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Abstract

We prove that the volume measure of the Brownian sphere is equal to a constant multi-
ple of the Hausdorff measure associated with the gauge function h(r) = r4 log log(1/r).
This shows in particular that the volume measure of the Brownian sphere is determined
by its metric structure.
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1 Introduction

This work is concerned with the Brownian sphere, also known as the Brownian map,
which is a random compact metric space providing a universal model of two-dimensional
random geometry. The Brownian sphere has been shown to be the scaling limit in
the Gromov-Hausdorff sense of many different classes of random planar maps such
as triangulations or quadrangulations of the sphere (see in particular [1, 4, 5, 7, 18,
23, 24, 25]). The first construction the Brownian sphere [22, 16] relied on Brownian
motion indexed by the Brownian tree, or equivalently on the Brownian snake driven by a
normalized Brownian excursion. In this construction, the Brownian sphere is constructed
as a quotient space of the interval [0, 1] and is naturally equipped with a volume measure
defined as the pushforward of Lebesgue measure on [0, 1] under the canonical projection.
This volume measure appears as the limit of (scaled) counting measures on vertices
when the Brownian sphere is written as the Gromov-Hausdorff-Prokhorov limit of large
random planar maps (see [20, Theorem 7] for the case of quadrangulations and [24,
Theorem 1.2] for the more general case of bipartite planar maps with a prescribed
degree sequence). We mention that a very different approach to the Brownian sphere,
involving deep connections with Liouville quantum gravity has been developed by Miller
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The Hausdorff measure of the Brownian sphere

and Sheffield in a series of papers [26, 27, 28, 29]. More recently, Ding, Dubédat, Dunlap
and Falconet [11] have studied Liouville first-passage percolation metrics associated
with mollified versions of the Gaussian free field and were able to prove the tightness of
these renormalized metrics. Gwynne and Miller [14] later proved the uniqueness of the
limit, which is determined by the Gaussian free field and called the Liouville quantum
gravity metric. A particular case of this metric should correspond to a variant of the
Brownian sphere metric.

The Brownian sphere is known to be homeomorphic to the 2-sphere, but its Hausdorff
dimension is equal to 4 [16]. The original motivation of the present work was to determine
an exact Hausdorff measure function for the Brownian sphere. Our main result solves
this problem, and also provides a natural interpretation of the volume measure.

We denote the Brownian sphere by m∞, and write Vol for the volume measure on
m∞. For any gauge function h, we denote the associated Hausdorff measure by mh.

Theorem 1.1. For every r ∈ (0, 1/4), set h(r) = r4 log log(1/r). There exists a constant
κ > 0 such that we have almost surely for every Borel subset A of m∞,

mh(A) = κVol(A).

It seems hopeless to compute the exact value of the constant κ. One should be able
to give upper and lower bounds for κ, but we have made no attempt in this direction.

Theorem 1.1 shows that the volume measure Vol is completely determined by the
metric on m∞. Although this result seemed plausible, it was not obvious from the
construction of the Brownian sphere in terms of Brownian motion indexed by the
Brownian tree. We note that other models of random geometry such as the Brownian
plane and the Brownian disk have been investigated in recent papers (see in particular
[8, 9, 10, 20]) and also correspond to specific quantum surfaces, in the terminology of
[27, 28, 29] (see [28, Corollary 1.5]). It is not hard to verify that Theorem 1.1 can be
extended to these models, using the known connections between them and the Brownian
sphere.

Let us briefly comment on the proof of Theorem 1.1. As is often the case in the
evaluation of Hausdorff measures, a key ingredient consists in finding good estimates
for the volume of balls. We concentrate on balls centered at the distinguished point x∗ of
the Brownian sphere, but the re-rooting invariance property (see Proposition 2.4 below)
ensures that similar estimates hold for balls centered at a “typical point”, meaning
a point chosen uniformly according to the volume measure. In the construction of
the Brownian sphere from the Brownian snake driven by a Brownian excursion, x∗
corresponds to the point with minimal spatial position. Writing B(a, r) for the closed
ball of radius r centered at the point a of m∞, we are able to show that the p-th moment
of Vol(B(x∗, r)) is bounded above by Cp0p! r

4p, where C0 is a constant (Proposition 3.1).
This bound sharpens a weaker estimate derived in [17, Lemma 6.1]. The proof relies on
a careful analysis based on a formula of [21]. Interestingly, estimates for the moments of
the volume of balls are discussed in the more general setting of the Liouville quantum
gravity metric [11, 14] in the recent work of Ang, Falconet and Sun [6].

From our estimates on moments of Vol(B(x∗, r)) and the re-rooting invariance prop-
erty, it is easy to obtain the existence of a constant K1 such that

lim sup
r↓0

Vol(B(a, r))

h(r)
≤ K1,

for Vol-almost every a ∈ m∞. Then classical comparison results for Hausdorff mea-
sures (see Lemma 2.7 below) allow us to find another constant κ1 > 0 such that
mh(A) ≥ κ1 Vol(A) for every Borel subset A of m∞ (Proposition 3.6). In order to
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The Hausdorff measure of the Brownian sphere

get a corresponding upper bound for the Hausdorff measure, we may again rely on the
comparison results, but we need to verify that the h-Hausdorff measure of the set of all
points a ∈m∞ such that

lim sup
r↓0

Vol(B(a, r))

h(r)
< K2

is zero provided that the constant K2 is small enough (Proposition 4.1). This is the
most delicate technical part of the paper. We use a “spine decomposition” of the
Brownian snake conditioned on its minimal value: This spine decomposition provides
enough independence between the volumes Vol(B(x∗, 2

−k)) when k varies in N so
that we can bound the probability that these volumes are simultaneously small for all
k ∈ {k0, k0 + 1, . . . , n}, and we then rely on the re-rooting invariance property.

Once we know that the h-Hausdorff measure is bounded above and below by a
positive constant times the volume measure, we need a kind of zero-one law argument
to get that we have indeed mh = κVol for some constant κ. Here, the idea is to consider
the canonical projection p from [0, 1] onto m∞, and the function t 7→ mh(p([0, t])). From
the bounds on mh, we know that this function is absolutely continuous, and the point is
to prove that its (almost everywhere defined) derivative is equal to a constant. This will
follow if we can verify that

lim sup
ε→0

mh(p([s− ε, s+ ε]))

2ε

is equal to a constant κ, for Lebesgue almost every s ∈ (0, 1) (Lemma 5.2). To get this
last property, it is convenient to consider the free Brownian sphere, whose construction
is based on the Brownian snake driven by a Brownian excursion distributed according
to the Itô measure. This makes it possible to use the Bismut decomposition of the
Brownian excursion at a time U chosen according to Lebesgue measure on its duration
interval. The technical part of the proof is to verify that the limsup in the last display
(with s replaced by U ) is measurable with respect to an appropriate asymptotic σ-field
containing only events of probability zero or one.

The paper is organized as follows. Section 2 contains a number of preliminaries.
We recall the construction of the Brownian sphere, and the spine decomposition of the
Brownian snake conditioned on its minimum. We also state the comparison lemma
for Hausdorff measures that plays a central role in our proofs. Section 3 proves our
estimates on moments of the volume of balls centered at x∗, from which it is relatively
easy to derive the lower bound mh(A) ≥ κ1 Vol(A). The proof of the corresponding upper
bound is given in Section 4. Finally, the zero-one law argument needed to establish our
main result is presented in Section 5.

2 Preliminaries

Our main goal in this section is to recall the construction of the Brownian sphere
from the Brownian snake excursion measure. We start with a brief discussion of snake
trajectories.

2.1 Snake trajectories

By definition, a finite path w is a continuous mapping w : [0, ζ] −→ R, where the
number ζ = ζ(w) ≥ 0 is called the lifetime of w. We letW denote the space of all finite
paths, which is a Polish space when equipped with the distance

dW(w,w′) = |ζ(w) − ζ(w′)|+ sup
t≥0
|w(t ∧ ζ(w))− w′(t ∧ ζ(w′))|.
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The endpoint or tip of the path w is denoted by ŵ = w(ζ(w)). For x ∈ R, we set
Wx = {w ∈ W : w(0) = x}. The trivial element ofWx with zero lifetime is identified with
the point x of R.

Definition 2.1. Let x ∈ R. A snake trajectory with initial point x is a continuous mapping
s 7→ ωs from R+ intoWx which satisfies the following two properties:

(i) We have ω0 = x and the number σ(ω) := sup{s ≥ 0 : ωs 6= x}, called the duration of
the snake trajectory ω, is finite (by convention σ(ω) = 0 if ωs = x for every s ≥ 0).

(ii) (Snake property) For every 0 ≤ s ≤ s′, we have ωs(t) = ωs′(t) for every t ∈
[0,mins≤r≤s′ζ(ωr)].

We will write Sx for the set of all snake trajectories with initial point x and S =⋃
x∈R Sx for the set of all snake trajectories. If ω ∈ S, it is convenient to write Ws(ω) = ωs

and ζs(ω) = ζ(ωs) for every s ≥ 0 (and we often omit ω in the notation if there is no
ambiguity). The set S is a Polish space for the distance

dS(ω, ω′) = |σ(ω)− σ(ω′)|+ sup
s≥0

dW(Ws(ω),Ws(ω
′)).

A snake trajectory ω is completely determined by the knowledge of the lifetime function
s 7→ ζs(ω) and of the tip function s 7→ Ŵs(ω): See [2, Proposition 8]. The range of ω is
defined by

R(ω) := {Ŵs(ω) : 0 ≤ s ≤ σ}

and we will also use the notation W∗(ω) := minR(ω). We sometimes write ω∗ instead of
W∗(ω).

Let ω ∈ S be a snake trajectory and σ = σ(ω). The lifetime function s 7→ ζs(ω) codes
a compact R-tree, which will be denoted by T(ω) and called the genealogical tree of the
snake trajectory. If ∼(ω) denotes the equivalence relation on [0, σ] defined by

s ∼(ω) s
′ if and only if ζs(ω) = ζs′(ω) = min

s∧s′≤r≤s∨s′
ζr(ω),

the R-tree T(ω) is the quotient space [0, σ]/∼(ω), which is equipped with the distance
induced by

d(ω)(s, s
′) = ζs(ω) + ζs′(ω)− 2 min

s∧s′≤r≤s∨s′
ζr(ω)

(notice that d(ω)(s, s
′) = 0 if and only if s ∼(ω) s

′). We write p(ω) : [0, σ] −→ T(ω) for the
canonical projection, and we root the tree T(ω) at p(ω)(0) = p(ω)(σ). From the snake
property, it is immediate that Ws(ω) = Ws′(ω) if p(ω)(s) = p(ω(s′), so that the mapping

s 7→Ws(ω) may be viewed as defined on T(ω). We sometimes call Ŵs(ω) the label of the
“vertex” p(ω)(s) of T(ω).

