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Abstract

We study a large class of stochastic p-Laplace Allen-Cahn equations with singular
potential. Under suitable assumptions on the (multiplicative-type) noise we first prove
existence, uniqueness, and regularity of variational solutions. Then, we show that a
random separation property holds, i.e. almost every trajectory is strictly separated in
space and time from the potential barriers. The threshold of separation is random,
and we further provide exponential estimates on the probability of separation from
the barriers. Eventually, we exhibit a convergence-in-probability result for the random
separation threshold towards the deterministic one, as the noise vanishes, and we
obtain an estimate of the convergence rate.
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In this paper we study a class of stochastically perturbed Allen-Cahn-type equations
with a particular emphasis on the separation property of their solutions from the potential
barriers. To motivate our interest let us firstly spend some words on the (by now classical)
deterministic models and on some of the problems arising in their stochastic counterpart.

Deterministic setting. Allen-Cahn equations are particular instances of the broad
class of phase field models and are suitable to describe the evolution of the normalized
density u of one of the phases involved in a phase separation process. The phase-field
variable u is supposed to take values in [−1, 1], with {u = 1} and {u = −1} representing
the two so-called pure-regions and {−1 < u < 1} standing for the narrow diffuse interface
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Separation for the stochastic Allen-Cahn equation

between them. Given a bounded domain O ⊂ Rd and a time horizon T > 0, the classical
(simplified) formulation of the Allen-Cahn equation is

∂tu−∆u+ u3 − u = 0, in (0, T )×O ,

under suitable boundary and initial conditions. This can be derived in a variational
fashion as the L2-gradient flow of the Ginzburg-Landau free energy

E2,pol(u) :=

∫
O

(
1

2
|∇u|2 +

1

4
(u2 − 1)2

)
.

It is evident from the form of the free-energy functional that the Allen-Cahn dynamics
result from the interplay of two factors: on the one hand, the tendency of each phase
to concentrate at the pure phases (the two global minima of the potential), and on the
other hand the penalization of the space oscillations of the phase-field variable.

In the last decades, numerous generalizations of Allen-Cahn models have been
proposed in literature. At a formal level, free energies and corresponding gradient flows
can be written in the very broad form

Eϕ,F(u) :=

∫
O

(ϕ(∇u) + F (u)) , ∂tu+ ∂Φ(u) + F ′(u) = 0 , with Φ(u) :=

∫
O
ϕ(∇u) ,

where the choice of the gradient and potential terms depends on the particular physical
model under consideration. As far as the choice of F is concerned, notice that the poly-
nomial potential in E2,pol, despite being relatively easy to handle from the mathematical
point of view, is totally ineffective in the modelling construction. Indeed, minimizers u of
the polynomial energy E2,pol do not satisfy the physically relevant constraint u ∈ [−1, 1]

that one would expect from the very definition of the relative concentration u. In this
direction, the most relevant choices of the double-well potential F are the so-called
singular potentials instead, i.e. defined on [−1, 1] only. The typical double-well potential
which is classically proposed in thermodynamics is the the so-called logarithmic potential

Flog(r) :=
θ

2
((1 + r) log(1 + r) + (1− r) log(1− r))− θ0

2
r2 ,

with r ∈ [−1, 1] and 0 < θ < θ0 being given constants. In this case, the two minima are
strictly contained inside the physical relevant domain and the derivative of Flog blows up
at ±1, thus forcing the order parameter u to take values in [−1, 1]. For what concerns the
gradient part, a natural candidate is the generalization of the Dirichlet energy given by

Φp(u) =
1

p

∫
O
|∇u|p , p ∈ [1,+∞) . (0.1)

At the level of the flow, the above energy produces a (nonlinear) p-Laplace operator
∆pu = div

(
|∇u|p−2∇u

)
, which reduces to the classical linear diffusion with the choice

p = 2.
The choice p > d in the setting above is relevant in the context of thermoviscoelasticity,

e.g. in connection to Frémond’s modelling approach (see [29,30]): for a general review
on non smooth thermomechanics we refer to [12]. More specifically, depending on
the model in consideration, the variable u may represent either the order parameter
related to a phase transition or the damage parameter in the framework of damage
models. The corresponding evolution for u is usually coupled with equations for the
temperature and the displacement. In particular, in both scenarios a PDE system is
derived in agreement with thermodynamics with the choice p > d in (0.1): this aims at
modelling nonlocality of the phase transition or of the damage process. In our work,
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Separation for the stochastic Allen-Cahn equation

we restrict our attention on the evolution equation for the order/damage parameter, for
which a mathematical analysis in the stochastic framework is missing. Let us further
stress that employing elliptic-type regularisation through a p-Laplace operator with high
exponent p is often adopted in thermoviscoelasticity [5] and modelling of two-phase
incompressible fluids [1].

Under the physically relevant choice of the logarithmic potential Flog, the solution
u of the corresponding deterministic gradient flow takes values in the natural range
[−1, 1]. However, it is possible to say something more. A qualitative analysis of the
equation shows that, under Flog, solutions to the Allen-Cahn equation satisfy a separation
principle, meaning that if the initial concentration u0 is strictly separated from the pure
phase ±1 (i.e. one starts with an actual mixture), then the solution u remains strictly
separated from ±1 at all times everywhere in O. More precisely, this can be formulated
as

sup
x∈O
|u0(x)| < 1 ⇒ sup

(t,x)∈[0,T ]×O
|u(t, x)| < 1 .

