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Abstract

We analyze the spatial asymptotic properties of the solution to the stochastic heat
equation driven by an additive Lévy space-time white noise. For fixed time t > 0 and
space x ∈ Rd we determine the exact tail behavior of the solution both for light-tailed
and for heavy-tailed Lévy jump measures. Based on these asymptotics we determine
for any fixed time t > 0 the almost-sure growth rate of the solution as |x| → ∞.
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1 Introduction

We consider the stochastic heat equation (SHE) on Rd driven by an additive Lévy
space-time white noise Λ̇, with zero initial condition, given by

∂tY (t, x) =
κ

2
∆Y (t, x) + Λ̇(t, x), (t, x) ∈ (0,∞)×Rd,

Y (0, ·) = 0,
(1.1)

where ∆ stands for the Laplacian, κ > 0 is the diffusion constant, and the measure Λ is
given by

Λ(dt,dx) = m dtdx+

∫
(1,∞)

z µ(dt, dx, dz) +

∫
(0,1]

z (µ− ν)(dt, dx,dz). (1.2)

Here, m ∈ R and µ is a Poisson random measure on (0,∞)×Rd × (0,∞) whose intensity
measure ν takes the form ν(dt, dx,dz) = dtdxλ(dz), with a Lévy measure satisfying
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Extremes of the SHE with additive Lévy noise

∫
(0,∞)

(1∧z2)λ(dz) <∞. To exclude trivialities, we always assume that λ is not identically
zero.

In this case the mild solution to (1.1) can be written explicitly in the form

Y (t, x) =

∫ t

0

∫
Rd
g(t− s, x− y) Λ(ds,dy), (1.3)

where

g(t, x) =
1

(2πκt)d/2
e−
|x|2
2κt , t > 0, x ∈ Rd, (1.4)

is the heat kernel. In our earlier paper [9] we obtained a complete description of the
almost-sure growth behavior of Y (t, x) at a fixed spatial point x ∈ Rd as t → ∞. In
particular, t 7→ Y (t, x) satisfies a weak law of large numbers but surprisingly violates the
strong law of large numbers. In the present paper we continue these investigations and
analyze the almost-sure behavior for fixed time t > 0, as |x| → ∞.

To this end, we determine in Section 2 the exact tail asymptotics for Y (t, x) both
for light-tailed and for heavy-tailed Lévy measures. Note that since the heat kernel
is singular at the origin, the results in [15, 16, 26] for moving-average processes with
bounded kernels do not apply. In [8] we proved that for any jump measure λ, the (1 + 2

d )-
moment of Y (t, x) is infinite, which suggests a power-law tail behavior. In Theorem 2.4
we show that this is indeed the case, regardless of whether the noise itself is light- or
heavy-tailed. We also show that the tail behavior of the solution Y (t, x) is governed by
the tail of its largest jump, a common feature of heavy-tailed distributions. Furthermore,
we obtain necessary and sufficient conditions for the regular variation of the tail. In
Section 3 the main result is Theorem 3.5, where we determine the tail asymptotics
for supx∈A Y (t, x), with A being bounded Borel set. We prove that the tail is regularly
varying under general conditions. Based on these results, we determine in Section 4 the
almost-sure growth behavior of Y (t, x) as |x| → ∞. Theorem 4.1 provides an integral test
whether the almost-sure limsup as x → ∞ of sup|y|≤x Y (t, y)/f(x) is 0 or ∞. A similar
integral test is given in Theorem 4.3 when the supremum is taken on the integer lattice
Zd. A comparison of the two results show that the largest peaks of Y (t, x) are typically
not attained on the integer lattice.

The behavior of Y (t, x) in the Lévy case is very different from the behavior in the
Gaussian case, in which

lim sup
|x|→∞

Y (t, x)

(log |x|)1/2
=

(
4t

πκ

) 1
4

(1.5)

almost surely; see [20, Eq. (6.3)]. Recall that the maxima of iid Gaussian random
variables has the same almost-sure growth rate, see [14, Example 3.5.4]. However,
our results are characteristic of the heavy-tailed phenomena. Similar integral test for
the almost-sure supremum holds for subordinators, see e.g. [3, Theorem III.9] and the
remark after it, as well as for maxima of iid heavy-tailed random variables, see [14,
Theorem 3.5.1]. All the proofs are gathered together in Section 5. In our companion
paper [10] we address the same questions for the SHE with multiplicative Lévy noise.

Let us end this introductory section by stating necessary and sufficient conditions
in terms of the jump measure λ for the existence of the integral (1.3). To the best of
our knowledge, this result is new. While many works have studied sufficient conditions
for existence [1, 5, 6, 28], necessary and sufficient conditions have only been derived
for multiplicative noise [2] or for specific types of noises such as α-stable noise [12].
Introduce the measure η as

η(B) = ν
(
{(s, y, z) : s ≤ t, g(s, y)z ∈ B}

)
, (1.6)

where B ⊆ (0,∞) is a Borel set.
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Extremes of the SHE with additive Lévy noise

Theorem 1.1. Suppose that Λ is of the form (1.2).
(i) The integral defining Y (t, x) in (1.3) exists if and only if (iff)∫

(1,∞)

(log z)d/2 λ(dz) <∞ and

{∫
(0,1]

z2|log z|λ(dz) <∞ if d = 2,∫
(0,1]

z1+2/d λ(dz) <∞ if d ≥ 3.
(1.7)

In this case, η is a Lévy measure and Y (t, x) is infinitely divisible with characteristic
function

E[eiθY (t,x)] = exp

{
iθA+

∫
(0,∞)

(
eiθu − 1− iθu1(u ≤ 1)

)
η(du)

}
, (1.8)

where 1 stands for the indicator function and A ∈ R is some explicit constant.
(ii) The integral ∫ t

0

∫
Rd

∫
(0,∞)

g(t− s, x− y)z µ(ds,dy,dz) (1.9)

exists iff ∫
(1,∞)

(log z)d/2 λ(dz) <∞ and

∫
(0,1]

z λ(dz) <∞. (1.10)

Remark 1.2. Note that (1.7) is identical to the necessary and sufficient condition found
in [2, Theorem 2.1] for the existence of solutions to the SHE with multiplicative noise in
dimensions d = 1, 2 but is weaker than the necessary condition found in [2, Prop. 2.2] for
d ≥ 3. In other words, if d ≥ 3, there are Lévy noises for which the SHE with additive
noise has a solution but the SHE with multiplicative noise does not.

Whenever
∫
(0,1]

z λ(dz) <∞, there is no need for compensation, so we assume without

loss of generality that m =
∫
(0,1]

z λ(dz). In this case,

Y (t, x) =

∫ t

0

∫
Rd

∫
(0,∞)

g(t− s, x− y)z µ(ds,dy,dz) =
∑
τi≤t

g(t− τi, x− ηi)ζi, (1.11)

where (τi, ηi, ζi) are the points of the Poisson random measure µ. In what follows we
always assume that (1.7) holds.

2 Tail asymptotics

Since Y (t, x) is infinitely divisible, its tail behavior is the same as the tail behavior of
its Lévy measure η, whenever the tail is subexponential. This result was proved in [13]
for nonnegative infinitely divisible random variables and in [23, 24] in the general case.
Therefore, we need to determine the tail of the Lévy measure η in (1.6).

