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Abstract

In this paper, we study the spatial averages of the solution to the parabolic Anderson
model driven by a space-time Gaussian homogeneous noise that is colored in both
time and space. We establish quantitative central limit theorems (CLT) of this spatial
statistics under some mild assumptions, by using the Malliavin-Stein approach. The
highlight of this paper is the obtention of rate of convergence in the colored-in-time
setting, where one can not use Ito calculus due to the lack of martingale structure.
In particular, modulo highly technical computations, we apply a modified version
of second-order Gaussian Poincaré inequality to overcome this lack of martingale
structure and our work improves the results by Nualart-Zheng (Electron. J. Probab.
2020) and Nualart-Song-Zheng (ALEA, Lat. Am. J. Probab. Math. Stat. 2021).
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1 Introduction

In the recent years, the study of spatial averages of the solution to certain stochastic
partial differential equations (SPDEs) has received growing attention. The paper [19],
being the first of its kind, investigated the nonlinear stochastic heat equation on R+ ×R
driven by a space-time white noise Ẇ and established central limit theorems for the
spatial averages of the solution. Consider the stochastic heat equation on R+×Rd driven
by a Gaussian noise Ẇ : {

∂u
∂t = 1

2∆u+ σ(u)Ẇ

u(0, •) = 1,
(1.1)
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Quantitative CLTs for the PAM driven by colored noises

where the nonlinearity is encoded into a deterministic Lipschitz continuous function
σ : R→ R. In Duhamel formulation (mild formulation), the equation (1.1) is equivalent
to

u(t, x) = 1 +

∫ t

0

∫
R

pt−s(x− y)σ(u(s, y))W (ds, dy), (1.2)

where the stochastic integral against W (ds, dy) is an extension of the Ito integral, and
pt(x) = (2πt)−1/2e−|x|

2/(2t) for (t, x) ∈ R+ × R denotes the heat kernel. Suppose also
σ(1) 6= 0, which excludes the trivial case u(t, x) ≡ 1. One of the main results in [19] can
be roughly stated as follows. Let

FR(t) =

∫ R

−R
(u(t, x)− 1)dx

and let dTV(X,Y ) denote the total variation distance between two real random variables
X and Y (see (2.11)). Then, it holds that for any t > 0, there is some constant Ct that
does not depend on R, such that the following quantitative central limit theorem (CLT)
holds:

dTV

(
FR(t)/σR(t), Z

)
≤ CtR−1/2, (1.3)

where Z ∼ N (0, 1) is a standard normal random variable and σR(t) =
√

Var(FR(t)) > 0

for each t, R ∈ (0,∞). The key ideas for obtaining (1.3) are summarized as follows:

(i) By the mild formulation (1.2) and applying stochastic Fubini’s theorem, one can
write

FR(t) =

∫
[0,t]×R

(∫ R

−R
pt−s(x− y)dx

)
σ(u(s, y))W (ds, dy) =: δ(Vt,R),

where δ denotes the Skorohod integral (the adjoint of the Malliavin derivative
operator; see Section 2.1) and Vt,R is the random kernel given by

Vt,R(s, y) = σ(u(s, y))

∫ R

−R
pt−s(x− y)dx.

(ii) Via standard computations, one can obtain σR(t) ∼ constant×R1/2 as R ↑ ∞.

(iii) The Malliavin-Stein bound (c.f. [19, Proposition 2.2]), being the most crucial
ingredient, indicates that

dTV

(
σR(t)−1FR(t), Z

)
≤ 2

σR(t)2

√
Var
(
〈DFR(t), Vt,R〉L2(R+×R)

)
, (1.4)

where DFR(t) denotes the Malliavin derivative of FR(t), which is a random function
and belongs to the space L2(R+ ×R) under the setting of [19]. Then the obtention
of (1.3) follows from a careful analysis of the inner product 〈DFR(t), Vt,R〉L2(R+×R).

We remark here that for a general nonlinearity σ, the computations mentioned in
points (ii) and (iii) are made possible through applications of the Clark-Ocone formula
and Burkholder-Davis-Gundy inequality, which are valid only in the white-in-time setting.
The noise Ẇ that is white in time, naturally gives arise to a martingale structure so
that Ito calculus techniques come into the picture and enable the careful analysis of the
variance term in (1.4).

The above general strategy has also been exploited in several other papers, see
[5, 6, 7, 20, 22, 24] for results on stochastic heat equations and see [4, 9, 33] for results
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on stochastic wave equations, to name a few. The common feature of these papers is
that they consider the case where the driving Gaussian noise is white in time so that the
aforementioned strategy of [19] is working very well. To the best of our knowledge, the
colored-in-time setting has only been considered in [30, 31] for heat equations and in [1]
for wave equations.

In the present paper we are interested in the following parabolic Anderson model
(that means σ(u) = u) on R+ × Rd driven by a Gaussian noise Ẇ , which is colored in
both time and space, with the flat initial condition:{

∂u
∂t = 1

2∆u+ u � Ẇ
u(0, •) = 1,

(1.5)

where � denotes the Wick product (c.f. [12, Section 6.6]). Here we allow the noise to
be colored in time. This requires us to take σ(u) = u, because the solution theory for
nonlinear stochastic heat equations driven by colored-in-time noise is not available.

Let us now introduce some notation to better facilitate the discussion as well as to
state our main results. Fix a positive integer d. Heuristically, Ẇ = {Ẇ (t, x), (t, x) ∈
R+ × Rd} will be a centered Gaussian family of random variables with homogeneous
covariance structure given by

E[Ẇ (t, x)Ẇ (s, y)] = γ0(t− s)γ1(x− y),

where γ0, γ1 are (generalized) functions that satisfy one of the following two conditions:

Hypothesis 1. (d ≥ 1) γ0 : R → [0,∞] is a nonnegative-definite locally integrable
function and γ1 ≥ 0 is the Fourier transform of some nonnegative tempered measure µ
on Rd (called the spectral measure), satisfying Dalang’s condition (see [8]),∫

Rd

µ(dξ)

1 + |ξ|2
< +∞. (1.6)

Hypothesis 2. (d = 1) There are H0 ∈ [ 1
2 , 1) and H1 ∈ (0, 1

2 ) with H0 +H1 >
3
4 , such that

γ0(t) =

{
δ(t), H0 = 1

2 ,

|t|2H0−2, 1
2 < H0 < 1,

where δ is the Dirac delta function at 0 and γ1 is the Fourier transform of µ(dξ) =

cH1
|ξ|1−2H1dξ with cH1

= π−1
∫
R

(1− cosx)|x|2H1−2dx; see (2.8) for the choice of cH1
.

In order to define rigorously the noise, we need some definitions. Let C∞c (R+) and
C∞c (Rd) denote the set of real smooth functions with compact support on R+ and Rd,
respectively. Then, we define Hilbert spaces H0 and H1 to be the completion of C∞c (R+)

and C∞c (Rd) with respect to the inner products

〈φ0, ψ0〉H0
=

∫
R2

+

dsdtγ0(t− s)φ0(t)ψ0(s)

and

〈φ1, ψ1〉H1
=

∫
R2d

dxdyγ1(x− y)φ1(x)ψ1(y)

=

∫
Rd
µ(dξ)φ̂1(ξ)ψ̂1(−ξ),

respectively, where φ̂1(ξ) =
∫
Rd
dxe−iξxφ1(x) stands for the Fourier transform of φ1.
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Set H = H0 ⊗H1, equipped with the inner product

〈φ, ψ〉H =

∫
R2

+

dsdt γ0(t− s)
∫
R2d

dxdyγ1(x− y)φ(t, x)ψ(s, y), (1.7)

which can be also written using the Fourier transform as

〈φ, ψ〉H =

∫
R2

+

dsdt γ0(t− s)
∫
Rd
µ(dξ)φ̂(t, ξ)ψ̂(s,−ξ), (1.8)

where φ̂(t, ξ) and ψ̂(t, ξ) denote the Fourier transform in the spatial variable.
We also introduce the following hypotheses that will be used to state our main results.

Hypothesis 3a.
∫ a

0

∫ a
0
γ0(r − v)drdv > 0 for all a > 0 and 0 < ‖γ1‖L1(Rd) <∞.

Hypothesis 3b.
∫ a

0

∫ a
0
γ0(r − v)drdv > 0 for all a > 0 and γ1(z) = |z|−β , z ∈ Rd for some

β ∈ (0, 2 ∧ d).

We remark here that the restriction for β in Hypothesis 3b ensures that Dalang’s
condition (1.6) is satisfied. Also, we will call

the case under Hypotheses 1 and 3a, and the case under Hypotheses 1 and 3b

the regular cases, since the spatial correlation γ1 is a real-valued function as opposed
to the setting under Hypothesis 2. Meanwhile, we call the case under Hypothesis 2 the
rough case, because the spatial correlation corresponds to fractional Brownian motion
with Hurst index H1 ∈ (0, 1/2) (thus rougher than the standard Brownian motion).

With these preliminaries, we consider a centered Gaussian family of random variables
W = {W (h), h ∈ H} with covariance structure

E[W (φ)W (ψ)] = 〈φ, ψ〉H

for all φ, ψ ∈ H. The family W is called an isonormal Gaussian process over H. Heuristi-
cally, the noise

Ẇ (t, x1, . . . , xd) =
∂d+1W (t, x)

∂t∂x1 · · · ∂xd
is the (formal) derivative of W in time and space and the mild formulation of equa-
tion (1.5) is given by

u(t, x) = 1 +

∫ t

0

∫
Rd
pt−s(x− y)σ(u(s, y))W (ds, dy), (1.9)

where the stochastic integral against W (ds, dy) is a Skorohod integral; see e.g. [29,
Section 1.3.2]. It has been proved that under either Hypothesis 1 or 2, the parabolic
Anderson model (1.5) admits a unique mild solution; see [13, 15, 18, 25, 34].

Due to the temporal correlation in time of the driving noise, we do not have the
playground to apply martingale techniques for obtaining central limit theorem for the
spatial statistics

FR(t) =

∫
BR

(
u(t, x)− 1

)
dx, (1.10)

where BR = {x ∈ Rd, |x| ≤ R}. Fortunately, because of the explicit chaos expansion
(see (2.5) and (2.6)), one can express FR(t)/σR(t), with σ2

R(t) = Var
(
FR(t)

)
, as a series

of multiple stochastic integrals. This series falls into the framework of applying the
so-called chaotic CLT. The chaotic CLT roughly means that once we have some control
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of the tail in the series, it would be enough to show the convergence of each chaos,
which can be further proved by using the fourth moment theorems; see [27, Section 6.3]
for more details. In fact, in the papers [30, 31], the authors investigated the Gaussian
fluctuations of FR(t) along this idea and proved the following results.

Theorem 1.1. Assume Hypothesis 1 or 2, and let u be the solution to the parabolic Ander-
son model (1.5). Recall the definition of FR(t) from (1.10) and let σR(t) =

√
Var(FR(t)).

Then, the following results hold.
(1) Assume Hypotheses 1 and 3a. Then, for any fixed t ∈ (0,∞), as R ↑ ∞,

σR(t) ∼ Rd/2 and FR(t)
σR(t) converges in law to N (0, 1),

where
aR ∼ bR means 0 < lim inf

R↑∞
aR/bR ≤ lim sup

R↑∞
aR/bR < +∞.

See [31, Theorem 1.6].
(2) Assume Hypotheses 1 and 3b. Then, for any fixed t ∈ (0,∞), as R ↑ ∞,

σR(t) ∼ Rd−
β
2 and FR(t)

σR(t) converges in law to N (0, 1).

See [31, Theorem 1.7].
(3) Under the hypothesis 2, it holds for any fixed t ∈ (0,∞) that as R ↑ ∞,

σR(t) ∼ R1/2 and FR(t)
σR(t) converges in law to N (0, 1).

See [30, Theorem 1.1 and Proposition 1.2].

Remark 1.2. More precisely, additionally to Theorem 1.1-(3), we know from [30, (1.5)]
that

lim
R↑∞

R−1Var(FR(t)) = 2

∫
R

dzE
[
g(Iz)

]
, (1.11)

where g(z) = ez − z− 1 is strictly positive except for z = 0. Then the above limit vanishes
if and only if almost surely Iz = 0 for almost every z ∈ R. Taking into account the explicit
expression of Iz = I1,2

t,t (z) and equation (1.8) in [30, Proposition 1.3], we can conclude

that the limit in (1.11) is strictly positive and thus σR(t) ∼ R1/2. Indeed, by (1.8) therein
and L2(Ω)-continuity, E[u(t, x)u(t, 0)] = E

[
exp(Ix)

]
> 1 for x near 0 so that with positive

probability Ix 6= 0 for x near zero.

Note that the above CLT results are of qualitative nature and there are also functional
version of these results, where the limiting objects are centered Gaussian process with
explicit covariance structures. Both CLT in cases (1) and (3) are chaotic, meaning that
each chaos1 contributes to the Gaussian limit, while CLT in case (2) is not chaotic. More
precisely, in case (2) the first chaotic component, which is Gaussian, dominates the
asymptotic behavior as R ↑ ∞; see the above references for more details. Here we point
out that the application of the chaotic CLT does not yield the rate of convergence, that
is, the error bound like (1.3) is not accessible through this method. Our paper is devoted
to deriving quantitative versions of the above CLT results as stated in the following
theorem.

Theorem 1.3. Let the assumptions in Theorem 1.1 hold and recall cases (1)–(3) therein.
Then, we have for any fixed t, R ∈ (0,∞),

dTV

(
FR(t)/σR(t), Z

)
≤ Ct ×


R−d/2 in case (1)

R−β/2 in case (2)

R−1/2 in case (3),

(1.12)

1To be more precise, in case (3), the first chaotic component has negligible contribution in the limit while
each of the other chaotic components has a Gaussian limit; see [30, Page 910].
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where the constant Ct > 0 is independent of R and Z ∼ N (0, 1) denotes a standard
Gaussian random variable.

Remark 1.4. (i) Note that the convergence rate for cases (1) and (3) in Theorem 1.3 can
be written as O(R−

d
2 ), yet for case (2) the rate is of a different form. As in the classical

CLT for partial sums of i.i.d. random variables, the rate of convergence is roughly of the
order of the reciprocal of limiting standard deviation. This explains the rate O(R−

d
2 ) in

case (1) and (3): More precisely,

(i-a) in case (1), each chaotic component of FR(t)/σR(t) contributes to the Gaussian
limit with limiting variance of order Rd.

(i-b) in case (3), that is when the spatial correlation is given by that of a fractional
Brownian noise with Hurst index H1 <

1
2 (see Hypothesis 2), it has been pointed

out in [30, Page 910] that due to the fact that the associated spectral density
vanishes at zero, the first chaotic component of FR(t) is asymptotically negligible
compared to other chaoses (each of them has limiting variance of order R), then
the rate O(R−1/2) is consistent with the CLT heuristic.

In case (2), the spatial correlation kernel γ1(z) = |z|−β with β ∈ (0, 2 ∧ d), see Hypothe-
sis 3b. Equivalently, we can consider instead γ1(z) = |z|β−d for d− 2 < β < d, then the
limiting variance of FR(t) will be of order Rd+β, and the resulting rate of convergence
is O(R−(d−β)/2), so that we see the dependency on the dimension d now. Note that in
this case (2), the first chaotic component of FR(t) is dominant with limiting variance of
order R2d−β. Thus it is not surprising at all to see the rate in case (2) to be in a form
other than O(R−d/2); see [30, Page 910] for the particular situation (d, β) = (1, 2− 2H1)

with 1/2 < H1 < 1, and also [31, Sections 3.4 and 3.5] for more details.
(ii) In our settings, the temporal correlation function γ0 is locally integrable and nontrivial.
Then, on a fixed finite time interval, its L1 norm is of the same order as in the case of
white-in-time case where the temporal correlation function is the Dirac delta function
at zero. This will essentially lead to the fact that the temporal correlation structure
in our settings does not play a role in the order of the limiting variance of FR(t). See
Lemma 2.1 and the embedding inequality (2.9) for the technical reasons of the matching
upper bounds of limiting variances in both white, and colored-in time settings. For the
matching lower bounds limiting variances in both settings, it is enough to understand
it from bounds like e.g. [31, (3.1)]. Of course, the orders of lower and upper bounds
are the same. Even if in our study of the spatial averages, the temporal correlations do
not explicitly appear in the convergence rate, it is still necessary to “compensate” the
roughness in space (H0 +H1 >

3
4 ), which ensures the existence and uniqueness of the

solution to parabolic Anderson model (1.5). A recent work [25] relaxes the restriction to
2H0 + H1 >

5
4 . It will be interesting to extend our quantitative CLT to the rough case

with 2H0 +H1 >
5
4 .