We finally introduce the re-rooting operation on snake trajectories (see [2, Section
2.2]). Let ω ∈ S0 and r ∈ [0, σ(ω)]. Then ω[r] is the snake trajectory in S0 such that
σ(ω[r]) = σ(ω) and for every s ∈ [0, σ(ω)],

ζs(ω
[r]) = d(ω)(r, r ⊕ s),

Ŵs(ω
[r]) = Ŵr⊕s(ω)− Ŵr(ω),

where we use the notation r ⊕ s = r + s if r + s ≤ σ(ω), and r ⊕ s = r + s − σ(ω)

otherwise. These prescriptions completely determine ω[r]. The genealogical tree T(ω[r])

may be identified to the tree T(ω) re-rooted at the vertex p(ω)(r) [12, Lemma 2.2] (in this
identification, the point p(ω[r])(s) of T(ω[r]) corresponds to the point p(ω)(r ⊕ s) of T(ω)).
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2.2 The Brownian snake excursion measure

Let x ∈ R. The Brownian snake excursion measure Nx is the σ-finite measure on Sx
that satisfies the following two properties: Under Nx,

(i) the distribution of the lifetime function (ζs)s≥0 is the Itô measure of positive
excursions of linear Brownian motion, normalized so that the density of σ under
Nx is the function t 7→ (2

√
2πt3)−1,

(ii) conditionally on (ζs)s≥0, the tip function (Ŵs)s≥0 is a Gaussian process with mean
x and covariance function

K(s, s′) := min
s∧s′≤r≤s∨s′

ζr.

The measure Nx can be interpreted as the excursion measure away from x for the
Markov process in Wx called the (one-dimensional) Brownian snake. We refer to [15]
for a detailed study of the Brownian snake. For every t > 0, we can also consider the
conditional probability measure N(t)

x := Nx(· |σ = t). In fact, N(t)
x may be defined by the

same properties (i) and (ii), just replacing the Itô measure in (i) by the law of a positive
Brownian excursion with duration t. We note that

Nx =

∫ ∞
0

dt

2
√

2πt3
N(t)
x . (2.1)

If s ∈ [0, t], N(t)
0 is invariant under the re-rooting operation ω 7→ ω[s] (see e.g. [21,

Theorem 2.3]).
For every y < x, we have

Nx(W∗ ≤ y) = Nx(y ∈ R) =
3

2(x− y)2
. (2.2)

See e.g. [15, Section VI.1] for a proof. Additionally, one can prove that Nx(dω) a.e., or

N
(t)
x (dω) a.e, there is a unique s∗ ∈ [0, σ] such that Ŵs∗ = W∗ (see [21, Proposition 2.5]).

The following scaling property is often useful. For λ > 0, for every ω ∈ Sx, we define
Θλ(ω) ∈ Sx√λ by Θλ(ω) = ω′, with

ω′s(t) :=
√
λωs/λ2(t/λ) , for s ≥ 0 and 0 ≤ t ≤ ζ ′s := λζs/λ2 .

Then it is a simple exercise to verify that the pushforward of Nx under Θλ is λNx
√
λ.

Moreover, for every t > 0, the pushforward of N(t)
x under Θλ is N(λ2t)

x
√
λ

.

2.3 The Brownian sphere

Let us fix a snake trajectory ω ∈ S0 with duration σ = σ(ω). For every s, t ∈ [0, σ], we
make the convention that [s, t] = [s, σ] ∪ [0, t] if s > t (and of course, if s ≤ t, [s, t] is the
usual interval). We then set

D◦(ω)(s, t) := Ŵs(ω) + Ŵt(ω)− 2 max
(

min
r∈[s,t]

Ŵr(ω), min
r∈[t,s]

Ŵr(ω)
)
. (2.3)

and

D(ω)(s, t) = inf
{ p∑
i=1

D◦(ω)(ti−1, si)
}
, (2.4)

where the infimum is over all choices of the integer p ≥ 1 and of the reals s0, t0, . . . , sp, tp
in [0, σ] such that s0 = s, tp = t and p(ω)(si) = p(ω)(ti) for every i ∈ {0, 1, . . . , p}. Obviously
D(ω) ≤ D◦(ω) (take p = 1, t0 = s and s1 = t).
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Clearly, we have D◦(ω)(s, t) ≥ |Ŵs − Ŵt| for every s, t ∈ [0, σ], and it follows that

we have also D(ω)(s, t) ≥ |Ŵs − Ŵt| (recall that p(ω)(si) = p(ω)(ti) implies Wsi = Wti).
Additionally, the following simple fact will be useful in the proof of one of the subsequent
technical lemmas. Suppose that s0, t0, . . . , sp, tp are as in formula (2.4). Then, using the

bound D◦(ω)(s, t) ≥ |Ŵs−Ŵt| and the triangle inequality, one easily obtains that, for every
j ∈ {1, . . . , p},

p∑
i=1

D◦(ω)(ti−1, si) ≥ Ŵs(ω) + Ŵt(ω)− 2 max
(

min
r∈[tj−1,sj ]

Ŵr(ω), min
r∈[sj ,tj−1]

Ŵr(ω)
)
. (2.5)

Remark 2.2. Let r ∈ [0, σ] be such that Ŵr = W∗. Then, for every t ∈ [0, σ], we have
trivially D◦(ω)(r, t) = Ŵt −W∗ = Ŵt − Ŵr, and, since we already know that D◦(ω)(r, t) ≥
D(ω)(r, t) ≥ |Ŵt − Ŵr|, we conclude that D(ω)(r, t) = Ŵt −W∗.

The mapping (s, t) 7→ D(ω)(s, t) defines a pseudo-distance on [0, σ], and we may
consider the associated equivalence relation

s ≈(ω) t if and only if D(ω)(s, t) = 0.

Then D(ω) induces a distance on the quotient space [0, σ]/≈(ω), and we write p(ω) for the
canonical projection from [0, σ] onto [0, σ]/≈(ω).

The preceding considerations apply to a fixed snake trajectory ω, but we now ran-
domize ω in order to construct the Brownian sphere. To simplify notation, we usually
write p, D and D◦ instead of p(ω), D(ω) and D◦(ω). Recall that s∗ is defined N(1)

0 a.e. as

the unique element of [0, 1] such that Ŵs∗ = W∗.

Definition 2.3. The standard Brownian sphere is defined under the probability measure
N

(1)
0 (dω) as the random measure metric space m∞ := [0, 1]/ ≈(ω) equipped with the

distance induced by D (for which we keep the same notation D) and with the volume
measure Vol which is the pushforward of Lebesgue measure on [0, 1] under the canonical
projection p.

We could also have introduced the free Brownian sphere, which is defined in the
same way replacing N(1)

0 by N0 (and the interval [0, 1] by [0, σ]). As a side remark, we
note that the property s ∼(ω) t obviously implies s ≈(ω) t, and thus one may as well define

m∞ as a quotient space of the tree T(ω) under N(1)
0 (this is the point of view of [18] in

particular).
In the present work, we will view the (standard) Brownian sphere as a pointed

measure metric space, with the distinguished point x∗ := p(s∗). So the Brownian
sphere is a random variable (m∞, D,Vol,x∗) with values in the space M• of all isometry
classes of pointed compact measure metric spaces, which is equipped with the Gromov-
Hausdorff-Prokhorov topology. We refer to [20, Section 2.1] for a brief presentation of
the Gromov-Hausdorff-Prokhorov topology on M•.

Since Ŵs∗ = W∗, Remark 2.2 shows that we have N(1)
0 a.s., for every t ∈ [0, 1],

D(s∗, t) = Ŵt −W∗, (2.6)

and consequently D(x∗, a) = Ŵt −W∗, for any a = p(t) ∈ m∞. This property will be
crucial for our applications.

We now observe that the distinguished point x∗ is not a special point of the Brownian
sphere, in the sense that it could be replaced by another point distributed according to
the volume measure Vol, without changing the distribution of the 4-tuple (m∞, D,Vol,x∗).
We state a slightly more precise result.
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Proposition 2.4. Let t ∈ [0, 1]. Then (m∞, D,Vol,p(t)) has the same distribution as
(m∞, D,Vol,x∗).

Proof. The fact that the distribution of (m∞, D,Vol,p(t)) does not depend on t is an

easy consequence of the invariance of N(1)
0 under the re-rooting operation (replacing

ω by ω[t] gives a measure metric space m∞(ω[t]) which is the same as m∞(ω) modulo
a measure-preserving isometry, but the point p(ω[t])(0) of m∞(ω[t]) corresponds to the
point p(ω)(t) of m∞(ω)). The fact that this distribution is the same as the distribution
of (m∞, D,Vol,x∗) follows from [17, Theorem 8.1]. Note that [17, Theorem 8.1] deals
with metric spaces and not with measure metric spaces, and thus one needs a slight
extension of this result, which is however derived by the very same arguments as in
[17], using the convergence of rescaled quadrangulations to the Brownian sphere in the
Gromov-Hausdorff-Prokhorov sense, as stated in [20, Theorem 7].

2.4 Decomposing the Brownian snake at its minimum

As an important ingredient of our proofs, we will use the conditional distribution
of the Brownian snake under N0 given its minimum W∗. This conditional distribution
is described in [19] via a “spine decomposition” involving a nine-dimensional Bessel
process and two Poisson point measures on the space of snake trajectories. We do not
give details of this spine decomposition (see [19]) but we present the consequence that
will be relevant to the present work.

From [19], we can make sense of the conditional distribution N0(dω |W∗ = −x) for
every x > 0 (in such a way that it depends continuously on x). Via the obvious translation,
we can also make sense of Nx(dω |W∗ = 0) for every x > 0.

Proposition 2.5. Let x > 0. Almost surely under Nx(dω |W∗ = 0), we can define a
random finite path (Ut)0≤t≤Lx and a point measure

N (dtdω′) =
∑
i∈I

δ(ti,ωi)(dtdω′),

on R+ × S, such that, for every nonnegative measurable function ϕ on R,∫ σ(ω)

0

ϕ(Ŵs(ω)) ds =
∑
i∈I

∫ σ(ωi)

0

ϕ(Ŵs(ωi)) ds,

and furthermore the following properties hold under Nx(dω |W∗ = 0):

• U = (Ut)0≤t≤Lx is distributed as a nine-dimensional Bessel process started from 0 up
to its last passage time at level x;

• conditionally on U , N (dtdω′) is a Poisson point measure on R+ × S with intensity

41{t≤Lx} dtNUt(dω
′ ∩ {W∗(ω′) > 0}).

Remark 2.6. The finite path U is constructed as the time-reversal of the path Ws∗ and
the point measure N accounts for the subtrees branching off the ancestral line of p(ω)(s∗)
in the tree T(ω).

The occurence of the nine-dimensional Bessel process in the preceding spine decom-
position is closely related to an absolute continuity relation between the laws of Bessel
processes, which we now recall in the special case that will be of interest to us. Let
x > 0, and suppose that, under the probability measure Px, we are given two processes
(Bs)s≥0 and (Rs)s≥0 which are respectively a linear Brownian motion started at x and
a nine-dimensional Bessel process started at x. Then, for every t > 0 and for every
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nonnegative measurable function F on the space C([0, t],R) of all continuous functions
from [0, t] into R, we have

Ex

[
1{Bs>0,∀s∈[0,t]} exp

(
− 6

∫ t

0

ds

B2
s

)
F
(
(Bs)0≤s≤t

)]
= x4Ex

[
R−4t F

(
(Rs)0≤s≤t

)]
. (2.7)

See e.g. Exercise XI.1.22 in [30].