For γ > 0 introduce the moments and truncated moments of λ as

mγ(λ) =

∫
(0,∞)

zγ λ(dz) and Mγ(x) =

∫
(0,x]

zγ λ(dz). (2.1)

Lemma 2.1. Let D = (2πκt)d/2. For any r > 0,

η(r) = η((r,∞))

= r−(1+2/d) dd/2

πκ(d+ 2)d/2+1Γ(d2 + 1)

∫ ∞
0

e−uud/2M1+2/d(Dre
ud/(d+2)) du.

(2.2)

From the representation above we immediately see that as soon as m1+2/d(λ) <∞,
then η(r) ∼ c r−1−2/d, for some c > 0. We can determine the tail even if this moment
condition does not hold, provided that λ is regularly varying.
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Extremes of the SHE with additive Lévy noise

In the following, the class of regularly varying functions with index ρ ∈ R is denoted by
RVρ. For the general theory on regular variation we refer to [4]. Write λ(r) = λ((r,∞)).
By Theorem 1.1 in [18] for α > 0, λ ∈ RV−α iff the truncated moment M1+2/d in (2.1)
is also regularly varying. However, for α = 0, the latter holds iff λ belongs to the de
Haan class (see e.g. [4, Thm. 3.7.1]). Therefore, it is more difficult to determine the
asymptotics of η for α = 0, and in fact the result itself is surprising. In what follows ∼
stands for asymptotic equivalence, that is a(x) ∼ b(x) as x→∞ if limx→∞ a(x)/b(x) = 1.

Lemma 2.2. Let λ satisfy (1.7).
(i) Assume that m1+2/d(λ) <∞. Then

η(r) ∼ r−1−2/d dd/2

πκ(d+ 2)d/2+1
m1+2/d(λ), r →∞.

(ii) Assume that λ(r) = `(r)r−α for α ∈ (0, 1 + 2
d ], where ` is slowly varying, and if

α = 1 + 2
d , further assume that

∫∞
1
`(u)u−1 du =∞. Then as r →∞,

η(r) ∼

`(r)r
−α D1+2/d−α

dπκαd/2(1 + 2
d − α)

if α < 1 + 2
d ,

L(r)r−1−2/d(dπκ(1 + 2
d )d/2)−1 if α = 1 + 2

d ,

where the slowly varying function L is defined as

L(r) =

∫ r

1

`(u)u−1 du. (2.3)

(iii) Assume that α = 0 and λ(x) = `(x) is slowly varying. Then as r →∞,

η(r) ∼ L0(r)
D1+2/d

2πκΓ(d2 + 1)(1 + 2
d )
,

where

L0(r) :=

∫ ∞
1

`(ry)y−1(log y)d/2−1 dy

is slowly varying and L0(r)/`(r)→∞ as r →∞.

Example 2.3. Assume that λ(r) = (log r)−β for r > e. Then (1.7) holds iff β > d
2 . By

substituting u = (1 + log y/ log r)−1, we obtain

L0(r) = (log r)d/2−β B(d2 , β −
d
2 ), r > e,

where B is the usual beta function.

To determine the tail of the spatial supremum, we need the tail of the largest
contribution to Y (t, x) by a single atom. Without loss of generality, consider x = 0 and
define

Y (t) = sup
τi≤t

g(t− τi, ηi)ζi. (2.4)

For r > 0 large, let
Sr = {(s, y, z) : s ∈ [0, t], g(s, y)z > r}.

Clearly, Y (t) ≤ r iff µ(Sr) = 0, which shows that

P(Y (t) ≤ r) = e−ν(Sr) = e−η(r). (2.5)

As a result we obtain the following.
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Theorem 2.4. Let Y (t, x) be given in (1.3) and assume (1.7).
(i) The tail function η has extended regular variation at infinity [4, p. 65], that is,

there are θ1, θ2 ∈ R such that for any c > 1,

cθ1 ≤ lim inf
x→∞

η(cx)

η(x)
≤ lim sup

x→∞

η(cx)

η(x)
≤ cθ2 . (2.6)

(ii) As r →∞,

P(Y (t, x) > r) ∼ P(Y (t) > r) ∼ η(r). (2.7)

(iii) For α ∈ [0, 1 + 2
d ), η ∈ RV−α iff λ ∈ RV−α. For α = 1 + 2

d , we have η ∈ RV−1−2/d
iff r 7→

∫ r
0
u2/d

∫∞
1
λ(uv)(log v)d/2−1v−1 dv du is slowly varying. In particular, the latter

holds if m1+2/d(λ) <∞.

3 Spatial supremum

Let A ∈ B(Rd) be a Borel subset of Rd with finite and positive Lebesgue measure and
define

XA(t) =


∑

ηi∈A,τi≤t

(2πκ(t− τi))−d/2ζi1{(2πκ(t−τi))−d/2ζi>1} if d = 1,

∑
ηi∈A,τi≤t

(2πκ(t− τi))−d/2ζi if d ≥ 2,
(3.1)

where A is the closure of A. Since XA(t) is a functional of a Poisson random measure,
one easily obtains necessary and sufficient conditions for the existence.

Define the measure τ on (0,∞) as

τ(B) = (Leb× λ)
(
{(s, z) : (2πκs)−d/2z ∈ B ∩ (1{d=1},∞), s ≤ t}

)
, B ∈ B(R), (3.2)

where Leb is the Lebesgue measure. For a Borel set A let |A| be its Lebesgue measure.

Theorem 3.1. Suppose that |A| ∈ (0,∞). The sum XA(t) is finite a.s. iff∫
(0,1)

z2/d|log z|1{d=2} λ(dz) <∞. (3.3)

Furthermore, if (3.3) holds then

E[eiθXA(t)] = exp

{
|A|
∫
(0,∞)

(1− e−iθu) τ(du)

}
. (3.4)

Note that (3.3) holds for any Lévy measure if d = 1. From (3.2) we obtain that for
r > 1

τ(r) = τ((r,∞)) =

∫
(0,∞)

(
(2πκ)−1(z/r)2/d ∧ t

)
λ(dz)

= r−2/d(2πκ)−1M2/d(rD) + t λ(rD)

=
1

πκd
r−2/d

∫ rD

0

u2/d−1λ(u) du.

(3.5)

In specific cases, we can determine the asymptotic behavior of τ explicitly.

Lemma 3.2. Assume (3.3).
(i) If m2/d(λ) <∞, then τ(r) ∼ (2πκ)−1m2/d(λ)r−2/d as r →∞.
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(ii) Assume that λ(r) = `(r)r−α for α ∈ [0, 2d ], where ` is slowly varying, and further
assume

∫∞
1
`(u)u−1 du =∞ if α = 2

d . Recalling the definition of L from (2.3), we have as
r →∞ that

τ(r) ∼


2tD−α

2− dα
`(r)r−α if α < 2

d ,

1

πκd
L(r)r−2/d if α = 2

d .

