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Abstract

We establish general asymptotic upper and lower bounds for the volume variance
of Euclidean Gaussian nodal excursions in terms of the random walk associated to
the spectral measure. These bound are sharp in several situations, and under mild
assumptions, the variance is at least linear.

To obtain sublinear variances, we focus on the case where the spectral mea-
sure is purely atomic, and show that the associated irrational random walk on the
multi-dimensional torus comes back more often close to 0 when the atoms are well
approximable by rational tuples. Hence the excursion behaviour strongly depends on
the diophantine properties of the atoms, i.e. on the quality of approximation of the
atom locations by rationals. The volume variance has fluctuations which power can be
arbitrarily close from the maximum 2d (quadratic fluctuations), whereas if the atoms
are badly approximable the excursion is strongly hyperuniform, meaning the variance
asymptotic power is minimal, (d− 1), corresponding to the window boundary measure.
Also, given any reasonable variance asymptotic behaviour, there are uncountably
many sets of spectral atoms that realise it.

The versatility of the variance formula is illustrated by other examples where the
spectral measure support can have higher dimension, in particular it is able to capture
the variance cancellation phenomenon of Gaussian random waves, and it also yields
that there are no hyperuniform isotropic Gaussian excursions.
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1 Introduction

The primary motivation of this article is to study the variance of the excursion volume
for Euclidean stationary Gaussian fields, and exhibit a class of models that realise any
prescribed asymptotic variance behavior. It turns out that this can only be achieved by
spectral measures with a low dimensional support, hence we consider measures with
a finite support. This investigation requires to study a random walk which behaviour
depends on the diophantine properties of the spectral atoms, i.e. on the quality of
approximation of the atom locations by rationals. To conduct this program, we establish
two unrelated results which are of independent interest, corresponding to Sections 2
and 3, which are the main results of this paper. They are then combined in Section 4.

The first result, Theorem 2.1, deals with the volume of general Euclidean Gaussian
fields excursions. The main finding is that the variance magnitude is strongly related
to the probability of the associated random walk to return around 0. The second
result, Theorem 3.3, contains bounds for random walks with irrational increments. The
combination of those two results yields variance asymptotics for diophantine Gaussian
excursions, as detailed in Section 4, culminating with Theorem 4.3.

The results about diophantine random walks are of independent interest and can be
projected onto the torus, adding some uniform estimates to the existing literature (see
Section 1.3).
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The fact that Theorem 2.1 has a more general scope and can be applied in various
situations is illustrated by the variance cancellation phenomenon for a fundamentally
different model, the Gaussian random wave, see Section 1.5.

1.1 Gaussian excursions volume variance

The main actors of this article are centred stationary real Gaussian random fields
{X(t); t ∈ Rd}, which law is invariant under translations of Rd. See the monograph
[1] for a comprehensive exposition of main properties and fundamental results about
Gaussian fields and their geometry. It is known that they are completely characterised
by their reduced covariance function

C(t) = E(X(0)X(t)), t ∈ Rd,

or by their spectral measure, i.e. the unique finite symmetric measure µ on Rd such that
C admits the representation

C(t) =

∫
Rd
e−it·xµ(dx), t ∈ Rd, (1.1)

where · denotes the standard scalar product. In all the paper, quantities related to
vectors in Rd are denoted in bold (t,µ,x,ω, etc...).

Excursions of Gaussian processes on the real line have often been studied through
their number of crossings with the axis, see [20, 11, 12, 34, 22] or the survey [21].
Elementary considerations yield that the average number of crossings on an interval
is proportional to the length of the interval. Furthermore, if µ contains more than one
(symmetrised) atom, the variance of the number of crossings is quadratic [24, 2]. We
focus here on the Lebesgue measure of the nodal excursions

{X > 0} = {t ∈ Rd : X(t) > 0}.

Here again, the field centering and an application of Fubini’s theorem yields that the
expectation is proportional to the volume:

E(L d(A ∩ {X > 0})) =
L d(A)

2
, A ⊂ Rd

where L d is the d-dimensional Lebesgue measure. We give in Section 2 general upper
and lower bounds for the variance of the excursion volume

Vµ(T ) = Var(L d({X > 0} ∩Bd(0, T )))

where Bd(0, T ) is the centered ball with radius T . These bounds imply in particular that
if X is isotropic, or more generally if µ’s support has dimension > 1 and spans the whole
space, the volume has at least linear variance, i.e. larger than T d (see Section 1.4).

If on the other hand µ’s support is finite, a wide class of asymptotic behaviours are
reachable.

Corollary 1.1. Let ψ(q) a function from N∗ to [0, 1] decaying regularly faster than q−
1+2d
1+d

(Definition 4.1). There are uncountably many finite sets Σ ⊂ Rd such that if µ is
symmetric with support Σ, there are 0 < c− 6 c+ < ∞ such that for T > 0 sufficiently
large

c−T
2dψ−1(T )−(1+2d)

i.o.
6 Vµ(T ) 6 c+T

2dψ−1(T )−(1+2d)

where ψ−1 is the pseudo-inverse of ψ (defined at (3.1)) and
i.o.
6 means that the inequality

is true for a sequence Tk →∞.
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By carefully choosing the function ψ, one can hence have any prescribed variance
magnitude which has sufficiently regular variation. We have a parametric model which
achieves any reasonable asymptotic variance between the minimal surface-scaling order,
in T d−1, and the maximal quadratic order, in T 2d(see Proposition 4.6 for explicit choices
of Σ which yield any power law behaviour for the variance). The need for models that
yield any prescribed variance asymptotics is explained in [8], along with another such
procedure based on Fourier transforms. When the variance is sublinear (below T d), the
excursion is said to be hyperuniform, contributing to the already large research body on
the subject (see Section 1.4 for more insights and motivation).

The result above is obtained with a Gaussian field which spectral measure µ is of the
form

µ =

d∑
k=1

m∑
i=0

δ̄ωiek , where δ̄a =
1

2
(δa + δ−a), a ∈ Rd,

and the atoms ωi, i = 1, . . . ,m are ψ-approximable, i.e. roughly speaking such that for
infinitely many q = (qi) ∈ Zm,

∑
i ωiqi is ψ(q)-close to an integer (and this is not true for

ϕ� ψ), and the ek, 1 6 k 6 d form a basis of Rd. Let us give formal definitions, as they
will be useful throughout the introduction and the paper: say that ω ∈ Rm is

ψ-BA (Badly Approximable), if for some r > 0 (1.2)

|p− ω · q| > 2ψ(q) for all p ∈ Z, q ∈ Zm \Bm(0, r)

and ψ-WA (Well approximable), if for some c > 0 (1.3)

|p− ω · q| < cψ(q) for infinitely many p ∈ Z, q ∈ Zm, q ≡ 1,

where q ≡ 1 means that
∑m
i=1 qi is an odd number. The proof consists in (i) expressing the

variance in terms of the behaviour around 0 of the diophantine random walk which incre-
ment measure is µ (see Theorem 2.1) and (ii) studying this random walk with the help of
results from diophantine approximation theory, see Theorem 3.3. Independently, we also
consider Gaussian random waves (Theorem 1.8) and short range fields (Proposition 2.6)
to illustrate the wide scope of this method.

More refined results from diophantine approximation theory actually yield the quan-
tity of tuples (ωi) yielding a given asymptotics variance, and we build at Section 4.3
mixtures of such Gaussian models with a random support Σ giving a prescribed asymp-
totic variance.

The rest of the introduction is mostly illustrative, it presents some aspects and
corollaries of the important theoretical results of this paper (Theorems 2.1 and 3.3).
Their proofs necessarily call to subsequent sections. None of the rest of the current
section is necessary to read or understand the rest of the paper.

1.2 Background and motivation

Properties of excursions and level sets of continuous random Gaussian functions have
been studied under many different instances. The zero set of a one-dimensional Gaussian
stationary process is the subject of an almost century long line of research, starting
with the seminal works of Kac & Rice [20], or Cramér & Leadbetter [11], and followed
by many other authors mainly interested by second order behaviour, see the major
contributions by Cuzick, Slud, Kratz & Léon, [12, 34, 22]. In higher dimensions, zeros of
Gaussian entire functions [17, 29] and nodal sets of high energy Gaussian harmonics
on a compact manifold [23, 40, 25] (and their Euclidean counterpart the Random Wave
Model [28]) have attracted a lot of attention from both physicists and mathematicians.
Random trigonometric Gaussian polynomials, i.e. independent Gaussian coefficients
multiplied by trigonometric monomials based on a fundamental frequency, have also
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been studied in the asymptotics of the large degree, see for instance [41] and references
therein. We propose here a crucial modification of the spectral measure support: instead
of taking frequencies in a proportional relation, we choose finitely many frequencies
which are incommensurable; this specificity allows for instance to reach all possible
behaviours for the variance asymptotics (see Theorem 4.3).

A different approach to our results is through the lens of hyperuniform models,
defined at section 1.4. In the last decades, physicists have put in evidence states of
matter intermediate between crystals and liquids, where the medium exhibits apparent
disorder at the local scale, but fluctuations are suppressed at large scales. This denotes
in some sense a long-range compensation of the medium behaviour, and is considered by
physicists a new state of matter, see the works by S. Torquato and his co-authors [38, 39]
that introduce the topic and expose the main tools and discoveries. Even though the
focus was primarily on atomic measures, this concept has been then generalised to other
random measures, in particular bi-phased random media [37, 36]. Such heterogeneous
materials abound in nature and synthetic situations. Examples include composite and
porous media, metamaterials, biological media (e.g., plant and animal tissue), foams,
polymer blends, suspensions, granular media, cellular solids, colloids.

The Gaussian realm provides models for many types of phenomena, and the present
work yields Gaussian hyperuniform random sets, i.e. which variance on a large window
is asymptotically negligible with respect to the window volume (see Section 1.4). The
model we present here shares some similarities with perturbed lattices, in the sense that
the long range correlations are very strong, but its disorder state is also one step above
as one cannot write it as the (perturbed) repetition of a given pattern. It shares with
quasi-crystals the property of almost periodicity, defined below, and exhibits a spectrum
reminiscent of quasi-crystals, see Fig 1. Any asymptotic variance can be achieved,
yielding in particular hyperuniform models. According to the typology established in
[38, 6.1.2], the model is type-I hyperuniform for almost all choice of parameters; but
uncountably many choices of the parameters will yield type-II or actually any type of
hyperuniformity. We also give randomised versions of the model not involving diophantine
parameters which exhibit different types of hyperuniformity.

As it turns out, a non-isotropic model is necessary to obtain a hyperuniform behaviour
(Proposition 1.6). We use the general variance formula of Theorem 2.1 to study Gaussian
random waves in any dimension and prove a variance cancellation phenomenon.

1.3 Diophantine random walk on the torus

We derive in Section 3 results about diophantine random walks on Rd, which ulti-
mately lead to variance estimates for Gaussian diophantine excursions. The current
section discusses the connections with the existing literature for the diophantine random
walks on the torus, and is completely disconnected from the results about Gaussian
fields discussed above.

Let (e1, . . . , ed) be a basis ofRd, m > 1,µ be a symmetric measure onRd parametrised
by its support ω = (ω[k])16k6d ∈ (Rm)d via

µ =
1

d(m+ 1)

d∑
k=1

m∑
i=0

δ̄ω[k],iek , (1.4)

with ω[k],0 = 1 by convention, and let Un be the corresponding random walk on the torus

Un = {
n∑
i=1

Xi}
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where the Xi are independent and identically distributed with law µ and {x} = ({x[k]}) ∈
[0, 1[d is the fractional part in Rd. The index 1 6 k 6 d relating to different dimensions
in Rd is written between brackets [k], to avoid confusion with the subscript i, usually
running over different frequencies on each dimension.

It is clear that if ω’s components are well approximable by rationals, the same goes
for the increments of the random walk, hence it is likely to come back closer to 0 faster.
The study of random walks on a group started on finite arithmetic groups with the
works of Diaconis, Saloff-Coste, Rosenthal, Porod, (see references in [35]) and results for
such irrational random walks in the continuous settings were then achieved by Diaconis
[13], and finally Su [35], who gave the optimal speed of convergence of the law of Un

in an appropriate distance. Then Prescott and Su [32] extended the study in higher
dimensional tori.

