycle with an extra inner directed path, or two directed cycles joined by a directed path.
Essentially, these subgraphs look like one of the following ones:

Let Dk be the number of such digraphs with k vertices and let Xk be the number of
subgraphs of G which are isomorphic to one of these. We have

E[Xk] =
(n)k
k!

#(Dk)

(
d

n

)k+1

and it is easily seen that #(Dk) 6 ck!k2 for some constant c, so we have E[Xk] 6
ck2dk+1/nk 6 ckdk/n. Consequently, noting X =

∑
k>2Xk and using d < 1, we obtain

that E[X] = O(1/n) and Markov’s inequality ensures that with high probability, G does
not contain any strongly connected subgraph other than cycles or trivial subgraphs.

The eigenvalues of A are thus 0 and eigenvalues of directed cycles, which are roots
of unity. In particular, all the eigenvalues of A have modulus zero or 1 with probability
going to 1 as n→∞, which closes the proof of the d < 1 case in Theorem 2.6.

8 Properties of the Poisson multiplicative function

8.1 Radii of convergence of f and P

The radius of convergence rg of a series g(z) =
∑
akz

k is given by Hadamard’s
formula, rg = (lim sup |ak|

1
k )−1. For the statements in Theorem 2.7 related to radii of

convergence of f and P, we thus need to study lim sup |Xk/k|1/k and lim sup |(Xk −
τk)/k|1/k. Since k1/k → 1, it will be enough to study lim supX

1/k
k and lim sup |Xk − τk|1/k.

Case d < 1

The probability of a Poi(λ) random variable being nonzero is 1− e−λ. Since 1− ex 6 −x
for any x, we thus have P(Y` 6= 0) 6 d`/`, and in particular

∞∑
`=1

P(Y` 6= 0) <∞.

The Borel-Cantelli lemma shows that almost surely, there is a random `0 such that for all
` > `0, Y` = 0. As a consequence,

Xk =
∑
`|k

`Y` 6 `0(Y1 + · · ·+ Y`0) =: C0,
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a random variable which is almost surely finite. Then, Hadamard’s formula shows that
the radius of convergence of f is > 1. If at least one of the Y` is nonzero, then there is
a subsequence kj such that Xkj > 1, and consequently lim supX

1/k
k = 1. But it is not

always the case. In fact, the probability that all the Y` are equal to zero is precisely∏∞
`=1 e−d

`/` = elog(1−d) = 1− d.
We also observe that τk is smaller than 1 + d+ · · ·+ dk 6 (1− d)−1: this shows that

Xk − τk is also bounded, and that the radius of convergence of P is also > 1.

Case d = 1

Since P(Y` = 1) = e−1/`/`, which is not summable, the converse of the Borel-Cantelli
lemma tells us that there is an infinite number of Y` which are equal to 1. However,

P(Y` > 2) = 1− e−1/` − e−1/`

`
6

1

`2

which is summable, so the Borel-Cantelli lemma shows that there is an `0 such that for all
` > `0, Y` 6 1. We deduce the existence of a random constant C0 such that Xk 6 k + C0,
showing that lim supX

1/k
k is smaller than 1, and since there is a subsequence kj with

Xkj > 1, this limsup is equal to 1.

Case d > 1

We begin with two useful lemmas.

Lemma 8.1. Almost surely, there is an integer `0 such that for every ` > `0,∣∣∣∣Y` − d`

`

∣∣∣∣ 6 2 ln(`)

√
d`

`
. (8.1)

Proof. The Chernoff bound for Poisson variables (see [11] section 2.2) can be written as
follows: if Z ∼ Poi(λ), then

P(|Z − λ| > t) 6 exp

{
−λh

(
t

λ

)}
+ exp

{
−λh

(
− t
λ

)}
(8.2)

where h(x) = (1 + x) ln(1 + x) − x. Let us apply this to our family of Poisson random
variables Y` ∼ Poi(λ`), where λ` = d`/`. We set t` = 2 ln(`)

√
λ`; the right-hand side

of (8.2) is then O(`−2), and in particular it is summable. The Borel-Cantelli lemma
ensures the result.

Lemma 8.2. If d > 1, τk = dk(1 + o(1)) and almost surely there is a random constant c
such that for all k,

|Xk − τk| 6 ck2dk/2. (8.3)

Proof. The statement on τk is trivial. For the other one, note that∣∣∣∣∣∣Xk −
∑
`|k

d`

∣∣∣∣∣∣ 6
k∑
`=1

`

∣∣∣∣Y` − d`

`

∣∣∣∣ .
Statement (8.1) shows that almost surely, |Y` − d`/`| is smaller than 2 ln(`)

√
d`/` for

` > `0, and this is again smaller than 2 ln(k)
√
dk/k, so

|Xk − τk| 6
`0∑
`=1

`

∣∣∣∣Y` − d`

`

∣∣∣∣+ 2k2 ln(k)

√
dk

k
. (8.4)
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If we note c′ the first term, the LHS is smaller than (c′ + 1)× 2k2dk/2, a crude bound but
which is largely enough for our needs.

From this, we can easily deal with the convergence properties of f and P stated in
Theorem 2.7.

• If d < 1, the upper bound in (8.1) goes to 0 with `, and in particular if ` is large
enough, it is strictly smaler than 1/2. Since d`/` is also smaller than 1/2 when
` > 1, we see that the integer Y` must be strictly smaller than 1, therefore it is zero:
almost surely, only a finite number of Y` can be nonzero. As a consequence, the
random variables Xk are almost surely bounded, and lim supX

1/k
k 6 1.

• If d = 1, similar arguments as before apply with the difference that the probability
of all the Y` are equal to zero is zero.

• If d > 1, we can apply Lemma 8.2 and we easily obtain that Xk = τk(1 + o(1)), so

clearly lim supX
1/k
k = d. Let us now check that the radius of convergence of P is

greater than 1/
√
d. For this, we only need to prove that

lim sup |Xk − τk|1/k 6
√
d. (8.5)

But this is a straightforward consequence of the inequality |Xk − τk| 6 2ck2
√
d
k

from the lemma.

