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Mixing time of fractional random walk on finite fields
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Abstract

We study a random walk on Fp defined by Xn+1 = 1/Xn + εn+1 if Xn 6= 0, and
Xn+1 = εn+1 if Xn = 0, where εn+1 are independent and identically distributed. This
can be seen as a non-linear analogue of the Chung–Diaconis–Graham process. We
show that the mixing time is of order log p, answering a question of Chatterjee and
Diaconis.
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1 Introduction

This paper studies a non-linear analogue of the Chung–Diaconis–Graham process,
defined on Fp by

Xn+1 = aXn + εn+1,

where a ∈ F×p is fixed and the εi are independent and identically distributed. The mixing
time of this Markov chain has been extensively studied, and it is now known that for
certain a (such as a = 2) and almost all integers p such that (a, p) = 1, cutoff occurs at
time c log p for an explicit constant c [18].

Since simple random walk on Fp requires order p2 steps to mix (see [28] for example),
the Chung–Diaconis–Graham process provides an explicit example of a random walk
where applying a deterministic bijection (in this case, x 7→ ax) between steps of the walk
exponentially speeds up mixing. This was studied in [12], where it was asked whether
other explicit examples could be provided.

In this paper, we consider the random walk on Fp defined by

Xn+1 = ι(Xn) + εn+1,

where ι(x) = 1/x if x 6= 0 and ι(0) = 0, and the εi are independent and identically
distributed. Chatterjee and Diaconis asked about the order of the mixing time for this
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Mixing time of fractional random walk on finite fields

walk [12], which was originally suggested by Soundararajan. We solve this problem by
showing that this random walk mixes in order log p steps. Since simple random walk on
Fp mixes in order p2 steps, this gives an exponential speedup for the mixing time, and
provides an explicit example of when adding a deterministic function between steps of a
Markov chain gives an exponential speedup.

This model is similar in spirit to random walk on Fp given by moving from x to one
of x + 1, x − 1 or x−1, which is known to be an expander (see Theorem 8.8 of [36] for
example). Our results are not directly implied by this, but similar ideas underlie the
results for both models. We discuss the relationship with this model in more detail in
Remark 1.3.

The proof uses comparison theory developed by Smith [34] to relate the random walk
on Fp to a random walk on the projective line P1(Fp). The walk on P1(Fp) is the quotient
of a random walk on SL2(Fp) which is known to have a constant order spectral gap by
results of Bourgain and Gamburd [6]. While our methods identify the order of the mixing
time, they are not strong enough to identify the constant or obtain cutoff, and we leave
this as an open problem.

Our result also implies bounds on the number of solutions to the congruence xy ≡ 1

(mod p) for x ∈ I and y ∈ J intervals of the same length, although these bounds are
weaker than the ones established in [14].

1.1 Main results

We now formally state our main results. For two probability measures µ and ν, let

‖µ− ν‖TV = sup
A
|µ(A)− ν(A)|

denote the total variation distance. Let Xn be an ergodic Markov chain with transition
matrix P and stationary distribution π,. Let Pn(x, y) denote the probability that Xn = y

given that X0 = x. Then the mixing time is defined to be

tmix(ε) = inf

{
n : sup

x
‖Pn(x, ·)− π‖TV ≤ ε

}
.

Let ι : Fp → Fp be the function defined by ι(x) = 1/x if x 6= 0 and ι(0) = 0. Let εi be
independent and identically distributed on Z. Let K denote the transition matrix for the
Markov chain on Fp defined by

Xn+1 = ι(Xn) + εn+1. (1.1)

We show that for this Markov chain, tmix(ε) is Θ(log p), where the implied constants are
allowed to depend on both µ and ε. Informally, this means that order log p steps are
necessary and sufficient for the Markov chain to converge to its stationary distribution.
The following theorems give the desired lower and upper bounds on tmix respectively.

Theorem 1.1 (Lower bound). Let µ denote a probability measure on Z, and assume that

H(µ) =
∑
−µ(x) logµ(x) <∞.

Let K be the transition matrix for the Markov chain on Fp defined by

Xn+1 = ι(Xn) + εn+1,

where the εn are independent and identically distributed according to µ. Let π denote
the uniform distribution on Fp. Then for all x in Fp

‖Kn(x, ·)− π‖TV ≥ 1− nH(µ) + log 2

log p
.
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Theorem 1.2 (Upper bound). Let µ denote a probability measure on Z whose support
contains at least two values. Let K be the transition matrix for the Markov chain on Fp
defined by

Xn+1 = ι(Xn) + εn+1,

where the εn are independent and identically distributed according to µ. Let π denote
the uniform distribution on Fp. Then there exists a constant C > 0 depending only on µ
such that for all x in Fp and sufficiently large p,

‖Kn(x, ·)− π‖TV ≤
√
p

2
e−Cn.

