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Genealogies in bistable waves*
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Abstract

We study a model of selection acting on a diploid population (one in which each
individual carries two copies of each gene) living in one spatial dimension. We
suppose a particular gene appears in two forms (alleles) A and a, and that individuals
carrying AA have a higher fitness than aa individuals, while Aa individuals have a
lower fitness than both AA and aa individuals. The proportion of advantageous A

alleles expands through the population approximately according to a travelling wave.
We prove that on a suitable timescale, the genealogy of a sample of A alleles taken
from near the wavefront converges to a Kingman coalescent as the population density
goes to infinity. This contrasts with the case of directional selection in which the
corresponding limit is thought to be the Bolthausen-Sznitman coalescent. The proof
uses ‘tracer dynamics’.
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1 Introduction and main results

Our interest in this work is in modelling the pattern of genetic variation left behind
when a gene that is favoured by natural selection ‘sweeps’ through a spatially structured
population in a travelling wave. The interaction between natural selection and spatial
structure is a classical problem; the novelty of what we propose here is that we replace
the simple directional selection considered in the majority of the mathematical work
in this area by a model of selection acting on diploid individuals (carrying two copies
of the gene in question) that provides a toy model for the dynamics of so-called hybrid
zones. Hybrid zones are widespread in naturally occurring populations, [4], and there
is a wealth of recent empirical work on their dynamics; see [1] for an example and a
brief discussion. In our simple model, we shall suppose that the population is living in
one spatial dimension, and that the gene has exactly two forms (alleles), A and a, and
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Genealogies in bistable waves

that type AA individuals are at a selective advantage over aa individuals, but that Aa
individuals are at a selective disadvantage relative to both.

Our goal is to understand the genealogical trees that describe the relationships
between individual genes sampled from the present day population. In the case of
directional selection, there is a large body of work, of varying degrees of rigour, that
suggests that if we take a sample of favoured individuals from close to the wavefront
then, on suitable timescales, their genealogy is described by the so-called Bolthausen-
Sznitman coalescent. In our models, where expansion of the favoured type is driven
from the bulk of the wave, we shall see that the corresponding object is the classical
Kingman coalescent.

Before giving a precise mathematical definition of our model in Section 1.1 and
stating our main results in Section 1.2, we place our work in context.

Directional selection: the (stochastic) Fisher-KPP equation

The mathematical modelling of the way in which a genetic type favoured by natural
selection spreads through a population that is distributed across space can be traced
back at least to Fisher ([17]) and Kolmogorov, Petrovsky & Piscounov ([23]). They
introduced the now classical Fisher-KPP equation,

∂p

∂t
(t, x) =

m

2
∆p(t, x) + s0p(t, x)

(
1− p(t, x)

)
for x ∈ R, t > 0, (1.1)

0 ≤ p(0, x) ≤ 1 ∀x ∈ R,

as a model for the way in which the proportion p(t, x) of genes that are of the favoured
type changes with time. A shortcoming of this equation is that it does not take account of
random genetic drift, that is, the randomness due to reproduction in a finite population.
The classical way to introduce such randomness is through a Wright-Fisher noise term,
so that the equation becomes

dp(t, x) =
m

2
∆p(t, x)dt+ s0p(t, x)

(
1− p(t, x)

)
dt+

√
1

ρe
p(t, x)

(
1− p(t, x)

)
W (dt, dx), (1.2)

where W is a space-time white noise and ρe is an effective population density. This is a
continuous space analogue of Kimura’s stepping stone model [22], with the additional
non-linear term capturing selection. This equation has the limitation that it only makes
sense in one space dimension, but like (1.1) it exhibits travelling wave solutions ([27])
which can be thought of as modelling a selectively favoured type ‘sweeping’ through the
population and, consequently, it has been the object of intensive study.

From a biological perspective, the power of mathematical models is that they can
throw some light on the patterns of genetic variation that one might expect to see in
the present day population if it has been subject to natural selection. Neither of the
models above is adequate for this task. If it survives at all, one can expect a selectively
favoured type to eventually be carried by all individuals in a population and from simply
observing that type, we have no way of knowing whether it is fixed in the population as a
result of natural selection, or purely by chance. However, in reality, it is not just a single
letter in the DNA sequence that is modelled by the equation, but a whole stretch of
genome that is passed down intact from parent to offspring, and on which we can expect
some neutral mutations to arise. The pattern of neutral variation can be understood if
we know how individuals sampled from the population are related to one another; that
is, if we have a model for the genealogical trees relating individuals in a sample from
the population. Equation (1.1) assumes an infinite population density everywhere so
that a finite sample of individuals will be unrelated; in order to understand genealogies
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Genealogies in bistable waves

we have to consider (1.2). The first step is to understand the effect of the stochastic
fluctuations on the forwards in time dynamics of the waves.

Any solution to (1.1) with a front-like initial condition p(0, x) which decays sufficiently
fast as x→∞ converges to the travelling wave solution with minimal wavespeed

√
2ms0

([34, 8]). Since the speed of this travelling wave is determined by the behaviour in the
‘tip’ of the wave, where the frequency of the favoured type is very low, it is very sensitive
to stochastic fluctuations. A great deal of work has gone into understanding the effect of
those fluctuations on the progress of the ‘bulk’ of the wave ([9, 10, 35, 11, 20, 26, 5]).
The first striking fact is that the wave is significantly slowed by the noise ([11, 26]). The
second ramification of the noise is that there really is a well-defined ‘wavefront’; that is,
assuming that the favoured type is spreading from left to right in our one-dimensional
spatial domain, there will be a rightmost point of the support of the stochastic travelling
wave ([27]). Moreover, the shape of the wavefront is well-approximated by a truncated
Fisher wave ([9, 26]).

If we were to take a sample of favoured individuals from a population evolving
according to the analogue of (1.2) without space, then, from [3], their genealogy would
be given by a ‘coalescent in a random background’; that is, it would follow a Kingman
coalescent but with the instantaneous rate of coalescence of each pair of lineages at time
t before the present given by 1/(N0

←−p (t)), where←−p (t) is the proportion of the population
that is of the favoured type at time t before the present, and N0 is the total population
size. This suggests that in the spatial context, as we trace back ancestral lineages, their
instantaneous rate of coalescence on meeting at the point x should be proportional to
1/←−p (t, x). In particular, this means that if several lineages are in the tip at the same time,
then they can coalesce very quickly. In fact, principally because p(t, x) is very rough, it
is difficult to study the genealogy directly by tracking ancestral lineages and analysing
when and where they meet. However, several plausible approximations (at least for
the population close to the wavefront) have been proposed for which the frequencies
of different types in the population are approximated by (1.2) and a consensus has
emerged that for biologically reasonable models, over suitable timescales, the genealogy
will be determined by a Bolthausen-Sznitman coalescent ([11, 5]). We emphasize that
this arises as a further scaling of the Kingman coalescent in a random background. It
reflects a separation of timescales. The ‘multiple merger’ events correspond to bursts of
coalescence when several lineages are close to the tip of the wave. This then is the third
ramification of adding genetic drift to (1.1); the genealogy of a sample of favoured alleles
from the wavefront will be dominated by ‘founder effects’, resulting from the fluctuations
in the wavefront. The idea is that from time to time a fortunate individual gets ahead of
the wavefront, where its descendants can reproduce uninhibited by competition, at least
until the rest of the population catches up, by which time they form a significant portion
of the wavefront.

Other forms of selection: pushed and pulled waves of expansion

The Fisher-KPP equation, and its stochastic analogue (1.2), model a situation in which
each individual in the population carries one copy of a gene that can occur in one of
two types, usually denoted a and A and referred to as alleles. If the type A has a small
selective advantage (in a sense to be made more precise when we describe our individual
based model below), then in a suitable scaling limit, p(t, x) represents the proportion of
the population at location x at time t that carries the A allele. This can also be used as a
model for the frequency of A alleles in a diploid population, provided that the advantage
of carrying two copies of the A allele is twice that of carrying one. However, natural
selection is rarely that simple; here our goal is to model a situation in which there is
selection against heterozygotes, that is, individuals carrying one A allele and one a allele,
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and in which AA-homozygotes are fitter than aa. As we shall explain below, the analogue
of the Fisher-KPP equation in this situation takes the form

∂p

∂t
(t, x) =

m

2
∆p(t, x) + s0f

(
p(t, x)

)
for x ∈ R, t > 0,

0 ≤ p(0, x) ≤ 1 ∀x ∈ R,
where f(p) = p(1− p)(2p− 1 + α),

(1.3)

with α > 0 a parameter which depends on the relative fitnesses of AA, Aa and aa

individuals.
In the case α ∈ (0, 1), the non-linear term f is bistable (since f(0) = 0 = f(1),

f ′(0) < 0, f ′(1) < 0 and f < 0 on (0, (1− α)/2), f > 0 on ((1− α)/2, 1)) and the equation
has a unique travelling wave solution given up to translation by the exact form

p(t, x) = g
(
x− α

√
ms0
2 t
)
, where g(y) =

(
1 + e

√
2s0
m y)−1. (1.4)

For α ∈ [1, 2), the travelling wave solution with minimal wavespeed is also given by (1.4).
In both cases, solutions of (1.3) with suitable front-like initial conditions converge to
the travelling wave (1.4) [16, 31]. The case α = 0 corresponds to AA and aa being
equally fit, in which case, for suitable initial conditions, there is a stationary ‘hybrid
zone’ trapped between two regions composed almost entirely of AA and almost entirely
of aa individuals respectively. As observed, for example, by Barton ([2]), when α > 2

the symmetric wavefront of (1.4) is replaced by an asymmetric travelling wavefront
moving at speed

√
2ms0(α− 1). This transition from symmetric to asymmetric wave

corresponds to the transition from a ‘pushed’ wave to a ‘pulled’ wave, notions introduced
by Stokes ([32]).

Considering the equation (1.3) for general monostable f (i.e. f satisfying f(0) =

0 = f(1), f ′(0) > 0, f ′(1) < 0 and f > 0 on (0, 1)), the travelling wave solution with
minimal wavespeed c is called a pushed wave if c >

√
2ms0f ′(0), and is a pulled wave if

c =
√

2ms0f ′(0). (Here,
√

2ms0f ′(0) is the spreading speed of solutions of the linearised
equation.) The travelling wave solutions in the bistable case can also be seen as pushed
waves (see [19]).

The natural stochastic version of (1.3), which was also discussed briefly by Bar-
ton ([2]), simply adds a Wright-Fisher noise as in (1.2). For α > 1, this is a reparametrisa-
tion of an equation considered by Birzu et al. ([6]). Their model is framed in the language
of ecology. Let n(t, x) denote the population density at point x at time t. They consider

dn(t, x) =
m

2
∆n(t, x)dt+ n(t, x)r

(
n(t, x)

)
dt+

√
γ
(
n(t, x)

)
n(t, x)W (dt, dx), (1.5)

where W is a space-time white noise, γ(n) quantifies the strength of the fluctuations,
and r(n) is the (density dependent) per capita growth rate. For example, for logistic
growth, one would take r(n) = r0(1 − n/N) for some ‘carrying capacity’ N . A pushed
wave arises when species grow best at intermediate population densities, known as an
Allee effect in ecology. This effect is typically incorporated by adding a cooperative term
to the logistic equation, for example by taking

r(n) = r0

(
1− n

N

)(
1 +

Bn

N

)
for some B > 0. If we write p = n/N , then, writing

s0

(
1− n

N

)(2n

N
− 1 + α

)
= s0(α− 1)

(
1− n

N

)( 2

α− 1

n

N
+ 1

)
,
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we see that for α > 1 we can recover (1.5) from a stochastic version of (1.3) by setting
B = 2/(α − 1) and r0 = s0(α − 1). Birzu et al. ([6]) define the travelling wave solution
with minimal wavespeed to the deterministic equation with this form of r to be pulled if
B ≤ 2, ‘semi-pushed’ if 2 < B < 4 and ‘fully pushed’ if B ≥ 4 (see equation (7) in [6] for
a more general definition). In our parametrisation this says that the wave is pulled for
α ≥ 2 (as observed by [2]), semi-pushed for 3/2 < α < 2 and fully pushed for α ≤ 3/2.
For B ≤ 2 the wavespeed is determined by the growth rate in the tip (in particular it is
independent of B), and just as for the Fisher wave, one can expect the behaviour to be
very sensitive to stochastic fluctuations. For B > 2, the velocity of the wave increases
with B, and also the region of highest growth rate shifts from the tip into the bulk of the
wave. These waves should be much less sensitive to fluctuations in the tip. Moreover if
we follow the ancestry of an allele of the favoured type A, that is we follow an ancestral
lineage, then in the pulled case, we expect the lineage to spend most of its time in the
tip of the wave, and in contrast, in the pushed case, it will spend more time in the bulk.
Indeed, if the shape of the advancing wave is close to that of g in (1.4) and the speed
is close to ν := α

√
ms0/2, then we should expect the motion of the ancestral lineage

relative to the wavefront to be approximately governed by the stochastic differential
equation

dZt = νdt+
m∇g(Zt)

g(Zt)
dt+

√
mdBt, (1.6)

where (Bt)t≥0 is a standard Brownian motion. (We shall explain this in more detail in the
context of our model in Section 1.3 below.) The stationary measure of this diffusion (if it
exists) will be the renormalised speed measure,

π(x) =
C

m
g(x)2 exp

(
2νx/m

)
=
C

m
e

2ν
m x(1 + e

√
2s0
m x)−2. (1.7)

Substituting for the wavespeed, ν = α
√
ms0/2, we find that π is integrable for 0 < α < 2.

In other words, the diffusion defined by (1.6) has a non-trivial stationary distribution
when the wave is pushed, but not when it is pulled. The expression (1.7) appears in
equation (S28) in [6], and earlier in [30] (where the authors study the deterministic
equation (1.3)) and in Theorem 2 of [19] (in relation to pushed wave solutions of general
reaction-diffusion equations). In [6], through a mixture of simulations and calculations,
the authors also conjecture that the behaviour of the genealogical trees of a sample
of A alleles from near the wavefront will change at B = 4 (corresponding to α = 3/2)
from being, on appropriate timescales, a Kingman coalescent for α ∈ (0, 3/2) to being a
multiple merger coalescent for α > 3/2.

Our calculation of the stationary distribution only tells us about a single ancestral
lineage; to understand why there should be a further transition at α = 3/2, we need
to understand the behaviour of multiple lineages. We seek a ‘separation of timescales’
in which ancestral lineages reach stationarity on a faster timescale than coalescence;
c.f. [29]. Recalling that we are sampling type A alleles from near the wavefront, then
just as for the Fisher-KPP case, the instantaneous rate of coalescence of two lineages
that meet at the position x ∈ R relative to the wavefront should be proportional to the
inverse of the density of A alleles at x, which we approximate as 1/(2N0g(x)) for a large
constant N0 (corresponding to the population density). If N0 is sufficiently large, then
the lineages will not coalesce before their spatial positions reach equilibrium, and so the
probability that the two lineages are both at position x relative to the wavefront should
be proportional to π(x)2. This suggests that in this scenario the time to coalescence
should be approximately exponential, with parameter proportional to

∫∞
−∞ π(x)2/g(x)dx

(this calculation appears in [6] in their equation (S119)). This quantity is finite precisely
when α ∈ (0, 3/2). If we sample k lineages, one can conjecture that, because of the
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separation of timescales, once a first pair of lineages coalesces, the additional time until
the next merger is the same as if the remaining k − 1 lineages were started from points
sampled independently according to the stationary distribution π. This then strongly
suggests that in the regime α ∈ (0, 3/2), after suitable scaling, the genealogy of a sample
will converge to a Kingman coalescent.

Although we believe that the suitably timescaled genealogy of lineages sampled from
near the wavefront of the advance of the favoured type really will converge to Kingman’s
coalescent for all α ∈ (0, 3/2), our main results in this article will be restricted to the
case α ∈ (0, 1). The difficulty is that for α > 1, as x → ∞, the stationary measure π(x)

does not decay as quickly as the wave profile g(x). Consequently, a diffusion driven
by (1.6) will spend a non-negligible proportion of its time in the region where g is very
small, which is precisely where the fluctuations of p about g (or rather fluctuations of
1/p about 1/g) become significant and our approximations break down. For this reason,
in what follows, we shall restrict ourselves to the case α < 1. Unlike the parameter
range corresponding to (1.5), in this setting, the growth rate in the tip of the wave is
actually negative, and the non-linear term f in (1.3) is bistable. In ecology this would
correspond to a strong Allee effect; for us, it means that we can control the time that the
ancestral lineage of an A allele spends in the tip of the wave (from which it is repelled).
In Section 1.3 below, we will briefly discuss the case α ∈ [1, 3/2) in the context of our
model.

Before discussing the definition of our model, we mention recent rigorous results
of Tourniaire [33] on a related model. She studies a model that mimics a population
expanding according to a travelling wave, and her model also exhibits fully pushed,
semi-pushed and pulled regimes. The model is a branching Brownian motion with space-
dependent branching rate and negative drift in which particles are killed if they hit
the origin; she shows that in the semi-pushed regime, the number of particles evolves
approximately according to an α-stable continuous-state branching process, suggesting
that the genealogy is governed by a beta coalescent (a multiple merger coalescent).

Some biological considerations

Our goal is to write down a mathematically tractable, but biologically plausible,
individual based model for a spatially structured population subject to selection acting
on diploids, and to show that when suitably scaled the genealogy of a sample from near
the wavefront of expansion of A alleles converges to a Kingman coalescent. As we will
see below, for this model the proportion of A alleles will be governed by a discrete space
stochastic analogue of (1.3) with 0 < α < 1.

The model that we define and analyse below will be a modification of a classical
Moran model for a spatially structured population with selection in which we treat each
allele as an individual. In order to justify this choice, we first follow a more classical
approach by considering a variant of a model that is usually attributed to Fisher and
Wright, for a large (diploid) population, evolving in discrete generations.

First we explain the form of the nonlinearity in (1.3). For simplicity, let us temporarily
consider a population without spatial structure. We are following the fate of a gene
with two alleles, a and A. Individuals in the population each carry two copies of the
gene. During reproduction, each individual produces a very large number of germ cells
(containing a copy of all the genetic material of the parent) which then split into gametes
(each carrying just one copy of the gene). All the gametes produced in this way are
pooled and, if the population is of size N0, then 2N0 gametes are sampled (without
replacement) from the pool. The sampled gametes fuse at random to form the next
generation of diploid individuals. To model selection, we suppose that the numbers of
germ cells produced by individuals are in the proportion 1 + 2αs : 1 + (α − 1)s : 1 for
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genetic types AA, Aa, aa respectively. Here α ∈ (0, 1) is a positive constant and s > 0

is small, with (α + 1)s < 1. Notice in particular that type AA homozygotes are ‘fitter’
than type aa homozygotes, in that they contribute more gametes to the pool (fecundity
selection). Both are fitter than the heterozygotes (Aa individuals).

Suppose that the proportion of type A alleles in the population is w. If the population
is in Hardy-Weinberg proportions, then the proportions of AA, Aa and aa individuals are
w2, 2w(1−w) and (1−w)2 respectively. Hence the proportion of type A in the (effectively
infinite) pool of gametes produced during reproduction is

(1 + 2αs)w2 + 1
2 (1 + (α− 1)s)2w(1− w)

1 + 2αsw2 + (α− 1)s · 2w(1− w)

= (1 + αs− s)w + (3− α)sw2 − 2sw3 +O(s2)

= (1− (α+ 1)s)w + αs(2w − w2) + s(3w2 − 2w3) +O(s2) (1.8)

= w + αsw(1− w) + sw(1− w)(2w − 1) +O(s2). (1.9)

We will assume that s is sufficiently small that terms of O(s2) are negligible. If the
population were infinite, then the frequency of A alleles would evolve deterministically,
and if s = s0/K for some large K, then measuring time in units of K generations, we
see that w will evolve approximately according to the differential equation

dw

dt
= αs0w(1− w) + s0w(1− w)(2w − 1) = s0w(1− w)(2w − 1 + α), (1.10)

and we recognise the nonlinearity in (1.3).
The easiest way to incorporate spatial structure into the Wright-Fisher model de-

scribed above is to suppose that the population is subdivided into demes (islands of
population) which we can, for example, take to be the vertices of a lattice, and in
each generation a proportion of the gametes produced in a deme is distributed to its
neighbours (plausible, for example, for a population of plants). If we assume that this
dispersal is symmetric, the population size in each deme is the same, and the proportion
of gametes that migrate scales as 1/K, then this will result in the addition of a term
involving the discrete Laplacian to the equation (1.10).

Since we are interested in understanding the interplay of selection, spatial structure,
and random genetic drift, we must consider a population with finite population size in
each deme. We shall nonetheless assume that the population in each deme is large,
so that our assumption that the population is in Hardy-Weinberg equilibrium remains
valid. When this assumption is satisfied, to specify the evolution of the proportions of
the types AA, Aa, aa, it suffices to track the proportion of A gametes in each deme.
Moreover, because we assume that the chosen gametes fuse at random to form the next
generation, the genealogical trees relating a sample of alleles from the population can
also be recovered from tracing just single types. The only role that pairing of genes in
individuals plays is in determining what proportion of the gamete pool will be contributed
by a given allele in the parental population.

Returning to our non-spatial model, suppose that the proportion of A alleles in some
generation t is w and recall that the population consists of 2N0 alleles. The probability
that two type A alleles sampled from generation t+ 1 are both descendants of the same
parental allele is approximately 1/(2N0w) since s is small, while the probability that three
or more are all descended from the same parent is O(1/N2

0 ). Recalling that s = s0/K for
some large K, if now we measure time in units of K generations, the forwards in time
model for allele frequencies will be approximated by a stochastic differential equation,

dw = s0w(1− w)(2w − 1 + α)dt+

√
K

2N0
w(1− w)dBt,
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where (Bt)t≥0 is a Brownian motion, and the genealogy of a sample of type A alleles
from our population will be well-approximated by a time-changed Kingman coalescent in
which the instantaneous rate of coalescence, when the proportion of type A alleles in
the population is w, is K/(2N0w).

The Wright-Fisher model is inconvenient mathematically, but we now see that for
the purpose of understanding the genealogy, we can replace it by any other model in
which, over large timescales, the allele frequencies evolve in (approximately) the same
way and in which, as we trace backwards in time, the genealogy of a sample of favoured
alleles is (approximately) the same (time-changed) Kingman coalescent. This will allow
us to replace the discrete generation (diploid) ‘Wright-Fisher’ model by a much more
mathematically convenient ‘Moran model’, in which changes in allele frequencies in
each deme will be driven by Poisson processes of reproduction events in which exactly
one allele is born and exactly one dies.

Because our Moran model deals directly with alleles, from now on we shall refer to
alleles as individuals. To understand the form that our Moran model should take, let us
first consider the non-spatial setting. Once again we trace 2N0 individuals (alleles), but
now we label them 1, 2, . . . , 2N0. Reproduction events will take place at the times of a
rate 2N0K Poisson process. Inspired by (1.9), we divide events into three types: neutral
events, which will take place at rate 2N0K(1− (α + 1)s), events capturing directional
selection at rate 2N0Kαs, and events capturing selection against heterozygosity, at
rate 2N0Ks. In a neutral event, an ordered pair of individuals is chosen uniformly at
random from the population; the first dies and is replaced by an offspring of the second
(and this offspring inherits the label of the first individual). At an event corresponding
to directional selection, an ordered pair of individuals is chosen uniformly at random
from the population; if the type of the second is A, then it produces an offspring which
replaces the first. At an event corresponding to selection against heterozygosity, an
ordered triplet of individuals is picked from the population; if the second and third are
of the same type, then the second produces an offspring that replaces the first. (Note
that in such an event, the first individual is either replaced by or remains a type A if and
only if at least two of the triplet of individuals picked were type A.)

Note that if X1, X2 and X3 are i.i.d. Bernoulli(w) random variables then

P (X1 +X2 ≥ 1) = 2w − w2 and P (X1 +X2 +X3 ≥ 2) = 3w2 − 2w3,

and recall that s = s0/K. Then using (1.8), we see that for large K, the proportion of
A alleles under this model will be close to that under our time-changed Wright-Fisher
model. Moreover, since there is at most one birth event at a time, coalescence of
ancestral lineages is necessarily pairwise. If in a reproduction event the parent is type
A, then the probability that a pair of type A ancestral lineages corresponds to the parent
and its offspring (and therefore merges in the event) is 2/(2N0w(2N0w − 1)), where w is
the proportion of A alleles in the population. Since s is very small, the instantaneous rate
at which events with a type A parent fall is approximately 2N0Kw. Thus, the probability
that a particular pair of two type A individuals sampled from the population at time
t+ δt are descended from the same type A individual at time t is (up to a lower order
error) Kδt/(N0w). Therefore (after rescaling time by a factor 1/2, and replacing s0 by
2s0) the genealogy and changes in allele frequencies under this model will be (up to a
small error) the same as under the Wright-Fisher model.

In what follows, to avoid too many factors of two, we are going to write N = 2N0 for
the number of individuals in our Moran model.
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1.1 Definition of the model

We now give a precise definition of our model. Take α ∈ (0, 1), s0 > 0 and m > 0. Let
n,N ∈ N. We are going to define our (structured) Moran model on 1

nZ in such a way that
there are N individuals in each site (or deme) and they are indexed by [N ] := {1, . . . , N}.
We shall denote the type of the ith individual at site x at time t by ξnt (x, i) ∈ {0, 1}, with
ξnt (x, i) = 1 meaning that the individual is type A, and ξnt (x, i) = 0 meaning that the
individual is type a. For x ∈ 1

nZ and t ≥ 0, let

pnt (x) =
1

N

N∑
i=1

ξnt (x, i)

be the proportion of type A at x at time t. We shall reserve the symbol x for space and
i, j, k for the label of an individual.

Let

sn =
2s0
n2

and rn =
n2

2N
. (1.11)

(Here, sn is a selection parameter which determines the space scaling needed to see a
non-trivial limit, and rn is a time scaling parameter.)

To specify the dynamics of the process, we define four independent families of
i.i.d. Poisson processes. These will govern neutral reproduction, directional selection,
selection against heterozygotes and migration respectively. Let ((Px,i,jt )t≥0)x∈ 1

nZ,i6=j∈[N ]

be i.i.d. Poisson processes with rate rn(1 − (α + 1)sn). Let ((Sx,i,jt )t≥0)x∈ 1
nZ,i6=j∈[N ] be

i.i.d. Poisson processes with rate rnαsn. Let ((Qx,i,j,kt )t≥0)x∈ 1
nZ,i,j,k∈[N ] distinct be i.i.d. Pois-

son processes with rate 1
N rnsn. Let ((Rx,i,y,jt )t≥0)x,y∈ 1

nZ,|x−y|=n−1,i,j∈[N ] be i.i.d. Poisson
processes with rate mrn.

For a given initial condition pn0 : 1
nZ →

1
NZ ∩ [0, 1], we assign labels to the type A

individuals in each site uniformly at random. That is, we define (ξn0 (x, i))x∈ 1
nZ,i∈[N ] as

follows. For each x ∈ 1
nZ independently, take Ix ⊆ [N ], where Ix is chosen uniformly at

random from {A ⊆ [N ] : |A| = Npn0 (x)}. For i ∈ [N ], let ξn0 (x, i) = 1{i∈Ix}.

The process (ξnt (x, i))x∈ 1
nZ,i∈[N ],t≥0 evolves as follows.

1. If t is a point in Px,i,j , then at time t, the individual at (x, i) is replaced by offspring
of the individual at (x, j), i.e. we let ξnt (x, i) = ξnt−(x, j).

2. If t is a point in Sx,i,j , then at time t, if the individual at (x, j) is type A then the
individual at (x, i) is replaced by offspring of the individual at (x, j), i.e. we let

ξnt (x, i) =

{
ξnt−(x, j) if ξnt−(x, j) = 1,

ξnt−(x, i) otherwise.

3. If t is a point in Qx,i,j,k, then at time t, if the individuals at (x, j) and (x, k) have the
same type then the individual at (x, i) is replaced by offspring of the individual at
(x, j), i.e. we let

ξnt (x, i) =

{
ξnt−(x, j) if ξnt−(x, j) = ξnt−(x, k),

ξnt−(x, i) otherwise.

4. If t is a point inRx,i,y,j , then at time t, the individual at (x, i) is replaced by offspring
of the individual at (y, j), i.e. we let ξnt (x, i) = ξnt−(y, j).
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Ancestral lineages will be represented in the form of a pair with the first coordinate
recording the spatial position and the second the label of the ancestor. More precisely,
for T ≥ 0, t ∈ [0, T ], x0 ∈ 1

nZ and i0 ∈ [N ], if the individual at site y with label j is
the ancestor at time T − t of the individual at site x0 with label i0 at time T , then we
let (ζn,Tt (x0, i0), θn,Tt (x0, i0)) = (y, j). The pair (ζn,Tt (x0, i0), θn,Tt (x0, i0))t∈[0,T ] is a jump
process with

(ζn,T0 (x0, i0), θn,T0 (x0, i0)) = (x0, i0),

which evolves as follows. For some t ∈ (0, T ], suppose that (ζn,Tt− (x0, i0), θn,Tt− (x0, i0)) =

(x, i). Then if T − t is a point in Px,i,j for some j 6= i, we let (ζn,Tt (x0, i0), θn,Tt (x0, i0)) =

(x, j). If instead T − t is a point in Sx,i,j for some j 6= i, we let

(ζn,Tt (x0, i0), θn,Tt (x0, i0)) =

{
(x, j) if ξn(T−t)−(x, j) = 1,

(x, i) otherwise.

If instead T − t is a point in Qx,i,j,k for some j 6= k ∈ [N ] \ {i}, we let

(ζn,Tt (x0, i0), θn,Tt (x0, i0)) =

{
(x, j) if ξn(T−t)−(x, j) = ξn(T−t)−(x, k),

(x, i) otherwise.

Finally, if T − t is a point in Rx,i,y,j for some y ∈ {x − n−1, x + n−1}, j ∈ [N ], we let
(ζn,Tt (x0, i0), θn,Tt (x0, i0)) = (y, j). These are the only times at which the ancestral lineage
process (ζn,Ts (x0, i0), θn,Ts (x0, i0))s∈[0,T ] jumps.

1.2 Main results

Recall from (1.4) that g : R→ R is given by

g(x) = (1 + e

√
2s0
m x)−1. (1.12)

In our main results, we will make the following assumptions on the initial condition pn0 ,
for b1, b2 > 0 to be specified later:

pn0 (x) = 0 ∀x ≥ N, pn0 (x) = 1 ∀x ≤ −N,
sup
x∈ 1

nZ

|pn0 (x)− g(x)| ≤ b1 and sup
z1,z2∈ 1

nZ,|z1−z2|≤n−1/3

|pn0 (z1)− pn0 (z2)| ≤ n−b2 . (A)

These assumptions ensure that pn0 is a front-like initial condition which is fairly close to
the travelling wave profile g and is not too rough. We will assume throughout that there
exists a0 > 0 such that (logN)a0 ≤ log n for n sufficiently large. The idea is that we need
N � n� 1, in order that pnt is close to the deterministic limit, but we do not want N to
tend to infinity so quickly that we don’t see the effect of the stochastic perturbation at
all.

For t ≥ 0, define the position of the random travelling front at time t by letting

µnt = sup{x ∈ 1
nZ : pnt (x) ≥ 1/2}. (1.13)

For t ≥ 0 and R > 0, let

GR,t = {(x, i) ∈ 1
nZ× [N ] : |x− µnt | ≤ R, ξnt (x, i) = 1}, (1.14)

the set of type A individuals which are near the front at time t.
Our first main result says that if at a large time Tn we sample a type A individual from

near the front, then the position of its ancestor relative to the front at a much earlier
time Tn − T ′n has distribution approximately given by π (as defined in (1.15) below).
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Theorem 1.1. Suppose α ∈ (0, 1) and, for some a1 > 1, N ≥ na1 for n sufficiently
large. There exists b1 > 0 such that for b2 > 0 and K0 < ∞ the following holds.
Suppose condition (A) holds, Tn ≤ N2 and T ′n → ∞ as n → ∞ with Tn − T ′n ≥ (logN)2.
Let (X0, J0) ∈ 1

nZ × [N ] be measurable with respect to σ((ξnTn(x, i))x∈ 1
nZ,i∈[N ]) with

(X0, J0) ∈ GK0,Tn . Then

ζn,TnT ′n
(X0, J0)− µnTn−T ′n

d→ Z as n→∞,

where Z is a random variable with density

π(x) =
g(x)2eα

√
2s0
m x∫∞

−∞ g(y)2eα
√

2s0
m ydy

. (1.15)

Our second main result says that the genealogy of a sample of type A individuals
from near the front at a large time Tn is approximately given by a Kingman coalescent
(under a suitable time rescaling).

Theorem 1.2. Suppose α ∈ (0, 1) and, for some a2 > 3, N ≥ na2 for n sufficiently
large. There exists b1 > 0 such that for b2 > 0, k0 ∈ N and K0 < ∞, the following
holds. Suppose condition (A) holds, and take Tn ∈ [N,N2]. Let (X1, J1), . . . , (Xk0 , Jk0) be
measurable with respect to σ((ξnTn(x, i))x∈ 1

nZ,i∈[N ]) and distinct, with (Xi, Ji) ∈ GK0,Tn

∀i ∈ [k0].
For i, j ∈ [k0], let τni,j denote the time at which the ith and jth ancestral lineages

coalesce, i.e. let

τni,j = inf{t ≥ 0 : (ζn,Tnt (Xi, Ji), θ
n,Tn
t (Xi, Ji)) = (ζn,Tnt (Xj , Jj), θ

n,Tn
t (Xj , Jj))}.

Then  (2m+ 1)n

N

∫∞
−∞ g(x)3e2α

√
2s0
m xdx(∫∞

−∞ g(x)2eα
√

2s0
m xdx

)2 τ
n
i,j


i,j∈[k0]

d−→ (τi,j)i,j∈[k0] as n→∞,

where τi,j is the time at which the ith and jth ancestral lineages coalesce in the Kingman
k0-coalescent.

We now state two further results that follow easily from the proofs of Theorems 1.1
and 1.2. The first result says that at large times, the proportion of type A in the
population expands approximately according to the travelling wave solution (1.4) of the
partial differential equation (1.3).

Theorem 1.3. Suppose α ∈ (0, 1) and, for some a1 > 1, N ≥ na1 for n sufficiently
large. For ` ∈ N, there exist b1, c > 0 such that for b2 > 0 the following holds. Suppose
condition (A) holds; then for n sufficiently large,

P

(
sup

x∈ 1
nZ, t∈[logN,N2]

|pnt (x)− g(x− µnt )| > e−(logN)c

)
≤
( n
N

)`
and

P
(
∃t ∈ [logN,N2], s ∈ [0, 1 ∧ (N2 − t)] : |µnt+s − µnt − α

√
ms0
2 s| > e−(logN)c

)
≤
( n
N

)`
.

The second additional result is closely related to Theorem 1.1. It says that for any
fixed t0 > 0, if at a large time Tn we sample a type A individual from some location
near the front, then the position of its ancestor relative to the front at time Tn − t0 has
distribution approximately given by Zt0 , where (Zt)t≥0 is the diffusion given in (1.6) with
Z0 given by the position relative to the front of the sampled individual at time Tn.
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Theorem 1.4. Suppose α ∈ (0, 1) and, for some a1 > 1, N ≥ na1 for n sufficiently large.
There exists b1 > 0 such that for b2 > 0, t0 > 0, δ > 0 and K0 < ∞ the following holds
for n sufficiently large. Suppose condition (A) holds and take (logN)2 + t0 ≤ Tn ≤ N2

and X0 ∈ 1
nZ with |X0 − µnTn | ≤ K0. Let J0 ∈ [N ] be measurable with respect to

σ((ξnTn(x, i))x∈ 1
nZ,i∈[N ]) with ξnTn(X0, J0) = 1. Then for y0 ∈ R,∣∣P(ζn,Tnt0 (X0, J0)− µnTn−t0 ≤ y0

)
− PX0−µnTn

(Zt0 ≤ y0)
∣∣ < δ,

where under Pz0 , (Zt)t≥0 solves the SDE

dZt = α
√

ms0
2 dt+m

∇g(Zt)

g(Zt)
dt+

√
mdBt, Z0 = z0.

A stronger result would be to show convergence of the process (ζn,Tnt (X0, J0) −
µnTn−t)t≥0 to the diffusion (Zt)t≥0, but our results do not give us sufficient control of the

increments of ζn,Tnt (X0, J0) over short time intervals.

1.3 Strategy of the proof

We will show that if N � n, then if n is large and T0 is not too large, (pnt )t∈[0,T0] is
approximately given by a solution of the PDE

∂u

∂t
= 1

2m∆u+ s0u(1− u)(2u− 1 + α). (1.16)

(Recall from our discussion of a non-spatial Moran model before Section 1.1 that the
non-linear term in (1.16) comes from the events corresponding to the Poisson processes
(Sx,i,j)x,i,j and (Qx,i,j,k)x,i,j,k. The Laplacian term comes from the Poisson processes
(Rx,i,y,j)x,i,y,j which cause migration between neighbouring sites and whose rate was
chosen to coincide with the diffusive rescaling.)

As noted in (1.4), u(t, x) := g(x − α
√

ms0
2 t) is a travelling wave solution of (1.16).

In the case α ∈ (0, 1), work of Fife and McLeod [16] shows that for a front-like initial
condition u0 satisfying lim supx→∞ u0(x) < 1

2 (1 − α) and lim infx→−∞ u0(x) > 1
2 (1 − α),

the solution of (1.16) converges to a moving front with shape g and wavespeed α
√

ms0
2 .

We can use this to show that if N � n, then for large n, with high probability,

pnt (x) ≈ g(x−µnt ) ∀x ∈ 1
nZ, t ∈ [logN,N2] and

µnt − µns
t− s

≈ α
√

ms0
2 ∀s < t∈ [logN,N2],

(1.17)
where µnt is the front location defined in (1.13) (recall Theorem 1.3; this result will be
proved in Proposition 3.1).

Suppose the event in (1.17) occurs, and sample a type A individual at a large time Tn
by taking (X0, J0) with ξnTn(X0, J0) = 1. We will show that the recentred ancestral lineage

process (ζn,Tnt (X0, J0)− µnTn−t)t∈[0,Tn] moves approximately according to the diffusion

dZt = α
√

ms0
2 dt+

m∇g(Zt)

g(Zt)
dt+

√
mdBt,

where (Bt)t≥0 is a Brownian motion (recall Theorem 1.4; the connection to the diffusion
(Zt)t≥0 will be established in Lemma 4.3). This can be explained heuristically as follows.
Observe first that (µnTn−t − µ

n
Tn−t−s)/s ≈ α

√
ms0
2 for s > 0. Then if ζn,Tn(X0, J0) jumps

at some time t, and ζn,Tnt− (X0, J0) = x0, the conditional probability that ζn,Tnt (X0, J0) =

x0 + n−1 is

pnTn−t(x0 + n−1)

pnTn−t(x0 − n−1) + pnTn−t(x0 + n−1)
≈ 1

2
+

1

2

∇g(x0 − µnTn−t)
g(x0 − µnTn−t)

n−1.
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Finally, the total rate at which ζn,Tn(X0, J0) jumps is given by 2mrnN = mn2, and the
jumps have increments ±n−1.

As we observed before in (1.7), (Zt)t≥0 has a unique stationary distribution given by π,
as defined in (1.15). In Theorem 1.1, we show rigorously that for large t, ζn,Tnt (X0, J0)−
µnTn−t has distribution approximately given by π. Theorem 1.1 is not strong enough
to give the precise estimates that we need for Theorem 1.2, and so in fact we prove
Theorem 1.2 first and then Theorem 1.1 will follow from results that we have obtained
along the way.

A pair of ancestral lineages can only coalesce if they are distance at most n−1

apart. Take a pair of type A individuals at time Tn by sampling (X1, J1) 6= (X2, J2) with
ξnTn(X1, J1) = 1 = ξnTn(X2, J2). Suppose that at some time Tn − t, their ancestral lineages

are at the same site but have not coalesced, i.e. ζn,Tnt (X1, J1) = x = ζn,Tnt (X2, J2) for
some x ∈ 1

nZ. For δn > 0 sufficiently small, on the time interval [Tn − t − δn, Tn − t],
each type A individual at x produces offspring at x at rate approximately rnN , and not
many individuals produce more than one offspring. Hence the number of pairs of type
A individuals at x at time Tn − t which have common ancestors at time Tn − t − δn is
approximately rnN2δnp

n
Tn−t−δn(x) (see Lemma 5.2). Therefore, the probability that our

pair of lineages coalesce within time δn (backwards in time), which is the same as the
probability that it is one such pair, is approximately

rnN
2δnp

n
Tn−t−δn(x)(NpnTn−t(x)
2

) ≈ n2δn
NpnTn−t(x)

. (1.18)

Similarly, if ζn,Tnt (X1, J1) = x and ζn,Tnt (X2, J2) = x+ n−1 then, since an individual at x
produces offspring at x+ n−1 at rate mrnN and vice-versa, the probability that the pair
of lineages coalesce within time δn is approximately

mrnN
2δn(pnTn−t−δn(x) + pnTn−t−δn(x+ n−1))

NpnTn−t(x) ·NpnTn−t(x+ n−1)
≈ mn2δn
NpnTn−t(x)

. (1.19)

These heuristics suggest that for x0 ∈ 1
nZ, since π(x0)π(x0 +n−1)−1 ≈ 1 and π(x0)π(x0−

n−1)−1 ≈ 1, the rate at which the pair of ancestral lineages of (X1, J1) and (X2, J2)

coalesce and the ancestral lineage of (X1, J1) is at location x0 relative to the front should
be approximately

n−2π(x0)2 · n2

Ng(x0)
+ 2n−2π(x0)2 · mn2

Ng(x0)
= (2m+ 1)

π(x0)2

Ng(x0)
.

Note that for some constants C1, C2 > 0,

π(x0)2

g(x0)
∼ C1e

(2α−3)
√

2s0
m x0 → 0 as x0 →∞ and

π(x0)2

g(x0)
∼ C2e

2α
√

2s0
m x0 → 0 as x0 → −∞.

(1.20)
This suggests that coalescence only occurs (fairly) close to the front. If a pair of lineages
coalesce close to the front, then the rate at which they subsequently coalesce with
another given lineage is O(n2N−1), which suggests that if N � n2, their location relative
to the front will have distribution approximately given by π before any more coalescence
occurs. Hence the genealogy of a sample of type A individuals from near the front should
be approximately given by a Kingman coalescent with rate

∑
x0∈ 1

nZ

(2m+ 1)
π(x0)2

Ng(x0)
≈ (2m+ 1)

n

N

∫ ∞
−∞

π(y)2

g(y)
dy.
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This result is proved in Theorem 1.2 (with the additional technical assumption that
N � n3).

For α ∈ [1, 2), work of Rothe [31] shows that for the PDE (1.16), if the initial condition
u0(x) decays sufficiently quickly as x → ∞ then the solution converges to a moving
front with shape g and wavespeed α

√
ms0
2 . Moreover, (1.20) holds for any α ∈ (0, 3/2),

which suggests that Theorem 1.2 should hold for any α ∈ (0, 3/2). The main difficulty
in proving the theorem for this range of α is that pnt (x)−1 is hard to control when x− µnt
is very large, i.e. far ahead of the front. This in turn makes it hard to control the motion
of ancestral lineages if they are far ahead of the front. For α ∈ (0, 1), the non-linear
term f(u) = u(1− u)(2u− 1 + α) in the PDE (1.16) satisfies f(u) < 0 for u ∈ (0, 12 (1− α)),
which means that far ahead of the front, the proportion of type A decays. This allows
us to show that with high probability, no lineages of type A individuals stay far ahead of
the front for a long time (see Proposition 6.1), which then gives us upper bounds on the
probabilities of lineages being far ahead of the front at a fixed time (see Proposition 2.5).
A proof of Theorem 1.2 for α ∈ [1, 3/2) would require a different method to bound
these tail probabilities, along with more delicate estimates on pnt (x) for large x in
order to apply [31] and ensure that pnt (·) ≈ g(· − µnt ) with high probability at large
times t.