2.5 Hausdorff measures

Let E be a compact metric space, let δ > 0 and let h be a continuous nondecreasing
function from [0, δ] into R+ such that h(0) = 0 and h(r) > 0 for every r ∈ (0, δ]. If A is
a subset of E, we denote the diameter of A by diam(A). Then the Hausdorff measure
mh(A) ∈ [0,∞] is defined by

mh(A) = lim
ε↓0

(
inf

(Ui)i∈I∈Covε(A)

∑
i∈I

h
(
diam(Ui)

))
, (2.8)

where Covε(A) is the collection of all countable coverings of A by subsets of E with
diameter smaller than ε. Note that the quantity inside the big parentheses in (2.8) is a
nonincreasing function of ε, so that the limit always exists in [0,∞].

As a key ingredient of the proof of our main results, we will use certain comparison
results for Hausdorff measures, which we now recall for the reader’s convenience. The
following statement can be found in [13, Lemma 2.1], and is a mild generalization of
results proved by Rogers and Taylor [32] for subsets of Euclidean space. If x ∈ E and
r > 0, we denote the closed ball of radius r centered at x by B(x, r).

Lemma 2.7. Assume that the function h satisfies h(2r) ≤ ch(r) for every r ∈ (0, δ/2], for
some constant c > 1, and let µ be a finite Borel measure on E. There exist two positive
constants M1 and M2, which only depend on c, such that the following holds for every
Borel subset A of E and every b > 0.

(i) If, for every x ∈ A,

lim sup
r↓0

µ(B(x, r))

h(r)
≤ b,

then mh(A) ≥M1b
−1 µ(A).

(ii) If, for every x ∈ A,

lim sup
r↓0

µ(B(x, r))

h(r)
≥ b,

then mh(A) ≤M2b
−1 µ(A).

We conclude this section with a technical point concerning the measurability of
functions defined as the Hausdorff measure of certain particular subsets of the Brownian
sphere m∞. In Section 5 below, especially in the proof of Lemma 5.2, we will consider
quantities of the type mh(p([u, v])), where 0 ≤ u ≤ v, and it is not immediately obvious
from the definition that these quantities are random variables. This measurability
question can be settled as follows. We consider a countable dense subset D of m∞, for
instance the set of all p(r) for rational values of r, and the collection C of all closed balls
of rational radius centered at a point of D. A compactness argument shows that, in
order to evaluate the infima appearing in formula (2.8) for mh(p([u, v])), we may restrict
our attention to finite coverings of p([u, v]) by subsets of m∞ which are finite unions of
balls in C. In this way, we see that (2.8) only involves infima of countably many random
variables, giving the desired measurability property.
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3 Estimates for the volume of balls

Our main objective in this section is to prove that, for any Borel subset A of m∞, the
Hausdorff measuremh(A) with respect to the gauge function h introduced in Theorem 1.1
is bounded below by a constant times Vol(A) (see Proposition 3.6 below). To this end,
we will use part (i) of Lemma 2.7, and we thus need to get precise bounds on the volume
of balls in the Brownian sphere m∞, which is defined under the probability measure
N

(1)
0 = N0(· |σ = 1) introduced in Section 2.2. Thanks to Proposition 2.4, it will be

enough to consider balls at the distinguished point x∗. For a ∈m∞ and r > 0, let B(a, r)

denote the closed ball of radius r centered at a in m∞. Then property (2.6) and the
definition of the volume measure give

Vol(B(x∗, r)) =

∫ 1

0

1{Ŵs−W∗≤r} ds. (3.1)

Much of this section is thus devoted to the proof of the following proposition.

Proposition 3.1. There exists a constant C0 such that, for every integer p ≥ 1 and every
ε > 0,

N
(1)
0

((∫ 1

0

ds1{Ŵs−W∗≤ε}

)p)
≤ Cp0 p! ε4p.

The proof of Proposition 3.1 depends on several intermediate results. Although we are
primarily interested in the probability measureN(1)

0 , it will be useful to derive first certain
preliminary estimates under the (σ-finite) measures Nx. In particular, Proposition 3.3
below provides key bounds under Nx, which will also play an important role in the next
section. Before stating and proving Proposition 3.3, we need to recall a formula of [21]
giving the expectation under N0 of certain functionals of the Brownian snake. We first
introduce the relevant notation. We follow closely [21, Section 2.2].

Let

U :=

∞⋃
n=0

{1, 2}n

where by convention {1, 2}0 = {∅}. An element of U is a finite sequence u = u1 . . . un of
elements of {1, 2}, and we write |u| = n for the length of this sequence (if u = ∅, |u| = 0).
The mapping π : U\{∅} −→ U is defined by π(u1 . . . un) = u1 . . . un−1. For every integer
k ≥ 1, πk stands for the k-th iterate of π (note that πk is defined on {u ∈ U : |u| ≥ k}). If
u = u1 . . . un ∈ U , we will use the obvious notation u1 = u1 . . . un1 and u2 = u1 . . . un2 for
the two elements v of U such that π(v) = u.

By definition, a binary (plane) tree is a finite subset τ of U which satisfies the following
properties.

(i) ∅ ∈ τ .
(ii) If u ∈ τ and u 6= ∅, then π(u) ∈ τ .

(iii) For every u ∈ τ , either u1 ∈ τ and u2 ∈ τ , or u1 /∈ τ and u2 /∈ τ . In the latter case
we say that u is a leaf of τ .

We denote the set of all binary trees by Tb. Then a marked (binary) tree is a pair
(τ, (`u)u∈τ ), where τ ∈ Tb, and `u ∈ [0,∞), for every u ∈ τ . It will be convenient to view
a marked tree as the compact R-tree obtained by gluing line segments of length `u, for
every u ∈ τ , according to the genealogical structure prescribed by τ . To make this more
precise, let θ = (τ, (`u)u∈τ ) be a marked tree, and introduce the vector space Rτ of all
mappings from τ into R, which is equipped with the usual Euclidean distance. Write
(εu)u∈τ for the canonical basis of Rτ . Then consider the mapping

pθ :
⋃
u∈τ
{u} × [0, `u] −→ Rτ ,
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defined by

pθ(u, `) =

|u|∑
k=1

`πk(u)επk(u) + ` εu.

The R-tree θ̃ associated with θ is the range of pθ (which is a connected union of line
segments in Rτ ) equipped with the distance dθ such that dθ(a, b) is the length of the
unique (up to reparameterization) continuous injective path from a to b in θ̃. We write
Lebθ for Lebesgue measure on θ̃: Lebθ is obtained as the sum over all u ∈ τ of the
pushforward of Lebesgue measure on [0, `u] under the mapping ` 7→ pθ(u, `). By definition,
leaves of θ̃ are the points of the form pθ(u, `u) where u is a leaf of τ . On the other hand,
points of the form pθ(u, `u) where u ∈ τ is not a leaf are called nodes of θ̃. We write L(θ)

for the set of all leaves of θ̃, and N(θ) for the set of all nodes.
We next introduce Brownian motion indexed by θ̃. We fix x ∈ R, and, under a

probability measure denoted by Qθx, we consider a collection (ξu)u∈τ of independent
linear Brownian motions, which all start from 0 except for ξ∅, which starts from x. We
then define a continuous random process (Va)a∈θ̃ by setting

Vpθ(u,`) =

|u|∑
k=1

ξπ
k(u)(`πk(u)) + ξu(`),

for every u ∈ τ and ` ∈ [0, `u].
It will also be convenient to assume that, under the probability measure Qθx, in

addition to the collection (ξu)u∈τ , we are given an independent Poisson point measure on
θ̃×S0 with intensity 4 Lebθ(da)N0(dω), and we denote this point measure by

∑
j∈J δ(aj ,ωj).

Fix an integer p ≥ 1. Let Tb
p stand for the set of all binary trees with p leaves, and let

Tp be the corresponding set of marked trees. We define Lebesgue measure Λp on Tp by
the formula ∫

Tp

Λp(dθ)F (θ) =
∑
τ∈Tbp

∫ ∏
u∈τ

d`u F
(
τ, (`u)u∈τ

)
.

Finally, we write K for the set of all compact subsets of R, which is equipped with the
usual Hausdorff metric. Recall our notation R(ω) = {Ŵs(ω) : 0 ≤ s ≤ σ} for the range of
ω. The next proposition is a special case of [21, Theorem 2.2] (see also the remark after
this theorem).

Proposition 3.2. Let F be a nonnegative measurable function on Rp × K, which is
symmetric with respect to the coordinates of Rp. Then

N0

(∫
[0,σ]p

ds1 . . . ,dsp F
(
(Ŵs1 , . . . , Ŵsp),R

))

= 2p−1p!

∫
Λp(dθ)Q

θ
x

[
F

(
(Va)a∈L(θ), {Va : a ∈ θ̃} ∪

( ⋃
j∈J

(Vaj +R(ωj))
))]

.

Proposition 3.2 is a crucial ingredient in the proof of the following key estimate.

Proposition 3.3. There exist two positive constants C1 and C2 such that, for every
ε, x > 0,

C1 x
2 ε5 (x ∨ ε)−5 ≤ Nx

((∫ σ

0

ds1{Ŵs≤ε}

)
1{W∗>0}

)
≤ C2 x

2 ε5 (x ∨ ε)−5,

and for every integer p ≥ 2,

Cp1 p!x
4 ε1+4p (x ∨ ε)−7 ≤ Nx

((∫ σ

0

ds1{Ŵs≤ε}

)p
1{W∗>0}

)
≤ Cp2 p!x4 ε1+4p (x ∨ ε)−7.
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Proof. Let x > 0 and ε > 0, and let p ≥ 1 be an integer. We apply Proposition 3.2 with

F
(
(Ŵs1 , . . . , Ŵsp),R

)
= 1{0<Ŵs1

≤ε,...,0<Ŵsp≤ε}
1{R⊂(0,∞)}.

We get

Nx

((∫ σ

0

ds1{Ŵs≤ε}

)p
1{W∗>0}

)
= 2p−1p!

∫
Λp(dθ)Q

θ
x

[( ∏
a∈L(θ)

1{0<Va≤ε}

)

× 1{Va>0,∀a∈θ̃} exp
(
− 4

∫
Lebθ(da)NVa(W∗ ≤ 0)

)]
.