The strict inequality above is the essence of the separation property, as it means that
u cannot accumulate towards the barriers ±1 of the singular potential and uniquely
defines a positive separation layer. Not only this is extremely natural since Flog has
minima inside the interval (−1, 1), but it also has important implications in the underlying
thermodynamical derivation of the model. Indeed, in context of binary liquid mixtures the
convex contribution in Flog is related to the so-called mixing Boltzmann-Gibbs entropy,
i.e. can be considered as measure of macroscopic mixing of the constituents. Moreover,
if the phase variable can be proven to be separated from ±1, the action of the derivative
of the potential F ′ on u behaves in a Lipschitz fashion, even if the potential is singular. A
posteriori, this rigorously justifies the approximation of the potential Flog by a polynomial
one, as it is classically done in literature. For further insight in the separation property
for phase-field models we refer to [14, Sec. 6.2].

The literature on deterministic Allen-Cahn, Cahn-Hilliard, and general phase field
systems is extremely vast. Here we just mention a few contributions dealing with
confining potential or nonlinear diffusions: [7,8,11,25]. Results specifically concerning
the separation property from the barriers in the case of confining potential are studied
in several contexts e.g. in [6,13,17,18,21,25].

Stochastic setting. The stochastic counterpart of Allen-Cahn-type equations reads as

du+ ∂Φ(u) dt+ F ′(u) dt = H(u) dW ,

where the operator H is introduced to suitably inject the random (generally Gaussian)
perturbation W into the physical domain. This class of stochastic equations has not been
fully investigated yet. Even in the presence of a linear diffusion ∂Φ(u) = −∆u, a general
well-posedness theory for stochastic Allen-Cahn equation with confining potentials
(e.g. F (u) = Flog(u)) and additive noise is not yet available. Let us only mention that
significant results have been obtained for potentials with polynomial growth, see e.g. [15]
and the references therein, or even without growth conditions as in [23], but still defined
on the whole real line; see also [16, 20] where p-Laplace operators are considered,
and [27] for the case of dynamic boundary conditions.

It is thus interesting to investigate whether it is possible, and under which assump-
tions on the noise, to restore well-posedness of the system in the presence of a confining
potential. In this direction, the only strategy that we are aware of is presented in [4]
(see also [3] for a simpler model with one-dimensional noise), where suitable condition
on the multiplicative noise is presented so to “compensate” the singular character of the
drift term. Morally, the idea is to switch off the noise as soon as the solution touch ±1 in
order to confine it inside the physically relevant domain. This permits to take advantage
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of the classical theory of Pardoux, Krylov and Rozovskii for a regularized version of the
equation and to obtain uniform (in the approximation parameter) estimates to pass to
the limit. For a physical motivation/application of this class of noises we refer to [26]
for what concerns tumour growth models and to [9,24,31] for stochastic thin-film and
Cahn-Hilliard equations where a mobility term is introduced together with the singular
potential.

Our contribution. The qualitative study of the separation property for stochastic
Allen-Cahn equations is currently an open problem in literature, despite having important
implications on the thermodynamical model beneath. The aim of the this work is to
provide a first answer in this direction, and the research is twofold: on the one hand we
aim at investigating the separation of the trajectories of the stochastic equation from
the potential barriers, and on the other hand we want to evaluate the effect of the noise
on the random separation layer, compared with the deterministic one, in terms of the
noise intensity.

We consider stochastic Allen-Cahn equations of the form

du−∆pudt+ F ′(u) dt = H(u) dW in (0, T )×O ,
u = 0 in (0, T )× ∂O ,

u(0) = u0 in O .
(0.2)

where ∆pu = div
(
|∇u|p−2∇u

)
is the p-Laplacian operator with p ∈ [2,+∞), O ⊂ Rd is

a bounded domain with regular boundary and W is a cylindrical Wiener process. The
map F : (−1, 1) → [0,+∞) is a confining potential whose derivative F ′ blows up at
the boundary of the physical relevant domain and the diffusion term H is chosen so to
compensate its singular character. In particular our setting fully covers the physically
relevant case of the logarithmic potential Flog (see Section 1 for details).

In this framework we are able to prove well-posedness of the problem (0.2) along
with refined estimates when the initial datum is more regular, see Theorems 1.1 and 1.2
for precise statements. To prove existence of a solution, we adapt the strategy presented
in [4] to the case of nonlinear p-Laplace operator. From a mathematical point of view, the
introduction of p-Laplace diffusion with p > d allows to gain for strong solution enough
spatial regularity so that a pointwise space-time evaluation of the solutions is at hand:

‖u(ω)‖L∞(Q) = sup
(t,x)∈[0,T ]×O

|u(ω, t, x)| , for P-a.e. ω ∈ Ω .

Once well-posedness is settled, natural questions on properties of the solutions near
the barriers of the confining potential arise. Which are the main differences with respect
to the deterministic setting? How the stochastic separation layer depends on ω ∈ Ω? Is
it possible to show a convergence result towards the deterministic one? The purpose of
the paper is indeed to address the above questions for solutions of (0.2). The first result
we show in this direction is a pathwise separation property: when the initial datum is
strictly separated from the barriers, then almost every trajectory remains separated for
all times. Specifically, if ‖u0‖L∞(O) = 1− δ0 with δ0 ∈ (0, 1), then for almost every ω ∈ Ω,
there exists δ(ω) ∈ (0, 1) such that

sup
(t,x)∈[0,T ]×O

|u(ω, t, x)| ≤ 1− δ(ω) ,

see Theorem 1.3 for a precise statement.
In our second main result (see Theorem 1.4) we precisely quantify the probability of

separation in an exponential fashion: there exist L > 0, δ∗ ∈ (0, δ0) and ρ > 0 such that

P

{
sup

(t,x)∈[0,T ]×O
|u(t, x)| ≥ 1− δ

}
≤ exp

(
−Lδ−ρ

)
, ∀ δ ∈ (0, δ∗) .
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To obtain the above estimate we combine boundary and interior L∞-estimates for so-
lutions, which in turn are derived from Bernstein inequalities for suitable stochastic
integrals. A caveat: to study separation properties we have to slightly strengthen the hy-
potheses on the diffusion coefficients (w.r.t. the minimal ones required for well-posedness)
assuming that also a certain number of derivatives vanish in ±1; see Assumption D for
details and Section 6 for concrete examples.