8.2 Infinite product representations

We now prove (2.11), (2.12) and (2.13). In all the sequel, log will refer to the principal
branch of the complex logarithm, the one defined on C \R−. We first see that for every
z in the disk of convergence of f , which in any case is contained in D(0, 1), so

f(z) =

∞∑
k,`=1

`Y`
zk

k
1`|k =

∞∑
`=1

Y`

∞∑
j=1

(z`)j

j

= −
∞∑
`=1

Y` log(1− z`).

The series inversions performed in these equalities are justified by the uniform conver-
gence of f on compact subsets of the disk of convergence of f , but they do not necessarily
hold outside. As a consequence, e−f is itself well-defined on this disk, analytic, and

e−f(z) = lim
N→∞

e
∑N
`=1 Y` log(1−z

`) = lim
N→∞

N∏
`=1

(1− z`)Y` = (2.12).

As a first consequence, we see that when d < 1, since only a finite number of Y` are
nonzero, F = e−f must actually be a polynomial. Now, we introduce L(z) = E[f(z)],
which can be written as

∞∑
k=1

∑
`|k

d`
zk

k
.

This is almost a Lambert function, but the presence of a k in the denominator actually
makes it closer to a ‘log-Lambert’ function. Since the series above is uniformly conver-
gent on compact subsets of D(0, 1/d), we can reorder like we just did for f , but in a
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slightly different way:

L(z) =

∞∑
`=1

∞∑
j=1

d`
zj`

j`

=

∞∑
`=1

∞∑
j=1

(dzj)`

j`

=

∞∑
j=1

1

j

∞∑
`=1

(dzj)`

`

= −
∞∑
j=1

log(1− dzj)
j

. (8.6)

By definition, −f(z) = P(z)− L(z), so the formula (2.13) in Theorem 2.7 is a conse-
quence of the following proposition, whose main point is to extend the convergence of
the preceding sum (minus the first term) to D(0, 1/

√
d).

Proposition 8.3. If d > 1, then for every |z| < 1/d,

e−L(z) =

∞∏
`=1

√̀
1− dz`

and the infinite product is uniformly convergent on compact subsets of D(0, 1/
√
d).

Proof. The fact that this identity holds for |z| < 1/d follows from (8.6), since

exp(−L(z)) = exp

 lim
J→∞

J∑
j=1

j−1 log(1− dzj)


= lim

J→∞
exp

 J∑
j=1

j−1 log(1− dzj)


= lim

J→∞
(1− dz) 2

√
1− dz2 3

√
1− dz3 · · · J

√
1− dzJ

=

∞∏
`=1

√̀
1− dz`.

To upgrade this convergence in D(0, 1/d) to uniform convergence on D(0, 1/
√
d), we note

that
∞∏
`=1

√̀
1− dz` = (1− dz)e

∑∞
j=2 j

−1 log(1−dzj)

so it is sufficient to prove that the series of logs started at j = 2 is uniformly convergent
on compact subsets of D(0, 1/

√
d). This is done by noting that if K is a compact in D(0, s)

for some s < 1/
√
d, then for z ∈ K one has |dzj | < ds2 < 1. Note r = ds2 < 1. There is

a constant cr such that for every |z| < r one has | log(1 + z)| < cr|z|, and consequently∑∞
j=2 |j−1 log(1− dzj)| 6 crd

∑
j−1rj so uniform convergence on K follows.

Remark 8.4. By the same argument one can extend the uniform convergence of the
infinite product to the set of z ∈ D(0, 1) such that for every j > 2, dzj /∈ R− since we use
the principal logarithm. This set can be described as D(0, 1) deprived of every segment
semi-infinite line {td−1/jθj : t > 1} where θj is a j-th root of unity and j spans {2, 3, . . .}.
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8.3 Secular moments and generating function

In the representation

F (z) = e−f(z) =

∞∏
`=1

(1− z`)Y` ,

the product is uniformly convergent on compact subsets of the disk of convergence of f .
We now seek the secular coefficients, ie the coefficient of zn in this series, noted cn =

[zn]F (z). Clearly, cn1
· · · cnr = [zn1

1 · · · znrr ]F (z1) · · ·F (zr). We note F (z) = F (z1) · · ·F (zr).
Our goal is to express this as simply as possible to extract the coefficients. We have

F (z) =

∞∏
`=1

(
r∏
s=1

(1− z`s)

)Y`
.

We recall that if X ∼ Poi(λ), then E[zX ] = eλ(z−1). By independence,

E[F (z)] =

∞∏
`=1

E

( r∏
s=1

(1− z`s)

)Y`
=

∞∏
`=1

e
d`

` [
∏r
s=1(1−z

`
s)−1]

= exp

{ ∞∑
`=1

d`

`

(
r∏
s=1

(1− z`s)− 1

)}
.

With the convention that a product over an empty set is equal to 1, we have

r∏
s=1

(1− z`s) =
∑
S⊂[r]

(−1)|S|
∏
s∈S

z`s =
∑
S⊂[r]

(−1)|S|

(∏
s∈S

zs

)`

and consequently the sum inside the integral is equal to

∞∑
`=1

d`

`

(
r∏
s=1

(1− z`s)− 1

)
=

∑
S⊂[r],S 6=∅

(−1)|S|
∞∑
`=1

(
d
∏
s∈S zs

)`
`

=
∑

S⊂[r],S 6=∅

(−1)|S|−1 log

(
1− d

∏
s∈S

zs

)

=
∑

S∈Oddr

log

(
1− d

∏
s∈S

zs

)
−

∑
S∈Evenr

log

(
1− d

∏
s∈S

zs

)

where Oddr,Evenr denote the sets of nonempty subsets of [r] with an odd number of
elements or with an even number of elements. We obtain

E[F (z)] =

∏
S∈Oddr

(1− d
∏
s∈S zs)∏

S∈Evenr
(1− d

∏
s∈S zs)

(8.7)

which is Theorem 2.16. We gather some remarks on the combinatorics of set-partitions
of multisets in Subsection 8.6.

When r = 1, there is only one nonempty subset of {1}, so

E[F (z)] = 1− zd. (8.8)
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Equivalently, E[c0] = 1,E[c1] = −d and E[ck] = 0 for k > 1. When r = 2, the formula says
that

E[F (z)F (w)] =
(1− zd)(1− wd)

(1− zwd)
. (8.9)

This is also equal to
∑∞
k=0 d

kzkwk(1− zd− wd+ d2zw), so

E[c2n] = dn + dn+1. (8.10)

8.4 Sobolev regularity

Remember that the Sobolev norm was defined in (2.15) as

‖F‖2s =
∑
n∈Z

(1 + n2)s
|cn|2

dn
.