(3.2)

The appearance of the exponential term in the right-hand side of (3.2) comes from the
fact that

Qθx

[( ⋃
j∈J

(Vaj +R(ωj))
)
⊂ (0,∞)

∣∣∣∣∣ (Va)a∈θ̃

]
= exp

(
− 4

∫
Lebθ(da)NVa(W∗ ≤ 0)

)
,

since
∑
j∈J δ(aj ,ωj) is Poisson with intensity 4 Lebθ(da)N0(dω) and is independent of

(Va)a∈θ̃ under Qθx.
Let us fix θ = (τ, (`u)u∈τ ) ∈ Tp. Recalling formula (2.2), the expectation under Qθx

in (3.2) is also equal to

Iεx(θ) := Qθx

[( ∏
a∈L(θ)

1{0<Va≤ε}

)
1{Va>0,∀a∈θ̃} exp

(
− 6

∫
Lebθ(da) (Va)−2

)]
. (3.3)

At this stage, we use formula (2.7) to get rid of the term exp(−6
∫

Lebθ(da) (Va)−2) in
Iεx(θ). To this end, we introduce a process (V a)a∈θ̃ which is (informally) obtained by

running independent nine-dimensional Bessel processes along the branches of θ̃. To be
specific, under the same probability measure Qθx (for every θ ∈ Tp), we define processes

(ξ
u
(t))0≤t≤`u , for every u ∈ τ , inductively, by first requiring that ξ

∅
is the (unique)

solution of the stochastic integral equation

ξ
∅

(t) = ξ∅(t) +

∫ t

0

4

ξ
∅

(s)
ds , 0 ≤ t ≤ `∅

and then inductively, for every u ∈ τ\{∅}, ξu solves

ξ
u
(t) = ξ

π(u)
(`π(u)) + ξu(t) +

∫ t

0

4

ξ
u
(s)

ds , 0 ≤ t ≤ `u.

We then define (V a)a∈θ̃ by the relation V pθ(u,`) = ξ
u
(`) for every u ∈ τ and ` ∈ [0, `u].

Note that we have now V a > 0 for every a ∈ θ̃, Qθx a.s.
We claim that the quantity Iεx(θ) in (3.3) is also equal to x4 Jεx(θ), where

Jεx(θ) := Qθx

[( ∏
a∈L(θ)

1{V a≤ε} (V a)−4

)( ∏
a∈N(θ)

(V a)4

)]
(3.4)

and we recall that N(θ) is the set of all nodes of θ̃. Let us verify our claim by induction on
p. As in Section 2.4, we consider a linear Brownian motion (Bt)t≥0 and a nine-dimensional
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Bessel process (Rt)t≥0 that both start at y under the probability measure Py, for any
y > 0. When p = 1, if a1 denotes the unique leaf of θ̃ and T = `∅, we have

Iεx(θ) = Qθx

[
1{Va1≤ε} 1{Va>0,∀a∈θ̃} exp

(
− 6

∫
Lebθ(da) (Va)−2

)]
= Ex

[
1{BT≤ε} 1{Bt>0,∀t∈[0,T ]} exp

(
− 6

∫ T

0

dt (Bt)
−2
)]

= x4Ex

[
(RT )−4 1{RT≤ε}

]
= x4Qθx

[
(V a1)−4 1{V a1≤ε}

]
where we used (2.7) in the third equality. This gives the case p = 1 of our claim. Then
let p ≥ 2 and assume that our claim has been proved up to order p − 1. Let θ1 and θ2
be the two marked subtrees that are obtained by “breaking” θ at its first node (more
precisely, θ̃1 and θ̃2 are isometric to the closures of the two connected components of
θ̃ \ pθ({∅} × [0, `∅])) and write again T = `∅ to simplify notation. By construction, Iεx(θ)

is equal to

Ex

[
1{Bt>0,∀t∈[0,T ]} exp

(
− 6

∫ T

0

dt

B2
t

)
×Qθ1BT

[( ∏
a∈L(θ1)

1{Va≤ε}

)
1{Va>0,∀a∈θ̃1} exp

(
− 6

∫
Lebθ1(da) (Va)−2

)]

×Qθ2BT
[( ∏

a∈L(θ2)

1{Va≤ε}

)
1{Va>0,∀a∈θ̃2} exp

(
− 6

∫
Lebθ2(da) (Va)−2

)]]

= Ex

[
1{Bt>0,∀t∈[0,T ]} exp

(
− 6

∫ T

0

dt

B2
t

)
(BT )4 JεBT (θ1)× (BT )4JεBT (θ2)

]
= x4Ex

[
(RT )4JεRT (θ1) JεRT (θ2)

]
,

using the induction hypothesis in the first equality and again (2.7) in the second one.
Our claim follows since one immediately verifies that Jεx(θ) = Ex[(RT )4JεRT (θ1) JεRT (θ2)].

For every binary tree τ ∈ Tb
p, let Λ(τ) be the measure on Tp defined by∫

Tp

Λ(τ)(dθ)F (θ) =

∫ ∏
u∈τ

d`u F
(
τ, (`u)u∈τ

)
.

Note that Λp =
∑
τ∈Tbp

Λ(τ), and that #Tb
p is the Catalan number of order p − 1

so that #Tb
p ∼ 4p−1

√
πp3/2

as p → ∞. Using these observations together with formu-
las (3.2), (3.3), (3.4), we see that the statement of Proposition 3.3 follows from the next
lemma. We write τ0 = {∅} for the unique element of Tb

1.

Lemma 3.4. There exists a positive constant c1 such that, for every ε, x > 0,

c1 ε
5 x−2(x ∨ ε)−5 ≤

∫
Λ(τ0)(dθ) Jεx(θ) ≤ ε5 x−2 (x ∨ ε)−5, (3.5)

and, for every integer p ≥ 2 and every τ ∈ Tb
p,

cp1 ε
1+4p(x ∨ ε)−7 ≤

∫
Λ(τ)(dθ) Jεx(θ) ≤ ε1+4p(x ∨ ε)−7. (3.6)
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Proof. We first observe that∫
Λ(τ0)(dθ) Jεx(θ) =

∫ ∞
0

dtEx[1{Rt≤ε}R
−4
t ].

To evaluate this quantity, it is convenient to write (Zt)t≥0 for a nine-dimensional Brownian

motion that starts from z under the probability measure P(9)
z , for every z ∈ R9. We write

G(z, z′) = c0|z − z′|−7 for the Green function of Z, where c0 = 1
2π
−9/2Γ(7/2). Also, for

every x > 0, let zx denote a point of R9 such that |zx| = x, and let Σ(dy) stand for the
volume measure on the unit sphere S8 of R9. Recall that Σ(S8) = 2π9/2/Γ(9/2). Then, we
have ∫ ∞

0

dtEx[1{Rt≤ε}R
−4
t ] = E(9)

zx

[ ∫ ∞
0

dt1{|Zt|≤ε} |Zt|
−4
]

=

∫
{|z|≤ε}

dz |z|−4G(zx, z)

= c0

∫ ε

0

dρ ρ4
∫
S8

Σ(dy) |ρy − zx|−7

=
2

7

∫ ε

0

dρ ρ4 (x ∨ ρ)−7,

using the formula
∫
S8

Σ(dy) |ρy − zx|−7 = Σ(S8) (x ∨ ρ)−7, which easily follows from the
fact that the function z 7→ |z − zx|−7 is harmonic on R9\{zx}. If ε ≤ x, we use∫ ε

0

dρ ρ4x−7 = x−7
ε5

5

and, if x < ε, ∫ x

0

dρ ρ4x−7 +

∫ ε

x

dρ ρ−3 =
x−2

5
+

1

2
(x−2 − ε−2).

From these elementary calculations, we can pick an explicit constant c1 > 0 such that

100 c1 ε
5 x−2(x ∨ ε)−5 ≤

∫
Λ(τ0)(dθ) Jεx(θ) ≤ ε5 x−2 (x ∨ ε)−5, (3.7)

and a fortiori (3.5) holds.
We then prove by induction on p that, for every integer p ≥ 2 and every τ ∈ Tb

p,

100 cp1 ε
1+4p(x ∨ ε)−7 ≤

∫
Λ(τ)(dθ) Jεx(θ) ≤ ε1+4p(x ∨ ε)−7. (3.8)

So fix an integer q ≥ 2, and assume that (3.8) holds for p = 2, . . . , q − 1 (when q = 2 we
make no assumption but we will rely on (3.7)). Let τ ∈ Tb

q, and write τ1 and τ2 for the
two binary trees obtained from τ by removing the root. Then,∫

Λ(τ)(dθ) Jεx(θ) =

∫ ∞
0

dtEx

[
R4
t

∫
Λ(τ1)(dθ1) JεRt(θ1)

∫
Λ(τ2)(dθ2) JεRt(θ2)

]
≤ ε2+4q

∫ ∞
0

dtEx

[
(Rt ∨ ε)−10

]
, (3.9)

where we applied either (3.7) or the induction hypothesis to both τ1 and τ2, using the
trivial bound (x ∨ ε)−7 ≤ x−2(x ∨ ε)−5 and noting that #L(τ1) + #L(τ2) = #L(τ) = q.

We then evaluate∫ ∞
0

dtEx

[
(Rt ∨ ε)−10

]
=

∫
R9

dz (|z| ∨ ε)−10G(zx, z) =
2

7

∫ ∞
0

dρ ρ8(ρ ∨ ε)−10 (x ∨ ρ)−7,
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using the same argument as in the proof of (3.7). Then, if x ≥ ε, we have∫ ∞
0

dρ ρ8(ρ ∨ ε)−10 (x ∨ ρ)−7 =
1

9
ε−1x−7 + (ε−1 − x−1)x−7 +

1

8
x−8 ≤ 10

9
ε−1x−7,

and, if x < ε,∫ ∞
0

dρ ρ8(ρ ∨ ε)−10 (x ∨ ρ)−7 =
1

9
ε−10x2 +

1

2
(ε2 − x2)ε−10 +

1

8
ε−8 ≤ ε−8 = ε−1(x ∨ ε)−7.

From the last three displays, we get that the right-hand side of (3.9) is bounded above by

2

7
× ε2+4q × 10

9
ε−1(x ∨ ε)−7 ≤ ε1+4q(x ∨ ε)−7,

and we have obtained the upper bound of (3.8) for p = q.
To get the lower bound, we argue similarly. The upper bound (3.9) is now replaced by∫

Λ(τ)(dθ) Jεx(θ) ≥ 1002 cq1 ε
2+4q

∫ ∞
0

dtEx

[
R4
t (Rt ∨ ε)−14

]
,

using (3.7) and the induction hypothesis. The same elementary calculations show that∫ ∞
0

dtEx

[
R4
t (Rt ∨ ε)−14

]
=

2

7

∫ ∞
0

dρ ρ12(ρ ∨ ε)−14 (x ∨ ρ)−7 ≥ 1

100
ε−1(x ∨ ε)−7.

By combining the last two displays, we get the lower bound of (3.8) for p = q. This
completes the proof of the lemma and of Proposition 3.3.

We now state a variant of the upper bounds in Proposition 3.3, where we condition
on W∗ = 0, instead of considering the event where W∗ > 0. This will be useful in our
proof of Proposition 3.1 as we will need to condition on the value of W∗.