The lower bound follows easily from entropy considerations. We make an assumption
that the entropy of µ is finite, which cannot be removed entirely (see Remark 2.2). How-
ever, this assumption is relatively weak, and indeed all finitely supported distributions
have finite entropy.

We now describe our plan to prove the upper bound. We establish the upper bound
by connecting the Markov chain Xn with a Markov chain on P1(Fp), which in turn
is a projection of a Markov chain on a Cayley graph of SL2(Fp). We next sketch this
connection.

Recall that given a groupG and a generating set S, we define the Cayley graph G(G,S)

as the graph with vertex set G and two elements x and y are connected if and only if
x = σy for some σ ∈ S. We use A(G) to denote the normalised adjacency matrix of G,
whose largest eigenvalue is 1. Let S be a subset of SL2(Z) so that Sp generates SL2(Fp),
where Sp is the set S mod p. Results of Bourgain and Gamburd [6] give conditions for
when G(SL2(Fp), Sp) has a constant spectral gap, i.e., λ2(A(G(SL2(Fp), Sp))) ≤ 1− c for
some constant c > 0 independent of p, and thus also a O(log p) mixing time.

The random walk on G(SL2(Fp), Sp) has a natural projection on P1(Fp), defined by
the action (

a b

c d

)
· x =

ax+ b

cx+ d
.

This can also be seen as a random walk on the Schreier graph corresponding to this
action, which is defined as the graph on vertices P1(Fp) where x, y are connected if
y = gx for some g ∈ Sp. Since the spectral gaps of the walks on SL2(Fp) and P1(Fp) are
related, this gives an O(log p) mixing time for the walk on P1(Fp).

Finally, we connect the Markov chain on P1(Fp) with the fractional Markov chain Xn

on Fp. With an appropriate choice of the set S, the Markov chain on P1(Fp) induced
by the random walk on G(SL2(Fp), Sp) and Xn have very similar transition probabilities.
The mixing time bound of Xn can thus be obtained from that of the chain on P1(Fp) via
comparison theory of Markov chains on different state spaces.

A key input to the above plan is the spectral gap of random walks on Cayley graphs
of SL2(Fp), which we discuss in further detail in Section 1.4.

Remark 1.3. The random walk on Fp obtained by moving from x to x+ 1, x− 1 or x−1

with equal probability has been previously studied. In Section 3.3 of [31], the walk on
P1(Fp) is shown to have a constant order spectral gap, and Theorem 8.8 of [36] states
that the same is true on Fp. This model can be seen as an explicit version of the speedup
proposed in [24], who study random walks on graphs with an additional random perfect
matching.

The proofs in both models also follow similar ideas, although the random walk we
study is more challenging due to the lack of reversibility. In particular, our results imply
that the walks above have a constant spectral gap, while the reverse is not true. Theorem
8.8 of [36] is stated without proof, and we could not find an explanation for the reduction
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between the study of the random walk on Fp to P1(Fp) in the literature, and so we note
that the obvious analogue of Proposition 4.2 in this setting would give a proof.

1.2 Bounds on solutions to a congruence equation

We also give an application of these ideas to bounding the number of solutions to the
congruence

xy ≡ 1 (mod p)

with x ∈ I and y ∈ J for intervals I and J of the same length m ≤ p/2. In particular, for
large enough p and m, we establish that

|{(x, y) ∈ I × J | xy ≡ 1 (mod p)}| ≤ (1− δ)m

for some absolute constant δ > 0 (see Theorem 5.1). The proof is simple given the
spectral gap estimates in the proof of Theorem 1.2.

Our bound on the number of solutions to the congruence xy ≡ 1 (mod p) is weaker
than the bounds obtained in [11] and [14] for intervals that are not too large and weaker
than the standard ones coming from estimates on incomplete Kloosterman sums for
intervals that are not too small. The number of solutions has also been estimated in
[19, 15, 33]. In particular, the method used in [33] also relies on SL2 action. While this
result is not new, the proof is straightforward and we hope that our ideas can lead to
further applications.

1.3 Related work

The random walk we study may be viewed as a non-linear version of the Chung–
Diaconis–Graham process, or the ax + b process, which is the random walk on Fp (or
more generally Z/nZ for composite n) defined by

Xn+1 = aXn + εn+1,

where a ∈ F×p is fixed and the εi are independent and identically distributed, drawn from
some distribution. It was introduced in [13], where the case of a = 2 and εi distributed
uniformly on {−1, 0, 1} was studied in detail. They showed that the mixing time was at
most order log p log log p, and that for almost all odd p, order log p steps were sufficient,
although for infinitely many odd p, order log p log log p steps were necessary. This process
was subsequently studied in [25, 26, 29, 27, 10, 18]. In particular, Eberhard and Varjú
recently showed in [18] that for almost all p, the walk exhibits cutoff at c log p for some
explicit constant c ≈ 1.01136.