In a recent paper [1], the authors face the problem of establishing a quantitative CLT
for the hyperbolic Anderson model driven by a colored noise. A basic ingredient in this
paper is the so-called second-order Gaussian Poincaré inequality (see Proposition 2.3).
With this inequality in mind, it is not difficult to see that, in order to obtain the desired
rate of convergence, we need to equip ourselves with fine Lp-bounds of the Malliavin
derivatives valued at (almost) every space-time points. This will be our approach in the
regular case, and the majority of the effort will be allocated to show these Lp-bounds,
with which we will apply Proposition 2.3 to get the quantitative CLT.

However, in the rough case the spatial correlation γ1 is a generalized function
and if one understands the inner product 〈•, •〉H using the Fourier transform (1.8),
Proposition 2.3 does not fit. This is a highly nontrivial difficulty the we overcome by
taking advantage of an equivalent formulation of the inner product 〈•, •〉H based on
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fractional calculus (see Section 2.2). Starting from such an equivalent expression,
we derive in the rough case another version of the second-order Gaussian Poincaré
inequality (see Proposition 2.4) that is better adapted to our purpose. We also refer the
readers to Remark 2.5 for a detailed discussion.

Let us complete this section with a few more remarks on (quantitative) CLT in other
settings.

(i) The authors of [30] study the situation where the noise W is colored in space-time
R+ ×R with the spectral density ϕ satisfying a modified Dalang’s condition and
the concavity condition:∫

R

ϕ(x)2

1 + x2
dx < +∞ and ∃κ ∈ (0,∞) such that ϕ(x+ y) ≤ κ(ϕ(x) + ϕ(y))

for all x, y ∈ R. Using the chaotic CLT, they are able to establish the CLT results
of qualitative nature. It is not clear to us how to derive the moment estimates for
Malliavin derivatives in this setting. A more intrinsic problem is that unlike in our
rough case, we are not aware of any equivalent real-type expression for the inner
product of the underlying Hilbert space H and thus we do not see how to put the
potential moment estimates in use.

(ii) In a recent paper [32], the spatial ergodicity for certain nonlinear stochastic wave
equations with spatial dimension not bigger than 3 is established under some mild
assumptions. The condition on the driving noise W can be roughly summarized
as follows: W is white in time, the spatial correlation satisfies Dalang’s condition
and the spectral measure has no atom at zero. The authors of [4, 9, 33] established
the corresponding (quantitative) CLTs in dimensions 1 or 2. The obtention of
CLT in dimension three has been open for a while until Ebina solved it in [11]
by first refining the arguments in [32]. The key difficulty in 3D is the lack of a
precise estimate of the Malliavin derivative Du(t, x) of the solution, which shall be
a random measure supported on some sphere; by going through an intermediate
step of using Picard iterations, the CLT result in [11] is essentially of qualitative
nature. So the quantitative CLT for the stochastic wave equation in dimension 3 is
still open.

(iii) Some recent results related to the spatial average of parabolic and hyperbolic
Anderson model with time-independent noises can be found in e.g. [2, 3].

The rest of the paper is organized as follows: Section 2 contains some preliminaries
that will be used in this paper. We study the regular cases in Section 3 and leave the
rough case to Section 4.

2 Preliminaries and technical lemmas

In this section, we provide some preliminaries and useful lemmas. Let us first
introduce some notation that will be used frequently in this paper. Let n be a positive
integer, we make use of notation xn = (x1, . . . , xn) ∈ Rnd and tn = (t1, . . . , tn) ∈ Rn+.
Given xn ∈ Rnd, we write xk:n ∈ Rn−k+1 short for (xk, . . . , xn) with k = 1, . . . , n, and
tk:n ∈ Rn−k+1

+ is defined in the same way. Let 0 ≤ s < t <∞. We put Ts,tn = {sn ∈ Rn+ :

s < s1 < · · · < sn < t} and Ttn = T0,t
n . We use c, c1, c2, and c3 for some positive constants

which may vary from line to line. Finally, we write A1 . A2 if there exists a constant c
such that A1 ≤ cA2.
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2.1 Wiener chaos and parabolic Anderson model

Let H be a Hilbert space of (generalized) functions on R+×R, and let W = {W (h), h ∈
H} be an isonormal Gaussian process over H. Denote by F = σ(W ) the smallest σ-algebra
generated by W . Then, any F -measurable and square integrable random variable F
can be unique expanded into a series of multiple Ito-Wiener integrals (see [29, Theorem
1.1.2]),

F = E(F ) +

∞∑
n=1

In(fn), (2.1)

where for n = 1, 2, . . . , In(fn) is the multiple Ito-Wiener integral of fn, which is a
symmetric function on (R+ ×Rd)n, meaning

fn ∈ H�n =
{
f ∈ H⊗n, f(tn,xn) = fn(tσ(1), . . . , tσ(n), xσ(1), . . . , xσ(n)),

for all permutation σ on {1, . . . , n}
}
.

(2.2)

In the space-time white noise case, In(fn) can be understood as the n-folder iterate
Ito-Walsh’s integral (see [36]),

In(fn) = n!

∫
0<t1<···<tn<∞

∫
Rn
fn(tn,xn)W (dt1, dx1) · · ·W (dtn, dxn).

For any n, we denote by Hn the n-th Wiener chaos of W , that is the collection of
random variables of the form F = In(fn), with fn ∈ H�n. In any fixed Wiener chaos Hn,
the following inequality of hypercontractivity (see [27, Corollary 2.8.14]) holds

‖F‖p ≤ (p− 1)n/2‖F‖2, (2.3)

for p ≥ 2 and for all n = 1, 2, . . . and F ∈ Hn.
Assume Hypothesis 1. Set X = H when γ0 = δ. Then, X = L2(R+;H1), and we have

the following lemmas that are very helpful in Section 3.2.

Lemma 2.1 ([1, Inequality (2.13)]). For any nonnegative function f ∈ X⊗n supported in
([0, t]×Rd)n, we have

‖f‖2H⊗n ≤ Γnt ‖f‖2X⊗n ,

where Γt :=
∫

[−t,t] γ0(s)ds.

Lemma 2.2 ([29, Proposition 1.1.2] and [1, Section 2]). Let m,n ≥ 1 be integers and let
f and g in X�n and X�m respectively. Then,

IXn (f)IXm(g) =

n∧m∑
r=0

r!

(
m

r

)(
n

r

)
IXn+m−2r

(
f ⊗r g),

where IXn denotes the the multiple Ito-Wiener integral with respect to an isonormal
Gaussian process over X and f ⊗r g denotes the r-th contraction between f and g,
namely, an element in Xn+m−2r defined by(

f ⊗r g
)
(tn−r,xn−r, sm−r,ym−r) =

〈
f
(
tn−r,xn−r, •

)
, g
(
sm−r,ym−r, •

)〉
L2(Rr+;H⊗r1 )

.

In particular, if in addition f, g have disjoint temporal support2, then

IXn (f)IXm(g) = IXn+m(f ⊗ g) (2.4)

and IXn (f), IXm(g) are independent.

2This means f = 0 outside (J ×Rd)n and g = 0 outside (Jc ×Rd)m for some J ⊂ R+. Note that for f, g
non-symmetric having disjoint temporal support, the equality (2.4) still holds true.
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In the rest of this subsection, we provide the definition for the solution to the parabolic
Anderson model (1.5). Let u = {u(t, x) : (t, x) ∈ R+×Rd} be a σ(W )-measurable random
field such that E(u(t, x)2) <∞ for all (t, x) ∈ R+ ×Rd. Then, due to (2.1), we can write

u(t, x) = E(u(t, x)) +

∞∑
n=1

In(fn(•, t, x)) = E(u(t, x)) +

∞∑
n=1

In(ft,x,n(•)),

for all (t, x) ∈ R+ × Rd, where fn : (R+ × Rd)n+1 → R and for any (t, x) ∈ R+ × Rd,
ft,x,n = fn(•, t, x) ∈ H�n (see (2.2)). Then, u is said to be Skorohod integrable with
respect to W , if the following series is convergent in L2(Ω),

δ(u) =

∫ ∞
0

∫
Rd
u(t, x)W (dt, dx) =

∫ ∞
0

∫
Rd
f0(t, x)W (dt, dx) +

∞∑
n=1

In+1(f̃n),

where f̃n denotes the symmetrization of fn in (R+ ×Rd)n+1. Additionally, u is said to be
a (mild) solution to the parabolic Anderson model (1.5), if for every (t, x) ∈ R+ ×R, as a
random field with parameters (s, y), pt−s(x− y)u(s, y)1[0,t](s) is Skorohod integrable and
the following equation holds almost surely,

u(t, x) = 1 +

∫ t

0

∫
Rd
pt−s(x− y)u(s, y)W (ds, dy).

It has been proved (see [16, Section 4.1]) that u is a solution to (1.5), if and only if it
has the following Wiener chaos expansion

u(t, x) = 1 +

∞∑
n=1

In(ft,x,n), (2.5)

where the integral kernels ft,x,n are given by

ft,x,n(sn,xn) =
1

n!
pt−sσ(n)

(x− xσ(n)) · · · psσ(2)−sσ(1)(xσ(2) − xσ(1)), (2.6)

with σ the permutation of {1, . . . , n} such that 0 < sσ(1) < · · · < sσ(n) < t and pt(x) being
the heat kernel in Rd. The chaos expansion (2.5) and the expression (2.6) will be used
frequently in this paper.

2.2 Fractional Sobolev spaces and an embedding theorem

In this subsection, we give a basic introduction to fractional Sobolev spaces. They
are closely related to the Hilbert space H1 under Hypothesis 2. We also provide an
embedding theorem for H0. These will be used in Section 4. For a more detailed account
on applications of this topic to SPDEs, we refer the readers to papers [13, 14, 17] and
the references therein.

Following the notation in [10], given parameters s ∈ (0, 1) and p ≥ 1, the fractional
Sobolev space W s,p(R) is the completion of C∞c (R) with the norm

‖φ‖W s,p =
(
‖φ‖pLp + [φ]pW s,p

) 1
p ,

where [•]W s,p denotes the Gagliardo (semi)norm

[φ]W s,p =
(∫

R2

dxdy
|φ(x)− φ(y)|p

|x− y|1+sp

) 1
p

. (2.7)
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In particular, if p = 2, W s,2 turns out to be a Hilbert space. By using the Fourier
transformation, one can write (c.f. [10, Proposition 3.4])

[φ]2W s,2 = C(s)

∫
R

dξ|ξ|2s|φ̂(ξ)|2, with C(s) = π−1

∫
R

1− cos(ζ)

|ζ|1+2s
dζ.

Here the constant C(s) is slightly different from that in [10], because we use another
version of the Fourier transformation. Therefore, assuming Hypothesis 2, we see
immediately that

‖φ‖2H1
= cH1

∫
R

dξ|ξ|1−2H1 |φ̂(ξ)|2 = [φ]2
W

1
2
−H1,2

. (2.8)

In this paper, we will use both representations of the norm in H1 via the Fourier
transformation and the Gagliardo formulation.

In the next part of this subsection, we introduce an embedding property for the Hilbert
spaceH0. Assume Hypothesis 2 with H0 ∈ ( 1

2 , 1), thanks to the Hardy-Littlewood-Sobolev
inequality, there exist a continuous embedding L1/H0(R+) ↪→ H0 (see [26, Theorem 1.1]),
namely, there exists a constant cH0

depending only on H0 such that

|〈f, g〉H0 | ≤ cH0‖f‖L1/H0 ‖g‖L1/H0 = cH0

(∫
R2

+

dsdt|f(t)g(s)|
1
H0

)H0

(2.9)

for all f, g ∈ H0. Combining this fact and Cauchy-Schwarz’s inequality on the Hilbert
space H1, we can show that for all H0 ∈ [ 1

2 , 1),∣∣〈φ, ψ〉H∣∣ ≤ ∫
R2

+

dsdt γ0(t− s)
∣∣〈φ(t, •), ψ(s, •)〉H1

∣∣
≤
∫
R2

+

dsdt γ0(t− s)
∥∥φ(t, •)

∥∥
H1
×
∥∥ψ(s, •)

∥∥
H1

≤ cH0‖φ‖L1/H0 (R+;H1)‖ψ‖L1/H0 (R+;H1).

By iteration, we can write∣∣〈φ, ψ〉H⊗n ∣∣ ≤ cnH0
‖φ‖L1/H0 (Rn+;H⊗n1 )‖ψ‖L1/H0 (Rn+;H⊗n1 ) (2.10)

for all φ, ψ ∈ H⊗n and n = 1, 2, 3, . . . .

2.3 Second-order Gaussian Poincaré inequalities

In this subsection, we provide two versions of the second-order Gaussian Poincaré
inequality (see [28, Theorem 1.1] for the first version). As stated in Section 1, they will be
used in estimating the total variance distance in regular and rough cases respectively.

Denote by D the Malliavin differential operator (see [29, Section 1.2]). Let D2,4 stand
for the set of twice Malliavin differentiable random variables F with

‖F‖42,4 =‖F‖44 +
∥∥‖DF‖H∥∥4

4
+
∥∥‖D2F‖H⊗H

∥∥4

4

=E[F 4] + E
[
‖DF‖4H

]
+ E

[
‖D2F‖4H⊗H

]
<∞.

We denote by D2,4
∗ the set of random variables F ∈ D2,4 such that we can find

versions of the derivatives DF and D2F , which are measurable functions on R+ ×Rd
and (R+ ×Rd)2, respectively such that |DF | ∈ H and |D2F | ∈ H⊗ H almost surely.

Let F and G be random variables. The total variance distance between F and G is
defined by

dTV(F,G) = sup{|µ(A)− ν(A)|, A ⊂ R is Borel measurable}, (2.11)

EJP 27 (2022), paper 120.
Page 10/43

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP847
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Quantitative CLTs for the PAM driven by colored noises

where µ, ν are the probability laws of F and G respectively.
The next proposition cited from [1, Proposition 1.8] will be used in the regular case.

Proposition 2.3. Assume Hypothesis 1. Let F ∈ D2,4
∗ be a random variable with mean

zero and standard deviation σ ∈ (0,∞). Then

dTV

(
F/σ,Z

)
≤ 4

σ2

√
A,

where Z ∼ N (0, 1) and

A :=

∫
R6

+×R6d

drdr′dsds′dθdθ′dzdz′dwdw′dydy′γ0(θ − θ′)γ0(s− s′)γ0(r − r′)

× γ1(z − z′)γ1(w − w′)γ1(y − y′)
∥∥Dr,zDθ,wF

∥∥
4

×
∥∥Ds,yDθ′,w′F

∥∥
4

∥∥Dr′,z′F
∥∥

4

∥∥Ds′,y′F
∥∥

4
.

Inspired by [35, Theorem 2.1], we also have the following proposition, which will be
used in the rough case.