Proposition 3.5. For every integer p ≥ 1, for every ε, x > 0,

Nx

((∫ σ

0

ds1{Ŵs≤ε}

)p ∣∣∣W∗ = 0
)
≤ (16C2)p p! ε4p,

where C2 is the constant in Proposition 3.3.

Proof. From Proposition 2.5, it is immediate to verify that the mapping

x 7→ Nx

((∫ σ

0

ds1{Ŵs≤ε}

)p ∣∣∣W∗ = 0
)

is nondecreasing. Hence, without loss of generality, we may assume that x > ε. By
Proposition 3.3, we have

Nx+ε

((∫ σ

0

ds1{Ŵs≤2ε}

)p
1{0<W∗<ε}

)
≤ Cp2 p! (x+ ε)−3(2ε)1+4p.

On the other hand, the left-hand side of the last display is bounded below by

Nx+ε

((∫ σ

0

ds1{Ŵs−W∗<ε}

)p
1{0<W∗<ε}

)
=

∫ x+ε

x

du
3

u3
Nx+ε

((∫ σ

0

ds1{Ŵs−W∗<ε}

)p ∣∣∣W∗ = x+ ε− u
)

=

∫ x+ε

x

du
3

u3
Nu

((∫ σ

0

ds1{Ŵs<ε}

)p ∣∣∣W∗ = 0
)

≥ 3

2

(
x−2 − (x+ ε)−2

)
Nx

((∫ σ

0

ds1{Ŵs<ε}

)p ∣∣∣W∗ = 0
)
,
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where we used (2.2) to condition with respect to W∗ and in the last line we also applied
the previously mentioned monotonicity property. We have thus obtained that

Nx

((∫ σ

0

ds1{Ŵs<ε}

)p ∣∣∣W∗ = 0
)
≤
(3

2

(
x−2 − (x+ ε)−2

))−1
× Cp2 p! (x+ ε)−3(2ε)1+4p.

To complete the proof, just notice that

x−2 − (x+ ε)−2 =
2εx+ ε2

x2(x+ ε)2
≥ 2ε

(x+ ε)3
. �

We can now prove Proposition 3.1 which was stated at the beginning of this section.

Proof of Proposition 3.1. By formula (2.1),

N0

((∫ σ

0

ds1{Ŵs−W∗≤2ε}

)p
1{1<σ<2}

)
=

∫ 2

1

du

2
√

2πu3
N

(u)
0

((∫ u

0

ds1{Ŵs−W∗≤2ε}

)p)
.

Furthermore, for every u > 0,

N
(u)
0

((∫ u

0

ds1{Ŵs−W∗≤2ε}

)p)
= upN

(u)
0

((∫ 1

0

ds1{u−1/4Ŵus−u−1/4W∗≤2u−1/4ε}

)p)
= upN

(1)
0

((∫ 1

0

ds1{Ŵs−W∗≤2u−1/4ε}

)p)
,

since the pushforward of N(u)
0 under the scaling operator Θu−1/2 is N(1)

0 (see the end of
Section 2.2). It follows that

N0

((∫ σ

0

ds1{Ŵs−W∗≤2ε}

)p
1{1<σ<2}

)
=

∫ 2

1

du

2
√

2πu3
upN

(1)
0

((∫ 1

0

ds1{Ŵs−W∗≤2u−1/4ε}

)p)
≥ 1

4
√

2π
N

(1)
0

((∫ 1

0

ds1{Ŵs−W∗≤ε}

)p)
. (3.10)

In order to prove Proposition 3.1, it is thus enough to bound the left-hand side
of (3.10). By conditioning with respect to W∗, using (2.2), we get

N0

((∫ σ

0

ds1{Ŵs−W∗≤ε}

)p
1{1<σ<2}

)
= 3

∫ ∞
0

dx

x3
N0

((∫ σ

0

ds1{Ŵs−W∗≤ε}

)p
1{1<σ<2}

∣∣∣W∗ = −x
)
.

When x ≥ 1, we use Proposition 3.5 to bound

N0

((∫ σ

0

ds1{Ŵs−W∗≤ε}

)p
1{1<σ<2}

∣∣∣W∗ = −x
)
≤ N0

((∫ σ

0

ds1{Ŵs−W∗≤ε}

)p∣∣∣W∗ = −x
)

= Nx

((∫ σ

0

ds1{Ŵs≤ε}

)p ∣∣∣W∗ = 0
)

≤ (16C2)p p! ε4p. (3.11)

Suppose then that 0 < x < 1. By the Hölder inequality,

N0

((∫ σ

0

ds1{Ŵs−W∗≤ε}

)p
1{1<σ<2}

∣∣∣W∗ = −x
)

≤

(
N0

((∫ σ

0

ds1{Ŵs−W∗≤ε}

)4p ∣∣∣W∗ = −x
))1/4

×
(
N0(1 < σ < 2 |W∗ = −x)

)3/4
.

(3.12)
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The Hausdorff measure of the Brownian sphere

Using again Proposition 3.5, we get the existence of a constant C3 such that(
N0

((∫ σ

0

ds1{Ŵs−W∗≤ε}

)4p ∣∣∣W∗ = −x
))1/4

≤
(

(16C2)4p (4p)! ε16p
)1/4

≤ Cp3 p! ε4p.

(3.13)
On the other hand, we have

N0(1 < σ < 2 |W∗ = −x) ≤ 1

1− e−1/2
N0(1− e−σ/2 |W∗ = −x),

and by [10, Proposition 4.6],

N0(1− e−σ/2 |W∗ = −x) = 1− x3 cosh(x)

(sinh(x))3
= O(x4)

as x→ 0. Hence there exists a constant c′ such that, for every x ∈ (0, 1),

N0(1 < σ < 2 |W∗ = −x) ≤ c′ x4. (3.14)

Finally, using (3.11), (3.12), (3.13), (3.14), we obtain that

N0

((∫ σ

0

ds1{Ŵs−W∗≤ε}

)p
1{1<σ<2}

)
≤ 3

∫ ∞
1

dx

x3
(16C2)p p! ε4p

+ 3

∫ 1

0

dx

x3
Cp3 p! ε

4p (c′ x4)3/4,

and the bound of Proposition 3.1 follows from (3.10).

Recall that m∞ stands for the (standard) Brownian sphere defined under the proba-
bility measure N(1)

0 , and that Vol(·) denotes the volume measure on m∞. Also recall that,
for a ∈m∞ and r > 0, B(a, r) denotes the closed ball of radius r centered at a in m∞.

Proposition 3.6. For every r ∈ (0, 1/4], set h(r) = r4 log log(1/r). There exists a constant

K1 such that we have N(1)
0 a.s.

Vol(da) a.e., lim sup
r↓0

Vol(B(a, r))

h(r)
≤ K1.

Consequently, there exists a constant κ1 > 0 such that we have N(1)
0 a.s. for every Borel

subset A of m∞,

mh(A) ≥ κ1 Vol(A).

Proof. The first assertion will follow from Proposition 2.4 if we can verify that, for some
constant K1,

lim sup
r↓0

Vol(B(x∗, r))

h(r)
≤ K1, a.s. (3.15)

Let λ ∈ (0, 1/C0). By (3.1) and Proposition 3.1, we have for every r > 0,

N
(1)
0

(
exp

(
λ

Vol(B(x∗, r)

r4

))
≤ K(λ),

where K(λ) is a finite constant depending on λ. Hence, for every r > 0 and u ≥ 0, we
have by the Markov inequality,

N
(1)
0 (Vol(B(x∗, r)) > ur4) ≤ K(λ) exp(−λu).
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Apply this bound with λ = 1/(2C0), r = 2−k (for k ∈ N) and u = 4C0 log k. The Borel-
Cantelli lemma then gives that a.s. for k large enough we have

Vol(B(x∗, 2
−k)) ≤ 4C0 2−4k log k,

and (3.15) follows.
To get the second assertion, if A is a Borel subset of m∞, we set

A′ :=

{
a ∈ A : lim sup

r↓0

Vol(B(a, r))

h(r)
≤ K1

}

so that Vol(A′) = Vol(A) (by the first assertion) and mh(A′) ≤ mh(A). Applying
Lemma 2.7(i) to A′ yields the desired result.

4 The upper bound for the Hausdorff measure

Proposition 3.6 provides a lower bound for the Hausdorff measure of a Borel subset
A of m∞. Our goal in this section is to derive the (more delicate) upper bound. More
precisely, we will prove the following proposition.

Proposition 4.1. Let h be as in Proposition 3.6. There exists a constant K2 > 0 such
that we have N(1)

0 a.s.

mh

({
a ∈m∞ : lim sup

r↓0

Vol(B(a, r))

h(r)
< K2

})
= 0.

Consequently, there exists a constant κ2 > 0 such that, N(1)
0 a.s. for every Borel subset A

of m∞,
mh(A) ≤ κ2 Vol(A).

As in the case of Proposition 3.6, the second part of the proposition almost immedi-
ately follows from the first assertion. So the difficult part is to prove the first assertion,
and, to this end, we will rely on several lemmas. We need to control the Hausdorff
measure of the set of all points a of m∞ such that the volumes of balls centered at a
are unusually small. In a way similar to the previous section, we start by considering
balls centered at the distinguished point x∗, for which we can use formula (3.1). The key
estimate needed to handle these balls is Lemma 4.5, which bounds the probability that
the volumes of the balls B(x∗, 2

−k) are small for all bm/2c ≤ k ≤ m. As in the previous

section, although Lemma 4.5 is stated under the probability measure N(1)
0 , it is more

convenient to start by proving similar estimates under the measure Nx(· |W∗ = 0), and
this is the motivation for Lemmas 4.3 and 4.4. Finally, in order to derive Proposition 4.1
from Lemma 4.5, we rely both on the re-rooting invariance property (Proposition 2.4)
and on a uniform modulus of continuity for the pseudo-distance D(s, t). We start by
stating and proving the latter estimate.

Lemma 4.2. N(1)
0 (dω) a.s., there exists a finite constant C(ω) such that, for every distinct

s, t ∈ [0, 1],

|Ŵs − Ŵt| ≤ C(ω)
(

1 + log
1

|t− s|

)
|t− s|1/4,

and

D(s, t) ≤ C(ω)
(

1 + log
1

|t− s|

)
|t− s|1/4.

Proof. It is enough to prove the first bound of the lemma. Indeed,

D(s, t) ≤ D◦(s, t) ≤ Ŵs + Ŵt − 2 min
s∧t≤u≤s∨t

Ŵu,
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and the right-hand side can be written as |Ŵs− Ŵu|+ |Ŵt− Ŵu| for some u ∈ [s∧ t, s∨ t].
In view of deriving the first bound, we start by considering the increments |Ŵ ′s −

Ŵ ′t |, when (W ′u)u≥0 is a (one-dimensional) Brownian snake starting from 0 under the
probability measure P (see e.g. [15]). Writing βu = ζ(W ′u) to simplify notation, this means
in particular that the process (βu)u≥0 is a reflecting Brownian motion on the half-line, and

that, conditionally on (βu)u≥0, (Ŵ ′u)u≥0 is a centered Gaussian process with continuous
sample paths and covariance

E[Ŵ ′sŴ
′
t | (βu)u≥0] = min

s∧t≤u≤s∨t
βu.