One of the main tools in the proofs of Theorems 1.1 and 1.2 is the notion of tracers.
In population genetics, this corresponds to labelling a subset of individuals by a neutral
genetic marker, which is passed down from parent to offspring, and which has no
effect on the fitness of an individual by whom it is carried. Such markers allow us to
deduce which individuals in the population are descended from a particular subset of
ancestors (c.f. [12]). The idea of using these markers, or ‘tracers’, in the context of
expanding biological populations goes back at least to Hallatschek and Nelson [20], and
has subsequently been used, for example, by Durrett and Fan [14], Birzu et al. [6] and
Biswas et al. [7]. The idea is that at some time t0, a subset of the type A individuals are
labelled as ‘tracers’. At a later time t, we can look at the subset of type A individuals
which are descended from the original set of tracers. In particular, for 0 ≤ t0 ≤ t

and x1, x2 ∈ 1
nZ, we can record the proportion of individuals at x2 at time t which

are descended from type A individuals at x1 at time t0. This tells us the conditional
probability that the time-t0 ancestor of a randomly chosen type A individual at x2 at
time t was at x1. For x1, x2 ∈ 1

nZ and t ≥ 0, and taking δn > 0 very small, we can also
record the number of pairs of type A individuals at x1 and x2 at time t+ δn which have
the same ancestor at time t. This tells us the conditional probability that a randomly
chosen pair of type A lineages at x1 and x2 at time t+ δn coalesce in the time interval
[t, t+ δn].

In Section 2, we will define a ‘good’ event E in terms of these ‘tracer’ random
variables, and in Sections 3-6, we will show that the event E occurs with high probability.
The proof of Theorem 1.3 will appear in Section 3. In Section 2, we will show that
conditional on the tracer random variables, if the event E occurs, the locations of
ancestral lineages relative to the front approximately have distribution π (see Lemma 2.7),
pairs of nearby lineages coalesce at approximately the rates given in (1.18) and (1.19)
(see Proposition 2.8), and we are unlikely to see two pairs of lineages coalesce in a short
time (see Proposition 2.9). We can also prove bounds on the tail probabilities of lineages
being far ahead of or far behind the front (see Propositions 2.5 and 2.6). These results
combine to give a proof of Theorem 1.2. In Section 7, we use results from the earlier
sections to complete the proofs of Theorems 1.1 and 1.4. Finally, in Section 8, we give a
glossary of frequently used notation.
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2 Proof of Theorem 1.2

Throughout Sections 2-7, we suppose α ∈ (0, 1). We let

κ =

√
2s0
m

and ν = α

√
ms0

2
. (2.1)

For k ∈ N, let [k] = {1, . . . , k}. For 0 ≤ t1 ≤ t2 and x1, x2 ∈ 1
nZ, let

qnt1,t2(x1, x2) =
1

N
|{i ∈ [N ] : ξnt2(x2, i) = 1, ζn,t2t2−t1(x2, i) = x1}|, (2.2)

the proportion of individuals at x2 at time t2 which are type A and are descended from
an individual at x1 at time t1. Similarly, for 0 ≤ t1 ≤ t2 and x1 ∈ R, x2 ∈ 1

nZ, let

qn,+t1,t2(x1, x2) =
1

N
|{i ∈ [N ] : ξnt2(x2, i) = 1, ζn,t2t2−t1(x2, i) ≥ x1}|

and qn,−t1,t2(x1, x2) =
1

N
|{i ∈ [N ] : ξnt2(x2, i) = 1, ζn,t2t2−t1(x2, i) ≤ x1}|. (2.3)

Fix a large constant C > 213α−2, and let

δn = bN1/2n2c−1, εn = b(logN)−2δ−1n cδn, γn = b(log logN)4c and dn = κ−1C log logN.

(2.4)
For t ≥ 0, ` ∈ N and x1, . . . , x` ∈ 1

nZ, let

Cnt (x1, x2, . . . , x`)

=
{

(i1, . . . , i`) ∈ [N ]` : (xj , ij) 6= (xj′ , ij′)∀j 6= j′ ∈ [`], ξnt+δn(xj , ij) = 1∀j ∈ [`],

(ζn,t+δnδn
(xj , ij), θ

n,t+δn
δn

(xj , ij)) = (ζn,t+δnδn
(x1, j1), θn,t+δnδn

(x1, j1))∀j ∈ [`]
}
,

(2.5)
the set of `-tuples of distinct type A individuals at x1, . . . , x` at time t+ δn which all have
a common ancestor at time t. Recall the definition of µnt in (1.13). For y, ` > 0, 0 ≤ s ≤ t
and x ∈ 1

nZ, let

rn,y,`s,t (x) =
1

N

∣∣{i ∈ [N ] : ξnt (x, i) = 1, ζn,tt′ (x, i) ≥ µnt−t′ + y ∀t′ ∈ `N0 ∩ [0, s]
}∣∣, (2.6)

the proportion of individuals at x at time t which are type A and whose ancestor at time
t− t′ was to the right of µnt−t′ + y for each t′ ∈ `N0 ∩ [0, s].

Fix Tn ∈ [(logN)2, N2] and define the σ-algebra

F = σ
(

(pnt (x))x∈ 1
nZ,t≤Tn

, (ξnTn(x, i))x∈ 1
nZ,i∈[N ],

(qnTn−t1,Tn−t2(x1, x2))x1,x2∈ 1
nZ,t1,t2∈δnN0,t2≤t1≤Tn ,

(CnTn−t(x1, x2))x1,x2∈ 1
nZ,t∈δnN, t≤Tn

, (CnTn−t(x1, x2, x3))x1,x2,x3∈ 1
nZ,t∈δnN, t≤Tn

)
.

(2.7)

We now define some ‘good’ events, which occur with high probability, as we will show
later. Take c1, c2 > 0 small constants, and t∗,K ∈ N large constants, to be specified later.
The first event will allow us to show that the probability a lineage at x2 at time t + γn
has an ancestor at x1 at time t is approximately n−1π(x1 − µnt ). For x1, x2 ∈ 1

nZ and
0 ≤ t ≤ Tn, define the event

A
(1)
t (x1, x2) =

{∣∣∣∣qnt,t+γn(x1, x2)

pnt+γn(x2)
− n−1π(x1 − µnt )

∣∣∣∣ ≤ n−1(logN)−3C
}
.
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The next two events will allow us to control the probability that a lineage is far ahead of,
or far behind, the front. For x1, x2 ∈ 1

nZ and 0 ≤ t ≤ Tn, define the events

A
(2)
t (x1, x2) =

{
qn,+t,t+t∗(x1, x2)

pnt+t∗(x2)
≤ c1e−(1+

1
2 (1−α))κ(x1−(x2−νt∗)∨(µnt +K)+2)

}

and A
(3)
t (x1, x2) =

{
qn,−t,t+t∗(x1, x2)

pnt+t∗(x2)
≤ c1e−

1
2ακ((x2−νt∗)−x1+1)

}
.

The next two events will give us a useful bound on the probability that a lineage is at the
site x at time t, conditional on its location at time t+ εn, and will allow us to show that
lineages do not move more than distance 1 in time εn. For x ∈ 1

nZ and 0 ≤ t ≤ Tn, define
the events

A
(4)
t (x) =

{
qnt,t+εn(x, x′) ≤ n−1ε−1n pnt+εn(x′)∀x′ ∈ 1

nZ
}

and A
(5)
t (x) =

{
qnt,t+εn(x′, x) ≤ 1|x−x′|≤1 ∀x′ ∈ 1

nZ
}
.

The next event will allow us to show that lineages do not move more than distance
(logN)2/3 in time t∗. For x ∈ 1

nZ and 0 ≤ t ≤ Tn, define the event

A
(6)
t (x) =

{
qnt,t+kδn(x′, x) ≤ 1|x−x′|≤(logN)2/3 ∀k ∈ [t∗δ−1n ], x′ ∈ 1

nZ
}
.

The next four events will give us estimates on the probability that a pair of lineages at
the same site or neighbouring sites coalesce in time δn, and bounds on the probabilities
that a pair of lineages further apart coalesce, or a set of three lineages coalesce. For
x ∈ 1

nZ and 0 ≤ t ≤ Tn, define the events

B
(1)
t (x) =

{∣∣ |Cnt (x, x)| − n2Nδnpnt (x)
∣∣

n2Nδnpnt (x)
≤ 2n−1/5

}
,

B
(2)
t (x) =

{∣∣ |Cnt (x, x+ n−1)| − 1
2mn

2Nδn(pnt (x) + pnt (x+ n−1))
∣∣

1
2mn

2Nδn(pnt (x) + pnt (x+ n−1))
≤ 2n−1/5

}
,

B
(3)
t (x) =

{
|Cnt (x, x′)|
n2Nδnpnt (x)

≤ n−1/51|x−x′|<Kn−1 ∀x′ ∈ 1
nZ with |x′ − x| > n−1

}
,

and B
(4)
t (x) =

{
|Cnt (x, y, y′)|
n2Nδnpnt (x)

≤ n−1/51|y−x|∨|y′−x|<Kn−1 ∀y, y′ ∈ 1
nZ

}
.

Fix c0 > 0 sufficiently small that (1 + 1
4 (1− α))(1− 2c0) > 1. Let

D+
n = (1/2− c0)κ−1 log(N/n) and D−n = −26κ−1α−1 logN (2.8)

and for t ≥ 0 and ε ∈ (0, 1), recalling (2.4), let

Int = 1
nZ ∩ [µnt −N4, µnt +D+

n ], In,εt = 1
nZ ∩ [µnt +D−n , µ

n
t + (1− ε)D+

n ]

and int = 1
nZ ∩ [µnt − dn, µnt + dn]. (2.9)

We will show that with high probability, a pair of lineages are never both more than
D+
n ahead of the front before they coalesce, and neither lineage is ever more than |D−n |

behind the front.

We now define an event which says that (pnt )t∈[0,N2] is close to a moving front with
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shape g and wavespeed approximately ν. Let

E1 = E1(c2)

=
{

sup
x∈ 1

nZ,t∈[logN,N2]

|pnt (x)− g(x− µnt )| ≤ e−(logN)c2
}

∩
{
pnt (x) ∈ [ 15g(x− µnt ), 5g(x− µnt )] ∀t ∈ [ 12 (logN)2, N2], x ≤ µnt +D+

n + 2
}

∩
{
pnt (x) ≤ 5g(D+

n ) ∀t ∈ [ 12 (logN)2, N2], x ≥ µnt +D+
n

}
∩
{
|µnt+s − µnt − νs| ≤ e−(logN)c2 ∀t ∈ [logN,N2], s ∈ [0, 1 ∧ (N2 − t)]

}
∩
{
|µnlogN | ≤ 2ν logN

}
.

Let T−n = Tn − (logN)2 and define the event

E2 = E2(c1, t
∗,K)

= E′2 ∩
⋂

t∈δnN0∩[0,T−n ]

( ⋂
x1∈inTn−t−γn , x2∈inTn−t

A
(1)
Tn−t−γn(x1, x2) ∩

⋂
x∈InTn−t−εn

A
(4)
Tn−t−εn(x)

)
,

(2.10)

where

E′2 = E′2(c1, t
∗,K) =

⋂
t∈δnN0∩[0,T−n ]

⋂
x1∈InTn−t−t∗ , x2∈InTn−t, x1−µnTn−t−t∗≥K

A
(2)
Tn−t−t∗(x1, x2)

∩
⋂

t∈δnN0∩[0,T−n ]

⋂
x1∈InTn−t−t∗ , x2∈InTn−t, x1−µnTn−t−t∗≤−K

A
(3)
Tn−t−t∗(x1, x2)

∩
⋂

t∈δnN0∩[0,T−n +t∗]

⋂
x∈ 1

nZ∩[−N5,N5]

(A
(5)
Tn−t−εn(x) ∩A(6)

Tn−t−δn(x)).

(2.11)
Define the event

E3 = E3(K) =
⋂

t∈δnN0∩[0,T−n ]

⋂
x∈InTn−t

4⋂
j=1

B
(j)
Tn−t−δn(x). (2.12)

Finally, we define an event which says that with high probability, no lineages stay distance
K ahead of the front for time K logN . Recalling (2.6), let

E4 = E4(t∗,K) =
⋂

t∈δnN0∩[0,T−n ]

{
P
(
rn,K,t

∗

K logN,Tn−t(x) = 0 ∀x ∈ 1
nZ

∣∣∣F) ≥ 1−
( n
N

)2}
,

(2.13)
and let E = ∩4j=1Ej . Note that E ∈ F (and thus E ∈ Ft for all t) because the events A(i)

t

and B(j)
t only involve p, q, and C.

The following result will be proved in Sections 3-6.

Proposition 2.1. Suppose for some a2 > 3, N ≥ na2 for n sufficiently large. Take c1 > 0.
There exist t∗,K ∈ N (with K > 104κ−1α−1t∗) and b1, c2 > 0 such that for b2 > 0, if
condition (A) holds, for n sufficiently large,

P (Ec) ≤ n

N
.

From now on in this section, we will take c1 ∈ (0, 1) sufficiently small that letting
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λ = 1
4 (1− α),

c1((eλκ − 1)−1eλκ + e−(1+λ)κ(1− e−(1+λ)κ)−1)2 + e−2(1+λ)κ < 1,

c1(eλκ − 1)−1eλκ + e−(1+λ)κ < 1,

c1(1 + e3ακ/4(eακ/4 − 1)−1) + e−ακ/4 < 1,

and e−ακ/4 + c1(1− e−ακ/4)−1 < e−ακ/5,

(2.14)

and then take t∗, K, b1, b2 and c2 as in Proposition 2.1.
Take K0 < ∞, k0 ∈ N and (X1, J1), (X2, J2), . . . , (Xk0 , Jk0) ∈ 1

nZ × [N ] measurable
with respect to σ((ξnTn(x, i))x∈ 1

nZ,i∈[N ]) and distinct, with (Xi, Ji) ∈ GK0,Tn ∀i ∈ [k0]. For
t ∈ [0, Tn] and i ∈ [k0], let

ζn,it = ζn,Tnt (Xi, Ji) and ζ̃n,it = ζn,Tnt (Xi, Ji)− µnTn−t, (2.15)

the location of the ith ancestral lineage at time Tn − t, and its location relative to the
front. For i, j ∈ [k0], let

τni,j = inf{t ≥ 0 : (ζn,Tnt (Xi, Ji), θ
n,Tn
t (Xi, Ji)) = (ζn,Tnt (Xj , Jj), θ

n,Tn
t (Xj , Jj))},

the time at which the ith and jth lineages coalesce. Recall (2.7), and for t ∈ [0, Tn], define
the σ-algebra

Ft = σ
(
F , σ((ζn,js )s≤t,j∈[k0], (1τni,j≤s)s≤t,i,j∈[k0])

)
. (2.16)

Then ((ζn,jkδn
)j∈[k0], (1τni,j≤kδn)i,j∈[k0])k∈N0,k≤Tnδ−1

n
is a strong Markov process with respect

to the filtration (Fkδn)k∈N0,k≤Tnδ−1
n

.

For k ∈ N0, let tk = kb(logN)Cc. For i, j ∈ [k0], let

τ̃ni,j =

τ
n
i,j if τni,j /∈ (tk, tk + 2K logN ]∀k ∈ N0 and |ζ̃n,ibτni,jδ−1

n cδn
| ∧ |ζ̃n,jbτni,jδ−1

n cδn
| ≤ 1

64αdn,

Tn otherwise,

(2.17)
i.e. τ̃ni,j only counts coalescence which happens fairly near the front and not too soon
after tk (backwards in time from time Tn) for any k. Let

βn = (1 + 2m)
n

N
t1

∫∞
−∞ g(y)3e2ακydy(∫∞
−∞ g(y)2eακydy

)2 = (1 + 2m)
n

N
t1

∫ ∞
−∞

π(y)2g(y)−1dy. (2.18)

Along with Proposition 2.1, the following three propositions are the main intermediate
results in the proof of Theorem 1.2, and will be proved in Section 2.1. The first proposition
says that if a pair of lineages i and j have not coalesced by time tk, and one of them is
not too far from the front, then the probability that τ̃ni,j ≤ tk+1 is approximately βn.

Proposition 2.2. Suppose for some a2 > 3, N ≥ na2 for n sufficiently large. For ε ∈ (0, 1),
on the event E, for i, j ∈ [k0] and k ∈ N0 with tk+1 ≤ T−n , if ζn,itk

∧ ζn,jtk
∈ In,εTn−tk and

τni,j > tk then

P
(
τ̃ni,j ∈ (tk, tk+1]

∣∣∣Ftk) = βn(1 +O((logN)−2)).

The second proposition says that two pairs of lineages are unlikely to coalesce in the
same time interval (tk, tk+1].

Proposition 2.3. Suppose for some a2 > 3, N ≥ na2 for n sufficiently large. For ε ∈ (0, 1),
there exists ε′ > 0 such that on the event E, for k ∈ N0 with tk+1 ≤ T−n the following
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holds. For i, j1, j2 ∈ [k0] distinct, if ζn,`tk
∧ ζn,`

′

tk
∈ In,εTn−tk and τn`,`′ > tk ∀` 6= `′ ∈ {i, j1, j2}

then
P
(
τ̃ni,j1 , τ̃

n
i,j2 ∈ (tk, tk+1]

∣∣∣Ftk) = O(n1−ε
′
N−1). (2.19)

For i1, i2, j1, j2 ∈ [k0] distinct, if ζn,`tk
∧ ζn,`

′

tk
∈ In,εTn−tk and τn`,`′ > tk ∀` 6= `′ ∈ {i1, i2, j1, j2}

then
P
(
τ̃ni1,j1 , τ̃

n
i2,j2 ∈ (tk, tk+1]

∣∣∣Ftk) = O(n1−ε
′
N−1). (2.20)

The last proposition says that for a pair of lineages i and j, with high probability
τ̃ni,j = τni,j , and at least one of the lineages is fairly near the front until they have coalesced.

Proposition 2.4. Suppose Tn ≥ N and, for some a2 > 3, N ≥ na2 for n sufficiently large.
For ε ∈ (0, 1) sufficiently small, for n sufficiently large, on the event E, for i 6= j ∈ [k0],

P
(
τni,j 6= τ̃ni,j

∣∣∣F0

)
≤ (logN)−2

and

P
(
∃t ∈ δnN0 ∩ [0, Nn−1 logN ] : ζn,it ∧ ζ

n,j
t /∈ In,εTn−t, τ

n
i,j > t

∣∣∣F0

)
≤ (logN)−2.

Before proving Propositions 2.2-2.4, we show how they can be combined with Propo-
sition 2.1 to prove Theorem 1.2.

Proof of Theorem 1.2. Let (Bi,j,k)i<j∈[k0],k∈N0
be i.i.d. Bernoulli random variables with

P (Bi,j,k = 1) = βn,

and let Bj,i,k = Bi,j,k for i < j ∈ [k0]. For k ∈ N0, let

Pk = {i ∈ [k0] \ {1} : τni,j > tk ∀j ∈ [i− 1]} ∪ {1},

the set of lineages at time Tn − tk which have not coalesced with a lineage of lower
index. Take ε > 0 sufficiently small that Proposition 2.4 holds, and take ε′ > 0 as in
Proposition 2.3. Define the event

Ak =
{
ζn,itk
∧ ζn,jtk

∈ In,εTn−tk ∀i 6= j ∈ Pk
}
.

Take k ∈ N0 with tk+1 ≤ T−n , and suppose the event E ∩ Ak occurs. Then by Proposi-
tion 2.2, for each pair of lineages i 6= j ∈ Pk,

P
(
τ̃ni,j ∈ (tk, tk+1]

∣∣∣Ftk) = βn(1 +O((logN)−2)),

and by Proposition 2.3,

P
(
|{(i, j) : i < j ∈ Pk and τ̃ni,j ∈ (tk, tk+1]}| ≥ 2

∣∣∣Ftk) = O(n1−ε
′
N−1) = o(βn(logN)−2)

by the definition of βn in (2.18). Therefore, conditional on Ftk , we can couple (τ̃ni,j)i,j∈Pk
and (Bi,j,k)i<j∈[k0] in such a way that if E ∩Ak occurs then

P
(
∃i 6= j ∈ Pk : Bi,j,k 6= 1τ̃ni,j∈(tk,tk+1]

∣∣∣Ftk) = O(βn(logN)−2). (2.21)

Note that for n sufficiently large, if the event E occurs, then by Proposition 2.4,

P

bNn−1t−1
1 logNc⋃
k=0

(Ak)c

∣∣∣∣∣F0

 ≤ (k0
2

)
(logN)−2. (2.22)
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Now define (σni,j,k)i,j∈[k0],k∈N0
inductively as follows. Let σni,i,0 = 0 ∀i ∈ [k0], and σni,i′,0 = t1

∀i 6= i′ ∈ [k0]. For k ∈ N0, we define (σni,j,k+1)i,j∈[k0] using (σni,j,k)i,j∈[k0] as follows. For
i ∈ [k0], let πk(i) = min{i′ ∈ [k0] : σni′,i,k ≤ tk}. Then for each pair i, j ∈ [k0], set

σni,j,k+1 =


σni,j,k if σni,j,k ≤ tk,
tk+1 if σni,j,k > tk and Bπk(i),πk(j),k = 1,

tk+2 if σni,j,k > tk and Bπk(i),πk(j),k = 0.

Note that σni,j,k is non-decreasing in k, and set σni,j = limk→∞ σni,j,k for each pair i, j ∈ [k0],
so σni,j = σni,j,k for all k such that tk ≥ σni,j .

Suppose τ̃ni,j = τni,j ∀i, j ∈ [k0]. For some k ∈ N0, suppose {(i, j) : τni,j > tk} = {(i, j) :

σni,j > tk} and Bi,j,k = 1τ̃ni,j∈(tk,tk+1] ∀i 6= j ∈ Pk. Then for i, j ∈ [k0] with τni,j > tk we have
that τnπk(i),i ≤ tk and τnπk(j),j ≤ tk, and so

1τni,j∈(tk,tk+1] = 1τ̃ni,j∈(tk,tk+1] = 1τ̃n
πk(i),πk(j)

∈(tk,tk+1] = Bπk(i),πk(j),k = 1σni,j=tk+1
,

since πk(i), πk(j) ∈ Pk. In particular, {(i, j) : τni,j > tk+1} = {(i, j) : σni,j > tk+1}. By
induction, it follows that for k∗ ∈ N, if for each k ∈ {0}∪[k∗] we have Bi,j,k = 1τ̃ni,j∈(tk,tk+1]

∀i 6= j ∈ Pk then

{(i, j) : τni,j ∈ (tk, tk+1]} = {(i, j) : σni,j = tk+1} ∀k ∈ {0} ∪ [k∗].

Therefore, if the event E occurs, then by a union bound,

P
(
∃i, j ∈ [k0] : |τni,j − σni,j | ≥ (logN)C

∣∣∣F0

)
≤ P

(
∃i, j ∈ [k0] : τni,j 6= τ̃ni,j

∣∣∣F0

)
+

bNn−1t−1
1 logNc∑
k=0

P
(
{∃i 6= j ∈ Pk : Bi,j,k 6= 1τ̃ni,j∈(tk,tk+1]} ∩Ak

∣∣∣F0

)

+ P

bNn−1t−1
1 logNc⋃
k=0

(Ak)c

∣∣∣∣∣F0

+ P
(
∃i, j ∈ [k0] : σni,j > tbNn−1t−1

1 logNc

∣∣∣F0

)

≤ 2

(
k0
2

)
(logN)−2 +

bNn−1t−1
1 logNc∑
k=0

O(βn(logN)−2) +

(
k0
2

)
(1− βn)bNn

−1t−1
1 logNc

= O((logN)−1),

where the second inequality follows for n sufficiently large by Proposition 2.4, (2.21)
and (2.22), and the last inequality follows by the definition of βn in (2.18). The result
follows easily by Proposition 2.1 and then by a coupling between (βnt

−1
1 σni,j)i,j∈[k0] and

(τi,j)i,j∈[k0].

2.1 Proof of Propositions 2.2, 2.3 and 2.4

The next five results will be used in the proofs of Propositions 2.2, 2.3 and 2.4. The
first three results will also be used in Section 7 in the proof of Theorem 1.1. The first
result says that a pair of lineages are unlikely to be far ahead of the front, and will be
proved in Section 2.2.

Proposition 2.5. Suppose for some a1 > 1, N ≥ na1 for n sufficiently large. For n
sufficiently large, on the event E1 ∩ E′2 ∩ E4, for i, j ∈ [k0], s ≤ t ∈ δnN0 ∩ [0, T−n ] and
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`1, `2 ∈ N ∩ [K,D+
n ], the following holds. If t− s ≥ K logN then

P
(
ζ̃n,it ≥ `1, ζ̃n,jt ≥ `2, τni,j > t

∣∣∣Fs) ≤ (logN)7e−(1+
1
4 (1−α))κ(`1+`2) (2.23)

and P
(
ζ̃n,it ≥ `1

∣∣∣Fs) ≤ (logN)3e−(1+
1
4 (1−α))κ`1 . (2.24)

If instead t− s ∈ t∗N0 ∩ [0,K logN) then

P
(
ζ̃n,it ≥ `1, ζ̃n,jt ≥ `2, τni,j > t

∣∣∣Fs) ≤ (logN)4e(1+
1
4 (1−α))κ(ζ̃

n,i
s ∨0−`1+ζ̃

n,j
s ∨0−`2) (2.25)

and P
(
ζ̃n,it ≥ `1

∣∣∣Fs) ≤ (logN)2e(1+
1
4 (1−α))κ(ζ̃

n,i
s ∨0−`1). (2.26)

The next result says that lineages are unlikely to be far behind the front, and will be
proved in Section 2.3.

Proposition 2.6. Suppose for some a1 > 1, N ≥ na1 for n sufficiently large. For n
sufficiently large, on the event E1 ∩ E′2 the following holds. For i ∈ [k0],

P
(
∃t ∈ δnN0 ∩ [0, T−n ] : ζ̃n,it ≤ D−n

∣∣∣F0

)
≤ N−1. (2.27)

For i ∈ [k0] and s ≤ t ∈ δnN0 ∩ [0, T−n ] with t− s ≥ K logN , if ζ̃n,is ≥ D−n then

P
(
ζ̃n,it ≤ −dn

∣∣∣Fs) ≤ (logN)2−
1
8αC and P

(
ζ̃n,it ≤ − 1

64αdn + 2
∣∣∣Fs)≤(logN)2−2

−9α2C .

(2.28)
For i ∈ [k0] and t ∈ t∗N0 ∩ [0, T−n ],

P
(
ζ̃n,it ≤ −dn

∣∣∣F0

)
≤ (logN)−

1
8αC . (2.29)

The next lemma gives estimates on the probability that a pair of lineages are at a
particular pair of sites, and gives bounds on the increments of ζn,i.

Lemma 2.7. Suppose for some a1 > 1, N ≥ na1 for n sufficiently large. For n sufficiently
large, the following holds. Suppose the event E occurs. Take t ∈ δnN0 ∩ [0, T−n ], i, j ∈ [k0]

and xi, xj ∈ 1
nZ. If xi, xj ∈ inTn−t−γn , ζn,it , ζn,jt ∈ inTn−t and τni,j > t then

P
(
ζn,it+γn = xi, ζ

n,j
t+γn = xj

∣∣∣Ft) = n−2π(xi−µnTn−t−γn)π(xj −µnTn−t−γn)(1 +O((logN)−C)).

(2.30)
If xi, xj ∈ InTn−t−εn and τni,j > t then

P
(
ζn,it+εn = xi, ζ

n,j
t+εn = xj

∣∣∣Ft) ≤ 2n−2ε−2n . (2.31)

Suppose instead the event E1 ∩ E′2 occurs. For t ∈ δnN0 ∩ [0, T−n ], i ∈ [k0] and t′ ∈
δnN0 ∩ [t, t+ t∗],

|ζn,it − ζ
n,i
t′ | ≤ (logN)2/3, |ζn,it | ∨ |ζ̃

n,i
t | ≤ N3 and |ζn,it − ζ

n,i
t+εn | ≤ 1. (2.32)

Proof. Suppose the event E occurs and τni,j > t. Then for s ∈ δnN0 ∩ [0, Tn − t],

P
(
ζn,it+s = xi, ζ

n,j
t+s = xj

∣∣∣Ft)
=
qnTn−t−s,Tn−t(xi, ζ

n,i
t )

pnTn−t(ζ
n,i
t )

qnTn−t−s,Tn−t(xj , ζ
n,j
t )−N−11ζn,it =ζn,jt , xi=xj

pnTn−t(ζ
n,j
t )−N−11ζn,it =ζn,jt

. (2.33)

If xi, xj ∈ inTn−t−γn and ζn,it , ζn,jt ∈ inTn−t then by the definition of the event E2 in (2.10),

the events A
(1)
Tn−t−γn(xi, ζ

n,i
t ) and A

(1)
Tn−t−γn(xj , ζ

n,j
t ) occur. Moreover, pnTn−t(ζ

n,j
t ) ≥
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1
5g(dn) ≥ 1

10 (logN)−C by the definition of the event E1 in (2.10) and the definition
of dn in (2.4), and so

P
(
ζn,it+γn = xi, ζ

n,j
t+γn = xj

∣∣∣Ft)
= (n−1π(xi − µnTn−t−γn) +O(n−1(logN)−3C)) · (1 +O(N−1(logN)C))

· (n−1π(xj − µnTn−t−γn) +O(n−1(logN)−3C) +O(N−1(logN)C)).

Since π(xi − µnTn−t−γn)−1 ∨ π(xj − µnTn−t−γn)−1 ≤ π(dn)−1 ∨ π(−dn)−1 = O((logN)2C),
the first statement (2.30) follows.

If xi, xj ∈ InTn−t−εn then by the definition of the event E2 in (2.10), the events

A
(4)
Tn−t−εn(xi) and A(4)

Tn−t−εn(xj) occur. If ζn,it = ζn,jt then pnTn−t(ζ
n,j
t )−N−1 ≥ 1

2p
n
Tn−t(ζ

n,j
t ),

and so (2.31) follows from (2.33).
Suppose now that the event E1 ∩E′2 occurs, and suppose for some s ∈ δnN0 ∩ [0, T−n ]

that |ζn,is | ≤ N3. Then the events A(5)
Tn−s−εn(ζn,is ) and ∩k∈[t∗δ−1

n ]A
(6)
Tn−s−kδn(ζn,is ) occur, and

so |ζn,is+εn − ζ
n,i
s | ≤ 1 and |ζn,is − ζ

n,i
s′ | ≤ (logN)2/3 ∀s′ ∈ δnN0 ∩ [s, s+ t∗]. Since |ζ̃n,i0 | ≤ K0

and |ζn,i0 | ≤ K0+|µnTn | ≤ 2νN2 for n sufficiently large, it follows by an inductive argument

that |ζn,it | ∨ |ζ̃
n,i
t | ≤ N3 ∀t ∈ δnN0 ∩ [0, T−n ], which completes the proof.

From now on in Section 2.1, we will assume for some a2 > 3, N ≥ na2 for n sufficiently
large. We will also need an estimate for the probability that a pair of lineages coalesce
in a very short time interval of length δn.

Proposition 2.8. Suppose the event E occurs. Take t ∈ δnN0 ∩ [0, T−n ], i, j ∈ [k0] and
x, y ∈ 1

nZ with |x− y| > n−1 and x ∈ InTn−t. If ζn,it = x = ζn,jt and τni,j > t then

P
(
τni,j ∈ (t, t+ δn]

∣∣Ft) =

{
n2N−1δng(x− µnTn−t)

−1(1 +O((logN)−C)
)

if x ∈ inTn−t,
O(n2N−1δng(x− µnTn−t)

−1) otherwise.

If instead ζn,it = x, ζn,jt = x+ n−1 and τni,j > t then

P
(
τni,j ∈ (t, t+ δn]

∣∣Ft) =

{
mn2N−1δng(x− µnTn−t)

−1(1 +O((logN)−C)
)

if x ∈ inTn−t,
O(n2N−1δng(x− µnTn−t)

−1) otherwise.

If instead ζn,it = x, ζn,jt = y and τni,j > t then

P
(
τni,j ∈ (t, t+ δn]

∣∣Ft) = O(n9/5N−1δng(x− µnTn−t)
−11|x−y|<Kn−1).

Proof. For t ∈ δnN0 ∩ [0, T−n ] and x, x′ ∈ 1
nZ, if ζn,it = x, ζn,jt = x′ and τni,j > t, then by the

definition of CnTn−t−δn(x, x′) in (2.5),

P
(
τni,j ∈ (t, t+ δn]

∣∣Ft) =


|CnTn−t−δn (x,x

′)|
NpnTn−t(x)·Np

n
Tn−t(x

′) if x 6= x′,
|CnTn−t−δn (x,x)|

NpnTn−t(x)(Np
n
Tn−t(x)−1)

if x = x′.

If x ∈ InTn−t and E occurs, then by the definition of the event E3 in (2.12),

∩3j=1B
(j)
Tn−t−δn(x) occurs. Hence

|CnTn−t−δn(x, x)| = n2Nδnp
n
Tn−t−δn(x)(1 +O(n−1/5)),

|CnTn−t−δn(x, x+ n−1)| = 1
2mn

2Nδn(pnTn−t−δn(x) + pnTn−t−δn(x+ n−1))(1 +O(n−1/5)),

and |CnTn−t−δn(x, y)| = O(n9/5Nδn)pnTn−t−δn(x)1|x−y|<Kn−1 ∀y ∈ 1
nZ with |y − x|>n−1.

The result follows by the definition of the event E1 in (2.10), and since n−1/5 =

o((logN)−C), NpnTn−t(x) ≥ 1
5Ng(D+

n ) ≥ 1
10n

1/2N1/2 for x ∈ InTn−t and g(dn + n−1)−1 =

O((logN)C).

EJP 27 (2022), paper 121.
Page 22/99

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP845
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogies in bistable waves

Finally, we need a bound on the probability that two pairs of lineages coalesce in the
same time interval of length δn.

Proposition 2.9. Suppose the event E occurs. For t ∈ δnN0 ∩ [0, T−n ], x1 ∈ inTn−t,

x2, x3 ∈ 1
nZ, and i1, i2, i3 ∈ [k0], if ζn,ikt = xk for k ∈ {1, 2, 3} and τnik,i` > t ∀k 6= ` ∈ {1, 2, 3}

then

P
(
τni1,i2 , τ

n
i1,i3 ∈ (t, t+ δn]

∣∣∣Ft) = O(n9/5N−2δn(logN)2C1|x1−x2|∨|x1−x3|<Kn−1). (2.34)

For x1, x3 ∈ inTn−t, x2, x4 ∈
1
nZ and i1, i2, i3, i4 ∈ [k0], if ζn,ikt = xk for k ∈ {1, 2, 3, 4} and

τnik,i` > t ∀k 6= ` ∈ {1, 2, 3, 4} then

P
(
τni1,i2 , τ

n
i3,i4 ∈ (t, t+ δn]

∣∣∣Ft) = O(n4N−2δ2n(logN)2C1|x1−x2|∨|x3−x4|<Kn−1). (2.35)

Proof. For the first statement, since B(4)
Tn−t−δn(x1) occurs by the definition of the event

E3 in (2.12),

P
(
τni1,i2 , τ

n
i1,i3 ∈ (t, t+ δn]

∣∣Ft)
=

|CnTn−t−δn(x1, x2, x3)|
NpnTn−t(x1)(NpnTn−t(x2)− 1x1=x2)(NpnTn−t(x3)− 1x1=x3 − 1x2=x3)

≤ 1|x1−x2|∨|x1−x3|<Kn−1

6n9/5N−2δnp
n
Tn−t−δn(x1)

pnTn−t(x1)pnTn−t(x2)pnTn−t(x3)
.

By the definition of the event E1 in (2.10) and since x1 − µnTn−t ≤ dn and g(dn +

Kn−1)−1 = O((logN)C), (2.34) follows. For the second statement, since B(3)
Tn−t−δn(x1)

and B(3)
Tn−t−δn(x3) occur, letting p(x) := pnTn−t(x),

P
(
τni1,i2 , τ

n
i3,i4 ∈ (t, t+ δn]

∣∣Ft)
≤

|CnTn−t−δn(x1, x2)||CnTn−t−δn(x3, x4)|
Np(x1)(Np(x2)− 1x1=x2

)(Np(x3)−
∑2
j=1 1xj=x3

)(Np(x4)−
∑3
j=1 1xj=x4

)

≤ 1|x1−x2|∨|x3−x4|<Kn−1

24|CnTn−t−δn(x1, x2)||CnTn−t−δn(x3, x4)|
N4pnTn−t(x1)pnTn−t(x2)pnTn−t(x3)pnTn−t(x4)

.

Since ∩3j=1B
(j)
Tn−t−δn(x1) and ∩3j=1B

(j)
Tn−t−δn(x3) occur, and (x1 − µnTn−t) ∨ (x3 − µnTn−t) ≤

dn, (2.35) follows by the definition of the event E1 in (2.10).

We are now ready to prove Propositions 2.2-2.4.

Proof of Proposition 2.2. Suppose n is sufficiently large that γn ≤ K logN − δn. Suppose
the event E occurs. Take t ∈ δnN ∩ [tk + 2K logN − δn, tk+1), and take x ∈ 1

nZ such that
|x − µnTn−t| ≤

1
64αdn + 1. By conditioning on Ft, and then by Proposition 2.8 and the

definition of τ̃ni,j ,

P
(
τ̃ni,j ∈ (t, t+ δn], ζn,it = x

∣∣∣Ftk)
= E

[
P
(
τ̃ni,j ∈ (t, t+ δn]

∣∣∣Ft)1ζn,it =x1τni,j>t

∣∣∣∣Ftk]
≤ E

[
n2N−1δng(x− µnTn−t)

−1(1 +O((logN)−C))(
1ζn,jt =x +m1|ζn,jt −x|=n−1 +O(n−1/5)1|ζn,jt −x|<Kn−1

)
1ζn,it =x1τni,j>t

∣∣∣Ftk]
= n2N−1δng(x− µnTn−t)

−1(1 +O((logN)−C))
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(
P
(
ζn,it = x = ζn,jt , τni,j > t

∣∣∣Ftk)+mP
(
ζn,it = x, |ζn,jt − x| = n−1, τni,j > t

∣∣∣Ftk)
+O(n−1/5)P

(
ζn,it = x, |ζn,jt − x| < Kn−1, τni,j > t

∣∣∣Ftk)). (2.36)

By conditioning on Ft−γn and then on Ft−εn ,

P
(
ζn,it = x = ζn,jt , τni,j > t

∣∣∣Ftk)
= E

[
P
(
ζn,it = x = ζn,jt , τni,j > t

∣∣∣Ft−γn)1τni,j>t−γn1|ζ̃n,it−γn |∨|ζ̃
n,j
t−γn |≤dn

∣∣∣Ftk]
+ E

[
P
(
ζn,it = x = ζn,jt , τni,j > t

∣∣∣Ft−εn)1τni,j>t−εn1|ζ̃n,it−γn |∨|ζ̃
n,j
t−γn |>dn

∣∣∣Ftk]. (2.37)

For the second term on the right hand side, note that by a union bound, and then
by (2.28) in Proposition 2.6 and (2.24) in Proposition 2.5, and since ζ̃n,itk

∧ ζ̃n,jtk
≥ D−n by

the definition of In,εTn−tk in (2.9), and t− γn − tk ≥ K logN ,

P
(
|ζ̃n,it−γn | ∨ |ζ̃

n,j
t−γn | > dn

∣∣∣Ftk)
≤ P

(
ζ̃n,it−γn ∧ ζ̃

n,j
t−γn < −dn

∣∣∣Ftk)+ P
(
ζ̃n,it−γn ∨ ζ̃

n,j
t−γn > dn

∣∣∣Ftk)
≤ 2(logN)2−

1
8αC + 2(logN)3e−(1+

1
4 (1−α))κbdnc

= O((logN)3−
1
8αC) (2.38)

by the definition of dn in (2.4). Therefore, by (2.37) and by (2.30) and (2.31) from
Lemma 2.7,

P
(
ζn,it = x = ζn,jt , τni,j > t

∣∣∣Ftk)
≤ n−2π(x− µnTn−t)

2
(
1 +O((logN)−C)

)
+ 2n−2ε−2n · O((logN)3−

1
8αC)

= n−2π(x− µnTn−t)
2(1 +O((logN)−2)),

since ε−2n = O((logN)4), π(x − µnTn−t)
−2 = O((logN)

1
16αC) and we chose C > 213α−2,

so in particular 1
16αC − 7 > 2. Hence using the same argument for the other terms

on the right hand side of (2.36), and since π(y − µnTn−t) = π(x − µnTn−t)(1 + O(n−1)) if
|x− y| < Kn−1,

P
(
τ̃ni,j ∈ (t, t+ δn], ζn,it = x

∣∣∣Ftk)
≤ N−1δn(1 + 2m)g(x− µnTn−t)

−1π(x− µnTn−t)
2
(
1 +O((logN)−2)

)
.