The Chung–Diaconis–Graham process gives an example of a speedup phenomenon
that occurs when applying bijections between steps of a Markov chain. This was studied
in [12], where it was shown that for a Markov chain on a state space with n elements,
almost all bijections, when applied between steps of a Markov chain, cause the chain
to mix in O(log n) steps. Our work gives another example of this phenomenon, which
fits into a broader theme of studying how convergence can be sped up, via either
deterministic or random means [24, 5, 2].

In [22], the first author studied a more general non-linear version of the Chung–
Diaconis–Graham process, defined by

Xn+1 = f(Xn) + εn+1,

where f is a bijection on Fp. It was shown that for functions f(x) which were extensions
of rational functions, the mixing time was of order at most p1+ε for any ε > 0, where the
implicit constant depends only on ε and the degree of the polynomials appearing in f(x).
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In particular, this applies for the function ι that we consider. However, the only known
lower bound on the mixing time is of order log p. Our work closes the large gap between
the upper and lower bounds in this special case.

1.4 Random walk on Cayley graphs of SL2(Fp)

Selberg’s Theorem [32] shows that if S is a subset of SL2(Z) such that S generates a
subgroup of SL2(Z) of finite index, then

lim sup
p→∞

λ2(A(G(SL2(Fp), Sp))) < 1. (1.2)

Bourgain and Gamburd [6] strengthen this result. (See Theorem 4.7 for more details).

Theorem 1.4 ([6, Theorem 1]). The property in (1.2) holds if and only if S generates a
non-elementary subgroup of SL2(Z).

Weigel [35] gives a convenient characterization of when S generates a non-elementary
subgroup (see also [30]).

Theorem 1.5 ([35]). Let S ⊆ SL2(Z). The subgroup 〈S〉 is non-elementary if and only if
〈Sp〉 = SL2(Fp) for some prime p ≥ 5

We remark that a simple reduction allows us to deduce Theorem 1.2 from the special
case where the distribution of εn is supported on two points. In this case, we can
construct the set S corresponding to the fractional Markov chain and easily verify that
〈S〉 is non-elementary.

Golumbev and Kamper [21] show that under more stringent assumptions on the set
of generators S, the Cayley graphs G(SL2(Fp), Sp) have a stronger property that implies
cut-off for the associated projected random walk on P1(Fp). This property also holds
with high probability for random generating sets Sp. We also remark that the result of
Bourgain-Gamburd has been further developed in various aspects, e.g., [8, 9, 20, 21].
These results also have many applications in number theory, including sum product
problems on finite fields [7, 23].

1.5 Outline

In Section 2, we prove Theorem 1.1. In Section 3, we explain the comparison theory
for Markov chains used to relate the spectral gaps for the walks on Fp and P1(Fp). In
Section 4, we give a proof of Theorem 1.2. Finally, in Section 5, we give a bound for the
number of solutions to xy ≡ 1 (mod p) in a square I1 × I2 ⊆ F2

p.

1.6 Notations

Throughout, we let ι : Fp → Fp be the function defined by ι(x) = 1/x if x 6= 0 and
ι(x) = 0 if x = 0. We view P1(Fp) as a superset of Fp with one extra element ∞. We
define the function ι : P1(Fp) → P1(Fp) by ι(x) = 1/x if x 6= 0,∞, and ι(0) = ∞ and
ι(∞) = 0.

If P is a symmetric matrix, we let λi(P ) denote the ith largest eigenvalue of P .

2 Lower bound

In this section, we prove Theorem 1.1, which follows from entropy considerations.
For a discrete probability measure µ, we let

H(µ) =
∑
−µ(x) logµ(x)

denote the entropy of µ, with the convention that 0 log 0 = 0. If X is a random variable,
we let H(X) denote the entropy of the law of X. We need two basic properties of entropy.
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The first is that it is subadditive, in the sense that if X and Y are independent, then
H(X + Y ) ≤ H(X) + H(Y ). The second is that for any function f , H(f(X)) ≤ H(X),
with equality if f is bijective.

The lower bound follows by noting that the entropy of the random walk at time n is at
most nH(µ), which is too low to be close to uniform if n is too small. This idea is certainly
not new, and similar arguments have appeared before, see [18, 1, 4] for example. Our
argument follows [1], although we fill in some details and fix a minor error.

The following lemma shows that measures close to uniform in total variation must
have large entropy. It was stated without the log 2 term in [1], but this cannot be correct,
as can be seen if π is uniform and ν is concentrated at a single point. It can be seen as a
special case of Theorem 1 of [3] (in fact, it is established as part of the proof).