Fix s, t ≥ 0 with s 6= t and set

dβ(s, t) := βs + βt − 2 min
s∧t≤u≤s∨t

βu.

Then, conditionally on (βu)u≥0, Ŵ ′s − Ŵ ′t is a centered Gaussian variable with variance
dβ(s, t), and thus, for every λ > 0,

E
[

exp(λ(Ŵ ′s − Ŵ ′t ))
∣∣∣ (βu)u≥0

]
= exp(

λ2

2
dβ(s, t)).

Furthermore, we leave it as an exercise for the reader to check that dβ(s, t) is stochasti-

cally dominated by R(3)
|t−s|, where (R

(3)
u )u≥0 stands for a three-dimensional Bessel process

started from 0 (if β were a linear Brownian motion, the celebrated Pitman theorem would
show that the law of dβ(s, t) is exactly the law of R(3)

|t−s|). We thus get, for every λ > 0,

E
[

exp(λ(Ŵ ′s−Ŵ ′t ))
]

=E[exp(
λ2

2
dβ(s, t))] ≤ E

[
exp(

λ2

2
R

(3)
|t−s|)

]
=E

[
exp(

λ2|t− s|1/2

2
R

(3)
1 )
]

by scaling. We take λ = |t− s|−1/4 and use the Markov inequality to get for every α > 0,

P(Ŵ ′s−Ŵ ′t > α|t−s|1/4) ≤ e−αE
[

exp
(
|t−s|−1/4(Ŵ ′s−Ŵ ′t )

)]
≤ e−αE[exp(R

(3)
1 /2)] = c e−α

where c = E[exp(R
(3)
1 /2)] is a constant.

It follows from the last bound that, for every integer p ≥ 1 and j ∈ {1, 2, . . . , 2p}, we
have

P
(
|Ŵ ′j2−p − Ŵ

′
(j−1)2−p | > p2−p/4

)
≤ 2c e−p.

Summing over j = 1, . . . , 2p and using the Borel-Cantelli lemma, we get that a.s. there
exists an integer p0 such that, for every p ≥ p0 and j ∈ {1, 2, . . . , 2p}, we have

|Ŵ ′j2−p − Ŵ
′
(j−1)2−p | ≤ p2

−p/4.

By standard chaining arguments similar to the proof of the classical Kolmogorov lemma,
we derive from the latter bound that

sup
s,t∈[0,1],s 6=t

|Ŵ ′s − Ŵ ′t |
(1 + log(1/|t− s|))|t− s|1/4

<∞, P a.s.

Since N0 can be interpreted as the excursion measure away from 0 for the Brownian
snake, the result of the lemma follows from the last display.

Lemma 4.3. There exist two positive constants c̃ and α0 such that, for every ε > 0 and
x ∈ [2ε, 3ε], we have for every u ≥ 0,

Nx

(∫ σ

0

ds1{Ŵs≤ε} > uε4
∣∣∣ 0 < W∗ ≤ ε

)
≥ c̃ e−α0u.
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Proof. This is basically a consequence of Proposition 3.3. From this proposition we get,
for every x ∈ [2ε, 3ε], for every integer p ≥ 1,

1

27
Cp1p! ε

4p−2 ≤ Nx

((∫ σ

0

ds1{Ŵs≤ε}

)p
1{0<W∗≤ε}

)
≤ 1

8
Cp2p! ε

4p−2.

Then note that, for x ∈ [2ε, 3ε], the quantity

Nx(0 < W∗ ≤ ε) =
3

2
((x− ε)−2 − x−2)

is bounded above by 9ε−2/8 and bounded below by 5ε−2/24. Hence, we get the existence
of (explicit) constants c̃1 and c̃2 such that, for every ε > 0 and x ∈ [2ε, 3ε], we have for
every integer p ≥ 1,

c̃1 C
p
1 p! ≤ Nx

((
ε−4

∫ σ

0

ds1{Ŵs≤ε}

)p ∣∣∣∣∣ 0 < W∗ ≤ ε

)
≤ c̃2 Cp2 p!.

This estimate on moments implies the tail estimate of the lemma, with constants c̃ and α0

that only depend on c̃1, c̃2, C1, C2. To see this, set Xε = ε−4
∫ σ
0

ds1{Ŵs≤ε} and also write

P(ε), resp. E(ε), for the probability measure Nx(· | 0 < W∗ ≤ ε), resp. for the expectation
under this probability measure. Then an application of the Cauchy-Schwarz inequality
gives for every integer p ≥ 1 and every u > 0,

E(ε)[X
p
ε ] ≤ up + E(ε)[X

2p
ε ]1/2P(ε)(Xε > u)1/2

and therefore

P(ε)(Xε > u)1/2 ≥
(
E(ε)[X

p
ε ]− up

)+
Eε[X

2p
ε ]1/2

≥
(
c̃1C

p
1p!− up

)+
c̃2C

p
2 ((2p)!)1/2

.

Applying this bound with p = d4u/C1e leads to the desired estimate.

In the remaining part of this section, we use the notation

Vε :=

∫ σ

0

ds1{Ŵs−W∗≤ε}

for ε > 0. Under the probability measure N(1)
0 , Vε is the volume of the ball of radius ε

centered at the distinguished point x∗ of the Brownian sphere (cf. (3.1)).
Recall the definition of the function h in Proposition 3.6.

Lemma 4.4. There exist constants γ > 0, K > 0 and δ ∈ (0, 1) such that, for every x > 0

and every integer n ≥ 4 such that x > 2−bn/2c, one has

Nx

(
n⋂

k=bn/2c

{V2−k ≤ γ h(2−k)}

∣∣∣∣∣W∗ = 0

)
≤ exp(−K nδ).

Proof. Let x > 0. We rely on the spine decomposition under Nx(· |W∗ = 0), which
is given in Proposition 2.5. To simplify notation, and only in this proof, we write
P for the probability measure Nx(· |W∗ = 0). Let U = (Ut)0≤t≤Lx and N (dtdω′) =∑
i∈I δ(ti,ωi)(dtdω′) be defined under P as in Proposition 2.5. Then, for every ε > 0, we

have P a.s.,

Vε =
∑
i∈I

∫ σ(ωi)

0

ds1{Ŵs(ωi)≤ε}.
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Let k0 be the smallest integer such that k0 ≥ 2 and 2−k0 < x. For every k ≥ k0, set
L2−k := sup{t ∈ [0, Lx] : Ut = 2−k}, and L(k) := L2−k − L2−k−1 . Then the processes U (k)

defined for k ≥ k0 by
U

(k)
t := U(L

2−k−1+t)∧L2−k
, t ≥ 0,

are independent, and furthermore the distribution of (2kU
(k)

2−2kt
)0≤t≤22kL(k) does not

depend on k. The preceding facts are consequences of well-known properties of Bessel
processes. It follows that the point measures

Nk(dtdω′) :=
∑

i∈I, L
2−k−1≤ti<L2−k

δ(ti−L2−k−1 ,ωi)(dtdω′)

are independent when k varies in {k0, k0 + 1, . . .}.
For every k ≥ k0, let Ak denote the event where the point measure Nk has an atom

(t, ω) such that ω(0) ∈ [2×2−k, 3×2−k] andW∗(ω) < 2−k. On the event Ak, write (t(k), ω(k))

for this atom (if there are several possible choices, choose the one with the smallest
value of t). By the last property stated in Proposition 2.5, we know that, conditionally on
U , Nk(dtdω′) is Poisson on [0, L(k)]× S with intensity

4 dtN
U

(k)
t

(dω′ ∩ {W∗(ω′) > 0}).

Hence, the probability of the complement of Ak is

P
(
(Ak)c

)
= E

[
exp

(
− 4

∫ L(k)

0

dt1{U(k)
t ∈[2×2−k,3×2−k]}

×N
U

(k)
t

(
0 < W∗ < 2−k

))]

= E

[
exp

(
− 4

∫ L(k)

0

dt1{U(k)
t ∈[2×2−k,3×2−k]}

× 3

2

(
(U

(k)
t − 2−k)−2 − (U

(k)
t )−2

))]

= E

[
exp

(
− 4 22k

∫ L(k)

0

dt1{2kU(k)
t ∈[2,3]}

× 3

2

(
(2kU

(k)
t − 1)−2 − (2kU

(k)
t )−2

))]

and the change of variable t = 2−2ku (together with the fact that the distribution
of (2kU

(k)

2−2kt
)0≤t≤22kL(k) does not depend on k) shows that the right-hand side of the

last display does not depend on k. We set η := P(Ak), which is a positive constant
independent of k. We also observe that, under P(· |Ak) and conditionally on ω(k)(0) = y ∈
[2× 2−k, 3× 2−k], ω(k) is distributed according to Ny(· | 0 < W∗ ≤ 2−k), as a consequence
of properties of Poisson measures.

Let n ≥ 4 be an integer such that x > 2−bn/2c, so that k0 ≤ bn/2c. Since we have
P a.s. on the event Ak,

V2−k ≥
∫ σ(ω(k))

0

ds1{Ŵs(ω(k))≤2−k}
,

we get for every γ > 0,

P

(
n⋂

k=bn/2c

{V2−k ≤ γ h(2−k)}

)

≤ P

(
n⋂

k=bn/2c

(
Ak ∩

{∫ σ(ω(k))

0

ds1{Ŵs(ω(k))≤2−k}
> γ h(2−k)

})c)

=

n∏
k=bn/2c

(
1− P

(
Ak ∩

{∫ σ(ω(k))

0

ds1{Ŵs(ω(k))≤2−k}
> γ h(2−k)

}))
,
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thanks to the independence of the point measures Nk. Then, using the conditional
distribution of ω(k), we have for every k ≥ k0,

P
(
Ak ∩

{∫ σ(ω(k))

0

ds1{Ŵs(ω(k))≤2−k}
> γ h(2−k)

})
≥ η inf

y∈[2.2−k,3.2−k]
Ny

(∫ σ

0

ds1{Ŵs≤2−k} > γ h(2−k)
∣∣∣ 0 < W∗ ≤ 2−k

)
≥ η × c̃ exp(−α0 γ log log 2k)

by Lemma 4.3. Now fix γ such that α0 γ < 1. The right-hand side of the last display is
bounded below by c̃′ k−α0γ for some constant c̃′ > 0. It follows that

P

(
n⋂

k=bn/2c

{V2−k ≤ γ h(2−k)}

)
≤

n∏
k=bn/2c

(
1− c̃′ k−α0γ

)
≤ exp

(
−K n1−α0γ

)
with some positive constant K. This completes the proof of the lemma.

We can now use Lemma 4.4 to derive the estimate that we need under N(1)
0 .

Lemma 4.5. Let γ, K and δ be as in Lemma 4.4. There exists a constant K ′ such that,
for every integer n ≥ 4,

N
(1)
0

(
n⋂

k=bn/2c

{V2−k ≤
γ

2
h(2−k)}

)
≤ K ′ exp(−K

4
nδ).