The lemma combined with a truncation argument immediately implies that if (3.3)
holds then

lim inf
r→∞

r2/dτ(r) > 0, (3.6)

possibly infinite.
Introduce the notation

XA(t) = sup
{

(2πκ(t− τi))−d/2ζi : τi ≤ t, ηi ∈ A
}
. (3.7)

To determine the tail of XA(t), let Tr = {(s, z) : s ≤ t, (2πκs)−d/2z > r}. Then XA(t) ≤ r
iff µ(A× Tr) = 0, thus

P(XA(t) > r) = 1− e−|A|τ(r). (3.8)

Theorem 3.3. Assume (3.3).
(i) The tail function τ has extended regular variation at infinity.
(ii) For every bounded Borel set A,

P(XA(t) > r) ∼ P(XA(t) > r) ∼ |A| τ(r), r →∞. (3.9)

(iii) For α ∈ [0, 2d ), τ ∈ RV−α iff λ ∈ RV−α. For α = 2
d , we have τ ∈ RV−2/d iff

r 7→
∫ r
0
u2/d−1λ(u) du is slowly varying. In particular, the latter holds if m2/d(λ) <∞ or if

λ ∈ RV−2/d.
In order to determine the tail asymptotics of the local supremum of the solution, let

us introduce for each A ∈ B(Rd) the measure on (0,∞)

ηA(B) = ν
(
{(s, y, z) : s ≤ t, (2πκs)−d/2e−

dist(y,A)2

2κs z ∈ B ∩ (1{d=1},∞)}
)
, (3.10)

where B ∈ B(R).
If m2/d(λ) <∞ or if λ is regularly varying with index −α for some α ∈ (0, 2d ], one can

express ηA in terms of τ or λ.

Lemma 3.4. Let A be a bounded Borel set. Assume (3.3) and
∫
(1,∞)

(log z)d/2λ(dz) <∞.

(i) If m2/d(λ) <∞ or λ(r) = `(r)r−2/d and ` is slowly varying with
∫∞
1
`(u)u−1 du =∞,

then
ηA(r) ∼ |A| τ(r), r →∞.

(ii) If λ(r) = `(r)r−α for α ∈ (0, 2d ), where ` is slowly varying, then

ηA(r) ∼ λ(r)

∫ t

0

∫
Rd

(2πκs)−αd/2e−
αdist(y,A)2

2κs dsdy, r →∞.

Theorem 3.5. Let A be a bounded Borel set. Assume (3.3) and
∫
(1,∞)

(log z)d/2λ(dz) <∞.
If d = 1, further assume that

∃q ∈ (0, 2) : Mq(1) <∞. (3.11)

Then under the assumptions of Lemma 3.4 (i) or (ii) we have that

P

(
sup
x∈A

Y (t, x) > r

)
∼ ηA(r), r →∞.
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Remark 3.6. As the proof shows, even without the assumptions of Lemma 3.4 (i) and
(ii), the statement of Theorem 3.5 continues to hold provided ηA is subexponential. We
were not able to prove or disprove this in general.

4 Growth rate

In what follows we assume (3.3). For r > 0 and 0 ≤ r1 < r2, we write

V (r) =

{
(s, z) :

z

(2πκs)d/2
> r, s ≤ t

}
. (4.1)

Recalling (3.2) we have for r > 1

(Leb× λ)(V (r)) = τ(r). (4.2)

Note that τ(r) is a continuous strictly decreasing function, with τ(∞) = 0 and τ(0+) =∞
whenever λ((0, 1)) =∞. If m2/d(λ) <∞, then by (3.5)

τ(r) ≤ r−2/d(2πκ)−1m2/d(λ). (4.3)

From (3.5) we further see that whenever
∫
(0,1]

z2/d λ(dz) =∞ we have τ(r) =∞ for

any r > 0. Therefore, for any r > 0 and x ∈ Rd there exists a point (τ, η, ζ) of the Poisson
random measure µ, such that η ∈ B(x, r) and (2πκ(t− τ))−d/2ζ > r, implying

sup
y:|x−y|≤r

Y (t, y) ≥ g(t− τ, 0)ζ > r.

As this holds for any r > 0 we obtain

sup
y:|x−y|≤r

Y (t, y) =∞. (4.4)

Therefore, our standing assumption (3.3) is optimal for d ≥ 3 and almost optimal for
d = 2. For a more general result in this direction, see [7, Thm. 3.3]. Furthermore, by
[7, Thm. 3.1], if

∫
(0,1]

zp λ(dz) < ∞ for some p < 2
d , then for any fixed t the function

x 7→ Y (t, x) is a.s. continuous.
If
∫∞
0
z2/d λ(dz) = m2/d(λ) < ∞, the non-Gaussian analogue of (1.5) (see also [11,

Thm. 1.2]) reads as follows.

Theorem 4.1. Let f : (0,∞)→ (0,∞) be nondecreasing and assume that (3.3) holds. If
d = 1, further assume (3.11). Then almost surely

lim sup
x→∞

sup|y|≤x Y (t, y)

f(x)
=∞ or lim sup

x→∞

sup|y|≤x Y (t, y)

f(x)
= 0,

according to whether the following integral diverges or converges:∫ ∞
1

rd−1τ(f(r)) dr. (4.5)

The result says that there is no proper normalization. If m2/d(λ) <∞, then almost
surely there are infinitely many peaks in B(x) = {y : |y| ≤ x} that are larger than
xd

2/2(log x)d/2 but only finitely many that are larger than xd
2/2(log x)d/2+ε.

Remark 4.2. If the Lévy measure is small in the sense that m2/d(λ) <∞, then the large
peaks of Y (t, x) are caused by points very close to the time t. (If we remove jumps
close to (t, x), this is equivalent to removing the singularity of g in (1.3), the local spatial
supremum of the resulting process would have a finite moment of order 2

d . In particular,
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its tail probability would be o(r−2/d), which by the arguments of the proof of the theorem
implies that the peaks will be of smaller order.) However, if λ ∈ RV−α with α < 2

d ,
then the peaks are caused by large jumps, which are not necessarily close to t. Indeed,
assume that the integral in (4.5) diverges. For some δ ∈ (0, t) and large K > 0 define

Ãn = {µ({(s, y, z) : s ≤ t− δ, |y| ∈ [n, n+ 1], z > Kf(n)}) ≥ 1} .

Then as n→∞,
P(Ãn) ∼ Cnd−1λ(f(n)) ∼ Cnd−1τ(f(n)),

showing that
∑∞
n=1 P(Ãn) =∞. By the second Borel–Cantelli lemma Ãn occurs infinitely

often.

In line with the previous remark we show in our next and final result that the largest
peaks of x 7→ Y (t, x) are typically not attained at integer locations if m2/d(λ) < ∞. To
this end, introduce the process

Y0(t, x) =


∫ t

0

∫
R

∫
(0,∞)

g(t− s, x− y)z1{|x−y|≤ 1
2 , g(t−s,x−y)z>1} µ(ds,dy,dz), if d = 1,∫ t

0

∫
R

∫
(0,∞)

g(t− s, x− y)z1{|x−y|≤ 1
2}
µ(ds,dy,dz), if d ≥ 2,

(4.6)
which is infinitely divisible with Lévy measure

η0(B) = ν({(s, y, z) : s ≤ t, |y| ≤ 1
2 , g(s, y)z ∈ B ∩ (1{d=1},∞)}).

