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Abstract

We consider a family of sup-functionals of (drifted) fractional Brownian motion with
Hurst parameter H ∈ (0, 1). This family includes, but is not limited to: expected
value of the supremum, expected workload, Wills functional, and Piterbarg-Pickands
constant. Explicit formulas for the derivatives of these functionals as functions of Hurst
parameter evaluated at H = 1

2
are established. In order to derive these formulas,

we develop the concept of derivatives of fractional α-stable fields introduced by
Stoev & Taqqu (2004) and propose Paley-Wiener-Zygmund representation of fractional
Brownian motion.
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1 Introduction

Sup-functionals of the supremum of fractional Brownian motion play crucial role
in many problems arising both in theoretical probability and its applications, as in
e.g. statistics, financial mathematics, risk theory, queueing theory, see e.g. [2, 11, 26,
30]. Unfortunately, despite intensive research on their properties, apart from some
particular cases — reduced mostly to standard Brownian motion — the exact value of
such functionals is not known.
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Derivatives of sup-functionals of fractional Brownian motion

Let {BH(t) : t ∈ R+} be fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1), that is a centered Gaussian process with continuous sample paths a.s. and

Cov(BH(s), BH(t)) = 1
2

(
|s|2H + |t|2H − |s− t|2H

)
(1.1)

for all s, t ∈ R+. In this manuscript, we consider the following two families of functionals

MH(T, a) := E
(

sup
t∈[0,T ]

BH(t)− at
)
, PH(T, a) := E

(
exp

{
sup
t∈[0,T ]

√
2BH(t)− at2H

})
,

(1.2)
where a ∈ R is the intensity of the drift and T ∈ R+ ∪ {∞} is the time horizon. These
functionals cover a range of interesting quantities in the extreme value theory of Gaussian
processes. In particular:

(i) For a ∈ R and T ∈ R+, the quantity MH(T, a) is the expected value of the workload
in the fluid queue with an fBm input at time T under the assumption that at time 0

the system starts off empty. Analogously, if a > 0 and T =∞, then MH(∞, a) is the
expected stationary workload of a queue with an fBm input, see e.g. [26, 11];

(ii) for T ∈ R+, the quantity HH(T ) := PH(T, 1) is known as Wills functional (trun-
cated Pickands constant), see e.g. [39, 9] and references therein;

(iii) for a > 1, the quantity PH(∞, a) is known as Piterbarg constant ; see e.g. [31, 4]
and references therein;

(iv) the quantity HH := limT→∞
1
T HH(T ) is known as Pickands constant ; see e.g.

[30, 31].

The values of functionals MH(T, a) and PH(T, a) are notoriously difficult to find in
cases other than H ∈ { 1

2 , 1}. Thus, most of the work is focused on finding upper and
lower bounds for these quantities (see, e.g. [34, 12, 10, 4, 7, 8, 5]) or determining their
asymptotic behavior in various settings (as H goes to 0, H goes to 1, T grows large, a
goes to 0 etc.); see, e.g., [21, 5]. We note that in many cases simulation methods do not
help in estimation of PH(T, a). For example, the second moment of PH(∞, a) does not
exist when a < 2, which makes it very difficult to assess error bounds in this case. When
H → 0, then the approximation error resulted from simulation becomes overwhelming,
see [18, 17].

In recent years, Delorme, Wiese and others studied the behavior of fBm and its time
for H ≈ 1

2 using the perturbation theory [13, 15, 14, 16]. Our work was initially inspired
by their result in [13], where the following expansion for Pickands constant (see item
(iv) above) was derived

HH = 1− 2(H − 1
2 )γE +O((H − 1

2 )2), H → 1
2 (1.3)

where γE is the Euler-Mascheroni constant.
The main goal of this contribution is to develop tools for researching expansions

similar to (1.3) for functionals introduced in Eq. (1.2). In particular, we find explicit
formulas for the derivatives of these functionals evaluated at H = 1

2 , i.e.

M ′
1/2(T, a) :=

∂

∂H
MH(T, a)

∣∣∣
H=1/2

and P ′
1/2(T, a) :=

∂

∂H
PH(T, a)

∣∣∣
H=1/2

. (1.4)

For these purposes, we consider a probability space on which fBms with all values of
H ∈ (0, 1) are coupled in a non-trivial way. In particular, we consider the Mandelbrot
& van Ness’ (MvN) fractional Brownian motion introduced in the seminal work [25];
see Eq. (2.1) below for precise definition. Following [29] the realizations of MvN field
can be viewed as two-dimensional random surfaces (H, t) 7→ BH(t), as opposed to
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Derivatives of sup-functionals of fractional Brownian motion

one-dimensional trajectories t 7→ BH(t) for each fixed H ∈ (0, 1). While these random
surfaces are non-differentiable in the time direction (with respect to t), they turn out to
be smooth functions of the Hurst parameter (with respect to H). Therefore, following
Stoev and Taqqu [36, 37] we define the derivatives of the MvN field with respect to the
Hurst parameter H. Intuitively speaking, the concept of H-derivative of fBm allows us
to rigorously write ∂

∂HEBH(τ) = E ∂
∂HBH(τ), where τ is some (well-behaved) random

time and { ∂
∂HBH(t), t ∈ R+} is a certain explicitly defined Gaussian process. It will turn

out that in our context, the latter expression (i.e. E ∂
∂HBH(τ)) is tractable (explicitly

computable).

We note that Stoev and Taqqu considered a broader class of fractional α-stable fields,
while for the purposes of this paper we limit ourselves to the Gaussian case, i.e. α = 2,
which corresponds to the fBm and, in particular, the MvN field. See also [37, Eq. (1.9)]
with (a+, a−) = (1, 0) and [32, Chapter 7.4] for more information on fractional α-stable
fields. Focusing on the Gaussian case, we strengthen some of the results derived by
the authors. In particular, we show sample path continuity of the derivative fields
(Proposition 4.2) and strengthen [36, Lemma 4.1] to almost sure convergence for all
(H, t) ∈ (0, 1)×R+ (Proposition 4.3). These propositions are then used in the proofs of
main results.

Finally, we propose a Paley-Wiener-Zygmund (PWZ) representation of MvN field
and its derivatives. We show that PWZ field is a continuous modification of MvN field
(Proposition 4.1) and the difference quotients of n-th derivative converge everywhere
to (n + 1)-st derivative almost surely (Proposition 4.3). The PWZ representation is
defined in terms of Riemann integrals, as opposed to stochastic integrals in the original
Mandelbrot & van Ness’ definition. In the context of this manuscript this representation
is more tractable and allows us to express the main quantities of interest, cf. (1.4), as
integrals of elementary functions, which we then calculate explicitly in special cases,
see Section 3.

The manuscript is organized as follows. In Section 2 we define the fractional Brownian
motion through its MvN and PWZ representations. We also recall the facts related to
the joint distribution of the supremum of drifted Brownian motion and its argmax. In
particular, we introduce the conditional distribution of Brownian motion, conditioned
on the value of the supremum and its argmax, which follows the law of the generalized
3-dimensional Bessel bridge. In Section 3 we state main results of this paper. In Theorem
1 we give a formula for M ′

1/2(T, a) and in Theorem 2 for P ′
1/2(T, a) in terms of integrals

of explicit elementary functions. More explicit formulae for M ′
1/2(T, 0), M ′

1/2(∞, a)

and P ′
1/2(∞, a) are given in Corollary 3.3. Additionally, in Corollary 3.4 we show that

Piterbarg constants PH(∞, a) are monotone as functions of Hurst parameter. While this
result is not directly related to our topic, it is a direct consequence of Proposition C.1 and
it might be of independent interest. In Section 4 we define and examine the H-derivatives
of the fBm both with the use of MvN and PWZ representations. In Section 5 we give the
proofs of main theorems. Since they require quite a lot of different results, throughout
this section we introduce various preliminary results. Some of them, for the argmax
of BH(t) − at and BH(t) − at2H are presented in Proposition 5.1 and Proposition 5.2
respectively. More technical results are deferred to appendices. In Appendix A we
show the equivalence between L2 and Paley-Wiener-Zygmund stochastic integrals. In
Appendix B we present proofs of results from Section 2 and Section 4. In Appendix C
we state results needed in the proof of Theorem 3.1 and Theorem 3.2, which can be
also of independent interest such as monotonicity of Piterbarg constants and bounds on
moments of the supremum of a Gaussian process at a random time. Finally, in Appendix D
we write down all the calculations needed to prove Corollary 3.3.
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Derivatives of sup-functionals of fractional Brownian motion

2 Preliminaries

Let {B(t) : t ∈ R} be a standard, two-sided Wiener process and let R+ := [0,∞). In
their seminal paper, [25], introduced a family of processes {XH(t), t ∈ R+} for H ∈ (0, 1),
where

XH(t) =

∫ 0

−∞

[
(t− s)H−

1
2 − (−s)H−

1
2
]
dB(s) +

∫ t

0

(t− s)H−
1
2 dB(s). (2.1)

For each H ∈ (0, 1), {XH(t) : t ∈ R+} is a centered Gaussian process with

Cov(XH(s), XH(t)) = V (H) · Cov(BH(s), BH(t)),

where, BH(t) is a fractional Brownian motion introduced in (1.1), and

V (H) :=

∫ ∞
0

(
(1 + s)H−

1
2 − sH−

1
2

)2

ds+

∫ 1

0

s2H−1ds =
Γ( 1

2 +H)Γ(2− 2H)

2HΓ( 3
2 −H)

,

see e.g. [27, Appendix A], where the explicit formula for V (H) is derived. This shows
that, up to the scaling factor, for each H ∈ (0, 1), process {XH(t) : t ∈ R+} is a fractional
Brownian motion. Therefore, we call {XH(t) : (H, t) ∈ (0, 1) × R+} the Mandelbrot
& van Ness (MvN) fractional Brownian field. At the same time, there exists another
representation {X̃H(t) : (H, t) ∈ (0, 1)×R+} of MvN field,

X̃H(t) := (H − 1
2 )

∫ 0

−∞

[
(t− s)H−

3
2 − (−s)H−

3
2

]
B(s)ds+ tH−

1
2B(t)

− (H − 1
2 )

∫ t

0

(t− s)H−
3
2
(
B(t)−B(s)

)
ds,

(2.2)

which we call the Paley-Wiener-Zygmund (PWZ) representation. In Section 4 it is shown
that field {X̃H(t) : (H, t) ∈ (0, 1) × R+} is a modification of MvN field, whose sample
paths (H, t) 7→ X̃H(t) are continuous almost surely; see Proposition 4.1.

From now on, the fractional Brownian motion is defined through the process XH(·),
i.e. with D(H) := (V (H))−1/2, we put

BH(t) := D(H) ·XH(t). (2.3)

For any a ∈ R we define

YH(t; a) := BH(t)− at, and Y ∗H(t; a) := BH(t)− at2H .

Notice that Y ∗1/2 = Y1/2 for all a ∈ R. Furthermore, we define suprema and their locations
for these processes

Y H(T, a) := sup
t∈[0,T ]

YH(t; a), τH(T, a) := arg max{t ∈ [0, T ] : YH(t; a)},

Y
∗
H(T, a) := sup

t∈[0,T ]

Y ∗H(t; a), τ∗H(T, a) := arg max{t ∈ [0, T ] : Y ∗H(t; a)}.
(2.4)

It is known that when a ∈ R and T ∈ R+, or a > 0 and T = ∞ then Y , Y
∗

are almost
surely finite and τH and τ∗H are well-defined (unique) and almost surely finite; see [19]
citing [24].

Next, we recall the formulae for the joint density of the supremum of (drifted)
Brownian motion over [0, T ] and its argmax. In the following, for z ∈ R we define the
error function and the complementary error function respectively:

erf(z) :=
2√
π

∫ z

0

e−t
2

dt, erfc(z) := 1− erf(z).
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Derivatives of sup-functionals of fractional Brownian motion

For brevity of exposition, in this section we write Y (t) := Y1/2(t; a), Y (T ) := Y 1/2(T, a),
and τ(T ) := τ1/2(T, a). When a ∈ R and T ∈ R+, according to [35] we have:

P(τ(T ) ∈ dt, Y (T ) ∈ dy, Y (T ) ∈ dx)

dtdy dx
=

1

π

y(y − x)

t3/2(T − t)3/2
exp

{
−y

2

2t
− (y − x)2

2(T − t)

}
e−ax−a

2T/2.