Lemma 2.1. Let X be a finite set of size n, and let π denote the uniform measure on X.
Let ν be any probability measure on X, and let δ = ‖ν − π‖TV . Then

|H(π)−H(ν)| ≤ δ log(n− 1)− δ log δ − (1− δ) log(1− δ)
≤ δ log n+ log(2).

Proof. The first inequality is Equation 11 of [3] and the second inequality is clear.

Proof of Theorem 1.1. Because ι is a bijection, H(X) = H(ι(X)). Furthermore, if µp
denotes the distribution given by reducing µ mod p, then H(µp) ≤ H(µ). Then by
subadditivity of entropy, H(Kn(x, ·)) ≤ nH(µ). Thus, Lemma 2.1 gives

‖Kn(x, ·)− π‖TV ≥ 1− nH(µ) + log 2

log p
.

Remark 2.2. We note that the finite entropy assumption cannot be removed entirely.
Fix any constant δ ∈ (0, 1). Consider the measure on Z+ given by

µ(i) ∝ 1

i(log i)2−δ
.

There is some constant c = c(δ) > 0 and C > 0 such that for all p and i ≤ p,∑
k∈Z+

µ(i+ kp) ≥
∑
k≥p

C

kp(log(kp))2−δ
≥ c

p(log p)1−δ
.

Then on Fp, the walk defined by (1.1) satisfies

P(Xn+1 = x|Xn = y) ≥ c

p(log p)1−δ

for all x and y, and so we can couple two copies of the walk, Xn and X ′n, so that
independent of the initial states,

P(Xn 6= X ′n) ≤
(

1− c

(log p)1−δ

)n
.

Since the distance to stationarity can be controlled by this probability (see [28, Corollary
5.5]), this implies that

‖Kn(x, ·)− π‖TV ≤
(

1− c

(log p)1−δ

)n
,

and so tmix(ε) = Oε((log p)1−δ), which is much smaller than log p.
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For positive integers k, define log(k) iteratively by log(1)(x) = log x and log(k)(x) =

log(log(k−1)(x)) for k ≥ 2. The measure

µ(i) ∝ 1

i(log i)(log(2) i) · · · (log(k−1) i)(log(k) i)2

gives a probability distribution on Z with infinite entropy for which the mixing time
tmix(ε) = Oε(log(k) p).

3 Comparison theory

Comparison theory for Markov chains was introduced by Diaconis and Saloff-Coste
in [17, 16]. This theory allows the spectral gaps (and also log-Sobolev constants) of
different Markov chains on the same state space to be compared. Unfortunately, since
we wish to compare a Markov chain on Fp with one on P1(Fp), this theory does not
immediately apply. Smith extended these ideas in [34] to the case of random walks on
state spaces X0 ⊆ X.

We first recall the relationship between the Dirichlet form and the spectral gap, and
then explain the comparison theory developed by Smith for Markov chains on different
state spaces. This is used to compare the spectral gaps of the random walks on P1(Fp)

and Fp. For a more thorough treatment and proofs, we refer the reader to [34].

3.1 The Dirichlet form

Recall the following standard notions. Let P be a reversible Markov chain on a finite
space X with stationary distribution π. Define the function

Vπ(f) =
1

2

∑
x,y∈X

|f(x)− f(y)|2π(x)π(y)

and the Dirichlet form

EP (f, f) =
1

2

∑
x,y∈X

|f(x)− f(y)|2P (x, y)π(x)

for f : X → R. Then the spectral gap can be computed by

1− λ2(P ) = inf
f :X→R

f not constant

EP (f, f)

Vπ(f)
. (3.1)

3.2 Comparison theory for Markov chains on different state spaces

Let X0 ⊆ X, and let P0 be a Markov chain on X0 and P be a Markov chain on X,
with stationary distributions π0 and π respectively. Assume that both are ergodic and
reversible. The following results of Smith compare Vπ0

and EP0
with Vπ and EP .

Lemma 3.1 ([34, Lemma 2]). Let f0 : X0 → R and let f : X → R be any extension of f0.
Then

Vπ0
(f0) ≤ CVπ(f),

where

C = sup
x∈X0

π0(x)

π(x)
.

The analogous comparison result for the Dirichlet form requires further setup. For
each x ∈ X, fix a probability measure Qx on X0 such that Qx = δx if x ∈ X0. For any
f0 : X0 → R, this defines an extension f : X → R by

f(x) =
∑
y∈X0

Qx(y)f(y).
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Next, choose a coupling of Qx and Qy for all x, y ∈ X for which P (x, y) > 0 (note this is a
symmetric relation). Denote these couplings by Qx,y.

A path in X0 from x to y is a sequence of xi ∈ X0 for i = 0, . . . , k for which x0 = x,
xk = y and P0(xi, xi+1) > 0 for all i. For a path γ from x to y, call x the initial vertex
and y the final vertex, and denote them by i(γ) and o(γ) respectively. Let |γ| denote the
length of the path.