Note that if τ̃ni,j ∈ (t, t+ δn] then |ζ̃n,it | ∧ |ζ̃
n,j
t | ≤ 1

64αdn by the definition of τ̃ni,j in (2.17),

and |ζ̃n,it − ζ̃
n,j
t | < Kn−1 by Proposition 2.8, and so for n sufficiently large, we must have

|ζ̃n,it | ≤ 1
64αdn + 1. Letting ĩns = 1

nZ∩ [µns − 1
64αdn− 1, µns + 1

64αdn + 1] for s ≥ 0, it follows
that

P
(
τ̃ni,j ∈ (tk + 2K log n, tk+1]

∣∣∣Ftk)
≤ N−1δn(1 + 2m)

(
1 +O((logN)−2)

)
·

∑
t∈δnN∩[tk+2K logN−δn,tk+1)

∑
x∈ĩnTn−t

g(x− µnTn−t)
−1π(x− µnTn−t)

2

≤ βn
(
1 +O((logN)−2)

)
, (2.39)

by the definition of βn in (2.18).
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For a lower bound, note that for t ∈ δnN ∩ [tk + 2K logN, tk+1),

P
(
τ̃ni,j ∈ (t, t+ δn]

∣∣∣Ftk)
≥

∑
x∈2(logN)−CZ,|x−µnTn−t|≤

1
64αdn−1

P
(
τ̃ni,j ∈ (t, t+ δn], |ζn,it − x| < (logN)−C

∣∣∣Ftk) .
(2.40)

Now for x ∈ 2(logN)−CZ with |x− µnTn−t| ≤
1
64αdn − 1, by conditioning on Ft, and then

by Proposition 2.8,

P
(
τ̃ni,j ∈ (t, t+ δn], |ζn,it − x| < (logN)−C

∣∣∣Ftk)
= E

[
P
(
τ̃ni,j ∈ (t, t+ δn]

∣∣∣Ft)1τni,j>t1|ζn,it −x|<(logN)−C

∣∣∣Ftk]
≥ E

[
n2N−1δng(ζn,it − µnTn−t)

−1(1−O((logN)−C))(1ζn,it =ζn,jt
+m1|ζn,it −ζ

n,j
t |=n−1)

1τni,j>t1|ζn,it −x|<(logN)−C

∣∣∣Ftk]
= n2N−1δng(x− µnTn−t)

−1(1−O((logN)−C))(
P
(
ζn,it = ζn,jt , |ζn,it − x| < (logN)−C , τni,j > t

∣∣∣Ftk)
+mP

(
|ζn,it − ζ

n,j
t | = n−1, |ζn,it − x| < (logN)−C , τni,j > t

∣∣∣Ftk)). (2.41)

For the first term on the right hand side, by conditioning on Ft−γn ,

P
(
ζn,it = ζn,jt , |ζn,it − x| < (logN)−C , τni,j > t

∣∣∣Ftk)
≥ E

[
P
(
ζn,it = ζn,jt , |ζn,it − x| < (logN)−C , τni,j > t

∣∣∣Ft−γn)
1τni,j>t−γn1|ζ̃n,it−γn |∨|ζ̃

n,j
t−γn |≤dn

∣∣∣Ftk]. (2.42)

By a union bound, if τni,j > t− γn then

P
(
τni,j ≤ t

∣∣∣Ft−γn) ≤ ∑
s∈δnN∩[t−γn,t)

P
(
τni,j ∈ (s, s+ δn], ζn,is ∈ InTn−s or ζn,js ∈ InTn−s

∣∣∣Ft−γn)
+ P

(
∃s ∈ δnN ∩ [t− γn, t) : ζn,is , ζn,js /∈ InTn−s, τ

n
i,j > s

∣∣∣Ft−γn) .
(2.43)

Suppose |ζ̃n,it−γn |∨|ζ̃
n,j
t−γn | ≤ dn. Take s ∈ δnN∩[t−γn, t), and let I = 2Z∩[µnTn−s+(logN)2/3+

K + νt∗ + 3, µnTn−s +D+
n ]; then by conditioning on Fs and using Proposition 2.8,

P
(
τni,j ∈ (s, s+ δn], ζn,is ∈ InTn−s

∣∣∣Ft−γn)
≤ E

[
O(n2N−1δng(ζn,is − µnTn−s)

−1)1|ζn,is −ζn,js |<Kn−11τni,j>s1ζn,is ∈InTn−s

∣∣∣Ft−γn]
≤ O(n2N−1δn)

∑
x′∈I

g(x′ + 1− µnTn−s)
−1P

(
|ζn,is − x′| ≤ 1, |ζn,js − x′| ≤ 2, τni,j > s

∣∣∣Ft−γn)
+O(n2N−1δng((logN)2/3 +K + νt∗ + 4)−1). (2.44)

Take s′ ∈ [s− t∗, s] such that s′− (t− γn) ∈ t∗N0. Then by (2.32) in Lemma 2.7, for x′ ∈ I,

P
(
|ζn,is − x′| ≤ 1, |ζn,js − x′| ≤ 2, τni,j > s

∣∣∣Ft−γn)
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≤ P
(
ζn,is′ ≥ x

′ − 1− (logN)2/3, ζn,js′ ≥ x
′ − 2− (logN)2/3, τni,j > s′

∣∣∣Ft−γn)
≤ (logN)4e2(1+

1
4 (1−α))κ(dn−(x

′−3−(logN)2/3−µn
Tn−s′

))

by (2.25) in Proposition 2.5 (since s′ − (t − γn) ≤ γn ≤ K logN and we are assuming
ζ̃n,it−γn ∨ ζ̃

n,j
t−γn ≤ dn). Therefore, by (2.44),

P
(
τni,j ∈ (s, s+ δn], ζn,is ∈ InTn−s

∣∣∣Ft−γn)
≤ O(n2N−1δn)

·
(∑
x′∈I

g(x′ + 1− µnTn−s)
−1(logN)4+4Ce4κ(logN)2/3e−2(1+

1
4 (1−α))κ(x

′−3−µn
Tn−s′

)

+ 2eκ((logN)2/3+K+νt∗+4)
)

= O(n2N−1δn(logN)4+4Ce4κ(logN)2/3) (2.45)

since g(y)−1 ≤ 2eκy for y ≥ 0, and by the definition of the event E1 in (2.10). For the
second term on the right hand side of (2.43), first note that for n sufficiently large, by
the definition of the event E1, for s, s′ > 0 with s′ ≤ s < t < tk+1 ≤ T−n and |s− s′| ≤ t∗

we have |µnTn−s−µ
n
Tn−s′ | ≤ 2νt∗. Hence, since we are assuming the event E1 ∩E′2 occurs,

by (2.32) in Lemma 2.7 we have

P
(
∃s ∈ δnN ∩ [t− γn, t) : ζn,is , ζn,js /∈ InTn−s, τ

n
i,j > s

∣∣∣Ft−γn)
≤ P

(
∃s′ ∈ [t− γn, t) : s′ − (t− γn) ∈ t∗N0,

ζ̃n,is′ ∧ ζ̃
n,j
s′ ≥ D

+
n − (logN)2/3 − 2νt∗, τni,j > s′

∣∣∣Ft−γn)
≤ ((t∗)−1 + 1)γn(logN)4e2(1+

1
4 (1−α))κ(dn−(D

+
n−(logN)2/3−2νt∗−1))

by (2.25) in Proposition 2.5 and since ζ̃n,it−γn ∨ ζ̃
n,j
t−γn ≤ dn. Note that e−2(1+

1
4 (1−α))κD

+
n =(

n
N

)(1+ 1
4 (1−α))(1−2c0) ≤ n

N by (2.8) and our choice of c0. Hence, by (2.45), substituting
into (2.43),

P
(
τni,j ≤ t

∣∣∣Ft−γn)
≤ O(n2N−1γn(logN)4+4Ce4κ(logN)2/3) +O(γn(logN)4+4Ce4κ(logN)2/3nN−1)

= O(n−1−
1
2 (a2−3)),

since N ≥ na2 for n sufficiently large, with a2 > 3. Therefore, returning to (2.42), if
|ζ̃n,it−γn | ∨ |ζ̃

n,j
t−γn | ≤ dn and τni,j > t− γn,

P
(
ζn,it = ζn,jt , |ζn,it − x| < (logN)−C , τni,j > t

∣∣∣Ft−γn)
≥ P

(
ζn,it = ζn,jt , |ζn,it − x| < (logN)−C

∣∣∣Ft−γn)− P(τni,j ≤ t∣∣∣Ft−γn)
≥ π(x− µnTn−t)

2 · 2(logN)−Cn−1
(
1−O((logN)−C)

)
−O(n−1−

1
2 (a2−3)) (2.46)

by (2.30) in Lemma 2.7 and since π(y − µnTn−t) = π(x − µnTn−t)(1 + O((logN)−C)) if
|y − x| < (logN)−C . To bound the other terms in (2.42), note first that by a union bound,

P
(
τni,j ≤ t− γn

∣∣∣Ftk)
≤

∑
s∈δnN0∩[tk,t−γn)

P
(
τni,j ∈ (s, s+ δn], ζn,is ∈ InTn−s or ζn,js ∈ InTn−s

∣∣∣Ftk)
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+ P
(
∃s′ ∈ δnN0 ∩ [tk, t− γn) : ζn,is′ ∧ ζ

n,j
s′ /∈ InTn−s′

∣∣∣Ftk) . (2.47)

By Proposition 2.8, for s ∈ δnN0 ∩ [tk, t− γn),

P
(
τni,j ∈ (s, s+ δn], ζn,is ∈ InTn−s

∣∣∣Ftk) = E
[
P
(
τni,j ∈ (s, s+ δn]

∣∣∣Fs)1ζn,is ∈InTn−s

∣∣∣Ftk]
= O(n2N−1δng(D+

n )−1)

= O(n3/2N−1/2δn) (2.48)

since κD+
n ≤ 1

2 log(N/n) by (2.8). For the second term on the right hand side of (2.47),
by (2.32) in Lemma 2.7 and by the definition of the event E1 in (2.10),

P
(
∃s′ ∈ δnN0 ∩ [tk, t− γn) : ζn,is′ ∧ ζ

n,j
s′ /∈ InTn−s′

∣∣∣Ftk)
≤ P

(
∃s′ ∈ [tk, t− γn) : s′ − tk ∈ t∗N0, ζ̃

n,i
s′ ∧ ζ̃

n,j
s′ ≥ D

+
n − (logN)2/3 − 2νt∗

∣∣∣Ftk)
≤ ((t∗)−1t1 + 1)(logN)3e(1+

1
4 (1−α))κ((1−ε)D

+
n−(D

+
n−(logN)2/3−2νt∗−1))

by (2.24) and (2.26) in Proposition 2.5 and since ζ̃n,itk
∧ ζ̃n,jtk

≤ (1− ε)D+
n . Hence by (2.47)

and (2.48), and since κ(1 + 1
4 (1− α))D+

n ≥ 1
2 log(N/n) by the definition of D+

n in (2.8),

P
(
τni,j ≤ t− γn

∣∣∣Ftk) ≤ O(t1n
3/2N−1/2) +O(t1(logN)3e2κ(logN)2/3nε/2N−ε/2)

= O(n−(
1
3 (a2−3)∧ε)). (2.49)

Therefore, substituting into (2.42) and using (2.38) and (2.46),

P
(
ζn,it = ζn,jt , |ζn,it − x| < (logN)−C , τni,j > t

∣∣∣Ftk)
≥ 2π(x− µnTn−t)

2(logN)−Cn−1
(
1−O((logN)−C)

)
· (1−O(n−(

1
3 (a2−3)∧ε))−O((logN)3−

1
8αC)).

Since we chose C > 213α−2, we have 1
8αC − 3 > 2. Hence by the same argument for the

second term on the right hand side of (2.41), and then substituting into (2.40),

P
(
τ̃ni,j ∈ (t, t+ δn]

∣∣∣Ftk)
≥

∑
x∈2(logN)−CZ,|x−µnTn−t|≤

1
64αdn−1

2(logN)−CnN−1δn(1 + 2m)

·
π(x− µnTn−t)

2

g(x− µnTn−t)
(
1−O((logN)−2)

)
= βnt

−1
1 δn(1−O((logN)−2)),

since 1
32α

2C > 2 and 1
64αC > 2, which, together with (2.39), completes the proof.

Proof of Proposition 2.3. Suppose n is sufficiently large that 2K logN−δn ≥ εn. Suppose
the event E occurs. We begin by proving the first statement (2.19). Take s, t ∈ δnN ∩
[tk + 2K logN − δn, tk+1) with s < t. Note that if for some `, `′ ∈ [k0], τ̃n`,`′ ∈ (t, t + δn]

then |ζ̃n,`t | ∧ |ζ̃
n,`′

t | ≤ 1
64αdn by the definition of τ̃n`,`′ in (2.17), and |ζ̃n,`t − ζ̃n,`

′

t | < Kn−1 by

Proposition 2.8, so in particular |ζ̃n,`t | ≤ dn. Hence by conditioning on Ft and applying
Proposition 2.8,

P
(
τ̃ni,j1 ∈ (s, s+ δn], τ̃ni,j2 ∈ (t, t+ δn]

∣∣∣Ftk)
≤ E

[
O(n2N−1δng(ζ̃n,it )−1)1|ζ̃n,it |≤dn

1τ̃ni,j1∈(s,s+δn]

∣∣∣Ftk]
≤ O(n2N−1δn(logN)C)P

(
τ̃ni,j1 ∈ (s, s+ δn]

∣∣∣Ftk) . (2.50)
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By conditioning on Fs and applying Proposition 2.8,

P
(
τ̃ni,j1 ∈ (s, s+ δn]

∣∣∣Ftk)
≤ E

[
O(n2N−1δng(ζ̃n,is )−1)1τni,j1>s

1|ζ̃n,is |≤dn1|ζn,is −ζ
n,j1
s |<Kn−1

∣∣∣Ftk]
= O(n2N−1δn(logN)C)P

(
|ζ̃n,is | ≤ dn, |ζn,is − ζn,j1s | < Kn−1, τni,j1 > s

∣∣∣Ftk) .
Then since s− tk ≥ εn, by conditioning on Fs−εn ,

P
(
|ζ̃n,is | ≤ dn, |ζn,is − ζn,j1s | < Kn−1, τni,j1 > s

∣∣∣Ftk)
≤ E

[
P
(
|ζ̃n,is | ≤ dn, |ζn,is − ζn,j1s | < Kn−1

∣∣∣Fs−εn)1τni,j1>s−εn ∣∣∣Ftk]
≤ E

 ∑
x∈inTn−s,y∈

1
nZ,|x−y|<Kn−1

P
(
ζn,is = x, ζn,js = y

∣∣∣Fs−εn)1τni,j1>s−εn
∣∣∣∣∣Ftk


≤ (2ndn + 1)2K · 2n−2ε−2n (2.51)

by (2.31) in Lemma 2.7. Hence, by (2.50), and by the same argument for the case s > t,
if s, t ∈ δnN ∩ [tk + 2K logN − δn, tk+1) with s 6= t,

P
(
τ̃ni,j1 ∈ (s, s+ δn], τ̃ni,j2 ∈ (t, t+ δn]

∣∣∣Ftk) = O(n3N−2δ2n(logN)2C+5). (2.52)

By Proposition 2.9, for t ∈ δnN ∩ [tk + 2K logN − δn, tk+1),

P
(
τ̃ni,j1 , τ̃

n
i,j2 ∈ (t, t+ δn]

∣∣∣Ftk)
= O(n9/5N−2δn(logN)2C) + P

(
τ̃ni,j1 ∈ (t, t+ δn], τnj1,j2 ≤ t

∣∣∣Ftk) . (2.53)

By a union bound, and then by conditioning on Ft and using Proposition 2.8,

P
(
τ̃ni,j1 ∈ (t, t+ δn], τnj1,j2 ∈ (t− εn, t]

∣∣∣Ftk)
=

∑
t′∈δnN∩[t−εn,t)

P
(
τ̃ni,j1 ∈ (t, t+ δn], τnj1,j2 ∈ (t′, t′ + δn]

∣∣∣Ftk)
≤

∑
t′∈δnN∩[t−εn,t)

E
[
O(n2N−1δng(ζ̃n,j1t )−1)1|ζ̃n,j1t |≤dn

1τnj1,j2∈(t
′,t′+δn]

∣∣∣Ftk]
≤

∑
t′∈δnN∩[t−εn,t)

O(n2N−1δn(logN)C)

· P
(
τnj1,j2 ∈ (t′, t′ + δn], |ζ̃n,j1t′ | ≤ dn + (logN)2/3 + 1

∣∣∣Ftk)
by (2.32) in Lemma 2.7 and the definition of the event E1 in (2.10). Then by Proposi-
tion 2.8 again, for t′ ∈ δnN ∩ [t− εn, t), by conditioning on Ft′ ,

P
(
τnj1,j2 ∈ (t′, t′ + δn], |ζ̃n,j1t′ | ≤ dn + (logN)2/3 + 1

∣∣∣Ftk)
= O(n2N−1δng(dn + (logN)2/3 + 1)−1).

Hence

P
(
τ̃ni,j1 ∈ (t, t+ δn], τnj1,j2 ∈ (t− εn, t]

∣∣∣Ftk) = O(n4N−2δnεn(logN)Ce2κ(logN)2/3)

= O(n1−
1
2 (a2−3)N−1δn). (2.54)
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Moreover, by Proposition 2.8, conditioning on Ft, and then conditioning on Ft−εn ,

P
(
τ̃ni,j1 ∈ (t, t+ δn], τnj1,j2 ≤ t− εn

∣∣∣Ftk)
= E

[
O(n2N−1δng(ζ̃n,it )−1)1τni,j1>t

1|ζ̃n,it |≤dn
1|ζn,it −ζ

n,j1
t |<Kn−11τnj1,j2≤t−εn

∣∣∣Ftk]
≤ O(n2N−1δn(logN)C)

· E
[
P
(
|ζn,it − ζ

n,j1
t | < Kn−1, |ζ̃n,it | ≤ dn

∣∣∣Ft−εn)1τni,j1>t−εn1τnj1,j2≤t−εn ∣∣∣Ftk].
(2.55)

By the same argument as in (2.51), if τni,j1 > t− εn then

P
(
|ζn,it − ζ

n,j1
t | < Kn−1, |ζ̃n,it | ≤ dn

∣∣∣Ft−εn) ≤ (2ndn + 1)2K · 2n−2ε−2n = O(n−1(logN)5).

By the same argument as in (2.49) in the proof of Proposition 2.2,

P
(
τnj1,j2 ≤ t− εn

∣∣∣Ftk) = O(n−(
1
3 (a2−3)∧ε)).

Hence by (2.55),

P
(
τ̃ni,j1 ∈ (t, t+ δn], τnj1,j2 ≤ t− εn

∣∣∣Ftk) = O(n1−(
1
3 (a2−3)∧ε)N−1δn(logN)C+5). (2.56)

Therefore, by (2.53), (2.54) and (2.56),

P
(
τ̃ni,j1 , τ̃

n
i,j2 ∈ (t, t+ δn]

∣∣∣Ftk)
= O(n9/5N−2δn(logN)2C) +O(n1−

1
2 (a2−3)N−1δn) +O(n1−(

1
3 (a2−3)∧ε)N−1δn(logN)C+5)

= O(n1−
1
2 (

1
3 (a2−3)∧ε)N−1δn).

Hence, by (2.52) and a union bound, and since N ≥ n3,

P
(
τ̃ni,j1 , τ̃

n
i,j2 ∈ (tk, tk+1]

∣∣∣Ftk) = O(N−1(logN)2C+5t21) +O(n1−
1
2 (

1
3 (a2−3)∧ε)N−1t1),

which completes the proof of the first statement (2.19).
For the second statement (2.20), by Proposition 2.9, for t ∈ δnN ∩ [tk + 2K logN −

δn, tk+1),

P
(
τ̃ni1,j1 , τ̃

n
i2,j2 ∈ (t, t+ δn]

∣∣∣Ftk)
≤ O(n4N−2δ2n(logN)2C) +

∑
i,j∈{i1,i2,j1,j2},i6=j

P
(
τ̃ni1,j1 , τ̃

n
i2,j2 ∈ (t, t+ δn], τni,j ≤ t

∣∣∣Ftk) .
The second statement (2.20) then follows by the same argument as for (2.19).

Proof of Proposition 2.4. Suppose the event E occurs. By the definition of c0 before (2.8),
we can take ε > 0 sufficiently small that 2(1 + 1

4 (1 − α))(1 − 2ε)( 1
2 − c0) > 1. For

t ∈ δnN0 ∩ [0, T−n ] and x ∈ In,εTn−t, by conditioning on Ft, and then by Proposition 2.8,

P
(
τni,j ∈ (t, t+ δn], ζn,it = x

∣∣∣F0

)
= E

[
P
(
τni,j ∈ (t, t+ δn]

∣∣∣Ft)1τni,j>t1ζn,it =x

∣∣∣F0

]
= E

[
O(n2N−1δng(x− µnTn−t)

−1)1τni,j>t1|ζn,jt −x|<Kn−11ζn,it =x

∣∣∣F0

]
= O(n2N−1δng(x− µnTn−t)

−1)P
(
|ζn,jt − x| < Kn−1, ζn,it = x, τni,j > t

∣∣∣F0

)
. (2.57)
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If t ≥ εn, then for y ∈ 1
nZ with |y− x| < Kn−1, by conditioning on Ft−εn , and by (2.32) in

Lemma 2.7,

P
(
ζn,jt = y, ζn,it = x, τni,j > t

∣∣∣F0

)
= E

[
P
(
ζn,jt = y, ζn,it = x, τni,j > t

∣∣∣Ft−εn)1τni,j>t−εn1|ζn,jt−εn−y|≤1
1|ζn,it−εn−x|≤1

∣∣∣F0

]
≤ 2n−2ε−2n P

(
|ζn,jt−εn − x| ≤ 2, |ζn,it−εn − x| ≤ 1, τni,j > t− εn

∣∣∣F0

)
, (2.58)

for n sufficiently large, by (2.31) in Lemma 2.7. For s ≥ 0, let

in,−s = 1
nZ ∩ [µns +D−n , µ

n
s − 1

64αdn] and in,+s = 1
nZ ∩ [µns + 1

64αdn, µ
n
s − (1− ε)D+

n ].

Suppose x ∈ in,+Tn−t. Since x ≤ µnTn−t + (1 − ε)D+
n , if t ≥ K logN + εn then by (2.23) in

Proposition 2.5, and the definition of the event E1 in (2.10), for n sufficiently large,

P
(
ζn,jt−εn ≥ x− 2, ζn,it−εn ≥ x− 1, τni,j > t− εn

∣∣∣F0

)
≤ (logN)7e−2(1+

1
4 (1−α))κ(x−3−µ

n
Tn−t+εn ).

Therefore, by (2.57) and (2.58), if t ≥ K logN + εn and x ∈ in,+Tn−t,

P
(
τni,j ∈ (t, t+ δn], ζn,it = x

∣∣∣F0

)
≤ O(n2N−1δng(x− µnTn−t)

−1) · 4Kn−2ε−2n · (logN)7e−2(1+
1
4 (1−α))κ(x−3−µ

n
Tn−t+εn )

= O
(

(logN)11N−1δne
−(1+ 1

2 (1−α))κ(x−µ
n
Tn−t)

)
(2.59)

by the definition of the event E1 in (2.10), and since g(z)−1 ≤ 2eκz for z ≥ 0. By (2.57)
and (2.58), if t ≥ εn and x ∈ in,−Tn−t,

P
(
τni,j ∈ (t, t+ δn], ζn,it = x

∣∣∣F0

)
= O(n2N−1δn) · 4Kn−2ε−2n P

(
|ζn,it−εn − x| ≤ 1

∣∣∣F0

)
.

Therefore, if t ≥ K logN + εn,

P
(
τni,j ∈ (t, t+ δn], ζn,it ∈ in,−Tn−t

∣∣∣F0

)
≤ O(N−1δnε

−2
n )

∑
x∈in,−Tn−t

P
(
|ζn,it−εn − x| ≤ 1

∣∣∣F0

)
= O(nN−1δnε

−2
n (logN)2−2

−9α2C)

by (2.28) in Proposition 2.6 and by the definition of the event E1. By (2.59), we now have
that for t ∈ δnN ∩ [K logN + εn, T

−
n ],

P

(
τni,j ∈ (t, t+ δn], |ζ̃n,it | ≥ 1

64αdn, ζ
n,i
t ∈ In,εTn−t

∣∣∣∣F0

)
= O(nN−1δn(logN)6−2

−9α2C) +O(N−1δn(logN)11)
∑

x∈in,+Tn−t

e−(1+
1
2 (1−α))κ(x−µ

n
Tn−t)

= O(nN−1δn(logN)11−2
−9α2C). (2.60)

For t ∈ δnN ∩ [εn, T
−
n ] and x ∈ 1

nZ with |x− µnTn−t| ≤
1
64αdn, by (2.57) and (2.58),

P
(
τni,j ∈ (t, t+ δn], ζn,it = x

∣∣∣F0

)
≤ O(n2N−1δng( 1

64αdn)−1) · 4Kε−2n n−2

= O(N−1δn(logN)4+
1
64αC).

Therefore, by (2.60) and since we chose C > 213α−2, for t ∈ δnN ∩ [K logN + εn, T
−
n ],

P
(
τni,j ∈ (t, t+ δn], ζn,it ∈ In,εTn−t

∣∣∣F0

)
= O(nN−1δndn(logN)4+

1
64αC). (2.61)
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Now note that for any t ∈ δnN0 ∩ [0, T−n ],

P
(
τni,j ∈ (t, t+ δn], ζn,it ∈ In,εTn−t

∣∣∣F0

)
= E

[
P
(
τni,j ∈ (t, t+ δn]

∣∣∣Ft)1ζn,it ∈I
n,ε
Tn−t

∣∣∣F0

]
= O(n2N−1δng(D+

n )−1) (2.62)

by Proposition 2.8. Finally, by (2.32) in Lemma 2.7 and the definition of the event E1

in (2.10), and then by (2.23) and (2.25) in Proposition 2.5 and (2.27) in Proposition 2.6,
for n sufficiently large,

P
(
∃t ∈ δnN0 ∩ [0, Nn−1 logN ] : ζn,it ∧ ζ

n,j
t /∈ In,εTn−t, τ

n
i,j > t

∣∣∣F0

)
≤ P

(
∃t ∈ t∗N0 ∩ [0, Nn−1 logN ] : ζ̃n,it ∧ ζ̃

n,j
t ≥ (1− 2ε)D+

n , τ
n
i,j > t

∣∣∣F0

)
+ P

(
∃t ∈ δnN0 ∩ [0, Nn−1 logN ] : ζ̃n,it ∧ ζ̃

n,j
t ≤ D−n

∣∣∣F0

)
≤ ((t∗)−1Nn−1 logN + 1)(logN)7e2(1+

1
4 (1−α))κ(K0−(1−2ε)D+

n−1) + 2N−1

≤ N−ε
′

(2.63)

for some ε′ > 0, where the last inequality follows since we chose ε > 0 sufficiently small
that 2(1 + 1

4 (1− α))(1− 2ε)( 1
2 − c0) > 1 and since κD+

n = (1/2− c0) log(N/n). Hence by a
union bound, and then by (2.63), (2.62), (2.61) and (2.60),

P
(
{τni,j 6= τ̃ni,j} ∩ {τni,j ≤ Nn−1 logN}

∣∣∣F0

)
≤ P

(
∃t ∈ δnN0 ∩ [0, Nn−1 logN ] : ζn,it ∧ ζ

n,j
t /∈ In,εTn−t, τ

n
i,j > t

∣∣∣F0

)
+

∑
{k∈N0:tk≤Nn−1 logN}

∑
t∈δnN0∩[tk,tk+2K logN),i′∈{i,j}

P
(
τni,j ∈ (t, t+ δn], ζn,i

′

t ∈ In,εTn−t

∣∣∣F0

)
+

∑
t∈δnN∩[2K logN,Nn−1 logN ],i′∈{i,j}

P
(
τni,j ∈ (t, t+ δn], |ζ̃n,i

′

t | ≥ 1
64αdn, ζ

n,i′

t ∈ In,εTn−t

∣∣∣F0

)
≤ N−ε

′
+O(n2N−1g(D+

n )−1 logN) +O(nN−1dn(logN)4+
1
64αC ·Nn−1(logN)2−C)

+O(nN−1(logN)11−2
−9α2C ·Nn−1 logN)

≤ 1
2 (logN)−2 (2.64)

for n sufficiently large, where the last inequality follows since we chose C > 213α−2 and
so 2−9α2C − 12 > 2 and 1

2C − 6 > 2, and since g(D+
n )−1 ≤ 2eκD

+
n = O

(
(Nn )1/2−c0

)
and

N ≥ n3. By a union bound and Proposition 2.2, for n sufficiently large,

P
(
τni,j > Nn−1 logN

∣∣∣F0

)
≤ P

(
∃t ∈ δnN0 ∩ [0, Nn−1 logN ] : ζn,it ∧ ζ

n,j
t /∈ In,εTn−t, τ

n
i,j > t

∣∣∣F0

)
+ (1− 1

2βn)b(t1)
−1Nn−1 logNc

≤ 1
2 (logN)−2,

for n sufficiently large, by (2.63) and the definition of βn in (2.18). By (2.63) and (2.64),
this completes the proof.

2.2 Proof of Proposition 2.5

Throughout the rest of Section 2, we assume for some a1 > 1, N ≥ na1 for n
sufficiently large. We need two preliminary lemmas for the proof of Proposition 2.5. The
first is an easy consequence of the definition of the event E′2.
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Lemma 2.10. For n sufficiently large, on the event E1 ∩ E′2, for t ∈ δnN0 ∩ [0, T−n ],
i, j ∈ [k0] and `1, `2 ∈ 1

nZ ∩ [K,D+
n ], if ζn,it , ζn,jt ∈ InTn−t,

P
(
ζ̃n,it+t∗ ≥ `1, ζ̃

n,j
t+t∗ ≥ `2

∣∣∣Ft)1τni,j>t ≤ c1e−(1+ 1
2 (1−α))κ(`1+1−(ζ̃n,it ∨K)+`2+1−(ζ̃n,jt ∨K))

and P
(
ζ̃n,it+t∗ ≥ `1

∣∣∣Ft) ≤ c1e−(1+ 1
2 (1−α))κ(`1+1−(ζ̃n,it ∨K)).

Proof. Write t′ = Tn − (t+ t∗). By the definition of qn,+ in (2.3), and the definition of ζ̃n,i

and ζ̃n,j in (2.15), for `1, `2 ∈ 1
nZ, if τni,j > t,

P
(
ζ̃n,it+t∗ ≥ `1, ζ̃

n,j
t+t∗ ≥ `2

∣∣∣Ft) ≤ qn,+t′,t′+t∗(`1 + µnt′ , ζ
n,i
t )

pnt′+t∗(ζ
n,i
t )

qn,+t′,t′+t∗(`2 + µnt′ , ζ
n,j
t )

pnt′+t∗(ζ
n,j
t )−N−11ζn,jt =ζn,it

.

(2.65)

By the definition of the event E′2 in (2.11), for ` ∈ Int′ and z ∈ Int′+t∗ with `− µnt′ ≥ K, the

event A(2)
t′ (`, z) occurs, and so

qn,+t′,t′+t∗(`, z)

pnt′+t∗(z)
≤ c1e−(1+

1
2 (1−α))κ(`−(z−νt

∗)∨(µn
t′+K)+2).

Note that by the definition of the event E1 in (2.10), if ζn,jt ∈ Int′+t∗ then pnt′+t∗(ζ
n,j
t ) ≥

1
10

(
n
N

)1/2
. Therefore by (2.65), if τni,j > t and ζn,it , ζn,jt ∈ InTn−t, for `1, `2 ∈ 1

nZ ∩ [K,D+
n ],

P
(
ζ̃n,it+t∗ ≥ `1, ζ̃

n,j
t+t∗ ≥ `2

∣∣∣Ft)
≤ (1 +O(N−1/2))

· c21e−(1+
1
2 (1−α))κ((`1+µ

n
t′ )−(ζ

n,i
t −νt

∗)∨(µn
t′+K)+2+(`2+µ

n
t′ )−(ζ

n,j
t −νt

∗)∨(µn
t′+K)+2)

≤ (1 +O(N−1/2))c21e
−(1+ 1

2 (1−α))κ((`1−ζ̃
n,i
t ∨K)−t∗e−(logN)c2+2+(`2−ζ̃n,jt ∨K)−t∗e−(logN)c2 +2),

(2.66)

since, by the definition of the event E1 in (2.10), |(µnt′+νt∗)−µnTn−t| ≤ t
∗e−(logN)c2 . Since

c1 < 1 (by our choice of c1 in (2.14)), the first statement follows by taking n sufficiently
large. The second statement follows by the same argument.

We now use Lemma 2.10 and an inductive argument to prove the following result.

Lemma 2.11. For n sufficiently large, the following holds. For t ∈ δnN0 ∩ [0, T−n ] and
k ∈ [k0], let

τ+,kt = inf
{
s ≥ t : s− t ∈ t∗N0, ζ̃

n,k
s ≥ D+

n

}
. (2.67)

Take i, j ∈ [k0] and let τ+t = τ+,it ∧ τ+,jt ∧ τni,j . On the event E1 ∩ E′2, for s ∈ [0, T−n ] with
s− t ∈ t∗N0, for `1, `2 ∈ N ∩ [K,D+

n ],

P
(
ζ̃n,is ≥ `1, ζ̃n,js ≥ `2, τ+t ≥ s

∣∣∣Ft) ≤ e(1+ 1
4 (1−α))κ(ζ̃

n,i
t ∨K−`1+ζ̃

n,j
t ∨K−`2)

(2.68)

and for i′ ∈ {i, j}, P
(
ζ̃n,i

′

s ≥ `1, τ+,i
′

t ≥ s
∣∣∣Ft) ≤ e(1+ 1

4 (1−α))κ(ζ̃
n,i′
t ∨K−`1). (2.69)

Proof. Let λ = 1
4 (1 − α), and recall from (2.14) that we chose c1 > 0 sufficiently small

that
c1((eλκ − 1)−1eλκ + e−(1+λ)κ(1− e−(1+λ)κ)−1)2 + e−2(1+λ)κ < 1

and c1(eλκ − 1)−1eλκ + e−(1+λ)κ < 1.
(2.70)
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The proof is by induction. Take t′ ∈ [0, T−n ] with t′−t ∈ t∗N0, and suppose (2.68) and (2.69)

hold for s = t′. Let A = e(1+λ)κ(ζ̃
n,i
t ∨K+ζ̃n,jt ∨K). Note that by (2.32) in Lemma 2.7, if

τ+t > t′ then ζn,it′ , ζ
n,j
t′ ∈ InTn−t′ . For `1, `2 ∈ N ∩ [K,D+

n ], let J`1,`2 = {(k1, k2) : k1, k2 ∈
N ∩ (K,D+

n ], k1 ≤ `1 or k2 ≤ `2}. Then by conditioning on Ft′ and applying Lemma 2.10
and a union bound,

P
(
ζ̃n,it′+t∗ ≥ `1, ζ̃

n,j
t′+t∗ ≥ `2, τ

+
t ≥ t′ + t∗

∣∣∣Ft)
≤

∑
(k1,k2)∈J`1,`2

c1e
−(1+2λ)κ((`1−k1)∨0+(`2−k2)∨0)

· P
(
ζ̃n,it′ ∈ [k1, k1 + 1), ζ̃n,jt′ ∈ [k2, k2 + 1), τ+t > t′

∣∣∣Ft)
+

∑
k∈N∩(K,D+

n ]

(
c1e
−(1+2λ)κ((`1−k)∨0+`2−K)P

(
ζ̃n,it′ ∈ [k, k + 1), ζ̃n,jt′ ≤ K + 1, τ+,it > t′

∣∣∣Ft)
+ c1e

−(1+2λ)κ((`2−k)∨0+`1−K)P
(
ζ̃n,jt′ ∈ [k, k + 1), ζ̃n,it′ ≤ K + 1, τ+,jt > t′

∣∣∣Ft))
+ c1e

−(1+2λ)κ(`1−K+`2−K) + P
(
ζ̃n,it′ ≥ `1 + 1, ζ̃n,jt′ ≥ `2 + 1, τ+t > t′

∣∣∣Ft)
≤

∑
k1,k2∈N∩[K,D+

n ]

Ae−(1+λ)κ(k1+k2)c1e
−(1+2λ)κ((`1−k1)∨0+(`2−k2)∨0) +Ae−(1+λ)κ(`1+`2+2)

by the induction hypothesis and since by the definition of A, e(1+λ)κ(ζ̃
n,i′
t ∨K) ≤ Ae−(1+λ)κK

for i′ ∈ {i, j} and Ae−(1+λ)2κK ≥ 1. Therefore

P
(
ζ̃n,it′+t∗ ≥ `1, ζ̃

n,j
t′+t∗ ≥ `2, τ

+
t ≥ t′ + t∗

∣∣∣Ft)
≤ Ac1

 `1∑
k1=K

e−(1+λ)κk1e−(1+2λ)κ(`1−k1) +

bD+
n c∑

k1=`1+1

e−(1+λ)κk1


·

 `2∑
k2=K

e−(1+λ)κk2e−(1+2λ)κ(`2−k2) +

bD+
n c∑

k2=`2+1

e−(1+λ)κk2

+Ae−(1+λ)κ(`1+`2+2).

(2.71)

Note that

`1∑
k1=K

e−(1+λ)κk1e−(1+2λ)κ(`1−k1) <

`1∑
k1=0

e−(1+2λ)κ`1eλκk1 < e−(1+2λ)κ`1(eλκ − 1)−1eλκ(`1+1)

= (eλκ − 1)−1eλκe−(1+λ)κ`1 .

Hence, since
∑bD+

n c
k1=`1+1 e

−(1+λ)κk1 < (1 − e−(1+λ)κ)−1e−(1+λ)κ(`1+1), substituting into
(2.71),

P
(
ζ̃n,it′+t∗ ≥ `1, ζ̃

n,j
t′+t∗ ≥ `2, τ

+
t ≥ t′ + t∗

∣∣∣Ft)
≤ Ae−(1+λ)κ(`1+`2)

(
c1((eλκ − 1)−1eλκ + e−(1+λ)κ(1− e−(1+λ)κ)−1)2 + e−2(1+λ)κ

)
≤ Ae−(1+λ)κ(`1+`2)

by (2.70). Similarly, letting A1 = e(1+λ)κ(ζ̃
n,i
t ∨K), for ` ∈ N ∩ [K,D+

n ], by Lemma 2.10 and
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a union bound,

P
(
ζ̃n,it′+t∗ ≥ `, τ

+,i
t ≥ t′ + t∗

∣∣∣Ft)
≤

∑
k∈N∩(K,`]

c1e
−(1+2λ)κ(`−k)P

(
ζ̃n,it′ ∈ [k, k + 1), τ+,it > t′

∣∣∣Ft)
+ c1e

−(1+2λ)κ(`−K) + P
(
ζ̃n,it′ ≥ `+ 1, τ+,it > t′

∣∣∣Ft)
≤

∑
k∈N∩[K,`]

c1e
−(1+2λ)κ(`−k)A1e

−(1+λ)κk +A1e
−(1+λ)κ(`+1)

by the induction hypothesis and since A1e
−(1+λ)κK ≥ 1. Hence

P
(
ζ̃n,it′+t∗ ≥ `, τ

+,i
t ≥ t′ + t∗

∣∣∣Ft) ≤ A1

(
c1e
−(1+2λ)κ`(eλκ − 1)−1eλκ(`+1) + e−(1+λ)κ(`+1)

)
= A1e

−(1+λ)κ`(c1(eλκ − 1)−1eλκ + e−(1+λ)κ)

≤ A1e
−(1+λ)κ`

by (2.70). By the same argument, P
(
ζ̃n,jt′+t∗ ≥ `, τ

+,j
t ≥ t′ + t∗

∣∣∣Ft) ≤ e(1+λ)κ(ζ̃
n,j
t ∨K−`).

The result follows by induction.

Proof of Proposition 2.5. If t− s ≥ K logN , for i′ ∈ {i, j}, let

σi′ = inf{s′ : s′ − (t− t∗b(t∗)−1K logNc) ∈ t∗N0, ζ̃
n,i′

s′ ≤ K}.

If instead t − s < K logN with t − s ∈ t∗N0, then let σi′ = s for i′ ∈ {i, j}. Note that in
both cases t− σi′ ≤ K logN . Let λ = 1

4 (1− α).

Condition on Fσi∨σj and suppose σi ≤ σj ≤ t. Recall the definition of τ+,iσj and τ+,jσj

in (2.67). Then for n sufficiently large, for `1, `2 ∈ N ∩ [K,D+
n ], by a union bound and

Lemma 2.11,

P
(
ζ̃n,it ≥ `1, ζ̃n,jt ≥ `2, τni,j > t

∣∣∣Fσi∨σj)
≤ e(1+λ)κ(ζ̃

n,i
σj
∨K−`1+ζ̃n,jσj

∨K−`2) + P
(
ζ̃n,it ≥ `1, τni,j > t, τ+,iσj ≥ t, τ

+,j
σj < t

∣∣∣Fσi∨σj)
+ P

(
ζ̃n,jt ≥ `2, τni,j > t, τ+,jσj ≥ t, τ

+,i
σj < t

∣∣∣Fσi∨σj)
+ P

(
τni,j > t, τ+,iσj < t, τ+,jσj < t

∣∣∣Fσi∨σj) . (2.72)

We now bound the last three terms on the right hand side. Recall that we let τ+σj =

τ+,iσj ∧ τ
+,j
σj ∧ τ

n
i,j . For s′ ∈ [σj , t] with s′ − σj ∈ t∗N0, by conditioning on Fs′ ,

P
(
ζ̃n,it ≥ `1, τni,j > t, τ+,iσj ≥ t, τ

+,j
σj = s′

∣∣∣Fσi∨σj)
≤ E

[
P
(
ζ̃n,it ≥ `1, τ+,is′ ≥ t

∣∣∣Fs′)1ζ̃n,j
s′ ≥D

+
n ,τ

+
σj

=s′

∣∣∣Fσi∨σj]
≤

`1−1∑
`′1=K

P
(
ζ̃n,is′ ∈ [`′1, `

′
1 + 1), ζ̃n,js′ ≥ D

+
n , τ

+
σj ≥ s

′
∣∣∣Fσi∨σj) · e(1+λ)κ(`′1+1−`1)

+ P
(
ζ̃n,is′ ≤ K, ζ̃

n,j
s′ ≥ D

+
n , τ

+
σj ≥ s

′
∣∣∣Fσi∨σj) · e(1+λ)κ(K−`1)

+ P
(
ζ̃n,is′ ≥ `1, ζ̃

n,j
s′ ≥ D

+
n , τ

+
σj ≥ s

′
∣∣∣Fσi∨σj)
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by (2.69) in Lemma 2.11. Therefore, by Lemma 2.11 again,

P
(
ζ̃n,it ≥ `1, τni,j > t, τ+,iσj ≥ t, τ

+,j
σj = s′

∣∣∣Fσi∨σj)
≤

`1∑
`′1=K

e
(1+λ)κ(ζ̃n,iσj

∨K−`′1+ζ̃
n,j
σj
∨K−bD+

n c) · e(1+λ)κ(`
′
1+1−`1)

+ e
(1+λ)κ(ζ̃n,jσj

∨K−bD+
n c) · e(1+λ)κ(K−`1)

≤ e(1+λ)κ(ζ̃
n,i
σj
∨K+ζ̃n,jσj

∨K)
(`1e

−(1+λ)κ(`1+bD+
n c−1) + e−(1+λ)κ(`1+bD

+
n c))

≤ e(1+λ)κ(ζ̃
n,i
σj
∨K+ζ̃n,jσj

∨K+1)
e−(1+λ)κ(`1+bD

+
n c)(D+

n + 1), (2.73)

since `1 ≤ D+
n . Therefore, for n sufficiently large, since t− σj ≤ K logN ,

P
(
ζ̃n,it ≥ `1, τni,j > t, τ+,iσj ≥ t, τ

+,j
σj < t

∣∣∣Fσi∨σj)
≤ e(1+λ)κ(ζ̃

n,i
σj
∨K−`1+ζ̃n,jσj

∨K−bD+
n c+1)

Kκ−1(logN)2, (2.74)

and by the same argument,

P
(
ζ̃n,jt ≥ `2, τni,j > t, τ+,jσj ≥ t, τ

+,i
σj < t

∣∣∣Fσi∨σj)
≤ e(1+λ)κ(ζ̃

n,i
σj
∨K−bD+

n c+ζ̃
n,j
σj
∨K−`2+1)

Kκ−1(logN)2. (2.75)

For the last term on the right hand side of (2.72), note that for σj ≤ s1 ≤ s2 ≤ t with
s1 − σj , s2 − σj ∈ t∗N0, by the same argument as for (2.73),

P
(
τni,j > t, τ+,iσj = s1, τ

+,j
σj = s2

∣∣∣Fσi∨σj)
≤ P

(
τni,j > s2, τ

+,i
σj = s1, τ

+,j
σj ≥ s2, ζ̃

n,j
s2 ≥ bD

+
n c
∣∣∣Fσi∨σj)

≤ e(1+λ)κ(ζ̃
n,i
σj
∨K−bD+

n c+ζ̃
n,j
σj
∨K−bD+

n c+1)
(D+

n + 1), (2.76)

and by the same argument (2.76) also holds for s1 ≥ s2. Hence by (2.72), (2.74)
and (2.75), for n sufficiently large, if σi ≤ σj ≤ t then for `1, `2 ∈ N ∩ [K,D+

n ],

P
(
ζ̃n,it ≥ `1, ζ̃n,jt ≥ `2, τni,j > t

∣∣∣Fσi∨σj) ≤ e(1+λ)κ(ζ̃n,iσj
∨0−`1+ζ̃n,jσj

∨0−`2)(logN)4. (2.77)

By a simpler version of the same argument, for i′ ∈ {i, j} and ` ∈ N ∩ [K,D+
n ], if

σi ≤ σj ≤ t then

P
(
ζ̃n,i

′

t ≥ `
∣∣∣Fσi∨σj)

≤ P
(
ζ̃n,i

′

t ≥ `, τ+,i
′

σj ≥ t
∣∣∣Fσi∨σj)+

∑
s′∈[σj ,t),s′−σj∈t∗N0

P
(
ζ̃n,i

′

s′ ≥ D
+
n , τ

+,i′

σj ≥ s′
∣∣∣Fσi∨σj)

≤ (logN)2e
(1+λ)κ(ζ̃n,i

′
σj
∨0−`)

(2.78)

for n sufficiently large, by (2.69) in Lemma 2.11. Since we let σi = σj = s in the case
t− s < K logN , this completes the proof of (2.25) and (2.26).