After the integration of the above density with respect to x over the domain x < y we
recover the joint density of the pair (τ(T ), Y (T ))

p(t, y;T, a) :=
P(τ(T ) ∈ dt, Y (T ) ∈ dy)

dtdy

=
ye−

(y+ta)2

2t
√
πt3/2

·

(
e−a

2(T−t)/2√
π(T − t)

+
a√
2
· erfc

(
− a
√

T−t
2

))
(2.5)

for (t, y) ∈ (0, T )×R+; see also [6, 2.1.13.4]. When a > 0, then the pair (τ(∞), Y (∞)) is
well-defined, with density

p(t, y;∞, a) =

√
2 aye−

(y+ta)2

2t
√
πt3/2

(2.6)

for (t, y) ∈ R2
+; see e.g. [6, 2.1.13.4(1)].

When a ∈ R and T ∈ R+ or a > 0 and T =∞ then, conditionally on Y (T ) = y, τ(T ) = t,
the process {Y (t)−Y (t−s)}s∈[0,t] has the law of a 3-dimensional Bessel bridge from (0, 0)

to (t, y), see e.g. [3, Prop. 2]. The law of this process does not depend on the value of the
drift a nor on the time horizon T . Moreover, the density of the marginal distribution of
this process is known. In the following, for t, y > 0 and s ∈ (0, t) we define

g(x, s; t, y) :=
P(Y (t)− Y (t− s) ∈ dx | τ(T ) = t, Y (T ) = y)

dx

Then, according to e.g. [23, Theorem 1(ii)] we have

g(x, s; t, y) =
x
s3/2

exp{−x
2

2s }
y
t3/2

exp{−y22t }
· 1√

2π(t− s)

[
e−

(x−y)2
2(t−s) − e−

(x+y)2

2(t−s)

]
1{x<y}. (2.7)

The following functional of the 3-dimensional Bessel bridge from (0, 0) to (t, y) will be
important later on

I(t, y) := E

(∫ t

0

Y (t)− Y (t− s)
s

ds | τ(T ) = t, Y (T ) = y

)
. (2.8)

Using the fact that we have explicit formula for the density g(·) in Eq. (2.7), we can
express I(t, y) as a double integral, see the proposition below, whose proof is given in
Appendix B.

Proposition 2.1. For any t, y > 0 we have

I(t, y) :=

√
2

π
· ty−1

∫ ∞
0

∫ ∞
0

x2

q(1 + q2)2

(
e−(x−yq/

√
t)2/2 − e−(x+yq/

√
t)2/2

)
dxdq.

3 Main results

Recall the definitions of the functionals MH and PH introduced in the Introduction
in Eq. (1.2). We can rewrite them in terms of the expectation of random variables Y and
Y
∗
, i.e

MH(T, a) = E
(
Y H(T, a)

)
, PH(T, a) = E

(
exp{

√
2 · Y ∗H(T, a√

2
)}
)
.

EJP 27 (2022), paper 129.
Page 5/35

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP848
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Derivatives of sup-functionals of fractional Brownian motion

We shall derive formulas for the derivative of functionsH 7→MH(T, a) andH 7→PH(T, a)

evaluated at H = 1
2 . Following Eq. (1.4), in what follows let

M ′
1/2(T, a) := lim

H→1/2

MH(T, a)−M1/2(T, a)

H − 1
2

and

P ′
1/2(T, a) := lim

H→1/2

PH(T, a)−P1/2(T, a)

H − 1
2

.

Theorem 3.1. If a ∈ R and T ∈ R+ or a > 0 and T =∞, then

M ′
1/2(T, a) =

∫ T

0

∫ ∞
0

(
y(1 + log(t)) + at log(t)− I(t, y)

)
p(t, y;T, a)dydt. (3.1)

Theorem 3.2. If a ∈ R and T ∈ R+ or a > 1 and T =∞, then

P ′
1/2(T, a) =

∫ T

0

∫ ∞
0

√
2
(
y(1 + log(t))− a√

2
t log(t)− I(t, y)

)
e
√

2yp(t, y;T, a√
2
)dydt. (3.2)

In order to gain a better intuitive understanding of the main results, we provide an
outline of the proof of Theorem 3.1 below; the proof of Theorem 3.2 will be similar. Full
proofs of these theorems are given in Section 5.

Outline of the proof of Theorem 3.1. The main part of the proof is to show that

∂

∂H

[
EYH(τH(T, a), a)

]∣∣∣
H=1/2

= E

[
∂

∂H
YH(τ1/2(T, a), a)

∣∣∣
H=1/2

]
,

where the expression on the left is, by definition, equal to M ′
1/2(T, a). To explain in words,

we may swap the order of taking the expected value and differentiation in the definition
of M ′

1/2(T, a) and swap τH(T, a) with τ1/2(T, a) above. The derivative ∂
∂HYH(t, a) is

understood point-wise, for every fixed t ∈ R+. In proofs we will need an H-calculus,
which is formally introduced and worked out in Section 4. Here we need only the first
derivative

X
(1)
H (t) =

∫ 0

−∞

[
log(t−s)(t−s)H−

1
2−log(−s)(−s)H−

1
2
]
dB(s)+

∫ t

0

log(t−s)(t−s)H−
1
2 dB(s).

In H-calculus, the Leibniz formula is valid and the H-derivative at H = 1/2 of the fBm
∂
∂HBH(t) is X(t) + X(1)(t). This is derived later in Section 4, see (4.9). As soon as the
equation above is established, we find that

∂

∂H
YH(τ1/2(T, a), a)

∣∣∣
H=1/2

= X(τ) +X(1)(τ),

where τ := τ1/2(T, a). Finally, M ′
1/2(T, a) is equal to the expectation of the expression

above and it can be expressed as the definite integral in Eq. (3.1) using PWZ representa-
tions of X and X(1) and the fact that distribution of Brownian motion conditioned on its
supremum and time of supremum is known; see Section 2 for more information.

We note that the derivatives M ′
1/2(T, a) and P ′

1/2(T, a) in (3.1) and (3.2) are expressed
as definite integrals. Thus, they can be computed numerically for any drift a and time
horizon T , which satisfy the assumptions of Theorem 3.1 and Theorem 3.2 respectively.
In addition, we were able to calculate these derivatives explicitly in special cases; see
the corollary below.

Corollary 3.3. It holds that
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Derivatives of sup-functionals of fractional Brownian motion

(i) if T ∈ R+, then M ′
1/2(T, 0) =

√
2T
π · (log(T )− 2),

(ii) if a > 0, then M ′
1/2(∞, a) = − 1

a

(
γE + log(2a2)

)
,

(iii) if a > 1, then P ′
1/2(∞, a) = − 2a

a−1

(
1 + (a− 2) log

(
a−1
a )
)

.

The calculations leading to Corollary 3.3 are deferred to Appendix D. From Corol-
lary 3.3(iii), it straightforwardly follows that for any a > 1, the function H →PH(∞, a)

is decreasing in the neighborhood of H = 1
2 (because P ′

1/2(∞, a) < 0). The following
corollary extends this observation to the whole domain H ∈ (0, 1); its proof follows
straightforwardly from Proposition C.1 given in Appendix C.

Corollary 3.4. Suppose that 0 < H1 < H2 < 1.

(i) If a ∈ R and T ∈ R+, then

PH2(T, a) ≤PH1

(
TH2/H1 , a

)
.

(ii) If a > 1, then
PH2

(∞, a) ≤PH1
(∞, a).

Remark 3.5. Using Mathematica software [40] and applying certain simplifications, we
are able to calculate the following limit

lim
T→∞

lim
H→1/2

HH(T )/T −H1/2(T )/T

H − 1
2

= lim
T→∞

P ′
1/2(T, 1)

T
= −2γE. (3.3)

It is noted that the result above is very much related to the result established in [13] on
the derivative of Pickands constant at H = 1

2 , that is

lim
H→1/2

lim
T→∞

HH(T )/T −H1/2(T )/T

H − 1
2

= lim
H→1/2

HH −H1/2

H − 1
2

= −2γE, (3.4)

see also Eq. (1.3). The difference between Eq. (3.3) and Eq. (3.4) is the order of the limit
operations.

4 Mandelbrot & van Ness’ fractional Brownian field

In this section we provide some properties of Mandelbrot & van Ness’ field, which
play important role in the proofs of results given in Section 3.

In contrast to the definition of BH(t), which we have given at the beginning of
Section 1, the definition in (2.3) provides an additional coupling between fBms with
different values of H. In fact, we will view the process {XH(t), (H, t) ∈ (0, 1) × R+}
as a centered Gaussian field and refer to it as Mandelbrot & van Ness’ field (MvN).
Realizations of the MvN field are trajectories (surfaces) (H, t) 7→ XH(t); using the
standard rules of L2 theory of stochastic integrals, we find that

Cov(XH(t), XH′(t
′)) =

∫ 0

−∞

[
(t− s)H−

1
2 − (−s)H−

1
2
][

(t′ − s)H
′− 1

2 − (−s)H
′− 1

2
]
ds

+

∫ t∧t′

0

(t− s)H−
1
2 (t′ − s)H

′− 1
2 ds

(4.1)

for any H,H ′ ∈ (0, 1) and t, t′ ∈ R+. Explicit value of covariance function above was
found in [38, Theorem 4.1]. While it is a well-known fact that fBm is self-similar, the
same holds true for the MvN field, i.e. for any c > 0 we have

{BH(ct) : (H, t) ∈ (0, 1)×R+}
d
= {cHBH(t) : (H, t) ∈ (0, 1)×R+}, (4.2)
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where ‘
d
=’ stands for the equality of finite-dimensional distributions, see e.g. [36, Theo-

rem 2.1(c)]; this can also be seen by a direct calculation using (4.1). It has been shown
that there exists a continuous modification of the MvN field, see [29, Theorem 4].

We remark that for the purposes of this paper the domain of MvN field is (H, t) ∈
(0, 1)×R+, however, we note that it can be extended to (H, t) ∈ (0, 1)×R.

Next, for any n ∈ Z+, where Z+ is the set of non-negative integers, we define the
nth derivative of MvN field (with respect to the Hurst parameter), to be the stochastic
process {X(n)

H (t) : (H, t) ∈ (0, 1)×R+}, where

X
(n)
H (t) =

∫ 0

−∞
f

(n)
H (t, s)dB(s) +

∫ t

0

g
(n)
H (t, s)dB(s), (4.3)

for any (H, t) ∈ (0, 1)×R+, with fH(t, s) := (t− s)H−
1
2 − (−s)H−

1
2 , gH(t, s) := (t− s)H−

1
2 ,

and

f
(n)
H (t, s) :=

∂n

∂Hn
fH(t, s) = logn(t− s)(t− s)H−

1
2 − logn(−s)(−s)H−

1
2 ,

g
(n)
H (t, s) :=

∂n

∂Hn
gH(t, s) = logn(t− s)(t− s)H−

1
2 .

(4.4)

We follow the convention that ∂0

∂x0h(x) := h(x) for any function h(x). In particular, for

n = 0, the definition (4.3) is equivalent to the original MvN field (2.1), i.e. X(0)
H = XH .

Since the case H = 1
2 will be used particularly often throughout this manuscript, we

write X(n)(·) := X
(n)
1/2(·) for brevity. Definition (4.3) can be found in [37].

Let us emphasize that all derivatives of the MvN field live on the same probability
space, and in fact they are jointly Gaussian. The covariance between random variables

X
(n)
H (t), and X(n′)

H′ (t′) can be found in analogous way to (4.1).

Similarly to the previous section, the derivatives of MvN field also have their PWZ
representation. For n ∈ Z+ we define a Paley-Wiener-Zygmund (PWZ) representation of

the MvN field and its derivatives {X̃(n)
H (t) : (H, t) ∈ (0, 1)×R+}, where

X̃
(n)
H (t) := −

∫ 0

−∞

[ ∂
∂s
f

(n)
H (t, s)

]
B(s)ds+ g

(n)
H (t, 0)B(t)

+

∫ t

0

[ ∂
∂s
g

(n)
H (t, s)

](
B(t)−B(s)

)
ds,

(4.5)

for any (H, t) ∈ (0, 1)×R+, where

∂

∂s
f

(n)
H (t, s) =

∂

∂s
g

(n)
H (t, s)− ∂

∂s
g

(n)
H (0, s)

∂

∂s
g

(n)
H (t, s) = −n logn−1(t− s)(t− s)H−

3
2 − (H − 1

2 ) logn(t− s)(t− s)H−
3
2 .

(4.6)

Again, we recognize that when n = 0, the definition (4.5) is equivalent to (2.2), i.e.
X̃

(0)
H = X̃H .

The following proposition justifies calling the PWZ, the equivalent representation of
MvN field.

Proposition 4.1. For all n ∈ Z+, the field {X̃(n)
H (t) : (H, t) ∈ (0, 1)×R+} is a continuous

modification of {X(n)
H (t) : (H, t) ∈ (0, 1)×R+}.