A flow on X0 is a function F on the set of paths in X0 whose restriction to paths from
x to y gives a probability measure for all x, y. We require a choice of flow on X0. Actually
it suffices to define the flow only for paths from a to b such that there exists x, y ∈ X
with Qx,y(a, b) > 0. For our purposes, it will suffice to choose the flow such that when
restricted to paths from a to b, it concentrates on a single path.

The following theorem compares EP0 with EP in terms of the chosen data.

Theorem 3.2 ([34, Theorem 4]). Consider the setup defined above. Then for f0 : X0 → R

and f the extension to X defined by the measures Qx, we have

EP (f, f) ≤ AEP0(f0, f0),

where

A = sup
P0(x,y)>0

1

P0(x, y)π0(x)
(S1 + S2 + S3)

with

S1 :=
∑

γ3(x,y)

|γ|F (γ)P (i(γ), o(γ))π(i(γ))

S2 := 2
∑

γ3(x,y)

|γ|F (γ)
∑
b 6∈X0

Qb(o(γ))P (i(γ), b)π(i(γ))

S3 :=
∑

γ3(x,y)

|γ|F (γ)
∑

a,b6∈X0

P (x,y)>0

Qa,b(i(γ), o(γ))P (a, b)π(a).

Note that by (3.1), an immediate consequence of these comparison results is that

1− λ2(P0) ≥ 1

CA
(1− λ2(P )).

4 Upper bound

In this section, we prove Theorem 1.2. The proof of the upper bound consists of
three main steps. First, we control the mixing time by the spectral gap of a symmetrized
random walk.

Proposition 4.1. Let π denote the uniform measure on Fp. Then for all x ∈ Fp,

‖Kk(x, ·)− π‖TV ≤
√
p

2
λ
(k−2)/4
2 .

Next, we relate the spectral gap of the symmetrized walk on Fp with a walk on
P1(Fp).

Proposition 4.2. Let L0 and L denote the transition matrices for the random walk on
Fp and P1(Fp) respectively. Then there exists an absolute constant c > 0 such that

1− λ2(L0) ≥ c(1− λ2(L)).

Finally, we show that the spectral gap of the walk on P1(Fp) is of constant order.
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Proposition 4.3. Let L denote the transition matrix for the random walk on P1(Fp)

which moves from x ∈ Fp to one of x+ b, x− b, ι(ι(x+a1)+ b)−a1 and ι(ι(x+a1)− b)−a1
uniformly at random. Then

λ2(L) ≤ 1− c

for some constant c > 0 independent of p.

Proof of Theorem 1.2. Let P denote the Markov matrix encoding the step X 7→ X + ε

and let Π denote the Markov matrix encoding X 7→ ι(X). Note that PT encodes the step
X 7→ X − ε. By Proposition 4.1, it suffices to show that

λ2(PTΠPTPΠP ) ≤ 1− c

for some constant c > 0, independent of p.
Let a1, a2 ∈ Z be two distinct elements in the support of µ and write b = a1 − a2.

Then in the Markov chain given by the transition matrix PTΠPTPΠP , there is u > 0

depending only on µ such that we transition from x to one of x+b, x−b, ι(ι(x+a1)+b)−a1
and ι(ι(x + a1) − b) − a1 with probability at least u. For example, note that x + b =

ι(ι(x+ a1) + a1 − a1)− a2 and so there is a positive probability of moving from x to x+ b.
Then we can write PTΠPTPΠP = uL0 + (1− u)L′ where L0 is the transition matrix

for the random walk going from x to one of x + b, x − b, ι(ι(x + a1) + b) − a1 and
ι(ι(x + a1) − b) − a1 with equal probability, and L′ a symmetric stochastic matrix. We
have

λ2(PTΠPTPΠP ) ≤ uλ2(L0) + 1− u,

and so it suffices to show that λ2(L0) ≤ 1− c for some constant c > 0.
Let ι : P1(Fp) → P1(Fp) be the function defined by ι(x) = 1/x if x 6= 0,∞, and

ι(0) = ∞, and ι(∞) = 0. Let L denote the transition matrix for the random walk on
P1(Fp) going from x to one of x+ b, x− b, ι(ι(x+ a1) + b)− a1 and ι(ι(x+ a1)− b)− a1
with equal probability. By Proposition 4.2, we can instead show

λ2(L) ≤ 1− c

for the walk defined by L instead of the walk defined by L0, and this is exactly given by
Proposition 4.3.

4.1 Reduction to the symmetric walk

Recall that we are interested in studying the walk Xn+1 = ι(Xn) + εn+1 on Fp, where
εn are independent and identically distributed according to µ. This random walk is
non-reversible, so the first step is to relate it to a suitable symmetrization.