Proof. To simplify notation, we write En,γ for the event

En,γ :=

n⋂
k=bn/2c

{V2−k ≤ γ h(2−k)}.

We have

N0(En,γ ∩ {1 < σ < 2}) =

∫ 2

1

dr

2
√

2πr3
N

(r)
0 (En,γ). (4.1)

We then use a scaling argument. Recall the definition of the scaling operators Θλ at

the end of Section 2.2, and the fact that Θλ(ω) is distributed according to N(λ2)
0 if ω is

distributed according to N(1)
0 . For r > 0, write ω(r) = Θ√r(ω) to simplify notation. Then,

for every ε > 0,

Vε(ω(r)) =

∫ r

0

ds1{ω̂(r)
s −ω(r)

∗ ≤ε}
= r

∫ 1

0

ds′ 1{ω̂s′−ω∗≤ε r−1/4} = rVεr−1/4(ω).

It follows that, for 1 < r < 2,

N
(r)
0 (En,γ) = N

(r)
0

(
n⋂

k=bn/2c

{V2−k ≤ γ h(2−k)}

)
= N

(1)
0

(
n⋂

k=bn/2c

{Vr−1/42−k ≤
γ

r
h(2−k)}

)

≥ N(1)
0

(
n⋂

k=bn/2c

{V2−k ≤
γ

2
h(2−k)}

)

= N
(1)
0 (En,γ/2),

using the simple fact Vr−1/42−k ≤ V2−k if r > 1. By substituting the latter bound in (4.1),
we get

N
(1)
0 (En,γ/2) ≤

(∫ 2

1

dr

2
√

2πr3

)−1
N0(En,γ ∩ {1 < σ < 2}). (4.2)
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It remains to bound N0(En,γ ∩ {1 < σ < 2}). Conditioning with respect to W∗, we have

N0(En,γ ∩ {1 < σ < 2}) = 3

∫ ∞
0

dx

x3
N0(En,γ ∩ {1 < σ < 2} |W∗ = −x). (4.3)

For x > 2−bm/2c, Lemma 4.4 gives

N0(En,γ |W∗ = −x) ≤ exp(−K nδ),

and on the other hand, we have also by (3.14), for 0 < x < 1,

N0(1 < σ < 2 |W∗ = −x) ≤ c′ x4.

From these estimates and (4.3), we get

1

3
N0(En,γ ∩ {1 < σ < 2})

≤ c′
∫ 2−bnc/2

0

xdx+

∫ 1

2−bnc/2
(exp(−Knδ) ∧ c′x4)

dx

x3
+ exp(−Knδ)

∫ ∞
1

dx

x3

≤ c′ 2−n + (c′)3/4 exp(−K
4
nδ) +

1

2
exp(−Knδ),

using the trivial bound exp(−Knδ)∧c′x4 ≤ (c′)3/4 x3 exp(−K4 n
δ). The bound of the lemma

now follows from (4.2) and the last display.

Proof of Proposition 4.1. We prove that the first assertion of Proposition 4.1 holds
with K2 = γ/32, where γ is as in the preceding two lemmas. To this end, it is enough to
verify that, for every integer n0 ≥ 2, we have mh(Bn0) = 0 a.s., where

Bn0 :=
{
a ∈m∞ : Vol(B(a, 2−k)) ≤ γ

32
h(2−k), ∀k ≥ n0

}
.

Let us fix the positive integer n0 ≥ 2, and, for every n > n0, set

B̃n0,n :=
{
a ∈m∞ : Vol(B(a, 2−k)) ≤ γ

2
h(2−k), ∀k ∈ {n0, n0 + 1, . . . , n}

}
.

Recall the notation p for the canonical projection from [0, 1] onto m∞. By Proposition 2.4,
for every integer p ≥ 1 and every i ∈ {1, . . . , 2p},

N
(1)
0

(
p(i2−p) ∈ B̃n0,n

)
= N

(1)
0

(
x∗ ∈ B̃n0,n

)
,

Suppose that n ≥ 2n0. Since Vol(B(x∗, ε)) = Vε for every ε > 0, Lemma 4.5 gives

N
(1)
0

(
x∗ ∈ B̃n0,n

)
≤ K ′ exp(−K

4
nδ).

Set Γpn0,n := {i ∈ {1, 2, . . . , 2p} : p(i2−p) ∈ B̃n0,n}. We get

N
(1)
0 (#Γpn0,n) ≤ K ′2p exp(−K

4
nδ).

Set K ′′ = K/8. We apply the preceding bound with n = bp/8c (when p is large so that
p/8 > 2n0, which we assume from now on). It immediately follows that

2−p exp
(
K ′′(

p

8
)δ
)

#Γpn0,bp/8c −→p→∞ 0, N
(1)
0 a.s. (4.4)

EJP 27 (2022), paper 113.
Page 22/28

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP837
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The Hausdorff measure of the Brownian sphere

The point is now to observe that, if t ∈ [(i− 1)2−p, i2−p], for some i ∈ {1, . . . , 2p}, we
have

B(p(t), 2−k) ⊃ B(p(i2−p), 2−k−1)

as soon as k is such that D(i2−p, t) < 2−k−1, which holds by Lemma 4.2 if

C(ω)
(

1 + log 2p
)

2−p/4 < 2−k−1,

and in particular if k ≤ bp8c, provided p is large enough (depending on ω). From the
preceding discussion we get that, for p large enough, if a ∈m∞ is of the form a = p(t)

with t ∈ [(i− 1)2−p, i2−p], the condition a ∈ Bn0 implies that for n0 ≤ k ≤ bp8c,

Vol
(
B(p(i2−p), 2−k−1)

)
≤ Vol

(
B(a, 2−k)

)
≤ γ

32
h(2−k) ≤ γ

2
h(2−k−1),

and therefore p(i2−p) ∈ B̃n0+1,bp/8c, so that i ∈ Γpn0+1,bp/8c.

Hence, for p large enough, the set Bn0
is covered by at most #Γpn0+1,bp/8c sets of

the form p([(i− 1)2−p, i2−p]), whose diameter is bounded above by C(ω)(1 + log 2p)2−p/4

thanks to Lemma 4.2. By the very definition of Hausdorff measures, we get

mh(Bn0) ≤ lim inf
p→∞

(
#Γpn0+1,bp/8c × h

(
C(ω)(1 + log 2p)2−p/4

))
= 0,

by (4.4). This completes the proof of the first assertion of the proposition.
To get the second assertion, let A be a Borel subset of m∞, and set

A′ :=

{
a ∈ A : lim sup

r↓0

Vol(B(a, r))

h(r)
≥ K2

}
,

so that mh(A′) = mh(A) (by the first assertion) and Vol(A′) ≤ Vol(A). Applying
Lemma 2.7(ii) to A′ gives the desired result.

5 Proof of the main result

In this section, we prove Theorem 1.1. We argue under the probability measure N(1)
0 .

We start with a lemma.

Lemma 5.1. N(1)
0 (dω) almost surely, for every s ∈ (0, 1), we have

mh(p([0, s]) ∩ p((s, 1])) = Vol(p([0, s]) ∩ p((s, 1])) = 0. (5.1)

Proof. If s ∈ (0, 1), a point a of m∞ belongs to p([0, s])∩ p((s, 1]) if and only if there exist
r ∈ [0, s] and r′ ∈ (s, 1] such that a = p(r) = p(r′), and in particular the equivalence
class of r, or of r′, for ≈(ω) is not a singleton. As a consequence of [16, Theorem 3.4],
it is almost surely true that, for any r ∈ (0, 1), the equivalence class of r for ≈(ω) is not
a singleton only if either p(ω)(r) is not a leaf of the tree T(ω) (equivalently there exists

r′ ∈ [0, 1]\{r} such that p(ω)(r) = p(ω)(r
′)), or if there exists ε > 0 such that Ŵu ≥ Ŵr for

every u ∈ [r, (r + ε) ∧ 1], or for every u ∈ [(r − ε) ∨ 0, r]. The set of all r ∈ [0, 1] such that
p(ω)(r) is not a leaf of the tree T(ω) has Lebesgue measure 0. Similarly, for every fixed

r ∈ (0, 1) and ε > 0, the property Ŵu ≥ Ŵr for every u ∈ [r, (r + ε) ∧ 1], resp. for every

u ∈ [(r − ε) ∨ 0, r]), holds with zero probability under N(1)
0 , as an easy application of the

properties of the Brownian snake (we omit the details). We conclude that we have N(1)
0

a.s. for every s ∈ (0, 1), ∫ 1

0

dr 1{p(r)∈p([0,s])∩p((s,1])} = 0,
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or equivalently

Vol(p([0, s]) ∩ p((s, 1])) = 0.

Proposition 4.1 then allows us to replace Vol by mh in the last display.

We denote Lebesgue measure on [0, 1] by L (ds). Together with Propositions 3.6
and 4.1, the following lemma is the key ingredient of the proof of Theorem 1.1.

Lemma 5.2. There exists a constant κ ∈ [0,∞] such that we have N(1)
0 (dω) a.s., for L

almost every s ∈ (0, 1),

lim sup
ε→0

mh(p([s− ε, s+ ε]))

2ε
= κ.

We postpone the proof of Lemma 5.2 and complete the proof of Theorem 1.1. From
now on, we fix ω such that the conclusions of Propositions 3.6 and 4.1 and of Lemmas 5.1
and 5.2 hold. For every Borel subset A of m∞, we set µ(A) = mh(A) to simplify
notation. By [31, Theorem 27], µ is a positive measure on the Borel σ-field of m∞, and
Proposition 4.1 entails that µ is finite and absolutely continuous with respect to Vol.
More precisely, Propositions 3.6 and 4.1 show that we can choose the Radon-Nikodym
derivative

g :=
dµ

dVol

so that κ1 ≤ g ≤ κ2. To prove Theorem 1.1, it will be enough to verify that g = κ, Vol

a.e., where κ is the constant in Lemma 5.2 — note that this will automatically entail that
κ1 ≤ κ ≤ κ2.

For every s ∈ [0, 1], set Φ(s) := µ(p([0, s])). Then, we have a.s. for every s ∈ [0, 1],

Φ(s) =

∫
p([0,s])

g dVol =

∫ 1

0

1{p(r)∈p([0,s])} g(p(r)) dr =

∫ s

0

g(p(r)) dr,

where the second equality is the definition of Vol, and the third one holds because∫ 1

s

1{p(r)∈p([0,s])} dr ≤
∫ 1

0

1{p(r)∈p([0,s])∩p((s,1])} dr = Vol(p([0, s]) ∩ p((s, 1])) = 0

by (5.1) (we assumed 0 < s < 1 in (5.1), but the cases s = 0 and s = 1 are trivial). From
a classical result about differentiability of absolutely continuous real functions, we infer
that Φ is a.e. differentiable, and moreover, Φ′(s) = g(p(s)), L (ds) a.e. Consequently, we
have

g(p(s)) = lim
ε↓0

Φ(s+ ε)− Φ(s− ε)
2ε

,

for L almost every s ∈ (0, 1). However,

Φ(s+ ε)− Φ(s− ε) = µ(p([0, s+ ε]))− µ(p([0, s− ε])) = µ(p([s− ε, s+ ε])),

using Lemma 5.1 in the last equality.