Proposition 2.4. Assume Hypothesis 2. Let F ∈ D2,4
∗ be a random variable with mean

zero and standard deviation σ ∈ (0,∞). Then,

dTV

(
F/σ,Z

)
≤ 2
√

3

σ2

√
A,

where Z ∼ N (0, 1) and

A :=

∫
R6

+

dsds′dθdθ′drdr′γ0(s− s′)γ0(θ − θ′)γ0(r − r′)

×
∫
R6

dydy′dzdz′dwdw′|y − y′|2H1−2|z − z′|2H1−2|w − w′|2H1−2

× ‖Dr′,zF −Dr′,z′F‖4‖Dθ′,wF −Dθ′,w′F‖4
×
∥∥Dr,zDs,yF −Dr,zDs,y′F −Dr,z′Ds,yF +Dr,z′Ds,y′F

∥∥
4

×
∥∥Dθ,wDs′,yF −Dθ,wDs′,y′F −Dθ,w′Ds′,yF +Dθ,w′Ds′,y′F

∥∥
4
. (2.12)

Proof. We begin with the Malliavin-Stein bound3

dTV

(
F/σ,Z

)
≤ 2

σ2

√
Var
(
〈DF,−DL−1F 〉H

)
with L−1 denoting the pseudo-inverse of the Ornstein-Uhlenbeck operator. Denote by
Pt the Ornstein-Uhlenbeck semigroup. Then, following the arguments verbatim in [1,
Appendix 2], we have

Var
(
〈DF,−DL−1F 〉H

)
≤2E

∫ ∞
0

dte−t
〈
D2F ⊗1 D

2F, Pt(DF )⊗ Pt(DF )
〉
H⊗2

+ 2E

∫ ∞
0

dte−2t
〈
Pt(D

2F )⊗1 Pt(D
2F ), DF ⊗DF

〉
H⊗2 , (2.13)

where the two terms on the right-hand side can be dealt with in the same manner. In
what follows, we only estimate the second term. Put

g(r, z, θ, w) : = Pt(Dr,zD•F )⊗1 Pt(Dθ,wD•F )

=

∫
R2

+

dsds′γ0(s− s′)
∫
R2

dydy′|y − y′|2H1−2

× Pt
(
Dr,zDs,yF −Dr,zDs,y′F

)
Pt
(
Dθ,wDs′,yF −Dθ,wDs′,y′F

)
,

3See [27, Theorem 5.1.3] and also equation (1.26) and footnote 4 in [1], where the latter reference points
out that we do not need to assume the existence of density for F .
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where we have used the expression (2.7) for the inner product in H1. With this notation
we can write〈

Pt(D
2F )⊗1 Pt(D

2F ), DF ⊗DF
〉
H⊗2 = (g ⊗1 DF )⊗1 (DF )

=

∫
R4

+

dθdθ′drdr′γ0(θ − θ′)γ0(r − r′)

×
∫
R4

dzdz′dwdw′|z − z′|2H1−2|w − w′|2H1−2(Dr′,zF −Dr′,z′F )

× (Dθ′,wF −Dθ′,w′F )
[
g(r, z, θ, w)− g(r, z′, θ, w)− g(r, z, θ, w′) + g(r, z′, θ, w′)

]
=

∫
R6

+

dsds′dθdθ′drdr′γ0(s− s′)γ0(θ − θ′)γ0(r − r′)

×
∫
R6

dydy′dzdz′dwdw′|y − y′|2H1−2|z − z′|2H1−2|w − w′|2H1−2

× (Dr′,zF −Dr′,z′F )(Dθ′,wF −Dθ′,w′F )

× Pt
(
Dr,zDs,yF −Dr,zDs,y′F −Dr,z′Ds,yF +Dr,z′Ds,y′F

)
× Pt

(
Dθ,wDs′,yF −Dθ,wDs′,y′F −Dθ,w′Ds′,yF +Dθ,w′Ds′,y′F

)
.

Therefore, by using Hölder inequality and the contraction property of Pt on L4(Ω), we
get

2E

∫ ∞
0

dte−2t
〈
Pt(D

2F )⊗1 Pt(D
2F ), DF ⊗DF

〉
H⊗2

≤
∫
R6

+

dsds′dθdθ′drdr′γ0(s− s′)γ0(θ − θ′)γ0(r − r′)

×
∫
R6

dydy′dzdz′dwdw′|y − y′|2H1−2|z − z′|2H1−2|w − w′|2H1−2

× ‖Dr′,zF −Dr′,z′F‖4‖Dθ′,wF −Dθ′,w′F‖4
×
∥∥Dr,zDs,yF −Dr,zDs,y′F −Dr,z′Ds,yF +Dr,z′Ds,y′F

∥∥
4

×
∥∥Dθ,wDs′,yF −Dθ,wDs′,y′F −Dθ,w′Ds′,yF +Dθ,w′Ds′,y′F

∥∥
4
.

We have the same bound for the first term (2.13) except for the multiplicative constant 2,
due to 2

∫∞
0
dte−t = 2. Hence, the proof of Proposition 2.4 is complete.

Remark 2.5. (i) Compared to the regular case, the expression of A is much more
complicated in the rough case, where we need not only to control ‖Dr,zu(t, x)‖p, but we
also have to estimate the more notorious differences ‖Dr′,zu(t, x) −Dr′,z′u(t, x)‖p and
‖Dr,zDs,yu(t, x) −Dr,zDs,y′u(t, x) −Dr,z′Ds,yu(t, x) + Dr,z′Ds,y′u(t, x)‖p for the proof of
part (3) in Theorem 1.3. This is the current paper’s highlight in regard of the technicality.

(ii) When γ0 is the Dirac delta function at zero, the expression of A reduces to

A =

∫
R3

+

dsdθdr

∫
R6

dydy′dzdz′dwdw′|y − y′|2H1−2|z − z′|2H1−2|w − w′|2H1−2

× ‖Dr,zF −Dr,z′F‖4‖Dθ,wF −Dθ,w′F‖4
×
∥∥Dr,zDs,yF −Dr,zDs,y′F −Dr,z′Ds,yF +Dr,z′Ds,y′F

∥∥
4

×
∥∥Dθ,wDs,yF −Dθ,wDs,y′F −Dθ,w′Ds′,yF +Dθ,w′Ds,y′F

∥∥
4
.

This case corresponds to the white-in-time setting where the driving noise W behaves
like Brownian motion in time, so as an alternative to using Proposition 2.4, one may
adapt the general strategy based on the Clark-Ocone formula (see [19]) to establish the
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quantitative CLT for FR(t); however, the roughness in space will anyway force one to
use the Gagliardo formulation (see (2.7)) of the inner product on H when estimating
the variance of 〈DFR(t), Vt,R〉H. This will lead to almost the same level of difficulty as in
bounding the expression A, while our computations will be done for a broader range
of temporal correlation structures that include the Dirac delta function (white-in-time
case).

(iii) One may notice that in either Proposition 2.3 or 2.4, the random variable F

needs to be in the space D2,4
∗ . Observe that Theorem 3.1 in the regular case and

Proposition 4.1 in the rough case provide sharp estimates for the (iterated) Malliavin
derivatives and their increments of the solution u(t, x) to (1.5). By using these estimates
one can easily show that E[‖Du(t, x)‖2H] + E[‖D2u(t, x)‖2H⊗H] <∞ in all the cases (1)–(3).

This implies that F = FR(t)/σR(t) ∈ D2,4
∗ for all R ∈ (0,∞). Therefore, it is legitimate for

us to apply Proposition 2.3 and 2.4 throughout this paper.

2.4 Technical lemmas

In this subsection, we provide some useful results related to the heat kernel and
gamma functions. They will be used in Section 4. Let us first introduce a few more
notation. Set

∆t(x, x
′) = pt(x+ x′)− pt(x), (2.14)

Rt(x, x
′, x′′) = pt(x+ x′ − x′′)− pt(x+ x′)− pt(x− x′′) + pt(x), (2.15)

and

Nt(x) = t
1
8−

1
2H0 |x|H0− 1

41{|x|≤
√
t} + 1{|x|>

√
t} (2.16)

for all t ∈ R+ and x, x′, x′′ ∈ R. The next lemma provides further estimates for ∆t and
Rt. This lemma, as well as operator Λ (see (2.27) below), will be used in Proposition 4.1
combined with the simplified formulas in Lemmas 4.2 and 4.3.

Lemma 2.6. Let ∆t, Rt and Nt be given as in (2.14)–(2.16). Then, the following results
hold: ∫

R

[
Nt(x)

]2|x|2H1−2dx = 4
1−H1

1− 2H1
tH1− 1

2 , (2.17)

|∆t(x, x
′)| ≤ cβ

(
Φβt,x′p4t

)
(x), (2.18)

and

|Rt(x, x′, x′′)| ≤ cβ(Φβt,x′Φ
β
t,−x′′p4t)(x) (2.19)

for any β ∈ [0, 1], t ∈ R+, x, x′, x′′ ∈ R with some constant cβ depending only on β, where
Φβt,x′ is the operator acting onM(R), the real measurable functions on R, given by

(Φβt,x′g)(x) = θx′g(x)1{|x′|>
√
t} + g(x)

[
1{|x′|>

√
t} + t−

β
2 |x′|β1{|x′|≤√t}

]
,

with θ denoting the shift function, that is, (θx′g)(x) = g(x+ x′).

Remark 2.7. For any t > 0 and z ∈ R, operator Φβt,z can be expressed as

Φβt,zg = 1{|z|>
√
t}
(
θz + I

)
g + 1{|z|≤

√
t}
(
|z|t−1/2

)β
Ig, g ∈M(R)

with Ig = g. It is easy to check that the following commutativity property holds Φβt,zΦ
β
s,y =

Φβs,yΦβt,z onM(R). Furthermore, it is also clear that
(
Φt,z1R

)
(0) ≤ 2Nt(z).
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Proof of Lemma 2.6. Equality (2.17) follows from direct computations, which we omit
here. In what follows, we first derive the estimate (2.18) for ∆t. If |x′| >

√
t, it follows

immediately that∣∣∆t(x, x
′)
∣∣ ≤ pt(x+ x′) + pt(x) ≤ 2

[
p4t(x+ x′) + p4t(x)

]
. (2.20)

On the other hand, suppose now that |x′| ≤
√
t. Notice firstly that

|∆t(x, x
′)| = |pt(x+ x′)− pt(x)| < max{pt(x), pt(x+ x′)} ≤ 1√

2π
t−

1
2 .

By the mean value theorem, there exists a point z between 0 and x′ such that,

|∆t(x, x
′)| = |pt(x+ x′)− pt(x)| = |x′| |x+ z|

(2π)1/2t3/2
e−

(x+z)2

2t .

In view of the fact that for all α > 0,

sup
x>0

xαe−x = ααe−α, (2.21)

we know that |x+z|√
t
e−

(x+z)2

4t is uniformly bounded, from which it follows that

|∆t(x, x
′)| ≤ c1

|x′|
t
e−

(x+z)2

4t .

Since (x+z)2

4t ≥ x2

8t −
z2

4t and |z| ≤ |x′| ≤
√
t, we get

e−
(x+z)2

4t ≤ e z
2

4t e−
x2

8t ≤ e 1
4 e−

x2

8t ,

and thus

|∆t(x, x
′)| ≤ c |x

′|√
t
p4t(x).

for some universal constant c > 0. As a consequence, if |x′| ≤
√
t, for any β ∈ [0, 1], we

have

|∆t(x, x
′)| ≤ cβt−

β
2 |x′|βp4t(x), (2.22)

where cβ depends only on β. Putting together the estimates (2.20) and (2.22) yields (2.18).
Next, we prove the inequality (2.19) by considering the following four cases.
Case 1. If |x′| >

√
t and |x′′| >

√
t, we use the estimate

|Rt(x, x′, x′′)| ≤ pt(x+ x′ − x′′) + pt(x+ x′) + pt(x− x′′) + pt(x). (2.23)

Case 2. If |x′| ≤
√
t and |x′′| >

√
t, we deduce from (2.22) that

|Rt(x, x′, x′′)| ≤|pt(x+ x′ − x′′)− pt(x− x′′)|+ |pt(x+ x′) + pt(x)|
=|∆t(x− x′′, x′)|+ |∆t(x, x

′)|

≤cβt−
β
2 |x′|β

(
p4t(x) + p4t(x− x′′)

)
. (2.24)

Case 3. If |x′| >
√
t and |x′′| ≤

√
t, then the same argument from Case 2 leads to

|Rt(x, x′, x′′)| ≤ cβt−
β
2 |x′′|β

(
p4t(x) + p4t(x+ x′)

)
. (2.25)

EJP 27 (2022), paper 120.
Page 14/43

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP847
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Quantitative CLTs for the PAM driven by colored noises

Case 4. If |x′| ≤
√
t and |x′′| ≤

√
t, we write

Rt(x, x
′, x′′) =

∫ −x′′
0

[
p′t(x+ x′ + y)− p′t(x+ y)

]
dy

with the convention
∫ −a

0
f(t)dt = −

∫ a
0
f(−t)dt for a > 0. By mean value theorem, we can

write

p′t(x+ x′ + y)− p′t(x+ y) = p′′t (x+ y + z′)x′

=
x′√
2π
e−

(x+y+z′)2
2t

(
t−5/2(x+ y + z′)2 − t−3/2

)
,

where z′ is some number between 0 and y. Using (2.21) and (x+y+z′)2 ≥ 1
2x

2− (y+z′)2,
we have

e−
(x+y+z′)2

2t t−5/2(x+ y + z′)2 ≤ c e−
(x+y+z′)2

4t t−3/2 ≤ c p4t(x)t−1e
(y+z′)2

4t .

Since |y + z′| ≤ 2|x′′| ≤ 2
√
t, we get

e−
(x+y+z′)2

2t t−5/2(x+ y + z′)2 ≤ c p4t(x)t−1

and

e−
(x+y+z′)2

2t t−3/2 ≤ c e
(y+z′)2

2t
p2t(x)

t
≤ c p4t(x)

t
.

It follows that

|Rt(x, x′, x′′)| ≤ cβt−β |x′|β |x′′|βp4t(x), (2.26)

provided |x′| ≤
√
t and |x′′| ≤

√
t. Therefore, inequality (2.19) follows from (2.23)–(2.26).

The proof of this lemma is complete.

We also introduce the operator Λ :M(R)×M(R)→M(R2) as follows. This operator
will be used in Section 4. Let 0 < r < s and let z′, y′ ∈ R. Then,

Λr,z′,s,y′(g1, g2)(x, y) = g1(x)(Φβs−r,y′g2)(y)Nr(z
′) + g1(x)(Φβs−r,y′Φ

β
s−r,−z′g2)(y)

+ (Φβs−r,−y′g1)(x)(θy′g2)(y)Nr(z
′) + (Φβs−r,−y′g1)(x)(θy′Φ

β
s−r,−z′g2)(y) (2.27)

for any (g1, g2, x, y) ∈M(R)×M(R)×R2.

Remark 2.8. It is not difficult to see that if ‖g1‖L1(R) = 1, then∫
R

(
Φβt,x′g1

)
(x)dx =

(
Φβt,x′1R

)
(0)

with 1R(x) = 1 for all x ∈ R. As a result, we have∫
R

dxΛr,z′,s,y′(g1, g2)(x, y) = Λr,z′,s,y′(1R, g2)(0, y)

provided ‖g1‖L1(R) = 1.

We complete this subsection by the following results about the gamma functions.

Lemma 2.9. Let

Γ(x) =

∫ ∞
0

yx−1e−ydy, x > 0
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be the usual gamma function4, then we have the following bounds.
(i) (Stirling’s formula; c.f. [21, Theorem 1]) For all x > 0, the following inequality holds,

√
2πxx−

1
2 e−x ≤ Γ(x) ≤

√
2πxx−

1
2 e−x+ 1

12x .

(ii) (Asymptotic bound of the Mittag-Leffler function; c.f. [23, Formula (1.8.10)])

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
≤ c1 exp

(
c2z

1
α

)
for all z ∈ R+ and α ∈ (0, 2), where c1, c2 > 0 depend only on α.

3 Regular cases under Hypothesis 1

In this section, we prove the first two error bounds in (1.12). As already mentioned
in the introduction, the majority of this section will devoted to proving the following Lp

estimates of Malliavin derivatives.

Theorem 3.1. Assume that Hypothesis 1 holds true. Given (t, x) ∈ (0,∞) × Rd and
(p,m) ∈ [2,∞)×N∗, then for almost every (sm,ym) ∈ ([0, t]×Rd)m, we have∥∥Dm

sm,ymu(t, x)
∥∥
p
≤ C(t)ft,x,m

(
sm,ym

)
, (3.1)

where ft,x,m is the chaos coefficient defined as in (2.6) and the constant C(t) depends on
(t, p,m, γ0, γ1) and is increasing in t.

The proof of Theorem 3.1 is deferred to Section 3.2. In Section 3.1, we prove the first
two error bounds in (1.12) by using Theorem 3.1.

3.1 Proof of quantitative CLTs in regular cases

Assume Hypothesis 1. With

FR(t) =

∫
BR

[u(t, x)− 1]dx and σR(t) =
√

Var
(
FR(t)

)
,

we have the following facts from [31].

(i) Under Hypothesis 3a, σR(t) ∼ Rd/2.

(ii) Under Hypothesis 3b, one has σR(t) ∼ Rd−
β
2 .

3.1.1 Proof of (1.12) under Hypotheses 1 and 3a

Using Minkowski’s inequality, we have

‖Dr,zDs,yFR(t)‖4 =

∥∥∥∥∫
BR

Dr,zDs,yu(t, x)dx

∥∥∥∥
4

≤
∫
BR

∥∥Dr,zDs,yu(t, x)
∥∥

4
dx.