Let Π denote the transition matrix for the (deterministic) walk X 7→ ι(X) on Fp and
let P denote the walk X 7→ X + ε. Note that PT is also a Markov matrix and encodes the
walk X 7→ X − ε. Let λ2 be the second largest eigenvalue of PTΠPTPΠP . Note that all
eigenvalues of PTΠPTPΠP are real and non-negative.

The following result from [12] relates the original walk K = PΠ to the symmetrized
walk PTΠPTPΠP .

Lemma 4.4 ([12, Corollary 5.4]). Let k ≥ 2 and let x ∈ Rp such that
∑
xi = 0. Then

‖(KT )kx‖2 ≤ λ(k−2)/42 ‖x‖2.

This result means that if PTΠPTPΠP can be shown to have a spectral gap of constant
order, then the walk K mixes in order log p steps. Proposition 4.1 is an easy consequence
of Lemma 4.4 (see Equation 5.5 in [12]).
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4.2 Comparison of the random walks on P1(Fp) and Fp

We now explain how to apply the comparison results to bound the spectral gap of the
walk on Fp in terms of the spectral gap of the walk on P1(Fp).

Recall from the proof of Theorem 1.2 that we denote by L0 the transition matrix of
the random walk on Fp which moves from x ∈ Fp to one of x+ b, x− b, ι(ι(x+a1)+ b)−a1
and ι(ι(x+ a1)− b)− a1 with equal probability. We denote by L the transition matrix of
the walk on P1(Fp) which moves from x ∈ Fp to one of x+b, x−b, ι(ι(x+a1)+b)−a1 and
ι(ι(x+ a1)− b)− a1. Here, recall that ι(x) = 1/x if x 6= 0,∞, and ι(0) =∞, and ι(∞) = 0.
The following lemma is useful in constructing the data required in Theorem 3.2.

Lemma 4.5. For all x, y ∈ Fp except x = −a1 and y = −a1, if L(x, y) > 0, then L0(x, y) >

0.

Proof. First, note that if x 6= −a1, b−1 − a1,−b−1 − a1, then the statement is clear since
in this case the functions ι and ι are identical for the transitions involved. It can be
checked that if x = b−1 − a1 or x = −b−1 − a1, and y 6= ∞ and L(x, y) > 0, then
L0(x, y) > 0. Similarly, we can check that if x = −a1 and L(x, y) > 0 then L0(x, y) > 0

unless y = −a1.

We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. We begin by defining the data needed to apply Theorem 3.2.
Take X0 = Fp and X = P1(Fp). Define for x ∈ Fp, Qx = δx and Q∞ is uniform on
the set of y ∈ Fp such that L(∞, y) > 0. Take all couplings to be independent, so
Qx,y(x0, y0) = Qx(x0)Qy(y0). Then note that the condition that Qx,y(x0, y0) > 0 for some
x, y ∈ X is exactly that either L(x0, y0) > 0, or L(x0,∞) > 0 and L(y0,∞) > 0.

By Lemma 4.5, if L(x0, y0) > 0, then L0(x0, y0) > 0 except when x0 = −a1 and
y0 = −a1. Thus, if L(x0, y0) > 0, we pick our flow F to be concentrated on the path
consisting of the single edge (x0, y0), except when x0 = y0 = −a1 where we take the path
of length 2 given by −a1 7→ b−1 − a1 7→ −a1.

If L(x0,∞) > 0 and L(y0,∞) > 0, then there must be a path of length 2 connecting
x0 to y0. This is because x0, y0 ∈ {b−1 − a1,−b−1 − a1} and so we can take our flow to
be concentrated on the path x0 7→ −a1 7→ y0. Thus, our flow is concentrated entirely on
paths of lengths 1 and 2.

We can now compute the constants C and A. It’s easy to see that C ≤ 2. To bound A,
note that for each (x, y) for which L0(x, y) > 0, there is at most one path γ of length 1 on
which F (γ) 6= 0 containing (x, y), namely γ = (x, y), and there is a bounded number of
paths γ of length 2 containing (x, y) for which F (γ) > 0. Thus, for any (x, y) for which
L0(x, y) > 0, there are a bounded number of terms in the summation in the definition of
A, each of bounded size. Hence, A is bounded above by a constant. This implies that

1− λ2(L0) ≥ c(1− λ2(L))

for some absolute constant c > 0.

Remark 4.6. For a reversible Markov chain P with stationary distribution π, let

φ(P ) = min
π(S)≤1/2

∑
x∈S,y∈Sc π(x)P (x, y)

π(S)

denote the bottleneck ratio (sometimes also called the Cheeger constant or conductance).
We note that a constant order spectral gap for L0 could also be derived using Cheeger’s
inequality (see [28, Theorem 13.10] for example), which states that

φ(P )2

2
≤ 1− λ2(P ) ≤ 2φ(P ).
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The bottleneck ratios of L0 and L can be easily compared, which would give a uniform
lower bound for 1 − λ2(L0) using the one for 1 − λ2(L). We prefer to use comparison
theory because the argument can be more easily generalized. In particular, it is more
robust and would give a sharper result if L0 did not have a constant order spectral gap.