We eventually introduce a parametrized family (uε)ε≥0 of solutions to

duε −∆puε dt+ F ′(uε) dt =
√
εH(uε) dW ,

and we investigate the convergence in probability, as ε ↓ 0, of the random separation
layer, say Λε, toward the deterministic one δ0. Specifically, if we assume the initial data
to be energetically well-prepared, the deterministic solution (with ε = 0) is separated
from the barrier of at least the deterministic threshold δ0 = 1− ‖u0‖L∞(O). Taking this
into account, we are able to prove that

‖uε‖L∞((0,T )×O)
P−→ ‖u0‖L∞(O) ,

which in turn is equivalent to the convergence Λε
P−→ δ0. An exponential upper bound

on the velocity of the convergence is also given, we refer to Theorem 1.5 for a precise
formulation of the result.

Structure of the paper. The paper is organized as follows. Section 1 contains the
assumptions and the precise formulation of the main results. In Section 2 we prove basic
and refined well-posedness of the system via three crucial estimates. The separation
property for almost all trajectories in then discussed in Section 3. In Section 4 we
carefully investigate the distribution of the separation layer and exhibit exponential
estimates for the probability of separation. Section 5 is devoted to the convergence
of the separation layer as the noise vanishes. Finally, in Section 6 we provide some
examples and application of the results obtained in the paper.

1 Main results

In this section we state the precise assumptions on the setting and the data of the
problem, and we present the main results of the work.

Setting. First of all, let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space satisfying
the usual conditions, where T > 0 is a fixed time. Let also W be a cylindrical Wiener
process on a separable Hilbert space U , and let us fix once and for all a complete
orthonormal system (ej)j∈N on U . Secondly, let O ⊂ Rd (d ≥ 1) be a bounded domain
with Lipschitz boundary ∂O and outward normal unit vector n. We define the functional
spaces

H := L2(O) , Vp := W 1,p
0 (O) , p ≥ 2 ,

endowed with their usual norms ‖·‖H and ‖·‖Vp , respectively. In the case p = +∞ we

define W 1,∞
0 (O) := {u ∈ W 1,∞(O) : γ(u) = 0 a.e. on ∂O} with γ : W 1,∞(O) → L∞(O)

the trace operator. The Hilbert space H is identified to its dual through the Riesz
isomorphism, so that we have the dense, continuous, and compact inclusions

Vp ↪→ H ↪→ V ∗p .

We define the p-Laplacian operator −∆p : Vp → V ∗p as follows

〈−∆pu, v〉V ∗p ,Vp :=

∫
O
|∇u|p−2∇u · ∇v , u, v ∈ Vp .
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Notice that −∆p : Vp → V ∗p is (bounded) monotone and demicontinuous. In particular,
if uj → u strongly in Vp then ∆puj ⇀ ∆pu weakly in V ∗p . Moreover, for p ∈ [2,+∞) we
introduce the functional

Φp :=

{ 1
p

∫
O |∇u|

p , if u ∈ Vp ,
+∞ , if u ∈ H \ Vp .

It is well konwn that Φp is lower semi-continuous and convex with corresponding sub-
differential ∂Φp a realization of the p-laplace operator on O with Dirichlet boundary
condition.

For every R > 0, we define the sublevel set

BR := {ϕ ∈ H : |ϕ| ≤ R a.e. in O} .

We use the classical notation Q := (0, T )×O and Qt := (0, t)×O for all t ∈ (0, T ].
Notation. For every Banach spaces E1 and E2, the symbol L (E1, E2) denotes the

space of linear continuous operators from E1 to E2; if E1 and E2 are also Hilbert spaces,
the space of Hilbert-Schmidt operators from E1 to E2 is denoted by L 2(E1, E2). We
denote by P the progressive sigma algebra on Ω × [0, T ]. For every s, r ∈ [1,+∞]

and for every Banach space E we use the classical symbols Ls(Ω;E) and Lr(0, T ;E) to
indicate the spaces of strongly measurable Bochner-integrable functions on Ω and (0, T ),
respectively. Moreover, for all s, r ∈ [1,+∞) we use the special symbol LsP(Ω;Lr(0, T ;E))

to specify that measurability is intended with respect to P. In the case that s ∈ (1,+∞),
r = +∞, and E is a separable and reflexive, we explicitly set

Lsw(Ω;L∞(0, T ;E∗)) :=
{
v : Ω→ L∞(0, T ;E∗) weakly* meas. : E ‖v‖sL∞(0,T ;E∗) <∞

}
,

so that by [10, Thm. 8.20.3] we have the identification

Lsw(Ω;L∞(0, T ;E∗)) =
(
Ls/(s−1)(Ω;L1(0, T ;E))

)∗
.

Finally, the symbol C0
w([0, T ];E) denotes the space of continuous functions from [0, T ] to

the Banach space E endowed with the weak topology.