Then it follows from (3.1) that

‖Dr,zDs,yFR(t)‖4 .
∫
BR

ft,x,2(r, z, s, y)dx, (3.2)

with

ft,x,2(r, z, s, y) =
1

2

[
pt−r(x− z)pr−s(z − w)1{r>s} + pt−s(x− y)ps−r(z − y)1{r<s}

]
.

4This shall not be confusing with Γt defined as in Lemma 2.1.
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In the same way, we have

‖Ds,yFR(t)‖4 .
∫
BR

pt−s(x− y)dx, (3.3)

where the implicit constants in (3.2) and (3.3) do not depend on (R, r, z, s, y) and are
increasing in t.

Apply Proposition 2.3 and plugging (3.2) and (3.3) into the expression of A, we get

A .
∫

[0,t]6×R6d

drdr′dsds′dθdθ′dzdz′dydy′dwdw′γ0(r − r′)γ0(s− s′)γ0(θ − θ′)γ1(z − z′)

×
∫
B4
R

dx4γ1(w − w′)γ1(y − y′)ft,x1,2(r, z, θ, w)ft,x2,2(s, y, θ′, w′)pt−r′(x3 − z′)

× pt−s′(x4 − y′).

Taking the expression of ft,x,2 into account, we need to consider four terms depending
on r > θ or not, and depending on s > θ′ or not. Since the computations are similar, it
suffices to provide the estimate for case r > θ and s > θ′. In other words, we need to
show that

A∗ : =

∫
[0,t]6×R6d

drdr′dsds′dθdθ′dzdz′dydy′dwdw′γ0(r − r′)γ0(s− s′)γ0(θ − θ′)

×
∫
B4
R

dx4pt−r(x1 − z)pr−θ(z − w)pt−s(x2 − y)ps−θ′(y − w′)pt−r′(x3 − z′)

× pt−s′(x4 − y′)γ1(w − w′)γ1(y − y′)γ1(z − z′)
. Rd.

In fact, the above estimate follows from integrating with respect to dx1, dx2, dx4, dy′,
dy, dw′, dw, dz, dz′, dx3 one by one and using the local integrability of γ0. The desired
bound follows immediately.

3.1.2 Proof of (1.12) under Hypotheses 1 and 3b

Similarly as in Section 3.1.1, we need to show A∗ . R4d−3β. Making the change of
variables

(x4, z, z
′, y, y′, w, w′)→ R(x4, z, z

′, y, y′, w, w′)

and using the scaling properties of the Riesz and heat kernels5 yields

A∗ = R4d−3β

∫
[0,t]6

drdr′dsds′dθdθ′γ0(r − r′)γ0(s− s′)γ0(θ − θ′)SR,

with

SR : =

∫
B4

1×R6d

dx4dzdz
′dydy′dwdw′|w − w′|−β |y − y′|−β |z − z′|−β

× p t−r
R2

(x1 − z)p r−θ
R2

(z − w)p t−s
R2

(x2 − y)p s−θ′
R2

(y − w′)p t−r′
R2

(x3 − z′)p t−s′
R2

(x4 − y′).

Making the following change of variables

ηηη6 = (z − x1, z − w, y − x2, y − w′, z′ − x3, y
′ − x4)

5pt(Rz) = R−dptR−2 (z) for z ∈ Rd.
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(so w = η1 − η2 + x1, w
′ = η3 − η4 + x2) yields

SR =

∫
B4

1×R6d

dx4dηηη6p t−r
R2

(η1)p r−θ
R2

(η2)p t−s
R2

(η3)p s−θ′
R2

(η4)p t−r′
R2

(η5)p t−s′
R2

(η6)

× |η1 − η2 − η3 + η4 + x1 − x2|−β |η3 − η6 + x2 − x4|−β |η1 − η5 + x1 − x3|−β

=

∫
B4

1

dx4E

[∣∣∣√t− r
R

Z1 −
√
r − θ
R

Z2 −
√
t− s
R

Z3 +

√
s− θ′
R

Z4 + x1 − x2

∣∣∣−β
×
∣∣∣√t− s

R
Z3 −

√
t− s′
R

Z6 + x2 − x4

∣∣∣−β∣∣∣√t− r
R

Z1 −
√
t− r′
R

Z5 + x1 − x3

∣∣∣−β],
where Z1, . . . , Z6 are i.i.d. standard Gaussian vectors on Rd. Notice that

K := sup
z∈Rd

∫
B1

|y + z|−βdy ≤ 1{|z|≤2}

∫
B3

|y|−βdy + 1{|z|>2}

∫
B1

(
|z| − |y|

)−β
dy

≤
∫
B3

|y|−βdy +

∫
B1

1dy <∞.

Therefore, we deduce that

SR ≤ K3

∫
B1

1 dx1 = K3Vol(B1).

So A∗ ≤ K3Vol(B1)(tΓt)
3R4d−3β, with Γt =

∫ t
−t γ0(s)ds. Hence applying Proposition 2.3

yields the desired conclusion.

3.2 Proof of Theorem 3.1

Recall the Wiener chaos expansion (2.5) and (2.6) for u(t, x). Then, for any positive
integer m, the m-th Malliavin derivative valued at (s1, y1, . . . , sm, ym) is given by

Dm
sm,ymu(t, x) = Ds1,y1Ds2,y2 · · ·Dsm,ymu(t, x)

=

∞∑
n=m

n!

(n−m)!
In−m

(
ft,x,n(sm,ym, •)

)
,

whenever the series converges in L2. By definition, it is easy to check that ft,x,n(sm,ym,

•) ∈ H�(n−m) and by symmetry again, we can assume t > sm > sm−1 > · · · > s1 > 0.
For any n ≥ m, we make use of the notation,

[n]< = {im = (i1, . . . , im), 1 ≤ i1 < · · · < im ≤ n}.

We also define the function f (iiim)
t,x,n(sm,ym; •) : Rn−m+ × (Rd)n−m by

f
(iiim)
t,x,n(sm,ym; •) =f

(i1)
t,x,i1

(sm, ym; •)⊗ f (i2−i1)
sm,ym,i2−i1(sm−1, ym−1; •)

⊗ · · · ⊗ f (im−im−1)
s2,y2,im−im−1

(s1, y1; •)⊗ fs1,y1,n−im , (3.4)

where f (1)
t,x,1(r, z; •) = pt−r(x− z), and for all k ≥ 2,

f
(k)
t,x,k(r, z; sk−1,yk−1) :=

1

k!
pt−sσ(k−1)

(x− yσ(k−1))psσ(k−1)−sσ(k−2)
(yσ(k−1) − yσ(k−2))

× · · · × psσ((1)−r(yσ(1) − z),

and σ denotes the permutation of {1, . . . , k − 1} such that r < sσ(1) < · · · < sσ(k−1) < t.

Let h(iiim)
t,x,n(sm,ym; •) be the symmetrization of f (iiim)

t,x,n(sm,ym; •). Then, for any p ∈ [2,∞),
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we deduce from Minkowski’s inequality and (2.3) that

∥∥Dm
sm,ymu(t, x)

∥∥
p
≤
∞∑
n=m

(p− 1)
n−m

2

∥∥∥In−m( n!

(n−m)!
ft,x,n(sm,ym, •)

)∥∥∥
2

and

n!

(n−m)!
ft,x,n(sm,ym, •) =

∑
iiim∈[n]<

h
(iiim)
t,x,n(sm,ym; •).

It follows that∥∥∥In−m( n!

(n−m)!
ft,x,n(sm,ym, •)

)∥∥∥2

2
≤
(
n

m

) ∑
iiim∈[n]<

∥∥In−m(f (iiim)
t,x,n(sm,ym; •)

)∥∥2

2
. (3.5)

Additionally, due to Lemma 2.1, we deduce that

‖In−m(f
(iiim)
t,x,n(sm,ym; •))‖22 ≤ Γn−mt ‖IXn−m(f

(iiim)
t,x,n(sm,ym; •))‖22. (3.6)

The inequalities (3.5) and (3.6) together with the product formula given in Lemma (2.2)
and the decomposition (3.4), imply

∥∥Dm
sm,ymu(t, x)

∥∥
p
≤
∞∑
n=m

[
(p− 1)Γt

]n−m
2

√
QX
n,m, (3.7)

where

QX
n,m =

(
n

m

) ∑
iiim∈[n]<

∥∥In−m(f (iiim)
t,x,n(sm,ym; •)

)∥∥2

2
.

Using the independence among the random variables inside the expectation, see
Lemma 2.2, and the notation (i0, sm+1, ym+1) = (0, t, x), we can write∥∥IXn−m(f (iiim)

t,x,n(sm,ym; •)
)∥∥2

2

=
∥∥IX(fs1,y1,n−im)∥∥2

2
×

m∏
j=1

∥∥∥IXij−ij−1−1

(
f

(ij−ij−1)
sm−j+2,ym−j+2,ij−ij−1

(sm−j+1, ym−j+1; •)
)∥∥∥2

2
.

Thanks to the isometry property between the space H�n (see (2.2)), equipped with the
modified norm

√
n!‖ • ‖H⊗n , and the n-th Wiener chaos Hn, we can write

QX
n,m =

(
n

m

) ∑
iiim∈[n]<

(n− im)!
∥∥fs1,y1,n−im∥∥2

X⊗(n−im)

×
m∏
j=1

(ij − ij−1 − 1)!
∥∥f (ij−ij−1)
sm−j+2,ym−j+2,ij−ij−1

(sm−j+1, ym−j+1; •)
∥∥2

X⊗(ij−ij−1) . (3.8)

We first estimate
∥∥fs,y,k∥∥X⊗k and begin with

∥∥fs,y,k∥∥2

X⊗k
= k!

∫
Tsk

drk
∥∥fs,y,k(rk, •)

∥∥2

H⊗k1

=
1

k!

∫
Tsk

drk

∫
Rdk

µ⊗k(dξξξk)

k∏
j=1

∣∣p̂rj+1−rj (ξj + · · ·+ ξk)
∣∣2, (3.9)
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with rk+1 = s and p̂t(ξ) = e−t|ξ|
2/2. In the current regular case, we can deduce from the

maximal principle (c.f. [31, Lemma 4.1]) that

sup
z∈Rd

∫
Rd
µ(dy)e−s|y+z|2 =

∫
Rd
µ(dy)e−s|y|

2

<∞.

Then, preforming change of variables wj = rj+1 − rj , and using Lemma 3.3 in [15], we
have ∥∥fs,y,k∥∥2

X⊗k
≤ 1

k!

∫
Tk(s)

dwk

∫
Rdk

µ(dξξξk)

k∏
j=1

e−wj |ξj |
2

≤ 1

k!

k∑
`=0

(
k

`

)
s`

`!
D`
N (2CN )k−`

≤2k

k!

k∑
`=0

s`

`!
D`
N (2CN )k−`, (3.10)

where Tk(s) := {wk ∈ Rk+ : w1 + · · ·+ wk ≤ s} and

CN :=

∫
Rd

µ(dξ)

|ξ|2
1{|ξ|≥N} and DN := µ

(
{ξ ∈ Rd : |ξ| ≤ N}

)
, (3.11)

are finite quantities under Dalang’s condition (1.6).
Finally, in what follows, we estimate

∥∥f (k)
s,y,k(r, z; •)

∥∥
X⊗(k−1) . It is trivial that for k = 1,∥∥f (1)

s,y,1(r, z; •)
∥∥2

X⊗0 = ps−r(y − z)2. (3.12)

For k = 2, we can write∥∥f (2)
s,y,2(r, z; •)

∥∥2

X
=

1

4

∫ s

r

dv
∥∥ps−v(y − •)pv−r(• − z)∥∥2

H1

=
1

4
ps−r(y − z)2

∫ s

r

dv
∥∥ps−v(y − •)pv−r(• − z)

ps−r(y − z)
∥∥2

H1
.

Using the fact (c.f. [7, Formula (1.4)]) that

pt(a)ps(b)

pt+s(a+ b)
= pst/(t+s)

(
b− s

s+ t
(a+ b)

)
, (3.13)

we get

f(x) :=
ps−v(y − x)pv−r(x− z)

ps−r(y − z)
= p(v−r)(s−v)/(s−r)

(
x− z − v − r

s− r
(y − z)

)
.

The Fourier transform of f is given by

f̂(ξ) = exp
(
− i
(
z +

v − r
s− r

(y − z)
)
ξ
)

exp

(
− (v − r)(s− v)

2(s− r)
|ξ|2
)
.

This implies that∥∥∥ps−v(y − •)pv−r(• − z)
ps−r(y − z)

∥∥∥2

H1

= cH1

∫
Rd
µ(dξ) exp

(
− (v − r)(s− v)

s− r
|ξ|2
)
,

and thus∥∥f (2)
s,y,2(r, z; •)

∥∥2

X
= cH1

1

4
p2
s−r(y − z)

∫ s

r

dv

∫
Rd
µ(dξ) exp

(
− (v − r)(s− v)

s− r
|ξ|2
)

≤ 1

4
cH1ps−r(y − z)2

[
(s− r)DN + 4CN

]
, (3.14)
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for any N > 0. Indeed,∫ s

r

dv

∫
Rd
µ(dξ) exp

(
− (v − r)(s− v)

s− r
|ξ|2
)

≤ (s− r)DN +

∫
|ξ|≥N

µ(dξ)

∫ s

r

dv exp

(
− (v − r)(s− v)

s− r
|ξ|2
)

and ∫ s

r

dv exp

(
− (v − r)(s− v)

s− r
|ξ|2
)

=

∫ s−r

0

dv exp

(
−v(s− r − v)

s− r
|ξ|2
)

= (s− r)
∫ 1

0

dve−v(1−v)(s−r)|ξ|2 = 2(s− r)
∫ 1/2

0

dve−v(1−v)(s−r)|ξ|2

≤ 2(s− r)
∫ 1/2

0

dve−v
(s−r)|ξ|2

2 =
4

|ξ|2
(

1− e−(s−r)|ξ|2/4
)
≤ 4

|ξ|2
,

so that ∫ s

r

dv

∫
Rd
µ(dξ) exp

(
− (v − r)(s− v)

s− r
|ξ|2
)

= (s− r)
∫ 1

0

dv

∫
Rd
µ(dξ) exp

(
−(s− r)v(1− v)|ξ|2

)
≤ (s− r)DN + 4CN ,

for all N > 0.
For k ≥ 3, we obtain∥∥f (k)

s,y,k(r, z; •)
∥∥2

X⊗(k−1) = k!

∫
T
r,s
k−1

drk−1

∥∥f (k)
s,y,k(r, z; rk−1, •)

∥∥2

H⊗k−1
1

In order to estimate ‖f (k)
s,y,k(r, z; rk−1, •)‖|H⊗k−1

1
, we apply formula (3.13) several times

and get another expression for f (k)
s,y,k(r, z; rk−1, zk−1) as follows,

f
(k)
s,y,k(r, z; rk−1, zzzk−1) =

1

k!
ps−r(y − z)

ps−rk−1
(y − zk−1)prk−1−rk−2

(zk−1 − zk−2)

ps−rk−2
(y − zk−2)

×
ps−rk−2

(y − zk−2)prk−2−rk−3
(zk−2 − zk−3)

ps−rk−3
(y − zk−3)

× · · · × ps−r1(y − z1)pr1−r(z1 − z)
ps−r(y − z)

=
1

k!
ps−r(y − z)

k−1∏
i=1

p (s−ri)(ri−ri−1)

s−ri−1

(
zi −

s− ri
s− ri−1

zi−1 −
ri − ri−1

s− ri−1
y
)
, (3.15)

where by convention, r0 = r and z0 = z. In the next step, we compute the Fourier trans-
form of f (k)

s,y,k(r, z; rk−1, •). Using the representation (3.15), we integrate the following

expression f (k)
s,y,k(r, z; rk−1, zk−1)ei〈ξξξk−1,zk−1〉 subsequently in zk−1, zk−2, . . . , z1 using some

elementary Fourier computation formulas (c.f. [14, Section 3.2] for similar computations)
and get

f̂
(k)
s,y,k(r, z; rk−1, ξξξk−1) =

1

k!
ps−r(y − z) exp

(
− iz s− r1

s− r

k−1∑
k1=1

(
ξk1

k1∏
k2=2

s− rk2
s− rk2−1

))

× exp

[
− iy

k−1∑
j=1

rj − rj−1

s− rj−1

k−1∑
k1=j

(
ξk1

k1∏
k2=j+1

s− rk2
s− rk2−1

)]

× exp

[
−
k−1∑
j=1

(s− rj)(rj − rj−1)

2(s− rj−1)

[ k−1∑
k1=j

(
ξk1

k1∏
k2=j+1

s− rk2
s− rk2−1

)]2]
, (3.16)
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where by convention
∏j
k2=j+1

s−rk2
s−rk2−1

= 1. Notice that

k−1∑
k1=j

(
ξk1

k1∏
k2=j+1

s− rk2
s− rk2−1

)
= ξj +

k−1∑
k1=j+1

(
ξk1

k1∏
k2=j+1

s− rk2
s− rk2−1

)
.