From now on, assume t − s ≥ K logN . Condition on Fσi∧σj and suppose σi ∧ σj =
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σi ≤ t; then

E
[
e
(1+λ)κ(ζ̃n,iσj

∨0)
1τ+,i

σi
>σj
1σj≤t

∣∣∣Fσi∧σj]
≤ e(1+λ)κK +

bD+
n c∑

`=K

e(1+λ)κ(`+1)
∑

s′−σi∈t∗N0, s′≤t

P
(
ζ̃n,is′ ∈ [`, `+ 1), τ+,iσi ≥ s

′
∣∣∣Fσi∧σj)

≤ e(1+λ)κK +

bD+
n c∑

`=K

e(1+λ)κ(`+1)((t∗)−1K logN + 1)e(1+λ)κ(ζ̃
n,i
σi
∨K−`)

≤ e(1+λ)κ(1+K)Kκ−1(logN)2 (2.79)

for n sufficiently large, where the second inequality follows by (2.69) in Lemma 2.11 and
since t−σi ≤ K logN , and the last inequality since ζ̃n,iσi ≤ K. Therefore, if σi∧σj = σi ≤ t,
by conditioning on Fσi∨σj , and then by (2.77), (2.78) and (2.79), and since ζ̃n,jσj ≤ K if
σj ≤ t,

P
(
ζ̃n,it ≥ `1, ζ̃n,jt ≥ `2, τni,j > t

∣∣∣Fσi∧σj)
≤ E

[
P
(
ζ̃n,it ≥ `1, ζ̃n,jt ≥ `2, τni,j > t

∣∣∣Fσi∨σj)1σj≤t(1τ+,i
σi

>σj
+ 1τ+,i

σi
≤σj )

∣∣∣Fσi∧σj]
+ P

(
σj > t

∣∣Fσi∧σj)
≤ e(1+λ)κ(1+2K)Kκ−1(logN)2 · (logN)4e−(1+λ)κ(`1+`2)

+ E
[
(logN)2e(1+λ)κ(K−`2)1σj≤t1τ+,i

σi
≤σj

∣∣∣Fσi∧σj]+ P
(
σj > t

∣∣Fσi∧σj) . (2.80)

By (2.69) in Lemma 2.11, if σi ∧ σj = σi ≤ t, then since ζ̃n,iσi ≤ K,

P
(
τ+,iσi ≤ t

∣∣∣Fσi∧σj) ≤ ∑
s′≤t, s′−σi∈t∗N0

P
(
τ+,iσi ≥ s

′, ζ̃n,is′ ≥ D
+
n

∣∣∣Fσi∧σj)
≤ ((t∗)−1K logN + 1)e(1+λ)κ(K−bD

+
n c). (2.81)

Hence, for n sufficiently large, by a union bound and then by (2.80) and (2.81) (using
the same argument for the case σj ≤ σi),

P
(
ζ̃n,it ≥ `1, ζ̃n,jt ≥ `2, τni,j > t

∣∣∣Fs)
≤ P

(
σi ∧ σj > t

∣∣∣Fs)+ E
[
P
(
ζ̃n,it ≥ `1, ζ̃n,jt ≥ `2, τni,j > t

∣∣∣Fσi∧σj)1σi∧σj≤t∣∣∣Fs]
≤ P

(
σi ∧ σj > t

∣∣∣Fs)+ P
(
σi ∨ σj > t

∣∣∣Fs)+ 1
2 (logN)7e−(1+λ)κ(`1+`2) (2.82)

for n sufficiently large. Finally, let t′ = t− t∗b(t∗)−1K logNc ∈ δnN0 ∩ [0, T−n ] with t′ ≥ s,
and recall the definition of rn,y,`s′,s′′(·) in (2.6). Since (rn,K,t

∗

K logN,Tn−t′(x))x∈ 1
nZ

only depends

on the Poisson processes (Px,i,j)x,i,j , (Sx,i,j)x,i,j , (Qx,i,j,k)x,i,j,k and (Rx,i,y,j)x,y,i,j in the
time interval [0, Tn − t′], and by (2.16),

P
(
rn,K,t

∗

K logN,Tn−t′(x) = 0 ∀x ∈ 1
nZ

∣∣∣Fs) = P
(
rn,K,t

∗

K logN,Tn−t′(x) = 0 ∀x ∈ 1
nZ

∣∣∣F) ≥ 1−
( n
N

)2
by the definition of the event E4 in (2.13). By the definition of rn,K,t

∗

K logN,Tn−t′(x) in (2.6), it

follows that P
(
σi ∨ σj > t

∣∣Fs) ≤ ( nN )2. By (2.82), and since (1 + λ)κ(`1 + `2) ≤ 4κD+
n ≤

4(1/2− c0) log(N/n) by (2.8), this completes the proof of (2.23). By a union bound and
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then by the same argument as in (2.78) and since ζ̃n,iσi ≤ K if σi ≤ t,

P
(
ζ̃n,it ≥ `1

∣∣∣Fs) ≤ P(σi > t
∣∣∣Fs)+ E

[
P
(
ζ̃n,it ≥ `1

∣∣∣Fσi)1σi≤t∣∣∣Fs]
≤
( n
N

)2
+ (logN)2e(1+λ)κ(K−`1),

which completes the proof.

2.3 Proof of Proposition 2.6

We first prove two preliminary lemmas, similar to the lemmas in Section 2.2. Write
d′n = 1

64αdn.

Lemma 2.12. For n sufficiently large, on the event E1∩E′2, for t ∈ δnN0∩ [0, T−n ], i ∈ [k0]

and y, y′ ≤ − 1
2d
′
n, if ζ̃n,it ≥ y then

P
(
ζ̃n,it+t∗ ≤ y′

∣∣∣Ft) ≤ c1e− 1
2ακ(y−y

′).

Proof. Suppose first that y′ ≥ −N3. For n sufficiently large, by the definition of the event
E1 in (2.10), if ζ̃n,it ≥ y and ζn,it ∈ InTn−t,

P
(
ζ̃n,it+t∗ ≤ y′

∣∣∣Ft) ≤ P(ζn,it+t∗ ≤ µnTn−t − νt
∗ + 1 + y′

∣∣∣Ft)
=
qn,−Tn−t−t∗,Tn−t(µ

n
Tn−t − νt

∗ + 1 + y′, ζ̃n,it + µnTn−t)

pnTn−t(ζ̃
n,i
t + µnTn−t)

≤ c1e−
1
2ακ(y−y

′)

since the event A(3)
Tn−t−t∗(n

−1bn(µnTn−t − νt
∗ + 1 + y′)c, ζn,it ) occurs by the definition of

the event E′2 in (2.11). If instead y′ < −N3 or ζn,it /∈ InTn−t then by (2.32) in Lemma 2.7,

P
(
ζ̃n,it+t∗ ≤ y′

∣∣∣Ft) = 0 almost surely.

We now use Lemma 2.12 and an induction argument to prove the following result.

Lemma 2.13. On the event E1∩E′2, for t ∈ δnN0∩ [0, T−n ], i ∈ [k0], k ∈ N0 and t′ ∈ [0, T−n ]

with t′ − t ∈ t∗N0,

P
(
ζ̃n,it′ ≤ −

1
2d
′
n − k

∣∣∣Ft) ≤ e− 1
4ακ((

1
2d
′
n+ζ̃

n,i
t )∧0+k). (2.83)

Proof. Recall from (2.14) that we chose c1 > 0 sufficiently small that

c1 + c1e
3ακ/4(eακ/4 − 1)−1 + e−ακ/4 < 1. (2.84)

Let A = e−
1
4ακ((

1
2d
′
n+ζ̃

n,i
t )∧0). Suppose, for an induction argument, that for some t′ ≥ t

with t′ ∈ [0, T−n ] and t′ − t ∈ t∗N0, (2.83) holds for all k ∈ N0. Then by Lemma 2.12, for
k ∈ N0,

P
(
ζ̃n,it′+t∗≤−

1
2d
′
n − k

∣∣∣Ft) ≤ k∑
k′=0

P
(
ζ̃n,it′ ∈ (− 1

2d
′
n − k′ − 1,− 1

2d
′
n − k′]

∣∣∣Ft) c1e− 1
2ακ(k−k

′−1)

+ P
(
ζ̃n,it′ ≤ −

1
2d
′
n − k − 1

∣∣∣Ft)+ c1e
− 1

2ακk

≤
k∑

k′=0

Ae−
1
4ακk

′
c1e
− 1

2ακ(k−k
′−1) +Ae−

1
4ακ(k+1) + c1e

− 1
2ακk
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by our induction hypothesis. Therefore, since A ≥ 1,

P
(
ζ̃n,it′+t∗ ≤ −

1
2d
′
n − k

∣∣∣Ft) ≤ A(c1e− 1
2ακ(k−1)

k∑
k′=0

e
1
4ακk

′
+ e−

1
4ακ(k+1) + c1e

− 1
2ακk

)

= A

(
c1e
− 1

2ακ(k−1)
e

1
4ακ(k+1) − 1

e
1
4ακ − 1

+ e−
1
4ακ(k+1) + c1e

− 1
2ακk

)
< Ae−

1
4ακk

(
c1e

3
4ακ(e

1
4ακ − 1)−1 + e−

1
4ακ + c1

)
≤ Ae− 1

4ακk

by (2.84). The result follows by induction.

Proof of Proposition 2.6. We begin by proving (2.27). For n sufficiently large, by (2.32)
in Lemma 2.7 and then by a union bound and Lemma 2.13, and since ζ̃n,i0 ≥ −K0,

P
(
∃t ∈ δnN0 ∩ [0, T−n ] : ζ̃n,it ≤ D−n

∣∣∣F0

)
≤ P

(
∃t ∈ t∗N0 ∩ [0, T−n ] : ζ̃n,it ≤ 1

2D
−
n

∣∣∣F0

)
≤ ((t∗)−1T−n + 1)e−

1
4ακb−

1
2D
−
n− 1

2d
′
nc

≤ N−1

for n sufficiently large, since, by (2.8), 1
8ακD

−
n = − 13

4 logN and since T−n ≤ N2.

Note that the last statement (2.29) follows directly from Lemma 2.13 (since ζ̃n,i0 ≥
−K0 and bdn − 1

2d
′
nc > 1

2dn for n sufficiently large, and by (2.4)). We now prove (2.28).
Recall from (2.14) that we chose c1 > 0 sufficiently small that

e−ακ/4 + c1(1− e−ακ/4)−1 < e−ακ/5. (2.85)

Let A be a Bernoulli random variable with mean c1 and letG be an independent geometric
random variable with parameter 1− e−ακ/2 (with P (G ≥ k) = e−ακk/2 for k ∈ N0). For
t′ ∈ δnN0 ∩ [0, T−n ], if ζ̃n,it′ ≤ −

1
2d
′
n then by Lemma 2.12, for k ∈ N0,

P
(
ζ̃n,it′ − ζ̃

n,i
t′+t∗ ≥ k

∣∣∣Ft′) ≤ c1e− 1
2ακk = P (AG− (1−A) ≥ k) .

Since AG− (1−A) ≥ −1, it follows that for each k ∈ Z, if ζ̃n,it′ ≤ −
1
2d
′
n then

P
(
ζ̃n,it′ − ζ̃

n,i
t′+t∗ ≥ k

∣∣∣Ft′) ≤ P (AG− (1−A) ≥ k) . (2.86)

Let (Aj)
∞
j=1 and (Gj)

∞
j=1 be independent families of i.i.d. random variables with A1

d
= A

and G1
d
= G. Suppose ζ̃n,is ≥ D−n and t − s ≥ K logN , and take s′ ∈ [s, s + t∗] such that

t − s′ ∈ t∗N0. For n sufficiently large, by (2.32) in Lemma 2.7, we have ζ̃n,is′ ≥ 2D−n .
Hence

{ζ̃n,i
s′+4b|D−n |ct∗

≤ − 1
2d
′
n} ⊆ {ζ̃

n,i

s′+4b|D−n |ct∗
≤ 0} ⊆ {ζ̃n,is′ − ζ̃

n,i

s′+4b|D−n |ct∗
≥ 2D−n }

=

{ 4b|D−n |c∑
j=1

(ζ̃n,is′+(j−1)t∗ − ζ̃
n,i
s′+jt∗) ≥ 2D−n

}
.

(2.87)
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Then using (2.87) in the first inequality and (2.86) in the second inequality,

P
(
ζ̃n,is′+`t∗ ≤ −

1
2d
′
n ∀` ∈ {0} ∪ [4b|D−n |c]

∣∣∣Fs′)
≤ P

(
ζ̃n,is′+`t∗ ≤ −

1
2d
′
n ∀` ∈ {0} ∪ [4b|D−n |c − 1],

4b|D−n |c∑
j=1

(ζ̃n,is′+(j−1)t∗ − ζ̃
n,i
s′+jt∗) ≥ 2D−n

∣∣∣Fs′)

≤ P

4b|D−n |c∑
j=1

(AjGj − (1−Aj)) ≥ 2D−n

 .

By Markov’s inequality,

P

4b|D−n |c∑
j=1

(AjGj − (1−Aj)) ≥ 2D−n

 ≤ e 1
4ακ·2|D

−
n |E

[
e

1
4ακ(A1G1−(1−A1))

]4b|D−n |c

≤ e 1
2ακ|D

−
n |
(

(1− c1)e−
1
4ακ + c1

1− e−ακ/2

1− e−ακ/4

)4b|D−n |c

≤ e 4
5ακe−

3
10ακ|D

−
n |

by (2.85). Therefore, since ακ|D−n | = 26 logN by (2.8), and since K logN > (4|D−n |+ 1)t∗

for n sufficiently large, by our choice of K in Proposition 2.1,

P
(
ζ̃n,it ≤ −dn

∣∣∣Fs) ≤ N−7 +

4b|D−n |c∑
`=0

E
[
P
(
ζ̃n,is′+`t∗ ≥ −

1
2d
′
n, ζ̃

n,i
t ≤ −dn

∣∣∣Fs′) ∣∣∣Fs]

≤ N−7 +

4b|D−n |c∑
`=0

e−
1
4ακ·

1
2dn

≤ (logN)2−
1
8αC

for n sufficiently large, where the second inequality follows by Lemma 2.13 and since
bdn − 1

2d
′
nc > 1

2dn, and the last inequality follows by (2.4). Since d′n = 2−6αdn, by the

same argument, for n sufficiently large, P
(
ζ̃n,it ≤ −d′n + 2

∣∣∣Fs) ≤ (logN)2−2
−9α2C .

3 Event E1 occurs with high probability

In this section and the following three sections, we will prove Proposition 2.1. The
main result of this section (Proposition 3.1) will also imply Theorem 1.3. We begin with
some notation which will be used throughout the rest of the article. For h : 1

nZ→ R and
x ∈ 1

nZ, let

∇nh(x) = n
(
h(x+ n−1)− h(x)

)
and let

∆nh(x) = n2
(
h(x+ n−1)− 2h(x) + h(x− n−1)

)
.

Define f : R→ R by letting

f(u) = u(1− u)(2u− 1 + α). (3.1)

Recall the definition of the event E1 in (2.10). In this section, we will prove the following
result (along with some technical lemmas which will be used in later sections).
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Proposition 3.1. For t ≥ 0, let (unt,t+s)s≥0 denote the solution of{
∂su

n
t,t+s = 1

2m∆nu
n
t,t+s + s0f(unt,t+s) for s > 0,

unt,t = pnt .
(3.2)

For c2 > 0, define the event

E′1 = E1 ∩

{
sup

s∈[0,γn],x∈ 1
nZ

|unt,t+s(x)− g(x− µnt − νs)| ≤ e−(logN)c2 ∀t ∈ [logN,N2]

}
.

(3.3)
Suppose for some a1 > 1, N ≥ na1 for n sufficiently large. For ` ∈ N, for b1, c2 > 0

sufficiently small and b2 > 0, if condition (A) holds then for n sufficiently large,

P ((E′1)c) ≤
( n
N

)`
.

Before proving Proposition 3.1, we note that Theorem 1.3 is a trivial consequence of
this result.

Proof of Theorem 1.3. By the definition of the events E1 and E′1 in (2.10) and (3.3)
respectively, on the event E′1 we have

sup
x∈ 1

nZ, t∈[logN,N2]

|pnt (x)− g(x− µnt )| ≤ e−(logN)c2

and |µnt+s − µns − νs| ≤ e−(logN)c2 ∀t ∈ [logN,N2], s ∈ [0, 1 ∧ (N2 − t)].

Hence the result follows directly from Proposition 3.1.

From now on in this section, we will assume for some a1 > 1, N ≥ na1 for n

sufficiently large. We will need some more notation; we use notation similar to [14]. For
f1, f2 : 1

nZ→ R, write

〈f1, f2〉n := n−1
∑
w∈ 1

nZ

f1(w)f2(w).

Let (Xn
t )t≥0 denote a continuous-time simple symmetric random walk on 1

nZ with jump
rate n2. For z ∈ 1

nZ, let Pz(·) := P (· |Xn
0 = z ) and Ez[·] := E [· |Xn

0 = z ]. Then for
z, w ∈ 1

nZ and 0 ≤ s ≤ t, let

φt,zs (w) := nPz

(
Xn
m(t−s) = w

)
. (3.4)

For a ∈ R, z, w ∈ 1
nZ and 0 ≤ s ≤ t, let

φt,z,as (w) = e−a(t−s)φt,zs (w). (3.5)

Let (unt )t≥0 denote the solution of{
∂tu

n
t = 1

2m∆nu
n
t + s0f(unt ) for t > 0,

un0 = pn0 .
(3.6)

We will prove in Proposition 3.2 below that if t is not too large, pnt and unt are close with
high probability. By the comparison principle, unt ∈ [0, 1]. Since ∂sφt,zs + 1

2m∆nφ
t,z
s = 0

for s ∈ (0, t), we have that for a ∈ R, z ∈ 1
nZ and t ≥ 0, by integration by parts,

〈unt , φ
t,z,a
t 〉n

= 〈un0 , φ
t,z,a
0 〉n +

∫ t

0

〈uns , ∂sφt,z,as 〉nds+

∫ t

0

〈uns , 12m∆nφ
t,z,a
s 〉nds+ s0

∫ t

0

〈f(uns ), φt,z,as 〉nds

= e−at〈pn0 , φ
t,z
0 〉n +

∫ t

0

e−a(t−s)〈s0f(uns ) + auns , φ
t,z
s 〉nds.
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Therefore, since 〈unt , φ
t,z,a
t 〉n = unt (z), it follows that for a ∈ R, z ∈ 1

nZ and t ≥ 0,

unt (z) = e−at〈pn0 , φ
t,z
0 〉n +

∫ t

0

e−a(t−s)〈s0f(uns ) + auns , φ
t,z
s 〉nds. (3.7)

Note that by (3.7) with a = −(1 + α)s0, since f(u) ≤ (1 + α)u for u ∈ [0, 1],

unt (z) ≤ e(1+α)s0t〈pn0 , φ
t,z
0 〉n. (3.8)

In this section, alongside proving Proposition 3.1, we will prove some preliminary
tracer dynamics results which will be used in later sections, so we need some notation
for tracer dynamics with an arbitrary initial set of ‘tracer’ type A individuals. Take
I0 ⊆ {(x, i) : ξn0 (x, i) = 1}. Then for t ≥ 0, let

ηnt (x, i) = 1(ζn,tt (x,i),θn,tt (x,i))∈I0 for x ∈ 1
nZ, i ∈ [N ], (3.9)

i.e. ηnt (x, i) = 1 if and only if the ith individual at x at time t is descended from an
individual in I0 at time 0. For t ≥ 0 and x ∈ 1

nZ, let

qnt (x) =
1

N

N∑
i=1

ηnt (x, i), (3.10)

i.e. the proportion of individuals at x at time t which are descended from individuals in
I0 at time 0. Let (vnt )t≥0 denote the solution of{

∂tv
n
t = 1

2m∆nv
n
t + s0v

n
t (1− unt )(2unt − 1 + α) for t > 0,

vn0 = qn0 .
(3.11)

We will prove in Proposition 3.2 below that if t is not too large, qnt and vnt are close with
high probability. Note that by the comparison principle, 0 ≤ vnt ≤ unt . Moreover, for
a ∈ R, t ≥ 0 and z ∈ 1

nZ, by the same argument as for (3.7),

vnt (z) = e−at〈qn0 , φ
t,z
0 〉n +

∫ t

0

e−a(t−s)〈vns (s0(1− uns )(2uns − 1 + α) + a), φt,zs 〉nds. (3.12)

For t ≥ 0 and z ∈ 1
nZ, by (3.12) with a = −(1 +α)s0 and since (1− u)(2u− 1 +α) ≤ 1 +α

for u ∈ [0, 1],

vnt (z) ≤ e(1+α)s0t〈qn0 , φ
t,z
0 〉n. (3.13)

The following result says that if t is not too large, |pnt − unt | and |qnt − vnt | are small with
high probability; the proof is postponed to Section 3.1.

Proposition 3.2. Suppose c3 > 0 and ` ∈ N. Then there exists c4 = c4(c3, `) ∈ (0, 1/2)

such that for n sufficiently large, for T ≤ 2(logN)c4 ,

P

(
sup

x∈ 1
nZ,|x|≤N5

sup
t∈[0,T ]

|pnt (x)− unt (x)| ≥
( n
N

)1/2−c3)
≤
( n
N

)`
and for t ≤ 2(logN)c4 ,

P

(
sup

x∈ 1
nZ,|x|≤N5

|qnt (x)− vnt (x)| ≥
( n
N

)1/2−c3)
≤
( n
N

)`
.

For k ∈ N with k ≥ 2, there exists a constant C1 = C1(k) <∞ such that for t ≥ 0,

sup
x∈ 1

nZ

E
[
|pnt (x)− unt (x)|k

]
≤ C1

(
nk/2tk/4

Nk/2
+N−k

)
eC1t

k

. (3.14)
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We also need to control pnt (x) when x is not in the interval [−N5, N5] covered by
Proposition 3.2.

Lemma 3.3. For n sufficiently large, if pn0 (x) = 0 ∀x ≥ N and pn0 (x) = 1 ∀x ≤ −N then

P
(
∃t ∈ [0, 2N2], x ∈ 1

nZ ∩ [N5,∞) : pnt (x) > 0
)
≤ e−N

5

and P
(
∃t ∈ [0, 2N2], x ∈ 1

nZ ∩ (−∞,−N5] : pnt (x) < 1
)
≤ e−N

5

.

Proof. For x ∈ 1
nZ, let

τx := inf{t ≥ 0 : pnt (x) > 0}.

Let (T`)
∞
`=1 be a sequence of i.i.d. random variables with T1 ∼ Exp(mrnN

2). For x > N , τx
occurs after time τx−n−1 and at a jump time in Rx,i,x−n−1,j for some i, j ∈ [N ]. Therefore
we can couple the process (ξnt (x, i))x∈ 1

nZ, i∈[N ],t≥0 with (T`)
∞
`=1 in such a way that for

each ` ∈ N,
τN+`n−1 − τN+(`−1)n−1 ≥ T`.

It follows that

τN5 ≥
n(N5−N)∑

`=1

T`.

Therefore, letting Yn denote a Poisson random variable with mean 2mrnN
4, we have that

P
(
τN5 ≤ 2N2

)
≤ P

n(N5−N)∑
`=1

T` ≤ 2N2


= P

(
Yn ≥ n(N5 −N)

)
.

By Markov’s inequality, and then since rn = 1
2n

2N−1,

P
(
Yn ≥ n(N5 −N)

)
≤ e−n(N

5−N)E
[
eYn
]

= e−n(N
5−N)emn

2N3(e−1) ≤ e−N
5

for n sufficiently large, since N ≥ n. Therefore for n sufficiently large,

P
(
τN5 ≤ 2N2

)
≤ e−N

5

.

Letting σx := inf{t ≥ 0 : pnt (x) < 1} for x ∈ 1
nZ, by the same argument we have that

P
(
σ−N5 ≤ 2N2

)
≤ e−N

5

for n sufficiently large, which completes the proof.

Recall from (1.12) and (2.1) that g(x) = (1 + eκx)−1, and recall the definition of
f in (3.1). Note that u(t, x) := g(x − νt) is a travelling wave solution of the partial
differential equation

∂tu = 1
2m∆u+ s0f(u).

Since α ∈ (0, 1), we have that f(0) = f(1) = 0, f(u) < 0 for u ∈ (0, 12 (1− α)), f(u) > 0 for
u ∈ ( 1

2 (1 − α), 1), f ′(0) < 0 and f ′(1) < 0. This allows us to apply results from [16] as
follows. For an initial condition u0 : R→ [0, 1], let u(t, x) denote the solution of{

∂tu = 1
2m∆u+ s0f(u) for t > 0,

u(0, ·) = u0.
(3.15)

Lemma 3.4. There exist constants C2 < ∞ and c5 > 0 such that for ε ≤ c5, if u0 is
piecewise continuous with 0 ≤ u0 ≤ 1 and, for some z0 ∈ R, |u0(z)− g(z− z0)| ≤ ε ∀z ∈ R,
then

|u(t, x)− g(x− νt− z0)| ≤ C2ε ∀x ∈ R, t > 0.
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Proof. The result follows directly from Lemma 4.2 in [16] and its proof.

Proposition 3.5. There exist constants c6 > 0 and C3 <∞ such that if u0 is piecewise
continuous with 0 ≤ u0 ≤ 1 and |u0(z) − g(z)| ≤ c6 ∀z ∈ R, then for some z0 ∈ R with
|z0| ≤ 1,

|u(t, x)− g(x− νt− z0)| ≤ C3e
−c6t ∀x ∈ R, t > 0.

This is a slight modification of Theorem 3.1 in [16] (to ensure that C3 and c6 do not
depend on the initial condition u0, as long as ‖u0−g‖∞ is sufficiently small); we postpone
the proof to Appendix A. The next lemma says that if the initial condition pn0 is not too
rough, then unt is close to a solution of (3.15).

Lemma 3.6. Let (ut)t≥0 denote the solution of{
∂tut = 1

2m∆ut + s0f(ut) for t > 0,

u0 = p̄n0 ,
(3.16)

for some p̄n0 : R → [0, 1] with p̄n0 (y) = pn0 (y) ∀y ∈ 1
nZ. There exists a constant C4 < ∞

such that for T ≥ 1,

sup
t∈[0,T ], x∈ 1

nZ

|unt (x)− ut(x)|

≤

(
C4n

−1/3 + sup
z1,z2∈R,|z1−z2|≤n−1/3

|p̄n0 (z1)− p̄n0 (z2)|

)
T 2e(1+α)s0T .

Proof. For t ≥ 0 and z ∈ 1
nZ, by (3.7) and since pn0 (y) = p̄n0 (y) ∀y ∈ 1

nZ,

unt (z) = 〈p̄n0 , φ
t,z
0 〉n + s0

∫ t

0

〈f(uns ), φt,zs 〉nds.

Let Gt(x) = 1√
2πt

e−x
2/(2t); then since G is the fundamental solution of the heat equation,

and using Duhamel’s principle (see for example (17) and (18) in Section 2.3 on page 51
of [15] and Theorem 4.8 on page 147 of [18]), for z ∈ R and t > 0,

ut(z) = Gmt ∗ p̄n0 (z) + s0

∫ t

0

Gm(t−s) ∗ f(us)(z)ds. (3.17)

Letting (Bt)t≥0 denote a Brownian motion, and by the definition of φt,zs in (3.4), it follows
that for z ∈ 1

nZ and t > 0,

|unt (z)− ut(z)|

≤ |Ez [p̄n0 (Xn
mt)]− Ez [p̄n0 (Bmt)]|+ s0

∫ t

0

∣∣∣Ez [f(uns (Xn
m(t−s)))

]
− Ez

[
f(us(Bm(t−s)))

]∣∣∣ ds.
(3.18)

By a Skorokhod embedding argument (see e.g. Theorem 3.3.3 in [24]), for n sufficiently
large, (Xn

t )t≥0 and (Bt)t≥0 can be coupled in such a way that Xn
0 = B0 and for t ≥ 0,

P
(
|Xn

mt −Bmt| ≥ n−1/3
)
≤ (t+ 1)n−1/2. (3.19)

Since p̄n0 ∈ [0, 1], it follows that

|Ez [p̄n0 (Xn
mt)]− Ez [p̄n0 (Bmt)]| ≤ (t+ 1)n−1/2 + sup

z1,z2∈R,|z1−z2|≤n−1/3

|p̄n0 (z1)− p̄n0 (z2)|.

(3.20)
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For the second term on the right hand side of (3.18), note that supv∈[0,1] |f(v)| < 1 and,
since f ′(u) = 6u(1 − u) − 1 + α(1 − 2u), we have supv∈[0,1] |f ′(v)| = 1 + α. Therefore,
using the triangle inequality and then by the same coupling argument as for (3.20), for
s ∈ [0, t],∣∣∣Ez [f(uns (Xn

m(t−s)))
]
− Ez

[
f(us(Bm(t−s)))

]∣∣∣
≤
∣∣∣Ez [f(uns (Xn

m(t−s)))
]
−Ez

[
f(us(X

n
m(t−s)))

]∣∣∣
+
∣∣∣Ez [f(us(X

n
m(t−s)))

]
− Ez

[
f(us(Bm(t−s)))

]∣∣∣
≤ (1 + α) sup

x∈ 1
nZ

|uns (x)− us(x)|+ 2(t+ 1)n−1/2 + (1 + α)‖∇us‖∞n−1/3. (3.21)

We now bound ‖∇us‖∞. For t > 0 and x ∈ R, by differentiating both sides of (3.17),

∇ut(x) = G′mt ∗ p̄n0 (x) + s0

∫ t

0

G′m(t−s) ∗ f(us)(x)ds. (3.22)

For the first term on the right hand side, since p̄n0 ∈ [0, 1],

|G′mt ∗ p̄n0 (x)| ≤
∫ ∞
−∞
|G′mt(z)|dz = 2Gmt(0) = 2(2πmt)−1/2.

For the second term on the right hand side of (3.22), since supv∈[0,1] |f(v)| < 1,∣∣∣∣∫ t

0

G′m(t−s) ∗ f(us)(x)ds

∣∣∣∣ ≤ ∫ t

0

∫ ∞
−∞
|G′m(t−s)(z)|dzds = 4(2πm)−1/2t1/2.

Hence by (3.22), for t > 0,

‖∇ut‖∞ ≤ (2πm)−1/2(2t−1/2 + 4s0t
1/2).

Substituting into (3.21) and then into (3.18), and using (3.20), we now have that for t > 0

and z ∈ 1
nZ,

|unt (z)− ut(z)|

≤ (t+ 1)n−1/2 + sup
z1,z2∈R,|z1−z2|≤n−1/3

|p̄n0 (z1)− p̄n0 (z2)|

+ s0

∫ t

0

(
(1 + α) sup

x∈ 1
nZ

|uns (x)− us(x)|+ 2(t+ 1)n−1/2

+ 2(2πm)−1/2(2s−1/2 + 4s0s
1/2)n−1/3

)
ds.

Hence there exists a constant C4 <∞ such that for T ≥ 1, for t ∈ [0, T ],

sup
x∈ 1

nZ

|unt (x)− ut(x)|

≤
(
C4n

−1/3 + sup
z1,z2∈R,|z1−z2|≤n−1/3

|p̄n0 (z1)− p̄n0 (z2)|
)
T 2

+ (1 + α)s0

∫ t

0

sup
x∈ 1

nZ

|uns (x)− us(x)|ds.

The result follows by Gronwall’s inequality.

The following lemma will be used in the proof of Proposition 3.1 to show that with
high probability, sup|z1−z2|≤n−1/3 |pnt (z1) − pnt (z2)| is small at large times t, which will
allow us to use Lemma 3.6.
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Lemma 3.7. There exists a constant C5 <∞ such that

n〈1, |φt,z+n
−1

0 − φt,z0 |〉n ≤ C5t
−1/2 ∀ t > 0, z ∈ 1

nZ, (3.23)

and supt≥1,x∈ 1
nZ
|∇nunt (x)| ≤ C5.

Proof. For t > 0, z ∈ 1
nZ and t0 ∈ (0, t], by (3.7),

∇nunt (z) = n〈unt−t0 , φ
t0,z+n

−1

0 −φt0,z0 〉n +ns0

∫ t0

0

〈f(unt−t0+s), φ
t0,z+n

−1

s −φt0,zs 〉nds. (3.24)

Since unt−t0 ∈ [0, 1], we have that

|n〈unt−t0 , φ
t0,z+n

−1

0 − φt0,z0 〉n| ≤ n〈1, |φt0,z+n
−1

0 − φt0,z0 |〉n. (3.25)

Let (Sj)
∞
j=0 be a discrete-time simple symmetric random walk on Z with S0 = 0. By

Proposition 2.4.1 in [24] (which follows from the local central limit theorem), there exists
a constant K1 <∞ such that for j ∈ N,∑

y∈Z
|P (Sj = y − 1)− P (Sj = y)| ≤ K1j

−1/2.

Let (Rs)s≥0 denote a Poisson process with rate 1. Then by the definition of φt,zs in (3.4),
and since (Xn

s )s≥0 jumps at rate n2,

n〈1, |φt0,z+n
−1

0 − φt0,z0 |〉n = n
∑
y∈ 1

nZ

∣∣P0

(
Xn
mt0 = y − n−1

)
−P0

(
Xn
mt0 = y

)∣∣
≤ n

∑
y∈ 1

nZ

∞∑
j=0

P (Rmn2t0 = j) |P (Sj = ny − 1)− P (Sj = ny)|

≤ n
∞∑
j=1

P (Rmn2t0 = j)K1j
−1/2 + 2nP (Rmn2t0 = 0) . (3.26)

By Markov’s inequality, and since Rmn2t0 ∼ Poisson(mn2t0),

P
(
Rmn2t0 ≤ 1

2mn
2t0
)

= P
(
e−Rmn2t0

log 2 ≥ e− 1
2mn

2t0 log 2
)
≤ e 1

2mn
2t0 log 2emn

2t0(e
− log 2−1)

= e−
1
2mn

2t0(1−log 2).

Therefore, by substituting into (3.26),

n〈1, |φt0,z+n
−1

0 − φt0,z0 |〉n ≤ n
(

(K1 + 2)P
(
Rmn2t0 ≤ 1

2mn
2t0
)

+K1( 1
2mn

2t0)−1/2
)

≤ t−1/20

(
(K1 + 2)(n2t0)1/2e−

1
2mn

2t0(1−log 2) +
√

2m−1/2K1

)
≤ K2t

−1/2
0 , (3.27)

where K2 := (K1 + 2) sups≥0(s1/2e−
1
2m(1−log 2)s) +

√
2m−1/2K1 <∞. This completes the

proof of (3.23). For the second term on the right hand side of (3.24), since |f(unt−t0+s)| ≤ 1

for s ∈ [0, t0], and then by (3.27),∣∣∣∣ns0 ∫ t0

0

〈f(unt−t0+s), φ
t0,z+n

−1

s − φt0,zs 〉nds
∣∣∣∣ ≤ s0 ∫ t0

0

n〈1, |φt0−s,z+n
−1

0 − φt0−s,z0 |〉nds

≤ 2s0K2t
1/2
0 .
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Therefore, by (3.24), (3.25) and (3.27), for t ≥ 1 and t0 ∈ (0, t] we have

sup
x∈ 1

nZ

|∇nunt (x)| ≤ K2(t
−1/2
0 + 2s0t

1/2
0 ),

and the result follows by taking t0 = 1.

We will use the following easy lemma repeatedly in the rest of this section, and in
Section 4.

Lemma 3.8. For a ∈ R with |a| ≤ n and t ≥ 0,

E0

[
eaX

n
mt

]
= e

1
2ma

2t+O(ta3n−1).

Proof. Let (R+
s )s≥0 and (R−s )s≥0 be independent Poisson processes with rate 1. For

a ∈ R, since (Xn
t )t≥0 is a continuous-time simple symmetric random walk on 1

nZ with
jump rate n2, and then since R+

mn2t/2 and R−mn2t/2 are both Poisson distributed with mean
1
2mn

2t,

E0

[
eaX

n
mt

]
= E

[
e
an−1(R+

mn2t/2
−R−

mn2t/2
)
]

= exp( 1
2mn

2t(ean
−1

− 1)) exp( 1
2mn

2t(e−an
−1

− 1))

= exp
(
1
2mn

2t
(
an−1 + 1

2a
2n−2 +O

(
a3n−3

)
− an−1 + 1

2a
2n−2 +O

(
a3n−3

)))
= e

1
2ma

2t+O(ta3n−1),

which completes the proof.

The following two lemmas will allow us to control pnt (x) for large x. The first lemma
gives us an upper bound that we will use inductively in the proof of Proposition 3.1.

Lemma 3.9. There exists a constant c7 ∈ (0, 1) such that for n sufficiently large, the
following holds. Suppose that pn0 (x) = 0 ∀x ≥ N6. Take c ∈ (0, 1/2). Suppose for some

R > 0 with R
(
n
N

)1/2−c ≤ c7 that

pn0 (x) ≤ 3e−κ(1−(logN)−2)x +R
( n
N

)1/2−c
∀x ∈ 1

nZ, (3.28)

and that for some T ∈ (1, logN ], supy∈ 1
nZ,|y|≤N, t∈[0,T ] |unt (y) − g(y − νt)| ≤ c7(logN)−2.

Then for t ∈ [0, T ],

unt (x) ≤ 4
3

(
3e−κ(1−(logN)−2)(x−νt) +R

( n
N

)1/2−c)
∀x ∈ 1

nZ,

and for t ∈ [1, T ],

unt (x) ≤ (1− c7(logN)−2)3e−κ(1−(logN)−2)(x−νt) + (1− c7)R
( n
N

)1/2−c
∀x ∈ 1

nZ.

Proof. Take d ∈ (0, 1/3) such that

d < min
(

1
10 (2− α)s0,

1
4e
−(1−α)s0(1− α)s0

)
. (3.29)

Suppose that

R
( n
N

)1/2−c
< 1

12 (1 + d)−1e−(1−α)s0(1− α), (3.30)
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and that T ∈ (1, logN ] with

sup
y∈ 1

nZ,|y|≤N, t∈[0,T ]

|unt (y)− g(y − νt)| < 1
73e
−5s0(2− α)(logN)−2. (3.31)

Let θN = (1− (logN)−2)κ, and let

τ = T ∧ inf

{
t ≥ 0 : ∃x ∈ 1

nZ s.t. unt (x) ≥ (1 + d(logN)−2)3e−θN (x−νt)

+ (1 + d)R
( n
N

)1/2−c}
.

By (3.8), and then since pn0 (x) = 0 ∀x ≥ N6, for t ≥ 0 and z ∈ 1
nZ,

unt (z) ≤ e(1+α)s0t〈pn0 , φ
t,z
0 〉n ≤ e(1+α)s0tPz

(
Xn
mt ≤ N6

)
= e(1+α)s0tP0

(
Xn
mt ≥ z −N6

)
≤ e(1+α)s0tE0

[
e2θNX

n
mt

]
e−2θNz+2θNN

6

≤ e(2s0+3mθ2N )te−2θNz+2θNN
6

(3.32)

for n sufficiently large, by Markov’s inequality and Lemma 3.8. Therefore, since unt (x) ∈
[0, 1], there exists N ′ <∞ such that

τ = T ∧ min
x∈ 1

nZ∩[0,N ′]
inf
{
t ≥ 0 : unt (x) ≥ (1 + d(logN)−2)3e−θN (x−νt)

+ (1 + d)R
( n
N

)1/2−c }
.

Hence (by continuity of unt (x) for each x ∈ 1
nZ and by our assumption on the initial

condition in (3.28)) we have that τ > 0. Moreover, if τ < T then there exists x ∈
1
nZ ∩ [0, N ′] such that

unτ (x) ≥ (1 + d(logN)−2)3e−θN (x−ντ) + (1 + d)R
( n
N

)1/2−c
. (3.33)

Note that for u ∈ [0, 1],

f(u) + (1− α)u = −2u3 + (3− α)u2 ≤ (3− α)u2. (3.34)

Now by (3.7), for 0 < t ≤ τ and x ∈ 1
nZ, for 0 < t0 ≤ t ∧ 1,

unt (x) = e−(1−α)s0t0〈unt−t0 , φ
t0,x
0 〉n

+ s0

∫ t0

0

e−(1−α)s0(t0−s)〈f(unt−t0+s) + (1− α)unt−t0+s, φ
t0,x
s 〉nds

≤ e−(1−α)s0t0〈unt−t0 , φ
t0,x
0 〉n + 3s0

∫ t0

0

e−(1−α)s0(t0−s)〈(unt−t0+s)
2, φt0,xs 〉nds, (3.35)

where the second line follows by (3.34). Since t ≤ τ , we have

〈unt−t0 , φ
t0,x
0 〉n ≤ (1 + d(logN)−2)Ex

[
3e−θN (Xnmt0

−ν(t−t0))
]

+ (1 + d)R
( n
N

)1/2−c
≤ (1 + d(logN)−2)3e−θN (x−ν(t−t0))e

1
2mθ

2
N t0+O(t0n

−1) + (1 + d)R
( n
N

)1/2−c
,
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by Lemma 3.8. For the second term on the right hand side of (3.35), we have that for
s ∈ [0, t0),

〈(unt−t0+s)
2, φt0,xs 〉n

≤ 2

(
(1 + d(logN)−2)2Ex

[
9e−2θN (Xnm(t0−s)

−ν(t−t0+s))
]

+ (1 + d)2R2
( n
N

)1−2c)
≤ 2

(
(1 + d(logN)−2)29e−2θN (x−ν(t−t0+s))e2mθ

2
N (t0−s)+O(t0n

−1) + (1 + d)2R2
( n
N

)1−2c)
= 2(1 + d(logN)−2)2 · 9e−2θN (x−νt)e(2mθ

2
N−2θNν)(t0−s)+O(t0n

−1) + 2(1 + d)2R2
( n
N

)1−2c
,

where the second inequality follows by Lemma 3.8. Note that by (2.1), (1− α)s0 + θNν −
1
2mθ

2
N = (2−α−(logN)−2)s0(logN)−2 and 2mθ2N−2θNν−(1−α)s0 ≤ 2mθ2N ≤ 2mκ2 = 4s0.

Hence for n sufficiently large, substituting into (3.35),

unt (x)

≤ e−((1−α)s0+θNν− 1
2mθ

2
N )t0+O(t0n

−1)(1 + d(logN)−2)3e−θN (x−νt)

+ e−(1−α)s0t0(1 + d)R
( n
N

)1/2−c
+ 6s0(1 + d(logN)−2)29e−2θN (x−νt)e5s0t0t0

+ 6s0(1 + d)2R2
( n
N

)1−2c
t0

≤ (1 + d(logN)−2)3e−θN (x−νt) + (1 + d)R
( n
N

)1/2−c
+ t0(1 + d(logN)−2)3e−θN (x−νt)

(
18s0(1 + d(logN)−2)e−θN (x−νt)e5s0t0

− e− 1
2 (2−α)s0(logN)−2t0 1

2s0(2− α)(logN)−2
)

+ t0(1 + d)R
( n
N

)1/2−c(
6s0(1 + d)R

( n
N

)1/2−c
− e−(1−α)s0t0(1− α)s0

)
,

where the second inequality holds since for y ≥ 0, e−y = 1−(1−e−y) ≤ 1−ye−y. Suppose
x is such that

18(1 + d(logN)−2)e−θN (x−νt)e5s0t0 − 1
4e
− 1

2 (2−α)s0(logN)−2t0(2− α)(logN)−2 ≤ 0.

Then since t0 ∈ (0, 1], and by (3.30) and the definition of d in (3.29), if n is sufficiently
large we have that

unt (x) < (1 + (d− 2t0d)(logN)−2)3e−θN (x−νt) + (1 + d− 2t0d)R
( n
N

)1/2−c
. (3.36)

If instead x ≥ νt and

18(1 + d(logN)−2)e−θN (x−νt)e5s0t0 > 1
4e
− 1

2 (2−α)s0(logN)−2t0(2− α)(logN)−2, (3.37)

then since T ≤ logN , for n sufficiently large we have |x| ≤ N . Since d < 1/3 and t0 ≤ 1,
we have that for n sufficiently large,

(1 + (d− 2t0d)(logN)−2)3e−θN (x−νt) ≥ e−κ(x−νt) + e−θN (x−νt)

> g(x− νt) + sup
y∈ 1

nZ,|y|≤N,s∈[0,T ]

|uns (y)− g(y − νs)|

by (3.37) and our assumption in (3.31). Therefore for n sufficiently large, in this case we
also have that (3.36) holds. Finally, for n sufficiently large, if x < νt then since d < 1/3,
t0 ≤ 1 and unt (x) ≤ 1 we have that (3.36) holds. Hence (3.36) holds for every x ∈ 1

nZ.
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Suppose that τ < T ; then (3.33) holds, and by setting t = τ and t0 = 1 ∧ τ , we have a
contradiction by (3.36). It follows that τ = T , and so the first statement of the lemma
holds. The second statement follows by taking t ≥ 1 and setting t0 = 1 in (3.36).