The novelty of our approach is to consider estimates as ε→ 0 uniformly in n; we show
in Section 3 that for a given ε, irrelevant of the number of steps n, there is a probability
always smaller than c+ε

m
m+η that the walk on the torus ends up in Bd(0, ε) after n steps,

where η > 0 is such that the ωk, 1 6 k 6 d are q−(m+η)-(BA). The lower bounds obtained
in the same section show that these upper bounds are optimal.

Remark 1.2. This value is actually very sensitive to the probability of vanishing coordi-
nates Un,[k] of Un, in the sense that it decays slowly in ε because of the fast recurrence
to 0 on the axes: for p < d

P(Un,[1] = Un,[2] = · · · = Un,[p] = 0) ∼ n−p/2.

A heuristic argument is that the symmetric random walk on Z has a probability ∼ n−1/2

to come back to 0 in 2n steps, and the components are almost independent up to the
parity relation n ≡

∑d
k=1 Un,[k] (see Lemma 5.7).

In the light of the remark above, only non-vanishing coordinates matter in the speed
of decay as ε → 0. Denote by JdK the set {1, 2, . . . , d}. Define for K ⊂ JdK,K 6= ∅, the
projected ball BK(ε) := Bd(0, ε) ∩HK where

HK := {y = (y[k])16k6d ∈ Rd : y[k] 6= 0, k ∈ K and y[k] = 0, k /∈ K}.

Then we have according to Theorem 3.3-(i):

Corollary 1.3. For some c <∞, uniformly on n, ε,

P(Un ∈ BK(ε)) 6 cn−
(d−|K|)m

2 ε
|K|m
m+η

Regarding the dependance in ε, the random walk hence comes back to 0 faster on
subspaces with fewer coordinates equal to 0 (the dependence as n increases is opposite).
The most interesting part of the convergence, i.e. where the magnitude is not dominated
by coordinates equal to 0, seems to happen on the domain HJdK of points with non-
vanishing coordinates. More precise results are derived in (3.3), in Section 3, dedicated
to irrational random walks; the results are derived in particular in terms of the optimal
function ψ such that ω’s components are ψ-(BA).

Lower bounds are more unstable, hence we consider the smoothed estimate, for
β > 2,

Iβ(ε) =
∑
n>nε

n−β/2P(0 < ‖Un‖ < ε) (1.5)

where nε > 1 grows sufficiently slowly (see Theorem 3.3-(ii)). To have matching upper
and lower bounds, we assume that for some fixed ω ∈ Rm, ω[k] = ω for 1 6 k 6 d, and
that ω is ψ-WA and ψ-BA. We have the following corollary of Theorem 3.3-(i),(ii):
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Corollary 1.4. There are 0 < c− < c+ <∞ such that

c−ε
β−2+dm
m+η

i.o.
6 Iβ(ε) 6 c+ε

β−2+dm
m+η

as ε→ 0.

In Section 3, similar results (but with different magnitudes in n) are actually derived
first for the random walk Un =

∑n
i=1Xi itself, and projected on the torus to yield the

aforementioned results.

1.4 Hyperuniform models

We have just observed, for some values of the parameter ω, the suppression of the
variance at large scales, also called hyperuniformity phenomenon. A more general math-
ematical indicator of hyperuniformity is through the structure factor, or more generally
the behaviour around zero of the Fourier transform of the associated random measure.
Following [31], we use the integrated structure factor to characterize hyperuniformity.

Definition 1.5. Let E be a random subset of Rd. The structure factor of E, when it
exists, is the measure S on Rd defined through test functions ϕ smooth with compact
support via ∫

Rd
ϕ(t)Cov(1{0∈E},1{t∈E})dt =

∫
Rd
ϕ̂(x)S(dx)

where ϕ̂ is the classical Fourier transform of ϕ. Then say that E is hyperuniform if
S(Bd(0, ε)) 6 c+ε

α+d, ε > 0 for some α > 0, and strongly hyperuniform if furthermore
α > 1.

The precise definition of a random set is not precised here as many existing theories
can fit in the previous definition (see for instance [27]). The hyperuniformity of E
corresponds under some hypotheses to the suppression of the variance at large scales,
i.e.

lim
T→∞

L d(E ∩ TW )

T d
→ 0

for sufficiently regular shapes W ⊂ Rd, and the strong hyperuniformity corresponds to a
variance of minimal magnitude, proportional to the window boundary measure, i.e.

sup
T

L d(E ∩ TW )

T d−1
<∞,

see for instance [31], or the survey in preparation [10]. Our first result is that natural
models of Gaussian fields will not yield hyperuniform excursions.

Proposition 1.6. Let X be some centred stationary Gaussian field on Rd with spectral
measure µ. Assume that for some odd integer n > 1, ε > 0, x ∈ Rd, c > 0, µn(Bd(x, ε)) >
cεd. Then for some c− > 0, T sufficiently large,

Vµ(T ) > c−T
d.

This is for instance the case if X is isotropic, i.e. if X’s law is invariant under rotations,
or equivalently if µ is invariant under rotations.

The proof requires tools and notation from Section 2 and is at Section 5.2.3. As
illustrated by the proof, to obtain sublinear variance, the spectral measure’s support
must have essentially dimension smaller than 1, hence we consider finite atomic support.
Let µ be of the form (1.4) with ω[k] ∈ Rm that is q−(m+η)−(BA) for some m > 1, η > 0, for
1 6 k 6 d, and Xω the Gaussian field which spectral measure is µ.
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Proposition 1.7. Let α = 1+d(1−η)
m+η . Then E = {Xω > 0} admits a structure factor S

satisfying

S(Bd(0, ε)) 6 c+ε
d+α, ε→ 0.

Hence if η < 1 + 1
d , E is hyperuniform, and if η 6 1− m

d+1 , E is strongly hyperuniform.

The proof is at Section 5.2.4. If the ω[k] are ψ-(SWA) (Simultaneously Well Approx-
imable, see Section 3), which is the case if for instance the ω[k] are all equal to a ψ-WA
tuple ω ∈ Rm, the right hand side is optimal, see (3.7). We give an approximate represen-
tation in Figure 1 in a special case. This kind of spectrum is reminiscent of Bragg peaks

Figure 1: Structure factor for d = 2,m = 1, ω[1] = ω[2] =
√

2, i.e. µ = δ̄e1 + δ̄√2e1
+ δ̄e2 +

δ̄√2e2

in quasi-crystals [37], and more generally of almost periodic fields, for which we give
a definition here: a field X : Rd → R is almost periodic if for any sequence of vectors
tn →∞, there is a subsequence tn′ such that ‖X −X(tn′ + ·)‖∞ → 0, see for instance
the monograph [9]. Covariance functions and random Gaussian fields considered in
this paper are ‖ · ‖∞-limits of trigonometric polynomials, and as such they are almost
periodic. On the other hand, their excursions, seen as {0, 1}-valued functions, are not
almost periodic in this sense, mainly because of the discontinuities at the set boundary.
On the other hand, they are likely almost periodic for weaker norms, and could hence be
seen as almost periodic sets.

1.5 Variance cancellation for Gaussian random waves

Let us give another (and unrelated) application of Theorem 2.1 in the context of
ergodic isotropic fields. This example is mainly derived to illustrate the sensibility of
Theorem 2.1, and could likely be deduced from (more precise) results on the sphere by
Rossi [33].

Let d > 2,Sd−1 = {t ∈ Rd : |t| = 1} the d-dimensional unit sphere and µd the Haar
distribution on the sphere, i.e. the unique probability measure on Sd−1 invariant under
rotations. Let Xd(t) be a centred Gaussian random field with spectral measure µd and
reduced covariance

Cd(t) =

∫
Sd−1

exp(−ıt · x)µd(dx) = cd
B d

2−1(‖t‖)

‖t‖ d2−1
, t ∈ Rd (1.6)
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for some cd > 0, see [16, (21)], where B d
2−1 is the Bessel function of the first kind (see

also Example 2.4).

The field Xd, called Berry’s random wave model, is of central importance as it is the
unique stationary isotropic field satisfying ∆Xd = −Xd a.s. [30]. It can be seen as a
local approximation of random eigenfunctions of the Laplacian on compact d-dimensional
smooth manifolds, of high interest in the physics literature. Since nodal statistics are
local quantities, it makes sense to expect analogies between the behaviours of random
waves on different smooth manifolds as T →∞. Such random Gaussian harmonics have
been recently heavily studied in dimension 2 in the mathematics literature, especially
on the sphere or the torus [23, 26, 15, 25], and the Euclidean version Xd has also been
investigated, through its percolation properties [28] or the statistical properties of its
nodal lines [30, 15]. An interesting feature of Gaussian random harmonics is the variance
cancellation phenomenon, i.e. the very small asymptotic fluctuations of some statistics
of the excursion set at the level u = 0 in the high energy limit, compared to other levels
u 6= 0. First conjectured by Berry [4] for the length of the excursion boundary on the
torus (nodal lines), it has then been observed and deeply analysed in several other
instances [23, 25].

We prove here that a variance cancellation at the level u = 0 also occurs for the nodal
excursions of the Euclidean Gaussian random waves in any dimension. More specifically,
while the excursion volume is overfluctuating for levels u 6= 0 (i.e. the volume of large
windows is negligible with respect to the variance of the excursions of Xd restricted to
this window), the fluctuations are linear for u = 0, as would be the case for fluctuations
of short range random fields such as the Bargmann-Fock field (see Example 2.5). For
T > 0, the rescaled version Xd,T (t) = Xd(T t) satisfies ∆Xd,T = −T 2Xd,T and hence can
be compared to random harmonics with same wavelength on compact manifolds.

Theorem 1.8. Denote by V u(T ) the variance of L d(Bd(0, 1) ∩ {Xd,T > u}). For u 6= 0,
there is cu > 0 such that

cuT
1−d 6 V u(T ), T > 0

and there is 0 < c− 6 c+ <∞ such that

c−T
−d 6 V 0(T ) 6 c+T

−d, T > 0.

The proof is given in Section 5.2.2. This result can be compared with similar results on
the sphere, see the work of Marinucci and Wigman in dimension 2 [26], and then of Rossi
[33] in dimension d > 2, who study the excursion volume (also called defect volume after
centering) of spherical Gaussian harmonics X satisfying ∆S2X = −`(`+ d− 1)X, ` ∈ N,
where ∆S2 is the Laplace-Beltrami operator on the sphere. They also obtain a variance of
magnitude `1−d at levels u 6= 0 and `−d at the level u = 0, echoing experimental results
from Blum, Gnutzmann and Smilansky [6]. Hence the present results are consistent with
those obtained on the sphere.

Remark 1.9. Various cancellation phenomena have been explained by the cancellation
of the second order Wiener chaos of the corresponding functional, see the seminal
work of Marinucci et al. [25]. The proof of the previous result is based on spectral
analysis with the spectral measure µ of the Gaussian field, emphasizing the fact that
the support dimension for low order powers µ2,µ3 of the spectral measure is crucial in
understanding the variance behaviour, it hence sheds a different light on this variance
cancellation phenomenon.

EJP 27 (2022), paper 126.
Page 9/33

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP854
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Diophantine Gaussian excursions

2 General variance estimates

Let X be some real centred stationary Gaussian field on Rd, denote its spectral
measure by µ and its reduced covariance function by C (see Section 1.1). We study here
the statistic

Mγ
u =

∫
Rd

1{X(t)>u}γ(t)dt

where u ∈ R and γ is some measurable window function, bounded with compact support
with non-empty interior. Define

γ̂(x) =

∫
Rd
e−it·xγ(t)dt,x ∈ Rd,

and γT (t) = γ(T−1t), T > 0. The variance is

V γ,uµ (T ) := Var(MγT
u )

and we use the shortcut notation V γµ := V γ,0µ . The most prominent example is the unit
sphere indicator γd := 1{Bd(0,1)}(·), and in this case γd is also implicit in the notation

V γ
d,u

µ = V uµ , V
0
µ = Vµ.