Thus, by the the maximal principle ([31, Lemma 4.1]) again, we have∥∥f (k)
s,y,k(r, z; •)

∥∥2

X⊗(k−1) =k!

∫
T
r,s
k−1

drk−1

∫
Rk−1

µ⊗(k−1)(dξξξk−1)
∣∣f̂ (k)
s,y,k(r, z; rk−1, ξξξk−1)

∣∣2
≤ 1

k!
p2
s−r(y − z)I,

where, by the change of variables vi = s−rk−i
s−r for all i = 1, . . . , k,

I =

∫
T
r,s
k−1

drk−1

k−1∏
j=1

∫
Rd
µ(dξj) exp

(
− (s− rj)(rj − rj−1)

(s− rj−1)
|ξj |2

)

=(s− r)k−1

∫
T1
k−1

dvk−1

∫
R(k−1)d

µ⊗(k−1)(dξξξk−1)

k−1∏
j=1

exp
(
− (s− r)(vj+1 − vj)

vj+1
|ξj |2

)
.

We estimate the term I as follows. First we make the decomposition

I =(s− r)k−1
∑

J⊂{1,...,k−1}

∫
T1
k−1

dvk−1

∫
R(k−1)d

µ⊗(k−1)(dξξξk−1)

×
(∏
j∈J

1{|ξj |≤N}

)( ∏
`∈Jc

1{|ξ`|>N}

) k−1∏
ι=1

exp
(
− (s− r) (vι+1 − vι)vι

vι+1
|ξι|2

)
≤(s− r)k−1

∑
J⊂{1,...,k−1}

D
|J|
N

∫
T1
k−1

dvk−1

∫
R|J

c|d

( ∏
`∈Jc

µ(dξ`)
)

×
∏
`∈Jc

1{|ξ`|>N} exp
(
− (s− r) (v`+1 − v`)v`

v`+1
|ξ`|2

)
,

where DN and CN appearing below are introduced as in (3.11) and Jc = {1, . . . , k−1}\J .
Suppose Jc = {`1, . . . , `j} for some j = 0, . . . , k−1 with `1 < · · · < `j . Then, performing

the integral with respect to v`1 , yields∫ v`1+1

0

dv`1 exp
(
− (s− r) (v`1+1 − v`1)v`1

v`1+1
|ξ`1 |2

)
=v`1+1

∫ 1

0

du exp
(
− (s− r)[u(1− u)]v`1+1|ξ`1 |2

)
≤2v`1+1

∫ 1/2

0

du exp
(
− (s− r)[u(1− u)]v`1+1|ξ`1 |2

)
≤2v`1+1

∫ 1/2

0

du exp
(
− 1

2
u(s− r)v`1+1|ξ`1 |2

)
≤ 4

(s− r)|ξ`1 |2
.

Applying this procedure for the integrals with respect to the variables v`2 , . . . , v`j succes-
sively, we obtain∫

T1
k−1

dvk−1

∫
Rjd

∏
`∈Jc

µ(dξ`)1{|ξ`|>N} exp
(
− (s− r) (v`+1 − v`)v`

v`+1
|ξ`|2

)
≤
( 4CN
s− r

)j 1

|k − j − 1|!
.
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It follows that

I ≤(s− r)k−1
k−1∑
j=0

(
k − 1

j

)
[4(s− r)−1CN ]k−j−1Dj

N

j!

≤2k−1(s− r)k−1
k−1∑
j=0

[4(s− r)−1CN ]k−j−1Dj
N

j!
,

which implies

∥∥f (k)
s,y,k(r, z; •)

∥∥2

X⊗(k−1) ≤
2k−1

k!
ps−r(y − z)2

k−1∑
`=0

[4CN ]k−`−1

`!
[(s− r)DN ]`. (3.17)

Combining (3.8), (3.10), (3.12), (3.14) and (3.17), we can write

QX
n,m ≤c1cn2

∑
iiim∈[n]<

n−im∑
`=0

s`1
`!
D`
NC

n−im−`
N

×
m∏
j=1

ij−ij−1−1∑
`=0

C
ij−ij−1−`−1
N

`!
[(sm−j+2 − sm−j+1)DN ]`fs,y,m(sm,ym)2. (3.18)

If CN = 0 for some N > 0, then, we have

QX
n,m ≤c1cn2

∑
iiim∈[n]<

sn−im1

(n− im)!
Dn−im
N

×
m∏
j=1

1

(ij − ij−1 − 1)!
[(sm−j+2 − sm−j+1)DN ]ij−ij−1−1fs,y,m(sm,ym)2.

Thus
∞∑
n=m

[
(p− 1)Γt

]n−m
2

√
QX
n,m

≤
∑

1≤i1<···<im≤n<∞

c1c
n
2

[
(p− 1)Γt

]n−m
2

s
1
2 (n−im)
1

[(n− im)!]
1
2

D
1
2 (n−im)

N

×
m∏
j=1

1

[(ij − ij−1 − 1)!]
1
2

[(sm−j+2 − sm−j+1)DN ]
1
2 (ij−ij−1−1)fs,y,m(sm,ym)

=

∞∑
i1=1

∞∑
i2=i1+1

· · ·
∞∑

n=im+1

c1c
n
2

[
(p− 1)Γt

]n−m
2

s
1
2 (n−im)
1

[(n− im)!]
1
2

D
1
2 (n−im)

N

×
m∏
j=1

1

[(ij − ij−1 − 1)!]
1
2

[(sm−j+2 − sm−j+1)DN ]
1
2 (ij−ij−1−1)fs,y,m(sm,ym).

Notice that, by using Lemma 2.9, we have

∞∑
n=im+1

c1c
n
2

[
(p− 1)Γt

]n−m
2

s
1
2 (n−im)
1

[(n− im)!]
1
2

D
1
2 (n−im)

N

= c1c
im
2

[
(p− 1)Γt

] im−m
2

∞∑
k=1

ck2
[
(p− 1)Γt

] k
2

s
1
2 (k)
1

[Γ(k + 1)]
1
2

D
1
2k

N

≤ c1cim2
[
(p− 1)Γt

] im−m
2 ec3Γtt.
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Thus, by iteration, we conclude that

∞∑
n=m

[
(p− 1)Γt

]n−m
2

√
QX
n,m ≤ c1ec2Γttfs,y,m(sm,ym). (3.19)

Inequality (3.1) is a consequence of inequalities (3.7) and (3.19).
On the other hand, suppose that CN > 0 for all N > 0. From inequality (3.18), we

deduce that

QX
n,m ≤c1cn2Cn−mN

∑
iiim∈[n]<

n−im∑
`=0

s`1
`!
D`
NC
−`
N

×
m∏
j=1

ij−ij−1−1∑
`=0

C−`N
`!

[(sm−j+2 − sm−j+1)DN ]`fs,y,m(sm,ym)2

≤c1cn2
∑

iiim∈[n]<

Cn−mN e
DN
CN

t
fs,y,m(sm,ym)2 ≤ c1cn2Cn−mN e

DN
CN

t
fs,y,m(sm,ym)2.

Notice that by definition limN↑∞ CN = 0. Therefore, we can find N large enough such
that c2((p− 1)Γt)

1
2CN < 1, and thus,

∞∑
n=m

[
(p− 1)Γt

]n−m
2

√
QX
n,m ≤c1cm2 e

DN
CN

t
fs,y,m(sm,ym)

∞∑
n=0

[
(p− 1)Γt

]n
2 cn2C

n
N

=
c1c

m
2 e

DN
CN

t

1− c2((p− 1)Γt)
1
2CN

fs,y,m(sm,ym).

This completes the proof of Theorem 3.1.

4 Rough case under Hypothesis 2

In this section, we will deal with the rough case. That is, we consider the parabolic
Anderson model (1.5) under Hypothesis 2 and, as already mentioned in the introduction,
extra effort will be poured into for the spatial roughness. Taking advantage of the
Gagliardo representation (2.7) of the inner product on H1, we apply a modified version of
the second-order Gaussian Poincaré inequality (see Proposition 2.4). In order to estimate
the quantity A in Proposition 2.4, we need the next proposition about the upper bounds
of the Malliavin derivatives and their increments.

Proposition 4.1. Assume Hypothesis 2 and let u be the solution to (1.5). Given t ∈
(0,∞), for almost any 0 < r < s < t, x, y, y′, z, z′ ∈ R and for every p ≥ 2, the following
inequalities hold:

‖Ds,y+y′u(t, x)−Ds,yu(t, x)‖p ≤ C1(t)
(
Φt−s,−y′p4(t−s)

)
(x− y) (4.1)

and

‖D2
r,z+z′,s,y+y′u(t, x)−D2

r,z+z′,s,yu(t, x)−D2
r,z,s,y+y′u(t, x) +D2

r,z,s,yu(t, x)‖p
≤C1(t)Λr,z′,s,y′(p4(t−s), p4(s−r))(x− y, y − z), (4.2)

where we fix Φ = ΦH0− 1
4 , defined as in Lemma 2.6, Λ is defined as in (2.27), and

C1(t) = c1 exp(c2t
2H0+H1−1

H1 ) for all t > 0 with some constants c1 and c2 depending on H0

and H1.

The proof of Proposition 4.1 is based on the following lemmas. We firstly show how
these lemmas imply Proposition 4.1. The proofs of Lemmas 4.2 and 4.3, which heavily
rely on the Wiener chaos expansion, are postponed to Section 4.2.
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Lemma 4.2. Assume Hypothesis 2 and let u be the solution to (1.5). Then, for almost
every (s, x, y, y′) ∈ (0, t)×R3 and for any p ≥ 2, the following inequalities hold:

‖Ds,yu(t, x)‖p ≤ C1(t)pt−s(x− y) (4.3)

and

‖Ds,y+y′u(t, x)−Ds,yu(t, x)‖p ≤ C1(t)
(
|∆t−s(y − x, y′)|+ pt−s(x− y)Nt−s(y

′)
)
, (4.4)

where ∆t and Nt are defined as in (2.14) and (2.16), respectively, and C1(t) is the same
as in Proposition 4.1.

Lemma 4.3. Assume Hypothesis 2. Let u be the solution to (1.5). Then, for almost any
0 < r < s < t, x, y, y′, z, z′ ∈ R and for every p ≥ 2, the following inequality holds:

‖D2
r,z+z′,s,y+y′u(t, x)−D2

r,z+z′,s,yu(t, x)−D2
r,z,s,y+y′u(t, x) +D2

r,z,s,yu(t, x)‖p

≤C1(t)

{
pt−s(x− y)Nr(z

′)
[
|∆s−r(y − z, y′)|+ ps−r(y − z)Ns−r(y′)

]
+ pt−s(x− y)

[
|Rs−r(y − z, y′, z′)|+ |∆s−r(y − z, y′)|Ns−r(z′)

+ |∆s−r(z − y, z′)|Ns−r(y′) + ps−r(y − z)Ns−r(y′)Ns−r(z′)
]

+ ps−r(y + y′ − z)Nr(z′)
[
|∆t−s(y − x, y′)|+ pt−s(x− y)Nt−s(y

′)
]

+
[
|∆s−r(z − y − y′, z′)|+ ps−r(y + y′ − z)Ns−r(z′)

]
×
[
|∆t−s(y − x, y′)|+ pt−s(x− y)Nt−s(y

′)
]}
, (4.5)

where ∆t, Rt and Nt are defined as in (2.14)–(2.16), respectively, and C1 is the same as
in Proposition 4.1.

Proof of Proposition 4.1. Let us first recall from (2.16) that

Nt(x) = t
1
8−

1
2H0 |x|H0− 1

41{|x|≤
√
t} + 1{|x|>

√
t}.

Then applying Lemma 2.6 with β = H0 − 1
4 yields immediately that

Φt,x′g(x) ≡ Φ
H0− 1

4

t,x′ g(x) = θx′g(x)1{|x′|>
√
t} +Nt(x

′)g(x) ≥ Nt(x′)g(x) (4.6)

for any nonnegative function g ∈ M(R). Now combining inequalities (4.4) and (2.18),
we get (4.1) immediately.

In the next step, we prove inequality (4.2) that contains more terms. This is because
the bound in (4.5) is a sum of 4 terms, which we denote by R1, R2, R3 and R4.

Firstly, we estimate R1 and R2 by using inequality (4.6) and Lemma 2.6 as follows,

R1 :=pt−s(x− y)Nr(z
′)
(
|∆s−r(y − z, y′)|+ ps−r(y − z)Ns−r(y′)

)
≤c p4(t−s)(x− y)Nr(z

′)
(
Φs−r,y′p4s−4r(y − z) + p4s−4r(y − z)Ns−r(y′)

)
≤c p4(t−s)(x− y)Nr(z

′)
(
Φs−r,y′p4s−4r

)
(y − z),

EJP 27 (2022), paper 120.
Page 25/43

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP847
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Quantitative CLTs for the PAM driven by colored noises

and taking into account Remark 2.7 and the inequality pt(x) ≤ 2p4t(x), we can write

R2 : = pt−s(x− y)
[
|Rs−r(y − z, y′, z′)|+ |∆s−r(y − z, y′)|Ns−r(z′)

+ |∆s−r(z − y, z′)|Ns−r(y′) + ps−r(y − z)Ns−r(y′)Ns−r(z′)
]

≤c pt−s(x− y)
[
(Φs−r,y′Φs−r,−z′p4(s−r))(y − z) + (Φs−r,y′p4(s−r))(y − z)Ns−r(z′)

+ (Φs−r,z′p4(s−r))(z − y)Ns−r(y
′) + p4s−4r(y − z)Ns−r(y′)Ns−r(z′)

]
≤c pt−s(x− y)

[
(Φs−r,y′Φs−r,−z′p4(s−r))(y − z) + (Φs−r,−z′Φs−r,y′p4(s−r))(y − z)

+ (Φs−r,−y′Φs−r,z′p4(s−r))(z − y) + (Φs−r,y′Φs−r,−z′p4s−4r)(y − z)
]

≤c p4(t−s)(x− y)
(
Φs−r,y′Φs−r,−z′p4(s−r)

)
(y − z).

Following a similar argument, we also get

R3 :=ps−r(y + y′ − z)Nr(z′)
[
|∆t−s(y − x, y′)|+ pt−s(x− y)Nt−s(y

′)
]

≤c p4(s−r)(y + y′ − z)Nr(z′)
(
Φt−s,−y′p4(t−s)

)
(x− y)

=c (θy′p4(s−r))(y − z)Nr(z′)
(
Φt−s,−y′p4(t−s)

)
(x− y)

and

R4 :=
[
|∆s−r(z − y − y′, z′)|+ ps−r(y + y′ − z)Ns−r(z′)

]
×
[
|∆t−s(y − x, y′)|+ pt−s(x− y)Nt−s(y

′)
]

≤c (Φs−r,−z′p4s−4r)(y + y′ − z)(Φt−s,−y′p4(t−s))(x− y)

=c (θy′Φs−r,−z′p4s−4r)(y − z)
(
Φt−s,−y′p4(t−s)

)
(x− y).

Using the above estimates, inequality (4.2) follows immediately.

In what follows, we first give the remaining proof of (1.12) in Section 4.1. Later, in
Section 4.2 provides proofs of several auxiliary results.

4.1 Proof of (1.12) in the rough case

According to Proposition 2.4, we need to estimate the quantity A defined as in (2.12)
with F = FR given as in (1.10). Our goal is to show A . R for large R. Indeed, we
already know from Theorem 1.1 that σ2

R(t) ∼ R, then the desired bound (1.12) (in the
rough case) follows.