The next lemma will give us a corresponding lower bound on pnt (x) for large x.

Lemma 3.10. There exists a constant c8 ∈ (0, 1) such that the following holds for n
sufficiently large. Take c ∈ (0, 1/2). Suppose for some R > 0 that

pn0 (x) ≥ 1
3e
−κ(1+(logN)−2)x1x≥0 −R

( n
N

)1/2−c
∀x ∈ 1

nZ, (3.38)

and that for some T ∈ (1, logN ], supy∈ 1
nZ,|y|≤N,t∈[0,T ] |unt (y) − g(y − νt)| ≤ c8(logN)−2.

Then for t ∈ [0, T ],

unt (x) ≥ 1
4e
−κ(1+(logN)−2)(x−νt)1x≥νt −R

( n
N

)1/2−c
∀x ∈ 1

nZ,

and for t ∈ [1, T ], ∀x ∈ 1
nZ,

unt (x) ≥ (1 + c8(logN)−2) 1
3e
−κ(1+(logN)−2)(x−νt)1x≥νt−c8 − (1− c8)R

( n
N

)1/2−c
.

Proof. Note that for u ∈ [0, 1],

f(u) + (1− α)u = −2u3 + (3− α)u2 ≥ 0. (3.39)

Take d ∈
(
0,min

(
1

100e
−4(κ+2s0)(1− e−κ)(2− α)s0, log(10/9)κ−1

))
, and suppose

sup
y∈ 1

nZ,|y|≤N,t∈[0,T ]

|unt (y)− g(y − νt)| ≤ d(logN)−2. (3.40)

Let θ′N = (1 + (logN)−2)κ. For some t1 ∈ [0, T ], suppose

unt1(x) ≥ 1
3e
−θ′N (x−νt1)1x≥νt1 −R

( n
N

)1/2−c
∀x ∈ 1

nZ. (3.41)

Take t ∈ (t1, t1 + 1] and let t0 = t− t1. Then for x ∈ 1
nZ, by (3.7),

unt (x) = e−(1−α)s0t0〈unt1 , φ
t0,x
0 〉n + s0

∫ t0

0

e−(1−α)s0(t0−s)〈f(unt1+s) + (1− α)unt1+s, φ
t0,x
s 〉nds

≥ e−(1−α)s0t0〈unt1 , φ
t0,x
0 〉n

by (3.39). Hence by (3.41),

unt (x) ≥ e−(1−α)s0t0
(
Ex

[
1
3e
−θ′N (Xnmt0−νt1)1Xnmt0≥νt1

]
−R

( n
N

)1/2−c)
. (3.42)

Note that

Ex

[
e−θ

′
N (Xnmt0

−νt1)1Xnmt0≥νt1

]
= Ex

[
e−θ

′
N (Xnmt0

−νt1)
]
−Ex

[
e−θ

′
N (Xnmt0

−νt1)1Xnmt0<νt1

]
= e−θ

′
N (x−νt1)e

1
2m(θ′N )2t0+O(n−1t0) − eθ

′
Nνt1Ex

[
e−θ

′
NX

n
mt01Xnmt0<νt1

]
(3.43)
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by Lemma 3.8. For the second term on the right hand side, using Markov’s inequality
and Lemma 3.8 in the second inequality,

Ex

[
e−θ

′
NX

n
mt01Xnmt0<νt1

]
≤

∞∑
k=bx−νt1c

e−θ
′
N (x−k−1)Px

(
Xn
mt0 ≤ x− k

)
≤ e−θ

′
Nx

∞∑
k=bx−νt1c

eθ
′
N (k+1)e−2θ

′
Nke2m(θ′N )2t0+O(t0n

−1)

≤ e−θ
′
Nxeθ

′
N+2m(θ′N )2t0+O(t0n

−1)e−θ
′
Nbx−νt1c(1− e−θ

′
N )−1.

Suppose x ≥ νt1 with

e−θ
′
N (x−νt1) ≤ e−3(θ

′
N+m(θ′N )2)(1− e−θ

′
N ) 1

5 (2− α)s0(logN)−2. (3.44)

Then by (3.43) and since t0 ≤ 1, for n sufficiently large,

e−(1−α)s0t0Ex

[
1
3e
−θ′N (Xnmt0

−νt1)1Xnmt0≥νt1

]
≥ e−(1−α)s0t0 1

3e
−θ′N (x−νt1)(e

1
2m(θ′N )2t0+O(t0n

−1) − e3(θ
′
N+m(θ′N )2)e−θ

′
N (x−νt1)(1− e−θ

′
N )−1)

≥ 1
3e
−θ′N (x−νt)e((−1+α)s0−θ

′
Nν+

1
2m(θ′N )2+O(n−1))t0

· (1− e3(θ
′
N+m(θ′N )2)e−θ

′
N (x−νt1)(1− e−θ

′
N )−1)

≥ 1
3e
−θ′N (x−νt)e

1
2 (2−α)s0(logN)−2t0(1− 1

5 (2− α)s0(logN)−2)

for n sufficiently large, where the second inequality holds since t1 = t− t0 and the last
inequality follows since by (2.1) we have (−1+α)s0−θ′Nν+ 1

2m(θ′N )2 ≥ (2−α)s0(logN)−2

and by our assumption (3.44) on x.
By (3.42), it follows that for n sufficiently large, if x ≥ νt1 and (3.44) holds, then for

t ∈ (t1, t1 + 1],

unt (x) ≥ 1
3e
−θ′N (x−νt)e

1
2 (2−α)s0(logN)−2(t−t1)(1− 1

5 (2− α)s0(logN)−2)

− e−(1−α)s0(t−t1)R
( n
N

)1/2−c
. (3.45)

If instead t ∈ (t1, (t1 +1)∧T ] and x ≥ νt with e−θ
′
N (x−νt1) > e−3(θ

′
N+m(θ′N )2)(1−e−θ′N ) 1

5 (2−
α)s0(logN)−2, then if n is sufficiently large, we have |x| ≤ N and so by (3.40),

unt (x) ≥ g(x− νt)− d(logN)−2 ≥ 1
2e
−κ(x−νt) − 1

20e
−θ′N (x−νt1) ≥ 9

20e
−θ′N (x−νt), (3.46)

where the second inequality follows since g(y) ≥ 1
2e
−κy ∀y ≥ 0 and by (2.1), the definition

of d and our assumption on x. For x ∈ [νt− d, νt], by (3.40),

unt (x) ≥ 1
2 − d(logN)−2 ≥ 2

5e
θ′Nd ≥ 2

5e
−θ′N (x−νt) (3.47)

for n sufficiently large, since eκd ≤ 10/9 by the definition of d. Since (3.41) holds for
t1 = 0 by our assumption in (3.38), for n sufficiently large that e

9
40 (2−α)s0(logN)−2

(1 −
1
5 (2− α)s0(logN)−2) ≥ 1, (3.41) holds for each t1 ∈ 1

2N0 ∩ [0, T ] by (3.45) and (3.46) and
by induction. Then for t ∈ [1, T ], there exists t1 ∈ [0, T ] such that (3.41) holds and with
t− t1 ∈ [1/2, 1], and the result follows by (3.45), (3.46) and (3.47).

The following result will allow us to show that |unt,t+s(x)− g(x− µnt − νs)| is small in
the proof of Proposition 3.1.

EJP 27 (2022), paper 121.
Page 50/99

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP845
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogies in bistable waves

Lemma 3.11. Suppose (un,1t )t≥0 and (un,2t )t≥0 solve (3.6) with initial conditions pn,10 and
pn,20 respectively. Then for t ≥ 0,

sup
x∈ 1

nZ

|un,1t (x)− un,2t (x)| ≤ e(1+α)s0t sup
y∈ 1

nZ

|pn,10 (y)− pn,20 (y)|.

Proof. By (3.7), for x ∈ 1
nZ and t ≥ 0,

|un,1t (x)− un,2t (x)| ≤ 〈|pn,10 − pn,20 |, φ
t,x
0 〉n + s0

∫ t

0

〈|f(un,1s )− f(un,2s )|, φt,xs 〉nds

≤ sup
y∈ 1

nZ

|pn,10 (y)− pn,20 (y)|+ (1 + α)s0

∫ t

0

sup
y∈ 1

nZ

|un,1s (y)− un,2s (y)|ds

since supu∈[0,1] |f ′(u)| = 1 + α. The result follows by Gronwall’s inequality.

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Without loss of generality, assume b2 ∈ (0, 1/3) is sufficiently

small that
(
n
N

)1/3 ≤ n−b2 for n sufficiently large. Take c5, c6 > 0 as defined in Lemma 3.4
and Proposition 3.5. Let b1 = 1

2 (c5 ∧ c6), and suppose condition (A) holds. Define the
event

A =
{
pnt (x) = 0 ∀t ∈ [0, 2N2], x ≥ N5

}
∩
{
pnt (x) = 1 ∀t ∈ [0, 2N2], x ≤ −N5

}
.

Recall from (2.8) that D+
n = (1/2−c0)κ−1 log(N/n). Take c3 ∈ (0, c0∧1/6), and take `′ ∈ N

sufficiently large that N2
(
n
N

)`′ ≤ ( nN )`+1
for n sufficiently large. Take c4 = c4(c3, `

′) ∈
(0, 1/2) as defined in Proposition 3.2, and let T0 = (logN)c4 . By making c4 smaller if
necessary, we can assume c4 < a0 (recall from Section 1.2 that (logN)a0 ≤ log n for n
sufficiently large). For k ∈ Z, let tk = (k + 1)T0, and for k ∈ N0, let (un,kt )t≥0 denote the
solution of {

∂tu
n,k
t = 1

2m∆nu
n,k
t + s0f(un,kt ) for t > 0,

un,k0 = pntk−1
.

For k ∈ N0, define the event

Ak =

{
sup

x∈ 1
nZ,|x|≤N5

sup
t∈[0,2T0]

|pnt+tk−1
(x)− un,kt (x)| ≤

( n
N

)1/2−c3}
.

Let j0 = bN2T−10 c. Note that by a union bound, and then by Proposition 3.2 and
Lemma 3.3, for n sufficiently large,

P

Ac ∪ j0+1⋃
j=0

Acj

 ≤ 2e−N
5

+ (j0 + 2)
( n
N

)`′
≤
( n
N

)`
(3.48)

by our choice of `′. From now on, suppose that the event A ∩
⋂j0+1
j=0 Aj occurs.

For k ∈ N0, let (ukt )t≥0 denote the solution of{
∂tu

k
t = 1

2m∆ukt + s0f(ukt ) for t > 0,

uk0 = p̄ntk−1
,

where p̄ntk−1
: R→ [0, 1] is the linear interpolation of pntk−1

: 1
nZ→ [0, 1].

EJP 27 (2022), paper 121.
Page 51/99

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP845
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogies in bistable waves

Now for an induction argument, for k ∈ N0 with k ≤ j0 + 1, suppose there exists
zk−1 ∈ R with |zk−1| ≤ k such that

Dk := sup
x∈ 1

nZ

|pntk−1
(x)− g(x− νtk−1 − zk−1)| ≤ 1

2 (c5 ∧ c6) = b1 (3.49)

and sup
x1,x2∈ 1

nZ,|x1−x2|≤n−1/3

|pntk−1
(x1)− pntk−1

(x2)| ≤ n−b2 . (3.50)

(Note that (3.49) and (3.50) hold for k = 0, by condition (A).) Then by the triangle
inequality,

‖p̄ntk−1
− g(· − νtk−1 − zk−1)‖∞ ≤ Dk + n−1‖∇g‖∞ + n−b2

≤ c5 ∧ c6 (3.51)

for n sufficiently large. Hence by Proposition 3.5, there exists zk ∈ R with |zk| ≤ k + 1

such that
|ukt (x)− g(x− ν(tk−1 + t)− zk)| ≤ C3e

−c6t ∀x ∈ R, t > 0. (3.52)

Therefore by Lemma 3.6, for t ∈ [0, 2T0],

sup
x∈ 1

nZ

|un,kt (x)− g(x− ν(tk−1 + t)− zk)| ≤ (C4n
−1/3 + 2n−b2)4T 2

0 e
2(1+α)s0T0 + C3e

−c6t.

(3.53)

Then by the definition of the event Ak, for t ∈ [T0, 2T0],

sup
x∈ 1

nZ,|x|≤N5

|pntk−1+t
(x)− g(x− ν(tk−1 + t)− zk)|

≤
( n
N

)1/2−c3
+ (C4n

−1/3 + 2n−b2)4T 2
0 e

2(1+α)s0T0 + C3e
−c6T0

≤ e− 1
2 c6T0

for n sufficiently large (since c4 < a0). Therefore, for n sufficiently large, since k ≤ j0 + 1

and |zk| ≤ k + 1, and by the definition of the event A, we have that for t ∈ [T0, 2T0],

sup
x∈ 1

nZ

|pntk−1+t
(x)− g(x− ν(tk−1 + t)− zk)|

≤ max

(
e−

1
2 c6T0 , sup

y≥N5−N3

g(y), sup
y≤−N5+N2

(1− g(y))

)
= e−

1
2 c6T0 . (3.54)

By the definitions of the events Ak and A, and then by Lemma 3.7 and our choice of b2
and c3, we have that

sup
x1,x2∈ 1

nZ,|x1−x2|≤n−1/3

|pntk(x1)− pntk(x2)| ≤ n−1bn2/3c sup
x∈ 1

nZ

|∇nun,kT0
(x)|+ 2

( n
N

)1/2−c3
≤ n−b2

for n sufficiently large. By induction, we now have that for n sufficiently large, for k ∈ N
with k ≤ j0 + 1, there exists zk−1 ∈ R with |zk−1| ≤ k such that (3.49) and (3.50) hold
with Dk ≤ e−

1
2 c6T0 . By Lemma 3.4 and (3.51), if n is sufficiently large then for t ≥ 0 and

x ∈ R,
|ukt (x)− g(x− ν(tk−1 + t)− zk−1)| ≤ C2(Dk + 2n−b2)

and so by (3.52), ‖g(· − zk) − g(· − zk−1)‖∞ ≤ C2(Dk + 2n−b2). For n sufficiently large,
since ∇g(0) = −κ/4, it follows that

|zk−1 − zk| ≤ 5κ−1C2(Dk + 2n−b2) ≤ e− 1
3 c6T0 .
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Therefore, by (3.54), for n sufficiently large, for k ∈ N0 with k ≤ j0,

|zk+1 − zk| ≤ e−
1
3 c6T0 and sup

t∈[tk,tk+1], x∈ 1
nZ

|pnt (x)− g(x− νt− zk)| ≤ e− 1
2 c6T0 . (3.55)

Note that for k ∈ N0 with k ≤ j0, by (3.55),

sup
x∈ 1

nZ,|x−(zk+νtk)|≤N, t∈[0,T0]

|un,k+1
t (x)− g(x− ν(t+ tk)− zk)|

≤ e− 1
2 c6T0 + sup

|x|≤N5, t∈[0,T0]

|un,k+1
t (x)− pnt+tk(x)|

≤ e− 1
2 c6T0 +

( n
N

)1/2−c3
(3.56)

by the definition of the event Ak+1.
We now use Lemma 3.9 to prove an upper bound on pnt (x) for large x. Let c9 =

c7 ∧ c8 ∈ (0, 1) and R0 = e−
1
2 c6T0

(
n
N

)−(1/2−c3). Define (Rk)∞k=1 inductively by letting
Rk = (1− c9)Rk−1 + 1 for k ≥ 1. Let

k∗ =
log(2c−19 )− logR0

log(1− c9/2)
.

Then since Rk ≤ (1 − c9/2)Rk−1 if Rk−1 ≥ 2c−19 and Rk ≤ 2c−19 − 1 if Rk−1 ≤ 2c−19 ,
we have Rk ≤ 2c−19 for k ≥ k∗. Suppose n is sufficiently large that e−

1
2 c6T0 ≤ c9 and

e−
1
2 c6T0 +

(
n
N

)1/2−c3 ≤ c9(logN)−2. Then by Lemma 3.9, (3.56) and the definition of the
event A, for k ∈ N0 with k ≤ j0, if

pntk(x) ≤ 3e−κ(1−(logN)−2)(x−νtk−zk) +Rk

( n
N

)1/2−c3
∀x ∈ 1

nZ, (3.57)

then for t ∈ [0, T0],

un,k+1
t (x) ≤ 4

3

(
3e−κ(1−(logN)−2)(x−ν(t+tk)−zk) +Rk

( n
N

)1/2−c3)
∀x ∈ 1

nZ.

Therefore, by the definition of the events Ak+1 and A, for t ∈ [tk, tk+1] and x ∈ 1
nZ,

pnt (x) ≤ 4e−κ(1−(logN)−2)(x−νt−zk) + (1 + 4
3Rk)

( n
N

)1/2−c3
. (3.58)

Moreover, by Lemma 3.9 and (3.56), for t ∈ [1, T0] and x ∈ 1
nZ,

un,k+1
t (x) ≤ (1− c7(logN)−2)3e−κ(1−(logN)−2)(x−ν(t+tk)−zk) + (1− c7)Rk

( n
N

)1/2−c3
,

and so by the definition of the events Ak+1 and A, for x ∈ 1
nZ,

pntk+1
(x) ≤ (1− c7(logN)−2)3e−κ(1−(logN)−2)(x−νtk+1−zk) + (1 + (1− c7)Rk)

( n
N

)1/2−c3
≤ 3e−κ(1−(logN)−2)(x−νtk+1−zk+1) +Rk+1

( n
N

)1/2−c3
for n sufficiently large, by the definition of Rk+1 and since |zk− zk+1| ≤ e−

1
3 c6T0 by (3.55).

Note that (3.57) holds for k = 0 by (3.55) and the definition ofR0, and since g(y) ≤ e−κy∧1

∀y ∈ R. Hence by induction, (3.57) holds for each 0 ≤ k ≤ j0. Therefore, by (3.58), for
k ≥ k∗, for t ∈ [tk, tk+1] and x ∈ 1

nZ,

pnt (x) ≤ 4e−κ(1−(logN)−2)(x−νt−zk) + (1 + 8
3c
−1
9 )

( n
N

)1/2−c3
. (3.59)
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We now use Lemma 3.10 to establish a corresponding lower bound. By Lemma 3.10
and (3.56), if for some k ∈ N0 with k ≤ j0

pntk(x) ≥ 1
3e
−κ(1+(logN)−2)(x−νtk−zk)1x≥νtk+zk −Rk

( n
N

)1/2−c3
∀x ∈ 1

nZ, (3.60)

then for t ∈ [0, T0],

un,k+1
t (x) ≥ 1

4e
−κ(1+(logN)−2)(x−ν(t+tk)−zk)1x≥ν(tk+t)+zk −Rk

( n
N

)1/2−c3
∀x ∈ 1

nZ.

Hence by the definition of the event Ak+1 and since pnt ≥ 0, for t ∈ [tk, tk+1] and x ∈ 1
nZ,

pnt (x) ≥ 1
4e
−κ(1+(logN)−2)(x−νt−zk)1x≥νt+zk − (1 +Rk)

( n
N

)1/2−c3
. (3.61)

Moreover, by Lemma 3.10 and (3.56), for t ∈ [1, T0] and x ∈ 1
nZ,

un,k+1
t (x) ≥ (1 + c8(logN)−2) 1

3e
−κ(1+(logN)−2)(x−ν(t+tk)−zk)1x≥ν(tk+t)+zk−c8

− (1− c8)Rk

( n
N

)1/2−c3
,

and so by the definition of the event Ak+1 and since pnt ≥ 0, for x ∈ 1
nZ,

pntk+1
(x) ≥ (1 + c8(logN)−2) 1

3e
−κ(1+(logN)−2)(x−νtk+1−zk)1x≥νtk+1+zk−c8

− ((1− c8)Rk + 1)
( n
N

)1/2−c3
≥ 1

3e
−κ(1+(logN)−2)(x−νtk+1−zk+1)1x≥νtk+1+zk+1

−Rk+1

( n
N

)1/2−c3
for n sufficiently large, by the definition of Rk+1 and since |zk−zk+1| ≤ e−

1
3 c6T0 . By (3.55)

and the definition of R0, and since g(z) ≥ 1
2e
−κz for z ≥ 0, (3.60) holds for k = 0. Hence

by induction, (3.60) holds for each 0 ≤ k ≤ j0. Then by (3.61), for k ≥ k∗, for t ∈ [tk, tk+1]

and x ∈ 1
nZ,

pnt (x) ≥ 1
4e
−κ(1+(logN)−2)(x−νt−zk)1x≥νt+zk − (1 + 2c−19 )

( n
N

)1/2−c3
. (3.62)

We are now ready to complete the proof. Take c2 ∈ (0, c4). Recall from (1.13) that
for t ≥ 0, µnt = sup{x ∈ 1

nZ : pnt (x) ≥ 1/2}. By (3.55) and since ∇g(0) = −κ/4, for n
sufficiently large, for k ∈ N0 with k ≤ j0, for t ∈ [tk, tk+1],

|(νt+ zk)− µnt | ≤ 5κ−1e−
1
2 c6T0 . (3.63)

Therefore, for n sufficiently large, by (3.55),

sup
x∈ 1

nZ,t∈[T0,N2]

|pnt (x)− g(x− µnt )| ≤ e− 1
2 c6T0 + 5κ−1e−

1
2 c6T0‖∇g‖∞ ≤ e−2(logN)c2 (3.64)

since c2 < c4. By (3.63) and since |z0| ≤ 1 and |zk − zk−1| ≤ e−
1
3 c6T0 ∀k ∈ N with k ≤ j0,

if n is sufficiently large we have |µnlogN | ≤ 2ν logN and for t ∈ [logN,N2] and s ∈ [0, 1]

with t+ s ≤ N2,

|µnt+s − µnt − νs| ≤ 10κ−1e−
1
2 c6T0 + e−

1
3 c6T0 ≤ e−(logN)c2 .

Now for t ∈ [ 12 (logN)2, N2], take x ∈ 1
nZ such that g(x − µnt ) ≤ 2e−(logN)c2 . Then for n

sufficiently large that k∗ ≤ 1
2 (logN)3/2, by (3.59) and (3.63),

pnt (x)≤4e−κ(1−(logN)−2)(x−µnt −5κ
−1e−

1
2
c6T0 )+(1+ 8

3c
−1
9 )

( n
N

)1/2−c3
≤5g((x−µnt )∧(D+

n +2)))
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for n sufficiently large, since κD+
n (logN)−1 ≤ 1/2, c3 < c0 and g(y) ∼ e−κy as y → ∞.

Similarly, for n sufficiently large, by (3.62) and (3.63), if x− µnt ≤ D+
n + 2 then

pnt (x)≥ 1
4e
−κ(1+(logN)−2)(x−µnt +5κ−1e−

1
2
c6T0 ) − (1 + 2c−19 )

( n
N

)1/2−c3
≥ 1

5g(x− µnt ).

If instead g(x− µnt ) ≥ 2e−(logN)c2 , then pnt (x) ∈ [ 12g(x− µnt ), 32g(x− µnt )] by (3.64).
Finally, for t ∈ [logN,N2], let (ũnt,t+s)s≥0 solve (3.2) with ũnt,t(x) = g(x−µnt ) for x ∈ 1

nZ.
Recall the definition of γn in (2.4). Then for s ∈ [0, γn], by Lemma 3.11 and (3.64),

sup
x∈ 1

nZ

|unt,t+s(x)− g(x− µnt − νs)|

≤ e(1+α)s0γne−2(logN)c2 + sup
x∈ 1

nZ

|ũnt,t+s(x)− g(x− µnt − νs)|

≤ e(1+α)s0γne−2(logN)c2 + (C4 + ‖∇g‖∞)n−1/3γ2ne
(1+α)s0γn

≤ e−(logN)c2

for n sufficiently large, where the second inequality follows by Lemma 3.6 and since
(g(· − µnt − νs))s≥0 solves (3.16). The result follows by (3.48) and by the definitions of E1

in (2.10) and E′1 in (3.3).

3.1 Proof of Proposition 3.2

The proof of Proposition 3.2 uses similar arguments to those in [14]. The following
lemma is the main step in the proof.

Lemma 3.12. Suppose φ : [0,∞)× 1
nZ→ R is continuously differentiable in t, and write

φt(x) := φ(t, x). Suppose that for any t > 0,

sup
s∈[0,t]

〈|φs|, 1〉n <∞ and sup
s∈[0,t]

〈|∂sφs|, 1〉n <∞.

Then for t ≥ 0,

〈qnt , φt〉n − 〈qn0 , φ0〉n −
∫ t

0

〈qns , ∂sφs〉nds

= s0

∫ t

0

〈qns (1− pns )(2pns − 1 + α), φs〉nds+ 1
2m

∫ t

0

〈qns ,∆nφs〉nds+Mn
t (φ), (3.65)

where (Mn
t (φ))t≥0 is a martingale with Mn

0 (φ) = 0 and

〈Mn(φ)〉t ≤
n

N

∫ t

0

〈(1 +m)qns (·) + 1
2m(qns (· − n−1) + qns (·+ n−1)), φ2s〉nds.

Before proving Lemma 3.12, we prove the following useful consequence.

Corollary 3.13. For a ∈ R, t ≥ 0 and z ∈ 1
nZ,

qnt (z) = e−at〈qn0 , φ
t,z
0 〉n

+

∫ t

0

e−a(t−s)〈qns (s0(1− pns )(2pns − 1 + α) + a), φt,zs 〉nds+Mn
t (φt,z,a). (3.66)

Proof. Recall the definitions of φt,z and φt,z,a in (3.4) and (3.5). Note that ∂sφt,zs +
1
2m∆nφ

t,z
s = 0 for s ∈ (0, t). Hence

∂sφ
t,z,a
s + 1

2m∆nφ
t,z,a
s = aφt,z,as .
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Therefore, by substituting φs(x) := φt,z,as (x) into (3.65) in Lemma 3.12 we have

〈qnt , φ
t,z,a
t 〉n = 〈qn0 , φ

t,z,a
0 〉n +

∫ t

0

〈qns (s0(1− pns )(2pns − 1 + α) + a), φt,z,as 〉nds+Mn
t (φt,z,a).

Since φt,z,at (w) = n1w=z, the result follows.

Proof of Lemma 3.12. For t ≥ 0, x ∈ 1
nZ and i ∈ [N ], by the definition of ηn in (3.9) we

have that

ηnt (x, i) = ηn0 (x, i) +
∑

j∈[N ]\{i}

∫ t

0

(ηns−(x, j)− ηns−(x, i))dPx,i,js

+
∑

j∈[N ]\{i}

∫ t

0

ξns−(x, j)(ηns−(x, j)− ηns−(x, i))dSx,i,js

+
∑

j 6=k∈[N ]\{i}

∫ t

0

1ξns−(x,j)=ξ
n
s−(x,k)

(ηns−(x, j)− ηns−(x, i))dQx,i,j,ks

+
∑

j∈[N ],y∈{x−n−1, x+n−1}

∫ t

0

(ηns−(y, j)− ηns−(x, i))dRx,i,y,js .

Recall from (3.10) that qns (y) = N−1
∑
j∈[N ] η

n
s (y, j) for y ∈ 1

nZ and s ≥ 0. By integration
by parts applied to ηnt (x, i)φt(x), and then summing over i and x, using our assumptions
on φ,

〈qnt , φt〉n − 〈qn0 , φ0〉n −
∫ t

0

〈qns , ∂sφs〉nds

=
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

(ηns−(x, j)− ηns−(x, i))φs(x)dPx,i,js

+
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

ξns−(x, j)(ηns−(x, j)− ηns−(x, i))φs(x)dSx,i,js

+
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j 6=k∈[N ]\{i}

∫ t

0

1ξns−(x,j)=ξ
n
s−(x,k)

(ηns−(x, j)− ηns−(x, i))φs(x)dQx,i,j,ks

+
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ],y∈{x−n−1, x+n−1}

∫ t

0

(ηns−(y, j)− ηns−(x, i))φs(x)dRx,i,y,js .

(3.67)

We shall consider each line on the right hand side of (3.67) separately. For the first line,

A1
t :=

1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

(ηns−(x, j)− ηns−(x, i))φs(x)dPx,i,js

=
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

(ηns−(x, j)− ηns−(x, i))φs(x)(dPx,i,js − rn(1− (α+ 1)sn)ds)

+
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

(ηns−(x, j)− ηns−(x, i))φs(x)rn(1− (α+ 1)sn)ds.
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Now for x ∈ 1
nZ and s ∈ [0, t],

N∑
i=1

∑
j∈[N ]\{i}

(ηns−(x, j)− ηns−(x, i)) = 0.

Hence

A1
t = Mn,1

t (φ)

:=
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

(ηns−(x, j)− ηns−(x, i))φs(x)(dPx,i,js − rn(1− (α+ 1)sn)ds),

(3.68)

which is a martingale (since we assumed sups∈[0,t′]〈|φs|, 1〉n <∞ for any t′ > 0). For the
second line on the right hand side of (3.67),

A2
t :=

1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

ξns−(x, j)(ηns−(x, j)− ηns−(x, i))φs(x)dSx,i,js

=
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

ξns−(x, j)(ηns−(x, j)− ηns−(x, i))φs(x)(dSx,i,js − rnαsnds)

+
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

ξns−(x, j)(ηns−(x, j)− ηns−(x, i))φs(x)rnαsnds.

For the expression on the last line, for x ∈ 1
nZ and s ∈ [0, t], since ξns−(x, j) = 1 if

ηns−(x, j) = 1,

N∑
i=1

∑
j∈[N ]\{i}

ξns−(x, j)(ηns−(x, j)− ηns−(x, i))

=

N∑
i=1

∑
j∈[N ]\{i}

ηns−(x, j)−
N∑
i=1

ηns−(x, i)

 N∑
j=1

ξns−(x, j)− 1


= (N − 1)Nqns−(x)−Nqns−(x)(Npns−(x)− 1)

= N2qns−(x)(1− pns−(x)).

Therefore we can write

1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

ξns−(x, j)(ηns−(x, j)− ηns−(x, i))φs(x)rnαsnds

= αNrnsn

∫ t

0

〈qns−(1− pns−), φs〉nds.

Hence, since Nrnsn = s0 by (1.11),

A2
t = αs0

∫ t

0

〈qns (1− pns ), φs〉nds+Mn,2
t (φ), (3.69)

where

Mn,2
t (φ) :=

1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

ξns−(x, j)(ηns−(x, j)−ηns−(x, i))φs(x)(dSx,i,js −rnαsnds)

(3.70)
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is a martingale. For the third line on the right hand side of (3.67),

A3
t :=

1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j 6=k∈[N ]\{i}

∫ t

0

1ξns−(x,j)=ξ
n
s−(x,k)

(ηns−(x, j)− ηns−(x, i))φs(x)dQx,i,j,ks

=
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j 6=k∈[N ]\{i}

∫ t

0

1ξns−(x,j)=ξ
n
s−(x,k)

(ηns−(x, j)− ηns−(x, i))φs(x)

· (dQx,i,j,ks − 1
N rnsnds)

+
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j 6=k∈[N ]\{i}

∫ t

0

1ξns−(x,j)=ξ
n
s−(x,k)

(ηns−(x, j)− ηns−(x, i))φs(x) 1
N rnsnds.

For x ∈ 1
nZ and s ∈ [0, t], since ηns−(x, j) = 0 if ξns−(x, j) = 0,

N∑
i=1

∑
j 6=k∈[N ]\{i}

1ξns−(x,j)=ξ
n
s−(x,k)

(ηns−(x, j)− ηns−(x, i))

=
∑

i,j,k∈[N ] distinct

(
1ηns−(x,j)=ξ

n
s−(x,k)=1 − 1ξns−(x,j)=ξns−(x,k)=ηns−(x,i)=1

− 1ξns−(x,j)=ξns−(x,k)=0, ηns−(x,i)=1

)
= (N − 2)Nqns−(x)(Npns−(x)− 1)−Nqns−(x)(Npns−(x)− 1)(Npns−(x)− 2)

−Nqns−(x)(N −Npns−(x))(N −Npns−(x)− 1)

= N3qns−(x)(1− pns−(x))(2pns−(x)− 1).

Therefore, since Nrnsn = s0,

A3
t = s0

∫ t

0

〈qns (1− pns )(2pns − 1), φs〉nds+Mn,3
t (φ), (3.71)

where

Mn,3
t (φ)

:=
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j 6=k∈[N ]\{i}

∫ t

0

1ξns−(x,j)=ξ
n
s−(x,k)

(ηns−(x, j)− ηns−(x, i))φs(x)

· (dQx,i,j,ks − 1
N rnsnds) (3.72)

is a martingale. Finally, for the fourth line on the right hand side of (3.67),

A4
t :=

1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ],y∈{x−n−1, x+n−1}

∫ t

0

(ηns−(y, j)− ηns−(x, i))φs(x)dRx,i,y,js

=
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ],y∈{x−n−1, x+n−1}

∫ t

0

(ηns−(y, j)− ηns−(x, i))φs(x)(dRx,i,y,js −mrnds)

+
1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ],y∈{x−n−1, x+n−1}

∫ t

0

(ηns−(y, j)− ηns−(x, i))φs(x)mrnds.

For x ∈ 1
nZ and s ∈ [0, t], ∑

i,j∈[N ],y∈{x−n−1, x+n−1}

(ηns−(y, j)− ηns−(x, i))

= N2(qns−(x− n−1) + qns−(x+ n−1))− 2N2qns−(x).

EJP 27 (2022), paper 121.
Page 58/99

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP845
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogies in bistable waves

Therefore we can write

1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ],y∈{x−n−1, x+n−1}

∫ t

0

(ηns−(y, j)− ηns−(x, i))φs(x)mrnds

=
mrn
Nn

∑
x∈ 1

nZ

∫ t

0

(N2(qns−(x− n−1) + qns−(x+ n−1))− 2N2qns−(x))φs(x)ds

=
Nmrn
n

∑
x∈ 1

nZ

∫ t

0

qns−(x)(φs(x+ n−1) + φs(x− n−1)− 2φs(x))ds

=
Nmrn
n2

∫ t

0

〈qns ,∆nφs〉nds,

where the second equality follows by summation by parts. Hence, since Nrnn−2 = 1
2 ,

A4
t = 1

2m

∫ t

0

〈qns ,∆nφs〉nds+Mn,4
t (φ), (3.73)

where

Mn,4
t (φ) :=

1

Nn

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ],y∈{x−n−1, x+n−1}

∫ t

0

(ηns−(y, j)− ηns−(x, i))φs(x)

· (dRx,i,y,js −mrnds) (3.74)

is a martingale. Combining (3.68), (3.69), (3.71) and (3.73) with (3.67), we have that

〈qnt , φt〉n − 〈qn0 , φ0〉n −
∫ t

0

〈qns , ∂sφs〉nds

= s0

∫ t

0

〈qns (1− pns )(2pns − 1 + α), φs〉nds+ 1
2m

∫ t

0

〈qns ,∆nφs〉nds+Mn
t (φ),

where Mn
t (φ) :=

∑4
i=1M

n,i
t (φ) is a martingale with Mn

0 (φ) = 0.
It remains to bound 〈Mn(φ)〉t. Since (Px,i,j), (Sx,i,j), (Qx,i,j,k) and (Rx,i,y,j) are

independent families of Poisson processes,

〈Mn(φ)〉t =

4∑
i=1

〈Mn,i(φ)〉t. (3.75)

By the definition of Mn,1(φ) in (3.68), we have that for t ≥ 0,

〈Mn,1(φ)〉t =
1

N2n2
rn(1− (α+ 1)sn)

∑
x∈ 1

nZ

N∑
i=1

∑
j∈[N ]\{i}

∫ t

0

(ηns−(x, j)− ηns−(x, i))2φs(x)2ds

=
rn
n2

(1− (α+ 1)sn)

∫ t

0

∑
x∈ 1

nZ

2qns−(x)(1− qns−(x))φs(x)2ds

≤ rn
n

(1− (α+ 1)sn)

∫ t

0

〈2qns , φ2s〉nds. (3.76)

By the same argument, by the definition of Mn,2(φ) in (3.70),

〈Mn,2(φ)〉t ≤
rn
n
αsn

∫ t

0

〈2qns , φ2s〉nds.
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Then by the definition of Mn,3(φ) in (3.72),

〈Mn,3(φ)〉t

=
1

N2n2
rnsn
N

∑
x∈ 1

nZ

N∑
i=1

∑
j 6=k∈[N ]\{i}

∫ t

0

1ξns−(x,j)=ξ
n
s−(x,k)

(ηns−(x, j)− ηns−(x, i))2φs(x)2ds

≤ 1

N2n2
rnsn
N

∑
x∈ 1

nZ

N3

∫ t

0

2qns−(x)(1− qns−(x))φs(x)2ds

≤ rn
n
sn

∫ t

0

〈2qns , φ2s〉nds.

Finally, by the definition of Mn,4(φ) in (3.74),

〈Mn,4(φ)〉t ≤
1

N2n2
mrn

∑
x∈ 1

nZ

N2

∫ t

0

(qns−(x− n−1) + 2qns−(x) + qns−(x+ n−1))φs(x)2ds

=
mrn
n

∫ t

0

〈qns (· − n−1) + 2qns (·) + qns (·+ n−1), φ2s〉nds.

By (3.75), and since rnn−1 = 1
2nN

−1 by (1.11), the result follows.

The following result, which is a version of the local central limit theorem in [24],
will be used several times in the rest of the article. Recall that we let (Xn

t )t≥0 denote a
simple symmetric random walk on 1

nZ with jump rate n2.

Lemma 3.14 (Theorem 2.5.6 in [24]). For x ∈ 1
nZ and t > 0 with |x| ≤ 1

2nt,

P0 (Xn
t = x) =

1

n

1√
2πt

e−
x2

2t eO(n−1t−1/2+n−1|x|3t−2).

The next lemma gives us useful bounds on 〈Mn(φt,z)〉t.
Lemma 3.15. There exists a constant C6 <∞ such that for t ≥ 0, s ∈ [0, t] and z ∈ 1

nZ,

〈1, (φt,zs )2〉n = nP0

(
Xn

2m(t−s) = 0
)
,

∫ t

0

〈1, (φt,zs )2〉nds ≤ C6t
1/2 (3.77)

and 〈Mn(φt,z)〉t ≤ C6t
1/2 n

N
. (3.78)

Proof. For s ∈ [0, t], by the definition of φt,zs in (3.4) and by translational invariance,∑
x∈ 1

nZ

φt,zs (x)2 = n2
∑
x∈ 1

nZ

P0

(
Xn
m(t−s) = x

)2
= n2

∑
x∈ 1

nZ

P0

(
Xn
m(t−s) = −x

)
P0

(
Xn
m(t−s) = x

)
= n2P0

(
Xn

2m(t−s) = 0
)
, (3.79)

where the second line follows by symmetry. (This argument is used in (54) of [14].) By
Lemma 3.14, for t0 > 0,∫ t0

0

nP0 (Xn
s = 0) ds ≤ min(nt0, n

−1) +

∫ t0

t0∧n−2

(2πs)−1/2eO(1)ds ≤ K3t
1/2
0 ,

for some constant K3. By (3.79), the first statement (3.77) follows, and the second
statement (3.78) follows by Lemma 3.12 and since qns ∈ [0, 1].
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We will use the following lemma in the proof of Proposition 3.2, and also later on in
Section 4.

Lemma 3.16. For k ∈ N, t ≥ 0 and z ∈ 1
nZ,

|qnt (z)− vnt (z)|k

≤ 32k−1sk0t
k−1

(∫ t

0

〈|qns − vns |k, φt,zs 〉nds+

∫ t

0

sup
x∈ 1

nZ

vns (x)k〈|pns − uns |k, φt,zs 〉nds

)
+ 3k−1|Mn

t (φt,z)|k.

Proof. By Corollary 3.13 and (3.12) with a = 0, for t ≥ 0 and z ∈ 1
nZ,

|qnt (z)− vnt (z)|

≤ s0
∫ t

0

|〈(qns − vns )(1− pns )(2pns − 1 + α), φt,zs 〉n|ds

+ s0

∫ t

0

|〈vns ((1− pns )(2pns − 1 + α)− (1− uns )(2uns − 1 + α)), φt,zs 〉n|ds+ |Mn
t (φt,z)|.

Therefore, since |(1 − u)(2u − 1 + α)| ≤ 1 + α for u ∈ [0, 1], and since |(1 − x)(2x − 1 +

α)− (1− y)(2y − 1 + α)| ≤ 3|x− y| for x, y ∈ [0, 1], for k ∈ N,

|qnt (z)− vnt (z)|k ≤ 3k−1sk0

(∫ t

0

〈(1 + α)|qns − vns |, φt,zs 〉nds
)k

+ 3k−1sk0

(∫ t

0

〈vns · 3|pns − uns |, φt,zs 〉nds
)k

+ 3k−1|Mn
t (φt,z)|k. (3.80)

Note that by the definition of φt,z in (3.4), for s ∈ [0, t], 〈1, φt,zs 〉n = 1. Hence by two
applications of Jensen’s inequality,(∫ t

0

〈(1 + α)|qns − vns |, φt,zs 〉nds
)k
≤ tk−1(1 + α)k

∫ t

0

〈|qns − vns |, φt,zs 〉knds

≤ tk−1(1 + α)k
∫ t

0

〈|qns − vns |k, φt,zs 〉nds.

Similarly,(∫ t

0

〈3vns |pns − uns |, φt,zs 〉nds
)k
≤ tk−13k

∫ t

0

sup
x∈ 1

nZ

vns (x)k〈|pns − uns |k, φt,zs 〉nds.

The result follows by (3.80).

We will use the following form of the Burkholder-Davis-Gundy inequality (see the
proof of Lemma 4 in [28]) in the proof of Proposition 3.2 and also later in Section 4.

Lemma 3.17 (Burkholder-Davis-Gundy inequality). For k ∈ N with k ≥ 2 there exists
C(k) <∞ such that for (Mt)t≥0 a càdlàg martingale with M0 = 0, for t ≥ 0,

E

[
sup
s∈[0,t]

|Ms|k
]
≤ C(k)E

[
〈M〉k/2t + sup

s∈[0,t]
|Ms −Ms−|k

]
.

We are now ready to finish this section by proving Proposition 3.2.
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Proof of Proposition 3.2. For t > 0 and z ∈ 1
nZ, by Lemma 3.12 we have that almost

surely

sup
s∈[0,t]

|Mn
s (φt,z)−Mn

s−(φt,z)| = sup
s∈[0,t]

|〈qns , φt,zs 〉n − 〈qns−, φt,zs 〉n| ≤ N−1.

It follows by Lemma 3.15 and Lemma 3.17 that for k ≥ 2,

E

[
sup
s∈[0,t]

|Mn
s (φt,z)|k

]
≤ C(k)

((
C6t

1/2 n

N

)k/2
+N−k

)
.

By Lemma 3.16, and since 〈1, φt,zs 〉n = 1 and vns ∈ [0, 1] for s ∈ [0, t],

E
[
|qnt (z)− vnt (z)|k

]
≤ 32k−1sk0t

k−1

(∫ t

0

sup
x∈ 1

nZ

E
[
|qns (x)− vns (x)|k

]
ds+

∫ t

0

sup
x∈ 1

nZ

E
[
|pns (x)− uns (x)|k

]
ds

)

+ 3k−1C(k)

((
C6t

1/2 n

N

)k/2
+N−k

)
. (3.81)

Temporarily setting ηn0 = ξn0 and so qn0 = pn0 , we have pns = qns and vns = uns ∀s ≥ 0, and by
Gronwall’s inequality, for t ≥ 0,

sup
x∈ 1

nZ

E
[
|pnt (x)− unt (x)|k

]
≤ 3k−1C(k)

((
C6t

1/2 n

N

)k/2
+N−k

)
e3

2k−12sk0 t
k

.