Assumption A. Let p ∈ [2,+∞) and set q := p
p−1 ∈ (1, 2]. We introduce

γ̂p : Rd → [0,+∞) , γ̂p(x) :=
1

p
|x|p , x ∈ Rd .

Clearly, γ̂p is convex and continuously differentiable, with differential given by

γp : Rd → Rd , γp(x) := Dγ̂p(x) = |x|p−2x , x ∈ Rd .

Assumption B. Let F : (−1, 1)→ [0,+∞) be of class C2, with F ′(0) = 0, such that

lim
r→(−1)+

F ′(r) = −∞ , lim
r→1−

F ′(r) = +∞ ,

and
∃CF ≥ 0 : F ′′(r) ≥ −CF 1 , ∀ r ∈ (−1, 1) .

This implies in particular that the operator

β : (−1, 1)→ R , β(r) := F ′(r) + CF r , r ∈ (−1, 1)

is maximal monotone as a graph in R×R. Moreover, let us define rF , RF ∈ (−1, 1) as

rF := sup{r ∈ (−1, 1) : F ′(z) ≤ 0 , ∀ z ∈ (−1, r)} ,
RF := inf{r ∈ (−1, 1) : F ′(z) ≥ 0 , ∀ z ∈ (r, 1)} ,

so that −1 < rF ≤ RF < 1 and F ′(rF ) = F ′(RF ) = 0.
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Assumption C. Let

(hk)k∈N ⊂W 1,∞
0 (−1, 1)

be such that

F ′′h2
k ∈ L∞(−1, 1) , ∀ k ∈ N ,

and

C2
H :=

∞∑
k=0

(
‖hk‖2W 1,∞(−1,1) +

∥∥F ′′h2
k

∥∥
L∞(−1,1)

)
< +∞ .

In particular, the following operator is well-defined

H : B1 → L 2(U,H) , H(v) : ek 7→ hk(v) , v ∈ B1 , k ∈ N ,

which is CH-Lipschitz-continuous with respect to the metric of H induced on B1.
We are now ready to state our main results.

Theorem 1.1 (Well-posedness). Assume A–B–C, and let

u0 ∈ H , F (u0) ∈ L1(O) .

Then, there exists a unique u with

u ∈ LpP(Ω;C0([0, T ];H)) ∩ LpP(Ω;Lp(0, T ;Vp)) ,

γp(u) ∈ LqP(Ω;Lq(0, T ;Lq(O)d)) ,

F ′(u) ∈ L2
P(Ω;L2(0, T ;H)) ,

such that for every v ∈ Vp∫
O
u(t)v+

∫ t

0

∫
O
γp(∇u(s)) · ∇v ds+

∫ t

0

∫
O
F ′(u(s))v ds

=

∫
O
u0v +

∫
O

(∫ t

0

H(u(s)) dW (s)

)
v ,

(1.1)

for every t ∈ [0, T ], P-a.s. In particular, it holds that

|u| ≤ 1 a.e. in Ω× (0, T )×O .

Theorem 1.2 (Refined well-posedness). Assume A–B–C, and let

u0 ∈ Vp , F (u0) ∈ L1(O) .

Then, there exists a unique u with

u ∈ LpP(Ω;C0([0, T ];H)) ∩ Lpw(Ω;L∞(0, T ;Vp)) ,

∆pu, F
′(u) ∈ L2

P(Ω;L2(0, T ;H)) ,

such that

u(t)−
∫ t

0

∆pu(s) ds+

∫ t

0

F ′(u(s)) ds = u0 +

∫ t

0

H(u(s)) dW (s) , (1.2)

for every t ∈ [0, T ], P-a.s. In particular, it holds that

u ∈ C0
w([0, T ];Vp) , P-a.s.
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Our next result gives sufficient conditions on the data so that the trajectories of u
are strictly separated from the potential barriers ±1. To this end, we will rely on the
following assumption, which can be seen as a generalisation of C to suitable higher order
derivates.

Assumption D. There exists ς ∈ N \ {0} such that ς(p− d) > pd and

(hk)k∈N ⊂W ς+2,∞
0 (−1, 1) ,

C2
H,ς :=

∞∑
k=0

‖hk‖2W ς+2,∞(−1,1) < +∞ .

Theorem 1.3 (Separation property). Assume A–B–C–D, let

u0 ∈ Vp ∩ L∞(O) , F (u0) ∈ L1(O) ,

and suppose that u0 is strictly separated from ±1, namely that

∃ δ0 ∈ (0, 1) : ‖u0‖L∞(O) = 1− δ0 .

Then u is strictly separated from ±1 almost surely, namely

P

{
∃ δ ∈ (0, δ0] : sup

(t,x)∈[0,T ]×O
|u(t, x)| ≤ 1− δ

}
= 1 .

Let us spend a few words on the regularity of u. More specifically, one has from
Theorem 1.2 that, for P-almost every ω ∈ Ω, u(ω) ∈ C0([0, T ];H) ∩ L∞(0, T ;Vp) ⊂
C0
w([0, T ];Vp) (see for example [35, Thm. 2.1]). This ensures that u(ω, t) makes sense

as an element of Vp for every t ∈ [0, T ]. Moreover, in the setting of Theorem 1.3 it
readily follows that p > d, so that Vp ↪→ C0(O): consequently, it makes sense to evaluate
u(ω) pointwise in (t, x) for every t ∈ [0, T ] and x ∈ O. It follows then that under the
assumptions of Theorem 1.3 there exists a measurable set Ω∗ ∈ F with P(Ω∗) = 1 such
that

‖u(ω)‖L∞(Q) = sup
(t,x)∈[0,T ]×O

|u(ω, t, x)| ∀ω ∈ Ω∗ .