The result in Proposition 4.1 is a direct consequence of the considerations in Ap-
pendix A (Lemma A.1 in particular) and the proposition below.
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Proposition 4.2. For all n ∈ Z+,

P
(

(H, t) 7→ X̃
(n)
H (t) is a continuous mapping for all (H, t) ∈ (0, 1)×R+

)
= 1.

We note that PWZ representation of fractional Brownian motion is defined in terms
of Riemann integrals, as opposed to the MvN representation, which is defined through
L2 stochastic integrals; see Appendix A.

The rest of this section is devoted to showing various fundamental properties of
the PWZ field; due to Proposition 4.1, these results carry over to the MvN field and its
derivatives. All the proofs are deferred to Appendix B.

In a special case n = 0, Proposition 4.2 was proven by [29]. The following result
justifies calling processes X(n)

H (t) for n > 0 the derivatives with respect to the Hurst
parameter.

Proposition 4.3. For all n ∈ Z+,

P

(
lim

∆→0

X̃
(n)
H+∆(t)− X̃(n)

H (t)

∆
= X̃

(n+1)
H (t) for all (H, t) ∈ (0, 1)×R+

)
= 1.

In is noted that weaker versions of Proposition 4.2 and 4.3 were derived in [37].
Thanks to Proposition 4.3, it makes sense to write ∂n

∂HnXH(t) = X
(n)
H (t). In the

following, for any k ∈ N let: a1, . . . , ak ∈ R, n1, . . . , nk ∈ Z+, H1, . . . ,Hk ∈ (0, 1) and
define

η(t) :=

k∑
i=1

ai ·X(ni)
Hi

(t). (4.7)

Proposition 4.4. The Gaussian process {η(t) : t ∈ R+} defined in (4.7) is centered and
it has stationary increments.

For N ∈ Z+, H ∈ (0, 1) we define the Taylor sum remainder

RH(t;N) := XH(t)−
N−1∑
n=0

X(n)(t)

n!
· (H − 1

2 )n. (4.8)

It is noted that RH(t; 0) = XH(t) and, according to Proposition 4.4, {RH(t;N); t ∈ R+} is
a centered Gaussian process with stationary increments. Its variance function can also
be proven to be Hölder continuous; see Lemma 4.5 below.

Lemma 4.5. Let 0 < H < H < 1 be such that 1
2 ∈ [H,H]. Then, for any ε > 0 and

N ∈ Z+, there exists a constant C such that

E|RH(t;N)−RH(s;N)|2 ≤ C(H − 1
2 )2N ·

(
|t− s|2H−ε + |t− s|2H+ε

)
for all t, s > 0 and H ∈ [H,H].

Remark 4.6 (Extension to normalized MvN field). Let BH(t) = B
(0)
H (t) = D(H)X̃H(t) and

B
(n)
H (t) := ∂

∂HnBH(t). Noticing that D(H) is a smooth function, for all n ∈ Z+ we have

P

(
lim

∆→0

B
(n)
H+∆(t)−B(n)

H (t)

∆
= B

(n+1)
H (t) for all (H, t) ∈ (0, 1)×R+

)
= 1

Moreover, by a simple application of Leibniz formula for the nth derivative of product of
functions we find that

B
(n)
H (t) =

n∑
k=0

(
n

k

)
D(n−k)(H) · X̃(k)

H (t). (4.9)
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The value of D(n)(H) at H = 1
2 for all n ∈ Z+ can be found by direct calculation; for

example

D(0)( 1
2 ) = 1, D(1)( 1

2 ) = 1, D(2)( 1
2 ) = −1− π2

3
, D(3)( 1

2 ) = 3− π2 − 6 ζ(3), (4.10)

where ζ(·) is the Riemann-zeta function.

5 Proof of Theorem 3.1 and Theorem 3.2

Before proving Theorem 3.1 and Theorem 3.2 we need to develop some preliminary
results.

Recall the definition of τH(T, a) and τ∗H(T, a) from Eq. (2.4). In the following proposi-
tion we establish that the all-time suprema locations τH(∞, a) and τ∗H(∞, a) on the MvN
field are uniformly bounded with probability growing to 1.

Proposition 5.1. Let 0 < H < H < 1 and a > 0. Then there exist C, γ > 0 such that

(i) P
(

supH∈[H,H] τH(∞, a) > T
)
≤ Ce−γT 2−2H

,

(ii) P
(

supH∈[H,H] τ
∗
H(∞, a) > T

)
≤ Ce−γT 2H

for all T sufficiently large.

Proof. Since the proofs of (i) and (ii) follow by the same idea, we focus only on (ii).
Observe that, for T ≥ 1,

P
(

sup
H∈[H,H]

τ∗H(∞, a) > T
)
≤ P

(
sup

H∈[H,H],t≥T
BH(t)− at2H > 0

)
= P

(
sup

H∈[H,H],t≥T

BH(t)

t2H
> a

)
≤

∞∑
k=0

P
(

sup
H∈[H,H],t∈[2kT,2k+1T ]

BH(t)

t2H
> a

)
=

∞∑
k=0

P
(

sup
H∈[H,H],t∈[1,2]

BH(2kTt)

(2kTt)2H
> a

)
=

∞∑
k=0

P
(

sup
H∈[H,H],t∈[1,2]

2HkTH

22HkT 2H

BH(t)

t2H
> a

)
(5.1)

≤
∞∑
k=0

P
(

sup
H∈[H,H],t∈[1,2]

BH(t)

t2H
> a2HkTH

)
,

where (5.1) follows from self-similarity of the MvN field, cf. (4.2). By the continuity of
the MvN field, in view of Borell inequality (see, e.g. [1, Theorem 2.1]), we know that

E

(
sup

H∈[H,H],t∈[1,2]

BH(t)

t2H

)
<∞

and for sufficiently large T , using that supH∈[H,H],t∈[1,2]Var
(
BH(t)
t2H

)
= 1,

P
(

sup
H∈[H,H],t∈[1,2]

BH(t)

t2H
> a2HkTH

)
≤ 2 exp

(
−a

222HkT 2H

8

)
.
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Thus, there exists C > 0 such that for sufficiently large T

∞∑
k=0

P
(

sup
H∈[H,H],t∈[1,2]

BH(t)

t2H
> a2HkTH

)
≤ C exp

(
−a

2

8
T 2H

)
.

This completes the proof.

Proposition 5.2. If a ∈ R and T ∈ R+ or a > 0 and T =∞, then

(i) limH→H′ τH(T, a) = τH′(T, a), a.s.

(ii) limH→H′ τ
∗
H(T, a) = τ∗H′(T, a), a.s.

for any H ′ ∈ (0, 1).

Proof. In view of Proposition 4.2, the random bivariate function (H, t) 7→ XH(t) is
continuous almost surely, this implies that also, for any fixed a ∈ R, the functions
(H, t) 7→ YH(t; a), and (H, t) 7→ Y ∗H(t; a) are continuous. Now, consider the case a ∈
R, T ∈ R+ – in this case, (i) and (ii) follow from the fact that YH(t; a) → YH′(t; a),
Y ∗H(t; a)→ Y ∗H′(t; a) converge uniformly on t ∈ [0, T ], so the argmax functionals must also
converge, see e.g. [33, Lemma 2.9].

We now show that (i) holds also when a > 0 and T =∞. Let A ⊂ (0, 1) be any compact
interval containing H ′ and for n ∈ N let An := {supH∈A τH(∞, a) < n}. Moreover, we
have ∪nAn = {supH∈A τH(∞, a) <∞}, which according to Proposition 5.1, is a set of full
measure. We thus can write

P( lim
H→H′

τH(∞, a) = τH′(∞, a)) = P
(

lim
H→H′

τH(∞, a) = τH′(∞, a);∪∞n=1An
)

= P

( ∞⋃
n=1

{
lim

H→H′
τH(∞, a) = τH′(∞, a);An

})
= lim
n→∞

P
(

lim
H→H′

τH(∞, a) = τH′(∞, a);An

)
,

where in the last line we used the continuity property of probability measures for
increasing sets. Finally, we notice that on the event An we have τH(∞, a) = τH(n, a) for
all H ∈ A, thus

P
(

lim
H→H′

τH(∞, a) = τH′(∞, a);An

)
= P

(
lim

H→H′
τH(n, a) = τH′(n, a);An

)
= P(An),

because we have already established that τH(T, a)→ τH′(T, a) a.s. for any fixed T ∈ R+.
This concludes the proof of (i) because P(An) → 1, as n → ∞. The proof of (ii) is
analogous.

Corollary 5.3. Let 0 < H < H < 1, N ∈ Z+. If a ∈ R and T ∈ R+ or a > 0 and T = ∞,
then for any n ∈ N,

(i) supH∈[H,H]E

∣∣∣∣RH(τH(T,a);N)

(H− 1
2 )N

∣∣∣∣n <∞, and

(ii) supH∈[H,H]E

∣∣∣∣RH(τ∗H(T,a);N)|
(H− 1

2 )N

∣∣∣∣n <∞.

Proof of Corollary 5.3. From Lemma 4.5 we know that for every ε > 0 there exists C > 0

such that for all t ∈ [0, 1],

sup
H∈[H,H]

E(RH(t;N))2 ≤ C(H − 1
2 )2N · t2(H−ε),
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where ε > 0 is taken small enough so that H − ε > 0. Now, again, applying Lemma 4.5 to
Lemma C.3 we find that for every ε > 0 and n ∈ N there exists a constant C ′ > 0 such
that

sup
H∈[H,H]

E sup
t∈[0,1]

|RH(t;N)|n ≤ C ′(H − 1
2 )nN (1 + µn−1(H − ε) + µn(H − ε)),

where µ(H − ε) < ∞. Finally, applying these two bounds and the result in Proposi-
tion 5.1(i) to Lemma C.4 we find that there exists C ′′ > 0 such that

sup
H∈[H,H]

E|RH(τH ;N)|n ≤ C ′′(H − 1
2 )nN .

The same reasoning applies to τ∗H , which completes the proof.

5.1 Proof of Theorem 3.1

In the following, let YH(t) := YH(t; a), τH := τH(T, a), and Y (t) := Y1/2(t), τ := τ1/2.
We have

YH(τH)− Y (τ) = (YH(τH)− YH(τ)) + (YH(τ)− Y (τ)),

We split the proof into three parts. In the first part of the proof we show that

lim
H→1/2

E

(
YH(τH)− YH(τ)

H − 1
2

)
= 0. (5.2)

In the second part of the proof we show that

lim
H→1/2

E

(
YH(τ)− Y (τ)

H − 1
2

)
= E

(
∂

∂H
YH(τ)

∣∣∣
H=1/2

)
. (5.3)

Finally, in the last part of the proof we show that the claim in Theorem 3.1 holds.

Proof that Eq. (5.2) holds. By definition, YH(t) = D(H)XH(t)− at, so for any t > 0, we
have

YH(t) = at(D(H)− 1) +D(H)Y (t) +D(H)X(1)(t)(H − 1
2 ) +D(H)RH(t; 2),

where RH(t; 2) := XH(t)−
[
X(t) +X(1)(t)(H − 1

2 )
]
; see (4.8). Furthermore,

YH(τH)− YH(τ) = a(D(H)− 1)(τH − τ) +D(H)
[
Y (τH)− Y (τ)

]
+D(H)(H − 1

2 )
[
X(1)(τH)−X(1)(τ)

]
+D(H)

[
RH(τH ; 2)−RH(τ ; 2)

]
.

Since Y (τ)− Y (τH) ≥ 0 and YH(τH)− YH(τ) ≥ 0, then

0 ≤ YH(τH)− YH(τ)

H − 1
2

≤ a(τH − τ) · D(H)− 1

H − 1
2

+D(H)
[
X(1)(τH)−X(1)(τ)

]
+D(H) · RH(τH ; 2)−RH(τ ; 2)

H − 1
2

=: J1(H) + J2(H) + J3(H). (5.4)

So we need to show that EJi(H) → 0, as H → 0 for i ∈ {1, 2, 3}. According to Propo-
sition 5.2(i) we have J1(H) → 0 a.s. In view of the de la Vallèe Poussin theorem, in
order to show EJ1(H)→ 0, it suffices to show that supH∈[1/3,2/3]EJ

2
1 <∞. According to

Proposition 5.1, for any 0 < H < 1
2 < H < 1 there exist positive constants C, γ, β such

that P(τH > T ) ≤ Ce−γTβ , therefore

Eτ2
H =

∫ ∞
0

2tP(τH > t)dt ≤ 2C

∫ ∞
0

te−γt
β

dt
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for all H ∈ [H,H]. Since the right-hand-side is finite and independent of H, then
supH∈[H,H]Eτ

2
H <∞ and EJ1(H)→ 0.

Now, according to Proposition 4.2 and Proposition 5.2(i) we have J2(H) → 0 a.s.
Moreover, combining Proposition 5.1(i) with Lemma C.4, and the fact that all moments
of the supremum supt∈[0,1]X

(1)(t) exist, we find that the second moments, E[X(1)(τH)]2,

E[X(1)(τ)]2 are uniformly bounded for all H close enough to 1
2 ; again, the de la Vallèe

Poussin theorem implies that EJ2(H)→ 0.
Finally, we observe that

E|J3(H)| ≤ E|RH(τH ; 2)|
H − 1

2

+
E|RH(τ ; 2)|
H − 1

2

.