Since F is analytic, the sum only spans n > 0, and by the preceding section, E[|cn|2] =

dn(d+1). As long as s < −1/2, we have E[‖F‖2s] <∞ and consequently ‖F‖2s <∞ almost
surely, as requested in Theorem 2.10.

One can ask if the PHCd is not s-Sobolev for s > −1/2. The trick used in [26], Section
6.1 can indeed be applied to our setting: therein, it is proved by elementary means that
for s < 0, there is a constant cs > 0 such that for r < 1,

‖F‖2s >
cs

| log r|2s
∞∑
n=0

r2n|cn|2 =
cs

| log r|2s
1

2π

∫ 2π

0

|F (reit)|2dt =
cs

| log r|2s
1

2π

∫ 2π

0

e2Re(f(z))dt

(8.11)
where the middle equality is Parseval’s identity and the last one is the definition of F .
Now, when f is a Gaussian analytic function, the limit of this last integral with a suitable
normalization term exists, and it is a real random variable representing the total mass
of the Gaussian Multiplicative Chaos. The existence of a limit is not trivial, and the
identification of the distribution of the limit (the Fyodorov-Bouchaud-Lie formula) was
proved recently, see [28] and [26]. Given these, [26] saw that in the Gaussian case, the
right-hand side of (8.11) converges to a random number times | log 0|, hence ‖F‖2s =∞
and F is not s-Sobolev for s ∈ [−1/2, 0). In our case where f is the Poisson function given
by (2.10), the existence of a limit when r → d−1/2 of

1

2π

∫ 2π

0

e2
∑∞
k=1Xk

rk cos(kt)
k dt

is not known.

8.5 The correlation of the Poisson field

We close this section by a small remark which strenghthens the analogy between F
and the Gaussian holomorphic chaos.

Proposition 8.5. f is log-correlated in the following sense: for every z, w in the disk of
convergence of f ,

Cov(f(z), f(w)) =

∞∑
α=1

∞∑
β=1

log

(
1

1− dzαw̄β

)
1

αβ
. (8.12)

Note that in this work, the covariance between two complex random variables X,Y
is defined as E[(X −E[X])(Y −E[Y ])].
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Proof. Let us note Z` = Y` − d`/`. Since the Yi are independent, so are the Zi, and in
particular E[ZiZj ] = 0 if i 6= j, and E[Z2

i ] = Var(Yi) = di/i, and so

E[P(z)P(w)] =

∞∑
k,h=1

zkw̄h

kh
E

∑
i|k
j|h

ijZiZj


=

∞∑
k,h=1

zkw̄h

kh

∑
i∈div(h,k)

i2E[Z2
i ]

=

∞∑
k,h=1

zkw̄h

kh

∑
`∈div(h,k)

`d`.

where div(a, b) denotes the set of common divisors of a and b. We can reorder the sum,
and we get

E[P(z)P(w)] =
∑
`=1

∞∑
a,b=1

za`w̄b`

a`× b`
`d`

=

∞∑
a,b=1

1

ab

∑
`=1

za`w̄b`d`

`

= −
∞∑

a,b=1

log(1− dzaw̄b)
ab

.

8.6 Set-partitions of multisets

In this informal section, we give some remarks on the combinatorics of the generating
function (2.16). Let r > 1 be an integer. We follow the terminology by Bender [4]: given
a multiset M on r elements, that is, M = {{1n1 , . . . , rnr}}, a set-partition of M is a
multiset B = {{B1, . . . , Br}} of nonempty indistinguishable sets B1, . . . , Bh ⊂ [r], possibly
repeated, such that their multiset-union is M . In other words, the Bj are subsets of [r]

such that for every i ∈ [r],
h∑
j=0

1i∈Bj = ni.

The number of blocks in the multiset B will be noted |B|.
Example 8.6. If M = {1, . . . , r} is a set, then this corresponds to the classical set-
partitions of [r], counted by the Bell numbers Br. If M = {1n} (1 repeated n times) then
the only set-partition of M is {1}, {1}, . . . , {1}. If M = {{14, 21, 32, 42}}, then a possible
set-partition of M is

{1, 2, 3}, {1, 3, 4}, {1}, {1}, {3, 4}

and another one is
{1, 2, 3, 4}, {1, 3}, {1, 4}, {1}.

Now, let z1, . . . , zr be complex variables and q > 1 a parameter. The multivariable
function

G(z1, . . . , zr) =
∏
S⊂[r]

1

1− q
∏
s∈S zs

is the generating function of set-partitions of multisets in the following sense; let us note

par(M , q) =
∑
B`M

q|B|
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where the B `M means that the sum runs over all the set-partitions of the multiset M .
Then,

G(z) =
∑

{{1n1 ,...,rnr}}

par({{1n1 , . . . , rnr}}, q)× zn1
1 . . . znrr . (8.13)

For instance, the coefficient of z1 . . . zr in G, when q = 1, is nothing but the classical
number of partitions of [r], which is counted by the Bell numbers. Then, the generating
function (2.16) is a weighted sum of set-partitions of multisets, such that the blocks with
odd cardinality are all distincts. The weight is (−1)kd|B|, where k is the number of blocks
with odd cardinality.

Remark 8.7. A celebrated formula in combinatorics states that
∏
i>0(1 − z2i+1) =∑

(−1)nps(n)zn, with ps(n) the number of self-conjugate partitions of n, see for instance
[1, eqn. (11) page 127]. There is a chance that products like the

∏
S∈V odd

r
(1 − dzS)

appearing in (2.16) have a similar simple interpretation, but for the moment it is not
clear for the author.

9 Proof of Theorem 2.2

The goal of this section is to prove Theorem 2.2. We chose to follow standard methods
in path-counting combinatorics, but an alternative proof could use the Stein method to
get a convergence speed.