It follows that there exists a constant C1 = C1(k) <∞ such that for t ≥ 0,

sup
x∈ 1

nZ

E
[
|pnt (x)− unt (x)|k

]
≤ C1

(
nk/2tk/4

Nk/2
+N−k

)
eC1t

k

, (3.82)

which establishes (3.14). Then substituting into (3.81),

E
[
|qnt (z)− vnt (z)|k

]
≤ 32k−1sk0t

k−1
∫ t

0

sup
x∈ 1

nZ

E
[
|qns (x)− vns (x)|k

]
ds

+ 32k−1sk0t
k−1

∫ t

0

C1

(
nk/2sk/4

Nk/2
+N−k

)
eC1s

k

ds

+ 3k−1C(k)

((
C6t

1/2 n

N

)k/2
+N−k

)
.

Hence by Gronwall’s inequality, there exists a constant K4 = K4(k) <∞ such that for
t ≥ 0,

sup
x∈ 1

nZ

E
[
|qnt (x)− vnt (x)|k

]
≤ K4(t5k/4 + 1)eC1t

k
( n
N

)k/2
e3

2k−1sk0 t
k

. (3.83)

Note that for x ∈ 1
nZ, the rate at which (pnt (x))t≥0 jumps is bounded above by

N2rn(1− (α+ 1)sn) +N2rnαsn +N3 · 1
N rnsn + 2N2mrn = N2rn(1 + 2m) = 1

2Nn
2(1 + 2m)

by (1.11). Therefore, for t ≥ 0 and x ∈ 1
nZ, letting Z ∼ Poisson( 1

2 (1 + 2m)) and then
using Markov’s inequality,

P

(
sup

s∈[0,n−2N−1]

|pnt+s(x)− pnt (x)| ≥ N−1/2
)
≤ P

(
Z ≥ N1/2

)
≤ e−2N

1/2

E
[
e2Z
]
≤ e−N

1/2
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for n sufficiently large. Suppose T ≤ N . Then by a union bound,

P

(
∃t ∈ n−2N−1N0 ∩ [0, T ], x ∈ 1

nZ ∩ [−N5, N5] : sup
s∈[0,n−2N−1]

|pnt+s(x)− pnt (x)| ≥ N−1/2
)

≤
∑

t∈n−2N−1N0∩[0,T ]

∑
x∈ 1

nZ∩[−N5,N5]

P

(
sup

s∈[0,n−2N−1]

|pnt+s(x)− pnt (x)| ≥ N−1/2
)

≤ (n2NT + 1)(2N5n+ 1)e−N
1/2

≤ e−N
1/2/2 (3.84)

for n sufficiently large. For t1, t2 ≥ 0 and x ∈ 1
nZ, since supu∈[0,1] |f(u)| < 1,

|unt1(x)− unt2(x)| ≤ 1
2m sup

s≥0,y∈ 1
nZ

|∆nu
n
s (y)||t1 − t2|+ s0|t1 − t2|

≤ (mn2 + s0)|t1 − t2|.

Therefore for n sufficiently large, for t ≥ 0 and x ∈ 1
nZ,

sup
s∈[0,n−2N−1]

|unt+s(x)− unt (x)| ≤ 2mN−1. (3.85)

Then by (3.84), (3.85) and a union bound, for c3 ∈ (0, 1/2), for n sufficiently large that

2mN−1 +N−1/2 ≤ 1
2

(
n
N

)1/2−c3 ,

P

(
sup

x∈ 1
nZ, |x|≤N5

sup
t∈[0,T ]

|pnt (x)− unt (x)| ≥
( n
N

)1/2−c3)

≤
∑

t∈n−2N−1N0∩[0,T ]

∑
x∈ 1

nZ, |x|≤N5

P

(
|pnt (x)− unt (x)| ≥ 1

2

( n
N

)1/2−c3)
+ e−N

1/2/2.

Hence for k ∈ N with k ≥ 2, by Markov’s inequality, and then by (3.82),

P

(
sup

x∈ 1
nZ, |x|≤N5

sup
t∈[0,T ]

|pnt (x)− unt (x)| ≥
( n
N

)1/2−c3)

≤
∑

t∈n−2N−1N0∩[0,T ]

∑
x∈ 1

nZ, |x|≤N5

E
[
|pnt (x)− unt (x)|k

]
2k
( n
N

)−k(1/2−c3)
+ e−N

1/2/2

≤
∑

t∈n−2N−1N0∩[0,T ]

∑
x∈ 1

nZ, |x|≤N5

C1

(
nk/2tk/4

Nk/2
+N−k

)
eC1t

k

2k
( n
N

)−k(1/2−c3)
+ e−N

1/2/2

≤ (n2NT + 1)(2nN5 + 1)C1

(
nk/2T k/4

Nk/2
+N−k

)
eC1T

k

2k
( n
N

)−k(1/2−c3)
+ e−N

1/2/2.

Take `′ ∈ N sufficiently large that n4N7e2
k(C1+32k−1sk0 )(logN)1/2

(
n
N

)`′ ≤ 1 for n suffi-
ciently large. For ` ∈ N, take c4 ∈ (0, 12c3(` + `′ + 1)−1). Since 1/(2c4) > (` + `′ + 1)/c3
and c3 < 1/2, we can take k ∈ N ∩ ((` + `′)/c3, 1/(2c4)) with k ≥ 2. Therefore for
T ≤ 2(logN)c4 , for n sufficiently large,

P

(
sup

x∈ 1
nZ, |x|≤N5

sup
t∈[0,T ]

|pnt (x)− unt (x)| ≥
( n
N

)1/2−c3)

≤ n4N7
( n
N

)k/2
eC12

k(logN)c4k
( n
N

)−k(1/2−c3)
+ e−N

1/2/2

≤
( n
N

)`
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for n sufficiently large, since kc3 > `+ `′ and c4k < 1/2. Similarly, by a union bound and
Markov’s inequality, and then by (3.83), for t ≤ 2(logN)c4 ,

P

(
sup

x∈ 1
nZ, |x|≤N5

|qnt (x)− vnt (x)| ≥
( n
N

)1/2−c3)

≤
∑

x∈ 1
nZ,|x|≤N5

E
[
|qnt (x)− vnt (x)|k

] ( n
N

)−k(1/2−c3)
≤ (2nN5 + 1)K4(t5k/4 + 1)eC1t

k

e3
2k−1sk0 t

k
( n
N

)kc3
≤
( n
N

)`
for n sufficiently large, which completes the proof.

4 Event E2 occurs with high probability

Recall the definitions of the events E2 and E′2 in (2.10) and (2.11). In this section, we
will prove the following result.

Proposition 4.1. For c1, c2 > 0, for t∗ ∈ N sufficiently large and K ∈ N sufficiently large
(depending on t∗), the following holds. If a1 > 1 and N ≥ na1 for n sufficiently large,
then for n sufficiently large,

P ((E′2)c ∩ E′1) ≤
( n
N

)2
.

Moreover, if a2 > 3 and N ≥ na2 for n sufficiently large, then for n sufficiently large,

P ((E2)c ∩ E′1) ≤
( n
N

)2
.

Suppose from now on in this section that for some a1 > 1, N ≥ na1 for n sufficiently
large, and fix c1, c2 > 0. We begin by proving that for t, x1 and x2 such that x1 and x2 are
not too far from the front, the event A(1)

t (x1, x2) occurs with high probability. Recall the
definition of (vnt )t≥0 in (3.11). We begin by showing that the solution of a PDE closely
related to (3.11) can be written in terms of a diffusion (Zt)t≥0.

Lemma 4.2. Suppose h : R→ [0, 1] is measurable, and take t0 ≥ 0. For x ∈ R and t ≥ t0,
let

vt(x) = g(x− νt)Ex−νt
[
h(Zt−t0 + νt0)

g(Zt−t0)

]
,

where under Px0 , (Zt)t≥0 solves the SDE

dZt = ν dt+
m∇g(Zt)

g(Zt)
dt+

√
mdBt, Z0 = x0, (4.1)

and (Bt)t≥0 is a Brownian motion. Then vt0 = h and

∂tvt(x) = 1
2m∆vt(x) + s0vt(x)(1− g(x− νt))(2g(x− νt)− 1 + α) for t > t0, x ∈ R.

Proof. For t ≥ t0 and x ∈ R, let

v
(1)
t (x) = Ex−νt

[
h(Zt−t0 + νt0)

g(Zt−t0)

]
= vt(x)g(x− νt)−1.
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Recall (4.1). Since Af(x) := 1
2m∆f(x) +

(
ν + m∇g(x)

g(x)

)
∇f(x) is the generator of the

diffusion (Zt)t≥0, for t > t0 and x ∈ R,

∂tv
(1)
t (x) = 1

2m∆v
(1)
t (x) +

(
ν +

m∇g(x− νt)
g(x− νt)

)
∇v(1)t (x)− ν∇v(1)t (x)

(see for example Theorem 7.1.5 in [13]). Therefore

∂tvt(x) = −ν∇g(x− νt)v(1)t (x) + 1
2mg(x− νt)∆v(1)t (x) +m∇g(x− νt)∇v(1)t (x)

= 1
2m∆vt(x)− 1

2m
∆g(x− νt)
g(x− νt)

vt(x)− ν∇g(x− νt)
g(x− νt)

vt(x).

Since ∆g = −κ2g(1− g)(2g − 1) and ∇g = −κg(1− g), the result follows by (2.1).

We now show that for (unt )t≥0 and (vnt )t≥0 defined as in (3.6) and (3.11), if we have
that sups∈[0,t], x∈ 1

nZ
|uns (x) − g(x − νs)| is small then vnt is approximately given by an

expectation of a function of Zt. The proof is similar to the proof of Lemma 3.6.

Lemma 4.3. Take δ, ε ∈ (0, 1). For t ≥ 0 and x ∈ R, let

vt(x) = g(x− νt)Ex−νt
[
q̄n0 (Zt)g(Zt)

−1] ,
where q̄n0 : R → [0, 1] is the linear interpolation of qn0 : 1

nZ → [0, 1], and (Zt)t≥0 is
defined in (4.1). Suppose that T ≥ 1, supx∈ 1

nZ,s∈[0,T ] |uns (x) − g(x − νs)| ≤ δ and
supx1,x2∈ 1

nZ,|x1−x2|≤n−1/3 |qn0 (x1) − qn0 (x2)| ≤ ε. There exists a constant C7 < ∞ such
that for n sufficiently large, for t ∈ [0, T ],

sup
x∈ 1

nZ

|vnt (x)− vt(x)| ≤

(
C7(n−1/3 + δ) sup

x∈ 1
nZ

qn0 (x) + 2ε

)
e5s0TT 2.

Proof. For t > 0 and x ∈ R, let Gt(x) = 1√
2πt

e−x
2/(2t). For s ≥ 0 and x ∈ R, let

fs(x) = vs(x)(1− g(x− νs))(2g(x− νs)− 1 + α). By Lemma 4.2, for any fixed a ∈ R, vt(x)

solves the equation

∂tvt(x) = (1
2m∆vt(x)− avt) + s0ft + avt for t > 0, x ∈ R.

Since e−atGmt(x) is the fundamental solution of the equation ∂tv = 1
2m∆v−av, Duhamel’s

principle (see for example (17) and (18) in Section 2.3 on page 51 of [15] and Theorem 4.8
on page 147 of [18]) implies that for a ∈ R, z ∈ R and t > 0,

vt(z) = e−atGmt ∗ v0(z) +

∫ t

0

e−a(t−s)Gm(t−s) ∗ (s0fs + avs)(z)ds. (4.2)

Therefore, by (4.2) with a = −(1 +α)s0, and since (1−u)(2u−1 +α) ≤ 1 +α for u ∈ [0, 1],

vt(z) ≤ e(1+α)s0tGmt ∗ v0(z). (4.3)

Letting (Bt)t≥0 denote a Brownian motion, it follows from (3.12) and (4.2) with a = 0

that for z ∈ 1
nZ and t ≥ 0,

|vnt (z)− vt(z)| ≤ |Ez [qn0 (Xn
mt)]− Ez [v0(Bmt)]|

+ s0

∫ t

0

∣∣∣Ez [vns (1− uns )(2uns − 1 + α)(Xn
m(t−s))

]
− Ez

[
fs(Bm(t−s))

] ∣∣∣ds.
(4.4)
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Recall from (3.19) in the proof of Lemma 3.6 that for n sufficiently large, (Xn
t )t≥0 and

(Bt)t≥0 can be coupled in such a way that Xn
0 = B0 and for t ≥ 0,

P
(
|Xn

mt −Bmt| ≥ n−1/3
)
≤ (t+ 1)n−1/2. (4.5)

Since v0 = q̄n0 , which is the linear interpolation of qn0 , it follows that for z ∈ 1
nZ and t ≥ 0,

|Ez [qn0 (Xn
mt)]− Ez [v0(Bmt)]|

≤ (t+ 1)n−1/2 sup
x∈ 1

nZ

qn0 (x) + sup
x1,x2∈R,|x1−x2|≤n−1/3

|q̄n0 (x1)− q̄n0 (x2)|

≤ (t+ 1)n−1/2 sup
x∈ 1

nZ

qn0 (x) + 2ε (4.6)

for n sufficiently large. For the second term on the right hand side of (4.4), note that if
t ≤ T then for s ∈ [0, t] and y ∈ 1

nZ,

|(1− uns (y))(2uns (y)− 1 + α)− (1− g(y − νs))(2g(y − νs)− 1 + α)| ≤ 3δ.

Hence by the triangle inequality and then by (4.5), for s ∈ [0, t],∣∣∣Ez [vns (1− uns )(2uns − 1 + α)(Xn
m(t−s))

]
− Ez

[
fs(Bm(t−s))

]∣∣∣
≤ Ez

[
(|(vns − vs)(1− uns )(2uns − 1 + α)|+ 3δvs)(X

n
m(t−s))

]
+
∣∣∣Ez [fs(Xn

m(t−s))
]
− Ez

[
fs(Bm(t−s))

]∣∣∣
≤ 3

(
sup
x∈ 1

nZ

|vns (x)− vs(x)|+δ sup
x∈R

vs(x)

)
+ 2(t+ 1)n−1/2 sup

x∈R
|fs(x)|+ n−1/3 sup

x∈R
|∇fs(x)|

≤ 3
(

sup
x∈ 1

nZ

|vns (x)− vs(x)|+ (δ + 2(t+ 1)n−1/2)e(1+α)s0s‖v0‖∞

+ n−1/3(‖∇vs‖∞ + e(1+α)s0s‖v0‖∞‖∇g‖∞)
)

(4.7)

by (4.3). It remains to bound ‖∇vs‖∞. For t > 0 and x ∈ R, by differentiating both sides
of (4.2),

∇vt(x) = G′mt ∗ v0(x) + s0

∫ t

0

G′m(t−s) ∗ fs(x)ds. (4.8)

For the first term on the right hand side,

|G′mt ∗ v0(x)| ≤ ‖v0‖∞
∫ ∞
−∞
|G′mt(z)|dz = 2‖v0‖∞Gmt(0) = 2‖v0‖∞(2πmt)−1/2.

For the second term on the right hand side of (4.8), since |fs(·)| ≤ (1 + α)e(1+α)s0s‖v0‖∞
by (4.3), ∣∣∣∣∫ t

0

G′m(t−s) ∗ fs(x)ds

∣∣∣∣ ≤ (1 + α)e(1+α)s0t‖v0‖∞
∫ t

0

2Gm(t−s)(0)ds,

and so by (4.8), for t > 0,

‖∇vt‖∞ ≤ (2t−1/2 + 4s0(1 + α)e(1+α)s0tt1/2)(2πm)−1/2‖v0‖∞.
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Substituting into (4.7) and then into (4.4), using (4.6), we now have that for t ∈ [0, T ]

and z ∈ 1
nZ,

|vnt (z)− vt(z)|

≤ (t+ 1)n−1/2 sup
x∈ 1

nZ

qn0 (x) + 2ε

+ 3s0

∫ t

0

(
sup
x∈ 1

nZ

|vns (x)− vs(x)|+ e(1+α)s0t‖v0‖∞(δ + 2(t+ 1)n−1/2 + n−1/3‖∇g‖∞)

+ (s−1/2 + 2s0(1 + α)e(1+α)s0ts1/2)m−1/2‖v0‖∞n−1/3
)
ds.

The result follows by Gronwall’s inequality and since ‖v0‖∞ = supx∈ 1
nZ

qn0 (x).

By the theory of speed and scale (see for example [21]), (Zt)t≥0 as defined in (4.1)
has scale function S and speed measure density M given by

S(x) =

∫ x

0

1
4e
−ακyg(y)−2dy and M(x) =

4

m
eακxg(x)2. (4.9)

Therefore (Zt)t≥0 has a stationary distribution with density π as defined in (1.15). We
now establish some useful upper bounds on the total variation distance between π and
the law of Zt at a large time t. Recall the definitions of γn and dn in (2.4).

Lemma 4.4. Take z0 ∈ R and suppose (Z
(1)
t )t≥0 and (Z

(2)
t )t≥0 solve the SDEs

dZ
(1)
t = νdt+

m∇g(Z
(1)
t )

g(Z
(1)
t )

dt+
√
mdB

(1)
t , Z

(1)
0 = z0

and dZ
(2)
t = νdt+

m∇g(Z
(2)
t )

g(Z
(2)
t )

dt+
√
mdB

(2)
t , Z

(2)
0 = Z,

where (B
(1)
t )t≥0 and (B

(2)
t )t≥0 are independent Brownian motions and Z is an indepen-

dent random variable with density π. Let

TZ = inf{t ≥ 0 : Z
(1)
t = Z

(2)
t }.

Then for n sufficiently large, if |z0| ≤ dn + 1,

P
(
TZ ≥ 1

2γn
)
≤ (logN)−12C . (4.10)

For A <∞, for t ≥ 0 sufficiently large (depending on A), if |z0| ≤ A,

P
(
TZ ≥ t

)
≤ 2m−1/2t−1/4. (4.11)

Remark 4.5. The first bound (4.10) will be used in the proof of Proposition 4.1, and the
weaker bound in (4.11) will be used in Section 7 in the proof of Theorem 1.1.

Proof. Suppose first that |z0| ≤ dn + 1. Since g(x) ≤ min(e−κx, 1) ∀x ∈ R, for y0 > 0 we
have ∫ ∞

y0

g(y)2eακydy ≤ (2− α)−1κ−1e−(2−α)κy0

and

∫ −y0
−∞

g(y)2eακydy ≤ α−1κ−1e−ακy0 .
(4.12)
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It follows that since dn = κ−1C log logN ,

P
(
|Z(2)

0 | ≥ 13α−1dn

)
≤ 2α−1κ−1

(∫ ∞
−∞

g(y)2eακydy

)−1
(logN)−13C . (4.13)

Take (Zt)t≥0 as defined in (4.1), and for a ∈ R, let

τa = inf{t ≥ 0 : Zt = a}.

By (4.9) and the theory of speed and scale (see for example [21]), and then since
g(y) ∈ [ 12e

−κy, e−κy] ∀y ≥ 0, for x > 0,

Px/2
(
τx < τ0

)
=
S(0)− S(x/2)

S(0)− S(x)
≤
∫ x/2
0

4e−ακye2κydy∫ x
0
e−ακye2κydy

= 4
e(2−α)κx/2 − 1

e(2−α)κx − 1

≤ 8e−(2−α)κx/2

for x ≥ κ−1 log 2. Similarly, since g(y) ∈ [1/2, 1] ∀y ≤ 0,

P−x/2
(
τ−x < τ0

)
=
S(0)− S(−x/2)

S(0)− S(−x)
≤

∫ 0

−x/2 4e−ακydy∫ 0

−x e
−ακydy

= 4
eακx/2 − 1

eακx − 1
≤ 8e−ακx/2

for x ≥ α−1κ−1 log 2. Hence for n sufficiently large,

max
(
P13α−1dn

(
τ26α

−1dn < τ0
)
,P−13α−1dn

(
τ−26α

−1dn < τ0
))
≤ 8(logN)−13C . (4.14)

Let (Bt)t≥0 denote a Brownian motion. Note that ∇g(y)g(y) ∈ [−κ, 0] ∀y ∈ R, and so

|ν + m∇g(y)
g(y) | <

√
2s0m by (2.1). Hence for x ∈ R with |x| ≥ 13α−1dn,

Px
(
τ0 < 1

)
≤ P

(
sup
t∈[0,1]

√
mBt ≥ 13α−1dn −

√
2ms0

)
≤ 2e−

1
2m (13α−1dn−

√
2ms0)

2

(4.15)

by the reflection principle and a Gaussian tail bound. Therefore by a union bound,

P
(
∃j ∈ {1, 2}, t ∈ [0, γn] : |Z(j)

t | ≥ 26α−1dn

)
≤ P

(
|Z(2)

0 | ≥ 13α−1dn

)
+ 2dγnemax

(
P13α−1dn

(
τ26α

−1dn < τ0
)
,P−13α−1dn

(
τ−26α

−1dn < τ0
))

+ 2dγnemax
(
P13α−1dn

(
τ0 < 1

)
,P−13α−1dn

(
τ0 < 1

))
≤ 1

2 (logN)−12C (4.16)

for n sufficiently large, by (4.13), (4.14) and (4.15).
For t ≥ 0, define the σ-algebra FZt = σ((Z

(1)
s )s≤t, (Z

(2)
s )s≤t). Note that if Z(1)

t ≤ Z
(2)
t

then for s ∈ [t, TZ ∨ t],

Z(2)
s − Z(1)

s

= (Z
(2)
t − Z

(1)
t ) +m

∫ s

t

(
∇g(Z

(2)
u )

g(Z
(2)
u )

− ∇g(Z
(1)
u )

g(Z
(1)
u )

)
du+

√
m((B(2)

s −B
(2)
t )− (B(1)

s −B
(1)
t ))

≤ (Z
(2)
t − Z

(1)
t ) +

√
m((B(2)

s −B
(2)
t )− (B(1)

s −B
(1)
t )), (4.17)
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since y 7→ ∇g(y)
g(y) is decreasing. Therefore, for n sufficiently large, for t ≥ 0, if |Z(1)

t | ∨
|Z(2)
t | ≤ 26α−1dn then

P
(
TZ > t+ γ1/2n

∣∣∣FZt ) ≤ P52α−1dn

(√
2mBs ≥ 0 ∀s ∈ [0, γ1/2n ]

)
≤ P52α−1κ−1C+1

(√
2mBs ≥ 0 ∀s ∈ [0, 1]

)
:= p > 0 (4.18)

by Brownian scaling and since dn = κ−1C log logN and γn = b(log logN)4c. Therefore
by (4.16) and a union bound, for n sufficiently large,

P
(
TZ ≥ 1

2γn
)

≤ 1
2 (logN)−12C + P

(
TZ ≥ 1

2γn, |Z
(1)

kγ
1/2
n

| ∨ |Z(2)

kγ
1/2
n

| ≤ 26α−1dn ∀k ∈ N0 ∩ [0, 12γ
1/2
n ]

)
≤ 1

2 (logN)−12C + pbγ
1/2
n /2c

by (4.18), which completes the proof of (4.10).
Now take A <∞ and suppose |z0| ≤ A. Then for t ≥ A4, by a union bound and (4.17),

P
(
TZ ≥ t

)
≤ P

(
|Z(2)

0 | ≥ t1/4
)

+ P2t1/4

(√
2mBs ≥ 0 ∀s ∈ [0, t]

)
≤ 2α−1κ−1

(∫ ∞
−∞

g(y)2eακydy

)−1
e−ακt

1/4

+ P0

(
|B2mt| ≤ 2t1/4

)
by (4.12) and the reflection principle. Since P0

(
|B2mt| ≤ 2t1/4

)
≤ 4t1/4

(4πmt)1/2
, the result

follows by taking t sufficiently large.

Fix x0 ∈ 1
nZ, and take (vnt )t≥0 as in (3.11) with vn0 (x) = pn0 (x0)1x=x0 , and where

(unt )t≥0 is defined in (3.6). The following result will be combined with a bound on

|qnγn − v
n
γn | to show that the event A(1)

t (x1, x2) occurs with high probability for suitable t,
x1 and x2. Recall that we fixed c2 > 0 at the start of Section 4.

Lemma 4.6. Suppose supx∈ 1
nZ,s∈[0,γn]

|uns (x)− g(x− νs)| ≤ e−(logN)c2 . For n sufficiently
large, if |x0| ≤ dn and |x− νγn| ≤ dn + 1,

vnγn(x)

g(x− νγn)
=
π(x0)

g(x0)
pn0 (x0)n−1(1 +O((logN)−4C)).

Proof. Let t0 = (logN)−12C . For x ∈ 1
nZ, let Pnt0,x0

(x) = Px
(
Xn
mt0 = x0

)
, and let P̄nt0,x0

:

R→ [0, 1] denote the linear interpolation of Pnt0,x0
. Let v̄nt0 denote the linear interpolation

of vnt0 . For t ≥ t0 and x ∈ R, let

vt(x) = g(x− νt)Ex−νt
[
v̄nt0(Zt−t0 + νt0)

g(Zt−t0)

]
, (4.19)

where (Zt)t≥0 is defined in (4.1). By (3.13), for t ≥ 0 and y ∈ 1
nZ,

vnt (y) ≤ e(1+α)s0tpn0 (x0)Py (Xn
mt = x0) , (4.20)

and so for t ≥ t0 and x ∈ R,

vt(x)

≤ g(x− νt)pn0 (x0)e(1+α)s0t0
(
Ex−νt

[
g(Zt−t0)−1P̄nt0,x0

(Zt−t0 + νt0)1|Zt−t0+νt0−x0|<n1/4

]
+ Ex−νt

[
g(Zt−t0)−1P̄nt0,x0

(Zt−t0 + νt0)1|Zt−t0+νt0−x0|≥n1/4

] )
. (4.21)
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For the first term on the right hand side, we have that if n is sufficiently large that
n1/4 + n−1 ≤ 1

2mnt0, then by Lemma 3.14,

Ex−νt

[
g(Zt−t0)−1P̄nt0,x0

(Zt−t0 + νt0)1|Zt−t0+νt0−x0|<n1/4

]
≤ n−1(2πmt0)−1/2eO(n−1/5)Ex−νt

[
g(Zt−t0)−1e−(Zt−t0+νt0−x0)

2/(2mt0)
]
.

For the second term on the right hand side of (4.21), by the definition of P̄nt0,x0
and then

by Markov’s inequality, for n sufficiently large,

Ex−νt

[
g(Zt−t0)−1P̄nt0,x0

(Zt−t0 + νt0)1|Zt−t0+νt0−x0|≥n1/4

]
≤ Ex−νt

[
(1 + eκZt−t0 )P0

(
Xn
mt0 ≥ |Zt−t0 + νt0 − x0| − n−1

)
1|Zt−t0+νt0−x0|≥n1/4

]
≤ Ex−νt

[
(1 + eκZt−t0 )e−3κ|Zt−t0+νt0−x0|e3κn

−1

E0

[
e3κX

n
mt0

]
1|Zt−t0+νt0−x0|≥n1/4

]
≤ e10s0t0(e−3κn

1/4

+ eκ|x0|e−2κn
1/4

)

by Lemma 3.8 and since eκZt−t0 e−3κ|Zt−t0+νt0−x0| ≤ e(−νt0+x0)κe−2κ|Zt−t0+νt0−x0| and
1
2mκ

2 = s0. Substituting into (4.21), it follows that

vt(x) ≤ g(x− νt)pn0 (x0)e(1+α)s0t0n−1(2πmt0)−1/2(
O(nt

1/2
0 eκ|x0|e−2κn

1/4

) + eO(n−1/5)Ex−νt

[
g(Zt−t0)−1e−(Zt−t0+νt0−x0)

2/(2mt0)
] )
.

(4.22)

Note that for y ∈ R,

g(y)−1e−(y+νt0−x0)
2/(2mt0) ≤ 1 + eκ(x0−νt0)e(κ−(2mt0)

−1(y+νt0−x0))(y+νt0−x0)

≤ 1 + eκ|x0|+s0t0

since 1
2mκ

2 = s0 and so supz∈R(κz − (2mt0)−1z2) = s0t0. Hence by Lemma 4.4, for n
sufficiently large, if t− t0 ≥ γn/2 and |x− νt| ≤ dn + 1, then

Ex−νt

[
g(Zt−t0)−1e−(Zt−t0+νt0−x0)

2/(2mt0)
]

≤
∫ ∞
−∞

π(y)g(y)−1e−(y+νt0−x0)
2/(2mt0)dy + 3eκ|x0|(logN)−12C . (4.23)

Note that g(y)eακy ≤ min(eακy, e−(1−α)κy) ≤ 1 ∀y ∈ R. Therefore, since y 7→ g(y) is
decreasing, and letting (Bs)s≥0 denote a Brownian motion,∫ ∞

−∞
g(y)eακye−(y+νt0−x0)

2/(2mt0)dy

≤ g(x0 − νt0 − t1/30 )

∫ ∞
−∞

eακye−(y+νt0−x0)
2/(2mt0)dy

+

∫ ∞
−∞

e−(y+νt0−x0)
2/(2mt0)1|y+νt0−x0|>t1/30

dy

≤ (2πmt0)1/2
(
g(x0 − νt0 − t1/30 )Ex0−νt0

[
eακBmt0

]
+ P0

(
|Bmt0 | > t

1/3
0

))
≤ (2πmt0)1/2

(
g(x0 − νt0 − t1/30 )eακ(x0−νt0)e

1
2mα

2κ2t0 + 2e−t
−1/3
0 /(2m)

)
by a Gaussian tail bound. Therefore if |x0| ≤ dn, by (4.23) and since |∇g(y)g(y) | ≤ κ ∀y ∈ R
and g(y)−1e−ακy ≤ 2eκ|y| ∀y ∈ R,

Ex−νt

[
g(Zt−t0)−1e−(Zt−t0+νt0−x0)

2/(2mt0)
]

≤ (2πmt0)1/2π(x0)g(x0)−1(1 +O(t
1/3
0 ) +O(t

−1/2
0 e2κdn(logN)−12C)).

EJP 27 (2022), paper 121.
Page 70/99

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP845
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogies in bistable waves

Substituting into (4.22), we have that if t− t0 ≥ γn/2, |x− νt| ≤ dn + 1 and |x0| ≤ dn,

vt(x)

g(x− νt)
≤ n−1pn0 (x0)π(x0)g(x0)−1(1 +O((logN)−4C)). (4.24)

For a lower bound, note that by (3.12) with a = (1−α)s0 and since (1−u)(2u−1+α) ≥ α−1

∀u ∈ [0, 1], for y ∈ 1
nZ,

vnt0(y) ≥ e−(1−α)s0t0pn0 (x0)Pnt0,x0
(y).

Suppose n is sufficiently large that t1/30 + n−1 ≤ 1
2mnt0, and then by (4.19),

vt(x) ≥ g(x− νt)Ex−νt
[
g(Zt−t0)−1e−(1−α)s0t0pn0 (x0)P̄nt0,x0

(Zt−t0 +νt0)1|Zt−t0+νt0−x0|<t1/30

]
≥ g(x− νt)pn0 (x0)e−(1−α)s0t0g(x0 − νt0 − t1/30 )−1

Ex−νt

[
n−1(2πmt0)−1/2e−(Zt−t0+νt0−x0)

2/(2mt0)eO(n−1t−2
0 )1|Zt−t0+νt0−x0|<t1/30

]
(4.25)

by Lemma 3.14. By Lemma 4.4, for n sufficiently large, if t−t0 ≥ γn/2 and |x−νt| ≤ dn+1,

Ex−νt

[
e−(Zt−t0+νt0−x0)

2/(2mt0)1|Zt−t0+νt0−x0|<t1/30

]
≥
∫ ∞
−∞

π(y)e−(y+νt0−x0)
2/(2mt0)1|y+νt0−x0|<t1/30

dy − (logN)−12C . (4.26)

Since y 7→ g(y) is decreasing,∫ ∞
−∞

g(y)2eακye−(y+νt0−x0)
2/(2mt0)1|y+νt0−x0|<t1/30

dy

≥ g(x0 − νt0 + t
1/3
0 )2eακ(x0−νt0−t1/30 )(2πmt0)1/2

(
1− P0

(
|Bmt0 | > t

1/3
0

))
≥ g(x0)2eακx0(2πmt0)1/2(1−O(e−t

−1/3
0 /(2m))−O(t

1/3
0 ))

by a Gaussian tail bound and since |∇g(y)g(y) | ≤ κ ∀y ∈ R. Therefore if t − t0 ≥ γn/2,

|x− νt| ≤ dn + 1 and |x0| ≤ dn, by (4.26) and (4.25), and since (logN)−12Ct
−1/2
0 π(x0)−1 =

O((logN)−4C),

vt(x)

g(x− νt)
≥ pn0 (x0)n−1π(x0)g(x0)−1(1−O((logN)−4C)). (4.27)

It remains to bound |vnγn(x)− vγn(x)|. By (4.20) and Lemma 3.14, for z ∈ 1
nZ and t > 0,

vnt (z) ≤ e2s0tpn0 (x0)n−1(2πmt)−1/2eO(n−1t−1/2). (4.28)

Therefore, by Lemma 4.3, for n sufficiently large,

sup
x∈ 1

nZ

|vnγn(x)− vγn(x)|

≤
(
C7(n−1/3 + e−(logN)c2 )e2s0t0pn0 (x0)(mt0)−1/2n−1 + 2n−1/3 sup

z∈ 1
nZ

|∇nvnt0(z)|
)
e5s0γnγ2n.

(4.29)
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Let t1 = t0/2; then for z ∈ 1
nZ, by (3.12), and then using (4.28) and Lemma 3.7 in the

last inequality,

|∇nvnt0(z)|

=
∣∣∣n〈vnt1 , φt1,z+n−1

0 − φt1,z0 〉n

+ ns0

∫ t1

0

〈vnt1+s(1− u
n
t1+s)(2u

n
t1+s − 1 + α), φt1,z+n

−1

s − φt1,zs 〉nds
∣∣∣

≤ sup
x∈ 1

nZ,s∈[0,t1]
vnt1+s(x)

(
n〈1, |φt1,z+n

−1

0 − φt1,z0 |〉n + ns0

∫ t1

0

〈1 + α, |φt1,z+n
−1

s − φt1,zs |〉nds
)

≤ e2s0t0pn0 (x0)n−1(mt1)−1/2
(
C5t
−1/2
1 +

∫ t1

0

2s0C5(t1 − s)−1/2ds
)

for n sufficiently large. Hence

sup
z∈ 1

nZ

|∇nvnt0(z)| ≤ e2s0t0pn0 (x0)n−1m−1/2C5(2t−10 + 4s0).

By (4.29) it follows that for n sufficiently large,

sup
x∈ 1

nZ

|vnγn(x)− vγn(x)| ≤ pn0 (x0)n−1(e−
1
2 (logN)c2 ∨ n−1/6).

By (4.24) and (4.27), this completes the proof.

We now show that |qnγn − v
n
γn | is small with high probability, which, combined with

the previous lemma, will imply that A(1)
t (x1, x2) occurs with high probability for suitable

x1, x2 and t. This result is stronger than Proposition 3.2 (but only applies when qn0 (x) =

pn0 (x0)1x=x0
for some x0), and will also be used to show that A(4)

t (x) occurs with high
probability for suitable x and t.

Lemma 4.7. For c, c′ ∈ (0, 1/2) and ` ∈ N, the following holds for n sufficiently large.

Suppose N ≥ n3, and for some x0 ∈ 1
nZ, qn0 (x) = pn0 (x0)1x=x0

and pn0 (x0) ≥
(
n2

N

)1−c
. For

t ≤ γn and z ∈ 1
nZ,

P

(
|qnt (z)− vnt (z)| ≥

( n
N

)1/2−c′
pn0 (x0)1/2n−1/2

)
≤
( n
N

)`
,

where (qnt )t≥0 and (vnt )t≥0 are defined in (3.10) and (3.11) respectively.

Proof. By Lemma 3.14, there exists a constant K5 > 1 such that

P0 (Xn
mt = 0) ≤ K5n

−1t−1/2 ∀n ∈ N, t > 0. (4.30)

By Corollary 3.13 with a = −(1 + α)s0, for t ≥ 0 and z ∈ 1
nZ,

qnt (z) ≤ e(1+α)s0t〈qn0 , φ
t,z
0 〉n +Mn

t (φt,z,−(1+α)s0)

≤ e(1+α)s0tpn0 (x0) min(K5n
−1t−1/2, 1) +Mn

t (φt,z,−(1+α)s0) (4.31)

by (4.30). Let

τ = inf

{
t > 0 : sup

x∈ 1
nZ

qnt (x) ≥ K5e
2s0γnpn0 (x0)n−1t−1/2

}
.
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We will show that τ > γn with high probability. By Lemma 3.12, for t > 0,

sup
s∈[0,t]

|Mn
s (φt,z,−(1+α)s0)−Mn

s−(φt,z,−(1+α)s0)| = sup
s∈[0,t]

|〈qns − qns−, φt,z,−(1+α)s0s 〉n|

≤ e(1+α)s0tN−1.

Therefore, by the Burkholder-Davis-Gundy inequality as stated in Lemma 3.17, for t ≥ 0,
z ∈ 1

nZ and k ∈ N with k ≥ 2,

E

[
sup
s∈[0,t]

|Mn
s∧τ (φt,z,−(1+α)s0)|k

]
≤ C(k)E

[
〈Mn(φt,z,−(1+α)s0)〉k/2t∧τ + e(1+α)s0tkN−k

]
.

(4.32)

For t ≤ γn, by the definition of τ and by Lemma 3.12, and then by Lemma 3.15,

〈Mn(φt,z,−(1+α)s0)〉t∧τ ≤
n

N

∫ t

0

〈(1 + 2m)K5e
2s0γnpn0 (x0)n−1s−1/2, (φt,zs )2e2(1+α)s0(t−s)〉nds

≤ n

N
(1 + 2m)K5e

6s0γnpn0 (x0)

∫ t

0

s−1/2P0

(
Xn

2m(t−s) = 0
)
ds.

(4.33)

Then by (4.30),∫ t

0

s−1/2P0

(
Xn

2m(t−s) = 0
)
ds ≤

∫ t

0

s−1/2K5n
−1(2(t− s))−1/2ds

= K5n
−12−1/2 · 2

∫ t/2

0

s−1/2(t− s)−1/2ds

≤ 23/2K5n
−1.

Hence, by (4.33), for t ≤ γn,

〈Mn(φt,z,−(1+α)s0)〉t∧τ ≤
1

N
(1 + 2m)23/2K2

5e
6s0γnpn0 (x0). (4.34)

For b ∈ (0, 1/2) and `1 ∈ N, take k ∈ N with k > `1/b. Then for n sufficiently large,
for t ≤ γn and z ∈ 1

nZ, by Markov’s inequality and (4.32), and since pn0 (x0)1/2N−1/2 ≥
(n

2

N )1/2N−1/2 = nN−1,

P

(
|Mn

t∧τ (φt,z,−(1+α)s0)| ≥
( n
N

)1/2−b
pn0 (x0)1/2n−1/2

)
≤
( n
N

)−k(1/2−b)
pn0 (x0)−k/2nk/2C(k) · 2

(
1

N
(1 + 2m)23/2K2

5e
6s0γnpn0 (x0)

)k/2
≤
( n
N

)`1
(4.35)

for n sufficiently large, since bk > `1 and γn = b(log logN)4c. Now let b = c/4. Then for n

sufficiently large, since N ≥ n3 and then since pn0 (x0) ≥ (n
2

N )1−c,

( n
N

)1/2−b
n−1/2 ≤

(
n2

N

)(1−c)/2

n−1 ≤ 1
3K5e

2s0γn(γn +N−1)−1/2pn0 (x0)1/2n−1. (4.36)

Since pn0 (x0) ≥ n2N−1, we can take n sufficiently large that

N−1 ≤ 1
3K5e

2s0γn(γn +N−1)−1/2pn0 (x0)n−1 (4.37)
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and also, since α < 1 and N ≥ n3,

e(1+α)s0tt−1/2 ≤ 1
3e

2s0γn(t+N−1)−1/2 ∀t ∈ [N−1, γn] and 1
3n
−1(2N−1)−1/2 ≥ 1.

(4.38)

If |Mn
t∧τ (φt,z,−(1+α)s0)| ≤

(
n
N

)1/2−b
pn0 (x0)1/2n−1/2 and t ∈ [0, τ ∧ γn] then by (4.31), and

since K5 > 1,

qnt (z) ≤ K5e
(1+α)s0tpn0 (x0) min(n−1t−1/2, 1) +

( n
N

)1/2−b
pn0 (x0)1/2n−1/2

≤ K5e
2s0γn(t+N−1)−1/2pn0 (x0)n−1 −N−1, (4.39)

by (4.36), (4.37) and (4.38) (using the second equation in (4.38) for the case t ≤ N−1).
Take `2 ∈ N and let Yn ∼ Poisson((2m + 1)N2−`2rn). Then for t ≥ 0 and z ∈ 1

nZ, since
(qns (z))s≥0 jumps at rate at most (2m+ 1)rnN

2,

P

(
sup

s∈[0,N−`2 ]
|qnt+s(z)− qnt (z)| > N−1

)
≤ P (Yn ≥ 2) ≤ ( 1

2 (2m+ 1)N1−`2n2)2 (4.40)

since rn = 1
2n

2N−1. Therefore, for `1, `2 ∈ N, letting A = N−`2N0 ∩ [0, γn], by a union
bound and (4.39),

P (τ ≤ γn)

≤ P
(
∃t ∈ A, z ∈ 1

nZ : |z − x0| ≤ N5, |Mn
t∧τ (φt,z,−(1+α)s0)| ≥

( n
N

)1/2−b
pn0 (x0)1/2n−1/2

)
+ P

(
∃t ∈ A, z ∈ 1

nZ : |z − x0| ≤ N5, sup
s∈[0,N−`2 ]

|qnt+s(z)− qnt (z)| > N−1

)
+ P

(
∃z ∈ 1

nZ, t ∈ [0, γn] : |z − x0| > N5, qnt (z) > 0
)

≤
∑
t∈A

(2nN5 + 1)
( n
N

)`1
+
∑
t∈A

(2nN5 + 1)( 1
2 (2m+ 1)N1−`2n2)2 + 2e−N

5

,

for n sufficiently large, by (4.35) and (4.40), and by the same argument as Lemma 3.3
for the last term. For `′ ∈ N, take `2 sufficiently large that γnN `2+5n(N1−`2n2)2 =

γnN
7−`2n5 ≤

(
n
N

)`′+1
for n sufficiently large, and then take `1 sufficiently large that

γnN
`2+5n

(
n
N

)`1 ≤ ( nN )`′+1
for n sufficiently large. It follows that for n sufficiently large,

P (τ ≤ γn) ≤
( n
N

)`′
. (4.41)

Note that by (3.13) and then by (4.30), for t ≥ 0 and z ∈ 1
nZ,

vnt (z) ≤ e(1+α)s0t〈qn0 , φ
t,z
0 〉n ≤ e(1+α)s0tpn0 (x0) min(K5n

−1t−1/2, 1). (4.42)

Take k ∈ N with k ≥ 2. By Lemma 3.16 and since qnt , v
n
t ∈ [0, 1], we have that for t ≥ 0

and z ∈ 1
nZ,

|qnt (z)− vnt (z)|k

≤ 32k−1sk0t
k−1

(∫ t

0

〈|qns − vns |k, φt,zs 〉nds+

∫ t

0

sup
x∈ 1

nZ

vns (x)k〈|pns − uns |k, φt,zs 〉nds

)
+ 1τ<t + 3k−1|Mn

t∧τ (φt,z)|k.
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Therefore, by (3.14) in Proposition 3.2 and by (4.42) and (4.41), for `′ ∈ N, for n
sufficiently large, for t ≤ γn and z ∈ 1

nZ,

E
[
|qnt (z)− vnt (z)|k

]
≤ 32k−1sk0t

k−1
∫ t

0

sup
x∈ 1

nZ

E
[
|qns (x)− vns (x)|k

]
ds

+ 32k−1sk0t
k−1e(1+α)s0tkpn0 (x0)k

∫ t

0

(K5n
−1s−1/2 ∧ 1)kC1

(
nk/2sk/4

Nk/2
+N−k

)
eC1s

k

ds

+
( n
N

)`′
+ 3k−1E

[
|Mn

t∧τ (φt,z)|k
]
. (4.43)

Take `′ sufficiently large that for n sufficiently large,

( n
N

)`′
≤ N−k/2

(
n2

N

)k/2
≤ N−k/2pn0 (x0)k/2.