Due to Corollary 5.3, both terms above tend to 0, as H → 1
2 , therefore EJ3(H)→ 0.

Proof that Eq. (5.3) holds. By virtue of Proposition 4.3, it is clear that

YH(τ)− Y (τ)

H − 1
2

→ ∂

∂H
YH(τ)

∣∣∣
H=1/2

a.s.

Moreover, we recognize that YH(τ)− Y (τ) = RH(τ ; 1), see the definition in (4.8), so in
view of the de la Vallèe Poussin theorem, in order to show that (5.3) holds, it is enough
to show that

sup
H∈[1/3,2/3]

E

(
RH(τ ; 1)

H − 1
2

)2

<∞,

which follows from Corollary 5.3(i).

Proof that Eq. (3.1) holds. Notice that for any t ∈ R+ it holds that

∂

∂H
YH(t) =

∂

∂H
(BH(t)− at) = B

(1)
H (t).

Combining the results in (5.2) and (5.3), the Leibniz formula derived in (4.9), and the
fact that D′(1/2) = 1 (cf. (4.10)) we obtain

M ′
1/2(T, a) = E

[
X(τ) +X(1)(τ)

]
. (5.5)

Now, using the PWZ representation for X(1) in (4.5) we find that

X(1)(τ) =

∫ 0

−∞

(
(τ − s)−1 − (−s)−1

)
B(s)ds+ log(τ)B(τ)−

∫ τ

0

B(τ)−B(s)

τ − s
ds.

Since τ is independent of {B(s) : s < 0} then the expected value of the first integral is 0,
and

EX(1)(τ) = E

[
log(τ)B(τ)−

∫ τ

0

B(τ)−B(s)

τ − s
ds

]
= E

[
log(τ)(B(τ)− aτ) + aτ log(τ)−

∫ τ

0

(B(τ)− aτ)− (B(s)− as)
τ − s

ds− aτ
]

= E

[
log(τ)Y (τ) + aτ(log(τ)− 1)−

∫ τ

0

Y (τ)− Y (s)

τ − s
ds

]
.

Now, we recognize that

E

(∫ τ

0

Y (τ)− Y (s)

τ − s
ds

)
= E

(
E

(∫ τ

0

Y (τ)− Y (s)

τ − s
ds
∣∣∣ (τ, Y (τ))

))
= E (I(τ, Y (τ))) ,
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with I(t, y) defined in (2.8). Since EX(τ) = E(Y (τ) + aτ), then from (5.5) we obtain

M ′
1/2(T, a) = E

[
Y (τ)(1 + log(τ)) + aτ log(τ)− I(τ, Y (τ))

]
.

The claim now follows because (τ, Y (τ)) has joint density p(t, y;T, a), cf. Eq. (2.5).

5.2 Proof of Theorem 3.2

In the following, for brevity let ZH(t) :=
√

2BH(t) − at2H , τ∗H := τ∗H(T, a√
2
), so that

supt∈[0,T ] ZH(t) = ZH(τ∗H). Additionally we denote Z(t) := Z1/2(t), τ∗ := τ∗1/2. Notice that

eZH(τ∗H) − eZ(τ∗) =
(
eZH(τ∗H) − eZH(τ∗)

)
+
(
eZH(τ∗) − eZ(τ∗)

)
.

We split the proof into three parts. First part of the proof is to show that

lim
H→1/2

E

(
eZH(τ∗H) − eZH(τ∗)

H − 1
2

)
= 0. (5.6)

In the second part of the proof we show that

lim
H→1/2

E

(
eZH(τ∗) − eZ(τ∗)

H − 1
2

)
= E

(
∂

∂H
eZH(τ∗)

∣∣∣
H=1/2

)
. (5.7)

Finally, in the last part of the proof we show that the claim of Theorem 3.2 holds.

Proof that Eq. (5.6) holds. Since ZH(τ∗H) − ZH(τ∗) ≥ 0, then, using the mean value
theorem we find that

E
[
eZH(τ∗H) − eZH(τ∗)

]
≤ E

[(
ZH(τ∗H)− ZH(τ∗)

)
· eZH(τ∗H)

]
, (5.8)

so it suffices to show that the bound above converges to 0.
By definition ZH(t) =

√
2D(H)XH(t)− at2H , so for any t > 0, we have

ZH(t) = a(D(H)t− t2H) +D(H)Z(t) +
√

2D(H)
(
X(1)(t)(H − 1

2 ) +RH(t; 2)
)
,

where RH(t; 2) := XH(t)−
[
X(t) +X(1)(t)(H − 1

2 )
]

was defined in (4.8). Furthermore,

ZH(τ∗H)− ZH(τ∗) = a
[
D(H)(τ∗H − τ∗)−

(
(τ∗H)2H − (τ∗)2H

)]
+D(H)

[
Z(τ∗H)− Z(τ∗)

]
+
√

2D(H)(H − 1
2 )
[
X(1)(τ∗H)−X(1)(τ∗)

]
+
√

2D(H)
[
RH(τ∗H ; 2)−RH(τ∗; 2)

]
.

Now, for H ∈ (0, 1), t ∈ R+ we define

UH(t) := D(H) · t− t
2H

H − 1
2

+ t2H · D(H)− 1

H − 1
2

.

Since Z(τ∗)− Z(τ∗H) ≥ 0 and ZH(τ∗H)− ZH(τ∗) ≥ 0, then

0 ≤ ZH(τ∗H)− ZH(τ∗)

H − 1
2

≤ aJ1(H) +
√

2D(H)
(
J2(H) + J3(H)

)
,

where

J1(H) := UH(τ∗H)− UH(τ∗), J2(H) := X(1)(τ∗H)−X(1)(τ∗)

and

J3(H) :=
RH(τ∗H ; 2)−RH(τ∗; 2)

H − 1
2

.
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Derivatives of sup-functionals of fractional Brownian motion

The proofs that EJi(H) → 0, i ∈ {2, 3}, as H → 1
2 are analogous to the corresponding

statements in the proof of Theorem 3.1, cf. Eq. (5.4). Thus, we show only that EJ1(H)→
0, as H → 1

2 . We have

lim
H→1/2

UH(t) = −2t log(t) + t =: U(t)

and the convergence is uniform for any compact subset of R+. Moreover,

|UH(τ∗H)− UH(τ∗)| ≤ |UH(τ∗H)− U(τ∗H)|+ |U(τ∗H)− U(τ∗)|+ |U(τ∗)− UH(τ∗)|,

where each of the terms of the sum above converges to 0 due to uniform convergence
UH(t)→ UH(t), continuity of U and the fact that τ∗H → τ∗ a.s. (see Proposition 5.2(ii)), so
we have J1(H)→ 0 a.s. Using the mean value theorem we find that, with H := min{ 1

2 , H},
H := max{ 1

2 , H}, ∣∣∣∣ t− t2HH − 1
2

∣∣∣∣ ≤ sup
H̃∈[H,H]

|2 log(t)t2H̃ | ≤ 2| log(t)|(1 + t2H). (5.9)

Now, we have that

U2
H(t) ≤ 2D2(H)

(
t− t2H

H − 1
2

)2

+ 2t4H
(
D(H)− 1

H − 1
2

)2

,

so using the bound in (5.9) and Proposition 5.1(ii), we find that the second moments
E[UH(τ∗H)]2,E[UH(τ∗)]2 < ∞ are uniformly bounded for all H close enough to 1

2 . In
view of the de la Vallèe Poussin theorem, this observation combined with the fact that
J1(H)→ 0 a.s. imply that EJ1(H)→ 0.

Proof that Eq. (5.7) holds. By virtue of Proposition 4.3 and (5.2) combined, it is clear
that

eZH(τ∗) − eZ(τ∗)

H − 1
2

→ ∂

∂H
eZH(τ∗)

∣∣∣
H=1/2

a.s.

In view of the de la Vallèe Poussin theorem, it suffices to show that some 1 + ε with ε > 0,
the absolute moment of the pre-limit above is bounded for all H close enough to 1/2.
Using the mean value theorem as in (5.8) and applying Hölder’s inequality afterwards,
we find that

E

(
eZH(τ∗) − eZ(τ∗)

H − 1
2

)1+ε

≤ E
(∣∣∣ZH(τ∗)− Z(τ∗)

H − 1
2

∣∣∣ · sup
H∈[H,H]

exp{ZH(τ∗)}}
)1+ε

≤
(
E

∣∣∣ZH(τ∗)− Z(τ∗)

H − 1
2

∣∣∣(1+ε)q
)1/q

·

(
sup

H∈[H,H]

E exp{(1 + ε)pZH(τ∗)}

)1/p

,

where p, q > 1, 1/p+ 1/q = 1, and H is assumed to be close enough to 1
2 such that there

exist 0 < H < 1
2 < H < 1 with H ∈ [H,H]. Now, according to Proposition C.1, if we take

ε > 0, p > 1 small enough to satisfy (1 + ε)p < a, then the second term is finite. For the
finiteness of the first term, note that ZH(τ∗)−Z(τ∗) =

√
2RH(τ∗; 1)− a((τ∗)2H − τ∗) and

therefore, for some C > 0, we can bound∣∣∣ZH(τ∗)− Z(τ∗)

H − 1
2

∣∣∣(1+ε)q

≤ C
(∣∣∣RH(τ∗; 1)

H − 1
2

∣∣∣(1+ε)q

+
∣∣∣ (τ∗)2H − τ∗

H − 1
2

∣∣∣(1+ε)q
)
.
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Using the same argumentation as in the proof of Corollary 5.3(ii), for arbitrarily large
q > 1 we have

sup
H∈[H,H]

E

∣∣∣RH(τ∗; 1)

H − 1
2

∣∣∣(1+ε)q

<∞.

Using Eq. (5.9) we have

sup
H∈[H,H]

E

∣∣∣ (τ∗)2H − τ∗

H − 1
2

∣∣∣(1+ε)q

≤ E
(

2| log(τ∗)|(1 + (τ∗)2H)
)(1+ε)q

<∞,

where the finiteness for arbitrarily large q > 1 is the result of Proposition 5.1(ii).

Proof that Eq. (3.2) holds. Notice that for any t ∈ R+ it holds that

∂

∂H
eZH(t) =

√
2

[
∂

∂H
(BH(t)− at2H)

]
eZH(t)

=
√

2

(
B

(1)
H (t)− 2a√

2
· t2H log(t)

)
exp

(√
2BH(t)− at2H

)
.

Combining the results in (5.6) and (5.7), the Leibniz formula derived in (4.9), and the
fact that D′( 1

2 ) = 1, cf. (4.10), we obtain

P ′
1/2(T, a) = E

[√
2

(
X(τ) +X(1)(τ)− 2a√

2
· τ log(τ)

)
exp

(√
2X(τ)− aτ

)]
.

The rest of the proof is analogous to the third part of the proof of Theorem 3.1.

A Paley-Wiener-Zygmund representation of L2 stochastic
integrals

One of the core tools used in this contribution is the equivalence between MvN and
PWZ representation of the fractional Brownian field and its derivatives introduced in Sec-
tion 4. In this appendix we explain how to find the Paley-Wiener-Zygmund representation
of L2 stochastic integral for a general class of processes.