Bearing this consideration in mind, Theorem 1.3 ensures that

∀ω ∈ Ω∗ ∃ δ(ω) ∈ (0, 1) : ‖u(ω)‖L∞(Q) ≤ 1− δ(ω) .

In other words, this means that almost every trajectory of u is strictly separated from
the boundary ±1 of the potential F . Let us stress, nonetheless, that the threshold of
separation is not uniform in ω: this identifies in a natural way a random variable Λ

representing the “amount” of separation from ±1. Indeed, one can introduce

Λ : Ω→ (0, δ0] , Λ(ω) :=

{
1− ‖u(ω)‖L∞(Q) if ω ∈ Ω∗ ,

δ0 if ω ∈ Ω \ Ω∗ ,
(1.3)

where δ0 ∈ (0, 1) is defined as in Theorem 1.3. Clearly, Λ is well-defined and valued in
(0, δ0] by Theorem 1.3. Also, Λ is actually F -measurable: indeed, this follows from the
fact that u : Ω → L2(Q) is strongly measurable, hence also F/B(L2(Q))-measurable,
and that the function

Φ∞ : L2(Q)→ [0,+∞] , Φ∞(v) :=

{
‖v‖L∞(Q) if v ∈ L∞(Q) ,

+∞ otherwise ,

is B(L2(Q))/B(R)-measurable.
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Separation for the stochastic Allen-Cahn equation

We have seen that (1.3) defines a random variable on (Ω,F ) with values in (0, δ0]

almost everywhere, representing the magnitude of separation of the trajectories of u
from the barriers ±1. As we have pointed out before, Λ is generally not constant in Ω.
Of course, we have the trivial relations

P{Λ ≤ 0} = 0 and P{Λ ≤ δ0} = 1 ,

meaning that the distribution of the random variable Λ gives full measure to the interval
(0, δ0]. A natural question is then to precisely investigate the probability distribution of
Λ, by studying the asymptotic behaviour of the measures of its upper/lower level sets
through the analysis of their rates of convergence. Namely, for every fixed δ ∈ (0, δ0)

close to 0, we aim at giving an estimation of the probability

P{ω ∈ Ω : Λ(ω) ≤ δ} = P
{
ω ∈ Ω : ‖u(ω)‖L∞(Q) ≥ 1− δ

}
,

and studying its behaviour as δ ↘ 0. More specifically, for every δ ∈ (0, δ0), the probability
P{Λ ≤ δ} gives a quantitative measure of the trajectories that are separated from ±1 of
less than the threshold δ. Clearly, by Theorem 1.3 is necessarily holds that

lim
δ↘0

P{Λ ≤ δ} = 0 .

The aim of the following result is to give an estimate of the exact rate of convergence for
such probability as δ ↘ 0.

Theorem 1.4 (Probability of separation). Assume the setting of Theorem 1.3. Then, for
every α ∈ (d/ς, 1− d/p) there exist two constants L > 0 and δ∗ ∈ (0, δ0), depending only
on α, ς, p, T , O, F , H, and u0, such that, setting ρ := p ς−d/αp+d/α ,

P{Λ ≤ δ} = P

{
sup

(t,x)∈[0,T ]×O
|u(t, x)| ≥ 1− δ

}
≤ exp

(
−Lδ−ρ

)
, ∀ δ ∈ (0, δ∗) .

Eventually, our last result is concerned with the investigation of the effect of the noise
on the separation principle with respect to the deterministic equation. More precisely,
we consider here the following family of parameter-dependent problems

duε −∆puε dt+ F ′(uε) dt =
√
εH(uε) dW in (0, T )×O , (1.4)

uε = 0 in (0, T )× ∂O , (1.5)

uε(0) = u0 in O , (1.6)

indexed with respect to ε ∈ [0, 1]. The choice ε = 0 yields the corresponding deterministic
equation, which is well-known (details are given in Section 5) to admit a unique solution ū,
constant in Ω. Also, if the initial datum satisfies the classical condition ‖u0‖L∞(O) = 1−δ0
with max{|rF |, |RF |} ≤ 1− δ0 (this is automatically true when F ′ is non-decreasing for
example), the deterministic solution ū is separated from the barriers of at least the
deterministic threshold δ0, i.e.

ū ∈ L∞P(Ω;C0([0, T ];H) ∩ L∞(0, T ;Vp)) , (1.7)

∆pū, F
′(ū) ∈ L∞P(Ω;L2(0, T ;H)) , (1.8)

sup
(t,x)∈[0,T ]×O

|ū(ω, t, x)| = 1− δ0 P-a.e. ω ∈ Ω . (1.9)

For every ε ∈ (0, 1), Theorems 1.2–1.3 ensure the existence and uniqueness of a process
uε which is separated almost surely from the barriers ±1 of at least a random threshold
Λε : Ω→ (0, δ0], i.e.

uε ∈ L`P(Ω;C0([0, T ];H) ∩ L∞(0, T ;Vp)) ∀ ` ∈ [1,+∞) ,
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∆puε, F
′(uε) ∈ L`P(Ω;L2(0, T ;H)) ∀ ` ∈ [1,+∞) ,

sup
(t,x)∈[0,T ]×O

|uε(ω, t, x)| = 1− Λε(ω) P-a.e. ω ∈ Ω .

It would be relevant to prove a convergence result of the random separation thresholds
(Λε)ε towards the constant δ0 as ε ↓ 0. Our last result answers this question in the sense
of convergence in probability: also, we are able to provide an exponential estimate of
the convergence rate.