9.1 Usual preliminaries

Notations When a is a positive integer, [a] is the set {1, . . . , a}. The falling factorials of
a are (a)1 = a, (a)2 = a(a− 1), . . . , (a)k = a(a− 1) . . . (a−k+ 1) and the binomial numbers(
a
k

)
= (a)k/k!. When E is a set, #E is the number of its elements. A k-tuple of elements in

a set E is a sequence (i1, . . . , ik) where the it are elements of E , while a k-set of elements
in E is a set of k distincts elements in E . We note Ek the set of k-tuples of elements in
[n] = {1, . . . , n}, that is:

Ek = {i = (i1, . . . , ik) : is ∈ [n]}.
We will never indicate the dependencies in n, the size of the matrix A. However, every
object encountered in the sequel depends on n, and every limit is with respect to n→∞.

In general, we will adopt the following notational rules:

(i) Calligraphic letters are for sets.

(ii) Boldface letters are for tuples, for instance i = (i1, . . . , ik).

Directed graphs The matrix A is an n× n matrix with 0/1 entries. It represents the
adjacency matrix of a digraph, on the vertex set V = [n]. The edge set is E = {(i, j) ∈
[n] × [n] : Ai,j = 1}. We insist on the fact that G = (V,E) is directed and possibly has
loops. We say that a digraph G′ = (V ′, E′) is weakly connected if, for any pair of distinct
vertices i, j, there is a (weak) path from i to j, ie a sequence i0 = i, i1, . . . , ik = j such
that for each s, (is−1, is) ∈ E′ or (is, is−1) ∈ E′ or both. Naturally, if this is the case one
has #E′ −#V ′ > −1, with equality if ond only if G′ has no cycle.

A-sub notation For any tuple i = (i1, . . . , ik) ∈ Ek, the shorthand Ai stands for:

Ai := Ai1,i2 × · · · ×Aik−1,ikAik,i1 . (9.1)

It is the indicator that the cycle induced by i is present in G. With this notation,

tr(Ak) =
∑
i∈Ek

Ai.
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9.2 Reduction to cycle count

For every i = (i1, . . . , ik) ∈ Ek, we note

V (i) = {i1, . . . , ik} v(i) = #V (i) (9.2)

E(i) = {(i1, i2), (i2, i3), . . . , (ik−1, ik), (ik, i1)} e(i) = #E(i). (9.3)

Here are simple examples with a graphical representations. If an edge (i, j) is crossed
twice or more in i, we represent it as many times, but it counts as one edge in E(i), see
the middle figure.

3

5

7

8

1

9

3

1

2
4

3

i = (3, 5, 7, 7, 8) j = (1, 9, 1, 9, 3) k = (1, 2, 3, 4, 3, 2)

v(i) = 4 v(j) = 3 v(k) = 4

e(i) = 5 e(j) = 4 e(k) = 6

One can interpret v(i) as the number of ‘vertices’ of [n] that are visited by i, and
e(i) as the number of distinct ‘edges’ of i. The digraph (V (i), E(i)) contains a loop, so
necessarily v(i) 6 e(i). On the other hand, there can be no more edges than the length
of i, that is, e(i) 6 k when i ∈ Ek. Since the entries of A are independent 0/1 random
variables, for every fixed i we have

E[Ai] =

(
d

n

)e(i)
. (9.4)

For every v 6 e 6 k, we set Ek(v, e) = {i ∈ Ek, v(i) = v, e(i) = e}, and

Tk =
∑
e6k
v=e

∑
i∈Ek(v,e)

Ai, Rk =
∑
e6k
v<e

∑
i∈Ek(v,e)

Ai (9.5)

so that naturally tr(Ak) = Tk +Rk. Before stating a few technical lemmas, we recall the
fact that k is a fixed integer.

Lemma 9.1. #Ek(v, e) 6 kknv.

Proof. We first choose which v vertices will be used, which gives
(
n
v

)
6 nv. Then, we

organize them in a k-tuple so that exactly e edges appear, but the number of ways to do
this is certainly smaller than vk 6 kk.

Lemma 9.2. E[Rk] 6 dkkk+2/n. Consequently, Rk → 0 in probability and in distribution.

Proof. We use (9.4):

E[Rk] =
∑
v<e6k

#Ek(v, e)×
(
d

n

)e
.

By the preceding lemma, E[Rk] 6
∑
v<e k

kdenv/ne. It is crudely bounded by dkkk+2n−1.
The rest follows from the Markov inequality.
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Lemma 9.3. Ek(v, v) is empty if v is not a divisor of k. Otherwise, if k = vq, then the
elements of Ek(v, v) are exactly the sequences

(i1, i2, . . . , iv, i1, . . . , iv, . . . , i1, . . . , iv) (9.6)

where i1, . . . , iv are all distinct, and the subsequence i′ = (i1, . . . , iv) is repeated q times.

Before the proof, let us precise that we adopt the cyclic notation for tuples: that is, if
i = (i1, . . . , ik) is a k-tuple, we set ik+1 = i1, ik+2 = i2 and so on.

Proof. Let i be in Ek(v, v). In the sequel, we will note s ∈ [k + 1] the first time a vertex is
revisited, that is:

s = min{t ∈ {2, . . . , k + 1} : it ∈ {i1, . . . , it−1}}.

If s = k + 1, then each it is present exactly once in i, so i is a cycle on k distinct vertices
and v(i) = e(i) = k. Otherwise, s 6 k, and i′ := (i1, . . . , is) has v(i′) = e(i′) = s.

If v(i) > v(i′), then i visits a ‘new’ vertex j /∈ i′ after s; but then, there will be a second
cycle in i, and (V (i), E(i)) will have at least two cycles; if this was true, then we should
have e(i) > v(i) + 1, a contradiction.

No other vertices than the s vertices of i′ will thus be present in i; but since e(i) =

v(i) = v(i′) = s, it also means that no other edge than E(i′) will be present in E(i). From
this, it is easily seen that i consists in q repetitions of i′ for some q, and consequently
that qs = k.

We now make a crucial observation. Let us fix some integer `. Let k = q` be a multiple
of `, and let i ∈ Ek(`, `); by the lemma above, i is just some i′ = (i1, . . . , i`) repeated q

times. But then, since A has only zero/one entries,

Ai = (Ai1,i2 × · · · ×Ai`,i1)q = Ai′ .