4.3 Spectral gap for random walk on P1(Fp)

In this section, we prove that the random walk on P1(Fp) has a constant order
spectral gap.

Recall that SL2(Fp) has a transitive action on P1(Fp), viewed as lines in F2
p. This is

through linear fractional transformations, and may be formally defined by

(
a b

c d

)
· x =


ax+b
cx+d if cx+ d 6= 0 and x ∈ Fp
∞ if cx+ d = 0 and x ∈ Fp
a
c if x =∞ and c 6= 0

∞ if x =∞ and c = 0.

(4.1)

The random walk on P1(Fp) given by moving from x to one of x + b, x − b, ι(ι(x +

a1) + b)− a1 and ι(ι(x+ a1)− b)− a1 uniformly at random can be viewed as the quotient
of a random walk on SL2(Fp). The following result of Bourgain and Gamburd gives a
constant order spectral gap for random walks on SL2(Fp).

Theorem 4.7 ([6, Theorem 1]). Let S ⊆ SL2(Z) be a symmetric set which generates a
non-elementary subgroup of SL2(Z). Let Sp denote the set of generators mod p for a
prime p. Let P denote the transition matrix for the random walk on SL2(Fp) defined by

Xn+1 = Xnεn+1,

where the εi are independent and uniformly distributed on Sp. Then for all primes p
large enough,

λ2(P ) ≤ 1− c

for some constant c > 0 independent of p.

To show that this applies to the random walk we wish to study, we need the following
lemma.

Lemma 4.8. Let

S =

{(
1 b

0 1

)
,

(
1− a1b −a21b

b a1b+ 1

)
,

(
1 −b
0 1

)
,

(
1 + a1b a21b

−b 1− a1b

)}
.

Then S generates a non-elementary subgroup of SL2(Z).

Proof. By Theorem 2.5 of [30], non-elementary subgroups are the same as Zariski-dense
subgroups in SL2(Z). By Theorem 1.5, it suffices to show that after reducing mod p for
some p ≥ 5, Sp generates SL2(Fp).

If b 6= 0 (mod p), then the matrices

(
1 b

0 1

)
and

(
1 −b
0 1

)
generate all matrices of the

form

(
1 t

0 1

)
for t ∈ Fp.

Using

(
1 t

0 1

)
and

(
1− a1b −a21b

b a1b+ 1

)
, we can generate all matrices of the form

(
1 t′

0 1

)
·
(

1− a1b −a21b
b a1b+ 1

)
·
(

1 t

0 1

)
.
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In particular, we can generate all matrices in the subset Xb of SL2(Fp) of matrices whose
lower left corner equal to b.

Similarly, Sp generates matrices in the subset X−b of SL2(Fp) of matrices with lower

left corner equal to −b, using

(
1 + a1b a21b

−b 1− a1b

)
instead of

(
1− a1b −a21b

b a1b+ 1

)
.

Finally, we can easily check that Xb and X−b generate SL2(Fp). Thus, Sp generates
SL2(Fp) for all p > |b|, and hence, S generates a non-elementary subgroup of SL2(Z).

Since the random walk on P1(Fp) is a quotient of a random walk on SL2(Fp), we can
obtain the desired bound on the spectral gap, and we prove Proposition 4.3.

Proof of Proposition 4.3. Note that the formulas given in 4.1 actually define a GL2(Fp)

action. It’s easy to see that ι and addition by a ∈ Fp are both linear fractional transfor-
mations, represented by the matrices(

0 1

1 0

)
,

(
1 a

0 1

)
,

respectively, in GL2(Fp). Then we may write the function x 7→ x+ b as a product of these
matrices, and similarly for x− b, ι(ι(x+ a1) + b)− a1 and ι(ι(x+ a1)− b)− a1. This allows
us to view the walk defined by L as the quotient of the walk on SL2(Fp) generated by
the set

S =

{(
1 b

0 1

)
,

(
1− a1b −a21b

b a1b+ 1

)
,

(
1 −b
0 1

)
,

(
1 + a1b a21b

−b 1− a1b

)}
,

with transition matrix L̃. This means that the spectrum of L is contained in the spectrum
of L̃, and in particular λ2(L) ≤ λ2(L̃). But since S generates a non-elementary subgroup
of SL2(Z) by Lemma 4.8, Theorem 4.7 implies that

λ2(L̃) ≤ 1− c

for some constant c > 0 independent of p, giving us the desired bound.