In what follows, we only provide a detailed proof assuming γ0(s) = |s|2H0−2 for
H0 ∈ (1/2, 1), while the other case (γ0 = δ0) can be dealt with in the same way. We first
write

A ≤
∫

[0,t]6
dsds′drdr′dθdθ′|s− s′|2H0−2|r − r′|2H0−2|θ − θ′|2H0−2A0,

where, using a changing of variables in space,

A0 :=

∫
R6

dydy′dzdz′dwdw′
∫

[−R,R]4
dx1dx2dx3dx4

× |y′|2H1−2|z′|2H1−2|w′|2H1−2

×
∥∥Dr′,z+z′u(t, x1)−Dr′,zu(t, x1)

∥∥
4

∥∥Dθ′,w+w′u(t, x2)−Dθ′,wu(t, x2)
∥∥

4

×
∥∥∥Ds,y+y′Dr,z+z′u(t, x3)−Ds,y+y′Dr,zu(t, x3)

−Ds,yDr,z+z′u(t, x3) +Ds,yDr,zu(t, x3)
∥∥∥

4

×
∥∥Ds′,y+y′Dθ,w+w′u(t, x4)−Ds′,y+y′Dθ,wu(t, x4)−Ds′,yDθ,w+w′u(t, x4)

+Ds′,yDθ,wu(t, x4)
∥∥

4
.

EJP 27 (2022), paper 120.
Page 26/43

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP847
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Quantitative CLTs for the PAM driven by colored noises

Next, we will estimate A0. Suppose 0 < r < s < t, and 0 < θ < s′ < t. We deduce
from Proposition 4.1 that

A0 .
∫

[−R,R]4
dx1dx2dx3dx4

∫
R6

dydy′dzdz′dwdw′

× |y′|2H1−2|z′|2H1−2|w′|2H1−2

×
(
Φt−r′,z′p4(t−r′)

)
(x1 − z)

(
Φt−θ′,w′p4(t−θ′)

)
(x2 − w)

× Λr,z′,s,y′(p4(t−s), p4(s−r))(x3 − y, y − z)
× Λθ,w′,s′,y′(p4(t−s′), p4(s′−θ))(x4 − y, y − w).

Now we first integrate out x3, x4 and x2 one by one (see Remark 2.8):

A0 .
∫ R

−R
dx1

∫
R6

dydy′dzdz′dwdw′

× |y′|2H1−2|z′|2H1−2|w′|2H1−2

×
(
Φt−r′,z′p4(t−r′)

)
(x1 − z)

(
Φt−θ′,w′1R

)
(0)

× Λr,z′,s,y′(1R, p4(s−r))(0, y − z)
× Λθ,w′,s′,y′(1R, p4(s′−θ))(0, y − w),

and then integrate out w, y and z to get

A0 .
∫ R

−R
dx1

∫
R3

dy′dz′dw′

× |y′|2H1−2|z′|2H1−2|w′|2H1−2

×
(
Φt−r′,z′1R

)
(0)
(
Φt−θ′,w′1R

)
(0)Λr,z′,s,y′(1R,1R)(0, 0)

× Λθ,w′,s′,y′(1R,1R)(0, 0).

Applying Cauchy-Schwarz inequality, we can further deduce that

A0 . R

∫
R

dy′|y′|2H1−2

(∫
R2

dz′dw′|z′|2H1−2|w′|2H1−2

×
∣∣(Φt−r′,z′1R)(0)

(
Φt−θ′,w′1R

)
(0)
∣∣2)1/2

×
(∫

R2

dz′dw′|z′|2H1−2|w′|2H1−2

×
∣∣Λr,z′,s,y′(1R,1R)(0, 0)Λθ,w′,s′,y′(1R,1R)(0, 0)

∣∣2)1/2

. R
(∫

R2

dz′dw′|z′|2H1−2|w′|2H1−2
∣∣(Φt−r′,z′1R)(0)

(
Φt−θ′,w′1R

)
(0)
∣∣2)1/2

×
(∫

R2

dy′dz′|y′|2H1−2|z′|2H1−2
∣∣Λr,z′,s,y′(1R,1R)(0, 0)

∣∣2)1/2

×
(∫

R2

dy′dw′|y′|2H1−2w′|2H1−2
∣∣Λθ,w′,s′,y′(1R,1R)(0, 0)

∣∣2)1/2

.

Due to the fact that 2H1 + 2H0 − 5
2 > −1 and 2H1 < 1, we have∫

R

dz′|z′|2H1−2
∣∣(Φt−r′,z′1R)(0)

∣∣2
= 8

∫ ∞
√
t−r′

dz′|z′|2H1−2 + 2(t− r′) 1
4−H0

∫ √t−r′
0

|z′|2H1+2H0− 5
2 dz′ . (t− r′)H1− 1

2 . (4.7)
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We can also deduce the next inequality by definition of Λ and Remark 2.7,∣∣Λr,z′,s,y′(1R,1R)(0, 0)
∣∣2 .

(
Ns−r(y

′)Nr(z
′) +Ns−r(y

′)Ns−r(z
′)

+Nt−s(y
′)Nr(z

′) +Nt−s(y
′)Ns−r(z

′)
)2

. Ns−r(y
′)2Nr(z

′)2 +Ns−r(y
′)2Ns−r(z

′)2

+Nt−s(y
′)2Nr(z

′)2 +Nt−s(y
′)2Ns−r(z

′)2,

which, together with (2.17), implies∫
R2

dy′dz′|y′|2H1−2|z′|2H1−2|Λr,z′,s,y′(1R,1R)(0, 0)|2

. (s− r)H1− 1
2 rH1− 1

2 + (s− r)2H1−1

+ (t− s)H1− 1
2 rH1− 1

2 + (t− s)H1− 1
2 (s− r)H1− 1

2 .

(4.8)

As a consequence of (4.7) and (4.8), we get A0 . B0R with

B0 := (t− r′)
H1
2 −

1
4 (t− θ′)

H1
2 −

1
4

[
(s− r)

H1
2 −

1
4 r

H1
2 −

1
4 + (s− r)H1− 1

2

+ (t− s)
H1
2 −

1
4 r

H1
2 −

1
4 + (t− s)

H1
2 −

1
4 (s− r)

H1
2 −

1
4

]
×
[
(s′ − θ)

H1
2 −

1
4 θ

H1
2 −

1
4 + (s′ − θ)H1− 1

2 + (t− s′)
H1
2 −

1
4 θ

H1
2 −

1
4

+ (t− s′)
H1
2 −

1
4 (s′ − θ)

H1
2 −

1
4

]
.

Notice that with γ0(s) = |s|2H0−2 for H0 ∈ (1/2, 1). This allows us to apply the embedding
inequality (2.9) and get∫

0<r<s<t
0<θ<s′<t

drdsdθds′
∫

[0,t]2
dr′dθ′γ0(s− s′)γ0(r − r′)γ0(θ − θ′)B0

.
{∫

0<r<s<t

drds

∫ t

0

dθ′(t− θ′)
H1
2H0
− 1

4H0

(
(s− r)

H1
2 −

1
4 r

H1
2 −

1
4 + (s− r)H1− 1

2

+ (t− s)
H1
2 −

1
4 r

H1
2 −

1
4 + (t− s)

H1
2 −

1
4 (s− r)

H1
2 −

1
4

)1/H0
}2H0

< +∞.

Therefore,∫
0<r<s<t
0<θ<s′<t

drdsdθds′
∫

[0,t]2
dr′dθ′γ0(s− s′)γ0(r − r′)γ0(θ − θ′)A0 . R.

For the case γ0 = δ0, the expression for B0 reduces to

B0 = (t− r)
H1
2 −

1
4 (t− θ)

H1
2 −

1
4

[
(s− r)

H1
2 −

1
4 r

H1
2 −

1
4 + (s− r)H1− 1

2

+ (t− s)
H1
2 −

1
4 r

H1
2 −

1
4 + (t− s)

H1
2 −

1
4 (s− r)

H1
2 −

1
4

]
×
[
(s− θ)

H1
2 −

1
4 θ

H1
2 −

1
4 + (s− θ)H1− 1

2 + (t− s)
H1
2 −

1
4 θ

H1
2 −

1
4

+ (t− s)
H1
2 −

1
4 (s− θ)

H1
2 −

1
4

]
.

and for the same reason as above,∫
0<r<s<t
0<θ<s<t

drdsdθA0 . R

∫
0<r<s<t
0<θ<s<t

drdsdθB0 . R.
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The remaining three cases
0 < s < r < t and 0 < θ < s′ < t

0 < r < s < t and 0 < s′ < θ < t

0 < s < r < t and 0 < s′ < θ < t

can be estimated in an almost same way and finally we can get the same upper bounds.
That is, we obtain the desired bound A . R and hence conclude the proof of (1.12) under
Hypothesis 2.

4.2 Proof of some auxiliary results

In this subsection, we introduce some auxiliary results and provide the proof of
Lemma 4.2 and 4.3 in Section 4.2.2.

4.2.1 Estimates for fixed Wiener chaoses

Fix 0 < s < t <∞ and x, y ∈ R. For any n = 1, 2, . . . , let g1
s,t,x,n and g2

s,y,t,x,n be functions
on [s, t]n ×Rn given by

g1
s,t,x,n(sn,yn) = n!ft,x,n(sn,yn)1[s,t]n(sn), (4.9)

and

g2
s,y,t,x,n(sn,yn) = psσ(1)−s(yσ(1) − y)g1

s,t,x,n(sn,yn), (4.10)

where ft,x,n is defined as in (2.6) and σ, because of the indicator function 1[s,t]n , is now a
permutation on {1, . . . , n} such that s < sσ(1) < · · · < sσ(n) < t.

In Section 4.2.2 below, we will see that g1 and g2 are closely related to the chaos
coefficients of the Mallivain derivatives of u. In fact, the next lemmas, which give some
estimates for g1

n and g2
n, are essential to the proofs of Lemmas 4.2 and 4.3.

Lemma 4.4. Let 0 < s < t < ∞ and let x ∈ R. Fix a positive integer n, and let g1
n be

given as in (4.9). Then, the following equalities hold.(∫
[s,t]n

dsn‖g1
s,t,x,n(sn, •)‖

1
H0

H⊗n1

)2H0

≤ C2(n, t− s) (4.11)

and(∫
[s,t]n

dsn‖g1
s,t,x+x′,n(sn, •)− g1

s,t,x,n(sn, •)‖
1
H0

H⊗n1

)2H0

≤ C2(n, t− s)Nt−s(x′)2, (4.12)

where Nt is defined as in (2.16) and C2(n, t) = c1c
n
2 Γ((2H0 +H1 − 1)n+ 1)t(2H0+H1−1)n

for all positive integers n and real numbers t > 0 with some constants c1, c2 depending
on H0 and H1.

Proof. Fix s < s1 < s2 < · · · < sn < t. Denote by ĝ1
n the Fourier transformation of g1

n with
respect to the spatial arguments. Following the idea in [14, Theorem 3.4], we can show
that

‖g1
s,t,x,n(sn, •)‖2H⊗n1

= cnH1

∫
Rn
dξξξn

n∏
j=1

|ξj |1−2H1 |ĝ1
s,t,x,n(sn, ξξξn)|2

≤cnH1

∑
αααk∈Dn

∫
Rn
dηηηn|η1|1−2H1

n∏
j=1

|ηj |αj ×
n−1∏
j=1

e−(sj+1−sj)|ηj |2 × e−(t−sn)|ηn|2

≤c1cn2
∑

αααn∈Dn

(s2 − s1)−
2−2H1+α1

2 ×
n∏
j=2

(sj+1 − sj)−
1+αj

2 , (4.13)
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where Dn is a collection of multi-indexes αααk = (α1, . . . , αn) with

α1, αn ∈ {0, 1− 2H1}, αi ∈ {0, 1− 2H1, 2(1− 2H1)}, ∀i = 2, . . . , n− 1, (4.14)

and

n∑
i=1

αi = (n− 1)(1− 2H1). (4.15)

Applying [15, Lemma 4.5], and the fact that( m∑
i=1

xi

)γ
≤ mγ

m∑
i=1

xγi

for all m = 1, 2, . . . , and x1, . . . , xm, γ > 0, we get from (4.13) that∫
[s,t]n

dsn‖g1
s,t,x,n(sn, •)‖

1
H0

H⊗n1

=n!

∫
T
s,t
n

dsn‖g1
s,t,x,n(sn, •)‖

1
H0

H⊗n1

≤c1cn2n!(t− s)
2H0+H1−1

2H0
nΓ
(2H0 +H1 − 1

2H0
n+ 1

)−1

. (4.16)

Inequality (4.11) is thus a consequence of inequality (4.16) and the next inequality

Γ
(2H0 +H1 − 1

2H0
n+ 1

)−2H0

≤ c1cn2 Γ
(
(2H0 +H1 − 1)n+ 1

)−1
. (4.17)

Inequality (4.17) can be proved as a corollary of Lemma 2.9 (i). Denote by H = 2H0+H1−1
2H0

.
Thanks to Lemma 2.9 (i), we have

Γ(Hn+ 1)−2H0 ≤
(√

2π(Hn+ 1)Hn+ 1
2 e−(Hn+1)

)−2H0

= A1 ×A2, (4.18)

where

A1 =(2π)−
1
2

(
2H0Hn+ 2H0

)−2H0Hn− 1
2 e

(2H0Hn+1)− 1
12(2H0Hn+1)

and

A2 =(2π)
1
2−H0(2H0)2H0Hn−H0(2H0Hn+ 2H0)

1
2−H0e

(2H0−1)+ 1
12(2H0Hn+1) ≤ c1cn2 , (4.19)

with some constants c1 and c2 depending on H0 and H1. Notice that H0 ≥ 1
2 . It follows

that (2H0Hn+ 2H0)−2H0Hn− 1
2 ≤ (2H0Hn+ 1)−2H0Hn− 1

2 , and thus due to Lemma 2.9 (i)
again,

A1 ≤ (2π)−
1
2

(
2H0Hn+ 1

)−2H0Hn− 1
2 e

(2H0Hn+1)− 1
12(2H0Hn+1) ≤ Γ

(
2H0Hn+ 1

)−1
. (4.20)

Then, inequality (4.17) follows from (4.18)–(4.20). The proof of (4.11) is complete.
The proof of (4.12) is quite similar. Fix s < s1 < · · · < sn < t. By the Fourier

transformation, we can write

Jn :=‖g1
s,t,x+x′,n(sn, •)− g1

s,t,x,n(sn, •)‖2H⊗n1

=cnH1

∫
Rn
dξξξn

n∏
j=1

|ξj |1−2H1 |ĝ1
s,t,x+x′,n(sn, ξξξn)− ĝ1

s,t,x,n(sn, ξξξn)|2

≤cnH1

∑
ααα∈Dn

∫
Rn
dηηηn|η1|1−2H1

n∏
j=1

|ηj |αj ×
n∏
j=1

e−(sj+1−sj)|ηj |2 |e−i(x+x′)ηn − e−ixηn |2,
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where Dn is a set of multi-indexes defined as in (4.14) and (4.15). Using the elementary
calculus, we can show that for all x ∈ R,

|e−ix − 1| ≤ |x|1{|x|≤1} + 2× 1{|x|>1}, (4.21)

and thus,

Jn ≤c1cn2
∑
ααα∈Dn

[
|x′|2

∫
Rn
dηηηn|η1|1−2H1

n∏
j=1

|ηj |αj |ηn|2
n∏
j=1

e−(sj+1−sj)|ηj |21{|x′ηn|≤1}

+

∫
Rn
dηηηn|η1|1−2H1

n∏
j=1

|ηj |αj ×
n∏
j=1

e−(sj+1−sj)|ηj |21{|x′ηn|>1}

]

≤c1cn2
∑

αααn∈Dn

(s2 − s1)−
2−2H1+α1

2 ×
n−1∏
j=2

(sj+1 − sj)−
1+αj

2

×
[
|x′|2

∫ |x′|−1

0

dηn|ηn|2+αne−(t−sn)η2n +

∫ ∞
|x′|−1

dηn|ηn|αne−(t−sn)η2n

]
.

Preforming the changing of variable
√
t− snηn = η, we can write∫ |x′|−1

0

dηn|ηn|2+αne−(t−sn)η2n

= (t− sn)−
3
2−

1
2αn

∫ √
t−sn
|x′|

0

dη|η|2+αne−η
2

≤ (t− sn)−
3
2−

1
2αn
(∫ ∞

0

dη|η|2+αne−η
2

1{|x′|≤
√
t−sn}

+

∫ √
t−sn
|x′|

0

dη|η|2+αn1{|x′|>
√
t−sn}

)
≤ c1(t− sn)−

3
2−

1
2αn
(
1{|x′|≤

√
t−sn} + (t− sn)

3+αn
2 |x′|−3−αn1{|x′|>

√
t−sn}

)
≤ c1

(
(t− sn)−

1
4−

1
2αn−H0 |x′|− 5

2 +2H01{|x′|≤
√
t−sn}

+ (t− sn)−
1+αn

2 |x′|−21{|x′|>
√
t−sn}

)
.