On the other hand, the lemma also shows that the elements in Ek(`, `) are fully determined
by their first ` terms, and thus #Ek(`, `) = #E`(`, `). Consequently, for every multiple k
of `, ∑

i∈Ek(`,`)

Ai =
∑

j∈E`(`,`)

Aj. (9.7)

In other words, the preceding sum does not depend on k, but only on `. But one can go
further into simplifying this expression: the set E`(`, `) is nothing but the set of `-tuples
of distinct elements, say (i1, . . . , i`); but if j is another such tuple, obtained from i by a
cyclic permutation, say j = (i1+a, i2+a, . . . , ia), then Ai = Aj. For each i, there are exactly
` cyclic permutations of i; noting C` the set of ordered `-tuples of distinct elements of [n]

up to cyclic permutation, it is now clear that for every k multiple of `,∑
i∈Ek(`,`)

Ai = `
∑
i∈C`

Ai.

This is why we introduce the k-free notation S`:

S` :=
∑
i∈C`

Ai. (9.8)

With this notation and the discussion above,

Tk =
∑
`|k

`S`.

We now show that the random variables S` are asymptotically Poisson independent
random variables with paremeters d`/`, using the method of falling factorial moments.
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Proposition 9.4. Let m, `1, p1, . . . , `m, pm be positive integers, with the `i all distinct.
Then,

lim
n→∞

E [(S`1)p1 × · · · × (S`m)pm ] =

(
d`1

`1

)p1
× · · · ×

(
d`m

`m

)pm
. (9.9)

The proof of Proposition 9.4 will be the content of the next subsection; before that, we
show how it directly implies the main result in Theorem 2.2. We recall from Definition 2.1
that Y` is a family if independent Poisson random variables, with parameter d`/`.

Proof of Theorem 2.2. The Poisson distribution Z ∼ Poi(λ) is the unique probability
distribution on nonnegative integers such that E[(Z)k] = λk for all k > 0. Consequently,
the RHS of (9.9) is nothing but

E[(Y`1)p1 × · · · × (Y`m)pm ].

The joint convergence of the factorial moments described in (9.9) implies the conver-
gence

(S`1 , . . . , S`m)
law−−→ (Y`1 , . . . , Y`m)

and in particular (S1, . . . , Sk)
law−−→ (Y1, . . . , Yk) for any k. Since Tk =

∑
`|k `S`, there is a

fixed linear function g : Rk → Rk such that (T1, . . . , Tk) = g(S1, . . . , Sk); more precisely,

g(x1, . . . , xk) =

x1, x1 + 2x2, x1 + 3x3, x1 + 2x2 + 4x4, . . . ,
∑
i|k

ixi

 .

Since tr(Ak) = Tk +Rk, we obtain

(tr(A1, . . . , tr(Ak)) = g(S1, . . . , Sk) + (R1, . . . , Rk).

Lemma 9.2 says that Ri → 0 in probability for every fixed i, so (R1, . . . , Rk)→ (0, · · · , 0)

in probability for every fixed k. Since g is continuous, Slutsky’s lemma implies that

(T1, . . . , Tk)
law−−→ g(Y1, . . . , Yk) = (X1, . . . , Xk)

which is the claim in Theorem 2.2.

9.3 Proof of Proposition 9.4

For all the proof, we definitely fix the integer m > 1, as well as the lengths `1, . . . , `m
and the powers p1, . . . , pm; all these numbers are assumed to be nonzero integers.

Definition 9.5. Let `, p be two integers. The (`, p)-loopsoup, noted S`,p, is the collection
of ordered p-tuples of distinct cycles of length `, that is, elements in C`. The (`,p)

loopsoup associated with ` = (`1, . . . , `m),p = (p1, . . . , pm) is the set S`,p = S`1,p1 × · · · ×
S`m,pm , whose elements are m-tuples (c1, . . . , cm), with ci ∈ S`i,pi . The total number of
cycles in a loopsoup is p1 + · · ·+ pm. The maximum number of i ∈ [n] that appear in an
element of S`,p is

M = M(`,p) = `1p1 + · · ·+ `mpm. (9.10)

Example 9.6. A typical element of S`,p is a tuple of tuples. Let us take for instance
` = (2, 4) and p = (3, 6). An element of S`,p is (c1, c2) where c1 = (i1, i2, i3) and is are
distinct 2-cycles, and c2 = (j1, j2, j3, j4, j5, j6) where the js are distinct 4-cycles.

If c = (c1, . . . , cm) ∈ S`,p, we refer to the j-th element of ci as ci,j and we note

e(c) =
⋃
i∈[m]

E(ci,j : i ∈ [m], j ∈ [pi]) e(c) = #E(c).
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It is the set of ‘edges’ appearing in one of the p1 + · · ·+ pm cycles appearing in c. Since
each ci,j is a cycle and thus has the same number of vertices and edges, we have
e(c) 6M .

Lemma 9.7. For any m > 1 and ` = (`1, . . . , `m),p = (p1, . . . , pm), one has

E

[
m∏
i=1

(S`i)pi

]
=

∑
c∈S`,p

(
d

n

)e(c)
. (9.11)

Proof. Sk is the number of k-cycles that appear in the graph induced by A, so (Sk)h is
the number of ways to choose an h-tuple of k-cycles that appear in the graph induced
by A, that is: (Sk)k =

∑
(i1,...,ih)∈Sk,h

Ai1 · · ·Aih . We develop the product and take the
expectation:

E

[
m∏
i=1

(S`i)pi

]
=

∑
c∈S`,p

E

m∏
i=1

pi∏
j=1

Aci,j =
∑

c∈S`,p

(
d

n

)e(c)
.

In (9.11), we are going to split the sum according to the value of e(c) ∈ [M ]: for every
k 6M , we set S`,p(k) = {c ∈ S`,p, e(c) = k}. It is clear that when we sort the summands
in (9.11) according to this value of e, we obtain that it is equal to Z1 + · · ·+ ZM , where

Zk =

(
d

n

)k
#(S`,p(k)).

As expected, the dominant term in (9.11) is ZM . This is the content of the following
proposition, which, considering the above discussion, finishes the proof of Theorem 9.4.