Theorem 1.5. Assume the setting of Theorem 1.3 and that max{|rF |, |RF |} ≤ 1 − δ0.
Then, it holds for every η ∈ (0, δ0) that

lim
ε↓0
P {|Λε − δ0| ≥ η} = 0 .

More precisely, for every α ∈ (d/ς, 1− d/p) there exists a function N : (0, δ0)→ (0,+∞),
only depending on α, ς, p, T , O, F , H, and u0, such that

lim sup
ε↓0

ε logP {|Λε − δ0| > η} ≤ −N(δ0 − η) ∀ η ∈ (0, δ0) .

2 Well-posedness

The proof of the well-posedness we present here adapts and extends the main ideas
contained in [4] to the case of p-Laplacian operator, p ∈ [2,+∞), and to general singular
potentials.

For every λ > 0, let βλ : R → R be the Yosida approximation of β. Let also β̂ :

R → [0,+∞] be the unique proper, convex, lower semicontinuous function such that
∂β̂ = β and β̂(0) = 0, and β̂λ : R→ [0,+∞) the associated Moreau-Yosida regularization,
i.e. β̂λ(r) :=

∫ r
0
βλ(s) ds, r ∈ R. We set

Fλ : R→ [0,+∞) , Fλ(r) := F (0) + β̂λ(r)− CF
2
|r|2 , r ∈ R ,

so that Fλ is of class C2 with

F ′λ(r) = βλ(r)− CF r , r ∈ R .

Let us also set Jλ := (I + λβ)−1 : R→ (−1, 1) as the resolvent of β, and define

Hλ : H → L 2(U,H) , Hλ(v) := H(Jλ(v)) , v ∈ H .

Since Jλ is non expansive, it is immediate to check that Hλ is CH-Lipschitz-continuous.
For every λ > 0, we consider the approximated problem

duλ −∆puλ dt+ F ′λ(u) dt = Hλ(u) dW in (0, T )×O ,
uλ = 0 in (0, T )× ∂O ,

uλ(0) = u0 in O .

The classical variational theory by Pardoux [28] and Krylov–Rozovskii [19] ensures that
there exists a unique approximated solution

uλ ∈ L2
P(Ω;C0([0, T ];H)) ∩ LpP(Ω;Lp(0, T ;Vp)) ,

in the sense that the following equality is satisfied in V ∗p

uλ(t)−
∫ t

0

div γp(∇uλ(s)) ds+

∫ t

0

F ′λ(u(s)) ds

= u0 +

∫ t

0

Hλ(uλ(s)) dW (s) ∀ t ∈ [0, T ] , P-a.s.
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2.1 First estimate

Itô’s formula for the square of the H-norm and assumptions A–B–C yield

1

2
‖uλ(t)‖2H +

∫
Qt

|∇uλ|p

≤ 1

2
‖u0‖2H + CF

∫
Qt

|uλ|2 +
C2
H
2
t+

∫ t

0

(uλ(s),Hλ(uλ(s)) dW (s))H

for every t ∈ [0, T ], P-almost surely. By the Burkholder-Davis-Gundy (BDG) and Young
inequalities, for every ` ≥ 2 we have

E sup
r∈[0,t]

∣∣∣∣∫ r

0

(uλ(s),Hλ(uλ(s)) dW (s))H

∣∣∣∣`/2
≤M`E

(∫ t

0

‖uλ(s)‖2H ‖Hλ(uλ(s))‖2L 2(U,H) ds

)`/4
≤ σE sup

r∈[0,t]

‖uλ(r)‖`H +M`,σC
`
H|O|

for every σ > 0 and for some constants M`,M`,σ > 0 independent of λ. Taking power `/2,
choosing σ > 0 sufficiently small, rearranging the terms, and using the Gronwall lemma,
we infer that possibly renominating M` > 0 independent of λ it holds that

‖uλ‖L`P(Ω;C0([0,T ];H))∩Lp`/2P (Ω;Lp(0,T ;Vp))
≤M` . (2.1)

2.2 Second estimate

Let Fλ : Vp → R be defined as Fλ(u) :=
∫
O Fλ(u). Thanks to Assumption B, Fλ is

Fréchet differentiable with derivatives given by

DFλ(u)[y] =

∫
O
F ′λ(u)y

D2Fλ(u)[y1, y2] =

∫
O
F ′′λ (u)y1y2 ,

for every u, y, y1, y2 ∈ Vp. Recalling that Fλ is of class C2 with Lipschitz derivative, Itô
formula for Fλ yields∫

O
Fλ(uλ(t)) +

∫
Qt

F ′′λ (uλ)|∇uλ|p +

∫
Qt

|F ′λ(uλ)|2

=

∫
O
Fλ(u0) +

1

2

∫ t

0

∞∑
k=0

∫
O
F ′′λ (uλ(s))|hk(Jλ(uλ(s)))|2 ds

+

∫ t

0

(F ′λ(uλ(s)),Hλ(uλ(s)) dW (s))H

(2.2)

for every t ∈ [0, T ], P-almost surely. Since β′λ is increasing it holds that F ′′λ (uλ) =

β′λ(uλ)− CF ≥ −CF , so that∫
Qt

F ′′λ (uλ)|∇uλ|p ≥ −CF
∫
Qt

|∇uλ|p

Furthermore, recalling that βλ(uλ) = β(Jλ(uλ)) and that Jλ : R → (−1, 1) is non-
expansive, we have that F ′′λ (uλ) = β′(Jλ(uλ))J ′λ(uλ)−CF ≤ β′(Jλ(uλ))−CF = F ′′(Jλ(uλ)).
This is useful to estimate the term∫ t

0

∞∑
k=0

∫
O
F ′′λ (uλ(s))|hk(Jλ(uλ(s)))|2 ds ≤

∫ t

0

∞∑
k=0

∫
O
F ′′(Jλ(uλ(s))) |hk(Jλ(uλ(s)))|2 ds
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≤ |O|
∫ t

0

∞∑
k=0

∥∥F ′′h2
k

∥∥
L∞(−1,1)

ds

≤ C2
H|O|t .