Similarly, we can also show that∫ ∞
|x′|−1

dηn|ηn|αne−(t−sn)η2n

= (t− sn)−
1
2−

1
2αn

∫ ∞
√
t−sn
|x′|

dηn|ηn|αne−η
2
n

≤ c1(t− sn)−
1
2−

1
2αn

(( |x′|√
t− sn

)2

1{|x′|≤
√
t−sn} + 1{|x′|>

√
t−sn}

)
≤ c1

(
(t− sn)−

1
4−

1
2αn−H0 |x′|− 1

2 +2H01{|x′|≤
√
t−sn}

+ (t− sn)−
1+αn

2 1{|x′|>
√
t−sn}

)
.

Therefore,

Jn ≤c1cn2
∑

αααn∈Dn

(s2 − s1)−
2−2H1+α1

2 ×
n−1∏
j=2

(sj+1 − sj)−
1+αj

2

×
(
(t− sn)−

1
4−

1
2αn−H0 |x′|− 1

2 +2H01{|x′|≤
√
t−sn} + (t− sn)−

1+αn
2 1{|x′|>

√
t−sn}

)
.
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By using [15, Lemma 4.5] again, we get the following inequality,(
n!

∫
T
s,t
n

dsnJ
1

2H0
n

)2H0

≤ c1cn2
[
n!Γ
(2H0 +H1 − 1

2H0
n+ 1

)−1

(t− s)
2H0+H1−1

2H0
n

×
(
|x′|

−1+4H0
4H0 (t− s)

1−4H0
8H0 1{|x′|≤

√
t−s} + 1{|x′|>

√
t−s}

)]2H0

. (4.22)

Hence, inequality (4.12) follows from inequality (4.22) and Lemma 2.9 (i). The proof of
Lemma 4.4 is competed.

Lemma 4.5. Let 0 < s < t < ∞ and let x, y ∈ R. For any n = 1, 2, . . . , let gn be given
in (4.10). Then, the following equalities hold.(∫

[s,t]n
dsn‖g2

s,y,t,x,n(sn, •)‖
1
H0

H⊗n1

)2H0

≤ C2(n, t− s)pt−s(x− y)2, (4.23)

(∫
[s,t]n

dsn‖g2
s,y+y′,t,x,n(sn, •)− g2

s,y,t,x,n(sn, •)‖
1
H0

H⊗n1

)2H0

≤C2(n, t− s)
(∣∣∆t−s(y − x, y′)

∣∣+ pt−s(x− y)Nt−s(y
′)
)2
, (4.24)

(∫
[s,t]n

dsn‖g2
s,y,t,x+x′,n(sn, •)− g2

s,y,t,x,n(sn, •)‖
1
H0

H⊗n1

)2H0

≤C2(n, t− s)
(∣∣∆t−s(x− y, x′)

∣∣+ pt−s(x− y)Nt−s(x
′)
)2
, (4.25)

and (∫
[s,t]n

dsn‖g2
s,y+y′,t,x+x′,n(sn, •)− g2

s,y,t,x+x′,n(sn, •)

− g2
s,y+y′,t,x,n(sn, •) + g2

s,y,t,x,n(sn, •)‖
1
H0

H⊗n

)2H0

≤C2(n, t− s)
(∣∣Rt−s(x− y, x′, y′)∣∣+

∣∣∆t−s(x− y, x′)
∣∣Nt−s(y′)

+
∣∣∆t−s(y − x, y′)

∣∣Nt−s(x′) + pt−s(x− y)Nt−s(x
′)Nt−s(y

′)
)2
, (4.26)

where ∆t, Rt and Nt are defined as in (2.14)–(2.16) and C2(n, t− s) are the same as in
Lemma 4.4.

Remark 4.6. In what follows, one may find some structures that are almost the same
as in Section 3.2. However, because of the rough dependence in space, the maximal
principle is not valid under Hypothesis 2. Therefore, we provide the estimates via a
different approach, which involves more careful computations.

Proof of Lemma 4.5. We divide the proof of this lemma into three steps. In Step 1, we
prove inequality (4.23), and then inequalities (4.24) and (4.25) in Step 2. Finally, the
proof of inequality (4.26) is left in Step 3.

Step 1. Fix s < s1 < · · · < sn < t. Taking into account formulas (3.15) and (3.16), we
can write

ĝ2
s,y,t,x,n(sn,ξξξn) = pt−s(x− y) exp

(
− iy t− s1

t− s

n∑
k1=1

(
ξk1

k1∏
k2=2

t− sk2
t− sk2−1

))

× exp

[
− ix

n∑
j=1

sj − sj−1

t− sj−1

n∑
k1=j

(
ξk1

k1∏
k2=j+1

t− sk2
t− sk2−1

)]

×
n∏
j=1

exp

[
− (t− sj)(sj − sj−1)

2(t− sj−1)

[ n∑
k1=j

(
ξk1

k1∏
k2=j+1

t− sk2
t− sk2−1

)]2]
, (4.27)
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where by convention s0 = s and y0 = y. Recall that the maximal inequality is not
applicable in this situation and we need to apply another method. Notice that the
spectral measure µ(dξ) of Hilbert space H1 has a density |ξ|1−2H1 under Hypothesis 2.
This allows us to perform a change of variables. For any j = 1, . . . , n, let

ηj =

n∑
k1=j

ξk1

k1∏
k2=j+1

t− sk2
t− sk2−1

.

Then, it is clear that ξn = ηn and

ξj = ηj −
( t− sj+1

t− sj

)
ηj+1,

for all j = k+2, . . . , n. Denote by Σ = Σn = ∂ξξξn
∂ηηηn

the Jacobian matrix of the transformation
ξξξn → ηηηn. Then, we have det(Σ) = 1 and thus

‖g2
s,y,t,x,n(sn, •)‖2H⊗n1

=cnH1

∫
Rn
dξξξn

n∏
i=1

|ξi|1−2H1 |ĝ2
s,y,t,x,n(sn, ξξξn)|2

=cnH1
pt−s(x− y)2

∫
Rn
dηηηn

n−1∏
i=1

∣∣∣ηi − t− si+1

t− si
ηi+1

∣∣∣1−2H1

|ηn|1−2H1

×
n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
. (4.28)

Using the trivial inequality that |a + b|1−2H1 ≤ |a|1−2H1 + |b|1−2H1 for all H1 ∈ (0, 1
2 )

and a, b ∈ R, we get

∫
Rn
dηηηn

n−1∏
i=1

∣∣∣ηi − t− si+1

t− si
ηi+1

∣∣∣1−2H1

|ηn|1−2H1

n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
≤

∑
βββn−1=(β1,...,βn−1)∈{0,1}n−1

Jβββn−1
, (4.29)

where

Jβββn−1
:=

∫
Rn
dηηηn

n−1∏
i=1

(
|ηi|βi(1−2H1)

∣∣∣ t− si+1

t− si
ηi+1

∣∣∣(1−βi)(1−2H1))
× |ηn|1−2H1

×
n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
=

∫
Rn
dηηηn|η1|β1(1−2H1)

n−1∏
i=2

|ηi|(1−βi−1+βi)(1−2H1)|ηn|(2−βn−1)(1−2H1)

×
n−1∏
i=1

( t− si+1

t− si

)(1−βi)(1−2H1) n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
.
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Fix βββn−1 ∈ {0, 1}n−1. Then, we can show that

Jβββn−1
≤c1cn2

( (t− s)
(t− s1)(s1 − s)

) 1
2 + 1

2β1(1−2H1)

×
n−1∏
i=2

( (t− si−1)

(t− si)(si − si−1)

) 1
2 + 1

2 (1−βi−1+βi)(1−2H1)

×
( (t− sn−1)

(t− sn)(sn − sn−1)

) 1
2 + 1

2 (2−βn−1)(1−2H1) n∏
i=2

( t− si
t− si−1

)(1−βi−1)(1−2H1)

.

After simplification, we get

Jβββn−1
≤c1cn2 (t− s) 1

2 + 1
2β1(1−2H1)(t− s1)

1
2 (β2−1)(1−2H1)

n−2∏
i=2

(t− si)
1
2 (βi+1−βi−1)(1−2H1)

× (t− sn−1)
1
2 (1−βn−2)(1−2H1)(t− sn)−

1
2−

1
2βn−1(1−2H1)(s1 − s)−

1
2−

1
2β1(1−2H1)

×
n−1∏
i=2

(si − si−1)−
1
2−

1
2 (1−βi−1+βi)(1−2H1)(sn − sn−1)−

1
2−

1
2 (2−βn−1)(1−2H1). (4.30)

Recalling that s < s1 < · · · < sn < t, we can write, with the convention s0 = s,

(t− s) 1
2 + 1

2β1(1−2H1)(t− s1)
1
2 (β2−1)(1−2H1)

n−2∏
i=2

(t− si)
1
2 (βi+1−βi−1)(1−2H1)

× (t− sn−1)
1
2 (1−βn−2)(1−2H1)(t− sn)−

1
2−

1
2βn−1(1−2H1)

=(t− s) 1
2 (t− s1)−

1
2 (1−2H1)

n−1∏
i=1

( t− si−1

t− si+1

) 1
2βi(1−2H1)

(t− sn−1)
1
2 (1−2H1)(t− sn)−

1
2

≤
( t− s
t− sn

) 1
2
( t− sn−1

t− s1

) 1
2 (1−2H1) n−1∏

i=1

( t− si−1

t− si+1

) 1
2 (1−2H1)

=
( t− s
t− sn

)1−H1

. (4.31)

Therefore, combining (4.28)–(4.31), we have

‖g2
n(sn, •, s, y,t, x)‖2H⊗n1

≤ c1cn2pt−s(x− z)2(t− s)1−H1(t− sn)H1−1

×
∑

βββn−1∈{0,1}n−1

(s1 − s)−
1
2−

1
2β1(1−2H1)

n−1∏
i=2

(si − si−1)−
1
2−

1
2 (1−βi−1+βi)(1−2H1)

× (sn − sn−1)−
1
2−

1
2 (2−βn−1)(1−2H1).

In the next step, we estimate the time integral of ‖g2
n(sn, •, s, y, t, x)‖2H⊗n1

. Fix βββn−1 ∈
{0, 1}n−1. Put

α1 =
− 1

2 −
1
2β1(1− 2H1)

2H0
, αi =

− 1
2 −

1
2 (1− βi−1 + βi)(1− 2H1)

2H0

for all i = 2, . . . , n− 1, and

αn =
− 1

2 −
1
2 (2− βn−1)(1− 2H1)

2H0
, and αn+1 =

H1 − 1

2H0
.

Then, as a consequence of Hypothesis 2, one can show that αi ∈ (−1, 0] for all
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i = 1, . . . , n+ 1. This allows us to apply the beta function iteratively and get∫
T
s,t
n

dsn

n+1∏
i=1

(si − si−1)αi =

∏n+1
i=1 Γ(αi + 1)(t− s)

∑n+1
i=1 αi+n

Γ(
∑n+1
i=1 αi + n+ 1)

≤ c1cn2
(t− s)

∑n+1
i=1 αi+n

Γ(
∑n+1
i=1 αi + n+ 1)

,

where by convention convention sn+1 = t and positive constants c1, c2 depend on H0

and H1. The above inequality is true for all αi ∈ (−1, 1), i = 1, . . . , n + 1, and [15,
Lemma 4.5] is a special case when αn+1 = 0. It follows that∫

T
s,t
n

dsn

n+1∏
i=1

(si − si−1)αi ≤ c1cn2
(t− s)

2H0+H1−1
2H0

n+
H1−1
2H0

Γ( 2H0+H1−1
2H0

n+ H1−1
2H0

+ 1)
.

Therefore,∫
[s,t]n

dsn‖g2
n(sn, •, s, y, t, x)‖

1
H0

H⊗n1

≤ c1c
n
2n!pt−s(x− y)

1
H0 (t− s)

2H0+H1−1
2H0

n

Γ( 2H0+H1−1
2H0

n+ H1−1
2H0

+ 1)
. (4.32)

Thus, inequality (4.23) follows from inequality (4.32) and Lemma 2.9 (i) by a similar
argument as in the proof of Lemma 4.4.

Step 2. Fix s < s1 < · · · < sn < t. Let

Jn := ‖g2
n(sn, •, s, y + y′, t, x)− g2

n(sn, •, s, y, t, x)‖2H⊗n1
.

Taking into account formula (4.27), we obtain the next equality analogously to (4.28),

Jn =cnH1

∫
Rn
dηηηn

∣∣∣∣pt−s(x− y − y′) exp
(
− i(y + y′)

t− s1

t− s
η1

)
− pt−s(x− y) exp

(
− iy t− s1

t− s
η1

)∣∣∣∣2 n−1∏
i=1

|ηi −
t− si+1

t− si
ηi+1|1−2H1 |ηn|1−2H1

×
n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
≤ c1cn2 (G1 +G2), (4.33)

where

G1 =|pt−s(x− y − y′)− pt−s(x− y)|2
∫
Rn
dηηηn

n−1∏
i=1

|ηi −
t− si+1

t− si
ηi+1|1−2H1 |ηn|1−2H1

×
n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
, (4.34)

and

G2 =pt−s(x− y)2

∫
Rn
dηηηn

∣∣∣ exp
(
− i(y + y′)

t− s1

t− s
η1

)
− exp

(
− iy t− s1

t− s
η1

)∣∣∣2
×
n−1∏
i=1

∣∣∣ηi − t− si+1

t− si
ηi+1

∣∣∣1−2H1

|ηn|1−2H1

n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
. (4.35)

Using inequalities (4.28) and (4.32), and Lemma 2.9, we can write(
n!

∫
T
s,t
n

dsnG
1

2H0
1

)2H0

≤ C2(n, t− s)
(
pt−s(x− y − y′)− pt−s(x− y)

)2
. (4.36)
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To estimate G2, we apply inequality (4.21) and get

G2 ≤pt−s(x− y)2

∫
Rn
dηηηn

(
|y′|2

∣∣∣ t− s1

t− s
η1

∣∣∣21{| t−s1t−s η1y
′|≤1} + 2× 1{| t−s1t−s η1y

′|>1}

)
×
n−1∏
i=1

∣∣∣ηi − t− si+1

t− si
ηi+1

∣∣∣1−2H1

|ηn|1−2H1

n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
.

Using the same idea as in (4.29) and (4.30), we deduce that

G2 ≤ c1cn2pt−s(x− y)2(G21 +G22), (4.37)

where, with βn = 1,

G21 =|y′|2
∑

βββn−1∈{0,1}n−1

[ ∫
R

dη1|η1|2+β1(1−2H1)1{| t−s1t−s η1y
′|≤1} exp

(
− (t− s1)(s1 − s)

t− s
η2

1

)]

× (t− s)−2(t− s1)
5
2 + 1

2 (β1+β2−1)(1−2H1)
n−1∏
i=2

(t− si)
1
2 (βi+1−βi−1)(1−2H1)

× (t− sn)−
1
2 + 1

2βn−1(1−2H1)
n∏
i=2

(si − si−1)−
1
2−

1
2 (1−βi−1+βi)(1−2H1)

and

G22 =
∑

βββn−1∈{0,1}n−1

[ ∫
R

dη1|η1|β1(1−2H1)1{| t−s1t−s η1y
′|>1} exp

(
− (t− s1)(s1 − s)

t− s
η2

1

)]

× (t− s1)
1
2 + 1

2 (β1+β2−1)(1−2H1)
n−1∏
i=2

(t− si)
1
2 (βi+1−βi−1)(1−2H1)

× (t− sn)−
1
2 + 1

2βn−1(1−2H1)
n∏
i=2

(si − si−1)−
1
2−

1
2 (1−βi−1+βi)(1−2H1).