Note that for the second term on the right hand side of (4.43),∫ t

0

(K5n
−1s−1/2 ∧ 1)kC1

(
nk/2sk/4

Nk/2
+N−k

)
eC1s

k

ds

≤ C1

∫ t

0

(K
k/2
5 N−k/2 +N−k)eC1s

k

ds

≤ C1(K
k/2
5 N−k/2 +N−k)teC1t

k

.

By the same argument as in (4.32) and (4.34), since t ≤ γn,

E
[
|Mn

t∧τ (φt,z)|k
]
≤ C(k)

((
1

N
(1 + 2m)23/2K2

5e
2s0γnpn0 (x0)

)k/2
+N−k

)
.

Note that N−1/2pn0 (x0)1/2 ≥ nN−1. Hence substituting into (4.43) and then by Gronwall’s
inequality, there exists a constant K6 = K6(k) such that for n sufficiently large, for
t ∈ [0, γn],

sup
x∈ 1

nZ

E
[
|qnt (x)− vnt (x)|k

]
≤ K6(γkne

(1+α)s0γnkeC1γ
k
n + 1 + es0γnk)N−k/2pn0 (x0)k/2e3

2k−1sk0γ
k−1
n t. (4.44)

The result now follows by Markov’s inequality, taking k ∈ N sufficiently large that kc′ > `,
and then taking n sufficiently large that (4.44) holds with this choice of k.

We are now ready to prove that A(1)
t (x1, x2) occurs with high probability for suitable

t, x1 and x2. For t ≥ 0 and x1 ∈ 1
nZ, let (vnt,t+s(x1, ·))s≥0 denote the solution of{

∂sv
n
t,t+s(x1, ·) = 1

2m∆nv
n
t,t+s(x1, ·) + s0v

n
t,t+s(x1, ·)(1− unt,t+s)(2unt,t+s − 1 + α) for s > 0,

vnt,t(x1, x) = pnt (x1)1x=x1
,

(4.45)
where (unt,t+s)s≥0 is defined in (3.2). Recall the definition of qnt1,t2(x1, x2) in (2.2).

Proposition 4.8. Suppose N ≥ n3 for n sufficiently large. For ` ∈ N, the following holds
for n sufficiently large. For t ∈ [(logN)2 − γn, N2 − γn] and x1, x2 ∈ 1

nZ,

P
(
A

(1)
t (x1, x2)c ∩ {|x1 − µnt | ∨ |x2 − µnt+γn | ≤ dn} ∩ E

′
1

)
≤
( n
N

)`
.
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Proof. Fix c′ ∈ (0, 1/4). By Lemma 4.7, for n sufficiently large,

P

({
|qnt,t+γn(x1, x2)− vnt,t+γn(x1, x2)| ≥

( n
N

)1/2−c′
n−1/2

}
∩

{
pnt (x1) ≥

(
n2

N

)3/4
})

≤
( n
N

)`
. (4.46)

Suppose n is sufficiently large that (logN)2−γn ≥ 1
2 (logN)2∨ logN . Recall the definition

of E′1 in (3.3). By Lemma 4.6, if E′1 occurs and |x1 − µnt | ≤ dn, |x2 − νγn − µnt | ≤ dn + 1

then

vnt,t+γn(x1, x2)

g(x2 − νγn − µnt )
=
π(x1 − µnt )

g(x1 − µnt )
pnt (x1)n−1(1 +O((logN)−4C)).

Suppose |x1 − µnt | ∨ |x2 − µnt+γn | ≤ dn and E′1 occurs. Then if n is sufficiently large, by
the definition of E1 in (2.10) we have pnt (x1)∧ pnt+γn(x2) ≥ 1

10 (logN)−C , |x2− νγn−µnt | ≤
dn + 1, |pnt (x1) − g(x1 − µnt )| ≤ e−(logN)c2 , |pnt+γn(x2) − g(x2 − µnt+γn)| ≤ e−(logN)c2 and

|µnt+γn − (µnt + νγn)| ≤ dγnee−(logN)c2 . Hence for n sufficiently large, if |qnt,t+γn(x1, x2)−
vnt,t+γn(x1, x2)| ≤

(
n
N

)1/2−c′
n−1/2 ≤ n−3/2+2c′ , then A

(1)
t (x1, x2) occurs. By (4.46), this

completes the proof.

The next two lemmas will be used to show that A(2)
t (x1, x2) and A

(3)
t (x1, x2) occur

with high probability for suitable t, x1 and x2. Recall that we fixed c1 > 0 at the start of
Section 4, and recall the definition of D+

n in (2.8).

Lemma 4.9. For ε > 0 sufficiently small, t∗ ∈ N sufficiently large and K ∈ N suffi-
ciently large (depending on t∗), the following holds for n sufficiently large. Suppose
sups∈[0,t∗],x∈ 1

nZ
|uns (x)− g(x− νs)| < ε, and also pnt (x) ∈ [ 16g(x− νt), 6g(x− νt)] ∀t ∈ [0, t∗],

x ≤ νt+D+
n + 1 and pnt (x) ≤ 6g(D+

n ) ∀t ∈ [0, t∗], x ≥ νt+D+
n . Suppose qn0 (z) = pn0 (z)1z≥`

for some ` ∈ 1
nZ ∩ [K,D+

n ]. Then for z ≤ νt∗ +D+
n + 1,

vnt∗(z)

pnt∗(z)
≤ 1

2c1e
−(1+ 1

2 (1−α))κ(`−(z−νt
∗)∨K+2),

where (vnt )t≥0 is defined in (3.11).

Proof. Let λ = 1
2 (1− α). Note that since (α− 2)2 > 1, we have 1

4 (1− α2) < 1− α. Take
a ∈ ( 1

4 (1− α2), 1− α) so that

λ2 + λα− a = 1
2 (1− α)( 1

2 (1− α) + α)− a = 1
4 (1− α2)− a < 0.

Take t∗ ∈ N sufficiently large that 144e(λ
2+λα−a)s0t∗ ≤ 1

3c1e
−2κ(1+λ). Take ε ∈ (0, 12 (1−α))

sufficiently small that (1− ε)(2ε− 1 + α) < −a. Then take K ∈ N sufficiently large that
νt∗ ≤ K/6, 2s0t

∗e4s0t
∗
e−λκK/6 ≤ 1, 72e5s0t

∗
e−(1−λ)κK/2 ≤ 1

2c1e
−2κ(1+λ), 2g(K/3) + 2ε <

1− α and
(1− g(x)− ε)(2(g(x) + ε)− 1 + α) ≤ −a for x ≥ K/3.

Then for s ≥ 0 and x ∈ 1
nZ, if x− νs ≥ K/3 and |uns (x)− g(x− νs)| < ε we have

(1− uns (x))(2uns (x)− 1 + α) + a ≤ 0. (4.47)

If instead x− νs ≤ K/3, then by (3.13),

vns (x) ≤ e(1+α)s0sEx
[
pn0 (Xn

ms)1Xnms≥`
]
≤ e(1+α)s0s sup

y≥`
pn0 (y)P0

(
Xn
ms ≥ `− 1

3K − νs
)
.
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Moreover, for u ∈ [0, 1], we have (1− u)(2u− 1 + α) + a ≤ 2.
Suppose ` ∈ [K,D+

n ] and sups∈[0,t∗],x∈ 1
nZ
|uns (x) − g(x − νs)| < ε. For z ∈ 1

nZ and
t ∈ [0, t∗] we have by (3.12) and (4.47) that

vnt (z) ≤ e−as0t〈qn0 , φ
t,z
0 〉n +

∫ t

0

2s0e
−as0(t−s) sup

x−νs≤K/3
vns (x)ds

≤ sup
x≥`

pn0 (x)

(
e−as0tPz (Xn

mt ≥ `) + 2s0e
(1+α)s0t

∫ t

0

P0

(
Xn
ms ≥ `− 1

3K − νs
)
ds

)
.

(4.48)

By Markov’s inequality and Lemma 3.8, and since 1
2mκ

2 = s0,

Pz (Xn
mt ≥ `) = P0 (Xn

mt ≥ `− z) ≤ e−λκ(`−z)E0

[
eλκX

n
mt

]
= e−λκ(`−z)e(λ

2+O(n−1))s0t.

Therefore, applying the same argument to the second term on the right hand side
of (4.48),

vnt (z) ≤ sup
x≥`

pn0 (x)(e−λκ(`−z)e(λ
2−a+O(n−1))s0t + 2s0te

(1+α)s0te−λκ(`−
1
3K−νt)e(λ

2+O(n−1))s0t)

≤ sup
x≥`

pn0 (x)e−λκ(`−z)e(λ
2−a+O(n−1))s0t(1 + 2s0te

(1+α+a+λα)s0te−λκ(z−
1
3K)),

since κν = αs0. Hence for z ∈ [ 12K + νt∗, D+
n + 1 + νt∗], using our choice of K in the

second inequality, using that κν = αs0 in the third line, and using our choice of t∗ in the
last inequality,

vnt∗(z)

pnt∗(z)
≤ 6g(`)

1
6g(z − νt∗)

e−λκ(`−z)e(λ
2−a+O(n−1))s0t

∗
(1 + 2s0t

∗e4s0t
∗
e−λκK/6)

≤ 36e−κ` · 2eκ(z−νt
∗)e−λκ(`−z)e(λ

2−a+O(n−1))s0t
∗
· 2

= 144e−(1+λ)κ(`−(z−νt
∗))e(λ

2+αλ−a+O(n−1))s0t
∗

≤ 1
2c1e

−(1+λ)κ(`−(z−νt∗)+2) (4.49)

for n sufficiently large. Also, for any z ∈ 1
nZ and t ≥ 0, by (3.13) and then by Markov’s

inequality and Lemma 3.8, and since 1
2mκ

2 = s0,

vnt (z) ≤ e(1+α)s0t sup
x≥`

pn0 (x)Pz (Xn
mt ≥ `) ≤ e(1+α)s0t sup

x≥`
pn0 (x)e−κ(`−z)E0

[
eκX

n
mt

]
≤ e(1+α)s0t sup

x≥`
pn0 (x)e2s0te−κ(`−z)

for n sufficiently large. Therefore, for z ≤ 1
2K + νt∗ ≤ 2

3K, using that g(`) ≤ e−κ`,
g(K/2)−1 ≤ 2eκK/2 and κν = αs0 in the second inequality, using that `− 1

2K ≥
1
2K in the

third inequality, and using our choice of K in the last inequality,

vnt∗(z)

pnt∗(z)
≤ e(1+α)s0t

∗ 6g(`)
1
6g(K/2)

e2s0t
∗
e−κ(`−

1
2K−νt

∗) ≤ 72e5s0t
∗
e−2κ(`−

1
2K)

≤ 72e5s0t
∗
e−(1+λ)κ(`−

1
2K)e−(1−λ)κ·

1
2K

≤ 1
2c1e

−(1+λ)κ(`− 1
2K+2).

By (4.49), this completes the proof.
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Lemma 4.10. For ε > 0 sufficiently small and t∗ ∈ N sufficiently large, for K ∈ N
sufficiently large (depending on t∗), the following holds for n sufficiently large. Suppose
sups∈[0,t∗], x∈ 1

nZ
|uns (x) − g(x − νs)| < ε, and pnt (x) ≥ 1

6g(x − νt) ∀t ∈ [0, t∗], x ≤ νt + D+
n .

Suppose qn0 (z) = pn0 (z)1z≤` for some ` ∈ 1
nZ with ` ≤ −K. Then for z ≤ νt∗ +D+

n ,

vnt∗(z)

pnt∗(z)
≤ 1

2c1e
− 1

2ακ((z−νt
∗)−`+1), (4.50)

where (vnt )t≥0 is defined in (3.11).

Proof. Take c ∈ (0, α2/4). Take t∗ ∈ N sufficiently large that e(c−α
2/4)s0t

∗
< 1

48c1e
−κ.

Suppose sups∈[0,t∗],x∈ 1
nZ
|uns (x) − g(x − νs)| < c/4. Take K ∈ N sufficiently large that

g(−K/2) ≥ 1 − c/4, 2s0t
∗e13s0t

∗
e−κK/2 < 1

48c1e
−κ and e7s0t

∗
e−κK < 1

24c1e
−κ. Then for

s ∈ [0, t∗] and x ∈ 1
nZ with x ≤ − 1

2K + νs, we have

(1− uns (x))(2uns (x)− 1 + α) ≤ ( 1
4c+ 1− g(x− νs))(1 + α) ≤ c.

Take ` ∈ 1
nZ with ` ≤ −K. By (3.12) with a = −cs0, and since (1− u)(2u− 1 + α)− c ≤ 2

for u ∈ [0, 1], for t ∈ [0, t∗] and z ∈ 1
nZ,

vnt (z) ≤ ecs0t〈qn0 , φ
t,z
0 〉n + s0

∫ t

0

ecs0(t−s)〈2vns (·)1·≥− 1
2K+νs, φ

t,z
s 〉nds

≤ ecs0tPz (Xn
mt ≤ `) + 2s0e

cs0t

∫ t

0

sup
x≥− 1

2K+νs

vns (x)ds. (4.51)

For s ∈ [0, t] and x ≥ − 1
2K + νs, by (3.13),

vns (x) ≤ e(1+α)s0sPx (Xn
ms ≤ `) ≤ e(1+α)s0sP0

(
Xn
ms ≥ −`− 1

2K + νs
)

≤ e(1+α)s0se3κ(`+ 1
2K−νs)e10s0s,

for n sufficiently large, by Markov’s inequality and Lemma 3.8, and since 1
2mκ

2 = s0.
Hence by (4.51) and then by Lemma 3.8 and since 1

2mκ
2 = s0, κν = αs0 and ` ≤ −K, for

z ≤ νt∗,

vnt∗(z) ≤ ecs0t
∗
e−

1
2ακ(z−`)E0

[
e

1
2ακX

n
mt∗
]

+ 2s0t
∗e13s0t

∗
e3κ(`+

1
2K)

≤ e− 1
2ακ((z−νt

∗)−`)e(c−
1
4α

2+O(n−1))s0t
∗

+ 2s0t
∗e13s0t

∗
eκ`e−κK/2

≤ 1
24c1e

− 1
2ακ((z−νt

∗)−`+1),

where the last line follows by our choice of t∗ and K and since z ≤ νt∗. Hence for z ≤ νt∗,
since pnt∗(z) ≥ 1

12 , we have that (4.50) holds. For z ∈ [νt∗, νt∗ +D+
n ], by (3.13) and then

by Markov’s inequality and Lemma 3.8, and since ` ≤ −K, for n sufficiently large,

vnt∗(z) ≤ e(1+α)s0t
∗
Pz (Xn

mt∗ ≤ `) ≤ e(1+α)s0t
∗
e−2κ(z−`)e5s0t

∗
≤ e7s0t

∗
e−κKe−κze−κ(z−`)

≤ 1
24c1e

−κze−
1
2ακ((z−νt

∗)−`+1)

by our choice of K and since z − ` ≥ 0. The result follows since pnt∗(z) ≥ 1
12e
−κ(z−νt∗) ≥

1
12e
−κz.

For t ≥ 0 and x1 ∈ 1
nZ, let (vn,+t,t+s(x1, ·))s≥0 denote the solution of{

∂sv
n,+
t,t+s(x1, ·) = 1

2m∆nv
n,+
t,t+s(x1, ·) + s0v

n,+
t,t+s(x1, ·)(1−unt,t+s)(2unt,t+s − 1 + α) for s > 0,

vn,+t,t (x1, x) = pnt (x)1x≥x1 ,
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where (unt,t+s)s≥0 is defined in (3.2). Similarly, let (vn,−t,t+s(x1, ·))s≥0 denote the solution of{
∂sv

n,−
t,t+s(x1, ·) = 1

2m∆nv
n,−
t,t+s(x1, ·) + s0v

n,−
t,t+s(x1, ·)(1−unt,t+s)(2unt,t+s − 1 + α) for s > 0,

vn,−t,t (x1, x) = pnt (x)1x≤x1 .

We now use Lemmas 4.9 and 4.10 to prove the following result.

Lemma 4.11. For t∗ ∈ N sufficiently large, and K ∈ N sufficiently large (depending on
t∗), for ` ∈ N, the following holds for n sufficiently large. For t ∈ [(logN)2 − t∗, N2 − t∗]
and x1, x2 ∈ 1

nZ with x1 − x2 ≤ (logN)2/3,

P
(
A

(2)
t (x1, x2)c ∩ {x1 − µnt ∈ [K,D+

n ], x2 − µnt+t∗ ≤ D+
n } ∩ E′1

)
≤
( n
N

)`
. (4.52)

For t ∈ [(logN)2 − t∗, N2 − t∗] and x1, x2 ∈ 1
nZ with x2 − x1 ≤ (logN)2/3,

P
(
A

(3)
t (x1, x2)c ∩ {x1 − µnt ≤ −K} ∩ E′1

)
≤
( n
N

)`
. (4.53)

Proof. Take t∗,K ∈ N sufficiently large that Lemmas 4.9 and 4.10 hold. Recall the
definition of E′1 in (3.3). Suppose n is sufficiently large that (logN)2 − t∗ ≥ 1

2 (logN)2 ∨
logN , and E′1 occurs. Take t ∈ [(logN)2 − t∗, N2 − t∗] and x1, x2 ∈ 1

nZ with x1 − x2 ≤
(logN)2/3. Recall from (2.8) that D+

n = (1/2 − c0)κ−1 log(N/n). Take c3 ∈ (0, c0) and

suppose |qn,+t,t+t∗(x1, x2) − vn,+t,t+t∗(x1, x2)| ≤
(
n
N

)1/2−c3 . Then for n sufficiently large, by
Lemma 4.9 and (3.3), and by the definition of the event E1 in (2.10), if x1 − µnt ∈ [K,D+

n ]

and x2 − µnt+t∗ ≤ D+
n ,

qn,+t,t+t∗(x1, x2)

pnt+t∗(x2)
≤ 1

2c1e
−(1+ 1

2 (1−α))κ(x1−(x2−νt∗)∨(µnt +K)+2) + 5g(D+
n )−1

( n
N

)1/2−c3
≤ c1e−(1+

1
2 (1−α))κ(x1−(x2−νt∗)∨(µnt +K)+2)

for n sufficiently large, since x1−x2 ≤ (logN)2/3 and g(D+
n )−1 ≤ 2

(
N
n

)1/2−c0
with c0 > c3.

By Proposition 3.2, the first statement (4.52) follows.
Now take t ∈ [(logN)2−t∗, N2−t∗] and x1, x2 ∈ 1

nZ with x2−x1 ≤ (logN)2/3. Suppose

E′1 occurs and suppose |qn,−t,t+t∗(x1, x2)− vn,−t,t+t∗(x1, x2)| ≤
(
n
N

)1/4
. If x1 − µnt ≤ −K, then

for n sufficiently large, x2 − µnt+t∗ ≤ (logN)2/3 and so pnt+t∗(x2)−1 ≤ 10eκ(logN)2/3 . Hence
by Lemma 4.10,

qn,−t,t+t∗(x1, x2)

pnt+t∗(x2)
≤ 1

2c1e
− 1

2ακ((x2−νt∗)−x1+1) + 10eκ(logN)2/3
( n
N

)1/4
≤ c1e−

1
2ακ((x2−νt∗)−x1+1)

for n sufficiently large. By Proposition 3.2, the second statement (4.53) follows, which
completes the proof.

We now show that A(4)
t (x) and A(5)

t (x) occur with high probability for suitable x and t.

Lemma 4.12. For ` ∈ N, the following holds for n sufficiently large. For x ∈ 1
nZ and

t ≥ 0,

P
(
A

(5)
t (x)c

)
≤
( n
N

)`
. (4.54)

If there exists a2 > 3 such that N ≥ na2 for n sufficiently large, then for t ∈ [(logN)2 −
εn, N

2 − εn] and x ∈ 1
nZ,

P
(
A

(4)
t (x)c ∩ {x− µnt ≤ D+

n } ∩ E′1
)
≤
( n
N

)`
. (4.55)

EJP 27 (2022), paper 121.
Page 79/99

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP845
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogies in bistable waves

Proof. For t ≥ 0 and x1, x2 ∈ 1
nZ, by Corollary 3.13 with a = −(1 + α)s0,

E
[
qnt,t+εn(x1, x2)

]
≤ e(1+α)s0εnPx2

(
Xn
mεn = x1

)
≤ e(1+α)s0εne−(logN)3/2|x1−x2|em(logN)3εn

for n sufficiently large, by Markov’s inequality and Lemma 3.8. Recall from (2.4) that
εn ≤ (logN)−2. Therefore, for n sufficiently large, for x ∈ 1

nZ, by a union bound and
then by Markov’s inequality,

P
(
A

(5)
t (x)c

)
≤

∑
x′∈ 1

nZ,|x−x′|≥1

P
(
qnt,t+εn(x′, x) ≥ N−1

)
≤ Ne(1+α)s0εnNm

∑
x′∈ 1

nZ,|x−x′|≥1

e−(logN)3/2|x−x′|,

which completes the proof of (4.54).
From now on, assume there exists a2 > 3 such that N ≥ na2 for n sufficiently

large. Suppose n is sufficiently large that (logN)2 − εn ≥ 1
2 (logN)2 ∨ logN , and take

t ∈ [(logN)2 − εn, N2 − εn] and x1, x2 ∈ 1
nZ with |x1 − x2| ≤ 1. Recall the definition of

(vnt,t+s(x1, ·))s≥0 in (4.45). By (3.13), and then by Lemma 3.14, there exists a constant
K7 <∞ such that for n sufficiently large,

vnt,t+εn(x1, x2) ≤ e(1+α)s0εnpnt (x1)Px2

(
Xn
mεn = x1

)
≤ K7n

−1ε−1/2n pnt (x1).

Suppose E′1 occurs and x1 ≤ µnt +D+
n . Then for n sufficiently large, by the definition of

the event E1 in (2.10) and since |x1 − x2| ≤ 1, there exists a constant K8 <∞ such that
pnt (x1)

pnt+εn (x2)
≤ K8, and so

vnt,t+εn(x1, x2)

pnt+εn(x2)
≤ K7K8n

−1ε−1/2n . (4.56)

Recall from (2.8) that D+
n = (1/2− c0)κ−1 log(N/n). Take c′ ∈ (0, c0/2) and suppose

|qnt,t+εn(x1, x2)− vnt,t+εn(x1, x2)| ≤
( n
N

)1/2−c′
pnt (x1)1/2n−1/2.

By (4.56) and then since x2 ≤ µnt +D+
n + 1 and by the definition of K8,

qnt,t+εn(x1, x2)

pnt+εn(x2)
≤ K7K8n

−1ε−1/2n + pnt+εn(x2)−1/2
( n
N

)1/2−c′ ( pnt (x1)

pnt+εn(x2)

)1/2

n−1/2

≤ K7K8n
−1ε−1/2n + 101/2e

1
2κ(D

+
n+2)

( n
N

)1/2−c′
K

1/2
8 n−1/2

≤ (K7K8 + 1)n−1ε−1/2n (4.57)

for n sufficiently large, since N ≥ n3 and so e
1
2κD

+
n

(
n
N

)1/2−c′
=
(
n
N

)1/4+c0/2−c′ ≤ n−1/2.
For c ∈ (0, 12 (a2 − 2)−1(a2 − 3)), we have 3/2 − 2c < a2(1/2 − c) and so since N ≥ na2

we have pnt (x1) ≥ 1
10e
−κD+

n ≥ 1
10

(
n
N

)1/2 ≥ (n2

N

)1−c
for n sufficiently large. Hence by

Lemma 4.7, for n sufficiently large,

P
(
{|qnt,t+εn(x1, x2)− vnt,t+εn(x1, x2)| ≥

( n
N

)1/2−c′
pnt (x1)1/2n−1/2}

∩ {x1 ≤ µnt +D+
n } ∩ E′1

)
≤
( n
N

)`+1

,

and by (4.57), it follows that for n sufficiently large,

P
(
{qnt,t+εn(x1, x2) > n−1ε−1n pnt+εn(x2)} ∩ {x1 − µnt ≤ D+

n } ∩ E′1
)
≤
( n
N

)`+1

.

By the same argument as for the proof of (4.54), the second statement (4.55) now
follows.
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Finally we show that A(6)
t (x) occurs with high probability; the proof is similar to the

first half of the proof of Lemma 4.12.

Lemma 4.13. For ` ∈ N and t∗ ∈ N, the following holds for n sufficiently large. For
t ≥ 0 and x ∈ 1

nZ,

P
(
A

(6)
t (x)c

)
≤
( n
N

)`
.

Proof. By Corollary 3.13 with a = −(1 + α)s0, for k ∈ [t∗δ−1n ] and x′ ∈ 1
nZ,

E
[
qnt,t+kδn(x′, x)

]
≤ e(1+α)s0t

∗
Px
(
Xn
mkδn = x′

)
≤ e(1+α)s0t

∗
e−(logN)1/2|x−x′|E0

[
eX

n
mkδn

(logN)1/2
]

≤ e(1+α)s0t
∗
e−(logN)1/2|x−x′|emt

∗ logN

for n sufficiently large, where the second inequality follows by Markov’s inequality, and
the third by Lemma 3.8. Therefore, by a union bound and Markov’s inequality,

P
(
∃x′ ∈ 1

nZ, k ∈ [t∗δ−1n ] : |x− x′| ≥ (logN)2/3, qnt,t+kδn(x′, x) ≥ N−1
)

≤ t∗δ−1n ·Ne(1+α)s0t
∗
Nmt∗

∑
x′∈ 1

nZ,|x−x′|≥(logN)2/3

e−(logN)1/2|x−x′|

≤
( n
N

)`
for n sufficiently large.

We can now end this section by proving Proposition 4.1.

Proof of Proposition 4.1. Note that if x1 − x2 > (logN)2/3 and A
(6)
t (x2) occurs, then

A
(2)
t (x1, x2) occurs. Similarly, if x2−x1 > (logN)2/3 and A(6)

t (x2) occurs, then A(3)
t (x1, x2)

occurs. The result now follows directly from Proposition 4.8 and Lemmas 4.11, 4.12
and 4.13.

5 Event E3 occurs with high probability

In this section, we will prove the following result.

Proposition 5.1. For K ∈ N sufficiently large, for c2 > 0, if N ≥ n3 for n sufficiently
large, then for n sufficiently large, if pn0 (x) = 0 ∀x ≥ N ,

P ((E3)c ∩ E1) ≤
( n
N

)2
.

By the definition of the events E1 and E3 in (2.10) and (2.12), Proposition 5.1 follows
directly from the following result.

Lemma 5.2. For ` ∈ N, for K ∈ N sufficiently large, for c2 > 0, if N ≥ n3 for n
sufficiently large then the following holds for n sufficiently large. If pn0 (y) = 0 ∀y ≥ N

then for t ∈ [(logN)2 − δn, N2], x ∈ 1
nZ with x ≥ −N5 and j ∈ {1, 2, 3, 4},

P
(
B

(j)
t (x)c ∩ E1 ∩ {x ≤ µnt +D+

n + 1}
)
≤
( n
N

)`
. (5.1)

Proof. We begin by proving (5.1) with j = 1. For x ∈ 1
nZ, i ∈ [N ] and 0 ≤ t1 <

t2, let Ax,i[t1, t2) denote the total number of points in the time interval [t1, t2) in
the Poisson processes (Px,i,i′)i′∈[N ]\{i}, (Sx,i,i′)i′∈[N ]\{i}, (Qx,i,i′,i′′)i′,i′′∈[N ]\{i},i′ 6=i′′ and
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(Rx,i,y,i′)i′∈[N ],y∈{x±n−1}. (These points correspond to the times at which the individual
(x, i) may be replaced by offspring of another individual.) For t ≥ 0 and x ∈ 1

nZ, let

Cn,1t (x) = {(i, j) : i 6= j ∈ [N ],Px,i,j [t, t+ δn) = 1 = Ax,i[t, t+ δn), Ax,j [t, t+ δn) = 0,

ξnt (x, j) = 1}.

Recall the definition of Cnt (x, x) in (2.5). If (i, j) ∈ Cn,1t (x), then

(ζn,t+δnδn
(x, i), θn,t+δnδn

(x, i)) = (x, j) = (ζn,t+δnδn
(x, j), θn,t+δnδn

(x, j)),

and so (i, j), (j, i) ∈ Cnt (x, x). Note that if (i, j) ∈ Cn,1t (x) then (j, i) /∈ Cn,1t (x); therefore

|Cnt (x, x)| ≥ 2|Cn,1t (x)|. (5.2)

For t ≥ 0, x ∈ 1
nZ and i ∈ [N ], let

Dnt (x, i) = {(y, j) ∈ 1
nZ× [N ] : (ζn,t+ss (y, j), θn,t+ss (y, j)) = (x, i) for some s ∈ [0, δn]},

(5.3)
the set of labels of individuals whose time-t ancestor at some time in [t, t+ δn] is (x, i).
Define

Mn
t = max

x∈ 1
nZ∩[−2N5,N5], i∈[N ]

|Dnt (x, i)|. (5.4)

For t ≥ 0 and x ∈ 1
nZ, let

Cn,2t (x)

=
{

(i, j) : i 6= j ∈ [N ],
(
Px,i,j + Sx,i,j +

∑
k∈[N ]\{i,j}

Qx,i,j,k
)

[t, t+ δn) > 0, ξnt (x, j) = 1
}
.

(5.5)

Suppose (i, j) ∈ Cnt (x, x), and (i, j), (j, i) /∈ Cn,2t (x). Then there exist s ∈ [0, δn], (y, k) /∈
{(x, i), (x, j)} and i′ ∈ {i, j} such that (ζn,t+δns (x, i′), θn,t+δns (x, i′)) = (y, k). Then letting
(x0, i0) = (ζn,t+δnδn

(x, i), θn,t+δnδn
(x, i)), we have (x, i), (x, j), (y, k) ∈ Dnt (x0, i0). Since

ζn,t+δn(x, i) only jumps in increments of±n−1, and (ζn,t+δns (x, i), θn,t+δns (x, i)) ∈ Dnt (x0, i0)

∀s ∈ [0, δn], we have |x− x0| < |Dnt (x0, i0)|n−1. Hence if x0 ∈ [−2N5, N5] then |x− x0| <
Mn

t n
−1. Therefore, by the definition of qn,− in (2.3), if qn,−t,t+δn(−2N5, x) = 0 and pnt (y) = 0

∀y ≥ N5, then

|Cnt (x, x)| ≤ 2|Cn,2t (x)|+2

(
Mn

t

2

)
|{(x0, i0) ∈ 1

nZ×[N ] : |x−x0| <Mn
t n
−1, |Dnt (x0, i0)| ≥ 3}|.

(5.6)
We now use the inequalities (5.2) and (5.6) to give lower and upper bounds on |Cnt (x, x)|.

We begin with a lower bound. For x ∈ 1
nZ, i ∈ [N ] and 0 ≤ t1 < t2, let A1,x,i[t1, t2)

denote the total number of points in the time interval [t1, t2) in the Poisson processes
(Px,i,j)j∈[N ]\{i},ξnt1 (x,j)=1. Let A2,x,i[t1, t2) denote the total number of points in the time

interval [t1, t2) in the Poisson processes (Px,i,j)j∈[N ]\{i},Ax,j [t1,t2)>0. Now fix t ≥ 0 and
x ∈ 1

nZ and let

A(1) = |{i ∈ [N ] : ξnt (x, i) = 1,Ax,i[t, t+ δn) = 1 = A1,x,i[t, t+ δn)}|,

A(2) = |{i ∈ [N ] : ξnt (x, i) = 0,Ax,i[t, t+ δn) = 1 = A1,x,i[t, t+ δn)}|,
and B = |{i ∈ [N ] : Ax,i[t, t+ δn) = 1 = A2,x,i[t, t+ δn)}|.

Then by (5.2) and the definition of Cn,1t (x),

|Cnt (x, x)| ≥ 2|Cn,1t (x)| ≥ 2(A(1) +A(2) −B). (5.7)

EJP 27 (2022), paper 121.
Page 82/99

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP845
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogies in bistable waves

Let (Xn
j )∞j=1 be i.i.d., let (Y nj )∞j=1 be i.i.d., and let (Znj )∞j=1 be i.i.d., with

Xn
1 ∼ Poisson (rnδn(1− (α+ 1)sn))

Y n1 ∼ Poisson (rnδn(αsn +N−1sn(N − 2)))

and Zn1 ∼ Poisson (mrnδn).

Recall from (1.11) that rn = 1
2n

2N−1 and sn = 2s0n
−2. Then conditional on pnt (x),

A(1) ∼ Bin(Npnt (x), p1) and A(2) ∼ Bin(N(1− pnt (x)), p2) are independent, with

p1 = P

Npnt (x)−1∑
j=1

Xn
j = 1,

N−1∑
j=Npnt (x)

Xn
j +

N−1∑
j=1

Y nj +

2N∑
j=1

Znj = 0


= 1pnt (x)>0

(
1
2n

2δn(pnt (x)−N−1)(1 +O(n−2)) +O((n2δn(pnt (x)−N−1))2)
)

·
(
1−O(n2δn)

)
= 1pnt (x)>0

1
2n

2δn(pnt (x)−N−1)(1 +O(n−2 + n2δn))

and

p2 = P

Npnt (x)∑
j=1

Xn
j = 1,

N−1∑
j=Npnt (x)+1

Xn
j +

N−1∑
j=1

Y nj +

2N∑
j=1

Znj = 0


= 1

2n
2δnp

n
t (x)(1 +O(n−2 + n2δn)).

Hence

E
[
A(1) +A(2)

∣∣∣pnt (x)
]

= 1
2Nn

2δnp
n
t (x)(1 +O(n−2 + n2δn +N−1pnt (x)−1)).

Recall from (2.4) that δn = bN1/2n2c−1. Suppose n is sufficiently large that (logN)2−δn ≥
1
2 (logN)2. Then on the event E1, for t ∈ [(logN)2−δn, N2] and x ≤ µnt +D+

n +1, by (2.10)

and (2.8) we have N−1pnt (x)−1 ≤ 10N−1eκ(D
+
n+1) ≤ 10eκN−1/2n−1/2 and

Nn2δnp
n
t (x) ≥ 1

5N
1/2g(x− µnt ) ≥ 1

10N
1/2e−κ(D

+
n+1) ≥ 2n1/2 (5.8)

for n sufficiently large. Hence for n sufficiently large, for t ∈ [(logN)2 − δn, N2] and
x ∈ 1

nZ, by conditioning on pnt (x) and then applying Theorem 2.3(c) in [25],

P
({
A(1) +A(2) ≤ 1

2Nn
2δnp

n
t (x)(1− n−1/5)

}
∩ {x ≤ µnt +D+

n + 1} ∩ E1

)
≤ e− 1

3n
−2/5n1/2

= e−
1
3n

1/10

.

(5.9)

For an upper bound on B, first let

A′ = |{i ∈ [N ] : Ax,i[t, t+ δn) > 0}|.

Then A′ ∼ Bin(N, p) where

p = P

N−1∑
j=1

(Xn
j + Y nj ) +

2N∑
j=1

Znj > 0

 = 1
2n

2δn(1 + 2m)(1 +O(n2δn + n−2)).

Conditional on A′, we have B ≤ Bin(A′, A′−1
(1+2m)N−1 ). By Theorem 2.3(b) in [25], for n

sufficiently large,
P
(
A′ ≥ Nn2δn(1 + 2m)

)
≤ e− 1

8Nn
2δn(1+2m). (5.10)
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Moreover, since δn = bN1/2n2c−1, letting B′ ∼ Bin(b2N1/2(1 + 2m)c, 2N−1/2), for n
sufficiently large,

P
(
B ≥ n1/4, A′ ≤ Nn2δn(1 + 2m)

)
≤ P

(
B′ ≥ n1/4

)
≤ e−n

1/4

(1 + (e− 1)2N−1/2)b2N
1/2(1+2m)c

≤ e− 1
2n

1/4

, (5.11)

where the second inequality follows by Markov’s inequality. Therefore, by (5.7), (5.8),
(5.9), (5.10) and (5.11), for n sufficiently large, for t ∈ [(logN)2 − δn, N2] and x ∈ 1

nZ,

P
({
|Cnt (x, x)| ≤ Nn2δnpnt (x)(1− 2n−1/5)

}
∩ {x ≤ µnt +D+

n + 1} ∩ E1

)
≤ e− 1

3n
1/10

+ e−
1
8N

1/2

+ e−
1
2n

1/4

. (5.12)

For an upper bound on |Cnt (x, x)|, note that by the definition of Cn,2t (x) in (5.5),
conditional on pnt (x),

|Cn,2t (x)| ∼ Bin(Npnt (x)(N − 1), p′),

where

p′ = P

((
Px,1,2 + Sx,1,2 +

∑
k∈[N ]\{1,2}

Qx,1,2,k
)

[0, δn) > 0

)
= rnδn(1 +O(rnδn + n−2N−1)).

Then Npnt (x)(N − 1)p′ = 1
2Nn

2δnp
n
t (x)(1 +O(n2N−1δn +N−1)). Hence for n sufficiently

large, for t ∈ [(logN)2 − δn, N2] and x ∈ 1
nZ, by Theorem 2.3(b) in [25] and (5.8),

P
({
|Cn,2t (x)| ≥ 1

2Nn
2δnp

n
t (x)(1 + n−1/5)

}
∩ {x ≤ µnt +D+

n + 1} ∩ E1

)
≤ e− 1

3n
−2/5·n1/2

= e−
1
3n

1/10

. (5.13)

We now bound the second term on the right hand side of (5.6). For x ∈ 1
nZ, i ∈ [N ] and

0 ≤ t1 < t2, let Bx,i[t1, t2) denote the total number of points in the time interval [t1, t2)

in the Poisson processes (Px,i′,i)i′∈[N ]\{i}, (Sx,i′,i)i′∈[N ]\{i}, (Qx,i′,i,i′′)i′,i′′∈[N ]\{i},i′ 6=i′′ and

(Ry,i′,x,i)i′∈[N ],y∈{x±n−1}. (These points correspond to the times at which offspring of the
individual (x, i) may replace another individual.) Let B1,x,i[t1, t2) denote the total number
of points in the interval [t1, t2) in (Px,i′,i)i′∈[N ]\{i},Bx,i′ [t1,t2)>0, (Sx,i′,i)i′∈[N ]\{i},Bx,i′ [t1,t2)>0,

(Qx,i′,i,i′′)i′,i′′∈[N ]\{i},i′′ 6=i′,Bx,i′ [t1,t2)>0 and (Ry,i′,x,i)i′∈[N ],y∈{x±n−1},By,i′ [t1,t2)>0. Then fix

x ∈ 1
nZ and t ≥ 0, and let

C(1) = |{i ∈ [N ] : Bx,i[t, t+ δn) ≥ 2}|

and C(2) = |{i ∈ [N ] : Bx,i[t, t+ δn) = 1 = B1,x,i[t, t+ δn)}|.

By the definition of Dnt (x, i) in (5.3), we have that

|{i ∈ [N ] : |Dnt (x, i)| ≥ 3}| ≤ C(1) + C(2). (5.14)

Then C(1) ∼ Bin(N, p′′), where

p′′ = P
(
Bx,1[t, t+ δn) ≥ 2

)
≤ (rnδnN(1 + 2m))2 = 1

4n
4δ2n(1 + 2m)2.

Therefore, by Markov’s inequality and since n4δ2n ≤ 2N−1 for n sufficiently large,

P
(
C(1) ≥ n1/4

)
≤ e−n

1/4

(1 + (e− 1) 1
4n

4δ2n(1 + 2m)2)N ≤ e− 1
2n

1/4
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for n sufficiently large. For y ∈ 1
nZ, let Dy = |{i ∈ [N ] : By,i[t, t + δn) > 0}|. Then

conditional on Dx, Dx−n−1 and Dx+n−1 we have

C(2) ≤ Bin(Dx,
(Dx−1)(1−2N−1sn)+m(Dx−n−1+Dx+n−1 )

(1−2N−1sn)(N−1)+2mN ).

By the same argument as in (5.10) and (5.11), it follows that for n sufficiently large,

P
(
C(2) ≥ n1/4

)
≤ 3e−

1
8Nn

2δn(1+2m) + e−
1
2n

1/4

.

Therefore, by (5.14), for n sufficiently large, for x ∈ 1
nZ and t ≥ 0,

P
(
|{i ∈ [N ] : |Dnt (x, i)| ≥ 3}| ≥ 2n1/4

)
≤ 3e−

1
8Nn

2δn(1+2m) + 2e−
1
2n

1/4

. (5.15)

For K ∈ N, let SKn ∼ Poisson((2m+ 1)Nrn(K − 1)δn). Then since a set of k individuals
produces offspring individuals at total rate at most (2m+ 1)Nrnk, for i ∈ [N ],

P (|Dnt (x, i)| ≥ K) ≤ P
(
SKn ≥ K − 1

)
≤ ((2m+ 1)Nrn(K − 1)δn)K−1

≤ ((2m+ 1)(K − 1))K−1N−(K−1)/2

for n sufficiently large. Therefore, by the definition ofMn
t in (5.4), for ` ∈ N, for K ∈ N

sufficiently large that 7− 1
2 (K − 1) < −`, for t ≥ 0,

P (Mn
t ≥ K) ≤

∑
x∈ 1

nZ∩[−2N5,N5],i∈[N ]

P (|Dnt (x, i)| ≥ K) ≤ 1
3

( n
N

)`
(5.16)

for n sufficiently large. For x ≥ −N5 and t ≥ 0, by Corollary 3.13 with a = −(1 + α)s0,
and then by Markov’s inequality,

E
[
qn,−t,t+δn(−2N5, x)

]
≤ e(1+α)s0δn〈1·≤−2N5 , φδn,x0 〉n ≤ e(1+α)s0δnE0

[
eX

n
mδn

]
e−N

5

≤ e1−N
5

(5.17)

for n sufficiently large, by Lemma 3.8. By Lemma 3.3, for t ≤ N2, P
(
pnt (y) = 0∀y ≥ N5

)
≥

1 − e−N5

. By (5.6), (5.8), (5.13), (5.15) and (5.16), it now follows that for ` ∈ N, for n
sufficiently large, for x ∈ 1

nZ with x ≥ −N5 and t ∈ [(logN)2 − δn, N2],

P
({
|Cnt (x, x)| ≥ Nn2δnpnt (x)(1 + 2n−1/5)

}
∩ {x ≤ µnt +D+

n + 1} ∩ E1

)
≤ 1

2

( n
N

)`
.

(5.18)
By (5.12), we now have that (5.1) holds with j = 1.

For t ≥ 0 and x, y ∈ 1
nZ with |x− y| = n−1, let

Cn,1t (x, y) = {(i, j) ∈ [N ]2 : Rx,i,y,j [t, t+ δn) = 1 = Ax,i[t, t+ δn),

Ay,j [t, t+ δn) = 0, ξnt (y, j) = 1},

Cn,2t (x, y) = {(i, j) ∈ [N ]2 : Rx,i,y,j [t, t+ δn) > 0, ξnt (y, j) = 1}.

Then |Cnt (x, x+ n−1)| ≥ |Cn,1t (x, x+ n−1)|+ |Cn,1t (x+ n−1, x)|. If qn,−t,t+δn(−2N5, x) = 0 and
pnt (y) = 0 ∀y ≥ N5, then by the same argument as for (5.6),

|Cnt (x, x+ n−1)| ≤ |Cn,2t (x, x+ n−1)|+ |Cn,2t (x+ n−1, x)|

+

(
Mn

t

2

)
|{(x0, i0) ∈ 1

nZ× [N ] : |x− x0| <Mn
t n
−1, |Dnt (x0, i0)| ≥ 3}|.
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By the same argument as for (5.12) and (5.18), it follows that for n sufficiently large, for
x ∈ 1

nZ with x ≥ −N5 and t ∈ [(logN)2 − δn, N2], (5.1) holds with j = 2.