Introduce the notation

A = ΘB

for two quantities A,B to mean that c−A 6 B 6 c+B for some 0 < c− 6 c+ <∞, on their
domains of definition. Without loss of generality, we use the convention

C(0) = µ(Rd) = 1

as it allows to adopt the probability formalism and eases certain arguments. Denote
by Un the random walk which increment has law µ (i.e. Un’s law is µn). Define the
function

K(ε) =
∑

n∈N odd

(
n
2n

)
4n(2n+ 1)

P(‖Un‖ 6 ε).

Say that µ is Z-free if P(U2n+1 = 0) = 0 for n ∈ N. For r > 0, denote by c+r , c
−
r

respectively the supremum and infimum of ‖γ̂(x)‖2 for x ∈ Bd(0, 4r). Notice that
c−r , c

+
r → |γ̂(0)|2 > 0 as r → 0.

Theorem 2.1. Assume µ is Z-free and let r > 0.

(i) For T > 0

c−r T
2dK(rT−1) 6 V γµ (T ). (2.1)

(ii) If in addition for some c1 <∞, |γ̂(x)| 6 c1‖x‖−
d+1
2 for ‖x‖ > 4r, then

V γµ (T ) 6 c+r T
2dK(rT−1) + c1T

d−1

∫ (T/r)d+1

0

K(y−
1
d+1 )dy. (2.2)

In particular if γ = γd and K(ε) = Θεα as ε→ 0 for some α > 0, then α 6 d+ 1 and

Vµ(T ) = ΘT 2d−α, T > 0.
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(iii) For u 6= 0, T > 0,

V γ,uµ (T ) > 22dc−r α2,uT
2dP(‖U2‖ < rT−1).

In particular if µ has an atom at x0, letting r → 0 yields a quadratic variance

0 < 22d|γ̂(0)|2α2,uµ({x0})2T 2d 6 V γ,uµ (T ) 6 T 2d.

The proof, deferred to Section 5.2.1, is based on an exact local formula for the
variance of Gaussian excursions volume. This expression is then decomposed in two
terms through a truncation, the first one is proportional to T 2dK(rT−1). The second
term is upper bounded in the following way,∫ (T/r)d+1

0

K(λ(y))dy 6 c

∫ (T/r)d+1

0

K(cy−
1
d+1 )dy

where λ is a pseudo-inverse of γ̂2, giving the second term on the right hand side of (2.2).
Since γ̂ usually experiences oscillations at∞ (see for instance (2.3)), obtaining a simple
asymptotic equivalent of the left hand term requires more involved computations, but
doing so would provide an accurate lower bound on the variance.

The second term has the same magnitude than the first term in (at least) three very
different settings: (a) when µ has finitely many incommensurate atoms (Theorem 3.3
and Proposition 5.11, (b) when µ is the Haar measure on the unit sphere (Theorem 1.8),
and (c) when µ is the Fourier transform of an integrable function (Example 2.5); see also
the end of Section 5.2.1 for a general argument.

Remark 2.2. The fact that if K(ε) = Θεα as ε→ 0 for some α > 0 then α 6 d+ 1 (point
(ii)), is a non-trivial fact about random walks on Rd without any assumption on the
increment measure, we don’t know if this fact is known, or useful, in the study of random
walks.

Remark 2.3. Theorem 2.1 requires almost no hypothesis on the model, except that the
random walk does not have a positive probability to come back to 0 in an odd number of
steps (µ is Z-free). This is also valid for the result about random walks in the remark
above. To have an upper bound in (ii), we still need to ensure that the observation
window is smooth enough, through a decay hypothesis on its Fourier transform.

Example 2.4. For the unit sphere indicator, we have the classical formula ([16, Chap.
1.5])

γ̂d(x) = κd‖x‖−d/2Bd/2(‖x‖)

where κd = L d(Bd(0, 1)) and Ba is the Bessel function of the first kind with parameter a

Ba(r) =

∞∑
m=0

(−1)m

m!Γ(m+ a+ 1)

(r
2

)2m+a

, r > 0.

In particular, γ̂d(x) ∼ κdΓ(d/2 + 1)−1 > 0 in 0 and

γ̂d(x) ∼ κd(2/π)1/2‖x‖−
d+1
2 cos(‖x‖+ ∆d) (2.3)

as x→∞, for some ∆d ∈ R. It is known [14] that the first zero of Ba, a > 1/2 is larger
than the first zero of B1/2, which is π, hence we can take r = 1

2 in Theorem 2.1.

Example 2.5. The most studied Gaussian fields are probably those with an integrable
reduced covariance function ∫

Rd
C(t)dt <∞,
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such as the Bargmann-Fock field, where C(t) = e−t
2

. Let us emphasise that the following
result is far from new, but, along with Theorems 4.3 and 1.8, it illustrates the variety of
situations where Theorem 2.1 is accurate.

Proposition 2.6. Let µ be a spectral measure with integrable covariance. We have

Vµ(T ) = ΘT d, T > 0.

Proof. The integrability of C yields that µ admits a continuous bounded density function
with respect to L d, denoted by Ĉ, satisfying ‖Ĉ‖L1 = 1. Hence, denoting by Ĉ∗n the
n-fold self convolution of Ĉ,

P(‖Un‖ 6 ε) =

∫
1{Bd(0,ε)}(z)µn(dz) 6 L d(Bd(0, ε))‖Ĉ∗n‖∞

and classical properties of the convolution product yield that

‖Ĉ∗n‖∞ 6 ‖Ĉ‖∞‖Ĉ‖n−1
L1 = ‖Ĉ‖∞,

hence

K(ε) 6 ‖Ĉ‖∞

(∑
n

(
n
2n

)
4n(2n+ 1)

)
εd.

Theorem 2.1-(ii) then gives the upper bound.
For the lower bound, recall that Ĉ is continuous and semi definite positive, and let

x ∈ Rd, r > 0 be such that Ĉ > 0 on Bd(x, r). It is then easy to show by induction that
Ĉ∗n > 0 on Bd(x, nr), hence for n > r−1(|x|+ 1) and ε 6 1, Bd(0, ε) ⊂ Bd(x, nr) and

P(‖Un‖ 6 ε) =

∫
Bd(0,ε)

C∗n(t)dt > c′εd

for some c′ > 0, Theorem 2.1-(i) concludes the proof.

3 Irrational random walks

We consider a random walk in Rd which increment measure µ is symmetric with
finite support. For technical reasons, it is simpler to assume that µ has atoms along some
d linearly independent unit vectors e1, . . . , ed, with the same number of atoms in each
direction: for some m > 1, let ω = (ω[k],i)1 6 k 6 d

1 6 i 6 m
∈ (Rm)d and µ be of the form (1.4)

with ω[k],0 = 1 by convention. We are interested in the associated random walk

Un :=

n∑
k=1

Xk

where the Xk are independent and identically distributed with law µ, hence centred.
The study of Un is related to the random walk on the torus

Un = Un − [Un] ∈ [0, 1[d,

which has been intensively studied, the consequences of the current results to the
random walk on the torus are discussed at Section 1.3. To avoid degenerate behaviour,
we assume that µ is Z-free, i.e. there is no odd q ∈ ZM \ {0} such that

∑M
i=1 qiωi = 0,

where M = (m + 1)d. In general we further assume that the ω[k] are ψ-BA for some
non-vanishing function ψ, which automatically implies that µ is Z-free.

According to the Central Limit Theorem, the law of the renormalised sum n−1/2Un

weakly converges to a Gaussian measure (see also Lemma 5.7 for precise estimates),
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and the law µn of Un is known to converge to Lebesgue measure on [0, 1[d [35]. But if
we zoom in further on this convergence around 0, it becomes very erratic. We estimate
the following quantities below:

pxn(ε) =P(0 < ‖Un − x‖ 6 ε), ε > 0,x ∈ Zd,

p̄n(ε) =
∑
x∈Zd

pxn(ε) = P(0 < ‖Un‖ 6 ε).

Remark 3.1. In general, if the sum n +
∑d
k=1 x[k] is even, P(Un = x) is in n−

M
2 and

dominates pxn(ε) for ε→ 0, which is why it is estimated separately. For odd values, since
µ is Z-free, P(Un = x) = 0, hence pxn(ε) is simply P(‖Un − x‖ 6 ε). A fine analysis of the
recurrence around 0 yields that the rate strongly depends on the number of coordinates
equal to 0, expressed through

pK,xn (ε) = P(Un − x ∈ BK(0, ε)), p̄Kn (ε) = P(Un ∈ BK(0, ε)).

We show below for instance that if along each direction k of Rd, µ’s support is made
up of a vector (ω[k],i)16i6m which is q−(m+η)-(BA) for some m > 1, η > 0, then for some
c <∞,

p̄Kn (ε) 6 cn−m
d−|K|

2 ε
m|K|
m+η , K ⊂ JdK, n ∈ N, 0 < ε <

1

2
,

so that it is really the number of vanishing coordinates that determines the recurrence
probabilities.

To avoid the technicality mentioned in the previous remark and obtain lower bounds,
we consider the smoothed estimates for β > 0, with p0n = p

JdK,0
n

Jβ(ε) :=
∑

n>nε,n∈N,n odd

n−β/2p0n(ε)

where nε does not grow too fast as ε→ 0 and serves the purpose to show that it is the
series tail that actually matters.

Remark 3.2. Considering this statistic also allows to suppress the erratic behaviour in n,
and we can prove that Jβ(ε) and Iβ(ε) (defined in the introduction at (1.5)) both behave
in ε

m
m+η , and find a matching lower bound. The summation over odd n in Jβ(ε) is adapted

to estimating the volume variance of Gaussian nodal excursions (see Remark 3.5).

If the atoms are different in different directions, we need to generalise the concept
of ψ-WA: say that ω = (ω[k])16k6d is ψ-SWA* if for some c > 0, for infinitely many

qj ∈ Zm, j > 1, there exist pj[k] ∈ Z, 1 6 k 6 d such that

|pj[k] − ω[k] · qj | < cψ(|qj |), 1 6 k 6 d.

Say that ω is ψ-SWA if furthermore
∑d
k=1(pj[k] +

∑m
i=1 q

j
i ) is odd. The need to distinguish

between ψ-SWA and ψ-SWA* is discussed in Remark 3.5.

Theorem 3.3. Let ψ be some mapping N∗ → (0, 1] converging to 0, and let ψ−1 be its
pseudo-inverse defined by

ψ−1(ε) = min{q ∈ N∗ : ψ(q) 6 ε}, ε > 0. (3.1)

Let β > 0. There is 0 < c <∞ depending on d,m,ψ, β such that the following holds:
(i) Assume each ω[k] is ψ-BA. We have for x ∈ Zd,K ⊂ JdK, 0 < ε < 1

2 , n ∈ N
∗

pK,xn (ε) 6cn−d/2n−
(d−|K|)m

2 ψ−1(ε)−m|K| exp(−cn−1‖x‖2) (3.2)
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p̄Kn (ε) 6cn
−(d−|K|)m

2 ψ−1(ε)−m|K| (3.3)

Iβ(ε) 6cψ−1(ε)−β−dm+2 (3.4)

Jβ(ε) 6cψ−1(ε)−β−d(m+1)+2 (3.5)

(ii) Assume ω is ψ-SWA*. Then if nε 6 ψ−1(ε)2, ε > 0,

ψ−1(ε)−β−dm+2
i.o.
6 cIβ(ε), ε→ 0. (3.6)

(iii) Assume ω is ψ-SWA. Then if nε 6 ψ−1(ε)2, ε > 0,

ψ−1(ε)−β−d(m+1)+2
i.o.
6 cJβ(ε), ε→ 0. (3.7)

This result is useful for studying Gaussian excursions, but as explained at Section 1.3,
it independently yields new estimates related to random walks on the torus.