Theorem 4.3. Let f : (0,∞)→ (0,∞) be nondecreasing and assume that (1.7) holds. If
d = 1, further assume (3.11). Then∫ ∞

1

rd−1η(f(r)) dr <∞ =⇒ lim sup
x→∞

maxy∈Zd,|y|≤x Y (t, y)

f(x)
= 0,∫ ∞

1

rd−1η0(f(r)) dr =∞ =⇒ lim sup
x→∞

maxy∈Zd,|y|≤x Y (t, y)

f(x)
=∞.

The result above is optimal if η(r) � η0(r) (0 < lim infr→∞
η0(r)
η(r) ≤ lim supr→∞

η0(r)
η(r) <

∞). We end with a sufficient condition for the asymptotic equivalence of η and η0 and an
example where they are not.

Lemma 4.4. (i) If m1+2/d(λ) <∞, or if there exist δ > 0 and C > 0 such that for r, y > 1

large enough
λ(ry)

λ(r)
≤ Cy−δ, (4.7)

then η0(r) � η(r) as r →∞.
(ii) Under the assumptions of Lemma 2.2 (iii) we have η0(r) = o(η(r)) as r →∞.

To make the remark before Theorem 4.3 precise, let m1+2/d(λ) < ∞. Then by
Lemmas 2.2 and 3.2 we see that η(r) = c1r

−(1+2/d) and τ(r) = c2r
−2/d as r → ∞.

Applying Theorems 4.1 and 4.3 we see that for d2/(d+ 2) < a ≤ d2/2 we have

lim sup
x→∞

sup|y|≤x Y (t, x)

xa
=∞,

lim sup
x→∞

supy∈Zd,|y|≤x Y (t, x)

xa
= 0,

which means that the largest peaks are not attained at integer locations.
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5 Proofs

5.1 Proofs for Section 1

Proof of Theorem 1.1. We start with the part (ii). By standard results on Poisson inte-
grals (see e.g. [21, Thm. 2.7]), the integral in (1.9) exists a.s. iff∫∫∫

(1 ∧ g(s, y)z) dsdy λ(dz) <∞,

where
∫∫∫

=
∫ t
0

∫
Rd

∫
(0,∞)

. For any u > 0

g(s, y) ≤ u ⇐⇒ s ≥ (2πκu2/d)−1 =: H1(u) or
{
s ∈ (0, H1(u))

and |y| ≥
√
−κds log(2πκsu2/d) =

√
κds log(H1(u)/s) =: H2(s, u)

}
.

(5.1)

Note that if z ≤ (2πκt)d/2 =: D, then H1(1/z) ≤ t. Let

A1 = {(s, y, z) : z ≤ D, s ≤ H1(1/z), |y| ≤ H2(s, 1/z)},
A2 = {(s, y, z) : z > D, s ≤ t, |y| ≤ H2(s, 1/z)}

and

B1 = {(s, y, z) : t ≥ s > H1(1/z)},
B21 = {(s, y, z) : z ≤ D, s ≤ H1(1/z), |y| > H2(s, 1/z)},
B22 = {(s, y, z) : z > D, s ≤ t, |y| > H2(s, 1/z)}.

Then A1, A2, B1, B21, B22 form a partition of (0, t] × Rd × (0,∞). Moreover, by (5.1),
1 ≤ g(s, y)z iff (s, y, z) ∈ A1 ∪A2.

Consider the upper incomplete gamma function Γ(s, x) =
∫∞
x
us−1e−u du. For r ≤

H1(1/z), by a change of variables v = log(H1(1/z)/s),∫ r

0

H2(s, 1/z)d ds =

∫ r

0

(
κds log

H1(1/z)

s

)d/2
ds

= (κd)d/2H1(1/z)d/2+1

∫ ∞
log

H1(1/z)
r

e−v(d/2+1)vd/2 dv

= (κd)d/2
(

2

d+ 2

)d/2+1

H1(1/z)d/2+1Γ(d2 + 1, (d2 + 1) log(H1(1/z)/r)).

(5.2)

Therefore, on A1, after simplifying the constant,∫∫∫
A1

(1 ∧ g(s, y)z) dsdy λ(dz) =

∫
(0,D]

∫ H1(1/z)

0

vdH2(s, 1/z)d ds λ(dz)

=
dd/2

πκ(d+ 2)d/2+1

∫
(0,D]

z1+2/d λ(dz),

where vd = πd/2/Γ(d2 + 1) is the volume of the unit ball B(1). We see that this integral is
finite iff

∫
(0,1]

z1+2/d λ(dz) <∞. On A2,∫∫∫
A2

(1 ∧ g(s, y)z) dsdy λ(dz)

=
dd/2

Γ(d2 + 1)πκ(d+ 2)d/2+1

∫
(D,∞)

z1+2/dΓ

(
d
2 + 1, (d2 + 1) log

z2/d

2πκt

)
λ(dz).
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Since Γ(d2 + 1, u) ∼ e−uud/2 as u→∞,

z1+2/dΓ

(
d
2 + 1, (d2 + 1) log

z2/d

2πκt

)
∼ (2πκt)d/2+1(1 + 2

d )d/2 (log z)
d/2

,

as z →∞, which implies that∫∫∫
A2

(1 ∧ g(s, y)z) dsdy λ(dz) <∞ ⇐⇒
∫
(1,∞)

(log z)d/2 λ(dz) <∞.

On B1, ∫∫∫
B1

g(s, y)z dsdy λ(dz) =

∫
(0,D]

z(t−H1(1/z))λ(dz),

which is finite iff
∫
(0,1]

z λ(dz) <∞. For any h > 0,

∫
|y|>h

g(s, y) dy = dvd(2πκs)
−d/2

∫ ∞
h

e−
r2

2κs rd−1 dr =
Γ(d2 ,

h2

2κs )

Γ(d2 )
. (5.3)

Furthermore, for any a > 0,∫ a

0

Γ(d2 ,
d
2 log a

s ) ds = aΓ(d2 )(1− (1 + 2
d )−d/2). (5.4)

Therefore, by (5.3) and (5.4),∫∫∫
B21

g(s, y)z dsdy λ(dz) = (2πκ)−1(1− (1 + 2
d )−d/2)

∫
(0,D]

z1+2/d λ(dz).

Finally, on B22, we use (5.3) and the asymptotics Γ(d2 , u) ∼ e−uud/2−1 to obtain that∫∫∫
B22

g(s, y)z dsdy λ(dz) <∞ ⇐⇒
∫
(1,∞)

(log z)d/2−1 λ(dz) <∞.