Proposition 9.8. There is a constant c = c(`,p, d) > 0 such that for any n and k < M ,

#(S`,p(k)) 6 cnk−1. (9.12)

Moreover,

#(S`,p(M)) = (1 + o(1))

m∏
i=1

(
n`i

`i

)pi
. (9.13)

Proof of (9.13). Let S ′ be the subset of S`,p(M) composed of those c which are com-
pletely vertex-disjoint, ie V (ci,k) ∩ V (cj,h) = ∅ when (i, h) 6= (j, k). By elementary
counting,

#S ′ =
(n)M

`p11 × · · · × `
pm
m
.

Since M is fixed, this expression is equivalent to nM/
∏
`pii when n→∞. We shall now

prove that the number of elements in S ′′ = S`,c(M) \S ′ is o(nM ), which is well enough
for our needs since #S`,p(M) = #S ′ + #S ′′. If c is in S ′′, it means that two among
the M distinct cycles of c visit one common vertex, and consequently that v(c) 6M − 1.
Since ` and c are fixed, for every set V ⊂ [n], there is a constant c such that there are
less than c elements c ∈ S`,p such that V (c) = V (one can take c = MM for instance),
and so the number of elements in S ′′ is smaller than

c+ c

(
n

2

)
+ · · ·+ c

(
n

M − 1

)
,

an extremely crude bound, but still smaller than cnM−1 upon adjusting the constant
c.
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Proof of (9.12). Consider an element c ∈ S`,p(k) for k < M . If all of its cycles were
vertex-disjoints, then c would have M edges, so at least two of its cycles share a common
vertex, and consequently the number of vertices v(c) present in c cannot be greater than
k− 1. But for any subset V ⊂ [n] with v(c) elements, there is a constant c such that there
are no more than c elements in S`,p with V (c) = V . Consequently,

#S`,p(k) 6 c+ c

(
n

2

)
+ · · ·+ c

(
n

k − 1

)
.

This is smaller than cnk−1 for some (other) constant c, depending only on ` and p.

10 Proofs of our results when dn →∞
10.1 Tightness and weak convergence: proof of Theorem 3.2

The proof strategy is the same as for the sparse case: the main difference is in
the identification of the distributional limits of the traces. We will adopt the following
notation:

q̂n(z) =
det(I− zAn/

√
dn)√

dn
. (10.1)

We first show that the sequence (q̂n) is tight on D(0, 1) and then we identify that its limit
is −z

√
1− z2G(z) by finding the distributional limit of the traces of Ak.

Lemma 10.1. The sequence of random polynomials q̂n is tight in H1.

Proof. We simply use our criterion from Lemma 5.2. First of all, we note that q̂n(z) =∑
(−1)kzk∆̂k, where ∆̂k = ∆kd

−(k+1)/2
n and ∆k is exactly (6.4). Consequently, Proposi-

tion 6.2 shows that

E[|∆̂k|2] 6
(n)k

dk+1
n

(
dn
n

)k
(1− dn/n+ dn) 6

1

dn
(1 + dn) 6 2

provided that n is large enough to ensure that dn > 1. Lemma 5.2 leads to the conclusion.

We must now identify the finite-dimensional limits of q̂n. Using (6.3), we have
q̂n(z) = e−fn(z)/

√
dn, where

fn(z) =

∞∑
k=1

tr

((
A√
dn

)k)
zk

k
.

Consequently, for fixed n and every |z| < 1/
√
dn, using the expansion of the complex

logarithm on D(0, 1) we get

q̂n(z) =
1− z

√
dn√

dn

e−fn(z)

1− z
√
dn

=
1− z

√
dn√

dn
e−

∑∞
k=1 αk

zk

k

with

αk :=
tr(Ak)
√
dn

k
−
√
dn

k
(10.2)

and the log-exp formula (6.3) gives

q̂n(z) =
1− z

√
dn√

dn

(
1 +

n∑
k=1

Pk(α1, . . . , αk)
zk

k!

)
, (10.3)
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an identity which is valid for |z| < 1/
√
dn, but which extends to every z by analyticity.

Thanks to this identity, we see that proving the finite-dimensional convergence of q̂n only
reduces to studying the distributional limits of the αi and this is done in Theorem 3.1
and its proof thereafter. Given this theorem, we can finish the proof of Theorem 3.2
by a simple application of Theorem 3.1 which says that αk converges in distribution
towards 1+

√
kNk if k is even and

√
kNk if k is odd, where Nk is a real standard Gaussian;

consequently,

e−
∑∞
k=1 αk

zk

k −−−−→
n→∞

e
−

∑∞
k=

z2k

2k −
∑∞
k=1

Nk√
k
zk

= e
1
2 log(1−z2)−

∑∞
k=1

Nk√
k
zk

=
√

1− z2 ×G(z).

The sequence of functions z 7→ (1− z
√
dn)/
√
dn converges uniformly on C towards −z,

so by continuity

q̂n(z) =
1− z

√
dn√

dn
× e−

∑∞
k=1 αk

zk

k
law−−−−→
n→∞

−z ×
√

1− z2G(z).

10.2 Proof of Theorem 3.3

It is the same proof as for Theorem 2.6 in Section 7. The limiting function is
z
√

1− z2G(z) and G has no zeroes, hence q̂n has exactly one root which converges
towards 0, and all the other roots are with high probability outside D(0, 1− ε). The result
follows from the fact that the roots of q̂n are the inverse eigenvalues of An/

√
dn.

10.3 Proof of Theorem 3.1: trace asymptotics

We now prove the trace limits in Theorem 3.1. The proof globally follows the same
lines as for the sparse regimes and could possibly be simplified. We will stick to the
same notations as in Section 9, most of them being gathered at Page 27. The starting
point is the identity

tr(Ak) =
∑
i∈Ek

Ai

where Ek is the set of k-tuples of elements of [n]. If i has e(i) ‘edges’ as in (9.2), then by
independence

E[Ai] =

(
dn
n

)e(i)
.

For every v 6 e 6 k, we set Ek(v, e) = {i ∈ Ek, v(i) = v, e(i) = e}, and

Tk =
∑
e6k
v=e

∑
i∈Ek(v,e)

Ai, Rk =
∑
e6k
v<e

∑
i∈Ek(v,e)

Ai

so that naturally tr(Ak) = Tk + Rk. We repeat Lemmas 9.2 and surrounding results
adapted to our regime.