Example 3.4. An example intensively used in this article is β = 3, ψ(q) = cq−(m+η), η >
0, ε = T−1 for some large T , for which

ψ−1(T−1)−β−d(m+1)+2 = c′T−
1+d(m+1)
m+η , ε > 0. (3.8)

Remark 3.5. The assumption that ω is ψ-SWA is stronger than ψ-SWA*, and also less
natural, which might cause confusions. The reason why ω has to be ψ-SWA instead of ψ-
SWA* at point (iii) is because summands are odd in the definition of Jβ . The assumption
ψ-SWA* and function Iβ are introduced only because they are more natural in the context
of random walks, but they are useless for giving lower bounds for Gaussian excursions
variances. As supported by Proposition 5.3, this subtlety does not influence final results
about Gaussian excursions, hence one would like a general result from diophantine
approximation that states that ψ-SWA* tuples are also ψ-SWA, but that is most likely not
true.

In the next section, results of the two previous sections are combined to yield
estimates for the volume variance of Gaussian random fields which spectral measure
is made of incommensurate atoms. One can also use the next section to have example
behaviours of irrational random walks.

4 Variance asymptotics for diophantine Gaussian excursions

We consider symmetric spectral measures whose support contains incommensurate
atoms. For ω ∈ (Rm)d, denote by Xω a centered stationary Gaussian random field which
spectral measure is µ, parametrised by ω as in (1.4). The excursion volume variance is
denoted by

Vω(T ) := Var(L d({Xω > 0} ∩Bd(0, T ))).

4.1 Regular asymptotics

We will use the assumptions that ω is ψ-BA and / or ψ-WA (Section 1.1) with functions
ψ of the following form:

Definition 4.1. Say that ψ : N∗ → (0, 1] is absolutely regularly varying (ARV) (or τ -ARV)
if it is of the form ψ(q) = q−τL(q), q ∈ N∗, where τ > 0 and L is absolutely slowly varying
(ASV), i.e. it does not vanish and as q →∞,

L(q + 1)

L(q)
= 1 + o(q−1). (4.1)
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In the classical Karamata Theory [5, (1.2.1)], a function f : [a,∞[ is slowly varying
(SV) if f(qx)/f(x) converges to 1 as x → ∞ for all q ∈ R. We extend naturally this
definition to a function L : N→ R by

L([aq])

L(q)
−−−→
q→∞

1, for all a > 0, (4.2)

where [aq] is the integer part of aq. The terminology ASV is motivated by the following
result, proved at Section 5.5, studying the relation with SV.

Proposition 4.2. If L is ASV, then L is SV. The converse is true if L is non-decreasing or
non-increasing, otherwise it might not hold.

We introduce the pseudo-inverse ψ−1 : (0, 1] 7→ N by (3.1). We can show that if ψ
is ARV, for every finite r > 0 there are finite ci > 0 such that c1ψ(q) 6 ψ(rq) 6 c2ψ(q)

and c3ψ−1(ε) 6 ψ−1(rε) 6 c4ψ
−1(ε) on their domains of definition. Remark that qψ(q) is

strictly non-increasing for sufficiently large q if τ > 1.

Our most precise and general result concerns the case where the frequencies ω[k] of
µ are the same in all d directions, i.e. ω[k],i = ω[1],i, it yields stationary random sets in
Rd with any reasonable asymptotic prescribed variance behaviour.

Theorem 4.3. Let τ > 0, ψ τ -(ARV) and ω ∈ Rm that is ψ-WA and ψ-BA, and ω :=

(ω, ω, . . . , ω) ∈ (Rm)d. Then with τ∗ = 1+d(m+1)
1+d , as T →∞,

c−T
2d

ψ−1(T−1)1+d(m+1)

i.o.
6 Vω(T ) 6

c+T
2d

ψ−1(T−1)1+d(m+1)
= o(T 2d) if τ > τ∗

c−T
d−1

i.o.
6 Vω(T ) 6c+T

d−1 ln(T ) if ψ(q) = q−τ
∗

c−
T d−1

ln(T )α
6 Vω(T ) 6c+T

d−1 if ψ(q) > q−τ
∗

ln(q)
1
d

for some 0 < c− 6 c+ <∞ depending on d,m,ψ, and α = 1+d(m+1)
dτ∗ . If m = 1 and τ > 1,

there are uncountably many ω ∈ R satisfying the assumption.

The proof is in Section 5.4. For m > 2, most studies concern power functions
ψ(q) = q−τ and are discussed in Proposition 4.6, but can likely be extended to more
general functions ψ.

Remark 4.4. The presence of the term T d−1 on the right hand side, proportional to the
surface measure of the observation window, is natural as random stationary measures
applied to a large window are usually not expected to have a variance behaviour lower
than the boundary measure. No rigorous general result in this direction is known by the
author, Beck [3] gives a formal proof in the case of point processes. See also [38], which
classifies hyperuniform behaviours in three types: type I have asymptotic variance in
T d−1, type II in T d−1 ln(T ), and type III gathers all other sublinear behaviours, which
actually correspond to the three cases above. Intermediate behaviours between T d−1

and T d−1 ln(T ) can likely be obtained by the same method.

It is likely that the upper bound in T d−1 ln(T ) is sharp if ψ(q) = q−τ
∗
, proving it rigor-

ously would require a lower bound for v(2)
T in the proof of Theorem 2.1 at Section 5.2.1,

which raises some technical difficulties because of the cosine term.

Remark 4.5. This type of behaviour is really specific of nodal excursions. The volume
variance for excursions {X > u} ∩ Bd(0, T ) always behaves in T 2d if u 6= 0, see Theo-
rem 2.1-(iii). The phenomenon of variance cancellation at u = 0 is heavily documented
for Gaussian random waves (see Section 1.5).
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4.2 Power functions

Prominent examples are provided by power functions, for which we introduce a
special notation: say that ω ∈ Rm is (τ)-BA (resp. (τ)-WA) if it is cq−τ -BA (resp. cq−τ -WA)
for some finite c > 0. These considerations are further developed and commented in
the Appendix 5.1, let us simply mention that for η > 0, Lm-a.a. ω ∈ Rm is (m + η)-BA
and (m)-WA. For any η > 0, there are uncountably many ω ∈ Rm that are (m + η)-BA
and (m+ η)-WA. There are also uncountably many Liouville numbers, i.e. ω ∈ R that are
(τ)-WA for any τ > 0.

The following corollary examines different regimes, depending on the relation be-
tween τ, d and m, it is a consequence of Theorem 4.3 for ψ(q) = q−τ .

Proposition 4.6. For ω ∈ Rm, τ > 0, let ω = (ω, . . . , ω) ∈ (Rm)d, τ∗ = 1+d(m+1)
1+d .

(i) If d > m, for τ ∈ (m, τ∗), Lm-a.a. ω ∈ Rm is (τ)-BA, and for some c+ <∞

Vω(T ) 6 c+T
d−1, T > 0.

(ii) If d < m, since for Lm-a.a. ω ∈ Rm, ω is (m)-WA and (m+ η)-BA for η > 0, we have

c−T
d− 1+d

m

i.o.
6 Vω(T ) 6 c+T

d− 1+d
m+η

for some 0 < c−, c+ <∞.

(iii) Let m = 1. For d−1 6 β < 2d, the set of ω ∈ R such that for some 0 < c− 6 c+ <∞

c−T
β

i.o.
6 Vω(T ) 6 c+T

β , T > 1

is uncountable (there is τ > 1 such that β = 2d − 1+2d
τ , and uncountably many ω

are (τ)-WA and (τ)-BA).

(iv) Let m = 1. For ω a Liouville number, for every ε > 0, for some c− > 0,

c−T
2d−ε i.o.

6 Vω(T ).

(v) In all cases, Vω(T ) = o(T 2d).

All constants c−, c+ involved only depend on d,m, τ .

Proof. For all the proof, recall that K = ΘJ3.

(i) Let ω that is τ -BA for some τ < τ∗. According to Proposition 5.11,

max

{
T 2dJ3(T−1), T d−1

∫ Td+1

0

J3(y−
1
d+1 )dy

}
6 cT d−1.

According to Theorem 2.1-(ii), it yields the result.

(ii) Let ω that is (m)-WA and (m+ η)-BA. In particular ω is q−m-SWA by Proposition 5.4.
Let ψ(q) = q−m. According to Theorem 2.1-(i),

Vω(T ) > cT 2dK(rT−1)

and according to Theorem 3.3-(iii) (with nε = 1),

cT 2dK(rT−1) = ΘT 2dJ3(T−1) > cT 2d− 1+d(m+1)
m = cT d−

1+d
m .

For the upper bound, reason like at (i) with ψ(m) = q−(m+η). The case τ = m+ η >

τ∗ applies in Proposition 5.11.
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(iii) This is Theorem 4.3 in the case τ > τ∗.

(iv) Since ω is τ -WA with ε = 1+2d
τ , ω is q−τ -SWA. As in (ii), apply Theorem 2.1-(i) and

Theorem 3.3-(iii) to have the result.

(v) This is a consequence of Theorem 2.1-(ii) and the fact that K is uniformly bounded
and converges to 0 as ε→ 0.

Remark 4.7. An interesting observation in dimension d = 1 is that in (i), the variance of
the excursion indicator is bounded, while its derivative in the distributional sense, i.e.
the number of zeros, has maximal quadratic variance, in T 2 (see [24, Theorem 2-(iii)]).

If the ω[k] differ along the directions 1 6 k 6 d, it is the worst approximable ω[k] that
drives the upper bound, or in other terms the largest function ψ such that each ω[k] is
ψ-BA.

Corollary 4.8. Let ψ : N∗ → (0, 1] ARV. Assume ω ∈ (Rm)d is such that each ω[k] is ψ-BA,
1 6 k 6 d. Then the same upper bounds as in Theorem 4.3 hold. In particular

(i) if d > m, for Lmd-a.a. ω ∈ (Rm)d, Vω(T ) 6 c+T
d−1 for some c+ <∞.

(ii) For every ω ∈ (Rm)d, Vω(T ) = o(T 2d)

Proof of Corollary 4.8. (i) This is essentially the same proof as Proposition 4.6-(i), one
simply has to notice that since for any τ ∈ (m, τ∗), Lm-a.a. ω is (τ)-WA, for any
τ ∈ (m, τ∗), for Lmd-a.a. ω = (w[k])16k6d, each ω[k] is (τ)-BA, and Proposition 5.11
and Theorem 2.1-(ii) can be applied in the same way.

(ii) Same proof as Proposition 4.6-(v).

The lower bound really requires simultaneous approximability of the frequencies.
Theorem 3.3-(iii) and Theorem 2.1-(i) yield:

Corollary 4.9. Assume that for some function ψ : N∗ → (0, 1] converging to 0, ω is
ψ-SWA. Then for some c− > 0

c−T
2dψ−1(T−1)−1−d(m+1)

i.o.
6 Vω(T )

where ψ−1 denotes the pseudo-inverse of ψ (see (3.1)).

Thanks to Groshev’s theorem (see the Appendix 5.1), for η > 0, Lmd-a.a. ω ∈ (Rm)d

is |q|−m/d-SWA but not |q|−m/d−η-SWA.

4.3 A randomised model

We build randomised models that exploit the metric results of diophantine approx-
imation to yield hyperuniform models that are more stable, i.e. not subject to subtle
diophantine properties of the parameters.

Proposition 4.10. Let Ω be a real random variable which law is continuous with respect
to Lebesgue measure, and let aik, i > 0, k > 1 be independent and identically distributed
standard Gaussian variables. Define for t = (t[k]) ∈ Rd,

X(t) =
1

2d

d∑
k=1

(a0
k cos(t[k]) + a1

k sin(t[k]) + a2
k cos(Ωt[k]) + a3

k sin(Ωtk)),

MT =L d({X > 0} ∩Bd(0, T ))

and V (T ) = Var(MT ). Then for some c+ <∞,

V (T ) 6 c+T
d−1.
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Proof. Since the Gaussian field is centered, for any fixed ω ∈ R,

E(MT | Ω = ω) = L d(Bd(0, T ))/2

is deterministic. We also know that a.a. ω ∈ R is (2)-BA, and if we condition by Ω = ω, X
is the Gaussian field with reduced covariance 1

2d

∑d
k=1(cos(t[k]) + cos(ωt[k])). Hence the

conditional variance formula and Proposition 4.6 yield

V (T ) =E(Var(MT | Ω)) + Var(E(MT | Ω))

6 c+T
d−1,

we emphasize that c+ depends only on d,m, τ = 2, and not further on ω.