Suppose for some k > 1 that x, y ∈ 1
nZ with x ≥ −N5 and |x − y| = kn−1. Suppose

Cnt (x, y) 6= ∅. Take (i, j) ∈ Cnt (x, y), and let (x0, i0) = (ζn,t+δnδn
(x, i), θn,t+δnδn

(x, i)). Since
(ζn,t+δns (x, i), θn,t+δns (x, i)) ∈ Dnt (x0, i0) and (ζn,t+δns (y, j), θn,t+δns (y, j)) ∈ Dnt (x0, i0) ∀s ∈
[0, δn], we have (x, i), (y, j) ∈ Dnt (x0, i0) and |Dnt (x0, i0)| ≥ max(k, n|x0 − x|) + 1 ≥ 3. If
pnt (y) = 0 ∀y ≥ N5 and qn,−t,t+δn(−2N5, x) = 0, then by (5.4) it follows that k <Mn

t and
|x0 − x| <Mn

t n
−1. Therefore

|Cnt (x, y)|≤1|x−y|<Mn
t n
−1

(
Mn

t

2

)
|{(x0, i0) ∈ 1

nZ×[N ] : |x0−x|<Mn
t n
−1, |Dnt (x0, i0)| ≥ 3}|.

By Lemma 3.3, (5.17), (5.8), (5.15) and (5.16), it follows that for K ∈ N sufficiently large,
for n sufficiently large, for x ≥ −N5 and t ∈ [(logN)2 − δn, N2], (5.1) holds with j = 3.

Finally, suppose x, y, y′ ∈ 1
nZ with x ≥ −N5 and suppose Cnt (x, y, y′) 6= ∅. Take

(i, j, j′) ∈ Cnt (x, y, y′), and let (x0, i0) = (ζn,t+δnδn
(x, i), θn,t+δnδn

(x, i)). Suppose that pnt (y) = 0

∀y ≥ N5 and qn,−t,t+δn(−2N5, x) = 0. Then (x, i), (y, j), (y′, j′) ∈ Dnt (x0, i0), and moreover
|x− x0| <Mn

t n
−1 and |x− y| ∨ |x− y′| <Mn

t n
−1. Therefore

|Cnt (x, y, y′)|
≤ 1|x−y|∨|x−y′|<Mn

t n
−1(Mn

t )3|{(x0, i0) ∈ 1
nZ× [N ] : |x0 − x| <Mn

t n
−1, |Dnt (x0, i0)| ≥ 3}|.

By Lemma 3.3, (5.17), (5.8), (5.15) and (5.16), it follows that for K ∈ N sufficiently large,
for n sufficiently large, for x ≥ −N5 and t ∈ [(logN)2 − δn, N2], (5.1) holds with j = 4.
This completes the proof.

6 Event E4 occurs with high probability

In this section, we complete the proof of Proposition 2.1 by proving the following
result.

Proposition 6.1. Suppose for some a1 > 1, N ≥ na1 for n sufficiently large. For b1 > 0

sufficiently small, b2 > 0 and t∗ ∈ N, for K ∈ N sufficiently large, then for n sufficiently
large, if condition (A) holds,

P ((E4)c) ≤
( n
N

)2
.

Proposition 2.1 now follows directly from Propositions 3.1, 4.1, 5.1 and 6.1. From
now on in this section, we assume that there exists a1 > 1 such that N ≥ na1 for n
sufficiently large. We begin by proving the following lemma, which we will then use
iteratively to show that with high probability no lineages consistently stay far ahead of
the front. Recall the definition of qnt from (3.10). Fix t∗ ∈ N.

Lemma 6.2. There exist c ∈ (0, 1) and ε ∈ (0, 1) such that forK ∈ N sufficiently large, the
following holds. Suppose qn0 and ((Px,i,j)x,i,j , (Sx,i,j)x,i,j , (Qx,i,j,k)x,i,j,k, (Rx,i,y,j)x,i,y,j)
are independent, and define the event

A =

{
sup

t∈[0,t∗], x∈ 1
nZ

|pnt (x)− g(x− µnt )| ≤ ε

}
∩

{
sup

t∈[0,t∗]
µnt ≤ 2νt∗

}
.

Then

sup
z≥K

E [qnt∗(z)] ≤ c sup
x∈ 1

nZ

E [qn0 (x)] + 4s0t
∗P (Ac) . (6.1)
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Proof. Let δ = P (Ac). For a ∈ R, t ≥ 0 and z ∈ 1
nZ, by Lemma 3.12, (Mn

s (φt,z,as0))s≥0 is
a martingale with Mn

0 (φt,z,as0) = 0. Hence by Corollary 3.13,

E [qnt (z)]

= e−as0t〈E [qn0 ] , φt,z0 〉n + s0

∫ t

0

e−as0(t−s)〈E [qns ((1− pns )(2pns − 1 + α) + a)] , φt,zs 〉nds.

(6.2)

Take a ∈ (0, 1 − α) and then take ε ∈ (0, 12 (1 − α)) sufficiently small that (1 − ε)(2ε −
1 + α) < −a. Take K ∈ N sufficiently large that 1 − g(K/2 − 2t∗ν) − ε > 0, e−as0t

∗
+

2s0t
∗e(2s0+m)t∗−K/2 < 1 and

(1− g(x− 2νt∗)− ε)(2(g(x− 2νt∗) + ε)− 1 + α) ≤ −a for x ≥ K/2.

Then on the event A,

(1− pns (x))(2pns (x)− 1 + α) + a ≤ 0 ∀x ≥ K/2, s ∈ [0, t∗].

It follows that for x ≥ K/2 and s ∈ [0, t∗], since pns (x), qns (x) ∈ [0, 1],

E [qns (x)((1− pns (x))(2pns (x)− 1 + α) + a)] ≤ E [qns (x)(1 + α+ a)1Ac ] ≤ 2δ,

and for x ≤ K/2 and s ∈ [0, t∗],

E [qns (x)((1− pns (x))(2pns (x)− 1 + α) + a)] ≤ E [qns (x)(1 + α+ a)] ≤ 2E [qns (x)] .

Hence for t ∈ [0, t∗] and z ∈ 1
nZ, substituting into (6.2),

E [qnt (z)] ≤ e−as0t〈E [qn0 ] , φt,z0 〉n + s0

∫ t

0

e−as0(t−s)〈2δ + 2 sup
y∈ 1

nZ

E [qns (y)]1·≤K/2, φ
t,z
s 〉nds

≤ e−as0t sup
x∈ 1

nZ

E [qn0 (x)] + 2s0t
∗δ + 2s0

∫ t

0

sup
y∈ 1

nZ

E [qns (y)]Pz

(
Xn
m(t−s) ≤ K/2

)
ds.

(6.3)

In particular, for t ∈ [0, t∗], since a > 0,

sup
z∈ 1

nZ

E [qnt (z)] ≤ sup
x∈ 1

nZ

E [qn0 (x)] + 2s0t
∗δ + 2s0

∫ t

0

sup
y∈ 1

nZ

E [qns (y)] ds.

By Gronwall’s inequality, it follows that for t ∈ [0, t∗],

sup
z∈ 1

nZ

E [qnt (z)] ≤

(
sup
x∈ 1

nZ

E [qn0 (x)] + 2s0t
∗δ

)
e2s0t. (6.4)

Therefore, substituting the bound in (6.4) into (6.3), for t ∈ [0, t∗] and z ∈ 1
nZ with z ≥ K,

E [qnt (z)] ≤ e−as0t sup
x∈ 1

nZ

E [qn0 (x)] + 2s0t
∗δ

+ 2s0

∫ t

0

e2s0s

(
sup
x∈ 1

nZ

E [qn0 (x)] + 2s0t
∗δ

)
PK

(
Xn
m(t−s) ≤ K/2

)
ds.

For 0 ≤ s ≤ t ≤ t∗, by Markov’s inequality and Lemma 3.8,

PK

(
Xn
m(t−s) ≤ K/2

)
= P0

(
Xn
m(t−s) ≥ K/2

)
≤ e−K/2E

[
eX

n
m(t−s)

]
≤ emt

∗−K/2
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for n sufficiently large. Hence for z ∈ 1
nZ with z ≥ K,

E [qnt∗(z)] ≤ (e−as0t
∗
+2s0t

∗e(2s0+m)t∗−K/2) sup
x∈ 1

nZ

E [qn0 (x)]+2s0t
∗δ(1+2s0t

∗e(2s0+m)t∗−K/2),

which completes the proof, since at the start of the proof we chose K sufficiently large
that e−as0t

∗
+ 2s0t

∗e(2s0+m)t∗−K/2 < 1.

Take c ∈ (0, 1) and ε ∈ (0, 1) as in Lemma 6.2. For t ≥ 0, define the σ-algebra
F ′t = σ((pns (x))s∈[0,t],x∈ 1

nZ
). The following result will easily imply Proposition 6.1.

Proposition 6.3. For ` ∈ N, there exists `′ ∈ N such that for K ∈ N sufficiently large
and c2 > 0, the following holds for n sufficiently large. Take t ∈ δnN0 ∩ [0, T−n ] and let

t′ = Tn − t − t∗b(t∗)−1K logNc. Suppose pnt′(x) = 0 ∀x ≥ N5 and P ((E1)c|F ′t′) ≤
(
n
N

)`′
.

Then

P
(
rn,K,t

∗

K logN,Tn−t(x) = 0 ∀x ∈ 1
nZ

∣∣∣F ′t′) ≥ 1−
( n
N

)`
.

Proof. Take `′ sufficiently large that nN6
(
n
N

)`′ ≤ ( nN )`+1
for n sufficiently large. Then

take c′ ∈ (c, 1) and take K > t∗(`′ + 1)(− log c′)−1 sufficiently large that Lemma 6.2 holds.
Suppose

P ((E1)c|F ′t′) ≤
( n
N

)`′
. (6.5)

For k ∈ N and x ∈ 1
nZ, let rnk (x) = rn,K,t

∗

kt∗,t′+kt∗(x). Take k ∈ N with kt∗ ≤ K logN . Then by

the definition of rn,y,`s,t in (2.6),

sup
z∈ 1

nZ

E
[
rnk (z)

∣∣∣F ′t′] = sup
z∈ 1

nZ

E
[
rnk (z)1z≥µn

t′+kt∗+K

(
1E1

+ 1(E1)c
) ∣∣∣F ′t′]

≤ sup
z∈ 1

nZ, z≥µ
n
t′+νkt

∗+K−νt∗
E
[
rnk (z)

∣∣F ′t′]+ P ((E1)c|F ′t′)

for n sufficiently large, by the definition of the event E1 in (2.10). Therefore, by (6.5)
and then by Lemma 6.2 with qn0 = rnk−1(·+ µnt′ + bν(k − 1)t∗ncn−1),

sup
z∈ 1

nZ

E
[
rnk (z)

∣∣F ′t′] ≤ sup
z∈ 1

nZ, z≥µ
n
t′+bν(k−1)t

∗ncn−1+K

E
[
rnk (z)

∣∣F ′t′]+
( n
N

)`′
≤ c sup

x∈ 1
nZ

E
[
rnk−1(x)

∣∣F ′t′]+ (1 + 4s0t
∗)
( n
N

)`′
(6.6)

for n sufficiently large. Recall that we chose c′ ∈ (c, 1), and let

k∗ = min

{
k ∈ N0 : sup

x∈ 1
nZ

E
[
rnk (x)

∣∣F ′t′] ≤ 1 + 4s0t
∗

c′ − c

( n
N

)`′}
.

Then for k ∈ Nwith k ≤ min(k∗, (t∗)−1K logN), we have (c′−c) supx∈ 1
nZ
E
[
rnk−1(x)

∣∣F ′t′] ≥
(1 + 4s0t

∗)
(
n
N

)`′
by the definition of k∗, and so by (6.6),

sup
x∈ 1

nZ

E [rnk (x)|F ′t′ ] ≤ c′ sup
x∈ 1

nZ

E
[
rnk−1(x)|F ′t′

]
≤ . . . ≤ (c′)k sup

x∈ 1
nZ

E [rn0 (x)|F ′t′ ] ≤ (c′)k.

Hence for n sufficiently large, since b(t∗)−1K logNc − 1 > (`′ + 1)(− log c′)−1 log(N/n) by
our choice of K, we have k∗ < (t∗)−1K logN . For k ∈ N ∩ [k∗ + 1, (t∗)−1K logN ], if

sup
x∈ 1

nZ

E
[
rnk−1(x)|F ′t′

]
≤ 1 + 4s0t

∗

c′ − c

( n
N

)`′
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then by (6.6),

sup
x∈ 1

nZ

E
[
rnk (x)

∣∣F ′t′] ≤ ( c

c′ − c
+ 1

)
(1 + 4s0t

∗)
( n
N

)`′
≤ 1 + 4s0t

∗

c′ − c

( n
N

)`′
(6.7)

since c′ < 1. Therefore, by induction, (6.7) holds for all k ∈ N ∩ [k∗, (t∗)−1K logN ]. By a
union bound, and then by Lemma 3.3 and since pnt′(x) = 0 ∀x ≥ N5, and by (6.7),

P

(
sup
x∈ 1

nZ

rnb(t∗)−1K logNc(x) > 0

∣∣∣∣F ′t′
)

≤ P
(
∃x ≥ 2N5 : pnTn−t(x) > 0

∣∣∣F ′t′)+ P
(
µnTn−t ≤ 0

∣∣∣F ′t′)
+

∑
x∈ 1

nZ∩[K,2N5]

NE
[
rnb(t∗)−1K logNc(x)

∣∣∣F ′t′]
≤ e−N

5

+ P ((E1)c|F ′t′) + 2nN5 ·N 1 + 4s0t
∗

c′ − c

( n
N

)`′
≤
( n
N

)`
for n sufficiently large, by (6.5) and our choice of `′.

Proof of Proposition 6.1. Take ` ∈ N sufficiently large that
(
n
N

)`−2
N2δ−1n ≤

(
n
N

)3
for n

sufficiently large. Take `′ ∈ N and K ∈ N sufficiently large that Proposition 6.3 holds.

By Proposition 3.1, by taking b1, c2 > 0 sufficiently small, P ((E1)c) ≤
(
n
N

)`+`′
for n

sufficiently large. For t ∈ δnN0 ∩ [0, T−n ], let

Dt =
{
rn,K,t

∗

K logN,Tn−t(x) = 0 ∀x ∈ 1
nZ
}
.

Then by Proposition 6.3, letting t′ = Tn − t− t∗b(t∗)−1K logNc,

P
(
Dc
t

∣∣F ′t′) ≤ ( nN )` + 1
{P((E1)c|F ′t′)>( nN )

`′}
+ 1{∃x≥N5:pn

t′ (x)>0}.

Hence by Markov’s inequality and Lemma 3.3,

P (Dc
t ) ≤

( n
N

)`
+

(
N

n

)`′
P ((E1)c) + e−N

5

≤ 3
( n
N

)`
for n sufficiently large. Therefore, by (2.13) and a union bound, and then by Markov’s
inequality,

P ((E4)c) ≤
∑

t∈δnN0∩[0,T−n ]

P

(
P (Dc

t |F) ≥
( n
N

)2)
≤

∑
t∈δnN0∩[0,T−n ]

(
N

n

)2

P (Dc
t ) ≤

( n
N

)2
for n sufficiently large, by our choice of `, which completes the proof.

7 Proofs of Theorems 1.1 and 1.4

The proofs of Theorems 1.1 and 1.4 use results from Sections 2, 3, 4 and 6. We
first prove Theorem 1.1, and then Theorem 1.4 will follow easily from the proof of
Theorem 1.1.
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Proof of Theorem 1.1. Take Tn ∈ [(logN)2, N2] and T ′n ≥ 0 with Tn − T ′n ≥ (logN)2.
Recall from (2.4) that δn = bN1/2n2c−1, and let Sn = Tn − δnbδ−1n T ′nc. Take b1, c2 > 0

sufficiently small and t∗,K ∈ N sufficiently large that Proposition 3.1 holds with ` = 1

and Propositions 4.1 and 6.1 hold. Assume c2 < a0 (recall that (logN)a0 ≤ log n for n
sufficiently large). Recall (2.7), and similarly to (2.16), for t ∈ [0, Tn] let

Ft = σ(F , σ((ζn,Tns (X0, J0))s≤t)).

Condition on F0, and suppose the event E′1 ∩ E′2 ∩ E4 occurs, so in particular by (2.10)
and (3.3),

|pnSn(x)− g(x− µnSn)| ≤ e−(logN)c2 ∀x ∈ 1
nZ. (7.1)

Fix x0 ∈ R and take ε > 0. Define v0 : 1
nZ→ [0, 1] by letting

v0(y) =


pnSn(y) for y < µnSn + x0,

min(pnSn(y), N−1bNh(y)c) for y ∈ [µnSn + x0, µ
n
Sn

+ x0 + ε],

0 for y > µnSn + x0 + ε,

(7.2)

where h : [µnSn+bx0ncn−1, µnSn+d(x0+ε)nen−1]→ [0, 1] is linear with h(µnSn+bx0ncn−1) =

pnSn(µnSn + bx0ncn−1) and h(µnSn + d(x0 + ε)nen−1) = 0. For each y ∈ 1
nZ, take Iy ⊆ {(y, i) :

ξnSn(y, i) = 1} measurable with respect to σ((ξnSn(x, j))x∈ 1
nZ,j∈[N ]) such that |Iy| = Nv0(y).

Then let I = ∪y∈ 1
nZ
Iy. For t ≥ Sn and x ∈ 1

nZ, let

q̃nt (x) = N−1|{i ∈ [N ] : (ζn,tt−Sn(x, i), θn,tt−Sn(x, i)) ∈ I}|,

the proportion of individuals at x at time t which are descended from the set I at time
Sn. Recall the definition of qn,− in (2.3) and note that for t ≥ Sn and x ∈ 1

nZ,

qn,−Sn,t(µ
n
Sn + x0, x) ≤ q̃nt (x) ≤ qn,−Sn,t(µ

n
Sn + x0 + ε, x). (7.3)

Let (ṽnt )t≥Sn solve{
∂tṽ

n
t = 1

2m∆nṽ
n
t + s0ṽ

n
t (1− unSn,t)(2u

n
Sn,t
− 1 + α) for t > Sn,

ṽnSn = v0,

where (unSn,t)t≥Sn is defined as in (3.2). Recall the definition of γn in (2.4). Note that by
Proposition 3.2, for n sufficiently large, for t ≤ Sn + γn,

P

(
sup

x∈ 1
nZ∩[−N5,N5]

|q̃nt (x)− ṽnt (x)| ≥
( n
N

)1/4)
≤ n

N
. (7.4)

For t ≥ 0 and x ∈ R, let

ṽt(x) = g(x− µnSn − νt)Ex−µnSn−νt
[
v̄0(Zt + µnSn)g(Zt)

−1] , (7.5)

where v̄0 : R→ [0, 1] is the linear interpolation of v0, and (Zt)t≥0 is defined in (4.1). By
Lemma 4.3 and the definition of the event E′1 in (3.3), for n sufficiently large,

sup
x∈ 1

nZ, t∈[0,γn]
|ṽnSn+t(x)− ṽt(x)|

≤ (C7(n−1/3 + e−(logN)c2 ) + 2 sup
x1,x2∈ 1

nZ,|x1−x2|≤n−1/3

|v0(x1)− v0(x2)|)e5s0γnγ2n.

By the definition of v0 in (7.2) and by (7.1),

sup
x1,x2∈ 1

nZ,|x1−x2|≤n−1/3

|v0(x1)− v0(x2)| ≤ 2(2e−(logN)c2 + n−1/3‖∇g‖∞) + ε−1n−1/3 +N−1.
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Therefore, for n sufficiently large, for t ∈ [0, γn] and x ∈ 1
nZ with |x− µnSn+t| ≤ dn,∣∣∣ ṽnSn+t(x)

g(x− µnSn − νt)
− Ex−µnSn−νt

[
v̄0(Zt + µnSn)g(Zt)

−1] ∣∣∣ ≤ e− 1
2 (logN)c2 . (7.6)

From now on, we consider two different cases; suppose first that T ′n ≤ γn. Recalling (7.3)
and (7.4), suppose for all x ∈ 1

nZ ∩ [−N5, N5] that

qn,−Sn,Tn(µnSn +x0, x) ≤ ṽnTn(x) +
( n
N

)1/4
and qn,−Sn,Tn(µnSn +x0 + ε, x) ≥ ṽnTn(x)−

( n
N

)1/4
.

By the definition of the event E1 in (2.10), for n sufficiently large, if x ∈ 1
nZ with

|x−µnTn | ≤ K0 then since we are assuming T ′n ≤ γn we have |x−µnSn −ν(Tn−Sn)| ≤ 2K0,
and so by (7.6),

qn,−Sn,Tn(µnSn + x0, x)

g(x− µnSn − ν(Tn − Sn))

≤ Ex−µnSn−ν(Tn−Sn)
[
v̄0(ZTn−Sn + µnSn)g(ZTn−Sn)−1

]
+ e−

1
2 (logN)c2 +

( n
N

)1/4
g(2K0)−1

(7.7)

and

qn,−Sn,Tn(µnSn + x0 + ε, x)

g(x− µnSn − ν(Tn − Sn))

≥ Ex−µnSn−ν(Tn−Sn)
[
v̄0(ZTn−Sn + µnSn)g(ZTn−Sn)−1

]
− e− 1

2 (logN)c2 −
( n
N

)1/4
g(2K0)−1.

(7.8)

Applying (4.11) in Lemma 4.4, it follows that

qn,−Sn,Tn(µnSn + x0, x)

g(x− µnSn − ν(Tn − Sn))

≤
∫ ∞
−∞

π(y)v̄0(y + µnSn)g(y)−1dy + 2m−1/2(Tn − Sn)−1/4 sup
z∈R
|v̄0(z + µnSn)g(z)−1|

+ e−
1
2 (logN)c2 +

( n
N

)1/4
g(2K0)−1

≤
∫ x0+ε

−∞
π(y)dy + ε (7.9)

for n sufficiently large, since by (7.1) and by the definition of v0 in (7.2), v0(y + µnSn) ≤
(g(y) + e−(logN)c2 )1y≤x0+ε ∀y ∈ 1

nZ, and since we are assuming that T ′n →∞ as n→∞.
Similarly, since v0(y + µnSn) ≥ (g(y) − e−(logN)c2 )1y<x0

∀y ∈ 1
nZ, for n sufficiently large

we have

qn,−Sn,Tn(µnSn + x0 + ε, x)

g(x− µnSn − ν(Tn − Sn))
≥
∫ x0

−∞
π(y)dy − ε. (7.10)

For n sufficiently large, since |Tn− T ′n−Sn| ≤ δn we have that |µnTn−T ′n −µ
n
Sn
| ≤ ε. Recall

the definition of GK0,Tn in (1.14). Then for (X0, J0) ∈ GK0,Tn we have |X0 − µnTn | ≤ K0,
and so for n sufficiently large, by the definition of the event E1 in (2.10) and by (7.10),

P
(
ζn,TnTn−Sn(X0, J0) ≤ µnTn−T ′n + x0 + 2ε

∣∣∣F0

)
≥
qn,−Sn,Tn(µnSn + x0 + ε,X0)

pnTn(X0)
≥
∫ x0

−∞
π(y)dy− 2ε
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and by (7.9),

P
(
ζn,TnTn−Sn(X0, J0) ≤ µnTn−T ′n + x0 − ε

∣∣∣F0

)
≤
qn,−Sn,Tn(µnSn + x0, X0)

pnTn(X0)
≤
∫ x0+ε

−∞
π(y)dy + 2ε.

Hence letting y0 = x0 + 2ε, by (7.3) and (7.4), for n sufficiently large,

P
(
ζn,TnTn−Sn(X0, J0)− µnTn−T ′n ≤ y0

)
≥
(∫ y0−2ε

−∞
π(y)dy − 2ε

)(
1− n

N
− P ((E′1 ∩ E′2 ∩ E4)c)

)
≥
∫ y0−2ε

−∞
π(y)dy − 3ε (7.11)

for n sufficiently large, by Propositions 3.1, 4.1 and 6.1. Similarly, for n sufficiently large,

P
(
ζn,TnTn−Sn(X0, J0)− µnTn−T ′n ≤ y0

)
≤
∫ y0+2ε

−∞
π(y)dy + 3ε. (7.12)

By the same argument as in the proof of Lemma 4.12, by Corollary 3.13 with a =

−(1 + α)s0, and since |Tn − T ′n − Sn| ≤ δn, we have that for x1, x2 ∈ 1
nZ,

E
[
qnTn−T ′n,Sn(x1, x2)

]
≤ e(1+α)s0δnPx2

(
Xn
m(Sn−(Tn−T ′n)) = x1

)
≤ e(1+α)s0δne−n

1/2|x1−x2|emnδn

for n sufficiently large, by Lemma 3.8. Therefore, by a union bound and since, on the
event E1 ∩ E′2, |ζ

n,Tn
Tn−Sn(X0, J0)| ≤ N3 by Lemma 2.7, and then by Markov’s inequality

and Propositions 3.1 and 4.1,

P
(
|ζn,TnT ′n

(X0, J0)− ζn,TnTn−Sn(X0, J0)| ≥ n−1/3
)

≤
∑

x1∈ 1
nZ, x2∈ 1

nZ∩[−N3,N3],|x1−x2|≥n−1/3

P
(
qnTn−T ′n,Sn(x1, x2) ≥ N−1

)
+ P ((E1 ∩ E′2)c)

≤ Ne(1+α)s0δnemnδn
∑

x1∈ 1
nZ, x2∈ 1

nZ∩[−N3,N3],|x1−x2|≥n−1/3

e−n
1/2|x1−x2| + 2

n

N

≤ 3
n

N
(7.13)

for n sufficiently large. Since ε > 0 can be taken arbitrarily small, this, together
with (7.11) and (7.12), completes the proof in the case T ′n ≤ γn.

Now suppose instead that T ′n ≥ γn, and take s ∈ t∗N0 such that Tn − s ∈ [Sn + γn −
t∗, Sn + γn]. Recall from (2.4) that dn = κ−1C log logN . By Propositions 2.5 and 2.6, if
(X0, J0) ∈ GK0,Tn ,

P
(
|ζn,Tns (X0, J0)− µnTn−s| ≥ dn

∣∣∣F0

)
= O((logN)3−

1
8αC) = O((logN)−1) (7.14)

since we chose C > 213α−2 at the start of Section 2. Suppose for all y ∈ 1
nZ ∩ [−N5, N5]

that

qn,−Sn,Tn−s(µ
n
Sn + x0, y) ≤ ṽnTn−s(y) +

( n
N

)1/4
and qn,−Sn,Tn−s(µ

n
Sn + x0 + ε, y) ≥ ṽnTn−s(y)−

( n
N

)1/4
.
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Take x ∈ 1
nZ with |x− µnTn−s| ≤ dn. Then for n sufficiently large, by the definition of the

event E1 in (2.10), and by (7.6) and by (4.10) in Lemma 4.4,

qn,−Sn,Tn−s(µ
n
Sn

+ x0, x)

g(x− µnSn − ν(Tn − s− Sn))

≤
∫ ∞
−∞

π(y)v̄0(y + µnSn)g(y)−1dy + (logN)−12C sup
z∈R
|v̄0(z + µnSn)g(z)−1|

+ e−
1
2 (logN)c2 +

( n
N

)1/4
g(dn + 1)−1

≤
∫ x0+ε

−∞
π(y)dy + ε

for n sufficiently large, as in (7.9). Hence for n sufficiently large that |µnTn−T ′n − µ
n
Sn
| ≤ ε,

if |ζn,Tns (X0, J0)− µnTn−s| ≤ dn then

P
(
ζn,TnTn−Sn(X0, J0) ≤ µnTn−T ′n + x0 − ε

∣∣∣Fs) ≤ qn,−Sn,Tn−s(µ
n
Sn

+ x0, ζ
n,Tn
s (X0, J0))

pnTn−s(ζ
n,Tn
s (X0, J0))

≤
∫ x0+ε

−∞
π(y)dy + 2ε

for n sufficiently large, and similarly

P
(
ζn,TnTn−Sn(X0, J0) ≤ µnTn−T ′n + x0 + 2ε

∣∣∣Fs) ≥ ∫ x0

−∞
π(y)dy − 2ε.

As in (7.11) and (7.12), it follows by (7.14), (7.3), (7.4) and Propositions 3.1, 4.1 and 6.1
that for n sufficiently large,∫ y0−2ε

−∞
π(y)dy − 3ε ≤ P

(
ζn,TnTn−Sn(X0, J0)− µnTn−T ′n ≤ y0

)
≤
∫ y0+2ε

−∞
π(y)dy + 3ε.

By (7.13) and since ε > 0 can be taken arbitrarily small, this completes the proof.

Proof of Theorem 1.4. We begin by proving the following claim. Let (Zt)t≥0 be defined
as in (4.1). For t∗ > 0, there exists C∗ = C∗(t∗) > 0 such that for x1, x2, y1, y2 ∈ R and
t1, t2 ≥ t∗ with |t1 − t2| ≤ 1,∣∣Px1 (Zt1 ≤ y1)− Px2 (Zt2 ≤ y2)

∣∣ ≤ C∗(|x1 − x2|1/2 + |y1 − y2|1/2 + |t1 − t2|1/6). (7.15)

To prove the claim, first let (Z
(1)
t )t≥0 and (Z

(2)
t )t≥0 solve (4.1), with Z

(1)
0 = x1 and

Z
(2)
0 = x2. We can couple Z(1) and Z(2) with a Brownian motion (Bt)t≥0 in such a way

that

Z
(1)
t = x1 + νt+m

∫ t

0

∇g(Z
(1)
s )

g(Z
(1)
s )

ds+
√
mBt

and Z
(2)
t = x2 + νt+m

∫ t

0

∇g(Z
(2)
s )

g(Z
(2)
s )

ds+
√
mBt

for t ∈ [0, τ ], where τ = inf{t ≥ 0 : Z
(1)
t = Z

(2)
t }, and Z

(1)
t = Z

(2)
t for t ≥ τ . Then for

t ∈ [0, τ ] we have

Z
(1)
t − Z

(2)
t = x1 − x2 +m

∫ t

0

(
∇g(Z

(1)
s )

g(Z
(1)
s )

− ∇g(Z
(2)
s )

g(Z
(2)
s )

)
ds.
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Since y 7→ ∇g(y)
g(y) is decreasing, it follows that |Z(1)

t − Z
(2)
t | ≤ |x1 − x2| ∀t ≥ 0. Therefore

Px1 (Zt1 ≤ y1) = P
(
Z

(1)
t1 ≤ y1

)
≤ P

(
Z

(2)
t1 ≤ y1 + |x1 − x2|

)
= Px2 (Zt1 ≤ y1 + |x1 − x2|) .

(7.16)
Now for any C > 0 we can use a union bound to write

Px2
(Zt1 ≤ y1 + |x1 − x2|)

≤ Px2

(
Zt2 ≤ y1 + |x1 − x2|+ C|t1 − t2|1/3

)
+ Px2

(
|Zt1 − Zt2 | ≥ C|t1 − t2|1/3

)
.

(7.17)

To bound the second term on the right hand side, note that we can write

|Zt1 − Zt2 | ≤
(
ν +m sup

y∈R

∣∣∇g(y)
g(y)

∣∣)|t1 − t2|+√m|B|t1−t2||,
where (Bt)t≥0 is a Brownian motion. Therefore, since |t1− t2| ≤ 1, for C > 0 a sufficiently
large constant, we can write

Px2

(
|Zt1 − Zt2 | ≥ C|t1 − t2|1/3

)
≤ P

(
|B|t1−t2|| ≥ |t1 − t2|

1/3
)
≤ 2e−

1
2 |t1−t2|

−1/3

, (7.18)

where the last inequality follows by a Gaussian tail estimate. For the first term on the
right hand side of (7.17), note that for z ∈ R and δ ∈ (0, t2], by conditioning on Zt2−δ,
and then letting (Bt)t≥0 denote a Brownian motion,

Px2
(Zt2 ∈ [z, z + δ])

≤ sup
x∈R

Px (Zδ ∈ [z, z + δ])

≤ sup
x∈R

Px

(√
mBδ ∈

[
z −

(
ν +m sup

y∈R

∣∣∇g(y)
g(y)

∣∣)δ, z +
(
1− ν +m sup

y∈R

∣∣∇g(y)
g(y)

∣∣)δ])
≤ δ1/2√

2πm

(
1 + 2m sup

y∈R

∣∣∇g(y)
g(y)

∣∣), (7.19)

where the last inequality follows since the density of Bδ is bounded by (2πδ)−1/2.
Therefore, by a union bound and applying (7.19) with z = y1 − |y1 − y2| and δ =

|y1 − y2|+ |x1 − x2|+ C|t1 − t2|1/3, if t2 ≥ |y1 − y2|+ |x1 − x2|+ C|t1 − t2|1/3 then

Px2

(
Zt2 ≤ y1 + |x1 − x2|+ C|t1 − t2|1/3

)
≤ Px2 (Zt2 ≤ y2) + (2πm)−1/2(|y1 − y2|+ |x1 − x2|+ C|t1 − t2|1/3)1/2

(
1 + 2m sup

y∈R

∣∣∇g(y)
g(y)

∣∣).
(7.20)

Hence by combining (7.16), (7.17), (7.18) and (7.20), we have that for t∗ > 0, there exists
C∗ = C∗(t∗) > 0 such that for t1, t2 ≥ t∗ with |t1 − t2| ≤ 1 and x1, x2, y1, y2 ∈ R,

Px1
(Zt1 ≤ y1) ≤ Px2

(Zt2 ≤ y2) + C∗(|x1 − x2|1/2 + |y1 − y2|1/2 + |t1 − t2|1/6).

By bounding Px2
(Zt2 ≤ y2) in the same way, the claim (7.15) follows.

We now use the claim to prove the result. First take K > 0 sufficiently large that for
any x ∈ [−K0,K0] we have

Px (|Zt0 | > K) < 1
2δ.

Then note that it suffices to prove that for y0 ∈ [−K,K],∣∣P(ζn,Tnt0 (X0, J0)− µnTn−t0 ≤ y0
)
− PX0−µnTn

(Zt0 ≤ y0)
∣∣ < 1

2δ.
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For t ∈ [0, Tn], let Ft = σ(F , σ((ζn,Tns (X0, J0))s≤t)). Let Sn = Tn − δnbδ−1n t0c. Condition
on F0, and suppose the event E′1 ∩ E′2 ∩ E4 occurs, so in particular (7.1) holds. Fix
x0 ∈ [−K−1,K+1] and ε > 0, define v0 as in (7.2) in the proof of Theorem 1.1, and let v̄0
denote the linear interpolation of v0. Define ṽt(x) as in (7.5) in the proof of Theorem 1.1.
Then by the same argument as for (7.7) and (7.8) in the proof of Theorem 1.1, for n
sufficiently large, if for all x ∈ 1

nZ ∩ [−N5, N5] we have

qn,−Sn,Tn(µnSn +x0, x) ≤ ṽnTn(x) +
( n
N

)1/4
and qn,−Sn,Tn(µnSn +x0 + ε, x) ≥ ṽnTn(x)−

( n
N

)1/4
,

then (7.7) and (7.8) hold for all x ∈ 1
nZ with |x−µnTn | ≤ K0. By the definition of v0 in (7.2)

and since (7.1) holds, we have v0(y + µnSn) ≤ (g(y) + e−(logN)c2 )1y≤x0+ε ∀y ∈ 1
nZ, and so

for n sufficiently large, using (7.7) we have

qn,−Sn,Tn(µnSn + x0, X0)

g(X0 − µnSn − ν(Tn − Sn))

≤ EX0−µnSn−ν(Tn−Sn)

[
(1 +O(n−1) + e−(logN)c2 g(x0 + ε)−1)1ZTn−Sn≤x0+ε

]
+ e−

1
2 (logN)c2 +

( n
N

)1/4
g(2K0)−1

≤ PX0−µnTn
(Zt0 ≤ x0) + C∗(t0/2)ε1/2 + ε,

where the second inequality follows for n sufficiently large by (7.15) and since we have
|x0| ≤ K+ 1, |Tn−Sn− t0| ≤ δn, and since (by the definition of the event E1 in (2.10)) we
have |µnSn + ν(Tn − Sn) − µnTn | ≤ (t0 + 1)e−(logN)c2 . By the same argument, using (7.8),
we have that for n sufficiently large,

qn,−Sn,Tn(µnSn + x0 + ε,X0)

g(X0 − µnSn − ν(Tn − Sn))
≥ PX0−µnTn

(Zt0 ≤ x0)− C∗(t0/2)ε1/2 − ε.

The result now follows by exactly the same argument as in the proof of Theorem 1.1
from (7.9) and (7.10).

8 Glossary

Here we list frequently used notation. In the second column of the table we give a
brief heuristic description, and in the third column we refer to the section or equation
where the notation is defined.

Notation Meaning Defn./Sect.

ξnt (x, i) type of ith individual at site x at time t Section 1.1
pnt (x) proportion of type A at site x at time t Section 1.1
sn selection parameter (1.11)
rn time scaling parameter (1.11)

(Px,i,jt )t≥0 Poisson process corresponding to neutral repro-
duction events

Section 1.1

(Sx,i,jt )t≥0 Poisson process corresponding to selective re-
production events giving an advantage to type
A

Section 1.1

(Qx,i,j,kt )t≥0 Poisson process corresponding to selective re-
production events giving an advantage to the
majority type

Section 1.1
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(Rx,i,y,jt )t≥0 Poisson process corresponding to migration
events

Section 1.1

(ζn,Tt (x, i), θn,Tt (x, i)) site and label of time-(T − t) ancestor of ith
individual at site x at time T

Section 1.1

g travelling wave profile (1.12)
µnt position of random travelling front at time t (1.13)
GR,t set of (sites and labels of) type A individuals

within distance R of the front at time t
(1.14)

π density of stationary distribution for diffu-
sion (1.6)

(1.15)

κ, ν constants (2.1)
qnt1,t2(x1, x2) proportion of individuals at x2 at time t2 which

are type A and whose time-t1 ancestor was at
x1

(2.2)

qn,+t1,t2(x1, x2)

(qn,−t1,t2(x1, x2))

proportion of individuals at x2 at time t2 which
are type A and whose time-t1 ancestor was ≥
(≤) x1

(2.3)

C large constant Section 2
δn, εn, γn, dn deterministic quantities depending on n (2.4)
Cnt (x1, x2, . . . , x`) set of `-tuples of distinct type A individuals at

x1, . . . , x` at time t+ δn with common ancestor
at time t

(2.5)

rn,y,`s,t (x) proportion of individuals at x at time t which
are type A and whose ancestors stayed distance
y ahead of the front for time s

(2.6)

Tn time at which sample of type A individuals is
taken

Section 2

F σ-algebra generated by tracer random variables (2.7)

A
(j)
t (x1, x2), A(j′)

t (x) ‘good’ events that control the motion of a single
ancestral lineage

Section 2

B
(j)
t (x) ‘good’ events that control the probability that

a pair (or triple) of lineages coalesce in a time
interval of length δn

Section 2

D+
n , D

−
n w.h.p., a pair of lineages in the sample are never

both more than D+
n ahead of the front (before

they coalesce), and no lineage is |D−n | behind
the front

(2.8)

Int , I
n,ε
t , int intervals around the front location at time t (2.9)

E1 ‘good’ event that says pnt (·) ≈ g(· − µnt ) and
µnt+s − µnt ≈ νs

(2.10)

T−n T−n = Tn − (logN)2 Section 2
E2, E

′
2 ‘good’ events defined as an intersection of

A
(j)
t (x1, x2) and A(j′)

t (x) events

(2.10), (2.11)

E3 ‘good’ event defined as an intersection of
B

(j)
t (x) events

(2.12)

E4 ‘good’ event that says (conditional on F) w.h.p.,
no lineages stay far ahead of the front for a long
time

(2.13)

E E = ∩4j=1Ej Section 2
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ζn,it (ζ̃n,it ) site (location relative to the front) of ith ances-
tral lineage in the sample at time Tn − t

(2.15)

τni,j time (backwards in time from Tn) when ith and
jth ancestral lineages coalesce

Section 2

Ft σ-algebra generated by F and ancestral lin-
eages in sample up to time t (backwards in
time)

(2.16)

tk tk = kb(logN)Cc Section 2
τ̃ni,j coalescence time τni,j if coalescence happens

fairly near the front and not too soon after a
time tk

(2.17)

βn approximate probability that a given pair of
lineages coalesce in a time interval of length t1

(2.18)

∇n ∇nh(x) = n(h(x+ n−1)− h(x)) Section 3
∆n ∆nh(x) = n2(h(x+ n−1)− 2h(x) + h(x− n−1)) Section 3
f f(u) = u(1− u)(2u− 1 + α) (3.1)
〈·, ·〉n 〈f1, f2〉n = n−1

∑
w∈ 1

nZ
f1(w)f2(w) Section 3

(Xn
t )t≥0 continuous-time SSRW on 1

nZ, jump rate n2 Section 3
Pz, Ez Pz(·) := P (· |Xn

0 = z ), Ez[·] := E [· |Xn
0 = z ] Section 3

φt,zs , φt,z,as rescaled transition probabilities for Xn (3.4), (3.5)
(unt )t≥0 solution of system of ODEs, discrete approxima-

tion of (1.16)
(3.6)

ηnt (x, i) indicator function of the event that the ith in-
dividual at x at time t is descended from an
individual in I0 at time 0

(3.9)

qnt (x) proportion of individuals at x at time t de-
scended from I0 at time 0

(3.10)

(vnt )t≥0 solution of system of ODEs; qnt ≈ vnt w.h.p. (3.11)

A Proof of Proposition 3.5

Proof of Proposition 3.5. By rescaling time and space, we can assume m = 2 and s0 = 1.
In this proof, we use the notation and refer to results from [16]. The only change required
in the proof is in Section 5, where we need to control supz |h(z, t)| at large times t.

Take δ > 0 and suppose |ϕ(z) − U(z)| ≤ δ ∀z ∈ R. Then by Lemma 4.2, for some
constant C0, if δ is sufficiently small then |u(x + ct, t) − U(x)| ≤ C0δ ∀x ∈ R, t > 0.
Therefore, by Lemma 4.5, there exists z0 ∈ R such that limt→∞ supx∈R |u(x + ct, t) −
U(x− z0)| = 0 and so supx∈R |U(x)− U(x− z0)| ≤ C0δ. It follows that

|u(x+ ct, t)− U(x− z0)| ≤ 2C0δ ∀x ∈ R, t > 0.

Hence by the definition of w(z, t) in the proof of Lemma 4.5, and by the estimates in
Lemma 4.3, for t sufficiently large (depending on δ),

|w(z, t)− U(z − z0)| ≤ 3C0δ ∀z ∈ R. (A.1)

By the definition of α(t) in (5.1), for t sufficiently large (depending on δ), it follows that

0 =

∫ ∞
−∞

eczh(z, t)U ′(z − z0 − α(t))dz

≥
∫ ∞
−∞

eczU ′(z − z0 − α(t))(U(z − z0)− 3C0δ − U(z − z0 − α(t))dz.
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There exists a constant a > 0 such that if α(t) ≥ δ1/2 and if δ is sufficiently small then∫ z0+α(t)

z0+α(t)−δ1/2
eczU ′(z − z0 − α(t))(U(z − z0)− 3C0δ − U(z − z0 − α(t))dz

≥ aδec(z0+α(t)).

For R <∞, if δ is sufficiently small and α(t) ≥ δ1/2 then for z ∈ R with |z−(z0+α(t))| ≤ R
we have U(z − z0)− U(z − z0 − α(t)) ≥ 3C0δ. Therefore

0 ≥ aδec(z0+α(t))

− 3C0δ
(∫ ∞

z0+α(t)+R

eczU ′(z − z0 − α(t))dz +

∫ z0+α(t)−R

−∞
eczU ′(z − z0 − α(t))dz

)
,

which, by the tail behaviour of U ′, is a contradiction for R sufficiently large. By the same
argument for the case α(t) ≤ −δ1/2, it follows that if δ is sufficiently small, |α(t)| ≤ δ1/2
for t sufficiently large (depending on δ).

Hence by (A.1), for b > 0, if δ is sufficiently small then for t sufficiently large
(depending on δ and b), supz |h(z, t)| ≤ b. Therefore, if δ is sufficiently small then the
inequality

1

2

d

dt
‖y‖2 ≤ −M

2
‖y‖2 +O(e−Kt)

(which appears before (5.3)) holds for t ≥ T , where T = T (δ) and K = K(δ).
This is the only modification required in the proof.
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