Summarizing, (ii) follows. By [21, Thm. 2.7 (ii)] the characteristic function of the integral
in (1.9) is

exp

{
−
∫∫∫

(1− eiθg(s,y)z) dsdy λ(dz)

}
= exp

{
−
∫
(0,∞)

(1− eiθu) η(du)

}
. (5.5)

To prove the existence of Y (t, x) defined as a compensated integral, we use the
stochastic integration theory from [25]. By writing

Y (t, x) = mt+

∫ t

0

∫
Rd

∫
(0,1]

g(t− s, x− y)z (µ− ν)(ds,dy,dz)

+

∫ t

0

∫
Rd

∫
(1,∞)

g(t− s, x− y)z µ(ds,dy,dz)

=: mt+ Ys(t, x) + Yb(t, x)

(5.6)

and the previously proved existence result for Yb(t, x), it is enough to deal with Ys(t, x),
that is, we may assume that there are only small jumps. Spelling out [25, Thm. 2.7] to
our setting, we obtain that Y (t, x) exists iff∫ t

0

∫
Rd

∫
(0,1]

g(s, y)z1(g(s, y)z > 1) dsdy λ(dz) <∞, (5.7)
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and ∫ t

0

∫
Rd

∫
(0,1]

(1 ∧ g(s, y)2z2) dsdy λ(dz) <∞. (5.8)

To check (5.7), as in (5.3) write

∫
|y|≤h

g(s, y) dy =
1

Γ(d2 )

∫ h2

2κs

0

e−uud/2−1 du.

Thus, as in (5.4),∫ H1(1/z)

0

∫ H2
2 (s,1/z)/(2κs)

0

e−uud/2−1 duds = H1(1/z)(1 + 2
d )−d/2Γ(d2 ),

which gives that∫ t

0

∫
Rd

∫
(0,1]

g(s, y)z1(g(s, y)z > 1) dsdy λ(dz) = (1 + 2
d )−d/2

∫
(0,1]

zH1(1/z)λ(dz).

The latter integral exists iff
∫
(0,1]

z1+2/d λ(dz) <∞.

For (5.8), by the previous calculations, we only have to deal with the integral on
B1 ∪B21. As ∫

Rd
g(s, y)2 dy = 2−d(πκ)−d/2s−d/2,

we obtain that ∫∫∫
B1

g(s, y)2z2 dsdy λ(dz) <∞

iff the second part of (1.7) holds. Finally, for h > 0,∫
|y|>h

g(s, y)2 dy =
Γ(d2 ,

h2

κs )

2d(πκs)d/2Γ(d2 )
,

and for a > 0, ∫ a

0

s−d/2Γ(d2 , d log a
s ) ds = a1−d/2Γ(d2 )

2( 1
2 + 1

d )−d/2 − 2

d− 2
,

where the last fraction is 1
2 if d = 2. Thus,∫∫∫

B21

g(s, y)2z2 dsdy λ(dz) = 2−d(πκ)−d/2
2( 1

2 + 1
d )−d/2 − 2

d− 2

∫
(0,1]

z2H1(1/z)1−d/2 λ(dz),

which is finite iff
∫
(0,1]

z1+2/d λ(dz) <∞. In summary, (5.7) and (5.8) hold iff (1.7) holds.

By [25, Thm. 2.7 (iv)], the characteristic function of Ys(t, x) is

E[eiθYs(t,x)] = exp

{
−iθ

∫ t

0

∫
Rd

∫
(0,1]

1(g(s, y)z > 1)g(s, y)z dsdy λ(dz)

+

∫ ∞
0

(
eiθu − 1− iθ(u ∧ 1)

)
η(du)

}
.

Combining with (5.5), we obtain (1.8).
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5.2 Proofs for Section 2

Proof of Lemma 2.1. By (5.1) and (5.2) and Fubini’s theorem, we have

η(r) =

∫
(0,∞)

∫ H1(r/z)∧t

0

vdH2(s, r/z)d ds λ(dz)

=

∫
(0,∞)

dd/2

πκ(d+ 2)d/2+1Γ(d2 + 1)

(z
r

)1+2
d

Γ

(
d
2 + 1, (d2 + 1) log

H1(r/z)

H1(r/z) ∧ t

)
λ(dz)

= r−(1+2/d) dd/2

πκ(d+ 2)d/2+1Γ(d2 + 1)

∫ ∞
0

e−uud/2M1+2/d(Dre
ud/(d+2)) du,

(5.9)

proving the exact formula for η(r).

Proof of Lemma 2.2. (i) If m1+2/d(λ) < ∞, the asymptotic result follows immediately
from (2.2).

(ii) Integration by parts gives for any γ > 0, for which the integral exists (at 0 it might
explode), that

Mγ(r) =

∫
(0,r]

zγ λ(dz) =

∫ r

0

γuγ−1λ(u) du− rγλ(r). (5.10)

Thus, as r →∞, we have by Karamata’s theorem (see [4, Prop. 1.5.8 and 1.5.9a]) that
for γ > α,

Mγ(r) ∼ rγλ(r)
α

γ − α
= rγ−α`(r)

α

γ − α
, (5.11)

while for γ = α, if the integral exists,

Mα(r) ∼ α
∫ r

1

`(y)y−1 dy = αL(r), (5.12)

where L is slowly varying and L(r)/`(r)→∞ as r →∞.
By (5.11) with γ = 1 + 2

d (or (5.12) for α = 1 + 2
d ) and properties of slowly varying

functions,

M1+2/d(r)

∫ ∞
0

e−uud/2
M1+2/d(Dre

ud/(d+2))

M1+2/d(r)
du

∼M1+2/d(r)

∫ ∞
0

e−uud/2(Deud/(d+2))1+2/d−α du

= M1+2/d(r)D
1+2/d−α

(
d+ 2

αd

)d/2+1

Γ(d2 + 1),

where the use of Lebesgue’s dominated convergence theorem is justified by Potter’s
bounds.

(iii) For α = 0 the truncated moment M1+2/d is not necessarily regularly varying,
therefore more care is needed. First we analyze L0, which is finite by (1.7). Indeed,
since λ is nonincreasing, so is L0, and

L0(1) ≤
∫ ∞
1

λ(y)y−1(log y)d/2−1dy =
2

d

∫
(1,∞)

(log z)d/2λ(dz) <∞.

Furthermore, for any large K,

L0(r) ≥
∫ K

1

`(ry)y−1(log y)d/2−1 dy ∼ `(r)
∫ K

1

y−1(log y)d/2−1 dy.
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Since the latter integral goes to infinity as K → ∞, we obtain that L0(r)/`(r) → ∞ as
r →∞. Next, for a > 1,

L0(ar) =

∫ ∞
a

`(ry)y−1(log y/a)d/2−1 dy,

thus

L0(r)− L0(ar) =

∫ a

1

`(ry)

y
(log y)d/2−1 dy +

∫ ∞
a

`(ry)

y

(
(log y)d/2−1 − (log y/a)d/2−1

)
dy,

which implies

lim
r→∞

L0(r)− L0(ar)

L0(r)
= 0,

that is, L0(r) is indeed slowly varying. Furthermore, for any a > 1,

L0(r) ∼
∫ ∞
a

`(ry)y−1(log y)d/2−1 dy, r →∞. (5.13)

Next we turn to η(r). Changing variables y = Dreud/(d+2) in (2.2), we obtain

η(r) =
D1+2/d

dπκΓ(d2 + 1)

∫ ∞
Dr

y−2−2/d
(

log
y

Dr

)d/2
M1+2/d(y) dy.