The same arguments with 1 6 m < d yield the following:

Proposition 4.11. Let (Ω0, . . . ,Ωm) a random (m+ 1)-tuple of vectors with continuous
law with respect to L (m+1)d, and

X(t) =
1

d(m+ 1)

d∑
k=1

m∑
i=0

(a2i
k cos(Ωitk) + a2i+1

k sin(Ωitk)).

Then the variance is bounded by c+T d−1 if d > m.

Along similar lines, exploiting Proposition 4.6-(iii) with m > d yields randomised
models which variance is in T β for some d− 1 < β < 2d.

Remark 4.12. Similar models in the context of random walks (Section 3) yield interest-
ing examples of random walks in a random environment.

5 Appendix

5.1 Diophantine approximation

The core of the paper is provided by results from diophantine approximation, we
explain here basic principles and results, as well as the more advanced ones we will
need. The quality of the approximation of a tuple ω ∈ Rm is measured by the numbers

dq(ω) = inf
p∈Z
|p− q · ω|, q ∈ Zm.

Given ψ : N∗ → [0, 1], the definitions of ψ-BA, ψ-WA, ψ-SWA*, ψ-SWA based on this
distance are given in the introduction and we complete this picture with the following
definition: ω ∈ Rm is ψ-WA* if for some cω <∞, for infinitely many p ∈ Z, q ∈ Zm,

dq(ω) 6 cωψ(q).

Proposition 5.3, at the end of this section, yields that most quantitative statements
available in the literature about ψ-WA* tuples also hold for ψ-WA tuples. The most basic,
yet useful result is the Dirichlet principle:

Proposition 5.1. Let m > 1. There is cm < ∞ such that for N ∈ N∗, one can find
q, q′ ∈ BN := (Z ∩ [−N,N ])m distinct such that for ω ∈ Rm,

dq−q′(ω) 6 N−m 6 cm‖q − q′‖−m,

which yields that ω is (m)-WA* and if ω is (m+ η)-BA, then necessarily η > 0.
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Proof. Simply remark that if one divides [0, 1] in M := |BN | − 1 bins of size M−1, out of
the |BN | values dq(ω), q ∈ BN , at least two of them will end up in the same bin, yielding
for some q, q′ ∈ BN distinct

dq−q′(ω) 6 |dq(ω)− dq′(ω)| 6M−1 6 N−m.

The second inequality comes from |q − q′| 6 2
√
mN 6

√
m21−mM1/m.

Another fundamental but more technical result is the Khintchine-Groshev Theorem.
We do not include the proof here, see the latest improvement by Hussain and Yusupova
[18].

Theorem 5.2 (Khintchine-Groshev). Let ψ : N→ R+ tending to 0 such that∑
q∈Zm

ψ(|q|)d <∞.

Then the set of ω ∈ (Rm)d that are ψ-SWA* is (Lm)d-negligible. If on the other hand
the sum diverges then (Lm)d-a.a. ω ∈ (Rm)d is ψ-SWA*, in the case m = d = 1 ψ needs
furthermore to be monotonic.

The theorem yields that (Lm)d-a.a. ω has irrationality index τ(ω) = m/d, where the
irrationality index of some ω ∈ (Rm)d is defined by

τ(ω) := inf{τ : ω is not τ -SWA*} = sup{τ : ω is τ -SWA*}.

In particular, for Lm-a.a. ω ∈ Rm, ω is (m + η)-BA for each η > 0. The following
result yields that the situation is the same if SWA* is replaced by SWA. Actually, for most
statements about the quantity of existing ψ-SWA* arrays, there are about as many ψ-SWA
arrays. More precisely, we show that for every ω that is ψ-SWA*, there is a ψ-SWA array
ω′ in the finite neighbourhood

N (ω) = {ω′ = (ω′[k])
d
k=1 : (∃k : ω′[k] = 2ω[k] or ∃i : ω′[1],i = ω[1],i + 1 or ω′ = ω)}.

Proposition 5.3. Let ω ∈ (Rm)d that is ψ-SWA* for ψ : N → R+ non-increasing, then
there is ω′ in N (ω) that is ψ-SWA.

Proof. Either ω is ψ-SWA or there are by definition c > 0 and infinitely many distinct
p[k] = pj[k] ∈ Z, q = qj ∈ Zm, j > 1, 1 6 k 6 d such that∑

k

(p[k] +
∑
i

qi) =
∑
k

p[k] + d
∑
i

qi ≡ 0

and
|p[k] − ω[k] · q| < cψ(|q|), 1 6 k 6 d.

Let mj ∈ N maximal such that 2mj divides each p[k], 1 6 k 6 d and each qi, 1 6 i 6 m,
and let p̃[k] = 2−mjp[k], q̃i = 2−mjqi. Since ψ is non-increasing and |q̃| 6 |q|,

|p̃k − ω[k] · q̃| = 2−mj |p[k] − ω[k] · q| < 2−mjcψ(|q|) 6 cψ(|q̃|), 1 6 k 6 d.

It is important to precise that there are infinitely many pairwise distinct couples (p̃j , q̃j)

with p̃j = (p̃j[k])k, otherwise there is j0 and m′j → ∞ such that for infinitely many j,

pj = 2m
′
j p̃j0 , qj = 2m

′
j q̃j0 , which contradicts |pj[k] − ω[k] · qj | → 0.

If there are infinitely many couples (p̃, q̃) ≡ 1, then ω is ψ-SWA and the proof is
complete. Hence let us suppose in the following that there are infinitely many couples
(p̃, q̃) ≡ 0. The maximality of mj and the drawer principle then yield that there is either
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k0 such that for infinitely many couples (p̃, q̃), p̃[k0] ≡ 1, or i0 such that for infinitely many
couples, q̃i0 ≡ 1.

In the case where p̃[k0] ≡ 1, let

ω′[k],i =

{
2ω[k0],i if k = k0

ω[k],i otherwise,
p′[k0],i =

{
2p̃[k0],i if k = k0

p̃[k],i otherwise,
1 6 i 6 m.

We have |p′[k] − ω′[k] · q̃| 6 2ψ(|q̃|), 1 6 k 6 d for infinitely many couples (p′, q̃), and
(p′, q̃) = (p̃, q̃) + (p[k0]i, 0) ≡ 1, hence ω′ := (ω′[k])16k6d is ψ-SWA.

In the case where q̃i0 ≡ 1, let

ω′[k],i =

{
ω[1],i + 1 if k = 1, i = i0

ω[k],i otherwise,
p′[k] =

{
p[1] + qi0 if k = 1

p[k] otherwise.

Then

p′[k] − ω
′
[k] · q̃ =

{
p̃[1] + q̃i0 − ω[1] · q̃ − q̃i0 = p̃1 − ω1 · q̃ if k = 1

p̃[k] − ω[k] · q̃ otherwise

and

(p′, q̃) ≡ (0, q̃i0) ≡ 1

for infinitely many couples (p′, q̃), hence ω′ is ψ-SWA.

The next result is useful for tensorizing variance estimates.

Proposition 5.4. If ω ∈ Rm is ψ-WA, ω = (ω, . . . , ω) ∈ (Rm)d is ψ-SWA.

Proof. Since ω is assumed to be ψ-WA, there is a sequence (pj , qj)j such that |pj−ω ·qj | <
cWψ(|qj |) and (pj , qj) ≡ 1. Hence with qj[k] = qj , pj[k] = pj ,

|pj[k] − q
j
[k] · ω| = |p

j − qj · ω| < cWψ(qj)

but
∑d
k=1(pj[k] +

∑m
i=1 q

j
[k],i) = d(pj +

∑
i q
j
i ) is odd only if d is odd. If d is even, choose

instead pj[1] = 2pj , qj[1] = 2qj , so that |pj[1]−q
j
[1] ·ω| < 2cWψ(|qj |), and

∑d
k=1(pj[k] +

∑
qj[k],i) =

(2d+ 1)(pj + qj) is indeed odd. This sequence demonstrates that ω is ψ-SWA.

5.2 Variance bounds

Let us start by the proof of Theorem 2.1, since it will be used for the proof of
Theorem 1.8 (and Proposition 1.7).

5.2.1 Proof of Theorem 2.1

The starting point is the following lemma, straightforward consequence of [7, Lemma 2].

Lemma 5.5. We have for every u ∈ R coefficients αn,u > 0, n ∈ N such that for two
centred standard Gaussian variables X,Y with correlation ρ

Γu(ρ) := Cov(1{X>u},1{Y >u}) =

∞∑
n=1

αn,uρ
n =

1

2π

∫ ρ

0

1√
1− r2

exp

(
− u2

1 + r

)
dr (5.1)

in particular, Γ0(ρ) = arcsin(ρ) with α2n,0 = 0 and

α2n+1 := α2n+1,0 =

(
n
2n

)
4n(2n+ 1)

= Θn−3/2.

We also have α2,u 6= 0 for u 6= 0.
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Let Un =
∑n
i=1Xi where the Xi are independent and identically distributed with

law µ. Denote by γ?2 the auto-convolution of γ with itself, and by µn the law of Un. We
have by Lemma 5.5

V γµ (T ) =

∫
(Rd)2

Γu(C(t− s))γ(t/T )γ(s/T )dtds

=

∫
(Rd)2

Γu(C(z))γ

(
z + w

2T

)
γ

(
w − z

2T

)
dwdz

=

∫
Rd

Γu(C(z))γ?22T (2z)dz

=
∑
n∈N

αn,u

∫
C(z)nγ?22T (2z)dz

=
∑
n∈N

αn,u

∫
µn(dz)γ̂2T (2z)2dz using (1.1)

=
∑
n∈N

αn,u

∫
µn(dz)(2T )2dγ̂(4Tz)2dz

= (2T )2d
∑
n∈N

αn,uE(γ̂(4TUn)2) (5.2)

= 22d(v
(1)
T + v

(2)
T )

where, with A1 = [0, r], A2 =]r,∞]

v
(i)
T = T 2d

∑
n∈N

αn,uE(γ̂(4TUn)21{‖TUn‖∈Ai}).

For the case u 6= 0, point (iii) simply comes by lower bounding by the term corre-
sponding to n = 2.

Let us now focus on the case u = 0. Remark first that since µ is Z-free, P(Un = 0) = 0

for n odd, hence

v
(1)
T > T 2dc−r K(rT−1)

hence (2.1) is proved. For the second point, the hypothesis on γ yields

v
(2)
T 6 T 2d

∑
n odd

αnE(c21‖TUn‖−d−11{‖TUn‖>r})

= c21T
2d
∑
n odd

αn

∫ r−d−1

0

P((T‖Un‖)−d−1 > y)dy

= c21T
2dT−d−1

∑
n odd

αn

∫ (T/r)d+1

0

P(‖Un‖ < y−
1
d+1 )dy

= c21T
d−1

∫ (T/r)d+1

0

K(y−
1
d+1 )dy.

To conclude the proof of (ii), let us assume that c−εα 6 K(ε) 6 c+ε
α as ε→ 0 for some

0 < c− 6 c+ < ∞, and let us prove that α 6 d + 1. If α > d + 1, then the second term
on the right hand side of 2.2 is negligible with respect to the first one (recall that K is
uniformly bounded), we have in particular

c−r c−r
α 6 Tα−2dVµ(T ) 6 c+r c+r

α + oT→∞(T ).
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Since this is true for all r, we have in particular for 0 < r1 < r2

c−r1c−r
α
1 6 c+r2c+r

α
2

which is impossible if we let r2 go to 0 faster than r1.