For what concerns the stochastic integral, Assumption C, the BDG and Young inequalities
yield

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

(F ′λ(uλ(s)),Hλ(uλ(s)) dW (s))H

∣∣∣∣`/2

≤M2E

(∫ T

0

‖F ′λ(uλ(s))‖2H‖Hλ(uλ(s))‖2L 2(U,H) ds

)`/4

≤ σE

(∫ T

0

‖F ′λ(uλ(s))‖2H ds

)`/2
+ C`H|O|M2,σ ,

for every σ > 0 and for some constants M2,M2,σ > 0 independent of λ. Summing up and
possibly renominating M` again, we get that

‖F ′λ(uλ)‖`L`P(Ω;L2(0,T ;H)) ≤M`(1 + E ‖∇uλ‖p`/2Lp(0,T ;Lp(O)))

and, thanks to estimate (2.1),

‖F ′λ(uλ)‖L`P(Ω;L2(0,T ;H)) + ‖βλ(uλ)‖L`P(Ω;L2(0,T ;H)) ≤M` . (2.3)

2.3 Cauchy property

For every λ > ε > 0 let us write the equation for the difference uλ − uε: for every
v ∈ Vp, for every t ∈ [0, T ], P-a.s. it holds∫

O
(uλ(t)− uε(t)) v +

∫ t

0

∫
O

(γp(∇uλ(s))− γp(∇uε(s))) · ∇v ds

+

∫ t

0

∫
O

(F ′λ(uλ(s))− F ′ε(uε(s))) v ds =

∫
O

(∫ t

0

(Hλ(uλ(s))−Hε(uε)) dW (s)

)
v .

Itô formula for the square of the H-norm yields

1

2
‖uλ(t)− uε(t)‖2H +

∫ t

0

(
γp(∇uλ(s))− γp(∇uε(s)),∇uλ(s)−∇uε(s)

)
L2(O)d

ds

+

∫ t

0

(F ′λ(uλ(s))− F ′ε(uε(s)), uλ(s)− uε(s))H ds

=
1

2

∫ t

0

∞∑
k=0

∫
O
|hk(Jλ(uλ(s)))− hk(Jε(uε(s)))|2 ds

+

∫ t

0

(
uλ(s)− uε(s), (Hλ(uλ(s))−Hε(uε(s))) dW (s)

)
H
.

Strong monotonicity of the p-Laplacian for p ≥ 2 (see [34, Lem. 2.1]) guarantees that(
γp(∇uλ(s))− γp(∇uε(s)),∇uλ(s)−∇uε(s)

)
L2(O)d

≥ cp‖uλ(s)− uε(s)‖pVp .

Exploiting the monotonicity of βλ, writing uλ = λβλ(uλ) + Jλ(uλ) (and the analogous for
uε) and using Young inequality we get

(βλ(uλ)− βε(uε), uλ − uε)H ≥ λ‖βλ(uλ)‖2H + ε‖βε(uε)‖2H − (ε+ λ)(βλ(uλ), βε(uε))H
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≥ − (λ+ ε)

2

(
‖βλ(uλ)‖2H + ‖βε(uε)‖2H

)
,

Since F ′λ(uλ) = βλ(uλ)− CFuλ, the above estimate and (2.3) entail

E

(∫ t

0

(F ′λ(uλ(s))− F ′ε(uε(s)), uλ(s)− uε(s))H ds

)`/2
≥ −K(λ+ ε)− CF E

(∫ t

0

‖(uλ − uε)(s)‖2H ds

)`/2
.

To control the Itô correction term and the stochastic integral it is useful to estimate

‖Jλ(uλ)− Jε(uε)‖2H ≤ ‖Jλ(uλ)− Jλ(uε)‖2H + ‖Jλ(uε)− Jε(uε)‖2H
≤ ‖uλ − uε‖2H + ‖(Jλ(uε)− uε)− (Jε(uε)− uε)‖2H
≤ ‖uλ − uε‖2H + 2(λ2‖βλ(uε)‖2H + ε2‖βε(uε)‖2H)

≤ ‖uλ − uε‖2H + 2(λ2 + ε2)‖βε(uε)‖2H ,

where we used the non-expansivity of Jλ and the fact that |βλ| is increasing as λ ↓ 0.
Hence, thanks to estimate (2.3),

1

2
E

(∫ t

0

∞∑
k=0

∫
O
|hk(Jλ(uλ(s)))− hk(Jε(uε(s)))|2 ds

)`/2

≤ CH
2
E

(∫ t

0

‖Jλ(uλ(s))− Jε(uε(s))‖2H ds

)`/2
. E

(∫ t

0

‖(uλ − uε)(s)‖2H ds

)`/2
+K(λ2 + ε2)

and for every σ > 0 there exists Mσ independent of λ such that

E sup
r∈[0,t]

∣∣∣∣∫ r

0

(
uλ(s)− uε(s), (Hλ(uλ(s))−Hε(uε(s))) dW (s)

)
H

∣∣∣∣`/2
. E

(∫ t

0

‖uλ(s)− uε(s)‖2H‖Hλ(uλ(s))−Hε(uε(s))‖2L 2(U,H) ds

)`/4

≤ σE

(
sup
r∈[0,r]

‖uλ(r)− uε(r)‖2H

)`/2
+Mσ E

(∫ t

0

‖Jλ(uλ(s))− Jε(uε(s))‖2H ds

)`/2

≤ σE

(
sup
r∈[0,t]

‖uλ(r)− uε(r)‖2H

)`/2
+Mσ E

(∫ t

0

‖(uλ − uε)(s)‖2H ds

)`/2
+M`,σ(λ2 + ε2) .