By Fubini’s theorem,∫ ∞
r

y−2−2/d (log y/r)
d/2

M1+2/d(y) dy

=

∫
(0,r]

z1+2/d λ(dz) r−1−2/d
∫ ∞
1

u−2−2/d(log u)d/2 du

+

∫
(r,∞)

z1+2/dr−1−2/d
∫ ∞
z/r

u−2−2/d(log u)d/2 duλ(dz)

= r−1−2/d
∫
(0,∞)

z1+2/df(1 ∨ z/r)λ(dz),

where a ∨ b = max{a, b} and f(y) =
∫∞
y
u−2−2/d(log u)d/2 du. Using the fundamental

theorem of calculus to write z1+2/df(1∨z/r) as an integral, exchanging the two resulting
integrals by Fubini’s theorem, and changing variables y = z/r, we obtain

r−1−2/d
∫
(0,∞)

z1+2/df(1 ∨ z/r)λ(dz)

=

∫ ∞
0

λ(ry)
[
(1 + 2

d )y2/df(1 ∨ y)− 1(y > 1)(log y)d/2y−1
]

dy

=

∫ 1

0

λ(ry)(1 + 2
d )y2/df(1) dy

+

∫ ∞
1

λ(ry)(1 + 2
d )y2/d

∫ ∞
y

u−2−2/d
[
(log u)d/2 − (log y)d/2

]
dudy.

Using that

(1 + 2
d )y2/d

∫ ∞
y

u−2−2/d
[
(log u)d/2 − (log y)d/2

]
du = d

2y
2/d

∫ ∞
y

v−2−2/d(log v)d/2−1 dv,
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we end up with

η(r/D) =
D1+2/d

dπκΓ(d2 + 1)

[ ∫ 1

0

λ(ry)(1 + 2
d )y2/df(1) dy

+

∫ ∞
1

λ(ry)d2y
2/d

∫ ∞
y

v−2−2/d(log v)d/2−1 dv dy

]
.

(5.14)

As y →∞,

y2/d
∫ ∞
y

v−2−2/d(log v)d/2−1 dv ∼ (1 + 2
d )−1y−1(log y)d/2−1,

so for K large enough,∫ ∞
K

λ(ry)y2/d
∫ ∞
y

v−2−2/d(log v)d/2−1 dv dy ∼ (1 + 2
d )−1

∫ ∞
K

λ(ry)y−1(log y)d/2−1 dy

∼ (1 + 2
d )−1L0(r),

where the last asymptotic follows from (5.13). Since `(r)/L0(r)→ 0 as r →∞,

η(r/D) ∼ D1+2/d

2πκΓ(d2 + 1)(1 + 2
d )
L0(r),

as claimed.

Proof of Theorem 2.4. (i) Starting from the first line of (5.9), we can also write η(r) as

η(r) = vd(κd)d/2
∫ t

0

sd/2
∫
(r(2πκs)d/2,∞)

(
log

z2/d

2πκsr2/d

)d/2
λ(dz) ds

=
(2t)1+d/2κd/2vd

d
r−1−2/d

∫ r

0

v2/d
∫
(Dv,∞)

(
log

z

Dv

)d/2
λ(dz) dv,

(5.15)

where we changed variables v = (s/t)d/2r to go from the first to the second line. By the
fundamental theorem of calculus we have log η(r) = C +

∫ r
1
ξ(v)v−1 dv with

C = log
(2t)1+d/2κd/2vd

d
+ log

∫ 1

0

v2/d
∫
(Dv,∞)

(
log

z

Dv

)d/2
λ(dz) dv,

ξ(v) =
v1+2/d

∫
(Dv,∞)

(log z
Dv )d/2 λ(dz)∫ v

0
u2/d

∫
(Du,∞)

(log z
Du )d/2 λ(dz) du

− (1 + 2
d ).

Since

f(r) =

∫
(r,∞)

(
log

z

r

)d/2
λ(dz) =

d

2

∫ ∞
r

λ(z)

z

(
log

z

r

)d/2−1
dz. (5.16)

is decreasing in r, we have −(1 + 2
d ) ≤ ξ(v) ≤ 0. The claim now follows from [4,

Thm. 2.2.6].
(ii) By (i) and [4, Thm. 2.0.7], η has dominated variation [4, p. 54] and η(r+s)/η(r)→ 1

as r → ∞ for any s > 0. Hence η is subexponential [17, Thm. 1] and (2.7) follows
from (2.5) and [23, Thm. 3.1] (see also [24, Thm. 5.1]).

(iii) By (5.15) η ∈ RV−α iff
∫ r
0
v2/df(Dv)dv ∈ RV1+2/d−α. By a simple monotone

density argument ([4, Theorem 1.7.2], or [18, Theorem 1.1]) this holds for α < 1 + 2
d

iff f ∈ RV−α. Consider the kernel k(u) = (log u−1)d/2−11(0,1)(u). Define the Mellin
convolution of f1 and f2 by

f1
M∗ f2(r) =

∫ ∞
0

f1(r/t)f2(t)t−1 dt,
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see e.g. [4, Sect. 4]. With this notation f(r) = k
M∗ λ(r). The Mellin transform of k, that

is,

k̆(z) =

∫ 1

0

t−z−1(log t)d/2−1 dt = id
√
z
−d

Γ(d2 ),

is defined and nonzero whenever <z < 0 and
√
z is chosen such that arg(

√
z) ∈ ( 1

4π,
3
4π).

Therefore, we can apply [4, Thm. 4.8.3]. (It is easy to check that the Tauberian condition

is satisfied since λ is decreasing; see also [4, Exercise 1.11.14].) Therefore, k
M∗ λ ∈ RV−α

implies that λ ∈ RV−α, as claimed. The other direction was proved in Lemma 2.2.
If α = 1 + 2

d , then
∫ r
0
u2/df(u) du is slowly varying. Using the first identity in (5.16),

we can easily verify that the latter holds if m1+2/d(λ) <∞.

5.3 Proofs for Section 3

Proof of Theorem 3.1. Without loss of generality, assume κ = 1
2π . If d = 1, then by [21,

Thm. 2.7] XA(t) exists iff∫∫∫
1(s−d/2z > 1, y ∈ A) dsdy λ(dz) = |A|

∫
(0,∞)

(z2 ∧ t)λ(dz) <∞,

which is true for any Lévy measure. If d ≥ 2, XA(t) exists iff∫∫∫
(1 ∧ s−d/2z1(y ∈ A)) dsdy λ(dz) = |A|

∫ t

0

∫
(0,∞)

(1 ∧ s−d/2z) ds λ(dz) <∞.

For z ≤ td/2, we have
∫ t
0
(1 ∧ s−d/2z) ds = z2/d + z

∫ t
z2/d

s−d/2 ds, while for z > td/2, we

have
∫ t
0
(1 ∧ s−d/2z) ds = t. Thus,∫ t

0

∫
(0,∞)

(1∧s−d/2z) ds λ(dz) =

∫
(0,td/2]

z2/d λ(dz)+

∫
(0,td/2]

z

∫ t

z2/d
s−d/2 ds λ(dz)+t λ(td/2),

which is finite iff (3.3) holds. The identity (3.4) follows from [21, Thm. 2.7 (ii)].

Proof of Lemma 3.2. (i) is an immediate consequence of (3.5). (ii) follows from (3.5)
combined with Karamata’s theorem.