5.2.2 Proof of Theorem 1.8

We study the field at the original scale Xd, it is then straightforward to deduce the
results for Xd,T , T > 0. We need to estimate P(‖Un‖ 6 ε) for n > 1, where Un is the
random walk which increment measure is µd. Equation (1.6) and the universal bound
|Ba(t)| 6 Θ‖t‖−1/2, t ∈ Rd yield |Cd(t)| 6 Θ(1 + ‖t‖)− d−1

2 . Then

P(‖Un‖ 6 ε) =

∫
1{Bd(0,ε)}(z)µnd (dz) 6 εd

∫
1{Bd(0,1)}(x)

∣∣∣∣∫
Rd
C(t)neiεxtdt

∣∣∣∣ dx
6 Θεd

∫
Rd

(1 + ‖t‖)−n
d−1
2 dt,

hence for some c5+ < ∞, P(‖Un‖ 6 ε) 6 c5+ε
d < ∞ for n > 5 (and n > 3 if d > 4).

We still have to deal with 1 6 n 6 4, and independently with the lower bounds. Let us
analyse the self-convoluted measures µnd , n > 1. They are related by the recurrence
relation, based on the isotropy of the measures µn, n > 1,

µn+1
d (Bd(0, r)) =

∫
Sd−1×Rd

1{s+x∈Bd(0,r)}µ
n
d (ds)µd(dx)

= µd(S
d−1)µnd ({x : x+ e1 ∈ Bd(0, r)}) (5.3)

= µnd (Bd(−e1, r)) = µnd (Bd(e1, r)) (5.4)

where e1 is some vector of Sd−1, e.g. e1 = (1, 0, . . . , 0). Let r > 0. Hence

µ2
d(Bd(0, r)) = µd(Bd(e1, r)) (5.5)

which is equivalent to L d−1(Bd−1(0, r)) as r → 0. Theorem 2.1-(iii) implies in the case
u 6= 0 that

V γ,uµ (T ) > 22dc−r α2,uT
2dµ2

d(Bd(0, rT
−1)) > c2,−T

d+1, ε > 0

for some c2,− > 0 (for r > 0 sufficiently small, see Example 2.4).
Since α2,0 = α4,0 = 0 (Lemma 5.5), to treat the case u = 0 it remains to study µ3

d

(only for d = 2 and d = 3). Using (5.3)–(5.5) easily yields constants c3,−, c3,+ such that
0 < c3,−ε

d 6 µ3
d(Bd(0, ε)) 6 c3,+ε

d <∞ as ε→ 0. Hence

α3c3,−ε
d 6 K(ε) =

∑
n>3,n odd

αnP(‖Un‖ 6 ε) 6 α3c3,+ε
d +

∞∑
n=5

αnc5+ε
d

gives the desired upper and lower bounds for u = 0 (using Theorem 2.1-(i),(ii)).

5.2.3 Proof of Proposition 1.6

The statement in the case µn(B(0, ε)) > cεd, n odd, follows immediately from (2.1). If
x 6= 0, we have µn+m(Bd(0, ε)) > c′εd for m > |x|/ε even, for some c′ > 0. Let us prove
that this is the case if µ is isotropic. There is b > 0 such that µ(Ab) > 0 where

Ab = {x ∈ Rd : ‖x‖ ∈ [b, b+ 1]}.
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Up to lower bounding µ by µ1Ad , assume without loss of generality that µ’s support
is contained in Ab. By isotropy there is a measure ν on [b, b + 1] such that µ can be
decomposed in µ = µd × ν in polar coordinates, where µd is the uniform measure on the
d-dimensional sphere (see Section 5.2.2). We have

C(t) =

∫
Rd

exp(−ix · t)µ(dx)

=

∫ b+1

b

B0(r‖t‖)ν(dr)

6
∫ b+1

b

Θ(1 + r‖t‖)− 1
2 ν(dr)

6 Θ(1 + b‖t‖)− 1
2 , t ∈ Rd.

It follows that C2d+1 ∈ L1(Rd), hence µ2d+1 has a bounded continuous density f , there
is in particular x ∈ Rd, r > 0, c > 0 such that f > c > 0 on B(x, r). For m > 1, µ(2d+1)m

hence has a positive density on B(x,mr), and for m sufficiently large, µ(2d+1)m has a
positive density on B(0, 1). Since n = (2d + 1)m is odd for m odd, we indeed have
µn(Bd(0, ε)) > c′εd for some c′ > 0.

5.2.4 Proof of Proposition 1.7

Recall from Lemma 5.5 that

Cov(1{0∈E},1{t∈E}) =
∑
n odd

αnC(t)n, t ∈ Rd

where C is the reduced covariance function of Xω. Hence we are looking for S satisfying
for ϕ smooth with compact support∫

Rd
ϕ̂(x)S(dx) =

∫
Rd
ϕ(t)

∑
n odd

αnC(t)ndt

=

∫
Rd
ϕ(t)

∑
n odd

αn

(∫
Rd
eit·xµ(dt)

)n
dx

hence

S =
∑
n odd

αnµ
n.

Then using (3.5) in the context of Example 3.4,

S(Bd(0, ε)) 6c
∑
n odd

αnµ
n(Bd(0, ε)) 6 c′ε

1+d(m+1)
m+η .

5.3 Proof of Theorem 3.3

Notation We specify here the notation A = ΘB to indicate that there are finite
constants c, c′ > 0 depending on m, d, ψ, β and not (further) on ω, ε, T, n such that
A 6 cB,B 6 c′A.

Also, for a d-tuple of vectors of Rm+1, x̄ = (x̄[1], . . . , x̄[d]) ∈ (Rm+1)d with x̄[k] =

(x[k],0, . . . , x[k],m) ∈ Rm+1, remove the bar when the 0-th component is removed from
each vector:

x[k] = (x[k],1, . . . , x[k],m), x = (x[1] . . . , x[d]).
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Euclidean norms in Rm are denoted by a single bar and in (Rm)d by two bars:

|x[k]|2 =

m∑
i=1

x2
[k],i, ‖x‖

2 =

d∑
k=1

|x[k]|2.

We also define for q ∈ Zm, ω ∈ Rm

dq(ω) = inf
p∈Z
|p− q · ω|.

Lemma 5.6. Let ω ∈ Rm that is ψ-BA. For 1/2 > ε > 0, define

Iε(ω) := {q ∈ Zm \ {0} : 0 < dq(ω) 6 ε}.

Let q(N), N ∈ N∗, the elements of Iε ordered by increasing radius. Then

|q(N)| > ΘN
1
mψ−1(ε). (5.6)

In particular, we prove the following estimate:

∑
q∈Iε

exp(−Θn−1|q|2) 6
∞∑
N=1

exp(−Θn−1N
2
mψ−1(ε)2) 6 Θn

m
2 ψ−1(ε)−m. (5.7)

Proof. The starting point is that for q ∈ Iε, since ε > ε/2 > dq(ω)/2 > ψ(|q|), we have
|q| > ρ := ψ−1(ε). And the triangular inequality yields for q 6= q′ ∈ Iε,

2ψ(q − q′) 6 dq−q′(ω) 6 2ε,

hence |q − q′| > ρ as well. It follows that all q ∈ Iε are pairwise distant by more than ρ,
and the balls Bm(q, ρ/2), q ∈ Iε are disjoint. Hence for N0 ∈ N∗, the total Lm− measure
occupied by the Bm(q(N), ρ/2), N 6 N0 is larger than ΘN0ρ

m. This volume is necessarily
smaller than the volume of the ball with radius |q(N0)|+ ρ/2 6 2|q(N0)|, hence

ΘN0ρ
m 6 Θ|q(N0)|m

which yields (5.6). Finally (5.7) follows from

∞∑
N=1

exp(−Θn−1(N
1
mψ−1(ε))2) 6 2

∫ ∞
1/2

exp(−Θ(n−
m
2 ψ−1(ε)my)

2
m )dy

6 Θn
m
2 ψ−1(ε)−m.

Proof of Theorem 3.3. Let M = d(m+ 1). The proof is based on the study of the symmet-
ric random walk (Sn)n on ZM with independent increments defined by S0 = 0 and

P(Sn+1 = Sn ± ej) =
1

2M
, 1 6 j 6M,

where (ej)j is some basis of Rd. Following the notation introduced above, denote also
ω̄[k] = (1, ω[k]) and ω̄ = (ω̄[k])k.

For q̄[k] = (q[k],0, q[k]) ∈ Zm+1, 1 6 k 6 d, q̄ = (q̄[1], . . . , q̄[d]) ∈ (Zm+1)d ≈ ZM , denote
by q[k] = (q[k],1, . . . , q[k],m) ∈ Zm,q = (q[k])k ∈ (Zm)d. We define

q̄⊗ ω̄ := q0 − (q̄[k] · ω̄[k])k=1,...,d

where q0 = (q[k],0)dk=1, so that we have the equality in law Un
(d)
= Sn ⊗ ω̄.
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We use the notation, for x = (x[1], . . . , x[d]) ∈ Zd,K ⊂ JdK,

Īx,Kε (ω) = Īx,Kε = {q̄ ∈ ZM : q̄[k] = 0, k /∈ K and 0 < |q̄[k] · ω̄[k] − x[k]| 6 ε, k ∈ K}.

For ε < 1/2, an element q̄ ∈ Īx,Kε satisfies the following for k ∈ K:

|q[k],0 − q[k] · ω[k] − x[k]| < ε,

hence since x[k] ∈ Z and q[k] ∈ Iε(ω[k]), ω[k] · q[k] is ε-close to Z. It follows that q[k],0

depends explicitly on other coordinates

q[k],0 = q[k],0(x[k], q[k]) := argminp∈Z|p− q[k] · ω[k] − x[k]| (5.8)

q0 = q0(x,q) := (q[k],0)k.

In particular, |x[k]| 6 |q[k],0|+ |q[k] · ω[k]|+ 1, and

‖q̄‖2 =‖q0‖2 + ‖q‖2 > max(‖q‖2, ‖q‖2 + Θ(‖x‖2 − 1)) > Θ(‖q‖2 + ‖x‖2). (5.9)

We also have the one-to-one correspondance

Ix,Kε (ω) := {q ∈
∏
k∈K

Zm : (q0(x;q),q) ∈ Īx,Kε (ω), k ∈ K} (5.10)

≡ {0}d−|K| ×
∏
k∈K

Iε(ω[k]). (5.11)

Proof of (i): By the Gaussian approximation Lemma 5.7 (below), and (5.9),

px,Kn (ε) =
∑

q̄∈Īx,Kε

P(Sn = q̄) =
∑

q∈Ix,Kε

P(Sn = (q0(x,q),q))

6 Θ
∑

q∈IK,xε

n−
M
2 exp(−Θn−1(‖q‖2 + ‖q0‖2))

6 Θn−
M
2

∑
q∈IK,xε

exp(−Θn−1‖q‖2) exp(−Θn−1‖x‖2))

6 Θn−
M
2 exp(−Θn−1‖x‖2)

∏
k∈K

∑
q[k]∈Iε(ω[k])

exp(−Θn−1|q[k]|2)) by (5.10) (5.12)

6 Θn−
d(m+1)

2 exp(−Θn−1‖x‖2)(n
m
2 ψ−1(ε)−m)|K| with (5.7),

6 Θn−d/2n−
(d−|K|)m

2 ψ−1(ε)−m|K| exp(−Θn−1‖x‖2)

and (3.2) is proved.
The bound (3.3) immediately stems from p̄Kn =

∑
x∈Zd p

x,K
n and Lemma 5.9 (after

summing over i ∈ {0, 1}). Hence using (5.7), and (5.12) with x = 0

I0β(ε) :=
∑
n>nε

n−β/2p0n(ε)

=
∑
n>nε

n−β/2
∑
K 6=∅

p0,Kn (ε)

6 ΘKβ(ε)

with Kβ(ε) :=
∑
n>nε

n−β/2−
M
2

∑
K⊂JdK,K 6=∅

∏
k∈K

∞∑
Nk=1

exp(−Θn−1(N
1
m

k ψ−1(ε))2)

6
∑
n>nε

n−β/2−
M
2

∑
K⊂JdK,K 6=∅

∞∑
Nk>1,k∈K

exp(−Θn−1
∑
k∈K

(N
1
m

k ψ−1(ε))2)
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6 Θ
∑

K⊂JdK,K 6=∅

∑
Nk>1,k∈K

∑
n>nε

∫ n+1/2

n

(z − 1/2)−β/2−
M
2

× exp(−Θz−1
∑
k∈K

ψ−1(ε)2N
2/m
k )dz

6 Θ
∑

K⊂JdK,K 6=∅

∑
Nk>1,k∈K

(
∑
k∈K

ψ−1(ε)2N
2/m
k )1−β/2−M2

×
∫ ∞

0

yβ/2+M
2 −2 exp(−Θy)dy

6 Θ(ψ−1(ε)2)1−β/2−M2 max
K⊂JdK,K 6=∅

∫
[1,∞]|K|

(
∑
k∈K

x
2
m

k )1−β/2−M2
∏
k∈K

dxk

6 Θψ−1(ε)2−M−β max
16p6d

∫
[1,∞]p

(

p∑
k=1

yk)1−β/2−M2
p∏
k=1

y
m
2 −1

k dyk

6 Θψ−1(ε)2−d(m+1)−β max
16p6d

∫ ∞
1

(Θr)1−β/2− (m+1)d
2 rmp/2−prp−1dr

and the integral converges if β/2 > 1− d/2. Since there are less terms in Jβ(ε) than in
I0β(ε), the upper bound holds and (3.5) is proved.