Lemma 10.2. E[Rk] 6 dknk
k+2/n. Consequently, Rk → 0 in probability and in distribu-

tion as long as dn = no(1).

Lemma 10.3. Ek(v, v) is empty if v is not a divisor of k. Otherwise, if k = vq, then the
elements of Ek(v, v) are exactly the sequences

(i1, i2, . . . , iv, i1, . . . , iv, . . . , i1, . . . , iv)

where i1, . . . , iv are all distinct, and the subsequence i′ = (i1, . . . , iv) is repeated q times.

We recall the notation S`:
S` :=

∑
i∈C`

Ai
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where C` is the set of cycles of length ` on [n]. With this notation, we saw that

Tk =
∑
`|k

`S`.

We now show that the random variables S` are asymptotically Gaussian independent
random variables with mean and variance d`n/`, using the method of moments — this
is where the proof drifts away from the sparse/Poisson case. To do this, we define a
normalized version of the S`i : we set Bi = Ai − d`n/n`, so that E[Bi] = 0, and

W` =

∑
i∈C`

Bi√
d`n/`

=
S` −E[S`]√

d`n/`
.

The core of the proof is the following result.

Proposition 10.4. We suppose that dn satisfies (H). For any distinct nonzero integers
`i and any integers pi,

lim
n→∞

E

[
m∏
i=1

W pi
`i

]
=

m∏
i=1

pi!

2pi/2(pi/2)!
1pi is even.. (10.4)

Proof of Theorem 3.1. Let (N` : ` > 1) be a family of independent standard Gaussian
variables. The RHS of (10.4) is nothing but

E[Np1
`1
× · · · ×Npm

`m
].

The joint convergence of the moments in (10.4) implies (W1, . . . ,Wk)
law−−→ (N1, . . . ,

√
kNk)

for any k. Now, we have
tr(Ak)
√
dn

k
=

Tk
√
dn

k
+

Rk
√
dn

k

and we saw that Rk → 0. Since Tk =
∑
`|k `S` and S` =

√
d`/`W` + d`/`,

Tk
√
dn

k
−
√
dn

k
= −

√
dn

k
+

1
√
dn

k

∑
`|k

(d`n +
√
`d`nW`)

= −
√
dn

k
+
∑
`|k

d`−k/2n +
∑
`|k

√
`d`−kn W`

=
∑

`|k,`<k

d`−k/2n +
∑

`|k,`<k

√
`d`−kn W` +

√
kWk.

If ` is a divisor of k, it is either k, k/2 or smaller than k/2, so the first sum is equal to
1 +O(1/dn) = 1 + o(1) if k is even and o(1) if k is odd. It is easily seen that the second
term goes to zero in probability as long as dn →∞: in fact, by Proposition 10.4, we have
E[W 2

` ] 6 c for some c, hence if ` < k,

E[(

√
`dk−`n W`)

2] 6
c′

dn
→ 0

and the whole sum in ` < k goes to zero in probability. We thus get

tr(Ak)
√
dn

k
−
√
dn

k
= o(1) +

Tk
√
dn

k
−
√
dn

k
= oP(1) + 1k even +

√
kWk,

and the claim in Theorem 3.1 follows from the joint convergence of the Wk.

EJP 28 (2023), paper 8.
Page 34/40

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP875
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The characteristic polynomial of sparse matrices

10.4 Proof of Proposition 10.4

For all the proof, we fix the integer m > 1, as well as the `1, . . . , `m and the powers
p1, . . . , pm; these numbers are assumed to be nonzero integers and the `i are distinct.
We will frequently use the shorthand ` = (`1, . . . , `m) and p = (p1, . . . , pm).

Definition 10.5. Let U`,p be the cartesian product of pi copies of C`i for each i =

1, . . . ,m, in other words:

U`,p =
m×
i=1

pi×
j=1

C`i .

A typical element of U`,p is a (p1 + . . .+ pm)-tuple of cycles with pi of them of length
`i. We will note c = (ci,j) with i ∈ [m], j ∈ [pi] and ci,j ∈ C`i . We note v(c) the total
number of vertices present in the cycles of c, and

E(c) =
⋃
i∈[m]

E(ci,j : i ∈ [m], j ∈ [pi]) e(c) = #E(c).

It is the set of ‘edges’ appearing in one of the p1 + · · · + pm cycles appearing in c; in
particular, if one edge appears in multiple cycles ci,j , we only count it once. Since each
ci,j is a cycle and thus has the same number of vertices and edges, we have e(c) 6 M

where
M = M(`,p) = `1p1 + · · ·+ `mpm. (10.5)

We also recall that Bi = Ai − (d/`)`, for any i ∈ E`, and that

W` =
1

σ`

∑
i∈C`

Bi (10.6)

where σ` =
√
d`/`.

Lemma 10.6. For any m > 1 and ` = (`1, . . . , `m),p = (p1, . . . , pm), one has

E

[
m∏
i=1

W pi
`i

]
=

∑
c∈U`,p

E

 m∏
i=1

pi∏
j=1

Bci,j

σ`i

 . (10.7)

Proof. One only has to expand the sum defining W`.

Since c is a collection of cycles, it is customary that v(c) 6 e(c), and clearly e(c) 6M .
We decompose the sum in (10.7) as follows:

E

[
m∏
i=1

W pi
`i

]
=

∑
c∈U`,p

v(c)<e(c)

E

 m∏
i=1

pi∏
j=1

Bci,j

σ`i

+

M∑
k=1

∑
c∈U`,p

v(c)=e(c)=k

E

 m∏
i=1

pi∏
j=1

Bci,j

σ`i

 . (10.8)

Our task will now consist in finding the dominant terms in this sum. We first start with
Lemma 10.7, a rough estimate on the expectations in the above sums that will be used
everywhere after. Then, in Lemma 10.8 we prove that the sum over v < e is negligible. In
Lemma 10.9 we prove that in the second sum, all the terms with k < M/2 are negligible
and in Lemma 10.10 we show that the terms with k > M/2 are also negligible. Finally,
in Lemma 10.11 we study the limit of the only remaining term, the one for k = M/2.