Then it follows from the conclusion of Lemma 5.2 that we have a.s. g(p(s)) = κ for L
almost every s ∈ (0, 1). Equivalently,

∫ 1

0
1{g(p(s))=κ} ds = 1, which exactly means by the

definition of Vol that ∫
m∞

1{g(a)=κ}Vol(da) = 1,

and thus g = κ, Vol a.e., which was the desired result. This completes the proof of
Theorem 1.1.
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Proof of Lemma 5.2. In order to verify that the limsup in Lemma 5.2 is constant, say for
a fixed value of s, one would like to argue that this limsup is measurable with respect to
a trivial σ-field containing only events of probability zero or one. However, because of
the rather involved construction of the Brownian sphere, it is not so easy to find such a
σ-field, and we will proceed in a slightly different manner. As in preceding proofs, it will
be convenient to replace N(1)

0 by the excursion measure N0, or rather by a size-biased
version of N0. More precisely, we introduce the σ-finite measure N•0 defined on S0 ×R+

by

N•0(dω dr) = 1{0≤r≤σ(ω)}N0(dω) dr.

For (ω, r) ∈ S0 ×R+, we use the notation U(ω, r) = r. The construction of Section 2.3
allows us to associate a compact metric space m∞(ω) = [0, σ(ω)] /≈(ω) with any ω ∈ S0
(and we keep the notation p(ω) for the canonical projection from [0, σ(ω)] onto m∞(ω)).
As previously we drop ω in the notation. By simple scaling arguments left to the reader,
the proof of Lemma 5.2 reduces to finding a constant κ ∈ [0,∞] such that

N•0 a.e., lim sup
ε→0

mh(p([U − ε, U + ε]))

2ε
= κ. (5.2)

Note that using N•0 and U in (5.2) yields an asymptotic result valid for Lebesgue almost
every r in [0, σ] under N0, which is what we need to get Lemma 5.2.

To derive (5.2), we will rely on an appropriate zero-one law. By the Bismut decomposi-
tion theorem of the Brownian excursion (see e.g. [30, Theorem XII.4.7]), the distribution
of ζU under N•0 is Lebesgue measure on R+, and conditionally on ζU = x > 0, the two
processes ζ ′s := ζ(U−s)∨0 and ζ ′′s := ζ(U+s)∧σ are distributed as two independent linear
Brownian motions started from x and stopped upon hitting 0. Let us also define, for
every s ≥ 0,

V ′s := Ŵ(U−s)∨0 − ŴU , V ′′s := Ŵ(U+s)∧σ − ŴU ,

and set, for every y > 0,

τ ′y := inf{s ≥ 0 : ζ ′s = (ζU − y) ∨ 0} , τ ′′y := inf{s ≥ 0 : ζ ′′s = (ζU − y) ∨ 0}.

Finally, let Gy be the σ-field generated by the two pairs(
ζ ′s − ζU , V ′s

)
0≤s≤τ ′y

,
(
ζ ′′s − ζU , V ′′s

)
0≤s≤τ ′′y

.

Fix χ ∈ (0, 1) and write N•,χ0 for the probability measure N•0(· | χ < ζU < 1/χ). We
observe that the tail σ-field

G0+ :=
⋂

0<y<χ

Gy

is N•,χ0 -trivial, in the sense that it contains only events of N•,χ0 -probability zero or one.
This is an easy application of properties of the Brownian snake and we only sketch
the argument. First we set ξt = WU ((ζU − t) ∨ 0) − ŴU for 0 ≤ t ≤ χ, in such a way
that (ξt)0≤t≤χ is a linear Brownian motion started from 0 under N•,χ0 . Then, in a way
very similar to [15, Lemma V.5], we can construct a pair (N ′,N ′′) of point measures
on S0 × [0, χ], which (under N•,χ0 ) are independent Poisson measures on S0 × [0, χ]

with intensity 2N0(dω) dt, and are also independent of ξ, in such a way that, for every
0 < y < χ, Gy is the σ-field generated by (ξt)0≤t≤y and the restrictions of N ′ and N ′′ to
S0 × [0, y] (informally, while the process ξ gives the variation of “labels” along the part of
the ancestral line of p(ω)(U) between heights ζU − χ and ζU in the tree T(ω), the point
measures N ′ and N ′′ correspond to the subtrees branching off the left side and the right
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side of this part of the ancestral line of p(ω)(U)). The triviality of G0+ immediately follows
from this description of the σ-fields Gy.

So to complete the proof of the lemma, we only need to verify that the limsup in (5.2)
is G0+-measurable. To this end, we first introduce some notation. We argue under N•,χ0

and fix y ∈ (0, χ). We note that we can uniquely define a snake trajectory ω(y) ∈ S0 with
duration σ(ω(y)) = τ ′y + τ ′′y , by the prescriptions

ζs(ω
(y)) :=

{
ζ ′τ ′y−s − ζU + y, if 0 ≤ s ≤ τ ′y,

ζ ′′s−τ ′y − ζU + y, if τ ′y ≤ s ≤ τ ′y + τ ′′y ,

and

Ŵs(ω
(y)) :=

{
V ′τ ′y−s − V

′
τ ′y

if 0 ≤ s ≤ τ ′y,

V ′′s−τ ′y − V
′′
τ ′′y
, if τ ′y ≤ s ≤ τ ′y + τ ′′y .

Note that V ′τ ′y = V ′′τ ′′y by the snake property. Informally, the snake trajectory ω(y) codes the

part of the snake trajectory ω corresponding to the excursion of (ζs)s≥0 above level ζU −y
that straddles U . It is immediate that ω(y) is Gy-measurable. With ω(y), we associate the

metric space m
(y)
∞ = m∞(ω(y)) via the construction of Section 2.3, and we write p(y) for

the canonical projection from [0, σ(ω(y))] onto m
(y)
∞ . We also let D(y) = D(ω(y)) be the

metric on m
(y)
∞ .

Claim. N•,χ0 a.s., for every ε > 0 small enough, the metric space p([U − ε, U + ε])

equipped with the metric D is isometric to the space p(y)([τ ′y − ε, τ ′y + ε]) equipped with

the metric D(y).
If the claim holds, we can replace mh(p([U − ε, U + ε])) by mh(p(y)([τ ′y − ε, τ ′y + ε]))

in (5.2) and the fact that ω(y) and τ ′y are both Gy-measurable implies that the limsup
in (5.2) is also Gy-measurable. Since this holds for every y ∈ (0, χ), the limsup is
G0+-measurable and therefore is equal to a constant a.s.

It remains to prove our claim. We first choose a (random) real z ∈ (0, y) such that
WU (ζU − z) < ŴU (this is possible since we already noted that (WU (ζU − t)−ŴU )0≤t≤y is

a linear Brownian motion started from 0 under N•,χ0 ). Notice that WU (ζU − z) = ŴU−τ ′z =

ŴU+τ ′′z
by the snake property. Set α = 1

2 (ŴU −WU (ζU − z)) in such a way that

ŴU−τ ′z = ŴU+τ ′′z
< ŴU − α. (5.3)

Then we have
inf

t/∈(U−τ ′z,U+τ ′′z )
D(U, t) > α

as a consequence of the so-called cactus bound (see e.g. formula (4) in [9]), which
implies that D(U, t) is greater than or equal to ŴU minus the minimum of labels along
the geodesic segment between p(ω)(U) and p(ω)(t) in the tree T(ω) (note that this geodesic
segment contains p(ω)(U − τ ′z) = p(ω)(U + τ ′′z ) if t /∈ (U − τ ′z, U + τ ′′z )). It follows that, for
ε > 0 small enough, we have also

inf
s∈[U−ε,U+ε]

t/∈(U−τ ′z,U+τ ′′z )

D(s, t) > α. (5.4)

On the other hand, if ε is small, we have

sup
s,t∈[U−ε,U+ε]

D(s, t) < α/2 (5.5)

which implies in particular

sup
s∈[U−ε,U+ε]

|Ŵs − ŴU | < α/2. (5.6)
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Suppose now that ε is small enough so that the bounds of the preceding displays
hold. When applying formula (2.4) to evaluate D(s, t) for s, t ∈ [U − ε, U + ε], we may
restrict our attention to choices of si, ti that belong to [U − τ ′z, U + τ ′′z ] (indeed, if for
instance sj /∈ [U − τ ′z, U + τ ′′z ], we have

∑j
i=1D

◦(ti−1, si) ≥ D(s, sj) > α by (5.4), whereas
D(s, t) < α/2 by (5.5)). Furthermore, if all reals si, ti belong to [U − τ ′z, U + τ ′′z ], we may
also assume that, for every j ∈ {1, . . . , p}, the maximum appearing in formula (2.3) for
D◦(tj−1, sj) is minu∈[ti−1∧sj ,tj−1∨sj ] Ŵu. In fact, if this is not the case, this maximum is

minu∈[tj−1∨sj ,tj−1∧sj ] Ŵu, which is smaller than ŴU − α by (5.3), and then (2.5) and (5.6)
imply that

∑p
i=1D

◦(ti−1, si) > α. Similar considerations apply to the evaluation of
D(y)(s, t): With the same value of z, we obtain that, when s, t ∈ [τ ′y − ε, τ ′y + ε] and ε is

small, the infimum in the analog of formula (2.4) giving D(y)(s, t) can be restricted to
si, ti ∈ [τ ′y − τ ′z, τ ′y + τ ′′z ], and to the case where, for every j, the maximum in formula (2.3)

for D◦
(ω(y))

(tj−1, sj) is equal to minu∈[ti−1∧sj ,tj−1∨sj ] Ŵu(ω(y)). Finally, we also observe

that, for every s, t ∈ [U − τ ′y, U + τ ′′y ], the property p(ω)(s) = p(ω)(t) holds if and only if
p(ω(y))(τ

′
y + (s− U)) = p(ω(y))(τ

′
y + (t− U)).

It now follows from the preceding considerations that, for ε small enough, for every
s, t ∈ [U − ε, U + ε], we have

D(s, t) = D(y)(τ ′y + (s− U), τ ′y + (t− U)).

Indeed, each term in the infimum appearing in formula (2.4) for D(s, t) with a choice
of si, ti ∈ [U − τ ′z, U + τ ′′z ], corresponds to an analogous term in the formula that gives
D(y)(τ ′y + (s − U), τ ′y + (t − U)), with the choice s′i = τ ′y + (si − U), t′i = τ ′y + (ti − U),
and these two terms are immediately seen to be equal. We conclude that the mapping
s 7→ τ ′y + (s−U) induces an isometry from p([U − ε, U + ε]) onto p(y)([τ ′y − ε, τ ′y + ε]). This
completes the proof of the claim and of Lemma 5.2.
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