Proof of Theorem 3.3. Recall (3.8). Then, as in Theorem 2.4, claims (i) and (ii) follow by
writing log τ(r) = C +

∫ r
1
ξ(u)u−1 du with

C = − log(πκd) + log

∫ D

0

u2/d−1λ(u) du, ξ(u) =
(Du)2/dλ(Du)∫Du

0
v2/d−1λ(v) dv

− 2
d ,

where ξ satisfies − 2
d < ξ(u) ≤ 0.

For (iii), by (3.5) τ ∈ RV−α iff
∫ r
0
u2/d−1λ(u)du ∈ RV2/d−α, which for α < 2

d holds iff
λ ∈ RV−α, as claimed. If α = 2

d then
∫ r
0
u2/d−1λ(u) du is slowly varying. This holds if

m2/d(λ) <∞ or λ ∈ RV−2/d.

Proof of Lemma 3.4. (i) If m2/d(λ) <∞, choose ε > 0 and observe that for r > 1,

ηA(r) ≤
∫∫∫

1((2πκs)−d/2z > r)1{y∈Aε} dsdy λ(dz)

+

∫∫∫
1
(

(2πκs)−d/2e−
dist(y,A)2

2κs z > r
)
1{y/∈Aε} dsdy λ(dz)

≤ |Aε|τ(r) +

∫∫∫
1
(

(2πκs)−d/2e−
dist(y,A)2

2κs z > r
)
1{y/∈Aε} dsdy λ(dz),

(5.17)
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where Aε = {x ∈ Rd : dist(x,A) < ε}. Since∫∫∫
(2πκs)−1e−

dist(y,A)2

dκs 1{y/∈Aε}z
2/d dsdy λ(dz) <∞,

the last term in the previous display is o(r−2/d), which together with Lemma 3.2 (i) shows
that lim supr→∞ ηA(r)/τ(r) ≤ |Aε|, which converges to |A| by letting ε→ 0. The opposite
relation follows from the fact that

ηA(r) ≥
∫∫∫

1((2πκs)−d/2z > r)1{y∈A} dsdy λ(dz) = |A|τ(r).

If λ(r) = r−2/d`(r), one can use Potter’s bounds, dominated convergence and
Lemma 3.2 (ii) to show that the last integral in (5.17) is

∼ r−2/d`(r)
∫∫∫

(2πκs)−1e−
dist(y,A)2

dκs 1{y/∈Aε} dsdy = o(τ(r)).

The remaining proof is the same as in the case m2/d(λ) <∞.
(ii) If λ(r) = r−α`(r) for some α ∈ (0, 2d ), a direct calculation shows that for r > 1,

ηA(r) =

∫∫∫
1
(

(2πκs)−d/2e−
dist(y,A)2

2κs z > r
)

dsdy λ(dz)

∼ r−α`(r)
∫ t

0

∫
Rd

(2πκs)−αd/2e−
αdist(y,A)2

2κs dsdy.

Proof of Theorem 3.5. Note that for d ≥ 2 condition (3.3) implies summable jumps, in
which case we assume that Y (t, x) has the form (1.11). For d = 1, note that Y (t, x) =

Y ′d(t, x) + Y ′s (t, x) + Y ′b (t, x), where

Y ′d(t, x) = mt+

∫∫∫
g(t− s, x− y)z(1{(2πκ(t−s))−1/2z≤1} − 1{z≤1}) dsdy λ(dz),

Y ′s (t, x) =

∫∫∫
g(t− s, x− y)z1{(2πκ(t−s))−1/2z≤1} (µ− ν)(ds,dy,dz),

Y ′b (t, x) =

∫∫∫
g(t− s, x− y)z1{(2πκ(t−s))−1/2z>1} µ(ds,dy,dz).

(5.18)

A straightforward computation shows that Y ′d(t, x) <∞ for all Lévy measures λ. Further-
more, by (3.11) and the proof of [10, Thm. 3.8] one can show that

P

(
sup
x∈A
|Y ′s (t, x)| <∞

)
= 1. (5.19)

For completeness, we sketch the proof. We use [22, Thm. 1] (with α = p = 2) and
Minkowski’s integral inequality to obtain

E[|Y ′s (t, x)− Y ′s (t, x′)|2]

≤ C
∫∫∫

|g(t− s, x− y)− g(t− s, x′ − y)|2z21{(2πκ(t−s))−1/2z<1} ν(ds,dy,dz)

for all x, x′ ∈ R. We have on the set (2πκ(t− s))−1/2z < 1

|g(t− s, x− y)− g(t− s, x′ − y)|2z2 = C(t− s)−1z2
∣∣∣e− |x−y|22κ(t−s) − e−

|x′−y|2
2κ(t−s)

∣∣∣2
≤ C|g(t− s, x− y)− g(t− s, x′ − y)|qzq,
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where q is the exponent from (3.11) (which satisfies q < 2). With this estimate and [28,
Lemme A2] (we may choose q > 3/2), we conclude that

E[|Y ′s (t, x)− Y ′s (t, x′)|2] ≤ C|x− x′|3−q.

Since 3− q > 1, it follows from [19, Thm. 4.3] that

E

[
sup
x∈A

Y ′s (t, x)2
]
≤ E[Y ′s (t, 0)2] + E

[
sup
x,x′∈A

|Y ′s (t, x)− Y ′s (t, x′)|2
]
<∞, (5.20)

which shows (5.19).
Next, choose r > 0 such that A ⊆ B(r) = {x ∈ Rd : |x| ≤ r}. Then

sup
x∈A

Y ′b (t, x) ≤
∫∫∫

(2πκ(t− s))−d/2z1{y∈B(r)}1{d≥2 or (2πκ(t−s))−1/2z>1} µ(ds,dy,dz)

+

∫∫∫
(2πκ(t− s))−d/2e−

dist(y,B(r))2

2κ(t−s) z1{y/∈B(r), d≥2 or (2πκ(t−s))−1/2z>1} µ(ds,dy,dz).

The first term on the right-hand side is simply XB(r)(t), which is finite a.s. by Theo-
rem 3.3. The second term has the same distribution as Y ′b (t, 0), which is finite a.s. as well.
Therefore, supx∈A Y (t, x) < ∞ a.s. for all d. The assertion of the theorem now follows
from Lemma 3.4 (which implies that ηA is subexponential under the stated assumptions)
and [27, Thm. 3.1].

5.4 Proofs for Section 4

For 0 < r < r′ let B(r, r′) = {x ∈ Rd : r < |x| ≤ r′}.