Define formally a stochastic process {ξ(t) : t ∈ R+}

ξ(t) := P1(t) + P2(t), P1(t) :=

∫ 0

−∞
ψ(t, s) dB(s), P2(t) :=

∫ t

0

φ(t, s) dB(s). (A.1)

For a moment we may think about the integrals in L2 sense. The processes P1 and P2

are well defined if∫ 0

−∞
ψ(t, s)2 ds <∞,

∫ t

−∞
φ(t, s)2 ds <∞, for all t ∈ R+. (A.2)

Suppose {B(t) : t ∈ R} is a Brownian motion on a probability space (Ω, E ,P). Let T <

0. For k = 1, 2, . . . let Mk := |dT2ke|. Define integral sums for P1(t, T ) :=
∫ 0

T
ψ(t, s) dB(s)

by

Pk,1(t, T ) :=

Mk−1∑
i=1

ψ
(
t,− i

2k

)(
B(− i

2k

)
−B

(
− i+1

2k

))
. (A.3)

Similarly, set Nk = bt2kc and define integral sums for P2(t) by

Pk,2(t) =

Nk−1∑
i=0

φ
(
t, i+1

2k

)(
B
(
i+1
2k

)
−B

(
i

2k

))
. (A.4)
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Derivatives of sup-functionals of fractional Brownian motion

Clearly we have

Pk,1(t, T )
L2

→ P1(t, T ) =

∫ 0

T

ψ(t, s) dB(s), and Pk,2(t)
L2

→ P2(t) =

∫ t

0

φ(t, s) dB(s).

(A.5)
We denote ψ′(t, s) = ∂

∂sψ(t, s) and φ′(t, s) = ∂
∂sφ(t, s). In what follows, we introduce the

following assumptions

(A) For each t > 0, the function s 7→ ψ(t, s) belongs to C1(−∞, 0) and there exist
constants C, ε > 0 such that

• |ψ(t, s)| ≤ C|s|−1/2+ε, |ψ′(t, s)| ≤ C|s|−3/2+ε, as s ↑ 0,
• |ψ(t, T )| ≤ C|T |−1/2−ε, |ψ′(t, T )| ≤ C|T |−3/2−ε, as T ↓ −∞.

(B) For each t > 0, the function s 7→ φ(t, s) belongs to C1[0, t) and there exist constants
C, ε > 0 such that

• |φ(t, s)| ≤ C|t− s|−1/2+ε, |φ′(t, s)| ≤ C|t− s|−3/2+ε, as s ↑ t.

Note that conditions (A) and (B) imply (A.2). Conditions (A) and (B) were formulated
having in mind ψ = f

(n)
H and φ = g

(n)
H , which were defined in (4.4).

Lemma A.1. Let functions ψ(t, s), φ(t, s) satisfy the assumptions (A) and (B) respectively.
Then, with ξ(t) defined in (A.1), for each t ≥ 0, ξ(t) = P̃1(t) + P̃2(t) a.s., where P̃1(t) =

−
∫ 0

−∞ ψ′(t, s)B(s) ds and P̃2(t) = φ(t, 0)B(t) +
∫ t

0
φ′(t, s)(B(t)−B(s)) ds.

Proof. Set Nk = b2ktc. Then, the partial sum Pk,2(t) in (A.4) can be rewritten as follows

Nk−1∑
i=0

φ
(
t, i+1

2k

)(
B
(
i+1
2k

)
−B

(
i

2k

))
=

Nk−1∑
i=1

(
φ
(
t, i

2k

)
− φ

(
t, i+1

2k

))
B
(
i

2k

)
+ φ

(
t, Nk

2k

)
B
(
Nk
2k

)
=

Nk−1∑
i=1

(
φ
(
t, i

2k

)
− φ

(
t, i+1

2k

))(
B
(
i

2k

)
−B(t)

)
+ φ

(
t, Nk

2k

)
B
(
Nk
2k

)
+B(t)

Nk−1∑
i=1

(
φ
(
t, i

2k

)
− φ

(
t, i+1

2k

))
.

Using the mean value theorem φ(t, i
2k

)− φ(t, i+1
2k

) = − 1
2k
φ′(t, θk,i), for θk,i ∈ ( i

2k
, i+1

2k
) and

hence the above equals to

1

2k

Nk−1∑
i=1

φ′(t, θk,i)
(
B(t)−B

(
i

2k

))
+B(t)φ

(
t, 1

2k

)
+ φ

(
t, Nk

2k

)(
B
(
Nk
2k

)
−B(t)

)
= P̃k,2(t).

Finally, under condition (B), as k →∞ we have

P̃k,2(t)→ P̃2(t) =

∫ t

0

φ′(t, s)(B(t)−B(s)) ds+ φ(t, 0)B(t) a.s.

On the way we use that B(t) is a realization of the Brownian motion, whose trajectories
are almost surely Hölder continuous, i.e. for every ε > 0 and compact set K ⊂ R, there
exists some C > 0 such that

|B(t)−B(s)| ≤ C|t− s|1/2−ε for all t, s ∈ K a.s. (A.6)
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Now, since the integral sums P̃k,2(t) converge in probability (also in L2) to P̃2(t), cf. (A.5),

therefore P2(t) =
∫ t

0
φ′(t, s)(B(t)−B(s)) ds+ φ(t, 0)B(t) a.s., which completes the proof

for the positive part.
Now let T < 0 and set Mk = |dT2ke|. The integral sums for P1(t, T ) in Eq. (A.3) can

be transformed to

P̃k,1(t, T ) =

Mk−1∑
i=1

ψ
(
t,− i

2k

)(
B
(
− i

2k

)
−B

(
− i+1

2k

))
= ψ

(
t,− 1

2k

)
B
(
− 1

2k

)
+

Mk−2∑
i=1

(
ψ
(
t,− i+1

2k

)
− ψ

(
t,− i

2k

))
B
(
− i

2k

)
− ψ

(
t,−Mk−1

2k

)
B
(
− Mk

2k

)
= ψ

(
t,− 1

2k

)
B
(
− 1

2k

)
− 1

2k

Mk−2∑
i=1

ψ′(t, θk,i)B
(
− i

2k

)
− ψ

(
t,−Mk−1

2k

)
B
(
− Mk

2k

)
,

for some θk,i ∈ (− i+1
2k
,− i

2k
). Now, under condition (A), and due to the Hölder continuity

of Brownian motion, cf. (A.6) we find that, as k →∞:

• ψ(t,− 1
2k

)B(− 1
2k

)→ 0 a.s.,

• ψ(t,−Mk−1
2k

)B(−Mk

2k
)→ ψ(t, T )B(T ) a.s.,

•
∑Mk−2
i=1

1
2k
ψ′(t, θk,i)B(− i

2k
)→

∫ 0

T
ψ′(t, s)B(s) ds a.s.

Therefore, as k →∞ we have

Pk,1(t, T )→ P̃1(t, T ) = −
∫ 0

T

ψ′(t, s)B(s) ds+ ψ(t, T )B(T ) a.s.

We emphasize that the condition (A) ensures the convergence of the integral around
s = 0. Finally, the condition (A) together with the property for Brownian motion (which
is implied by the law of iterated logarithm) that for every ε > 0 there exists C > 0 such
that |B(T )| ≤ C|T |1/2+ε for T ↓ −∞ almost surely, we have ψ(t, T )B(T ) → 0 a.s. for
T → −∞. Similarly it ensures the convergence of the integral around s = −∞. The
proof is completed.

B Proofs

Proof of Proposition 2.1. Notice that we may change the order of expectation and inte-
gration because the underlying functions are non-negative, and obtain

E

(∫ t

0

Y (t)− Y (t− s)
s

ds | τ(T ) = t, Y (T ) = y

)
=

∫ t

0

E
(
Y (t)− Y (t− s) | τ(T ) = t, Y (T ) = y

)
s

ds.

Furthermore, using the formula for the density of generalized Bessel bridge in (2.7) we
find that

I(t, y) =

∫ t

0

∫ ∞
0

s−1x · g(x, s; t, y) dxds

=
t3/2

y

∫ t

0

∫ ∞
0

x2

s5/2
√

2π(t− s)
e−

x2

2s + y2

2t ·
[
e−

(x−y)2
2(t−s) − e−

(x+y)2

2(t−s)

]
dxds

=
t3/2√
2πy

∫ t

0

∫ ∞
0

x2

s5/2
√
t− s

·
[
e
− 1

2

(
x
σ0
−yµ0

)2
− e−

1
2

(
x
σ0

+yµ0

)2]
dxds,
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where µ2
0 := s

(t−s)t , and σ2
0 := (t−s)s

t . Applying substitution z := σ0x, and w := s/t

afterwards yields.

I(t, y) =
t√
2πy

∫ 1

0

∫ ∞
0

(1− w)z2

w
·
[
e−

1
2 (z−yq(w)/

√
t)2 − e−

1
2 (z+yq(w)/

√
t)2
]

dzdw,

where q(w) :=
√

w
1−w . Substituting q := q(w) yields the result.

Next, we introduce a simple lemma. The intuition behind the proof is that, asymptot-
ically, as x ↓ 0 or x ↑ ∞, the absolute value of log(x) grows to infinity slower than any
power of x−1 or x respectively.

Lemma B.1. For every n ∈ Z+ and ε > 0 there exists C > 0 such that | logn(x)| ≤
C(xε + x−ε) for all x > 0.

Proof of Proposition 4.2. The law of iterated logarithm for Brownian motion implies that

lim sup
t→±∞

|B(t)|
|t|1/2+ε

= 0 a.s. (B.1)

for every ε > 0. Moreover, it is also known that paths of Brownian motion are Hölder
continuous almost surely on any bounded time interval, that is, for any ε > 0 there exist
finite random numbers Aεk, k ∈ Z+ such that

|B(t)−B(s)| ≤ Aεk|t− s|1/2−ε for all t, s ∈ [−k, k] a.s. (B.2)

From now on, let us fix a single trajectory of Brownian motion, which satisfies (B.1)
and (B.2) for all k ∈ Z+ and for some ε > 0 chosen at the end. Let us fix n ∈ N, H ′ ∈ (0, 1)

and t′ ∈ R. Given the representation (4.5), it suffices to show that

lim
(t,H)→(t′,H′)

∫ 0

−∞

[ ∂
∂s
f

(n)
H (t, s)

]
B(s)ds =

∫ 0

−∞

[ ∂
∂s
f

(n)
H′ (t′, s)

]
B(s)ds, (B.3)

lim
(t,H)→(t′,H′)

g
(n)
H (t, 0)B(t) = g

(n)
H′ (t

′, 0)B(t′), (B.4)

lim
(t,H)→(t′,H′)

∫ t

0

[ ∂
∂s
g

(n)
H (t, s)

]
(B(t)−B(s))ds =

∫ t′

0

[ ∂
∂s
g

(n)
H′ (t

′, s)
]
(B(t′)−B(s))ds.

(B.5)

Clearly, for each s ∈ R we have

lim
(t,H)→(t′,H′)

∂

∂s
f

(n)
H (t, s) =

∂

∂s
f

(n)
H′ (t′, s), and lim

(t,H)→(t′,H′)

∂

∂s
g

(n)
H (t, s) =

∂

∂s
g

(n)
H′ (t

′, s),

so (B.4) is satisfied.
We will now show that an integrable majorant for (B.3) exists in two domains: (i)

s ∈ [−s∗, 0), and (ii) s < −s∗, where s∗ := max{1, t′}. Consider case (i) s ∈ [−s∗, 0); we
have ∣∣∣∣ ∂∂sf (n)

H (t, s)

∣∣∣∣ ≤ n| logn−1(t− s)(t− s)H−
3
2 |+ |H − 1

2 | · | logn(t− s)(t− s)H−
3
2 |

+ n| logn−1(−s)(−s)H−
3
2 |+ |H − 1

2 | · | logn(−s)(−s)H−
3
2 |.

According to Lemma B.1, for every δ > 0 there exists C > 0 such that∣∣∣∣ ∂∂sf (n)
H (t, s)

∣∣∣∣ ≤ C ((t− s)H−3/2−δ + |s|H−3/2−δ
)
.
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Therefore, there exists C1, C2 > 0 such that for all (t,H) close enough to (t′, H ′) we have∣∣∣∣ ∂∂sf (n)
H (t, s)

∣∣∣∣ ≤ C1 + C2|s|H
′−3/2−δ.

for all −s∗ < s < 0. Moreover, using (B.2) with k = ds∗e we find that∣∣∣∣ ∂∂sf (n)
H (t, s)B(s)

∣∣∣∣ ≤ (C1 + C2|s|H
′−3/2−δ

)
Aεk|s|1/2−ε.

The upper bound above is integrable over s ∈ [−s∗, 0) when H ′ − δ − ε > 0, which
completes the proof of case (i). We now consider the case (ii) s < −s∗; we have∣∣∣∣ ∂∂sf (n)

H (t, s)

∣∣∣∣ ≤ n|FH(t, s;n− 1)|+ (H − 1
2 )|FH(t, s;n)|,

where FH(t, s;n) := logn(t − s)(t − s)H−
3
2 − logn(−s)(−s)H−

3
2 . Using the mean value

theorem we find that for s < −s∗, where recall that s∗ = max{1, t′}, we have

|FH(t, s;n)| ≤ t sup
s̃∈[−s,t−s]

∣∣∣∣n logn−1(s̃)(s̃)H−5/2 + (H − 3
2 ) logn(s̃)(s̃)H−5/2

∣∣∣∣
≤ t ·

(
n logn−1(t− s)(−s)H−5/2 + |H − 3

2 | · logn(t− s)(−s)H−5/2
)
.