5 Points on modular hyperbolas

In this section, we prove the following theorem stating that for all subsets A ⊆ Fp of
size at most p/2, the sets A and ι(A) cannot both be close to intervals. As a corollary,
we obtain bounds on the number of solutions to the congruence xy = 1 (mod p) lying in
I × J ⊆ F2

p for I and J intervals of the same length.

Theorem 5.1. Let I and J be two intervals in Fp, each of length m ≤ p/2, and let A ⊆ Fp
with A ⊆ I and ι(A) ⊆ J . There exists an absolute constant δ > 0 such that for all p and
m sufficiently large, |A| ≤ (1− δ)m.

Proof. Throughout the proof, we use the notation [−k, k] to denote the set of integers
{−k,−k + 1, . . . , k − 1, k}. Let Q = PTΠPTPΠP , where P denotes the transition matrix
for the random walk on Fp generated by the uniform measure on [−1, 1] and Π encodes
the bijection ι. Then Q is the transition matrix of a reversible Markov chain on Fp, and
from the proof of Theorem 1.2 it has a constant order spectral gap, i.e. for large enough
p, 1− λ2(Q) ≥ γ for some absolute constant γ > 0.

Assume that there exists intervals I, J such that A ⊆ I, ι(A) ⊆ J , and |A| ≥ (1− δ)m.
We will show using Cheeger’s inequality that this implies the spectral gap cannot be of
constant order, which gives a contradiction.
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Observe that Q(x, y) ≥ c > 0 for some constant c independent of p. Since the
stationary distribution is uniform, the bottleneck ratio of the chain Xn is given by

Φ = min
S⊆Fp,|S|≤p/2

∑
x∈S,y/∈S Q(x, y)

|S|
.

By Cheeger’s inequality, we have Φ is bounded below by a positive constant γ′ depending
only on γ. Thus, ∑

x∈A,y/∈AQ(x, y)

|A|
≥ γ′.

For x ∈ A, we consider y ∈ Fp for which Q(x, y) > 0. Then

y ∈ ι(ι(A+ [−1, 1]) + [−2, 2]) + [−1, 1].

Note that ι(A+ [−1, 1]) ⊆ ι(I + [−1, 1]), and

ι(I + [−1, 1]) = ι(A ∪ ((I + {−1,+1}) \A))

= ι(A) ∪ ι((I + {−1,+1}) \A).

Let S1 = ι((I + {−1,+1}) \A). Then ι(A+ [−1, 1]) ⊆ ι(A) ∪ S1, and |S1| ≤ 2 + δm.
Similarly, since ι(A) ∪ S1 ⊆ J ∪ S1, we have

ι((ι(A) ∪ S1) + [−2, 2]) ⊆ ι(J + [−2, 2]) ∪ ι(S1 + [−2, 2])

⊆ A ∪ ι((J + [−2, 2]) \ ι(A)) ∪ ι(S1 + [−2, 2]).

Here, |ι((J + [−2, 2]) \ ι(A))| ≤ 4 + δm, and |ι(S1 + [−2, 2])| ≤ 5|S1|. Letting

S2 = ι((J + [−2, 2]) \ ι(A)) ∪ ι(S1 + [−2, 2]),

we have
ι(ι(A+ [−1, 1]) + [−2, 2]) ⊆ A ∪ S2,

where |S2| ≤ 14 + 6δm.
Finally, we have y ∈ (A ∪ S2) + [−1, 1], and

(A ∪ S2) + [−1, 1] ⊆ (I ∪ S2) + [−1, 1]

⊆ (I + [−1, 1]) ∪ (S2 + [−1, 1])

⊆ A ∪ ((I + [−1, 1]) \A) ∪ (S2 + [−1, 1]).

Let S3 = ((I + [−1, 1]) \A) ∪ (S2 + [−1, 1]), and note that |S3| ≤ 44 + 19δm.
Thus, if x ∈ A, y /∈ A, and Q(x, y) > 0, then we must have y ∈ S3. Hence,∑

x∈A,y/∈AQ(x, y)

|A|
≤
∑
x∈A,y∈S3

Q(x, y)

|A|
≤ 44 + 19δm

(1− δ)m
≤ 20δ

1− δ
,

where we assumed that m is sufficiently large (in δ), and used that∑
x∈A,y∈S3

Q(x, y) ≤
∑

x∈Fp,y∈S3

Q(y, x) = |S3|.

For δ sufficiently small, 20δ/(1− δ) < γ′, and we have a contradiction.

The following corollary follows easily from Theorem 5.1 by taking A = {x ∈ I | ι(x) ∈
J}, which away from 0 counts the solutions of interest.

Corollary 5.2. Let I and J be two intervals in Fp of the same length m ≤ p/2. There
exists an absolute constant δ > 0 such that for sufficiently large p and m,

|{(x, y) ∈ I × J | xy ≡ 1 (mod p)}| ≤ (1− δ)m.
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