Proof of Theorem 4.1. First assume that the integral in (4.5) converges and let K > 0.
We start with d ≥ 2. Since B(n, n+ 1) can be covered with O(nd−1) many unit cubes and
Y is stationary in space, Theorem 3.3 shows that

P

(
sup

y∈B(n,n+1)

Y (t, y) >
f(n)

K

)
≤ Cnd−1P

(
sup

y∈[0,1]d
Y (t, y) >

f(n)

K

)

≤ Cnd−1P
(
X[0,1]d(t) >

f(n)

K

)
≤ 2Cnd−1τ(f(n)/K) ≤ C ′nd−1τ(f(n)),

(5.21)

which is summable by hypothesis. In the last inequality we also used that τ is extended
regularly varying. So by the first Borel–Cantelli lemma,

sup
y∈B(n,n+1)

Y (t, y) >
f(n)

K

only happens finitely often. Since f is nondecreasing and tends to infinity by the
convergence of the integral in (4.5), we obtain

lim sup
x→∞

sup|y|≤x Y (t, y)

f(x)
≤ K−1

almost surely, proving the claim since K was arbitrary.
For d = 1, recall the decomposition (5.18) and the definition of XA(t) in (3.1). The

bound (5.21) holds true for Y ′b (t, y) instead of Y (t, y). Furthermore, Y ′d(t, x) is determin-
istic and P(supy∈[0,1]d Ys(t, y) > r) = o(r−2) by (5.20). On the other hand,

XA(t) ≤ sup
x∈A

Y ′b (t, x) ≤ XA(t),
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where the upper and lower bounds have the same tail behavior by (3.9), which is cr−2 or
larger by (3.6). Therefore, the final bound in (5.21) for Y (t, x) also holds.

For the converse statement, assume that the integral in (4.5) diverges. If d = 1, we
consider again the decomposition (5.18). Denote Y ′b (t, x) = Y (t, x) if d ≥ 2. For K > 0

large consider the events

An = {µ({(s, y, z) : (s, z) ∈ V (Kf(n+ 1)), y ∈ B(n, n+ 1)}) ≥ 1}, n ≥ 1. (5.22)

By (4.2) and Theorem 3.3 (i),

P(An) ∼ vd((n+ 1)d − nd)τ(Kf(n+ 1)) ≥ Cnd−1τ(f(n+ 1)).

Since the integral in (4.5) diverges, we have that
∑∞
n=1 P(An) = ∞. Noting that the

An’s are independent, the second Borel–Cantelli lemma implies that An occurs infinitely
often. On An,

sup
y∈B(n,n+1)

Y ′b (t, y) ≥ Kf(n+ 1).

Thus, almost surely,

lim sup
x→∞

sup|y|≤x Y
′
b (t, y)

f(x)
≥ K,

which proves the claim for d ≥ 2 since K > 0 is arbitrarily large.
If d = 1, note that the proof above shows that Y ′b (t, x) develops infinitely many peaks

larger than x1/2 on B(x), again by (3.6). So if we show that |Y ′d(t, x)| and |Y ′s (t, x)|
from (5.18) can only have finitely many peaks of that size, then the proof in d = 1 will be
complete. Since |Y ′d(t, x)| is deterministic and does not depend on x, this is trivial. For
|Y ′s (t, x)|, note that by (5.20)

∞∑
n=1

P

(
sup
y∈[0,1]

Y ′s (t, y) >
√
n

)
<∞,

thus the Borel–Cantelli argument as in the first part of the proof implies the claim.

Proof of Theorem 4.3. The upper bound proof is essentially the same as for Theorem 4.1,
except that (5.21) should be replaced by

P

(
max

y∈Zd,y∈B(n,n+1)
Y (t, y) >

f(n)

K

)
≤ Cnd−1P

(
Y (t, 0) >

f(n)

K

)
≤ Cnd−1η(f(n)/K) ≤ C ′nd−1η(f(n)).

For the lower bound proof, if d = 1, we consider the decomposition Y (t, x) = At +

Y ′′s (t, x) + Y ′′b (t, x), where A is the same constant as in Theorem 1.1 and

Y ′′s (t, x) =

∫∫∫
g(t− s, x− y)z1{g(t−s,x−y)z≤1} (µ− ν)(ds,dy,dz),

Y ′′b (t, x) =

∫∫∫
g(t− s, x− y)z1{g(t−s,x−y)z>1} µ(ds,dy,dz).

If d ≥ 2, we let Y ′′b (t, x) = Y (t, x). Clearly, Y ′′b (t, x) ≥ Y0(t, x) from (4.6) and P(Y0(t, x) >

r) ∼ η0(r) similarly to Theorem 2.4. Because the (Y0(t, x))x∈Zd are independent and

∞∑
n=1

∑
y∈Zd∩B(n,n+1)

P(Y0(t, y) > Kf(n+ 1)) ≥ C
∞∑
n=1

nd−1η0(f(n+ 1)K) =∞,

the second Borel–Cantelli lemma shows that Y ′′b (t, x)/f(x) ≥ Y0(t, x)/f(x) ≥ K for
infinitely many x ∈ Zd. If d = 1, then as in the proof of Theorem 4.1 one can show that
the peaks of |Y ′′s (t, x)| are of lower order.
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Proof of Lemma 4.4. Recall H1 and H2 from (5.1). For r > 1

η0(r) = η0((r,∞)) =

∫
(0,∞)

∫ H1(r/z)∧t

0

vd(
1
2 ∧H2(s, r/z))d ds λ(dz).

For fixed u > 0 the map s 7→ H2(s, u) is increasing on [0, (2πκeu2/d)−1], and decreasing
on [(2πκeu2/d)−1, H1(u)], with global maximum H2((2πκeu2/d)−1, u) =

√
d/(2πe)u−1/d.

In particular, H2(s, u) ≤ 1
2 whenever u ≥ (2d/(πe))d/2. Therefore, as in the proof of

Lemma 2.1,∫
(0,(πe/(2d))d/2r]

∫ H1(r/z)∧t

0

vd(
1
2 ∧H2(s, r/z))d ds λ(dz)

=
dd/2

πκ(d+ 2)
d
2+1Γ(d2 + 1)

∫
(0,(2πe/d)d/2r]

(
z

r

)1+
2
d

Γ

(
d
2 + 1, (d2 + 1) log

H1(r/z)

H1(r/z) ∧ t

)
λ(dz)

≥ c1r−1−2/dM1+2/d(c2r).

At the same time, if u > 0 is small enough, then∫ H1(u)∧t

0

( 1
2 ∧H2(s, u))d ds ≥ t

3
.

Thus there exists c3 such that∫
(c3r,∞)

∫ H1(r/z)∧t

0

vd(
1
2 ∧H2(s, r/z))d ds λ(dz) ≥ c4λ(c3r).

It follows that there are finite constants c1, c2, C1, C2 > 0 depending only on d and t such
that

c1r
−1−2/dM1+2/d(c2r) + c1λ(c2r) ≤ η0(r) ≤ C1r

−1−2/dM1+2/d(C2r) + C1λ(C2r). (5.23)

(The second inequality is an easy consequence of the first two displays in this proof.)
From (5.23) and Lemma 2.2 (i) we see that η0(r) � η(r) whenever m1+2/d(λ) < ∞.

If (4.7) holds, using Γ(d2 + 1, r) ∼ e−rrd/2 as r →∞, we have∫
(rD,∞)

(z
r

)1+2/d

Γ

(
d
2 + 1, (d2 + 1) log

H1(r/z)

H1(r/z) ∧ t

)
λ(dz)

≤ C
∫
(rD,∞)

(log(z/r))d/2 λ(dz) = C

∫ ∞
rD

(log(z/r))d/2−1λ(z)z−1 dz

≤ Cλ(r)

∫ ∞
D

(log y)d/2−1y−1−δ dy = Cλ(r),

which implies η0(r) � η(r).
On the other hand, (ii) follows from Lemma 2.2 (iii) and (5.23).
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