Since s < −t′, then for all t sufficiently close to t′ we have t < −2s. Hence,

|FH(t, s;n)| ≤ t ·
(
n logn−1(−3s)(−s)H−5/2 + |H − 3

2 | · logn(−3s)(−s)H−5/2
)
.

According to Lemma B.1, for any δ > 0 and H close enough to H ′, the above is upper
bounded by C|s|H′+δ−5/2 for some C > 0 and all |s| ≥ s∗. Using (B.1) we thus find that
there exists some C ′ > 0 such that∣∣∣∣ ∂∂sf (n)

H (t, s)B(s)

∣∣∣∣ ≤ C ′|s|H′+δ−5/2|s|1/2+ε = C ′|s|H
′+δ+ε−2.

The upper bound above is an integrable function over s < −s∗ when H ′ + δ + ε < 1,
which completes the proof of case (ii).

It is left to show (B.5). Let η > 0 and let (t,H) be close enough to (t′, H ′) such that
|t′ − t| < η/2. We split the pre-limit integral (B.4) into two domains (i) s ∈ [0, t′ − η], and
(ii) s ∈ [t′ − η, t]. It is clear that

lim
(t,H)→(t′,H′)

∫ t′−η

0

[ ∂
∂s
g

(n)
H (t, s)

]
(B(t)−B(s))ds =

∫ t′−η

0

[ ∂
∂s
g

(n)
H′ (t

′, s)
]
(B(t′)−B(s))ds

for all η small enough by the Lebesgue dominated convergence theorem with dominant
being the supremum of [ ∂∂sg

(n)
H (t, s)](B(t)−B(s)) over s ∈ [0, t′ − η], which is uniformly

bounded for all (t,H) sufficiently close to (t′, H ′). It thus suffices to show that

lim
η→0

lim
(t,H)→(t′,H′)

∫ t

t′−η

[ ∂
∂s
g

(n)
H (t, s)

]
(B(t)−B(s))ds = 0.

Since we have∣∣∣∣ ∂∂sg(n)
H (t, s)

∣∣∣∣ ≤ n| logn−1(t− s)(t− s)H−
3
2 |+ |H − 1

2 | · | logn(t− s)(t− s)H−
3
2 |,
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then according to Lemma B.1, for any ε > 0 we can find a constant C such that∣∣∣∣ ∂∂sg(n)
H (t, s)

∣∣∣∣ ≤ C|t− s|H− 3
2−ε.

The above combined with the Hölder continuity of the Brownian trajectory, with n =

dt′e+ 1, for any δ > 0 there exists some constant C ′ > 0 such that∣∣∣∣[ ∂∂sg(n)
H (t, s)

]
(B(t)−B(s))

∣∣∣∣ ≤ C ′|t− s|H− 3
2−ε+1/2−δ.

Since |t′ − t| < η/2, this gives us∣∣∣∣∫ t

t′−η

[ ∂
∂s
g

(n)
H (t, s)

]
(B(t)−B(s))ds

∣∣∣∣ ≤ C ′ ∫ |t−t′|+η
0

sH−1−ε−δds ≤ C ′

H − ε− δ
(2η)H−ε−δ

so after taking ε+ δ small enough, we find that the above converges to 0, as η → 0.

Proof of Proposition 4.3. Let us fix n ∈ N, H ∈ (0, 1), and t ∈ R+. Given the representa-
tion (4.5), it suffices to show that

lim
∆→0

∫ 0

−∞

∂
∂sf

(n)
H+∆(t, s)− ∂

∂sf
(n)
H (t, s)

∆
·B(s)ds =

∫ 0

−∞

[ ∂
∂s
f

(n+1)
H (t, s)

]
B(s)ds, (B.6)

lim
∆→0

∂
∂sg

(n)
H+∆(t, 0)− ∂

∂sg
(n)
H (t, 0)

∆
= g

(n+1)
H (t, 0), (B.7)

lim
∆→0

∫ t

0

∂
∂sg

(n)
H+∆(t, s)− ∂

∂sg
(n)
H (t, s)

∆
· (B(t)−B(s))ds=

∫ t

0

[ ∂
∂s
g

(n+1)
H (t, s)

]
(B(t)−B(s))ds.

(B.8)

Clearly for each s ∈ R we have

lim
∆→0

∂
∂sf

(n)
H+∆(t, s)− ∂

∂sf
(n)
H (t, s)

∆
=

∂

∂s
f

(n+1)
H (t, s),

lim
∆→0

∂
∂sg

(n)
H+∆(t, s)− ∂

∂sg
(n)
H (t, s)

∆
=

∂

∂s
g

(n+1)
H (t, s),

so (B.7) is satisfied. Using the mean value theorem we find that, for every s < 0 there
exists H̃s ∈ [min{H,H + ∆},max{H,H + ∆}] such that

∂
∂sf

(n)
H+∆(t, s)− ∂

∂sf
(n)
H (t, s)

∆
= f

(n+1)

H̃s
(t, s).

Using the representation above, the proof of (B.6) is now analogous the the proof
of (B.3) of Proposition 4.2. Similarly, for every s > 0 there exists Ĥs ∈ [min{H,H +

∆},max{H,H + ∆}] such that

∂
∂sg

(n)
H+∆(t, s)− ∂

∂sg
(n)
H (t, s)

∆
= g

(n+1)

Ĥs
(t, s).

Using the above, the proof of (B.8) is now analogous to the proof of (B.5) of Proposi-
tion 4.2.

Proof of Lemma 4.5. Since RH(t;N) has stationary increments; cf. Proposition 4.4,
then E|RH(t;N)−RH(s;N)|2 = VarRH(|t− s|;N), so it suffices to bound the variance
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VarRH(t;N) for all t > 0. We have

RH(t;N) =

∫ 0

−∞

fH(t, s)−
N−1∑
n=0

f
(n)
1/2(t, s)

n!
(H − 1

2 )n

 dB(s)

+

∫ t

0

gH(t, s)−
N−1∑
n=0

g
(n)
1/2(t, s)

n!
(H − 1

2 )n

 dB(s).

Thus, Var
(
RH(t;N)

)
= I1 + I2, where

I1 :=

∫ ∞
0

fH(t,−s)−
N−1∑
n=0

f
(n)
1/2(t,−s)

n!
(H − 1

2 )n

2

ds

I2 :=

∫ t

0

gH(t, s)−
N−1∑
n=0

g
(n)
1/2(t, s)

n!
(H − 1

2 )n

2

ds.

(B.9)

Now, let H := min{ 1
2 , H}, H := max{ 1

2 , H}. Using Taylor’s theorem with Lagrange
remainder we find that

I1 ≤ (H − 1
2 )2N 1

(N !)2

∫ ∞
0

sup
H̃∈[H,H]

(
f

(N)

H̃s
(t,−s)

)2

ds

I2 ≤ (H − 1
2 )2N 1

(N !)2

∫ t

0

sup
H̃∈[H,H]

(
g

(N)

H̃
(t, s)

)2

ds.

Consider the integral in the upper bound for I1 above on two different domains: (i)
s ∈ (0, t], and (ii) s ∈ (t,∞). In case (i) we have

sup
H̃∈[H,H]

(
f

(N)

H̃
(t,−s)

)2

= sup
H̃∈[H,H]

(
logN (t+ s)(t+ s)H̃−

1
2 − logN (s)sH̃−

1
2

)2

≤ 2

(
sup

H̃∈[H,H]

log2N (t+ s)(t+ s)2H̃−1 + sup
H̃∈[H,H]

log2N (s)s2H̃−1

)
.

Now, using Lemma B.1 and the bound above, we find that for every ε > 0 there exists
C > 0 such that

sup
H̃∈[H,H]

(
f

(N)

H̃
(t,−s)

)2

≤ C

(
sup

H̃∈[H,H]

s2H̃−1−ε + sup
H̃∈[H,H]

s2H̃−1+ε

)
≤ 2C

(
s2H−1−ε + s2H−1+ε

)
.

This gives us that there exists some constant C∗ > 0 such that∫ t

0

sup
H̃∈[H,H]

(
f

(N)

H̃
(t,−s)

)2

ds ≤ C∗
(
t2H−ε + t2H+ε

)
,

which completes case (i). For case (ii), using the mean value theorem we find that

f
(N)
H (t,−s) ≤ t · sup

s̃∈[s,t+s]

∣∣∣∣ ∂∂s logN (s)sH−
1
2

∣∣∣
s=s̃

∣∣∣∣
≤ t · sup

s̃∈[s,t+s]

∣∣∣∣N logN−1(s̃)(s̃)H−
3
2

∣∣∣∣+ t · sup
s̃∈[s,t+s]

∣∣∣∣(H − 1
2 ) logN (s̃)(s̃)H−

3
2

∣∣∣∣ .
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Again, using Lemma B.1 and the bound above, we find that for every ε > 0 there exists
C > 0 such that

f
(N)
H (t,−s) ≤ Ct ·

(
sup

s̃∈[s,t+s]

(s̃)H−
3
2−

ε
2 + sup

s̃∈[s,t+s]

(s̃)H−
3
2 +

ε
2

)
,

so for sufficiently small ε, the suprema above are attained at s̃ = s and thus

f
(N)
H (t,−s) ≤ Ct

(
sH−

3
2−

ε
2 + sH−

3
2 +

ε
2

)
.

Furthermore, this gives us that there exists some constant C∗ > 0 such that∫ ∞
t

sup
H̃∈[H,H]

(
f

(N)

H̃
(t,−s)

)2

ds ≤ C∗ sup
H̃∈[H,H]

t2(t2H̃−2−ε + t2H̃−2+ε)

≤ 2C∗(t
2H−ε + t2H+ε),

which concludes the proof of case (ii) and shows that there exists C > 0 such that

I1 ≤ (H − 1
2 )2N C

(N !)2
(t2H−ε + t2H+ε)

for all t > 0, H ∈ [H,H]. The upper bound for I2 from (B.9) can be found using analogous
method, as the upper bound for I1 in case (i) above.

Proof of Proposition 4.4. Let t, s ∈ R+, then

E(η(t)− η(s))2 =

k∑
i=1

k∑
j=1

aiajE
(
X

(ni)
Hi

(t)−X(ni)
Hi

(s)
)(
X

(nj)
Hj

(t)−X(nj)
Hj

(s)
)
.

Without the loss of generality, assume that t > s ≥ 0. It suffices to show that each term of
the double sum above depends only on t− s. Now, notice that for any H ∈ (0, 1), n ∈ Z+

and t > s > 0 we have

X
(n)
H (t)−X(n)

H (s) =

∫ s

−∞

[
g

(n)
H (t, w)− g(n)

H (s, w)
]
dB(w) +

∫ t

s

g
(n)
H (t, w)dB(w),

thus, for any H,H ′ ∈ (0, 1), n, n′ ∈ Z+, and t > s we obtain

E
(
X

(n)
H (t)−X(n)

H (s)
)(
X

(n′)
H′ (t)−X(n′)

H′ (s)
)

=

∫ s

−∞

(
g

(n)
H (t, w)− g(n)

H (s, w)
)(
g

(n′)
H′ (t, w)− g(n′)

H′ (s, w)
)

dw

+

∫ t

s

g
(n)
H (t, w)g

(n′)
H′ (t, w) dw,

After applying the substitution z := w − s to both integrals above we find that

E
(
X

(n)
H (t)−X(n)

H (s)
)(
X

(n′)
H′ (t)−X(n′)

H′ (s)
)

=

∫ 0

−∞
f

(n)
H (t− s, z)f (n′)

H′ (0, z) dz +

∫ t−s

0

g
(n)
H (t− s, z)g(n′)

H′ (t− s, z) dz,

whose value depends only on t− s.
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C Auxiliary results on extremes of Gaussian processes

We present some useful properties of extremes of Gaussian processes, which are also
of independent interest.

Proposition C.1. Suppose that 0 < H1 < H2 ≤ 1.
(i) For a ∈ R, T ∈ R+ and α ∈ R

E

(
exp

(
α

(
sup
t∈[0,T ]

√
2BH2

(t)− at2H2

)))

≤ E

(
exp

(
α

(
sup

t∈[0,TH2/H1 ]

√
2BH1

(t)− at2H1

)))
<∞.