With the same computations, using first (5.12), and then (5.7), and Lemma 5.9,

Iβ(ε) =
∑
n>nε

n−β/2
∑
x∈Zd

∑
K 6=∅

px,Kn (ε)

6
∑
n>nε

n−β/2−
M
2

∑
x∈Zd

exp(−Θn−1x2)
∑

K⊂JdK,K 6=∅

∏
k∈K

∞∑
Nk=1

exp(−Θn−1(N
1
m

k ψ−1(ε))2)

6ΘKβ−d(ε)

provided β/2 > 1, which proves (3.4).
Let us conclude with the proof of (iii), the proof of (ii) is similar and easier. There

are by hypothesis infinitely many qj ∈ Zm, j > 1 and pj[k] ∈ Z, 1 6 k 6 d, such that

q̄j := ((pj[k], q
j))k ≡ 1 and

|pj[k] − ω[k] · qj | 6 cWψ(|qj |) =: cW εj

(we have εj → 0 because ψ converges to 0 by hypothesis). We have in particular with
Cauchy-Schwarz inequality

‖q̄j‖ 6
d∑
k=1

(|pj[k]|+ |q
j |) 6

d∑
k=1

(|ωk||qj |+ 1 + |qj |) 6 Θ|qj |

and clearly the other inequality as well |qj | 6 ‖q̄j‖.
Then, by Lemma 5.7, with ñj := c−1

inf |q̄j | ∨ nεj

Jβ(εj) =
∑

n>nεj ,n odd

n−β/2p0n(εj)

>
∑

n>nεj ,n odd

n−β/2P(Sn = q̄j)

> Θ
∑

n>ñj ,n≡q̄j≡1

n−β/2n−
d(m+1)

2 exp(−Θn−1‖q̄j‖2)

> Θ

∫ ∞
[ñj/2]

y−β/2−d
m+1

2 exp(−Θy−1|qj |2)dy
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> Θ|qj |2−β−d(m+1)

∫ Θ|qj |2ñ−1
j

0

zβ/2+dm+1
2 −2 exp(−Θz)dz

> Θψ−1(εj)
2−β−d(m+1)

provided β > 0, because |qj |2‖q̄j‖−1 > Θ > 0 and nεj 6 ψ−1(εj)
2 yields (recalling

ψ(|qj |) = εj)

|qj |2n−1
εj > ψ−1(εj)

2ψ−1(εj)
−2 = 1,

hence (3.7) is proved. The proof of (3.6) is similar without the requirement that q̄j ≡ 1,
hence the sum is over all n > nεj (even and odd).

5.3.1 Gaussian approximation

The following lemma quantifies how much Sn is close to a Gaussian distribution.

Lemma 5.7. Let θ0 ∈ (0, 1
2 ),M ∈ N and Sn be the symmetric random walk on ZM with

weights θi ∈ (θ0, 1− θ0), 1 6 i 6M , summing to 1, i.e.

P(Sn+1 = Sn ± ei) =
θi
2
, 1 6 i 6M,n ∈ N.

For q = (qi) ∈ ZM , n ∈ N, write q ≡ n if
∑M
i=1 qi and n have the same parity, and remark

that P(Sn = q) = 0 if q 6≡ n. There is a constant cinf > 0 such that for q ∈ ZM

P(Sn = q) 6 Θn−
p
2 exp(−Θn−1‖q‖2) (5.13)

1{‖q‖6cinfn}P(Sn = q) > Θn−
p
2 exp(−Θn−1‖q‖2)1{|q|6cinf n} for q ≡ n.

Remark 5.8. The constants involved in this result depend also on θ0.

Proof. Let Ni be the number of times direction i has been chosen in the random walk,
and let Bi 6 Ni be the number of +ei increments, hence Ni − Bi is the number of
−ei increments. The i-th component of Sn is therefore Sn,i := 2Bi − Ni. We have
Ni ∼ B(n, θi), Bi ∼ B(Ni, 1/2), and the Bi are independent conditionally on N := (Ni)i.
Hence for |ε| 6 cBin, from Lemma 5.10

P(Bi = [Ni(1/2 + ε)] | N) = Θ exp(−ΘNiε
2)N

−1/2
i .

Let q = (qi) ∈ ZM such that for 1 6 i 6 p, |qi| 6 cBinNi, let εi = N−1
i qi,

P(Sn,i = qi | N) = P(Bi = Ni/2 + qi/2 | N)

=

{
0 if Ni 6≡ qi

ΘN
−1/2
i exp(−ΘNiε

2
i ) = ΘN

−1/2
i exp(−ΘN−1

i q2
i ) otherwise.

Let

cinf := cBin(min
i
θi − cBin) > 0.

If for all i, Ni > (θi − cBin)n and |qi| < cinfn, then |qi| < cBinNi (and Ni = Θn) and we
have the lower bound

P(Sn = q) = E(P(Sn = q | N))

= E(1{qi≡Ni,∀i}P(Sn = q | N))

> E(1{qi≡Ni,Ni>(θi−cBin)n,∀i}P(Sn = q | N))
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> E(1{qi≡Ni,Ni>(θi−cBin)n,∀i}Θ
∏
i

N
− 1

2
i exp(−ΘN−1

i q2
i ))

> E(1{qi≡Ni,Ni>(θi−cBin)n,∀i}Θn
− p2 exp(−Θn−1q2))

> Θn−
p
2 exp(−Θn−1q2)P(qi ≡ Ni, Ni > (θi − cBin)n, ∀i).

Since
∑
iNi ≡ n, if we do not have

∑
i qi ≡ n, we cannot have Ni ≡ qi,∀i. Otherwise,

asymptotically a fraction 2−p of admissible tuples N ∈ JnKM are such that Ni ≡ qi,∀i,
hence P(qi ≡ Ni, Ni > (θi − cBin)n, ∀i) = Θ1{q≡n}P(Ni > (θi − cBin)n,∀i) and the latter
probability converges to 1 thanks to Lemma 5.10, hence the lower bound is proved.

The upper bound is a bit delicate. Let us start by the trivial bound, if |qi| > n for
some i,

P(Sn = q) = 0 6 Θn−1/2 exp(−Θn−1q2
i ).

Assume henceforth that |qi| 6 n for all i. Let Ω be the event such that for some i,
Ni < θi(1− cBin)n. On Ωc, Ni = Θn for all i, hence by Lemma 5.7

P(Sn,i = qi | Ωc) 6 Θn−1/2 exp(−Θn−1q2
i ).

Finally, in all cases,

P(Sn = q) 6E(1{Ωc}
∏
i

P(Sn,i = qi | N)) + P(Ω)

6E(1{Ωc}Θ
∏
i

n−
1
2 exp(−Θn−1q2

i )) + P(Ω)

6n−p/2 exp(−Θn−1q2) + P(Ω).

Then Lemma 5.10 with ε = −cBin yields, using the decreasing of binomial probabilities
around the mean,

P(Ω) 6
∑
i

∑
k<[n(θi−cBin)]

P(Ni = k)

6
∑
i

nP(Ni = [n(θi + ε)])

6Θn1/2 exp(−Θn)

6Θn−
p
2 exp(−Θn/2)

6Θn−
p
2 exp(−Θn−1q2),

using ‖q‖ 6 n, which concludes the proof of (5.13).

Lemma 5.9. For i ∈ {0, 1} ∑
x∈Zd,x≡i

exp(−Θn−1x2) = Θnd/2.

where x ≡ i means that
∑d
k=1 x[k] has the same parity as i.

Proof. The lower bound stems from y2 > minx∈Zd∩B(y,2),x≡i or x=0 x
2, y ∈ Rd, and

Θnd/2 6
∫
Rd

exp(−Θn−1y2)dy 6
∫

max
x∈Zd∩B(y,2),x≡i or x=0

exp(−Θn−1x2)dy

64d
∑

x∈Zd,x≡i or x=0

exp(−Θn−1x2)
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64d(
∑

x∈Zd,x≡i

exp(−Θn−1x2) + 1)

because at most a mass 4d of y′s are within distance 2 from some x ∈ Zd. For the upper
bound, for x ∈ Zd \{0}, there is at least one unit cube Cx with integer coordinates within
the 2d cubes that touch x such that for all y ∈ Cx, y2 6 x2. Hence∑

x≡i
exp(−Θn−1x2) 6

∑
x≡i,x 6=0

exp(−Θn−1x2) + 1

6
∑

x∈Zd\{0}

∫
Cx

exp(−Θn−1y2)dy + 1

62d
∫
Rd

exp(−Θn−1y2)dy + 1 6 Θnd/2.

5.3.2 Binomial estimates

Lemma 5.10. Let θ0 <
1
2 . There is a constant cBin ∈ (0, 1) depending on θ0 such that for

θ ∈ (θ0, 1− θ0), B ∼ B(m, θ), for −cBin 6 εm = ε 6 cBin

P(B = [m(θ + ε)]) =Θm−1/2 exp
(
−Θmε2

)
where the constants involved in Θ depend on θ0, and not on θ,m, ε.

Proof. Let c0 = min( 1
2 ,

1−θ0
2 ), and ε ∈ (−c0θ, c0θ). Let then k = [m(θ + ε)]. By Stirling’s

formula,

P(B = k) = Θ

√
m√

k
√
m− k

θk(1− θ)m−k mm

kk(m− k)m−k

= Θm−1/2 θk(1− θ)m−k√
(θ + ε)(1− θ − ε)

× mm

(θm)k(m(1− θ))m−k
(
k
θm

)k ( m−k
m(1−θ)

)m−k
= Θm−1/2 1√

θ

(
1 +

ε

θ

)−k (
1− ε

1− θ

)k−m
= Θm−1/2θ

−1/2
0 exp(γε,θ)

where

γε,θ = −m(θ + ε)(
ε

θ
− ε2

2θ2
+O(ε3))

−m((1− θ)− ε)(− ε

1− θ
+

ε2

2(1− θ)2
+O(ε3))

= m
ε2

2θ
− mε2

θ
+O(mε3 +mε4)− mε2

2(1− θ)
− mε2

1− θ
+O(mε3 +mε4)

=
−mε2

2θ
− 3mε2

2(1− θ)
+O(mε3)

= −Θmε2

for |ε| sufficiently small.
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5.4 Proof of Theorem 4.3

To prove the upper bound we first need the following computation.

Proposition 5.11. Let ψ(q) = q−τL(q) ARV (Definition 4.1) and assume µ is of the
form (1.4) with each ω[k] that is ψ-BA. Then as T →∞,

max

{
T 2dJ3(T−1), T d−1

∫ Td+1

0

J3(y−
1
d+1 )dy

}

6


ΘT d−1 if ψ(q) > q−τ

∗
ln(q)1/d

ΘT d−1 ln(T ) if ψ(q) = q−τ
∗

ΘT 2dψ−1(T−1)−1−d(m+1) if τ > τ∗

Proof. According to (3.5) in Theorem 3.3-(i),

J3(ε) 6 Θψ−1(ε)−1−d(m+1), ε > 0,

which yields that T 2dJ3(T−1) admits an upper bound consistent with the claim.
To deal with the other term, assume without loss of generality that ψ is extended to

a smooth strictly non-increasing function z−τL(z) : [a,∞)→ (0, 1] for some a > 1, such
that L′(z) = o(z−1L(z)) (the contribution of the integral on (0, a) is uniformly bounded).