Lemma 10.7. For any c ∈ U`,p,

E

 m∏
i=1

pi∏
j=1

Bci,j

σ`i

 6 c(`,p)

(
d

n

)e(c)
1

d
M
2

(10.9)

where c(`,p) 6 2M (max `)M/2.
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The proof is in Appendix 11.

Lemma 10.8. Under (H),

lim
n→∞

∑
c∈U`,p

v(c)<e(c)

E

 m∏
i=1

pi∏
j=1

Bci,j

σ`i

 = 0. (10.10)

Proof. By the preceding lemma, the sum is bounded by a constant times∑
h<k6M

#{c ∈ U`,p, v(c) = h, e(c) = k} × dk−M/2n−k.

By counting arguments similar to those already used before, there are constants c
(depending on h, k, `,p) such that

#{c ∈ U`,p, v(c) = h, e(c) = k} 6 cnh.

All things together yield a bound of order
∑
h<k6M dk−M/2nh−k = O(dk−M/2/n), which

is o(1) when d 6 no(1).

Lemma 10.9. Under (H), if k < M/2, then

lim
n→∞

∑
c∈U`,p

v(c)=e(c)=k

E

 m∏
i=1

pi∏
j=1

Bci,j

σ`i

 = 0. (10.11)

Proof. The same proof as the preceding lemma yields a bound of order dk−M/2nk−k =

dk−M/2, which is o(1) when k < M/2.

Lemma 10.10. Under (H), if k > M/2 then

lim
n→∞

∑
c∈U`,p

v(c)=e(c)=k

E

 m∏
i=1

pi∏
j=1

Bci,j

σ`i

 = 0. (10.12)

Proof. Remember that elements in U`,p are collections of cycles. Consequently, if
v(c) = e(c), then c can consist only in cycles which are vertex-disjoint, but possibly
repeated multiple times. If k > M/2, then all those cycles cannot be repeated, because
otherwise c would contain 2k > M cycles. So, at least one of them is not repeated, and
disjoint from all the others, say ci,j . But then, Bci,j is independent from all the others
Bci′,j′ : the expectation inside the sum above splits, and since Bci,j is centered, it is equal
to zero. Consequently, the whole sum above is actually zero.

Lemma 10.11. Under (H),

lim
n→∞

∑
c∈U`,p

v(c)=e(c)=M/2

E

 m∏
i=1

pi∏
j=1

Bci,j

σ`i

 =

m∏
i=1

pi!

2pi/2(pi/2)!
1pi is even. (10.13)

Proof. The proof of the preceding lemma shows that the only elements contributing to
the sum above are precisely the c consisting in M/2 vertex-disjoint cycles, each one being
repeated at least once; but there are M elements in c, each one is actually repeated
exactly twice. First of all, this is not possible if one of the pi is not even, so in this case
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the whole sum is zero. Let us assume that all the pi are even. Let V be the subset of
U`,p matching these constraints; we will write its elements c as multisets,

c = {{c1,1, c1,1, . . . , c1,p1/2, c1,p1/2, c2,1, c2,1, . . . }}

and the M/2 distinct ci,j are vertex-disjoint. The expectation inside the sum is then
equal to

E

 m∏
i=1

pi/2∏
j=1

B2
ci,j

σ2
`i

 =

m∏
i=1

pi/2∏
j=1

E

[
B2

ci,j

σ2
`i

]
=

m∏
i=1

pi/2∏
j=1

(d/n)`i(1− (d/n)`i)

σ2
`i

where we used that the Bci,j are independent Bernoulli((d/n)`i) random variables. Now,
we recall that

∑
pi`i = M and σ` = d`/2`−1/2, so the last expression is

(1 + o(1))
(d/n)M/2∏m
i=1

∏pi/2
j=1 σ

2
`i

= (1 + o(1))

∏
`pii

nM/2
.

We now need to count the elements in V . The choice of the M/2 cycles is exactly

(n)M/2∏m
i=1 `

pi
i

and they must be repeated twice in c, which gives

m∏
i=1

pi!

2pi/2(pi/2)!

possibilities for any choice of the M/2 cycles. Putting it all together, we get that

#V = (1 + o(1))nM/2 ×
m∏
i=1

pi!

2pi/2(pi/2)!`pii

and (10.13) follows.

Supplementary material

11 Proof of Lemma 10.7

The proof of Lemma 10.7 is a consequence of the following application of the FKG
inequality.

Lemma 11.1. Let G be an Erdős-Rényi digraph (loops allowed) with connectivity p. Let
X1, . . . ,Xr be any number of graphs on n vertices and let Xi = 1Xi∈G. Then,

E

[
r∏
i=1

(Xi −E[Xi])

]
6 2rpE (11.1)

where E is the total number of distinct edges in ∪Xi.

Proof. Note xi = E[Xi]. We have

E
[∏

(Xi − xi)
]
6 E

[∏
(Xi + xi)

]
=
∑
I⊂[r]

E

[∏
i∈I

Xi

]∏
i/∈I

xi. (11.2)
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The random variables Xi are increasing with the addition of edges, as well as any of
their products. The FKG inequality (see [22, Section 2.2]) then states that for any I ⊂ [r]

we have ∏
i∈I

xi 6 E

[∏
i∈I

Xi

]
.

The FKG inequality also ensures that

E

[∏
i∈I

Xi

]
E

[∏
i/∈I

Xi

]
6 E

∏
i∈[r]

Xi

 .
Using these two inequalities for every I ⊂ [r] in (11.2) ends the proof, because

∏
i∈[r]Xi

is a product of E independent Bernoulli(p) random variables and there are 2r subsets of
[r].

Proof of Lemma 10.7. We apply the preceding theorem to the family of graphs Xi,j = ci,j
and to the random Erdős-Rényi digraph G induced by A. Since Aci,j = 1Xi,j⊂G and
Bci,j = Aci,j −E[Aci,j ], so

m∏
i=1

pi∏
j=1

Bci,j =

m∏
i=1

pi∏
j=1

(Xi,j −E[Xi,j ]).

There are M cycles in c and e(c) is the total number of distinct edges present in any of
them, so the bound in the preceding lemma is 2M (d/n)e(c). Finally,

m∏
i=1

pi∏
j=1

1

σ`i
=

m∏
i=1

pi∏
j=1

√
`i
d`i

6 (max `)M/2d−M/2.
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