(ii) For a > 1 and α < a

E

(
exp

(
α

(
sup

t∈[0,∞)

√
2BH2(t)− at2H2

)))

≤ E

(
exp

(
α

(
sup

t∈[0,∞)

√
2BH1

(t)− at2H1

)))
<∞.

Proof. We note that Var(BH2
(t)) = Var

(
BH1

(
tH2/H1

))
and

Cov(BH2
(s), BH2

(t)) =
1

2

(
s2H2 + t2H2 − |s− t|2H2

)
≥ 1

2

(
s2H2 + t2H2 − |sH2/H1 − tH2/H1 |2H1

)
(C.1)

= Cov
(
BH1

(sH2/H1), BH1
(tH2/H1)

)
,

where inequality (C.1) is due to the superadditivity of the function f(x) = xH2/H1 (recall
that H1 < H2).

Ad (i). From the Slepian inequality [1, Corollary 2.4], we get for each u ∈ R

P

(
sup
t∈[0,T ]

√
2BH2

(t)− at2H2 > u

)
≤ P

(
sup
t∈[0,T ]

√
2BH1

(tH2/H1)− at2H2 > u

)

= P

(
sup

t∈[0,TH2/H1 ]

√
2BH1

(t)− at2H1 > u

)
.

Using that by (2.3) in [1], for H = H1, H2 and any T ∈ R+

lim
u→∞

log
(
P
(

supt∈[0,T ]

√
2BH(t)− at2H > u

))
u2

= − 1

2T 2H
,

and hence for each a ∈ R and α ∈ R

E

(
exp

(
α

(
sup
t∈[0,T ]

√
2BH(t)− at2H

)))
<∞,

completes the proof of case (i).
Ad (ii). In view of Theorem 1 in [22], for any H ∈ (0, 1)

lim
u→∞

log
(
P
(

supt∈[0,∞)

√
2BH(t)− at2H > u

))
u

= −a.
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Thus, for all α < a

E

(
exp

(
α

(
sup

t∈[0,∞)

√
2BH1(t)− at2H1

)))
<∞.

The rest of the proof follows by the same argument as the proof of (i).

Lemma C.2. Let W (t) be a centered Gaussian process with stationary increments,
bounded sample paths a.s. and W (0) = 0 a.s. Then, for any n ∈ N there exists C(n) > 0

such that

E sup
t∈[0,T ]

|W (t)|n ≤ C(n) ·

(
Tn+2(VarW (1))n/2 + T 2E

(
sup
t∈[0,1]

W (t)
)n)

.

Proof of Lemma C.2. Without loss of generality, we suppose that T ∈ N. We note that

E sup
t∈[0,T ]

|W (t)|n ≤ T
T−1∑
i=0

E sup
t∈[i,i+1]

|W (t)|n.

Then, for i = 0, ..., T − 1

E sup
t∈[i,i+1]

|W (t)|n ≤ E

(
|W (i)|+ sup

t∈[i,i+1]

|W (t)−W (i)|

)n

≤ max{1, 2n−1}

(
E|W (i)|n + E sup

t∈[0,1]

|W (t)|n
)
,

where we used the stationarity of increments of W (t). Moreover, for i ≥ 1

E(W 2(i)) = E

(
i−1∑
k=0

W (k + 1)−W (k)

)2

≤ i
i−1∑
k=0

E(W 2(1)) = E(W 2(1))i2

and since E|W (i)|n = Cn · (E|W (i)|2)n/2, where Cn := E|N (0, 1))|n = 2n/2Γ((n+1)/2)√
π

, then

E|W (i)|n ≤ Cn(VarW (1))n/2in.

Finally, we have

E sup
t∈[0,T ]

|W (t)|n ≤ 2 max{1, 2n−1}T

(
T−1∑
i=1

(
Cn(VarW (1))n/2in + E sup

t∈[0,1]

|W (t)|n
))

,

which completes the proof.

Lemma C.3. Let {W (t); t ∈ [0, 1]} be a centered Gaussian process. If there exist A > 0,
H ∈ (0, 1) such that E|W (t)−W (s)|2 ≤ A|t−s|2H for all t, s ∈ [0, 1], then for every n ∈ Z+

there exists a constant C(n) > 0 such that

E sup
t∈[0,1]

|W (t)|n ≤ C(n) ·An/2(1 + µn−1(H) + µn(H))

where µ(H) := E supt∈[0,1]BH(t), with {BH(t) : t ∈ R+} a fractional Brownian motion
with Hurst parameter H.
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Proof of Lemma C.3. When n = 1 then the above holds by virtue of Sudakov-Fernique
inequality [1, Theorem 2.9] with C(1) = 2, that is we have

m := E sup
t∈[0,1]

|W (t)| ≤ E sup
t∈[0,1]

{W (t)}+ E sup
t∈[0,1]

{−W (t)} ≤ 2A1/2µ(H). (C.2)

Now let n > 1. Using Borell inequality [1, Theorem 2.1], with σ2 := supt∈[0,1]EW
2(t) we

have

E sup
t∈[0,1]

|W (t)|n =

∫ ∞
0

P

(
sup
t∈[0,1]

|W (t)|n > u

)
du

=

∫ mn

0

P

(
sup
t∈[0,1]

|W (t)| > u1/n

)
du+

∫ ∞
mn
P

(
sup
t∈[0,1]

|W (t)| > u1/n

)
du.

The first term above is bounded by mn. Using Borell inequality, we can bound the second
term above with∫ ∞

mn
exp

{
− (u1/n −m)2

2σ2

}
du = nσ

∫ ∞
0

(σx+m)n−1e−x
2/2dx

≤ nσ
∫ ∞

0

max{1, 2n−2}((σx)n−1 +mn−1)e−x
2/2dx

≤ n(σn + σmn−1) max{1, 2n−2}
∫ ∞

0

(xn−1 + 1)e−x
2/2dx,

where in the first line we used the substitution x := (u1/n −m)/σ. Now, let C ′(n) :=

nmax{1, 2n−2}
∫∞

0
(xn−1 + 1)e−x

2/2dx, then we have

E sup
t∈[0,1]

|W (t)|n ≤ mn + C ′(n)(σn + σmn−1)

By the assumption, we have σ2 ≤ A and also m ≤ 2A1/2µ(H) due to Eq. (C.2) we obtain

E sup
t∈[0,1]

|W (t)|n ≤ (2A1/2µ(H))n + C ′(n)(An/2 +A1/2(2A1/2µ(H))n−1)

= An/2
(
C ′(n) + 2µn(H) + C ′(n)(2µ(H))n−1)

)
.

The claim follows with C(n) := max{2, 2n−1C ′(n)}.

Lemma C.4. Let W (t) be a centered Gaussian process with stationary increments and

τ ≥ 0 be a random time. If there exist γ, β, C > 0 satisfying P(τ > T ) ≤ Ce−γT
β

for all
T ∈ R+, then for each n ∈ N there exists C ′ > 0 depending only on n, γ, β, C such that

E|W (τ)|n ≤ C ′
(

(VarW (1))n/2 + E
(

sup
t∈[0,1]

W (t)
)n)

.

Proof. See that

E|W (τ)|n =

∞∑
k=0

E
(
|W (τ)|n; τ ∈ [k, k + 1])

)
≤
∞∑
k=0

E
(

sup
t∈[0,k+1]

|W (t)|n; τ ≥ k)
)

≤
∞∑
k=0

[
E
(

sup
t∈[0,k+1]

|W (t)|2n
)
P
(
τ ≥ k)

)]1/2
,
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where in the last line we used Hölder’s inequality. Using Lemma C.2 we further find that
there exists a constant C ′ > 0 such that

E|W (τ)|n ≤ C ′
(

(VarW (1))n/2 + E
(

sup
t∈[0,1]

W (t)
)n)

·
∞∑
k=0

(k + 1)n+1e−
γ
2 k

β

,

which completes the proof because the sum above is finite.

D Calculation of integrals in Corollary 3.3

In the proof of Corollary 3.3 one needs to handle complicated integrals. For conve-
nience we present all these calculations here.

Proof of Corollary 3.3(i). Since

p(t, y;T, 0) =
y exp{−y2/(2t)}
πt3/2

√
T − t

,

cf. (2.5) (see also [6, 2.1.13.4]), then according to Theorem 3.1 we have M ′
1/2(T, 0) =

I1 − I2, where

I1 :=

∫ T

0

∫ ∞
0

y(1 + log(t))
y exp{−y

2

2t }
πt3/2

√
T − t

dydt, I2 :=

∫ T

0

∫ ∞
0

I(t, y)
y exp{−y

2

2t }
πt3/2

√
T − t

dydt.

Till this end we show that

I1 =

√
2T

π
· (log(T ) + 2 log(2)− 1), I2 =

√
2T

π
(1 + 2 log(2)) , (D.1)

which completes the proof. We first calculate I1. After substitution y =
√
tz we have

I1 =

√
2

π

∫ T

0

1 + log(t)√
T − t

dt

∫ ∞
0

z2

√
2π
e−

z2

2 dz =

√
2

π
·

(
2
√
T +

∫ T

0

log(t)√
T − t

dt

)
· 1

2
.

Now, using substitution t = Ts we obtain∫ T

0

log(t)√
T − t

dt

=
√
T

∫ 1

0

log(sT )√
1− s

ds = 2
√
T log(T ) +

√
T

∫ 1

0

log(s)√
1− s

ds =
√
T (2 log(T ) + 4 log(2)− 4),

where we used that
∫ 1

0
x log(x)√

1−x2
dx = log(2)− 1; see formula 4.241-2 in [20]. This leads to

the formula for I1 in (D.1).
We now calculate I2. Using e.g. [28, 5-(A6)] we find that for any b ∈ R we have∫ ∞

0

x2e−
(x+b)2

2 dx = −be−b
2/2 + (1 + b2)

√
π/2 · erfc(b/

√
2).

Since for any x ∈ R we have erfc(−x)− erfc(x) = 2 erf(x), then for any b ∈ R∫ ∞
0

x2

(
e−

(x−b)2
2 − e−

(x+b)2

2

)
dx = 2be−b

2/2 + (1 + b2)
√

2π · erf(b/
√

2). (D.2)

Now, see that

I2 =

T∫
0

∞∫
0

∞∫
0

∞∫
0

√
2tx2

yq(1 + q2)2
√
π

(
e−(x−yq/

√
t)2/2 − e−(x+yq/

√
t)2/2

) y exp{−y
2

2t }
πt3/2

√
T − t

dxdqdydt.
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The substitution y =
√
tz yields

I2 :=

√
2

π3/2

T∫
0

1√
T − t

dt ·
∞∫

0

∞∫
0

∞∫
0

x2

q(1 + q2)2

(
e−

(x−zq)2
2 − e−

(x+zq)2

2

)
e−

z2

2 dxdqdz.

Using (D.2) we obtain∫ ∞
0

x2

(
e−

(x−zq)2
2 − e−

(x+zq)2

2

)
dx = 2zqe−z

2q2/2 + (1 + z2q2)
√

2π · erf(zq/
√

2)

and thus

I2 :=

√
2T

π
· 2

π

∞∫
0

1

q(1 + q2)2
(J1(q) + J2(q) + J3(q))dq,

where using the tables of integrals [28, 4.3.4 and 4.3.6] and the fact that π−2 arctan(1/x)=

2 arctan(x), we find that

J1(q) := 2q

∫ ∞
0

ze−z
2(1+q2)/2dz =

2q

1 + q2
,

J2(q) :=
√

2π

∫ ∞
0

erf(zq/
√

2)e−z
2/2dz = 2 arctan(q),

J3(q) := q2
√

2π

∫ ∞
0

z2 erf(zq/
√

2)e−
z2

2 dz = 2q2

(
arctan(q) +

q

1 + q2

)
.

Finally, we have∫ ∞
0

J1(q)

q(1 + q2)2
dq = 2

∫ ∞
0

1

(1 + q2)3
dq∫ ∞

0

J2(q)

q(1 + q2)2
dq = 2

∫ ∞
0

arctan(q)

q(1 + q2)2
dq∫ ∞

0

J3(q)

q(1 + q2)2
dq = 2

∫ ∞
0

q arctan(q)

(1 + q2)2
dq + 2

∫ ∞
0

q2

(1 + q2)3
dq.

Using the identity
arctan(q)

q(1 + q2)2
=

arctan(q)

q(1 + q2)
− q arctan(q)

(1 + q2)2
, (D.3)

we obtain

I2 =

√
2T

π
· 4

π

(∫ ∞
0

1

(1 + q2)2
dq +

∫ ∞
0

arctan(q)

q(1 + q2)
dq

)
=

√
2T

π
· 4

π

(π
4

+
π

2
log(2)

)
,

where the value of second integral was found in 4.535-7 in [20]. We recognize that the
result above matches the formula for I2 in (D.1). This completes the proof.