Make the change of variables z = ψ−1(y−
1
d+1 ), i.e. ψ(z)−d−1 = y, let Z = ψ−1(T−1).∫ Td+1

a

J3(y−
1
d+1 )dy 6 Θ

∫ Td+1

a

ψ−1(y−
1
d+1 )−1−d(m+1)dy

= Θ

∫ Z

Θ

z−1−d(m+1)(ψ(z)−d−1)′dz.

The hypotheses on ψ yield

(ψ(z)−d−1)′ = (d+ 1)(τz−τ−1L(z)− z−τL′(z))ψ(z)−d−2

= (d+ 1)(τz−1ψ(z)− z−τo(z−1L(z)))ψ(z)−d−2 (5.14)

∼
z→∞

(d+ 1)τz−1ψ(z)−d−1. (5.15)

In the case τ 6 τ∗, the previous two displays yield∫ Td+1

a

J3(y−
1
d+1 )dy 6 Θ

∫ Z

Θ

z−2−d(m+1)ψ(z)−(d+1)dz

and the integral converges if ψ(q) > q−τ
∗

ln(q)1/d, and if ψ(q) = q−τ
∗

it behaves in
ln(Z) = Θ ln(T ).

Let us turn to the case τ > τ∗. Let τ ′ ∈ (τ∗, τ), we have by (5.15) as z →∞

(z−1−d(m+1)ψ(z)−d−1)′ =z−1−d(m+1)(ψ(z)−d−1)′ − (1 + d(m+ 1))z−2−d(m+1)ψ(z)−d−1

>z−1−d(m+1)(ψ(z)−d−1)′ − 1 + d(m+ 1)

d+ 1
z−1−d(m+1)(ψ(z)−d−1)′

>z−1−d(m+1)(ψ(z)−d−1)′(1− τ∗
τ ′

)

which results in ∫ Td+1

a

J3(y−
1
d+1 )dy 6

Θ

1− τ∗/τ ′
[z−1−d(m+1)ψ(z)−d−1]ZΘ

= Θψ−1(T−1)−1−d(m+1)T d+1

which allows to conclude.
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Apply first Theorem 2.1-(ii) to the measure µ to have bounds on the variance in terms
of the function J3, recalling that J3 = ΘK (with γ as the unit ball indicator function, see
Example 2.4). Proposition 5.11 yields the upper bound. Then lower bounds for J3 are
derived in Theorem 3.3-(iii), noticing that ω is ψ-SWA thanks to Proposition 5.4. In the
case ψ(q) = q−τ

∗
ln(q)

1
d , ψ−1 is not explicit, but we use the bound

ψ−1(ε) > cε−
1
τ∗ | ln(ε)| 1

dτ∗ , ε > 0

for some c > 0.
Regarding the non-vacuity of Theorem 4.3, if m = 1 and τ > 1, it is a standard fact

in diophantine approximation that the set of ω that are ψ-BA and ψ-WA is uncountable
when qψ(q) is non-increasing at infinity, see the seminal construction based on continued
fractions by Jarnìk [19] and Proposition 5.3.

5.5 Proof of Proposition 4.2

Let us assume that (4.1) holds and implies (4.2): given ε > 0, if for q sufficiently large
|L(q+1)
L(q) − 1| 6 ε/q, for a > 1,

∣∣∣∣ln(L([aq])

L(q)

)∣∣∣∣ =

∣∣∣∣∣∣
∑

q6p6[aq]

ln(1 + ε/p)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

q6p6[aq]

ε

p

∣∣∣∣∣∣+O

ε2
∑

q6p6[aq]

1

p2


6 |ε [ln([aq]) + γ + o(1)− (ln(q) + γ + o(1))]|+ o(1),

6 ε ln

(
[aq]

q

)
+ o(1)

hence L([aq])/L(q) indeed converges to 1.
For the converse, assume L is non-increasing, define εp > 0 by induction so that

L(q) = L(1)
∏

26q6p

(
1 +

εp
p

)
,

then (4.1) holds means that εp → 0. In this case, (4.2) holds too:

ln

(
L([aq])

L(q)

)
=

∑
q6p6[aq]

ln(1 + p−1εp) 6 ([aq]− q)q−1 sup
[q,[aq]]

εp −−−→
q→∞

0.

If L is non-decreasing and (4.1) holds, replace εp by −εp. Then (4.2) still holds:

ln

(
L([aq])

L(q)

)
=

∑
q6p6[aq]

ln(1− p−1εp) > −
∑

q6p6[aq]

εp
p

+O

 ∑
q6p6[aq]

1

p2

 −−−→
q→∞

0.

Let us finally study the particular example

L(q) =
∏

16p6q

(1 +
(−1)p

p
).

We have

ln

(
L([aq])

L(q)

)
=

∑
q6p6[aq]

ln(1 + (−1)p/p)→ 0,

hence (4.2) is satisfied, but (4.1) is not.

EJP 27 (2022), paper 126.
Page 31/33

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP854
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Diophantine Gaussian excursions

References

[1] R. J. Adler and J. E. Taylor. Random Fields and Geometry. Springer, 2007. MR2319516

[2] E. Assaf, J. Buckley, and N. Feldheim. An asymptotic formula for the variance of the number
of zeroes of a stationary Gaussian process. arXiv:2101.04052. MR3851839

[3] J. Beck. Irregularities of distribution. i. Acta Math., 159:1–49, 1987. MR0906524

[4] M. V. Berry. Statistics of nodal lines and points in chaotic quantum billiards: perimeter correc-
tions, fluctuations, curvature. Journal of Physics A: Mathematical and General, 35(13):3025,
2002. MR1913853

[5] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation. Encyclopedia of Mathemat-
ics and its Applications. Cambridge University Press, 1987. MR0898871

[6] G. Blum, S. Gnutzmann, and U. Smilansky. Nodal domains statistics: A criterion for quantum
chaos. Phys. Rev. Lett., 88:114101, 2002.

[7] A. Bulinski, E. Spodarev, and F. Timmermann. Central limit theorems for the excursion set
volumes of weakly dependent random fields. Bernoulli, 18(1):100–118, 2012. MR2888700

[8] D. Chen and S. Torquato. Designing disordered hyperuniform two-phase materials with novel
physical properties. Acta Materialia, 142:152–161, 2018.

[9] C. Corduneanu, N. Gheorghiu, and V. Barbu. Almost periodic functions. Chelsea Publishing
Company, 1989. MR0481915

[10] S. Coste. Order, fluctuations, rigidities. https://scoste.fr/assets/survey_hyperuniformity.pdf.

[11] H. Cramér and M. R. Leadbetter. Stationary and Related Stochastic Processes. Wiley, 1967.
MR2108670

[12] J. Cuzick. A central limit theorem for the number of zeros of a stationary Gaussian process.
Ann. Prob., 4(4):547–556, 1976. MR0420809

[13] P. Diaconis. Group representations in probability and statistics. Inst. Math. Stat. Lect. Notes,
11, 1988. MR0964069

[14] A. Elbert. Some recent results on the zeros of Bessel functions and orthogonal polynomials.
J. Comp. Appl. Math., 133:65–83, 2001. MR1858270

[15] A. Estrade and J. R. Leon. A central limit theorem for the Euler characteristic of a Gaussian
excursion set. Ann. Prob., 44(6):3849–3878, 2016. MR3572325

[16] I. I. Gikhman and A. V. Skorokhod. Introduction to the theory of random processes, Vol. I. W.
B. Saunders Company, 1965. MR0247660

[17] J. Ben Hough, M. Khrishnapur, Y. Peres, and B. Viràg. Zeros of Gaussian Analytic Functions
and Determinantal Point Processes. University Lecture Series. Institute of Mathematical
Statistics, 2009. MR2552864

[18] M. Hussain and T. Yusupova. A note on the weighted Khintchine-Groshev Theorem. J. de
Théorie des Nombres de Bordeaux, 26(2):385–397, 2014. MR3320485

[19] V. Jarník. Über die simultanen diophantischen Approximationen. Math. Z, 33:505–543, 1931.
MR1545226

[20] M. Kac. On the average number of real roots of a random algebraic equation. Bull. Amer.
Math. Soc., 49:314–320, 1943. MR0007812

[21] M. Kratz. Level crossings and other level functionals of stationary Gaussian processes. Prob.
Surveys, 3:230–288, 2006. MR2264709

[22] M. Kratz and J. R. Leon. Hermite polynomial expansion for non-smooth functionals of sta-
tionary Gaussian processes: Crossings and extremes. Stoc. Proc. Appl., 66:237–252, 1997.
MR1440400

[23] M. Krishnapur, P I. P. Kurlberg, and Wigman. Nodal length fluctuations for arithmetic random
waves. Annals of Mathematics, 177(2):699–737, 2013. MR3010810

[24] R. Lachièze-Rey. Variance linearity for real Gaussian zeros. arXiv:2006.10341, To appear in
Ann. Inst. Henri Poincaré, 2020.

[25] D. Marinucci, G. Peccati, M. Rossi, and I. Wigman. Non-universality of nodal length distribu-
tion for arithmetic random waves. Geom. Funct. Anal, 26:926–960, 2016. MR3540457

EJP 27 (2022), paper 126.
Page 32/33

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2319516
https://arXiv.org/abs/2101.04052
https://mathscinet.ams.org/mathscinet-getitem?mr=3851839
https://mathscinet.ams.org/mathscinet-getitem?mr=0906524
https://mathscinet.ams.org/mathscinet-getitem?mr=1913853
https://mathscinet.ams.org/mathscinet-getitem?mr=0898871
https://mathscinet.ams.org/mathscinet-getitem?mr=2888700
https://mathscinet.ams.org/mathscinet-getitem?mr=0481915
https://scoste.fr/assets/survey_hyperuniformity.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=2108670
https://mathscinet.ams.org/mathscinet-getitem?mr=0420809
https://mathscinet.ams.org/mathscinet-getitem?mr=0964069
https://mathscinet.ams.org/mathscinet-getitem?mr=1858270
https://mathscinet.ams.org/mathscinet-getitem?mr=3572325
https://mathscinet.ams.org/mathscinet-getitem?mr=0247660
https://mathscinet.ams.org/mathscinet-getitem?mr=2552864
https://mathscinet.ams.org/mathscinet-getitem?mr=3320485
https://mathscinet.ams.org/mathscinet-getitem?mr=1545226
https://mathscinet.ams.org/mathscinet-getitem?mr=0007812
https://mathscinet.ams.org/mathscinet-getitem?mr=2264709
https://mathscinet.ams.org/mathscinet-getitem?mr=1440400
https://mathscinet.ams.org/mathscinet-getitem?mr=3010810
https://arXiv.org/abs/2006.10341
https://mathscinet.ams.org/mathscinet-getitem?mr=3540457
https://doi.org/10.1214/22-EJP854
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Diophantine Gaussian excursions

[26] D. Marinucci and I. Wigman. The defect variance of random spherical harmonics. J. Phys. A:
Math. and Theor., 44(35):355206, 2011.

[27] I. Molchanov. Theory of random sets. Springer-Verlag, London, 2005. MR2132405

[28] S. Muirhead, A. Rivera, and H. Vanneuville. The phase transition for planar Gaussian percola-
tion models without FKG. arXiv:2010.11770, 2020.

[29] F. Nazarov and M. Sodin. Fluctuations in random complex zeroes: Asymptotic normality
revisited. Int. Math. Res. Notic., 24:5720–5759, 2011. MR2863379

[30] I. Nourdin, G. Peccati, and M. Rossi. Nodal statistics of planar random waves. Comm. Math.
Phys., 369:99–151, 2019. MR3959555
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