Preforming the change of variable ( (t−s1)(s1−s)
t−s )

1
2 η1 = η, we can show that

∫
R

dη1|η1|2+β1(1−2H1)1{| t−s1t−s η1y
′|≤1} exp

(
− (t− s1)(s1 − s)

t− s
η2

1

)
=2
( t− s

(t− s1)(s1 − s)

) 3
2 + 1

2β1(1−2H1)
∫ ( (t−s)(s1−s)

t−s1

) 1
2 |y′|−1

0

dη|η|2+β1(1−2H1)e−η
2

≤2
( t− s

(t− s1)(s1 − s)

) 3
2 + 1

2β1(1−2H1)(∫ ∞
0

dη|η|2+β1(1−2H1)e−η
2

1{|y′|≤
√
s−s1}

+

∫ ( (t−s)(s1−s)
t−s1

) 1
2 |y′|−1

0

dη|η|2+β1(1−2H1)1{|y′|>
√
s1−s}

)
≤c1

[( t− s
t− s1

) 3
2 + 1

2β1(1−2H1)

(s1 − s)−
3
2−

1
2β1(1−2H1)1{|y′|≤

√
s1−s}

+
( t− s
t− s1

)3+β1(1−2H1)

|y′|−3−β1(1−2H1)1{|y′|>
√
s1−s}

]
.
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It follows that G21 ≤ c1cn2 (G1
21 +G2

21), where

G1
21 =

∑
βββn−1∈{0,1}n−1

|y′|2(s1 − s)−
3
2−

1
2β1(1−2H1)1{|y′|≤

√
s1−s}(t− s)

− 1
2 + 1

2β1(1−2H1)

× (t− s1)1+ 1
2 (β2−1)(1−2H1)

n−1∏
i=2

(t− si)
1
2 (βi+1−βi−1)(1−2H1)(t− sn)−

1
2 + 1

2βn−1(1−2H1)

×
n∏
i=2

(si − si−1)−
1
2−

1
2 (1−βi−1+βi)(1−2H1)

and

G2
21 =

∑
βββn−1∈{0,1}n−1

|y′|−1−β1(1−2H1)1{|y′|>
√
s1−s}(t− s)

1+β1(1−2H1)

× (t− s1)−
1
2 + 1

2 (β2−β1−1)(1−2H1)
n−1∏
i=2

(t− si)
1
2 (βi+1−βi−1)(1−2H1)

× (t− sn)−
1
2 + 1

2βn−1(1−2H1)
n∏
i=2

(si − si−1)−
1
2−

1
2 (1−βi−1+βi)(1−2H1).

Notice that on the set {|y′| ≤
√
s1 − s},

|y′|2(s1 − s)−
3
2−

1
2β1(1−2H1) ≤ |y′|2H0− 1

2 (s1 − s)−
1
4−

1
2β1(1−2H1)−H0 .

Combining this fact with inequalities (4.31) and (4.32), and Lemma 2.9, we get(
n!

∫
T
s,t
n

dsn
∣∣G1

21

∣∣ 1
2H0

)2H0

≤ c1cn2
∑

β1∈{0,1}

|y′|2H0− 1
2

[ ∫
[s,t]n

dsn

(
(s1 − s)−

1
4−

1
2β1(1−2H1)−H0

× t− s1

t− s

n∏
i=2

(si − si−1)−
1
2−

1
2 (1−βi−1+βi)(1−2H1)

) 1
2H0

]2H0

1{|y′|≤
√
t−s}

≤ C2(n, t− s)(t− s) 1
4−H0 |y′|2H0− 1

21{|y′|≤
√
t−s}.

Following the same arguments, we can also deduce that(
n!

∫
T
s,t
n

dsn
∣∣G2

21

∣∣ 1
2H0

)2H0

≤ C2(n, t− s)
∑

β1∈{0,1}

(t− s) 1
2−2H0+ 1

2β1(1−2H1)|y′|−1−β1(1−2H1)
[
(t− s) ∧ |y′|2

]2H0

≤ C2(n, t− s)
(
(t− s) 1

4−H0 |y′|2H0− 1
21{|y′|≤

√
t−s} + 1{|y′|>

√
t−s}

)
and (

n!

∫
T
s,t
n

dsnG
1

2H0
22

)2H0

≤ C2(n, t− s)
(
(t− s) 1

4−H0 |y′|2H0− 1
21{|y′|≤

√
t−s} + 1{|y′|>

√
t−s}

)
.

(4.38)

Therefore, inequality (4.24) is a consequence of inequalities (4.33) and (4.36)–(4.38).
Inequality (4.25) is just another version of (4.24), if one make the change of variable

si = t+ s− ui for all i = 1, . . . , n. Thus we can conclude that (4.25) holds true.
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Step 3. Due to formulas (4.27) and (4.28), we can write∥∥g2
n(sn, •, s, y + y′, t, x+ x′)− g2

n(sn, •, s, y, t, x+ x′)

− g2
n(sn, •, s, y + y′, t, x) + g2

n(sn, •, s, y, t, x)
∥∥2

Hn1

=cnH1

∫
Rn
dηηηn

∣∣h(x+ x′, y + y′)− h(x+ x′, y)− h(x, y + y′) + h(x, y)
∣∣2

×
n−1∏
i=1

|ηi −
t− si+1

t− si
ηi+1|1−2H1 |ηn|1−2H1

n∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)
, (4.39)

where h(x, y) = h1(x, y)h2(y)h3(x), with

h1(x, y) = pt−s(x− y), h2(y) = exp

(
−iy t− s1

t− s
η1

)
and

h3(x) = exp

−ix n∑
j=1

sj − sj−1

t− sj−1
ηj

 .

Notice that we can bound the rectangular increment as follows:∣∣h(x+ x′, y + y′)− h(x+ x′, y)− h(x, y + y′) + h(x, y)
∣∣

≤|h1(x+ x′, y + y′)− h1(x+ x′, y)− h1(x, y + y′) + h1(x, y)||h2(y + y′)||h3(x+ x′)|
+ |h1(x+ x′, y)− h1(x, y)||h2(y + y′)− h2(y)||h3(x+ x′)|
+ |h1(x, y + y′)− h(x, y)||h2(y + y′)||h3(x+ x′)− h3(x)|
+ |h1(x, y)||h2(y + y′)− h2(y)||h3(x+ x′)− h3(x)| := ~1 + ~2 + ~3 + ~4.

Following similar arguments as in Step 2, we can estimate the expressions[ ∫
T
s,t
n

dsn

(∫
Rn
dηηηn~2

k

n−1∏
i=1

|ηi −
t− si+1

t− si
ηi+1|1−2H1 |ηn|1−2H1

×
k2∏
i=1

exp
(
− (t− si)(si − si−1)

(t− si−1)
η2
i

)) 1
2H0
]2H0

for all k = 1, . . . , 4 and obtain inequality (4.26). The proof of this lemma is complete.

4.2.2 Proof of Lemmas 4.2 and 4.3

Having Lemmas 4.4 and 4.5, we are ready to present the proof of Lemmas 4.2 and 4.3.
By [29, Proposition 1.2.7], we can write the chaos expansion for the Malliavin derivatives
of u as follows. Fix (t, x) ∈ R+ ×R, then for all s, s1, s2 ∈ [s, t] and y, y1, y2 ∈ R,

Ds,yu(t, x) =

∞∑
n=0

In
(
(n+ 1)ft,x,n+1(•, s, y)

)
(4.40)

and

D2
r,z,s,yu(t, x) =

∞∑
n=0

In
(
(n+ 2)(n+ 1)ft,x,n+2(•, r, s, z, y)

)
, (4.41)

where ft,x,n is defined as in (2.6).
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Proof of Lemma 4.2. Suppose that p = 2. By the chaos expansion (4.40) of Ds,yu(t, x), in
order to prove inequality (4.3), we need to estimate the following expression

‖In((n+ 1)ft,x,n+1(•, s, y))‖22 = (n+ 1)2n!‖ft,x,n+1(•, s, y)‖2H⊗n .

Due to the embedding inequality (2.10), we know that

‖ft,x,n+1(•, s, y)‖2H⊗n ≤ c
n
H0

(∫
[0,t]n

dsn‖ft,x,n+1(sn, •, s, y)‖
1
H0

H⊗n1

)2H0

.

Notice that we can decompose the integral region in time as follows,

[0, t]n=

n⋃
k=0

⋃
σ∈Σn

{sn ∈ [0, t]n, 0 < sσ(1) < · · · < sσ(k) < s < sσ(k+1)< · · · < sσ(n) < t}
⋃
N ,

where Σn denotes a set of permutations on {1, . . . , n} and N is a subset included in
[0, t]n of zero Lebesgue measure. On the other hand, freezing 0 < s1 < · · · < sk < s <

sk+1 · · · < sn < t, we have

ft,x,n+1(sn,yn, s, y) =
1

(n+ 1)!
g1

0,s,y,k(sk,yk)g2
s,y,t,x,n−k(sk:n,yk:n) (4.42)

where g1
k and g2

n−k are defined as in (4.9) and (4.10). It follows that

‖ft,x,n+1(•, s, y)‖2H⊗n

≤ cnH0

( n∑
k=0

(
n

k

)∫
[0,s]k

dsk

∫
[s,t]n−k

dsk:n‖ft,x,n+1(sn, •, s, y)‖
1
H0

H⊗n1

)2H0

≤ c1c
n
2

[(n+ 1)!]2

n∑
k=0

(
n

k

)2H0(∫
[0,s]k

dsk‖g1
0,s,y,k(sk, •)‖

1
H0

H⊗k1

)2H0

×
(∫

[s,t]n−k
dsk:n‖g2

s,y,t,x,n−k(sk:n, •)‖
1
H0

H⊗(n−k)
1

)2H0

As a consequence of Lemmas 2.9 (i), 4.4, 4.5, we deduce that

(n+ 1)2n!‖ft,x,n+1(•, s, y)‖2H⊗n ≤
c1c

n
2 t

(2H0+H1−1)npt−s(x− y)2

Γ(H1n+ 1)
. (4.43)

Finally, it follows from the asymptotic bound of the Mittag-Leffler function (see Lemma
2.9 (ii)) that

‖Dr,zu(t, x)‖22 =

∞∑
n=0

E
∣∣In((n+ 1)ft,x,n+1(•, r, z)

)∣∣2
=

∞∑
n=0

(n+ 1)2n!‖ft,x,n+1(•, s, y)‖2H⊗n

≤pt−r(x− z)2
∞∑
n=0

c1c
n
2 t

(2H0+H1−1)n

Γ(H1n+ 1)

≤c1 exp
(
c2t

2H0+H1−1
2H1

)
pt−r(x− z)2.
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This proves inequality (4.3) in the case p = 2. For p > 2, using (2.3), we can write

‖Dr,zu(t, x)‖2p ≤
( ∞∑
n=0

∥∥In((n+ 1)ft,x,n+1(•, r, z)
)∥∥
p

)2

≤
( ∞∑
n=0

(p− 1)
n
2

∥∥In((n+ 1)ft,x,n+1(•, r, z)
)∥∥

2

)2

≤
(
c1pt−s(x− y)

∞∑
n=0

cn2 (p− 1)
n
2 t

2H0+H1−1
2 n

Γ(H1n+ 1)
1
2

)2

≤ C1(t)pt−s(x− y)2.

The proof of inequality (4.3) is complete.
In the next step, we provide the proof of inequality (4.4). Firstly, by chaos expan-

sion (4.40) and embedding inequality (2.10), we have

‖Ds,y+y′u(t, x)−Ds,yu(t, x)‖22

≤
∞∑
n=0

c1c
n
2

n!

n∑
k=0

(
n

k

)2H0
[(∫

[s,t]n−k
dsk:n‖g2

s,y,t,x,n−k(sk:n, •)‖
1
H0

H⊗(n−k)
1

×
∫

[0,s]k
dsk‖g1

0,s,y+y′,k(sk, •)− g1
0,s,y,k(sk, •)‖

1
H0

H⊗k

)2H0

+
(∫

[0,s]n−k
dsk:n‖g2

s,y+y′,t,x,n−k(sk:n, •)− g2
s,y,t,x,n−k(sk:n, •)‖

1
H0

H⊗(n−k)
1

)2H0

×
(∫

[0,s]k
dsk sup

z∈R
‖g1

0,s,z,k(sk, •)‖
1
H0

H⊗k1

)2H0
]
. (4.44)

As a consequence of Lemmas 4.4, 4.5 and 2.9 (ii), we obtain inequality (4.4) for p = 2

and thus for all p ≥ 2 due to inequality (2.3). The proof of this lemma is complete.

Proof of Lemma 4.3. It suffices to show this lemma for p = 2. Denote by LHS the left
hand side of (4.5). Then, by the chaos expansion (4.41), we get the following inequality,
in the same way as for (4.44),

LHS ≤
∞∑
n=0

c1c
n
2

n!

n∑
k2=0

k2∑
k1=0

(
n

k2

)2H0
(
k2

k1

)2H0

(4.45)

×
(∫

[0,r]k1
dsk1

∫
[r,s]k2−k1

dsk1:k2

∫
[s,t]n−k2

dsk2:n(K1 +K2 +K3 +K4)
1
H0

)2H0

,

where

K1 =‖g2
s,y,t,x,n−k2(sk2:n, •)‖H⊗(n−k2)

1

‖g1
0,r,z+z′,k1(sk1 , •)− g1

0,r,z,k1(sk1 , •)‖H⊗k11

× ‖g2
r,z,s,y+y′,k2−k1(sk1:k2 , •)− g2

r,z,s,y,k2−k1(sk1:k2 , •)‖H⊗(k2−k1)
1

,

K2 =‖g2
s,y,t,x,n−k2(sk2:n, •)‖H⊗(n−k2)

1

‖g1
0,r,z+z′,k1(sk1 , •)‖H⊗k11

× ‖g2
r,z+z′,s,y+y′,k2−k1(sk1:k2 , •)− g2

r,z+z′,s,y,k2−k1(sk1:k2 , •)
− g2

r,z,s,y+y′,k2−k1(sk1:k2 , •) + g2
r,z,s,y,k2−k1(sk1:k2 , •)‖H⊗(k2−k1)

1

,

K3 =‖g2
s,y+y′,t,x,n−k2(sk2:n, •)− g2

s,y,t,x,n−k2(sk2:n, •)‖H⊗(n−k2)
1

× ‖g2
r,z,s,y+y′,k2−k1(sk1:k2 , •)‖H⊗(k2−k1)

1

‖g1
0,r,z+z′,k1(sk1 , •)− g1

0,r,z,k1(sk1 , •)‖H⊗k11
,
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and

K4 =‖g2
s,y+y′,t,x,n−k2(sk2:n, •)− g2

s,y,t,x,n−k2(sk2:n, •)‖H⊗(n−k2)
1

‖g1
0,r,z+z′,k1(sk1 , •)‖H⊗k11

× ‖g2
r,z+z′,s,y+y′,k2−k1(sk1:k2 , •)− g2

r,z,s,y+y′,k2−k1(sk1:k2 , •)‖H⊗(k2−k1)
1

.

By Lemmas 2.9 (i), 4.4, and 4.5, we get(∫
[0,r]k1

dsk1

∫
[r,s]k2−k1

dsk1:k2

∫
[s,t]n−k2

dsk2:nK
1
H0
1

)2H0

≤C2(n, t)pt−s(x− y)2Nr(z
′)2
(∣∣∆s−r(y − z, y′)

∣∣+ ps−r(y − z)Ns−r(y′)
)2
, (4.46)

(∫
[0,r]k1

dsk1

∫
[r,s]k2−k1

dsk1:k2

∫
[s,t]n−k2

dsk2:nK
1
H0
2

)2H0

≤C2(n, t)pt−s(x− y)2
(∣∣Rs−r(y − z, y′, z′)∣∣+

∣∣∆s−r(y − z, y′)
∣∣Ns−r(z′)

+
∣∣∆s−r(z − y, z′)

∣∣Ns−r(y′) + ps−r(y − z)Ns−r(y′)Ns−r(z′)
)2
, (4.47)

(∫
[0,r]k1

dsk1

∫
[r,s]k2−k1

dsk1:k2

∫
[s,t]n−k2

dsk2:nK
1
H0
3

)2H0

≤C2(n, t)ps−r(y + y′ − z)2Nr(z
′)
∣∣(∣∣∆t−s(y − x, y′)

∣∣+ pt−s(x− y)2Nt−s(y
′)
)2

(4.48)

and (∫
[0,r]k1

dsk1

∫
[r,s]k2−k1

dsk1:k2

∫
[s,t]n−k2

dsk2:nK
1
H0
4

)2H0

≤C2(n, t)
(∣∣∆s−r(z − y − y′, z′)

∣∣+ ps−r(y + y′ − z)Ns−r(z′)
)2

×
(∣∣∆t−s(y − x, y′)

∣∣+ pt−s(x− y)Nt−s(y
′)
)2
. (4.49)

Therefore, inequality (4.5) is a consequence of inequalities (4.45)–(4.49), and Lemma 2.9.
This completes the proof of Lemma 4.3.
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