Proof of Corollary 3.3(ii). Since, for a > 0 we have

p(t, y,∞, a) =

√
2 ay exp

{
− (y+ta)2

2t

}
t3/2
√
π

,
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see (2.6), then according to Theorem 3.1 we have M ′
1/2(∞, a) = I1 − I2, where

I1 :=

∫ ∞
0

∫ ∞
0

(y(1 + log(t)) + at log(t))

√
2 ay exp

{
− (y+ta)2

2t

}
t3/2
√
π

dydt,

I2 :=

∫ ∞
0

∫ ∞
0

I(t, y)

√
2 ay exp

{
− (y+ta)2

2t

}
t3/2
√
π

dydt.

At the end, we show that

I1 =
3

2a
− 1

a

(
γE − log(2a2)

)
, I2 =

3

2a
, (D.4)

which yields the result. First we calculate I1. After substitution y = tz, we obtain

I1 =

√
2

π
· a
∫ ∞

0

∫ ∞
0

(z + (z + a) log(t)) · zt3/2 exp
{
− (z+a)2

2 · t
}

dtdz

=

√
2

π
· a
∫ ∞

0

(
z2J1(z) + z(z + a)J2(z)

)
dz,

where

J1(z) :=

∫ ∞
0

t3/2 exp
{
−t · (z+a)2

2

}
dt, J2(z) :=

∫ ∞
0

log(t) · t3/2 exp
{
−t · (z+a)2

2

}
dt.

The first integral can easily be calculated using the formula
∫∞

0
t3/2e−µtdt = Γ(5/2)

µ5/2 , while

the second integral can be calculated using the formula 4.352-1 in [20] (with ν = 5/2,
µ > 0) which for convenience we recall below∫ ∞

0

log(t)t3/2e−µtdt =
Γ(5/2)

µ5/2

(
8

3
− γE − 2 log(2)− log(µ)

)
. (D.5)

After straightforward algebraic manipulations we arrive at

I1 =

√
2

π
· a
∫ ∞

0

(
3z2
√

2π

(a+ z)5
−
√

2πz

(a+ z)4
· (−8 + 3γE + log(8) + 6 log(a+ z))

)
dz.

The calculation of the integrals of rational functions above is standard. It is left to find
the integral of the product of rational function and logarithm, i.e.∫ ∞

0

z

(a+ z)4
log(a+ z)dz = a−2

∫ ∞
0

y

(1 + y)4
(log(a) + log(1 + y)) dy

where we used the substitution z = ay. Again, the integral of the rational function can
be found, in particular, we have

∫∞
0

y
(1+y)4 dy = 1

6 , so it is left to find∫ ∞
0

y log(1 + y)

(1 + y)4
dy =

∫ 1

0

w(1− w) log(w)dw = − 5

36
,

where we substituted w = (1 + y)−1 and used formula 4.253-1 in [20]. Finally, simple
algebraic manipulations yield the value of I1 in (D.4).

We now calculate the value of I2. After the substitutions y = tz and x =
√
tw we

obtain:

I2 =
2a

π

∫ ∞
0

∫ ∞
0

∫ ∞
0

w2(J1(w, z, q)− J2(w, z, q))

q(1 + q2)2
dwdzdq,
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where

J1(w, z, q) =

∫ ∞
0

t2 · e−t·
(a+z)2+(w−qz)2

2 dt, J2(w, z, q) =

∫ ∞
0

t2 · e−t·
(a+z)2+(w+qz)2

2 dt.

Since
∫∞

0
t2e−µtdt = µ−3Γ(3), then we obtain

I2 =
32a

π

∫ ∞
0

∫ ∞
0

J ′1(z, q)− J ′2(z, q)

q(1 + q2)2
dzdq,

where

J ′1(z, q) =

∫ ∞
0

w2

((a+ z)2 + (w − qz)2)3
dw, J ′2(z, q) =

∫ ∞
0

w2

((a+ z)2 + (w + qz)2)3
dw.

Functions J ′1(z, q) and J ′2(z, q) are definite integrals of rational functions, so it is well-
known how to find them. Below, we write the explicit formula for I2

I2 =
8a

π

∫ ∞
0

∫ ∞
0

3qz(a+ z) + ((a+ z)2 + 3q2z2) arctan( qz
a+z )

q(1 + q2)2(a+ z)5
dqdz.

After the substitution z = ay we obtain

I2 =
8

πa

∫ ∞
0

∫ ∞
0

3qy(1 + y) + ((1 + y)2 + 3q2y2) arctan( qy
1+y )

q(1 + q2)2(1 + y)5
dqdy,

and further substituting z = y
1+y we find that

I2 =
8

πa

∫ 1

0

(1− z) · (I1(z) + I2(z) + I3(z)) dz,

where

I1(z) := 3z

∫ ∞
0

1

(1 + q2)2
dq =

π

4
· 3z,

I2(z) :=

∫ ∞
0

arctan(qz)

q(1 + q2)2
dq =

π

4
·
(

2 log(1 + z)− z

1 + z

)
,

I3(z) := 3z2

∫ ∞
0

q arctan(qz)

(1 + q2)2
dq =

π

4
· 3z3

1 + z
,

where the formula for I2(z) was found using (D.3) and formulas 4.535-7 and 4.535-11 in
[20], while I3(z) follows from 4.535-11 in [20]. This gives us

I2 =
2

a

∫ 1

0

(
3z(1− z) + 2(1− z) log(1 + z) +

z(1− z)(3z2 − 1)

1 + z

)
dz

=
2

a
·
(

1

2
+ log(16)− 5

2
+

11

4
− log(16)

)
=

3

2a
,

which completes the proof.

Proof of Corollary 3.3(iii). The following calculations are very similar to the ones did in
the proof of Corollary 3.3(ii). For a > 1 we have

p(t, y,∞, a/
√

2) =
ay exp

{
− (y+ta/

√
2)2

2t

}
t3/2
√
π

,
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see (2.6). Therefore, according to Theorem 3.2 we have P ′
1/2(∞, a) = I1 − I2, where

I1 :=

√
2

π
· a
∫ ∞

0

∫ ∞
0

(y(1 + log(t))− a√
2
t log(t))e

√
2y ·

y exp
{
− (y+ta/

√
2)2

2t

}
t3/2

dydt,

I2 :=

√
2

π
· a
∫ ∞

0

∫ ∞
0

I(t, y)e
√

2y ·
y exp

{
− (y+ta/

√
2)2

2t

}
t3/2

dydt.

In the following acoth(·) is the inverse hyperbolic cotangent function, i.e. for |z| > 1

acoth(z) =
1

2

(
log
(
1 + 1

z

)
− log

(
1− 1

z

))
=

1

2
log
(
z+1
z−1

)
.

Till this end, we show that

I1 =
a
(
3− 2a− 4(a− 1)2 acoth(1− 2a)

)
(a− 1)2

, I2 =
a (1− 4(a− 1) acoth(1− 2a))

(a− 1)2
(D.6)

which yields the result. First we calculate I1. After substitution y = tz, we obtain

I1 :=

√
2

π
· a
∫ ∞

0

∫ ∞
0

(z + (z − a√
2
) log(t)) · zt3/2 exp

{
− (z+a/

√
2)2−2

√
2z

2 · t
}

dtdz.

Define z2
1 := (z + a√

2
)2 − 2

√
2z = (z + a−2√

2
)2 + 2(a− 1). We have

I1 =

√
2

π
· a
∫ ∞

0

(
z2J1(z) + z(z − a√

2
)J2(z)

)
dz,

where

J1(z) :=

∫ ∞
0

t3/2e−t·z
2
1/2dt, J2(z) :=

∫ ∞
0

log(t) · t3/2e−t·z
2
1/2dt.

The integrals J1 and J2 can be calculated explicitly in the same way as in the proof of
Corollary 3.3(ii); see Eq. (D.5). After some algebraic manipulations this gives us that I1

equals to

2a

∫ ∞
0

(
z2(11− (3γE + 3 log(2) + 6 log(z1)))

z5
1

− az(8− (3γE + 3 log(2) + 6 log(z1)))√
2z5

1

)
dz.

Finally, we calculate the quantity above using the definite integrals below∫ ∞
0

z

z5
1

dz =
1

3
√

2(a− 1)2a∫ ∞
0

z2

z5
1

dz =
1

6(a− 1)2∫ ∞
0

z log(z1)

z5
1

dz =
8− 3 log(2)− 3a+ 3(a− 2)a log

(
a
a−1

)
+ 6 log(a)

18
√

2(a− 1)2a∫ ∞
0

z2 log(z1)

z5
1

dz =
4 + 6a− 6 log(2) + 6(2 + (a− 2)a) log(a− 1)− 6(a− 2)a log(a)

72(a− 1)2
,

which, after algebraic manipulations yields the formula for I1 in (D.6).
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We now proceed to calculate the value of I2. After substitution y = tz and x =
√
tw

we obtain:

I2 =
2a

π

∫ ∞
0

∫ ∞
0

∫ ∞
0

w2(J1(w, z, q)− J2(w, z, q))

q(1 + q2)2
dwdzdq,

where

J1(w, z, q) =

∫ ∞
0

t2 · e−t·
(
z+

a√
2

)2

−2
√

2z+(w−qz)2

2 dt,

J2(w, z, q) =

∫ ∞
0

t2 · e−t·
(
z+

a√
2

)2

−2
√

2z+(w+qz)2

2 dt.

Since
∫∞

0
t2e−µt = µ−3Γ(3), then

I2 =
32a

π

∫ ∞
0

∫ ∞
0

∫ ∞
0

J ′1(z, q)− J ′2(z, q)

q(1 + q2)2
dzdq,

where

J ′1(z, q) =

∫ ∞
0

w2

(z2
1 + (w − qz)2)3

dw, J ′2(z, q) =

∫ ∞
0

w2

(z2
1 + (w + qz)2)3

dw,

with z2
1 := (z + a√

2
)2 − 2

√
2z = (z + a−2√

2
)2 + 2(a− 1). Functions J ′1(z, q) and J ′2(z, q) are

definite integrals of rational functions, so it is well-known how to find them. Now, we
write

I2 =
8a

π

∫ ∞
0

∫ ∞
0

3qzz1 + (z2
1 + 3q2z2) arctan( qzz1 )

q(1 + q2)2z5
1

dqdz.

We thus have

I2 =
8a

π

∫ ∞
0

I1(z) + I2(z) + I3(z)

z5
1

dz,

where

I1(z) := 3zz1

∫ ∞
0

1

(1 + q2)2
dq =

π

4
· 3zz1,

I2(z) := z2
1

∫ ∞
0

arctan( qzz1 )

q(1 + q2)2
dq =

π

4
· z2

1

(
2 log(1 + z

z1
)− z

z + z1

)

I3(z) := 3z2

∫ ∞
0

q arctan( qzz1 )

(1 + q2)2
dq =

π

4
· 3z3

z + z1

where the formula from I2(z) follows from (D.3) and formulas 4.535-7 and 4.535-11 in
[20], while I3(z) was found using formula 4.535-11. This gives us

I2 = 2a ·

(
3

∫ ∞
0

z

z4
1

dz + 2

∫ ∞
0

log(1 + z
z1

)

z3
1

dz −
∫ ∞

0

z

z3
1(z + z1)

dz + 3

∫ ∞
0

z3

z5
1(z + z1)

dz

)
.
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Finally, we calculate the quantity above using the definite integrals below

∫ ∞
0

z

z4
1

dz =
2
√
a− 1 + (a− 2)

(
atan

(
a−2

2
√
a−1

)
− π

2

)
8(a− 1)3/2

,

∫ ∞
0

log(1 + z
z1

)

z3
1

dz =
−a+ 4(a− 1) log(2) + (a− 2)

√
a− 1

(
atan

(
a−2

2
√
a−1

)
− π

2

)
(a− 1)a2

− (a− 2)2 acoth(1− 2a)

(a− 1)a2
,

∫ ∞
0

z

z3
1(z + z1)

dz =
a− (a− 2)

√
a− 1

(
atan

(
a−2

2
√
a−1

)
− π

2

)
(a− 1)a2

−
4(a− 1)

(
acoth(1− 2a) + log(2)

)
a2

,

∫ ∞
0

z3

z5
1(z + z1)

dz=
2a(−3a2+17a−12)− 3(a− 2)

√
a− 1(a2 + 8a−8)

(
atan

(
a−2

2
√
a−1

)
− π

2

)
24(a− 1)2a2

−
4
(

acoth(1− 2a) + log(2)
)

a2
,

which, after some algebraic manipulations yields (D.6) for I2. This completes the
proof.
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