Combining all the estimates, taking the supremum in time, power `/2, exploiting the
arbitrariness of σ > 0 and Gronwall’s inequality we obtain

‖uλ − uε‖L`P(Ω;C0([0,T ];H))∩Lp`/2P (Ω;Lp(0,T ;Vp))
. eCT

(
λ+ ε+ λ2 + ε2

)
−→ 0 (2.4)

as λ, ε ↓ 0.

2.4 Existence of a solution

We pass to the limit as λ ↓ 0 to deduce the existence of a variational solution in the
form (1.1). From (2.4) we deduce that (uλ)λ is a Cauchy sequence so that

uλ → u in L`P(Ω;C0([0, T ];H)) ∩ Lp`/2P (Ω;Lp(0, T ;Vp)) . (2.5)
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Since the operator −∆p : Vp → V ∗p is demicontinuous, from (2.5) it follows that

−∆puλ ⇀ −∆pu in LqP(Ω;Lq(0, T ;V ∗p )) . (2.6)

The uniform bound (2.3) further guarantees that, up to extracting a subsequence (λk)k,

F ′λk(uλk) ⇀ ξ in L`P(Ω;L2(0, T ;H)) ,

whence βλk(uλk) ⇀ ξ + CFu in L2
P(Ω;L2(0, T ;H)). It remains to show that ξ = F ′(u).

Noting that Jλ(uλ)→ u in L2
P(Ω;L2(0, T ;H)) by definition of Yosida approximation and

the bound (2.3), the weak-strong closure of the maximal monotone graph β (see [2, Ch. 2])
yields that ξ + CFu = β(u), hence in particular that

F ′λk(uλk) ⇀ F ′(u) in L2
P(Ω;L2(0, T ;H)) . (2.7)

Notice that the regularity F ′(u) ∈ L2(Ω;L2(0, T ;H)) readily implies the bound

‖u‖L∞(O) ≤ 1 , for a.e. t ∈ [0, T ] , P-a.e.

Moreover, the BDG inequality and the Lipschitz character of H yield the convergence of
the stochastic integrals

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

(Hλ(uλ(s))−H(u(s)))dW (s)

∥∥∥∥2

H

. ‖Jλ(uλ)− u‖2L2
P(Ω;L2(0,T );H)) → 0 ,

so that ∫ ·
0

Hλ(uλ(s))dW (s)→
∫ ·

0

H(u(s))dW (s) , in L2(Ω;C0([0, T ];H)) . (2.8)

Combining the convergences in (2.5)-(2.8) we can pass to the limit in the approximated
equation along the subsequence (λk)k with k → +∞. Therefore, we conclude that u is a
variational solution of the Allen-Cahn equation in the sense of Theorem 1.1.

2.5 Uniqueness of solutions

Let u1
0, u

2
0 ∈ H be two different initial data and denote with

u1, u2 ∈ LpP(Ω;C0([0, T ];H)) ∩ LpP(Ω;Lp(0, T ;Vp))

the associated solutions of (1.1). Following the same strategy as in the proof of the third
estimate it is easy to show that

‖u1 − u2‖LpP(Ω;C0([0,T ];H))∩LpP(Ω;Lp(0,T ;Vp)) . ‖u1
0 − u2

0‖L2(Ω;H) (2.9)

Choosing u1
0 = u2

0, this readily implies pathwise uniqueness of solutions to equation (1.1)
under Assumptions A–B–C.

2.6 Refined existence

Let us suppose now that u0 ∈ Vp. Define the map Φ : Vp → R as Φp(u) := 1
p‖∇u‖

p
Lp(O).

The first and second Fréchet derivative of Φp are given by

DΦp(u)[y] =

∫
O
γp(∇u) · ∇y

D2Φp(u)[y1, y2] = (p− 1)

∫
O
|∇u|p−2∇y1 · ∇y2 ,
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for every u, y, y1, y2 ∈ Vp. Notice that ‖∇u‖pLp(O) = ‖γp(∇u)‖qLq(O), where q = p
p−1 . The

additional assumption u0 ∈ Vp guarantees (see e.g. [15]) that uλ ∈ L∞(0, T ;L1(Ω;Vp))

and −∆puλ ∈ L2
P(Ω;L2(0, T ;H)). Hence, Itô formula for Φp(uλ) (see [32, Prop. 3.3])

yields after some easy manipulations

1

p

∫
O
|∇uλ(t)|p +

∫
Qt

|∆puλ|2 +

∫
Qt

F ′′λ (uλ)|∇uλ|p

=
1

p

∫
O
|∇u0|p + (p− 1)

∞∑
k=0

∫
Qt

|∇uλ|p|J ′λ(uλ)|2|h′k(Jλ(uλ))|2

+

∫ t

0

(
γp(∇uλ(s)),∇Hλ(uλ(s)) dW (s)

)
L2(O)d

ds .

The third term on the l.h.s can be estimated as usual (β′λ(uλ) ≥ 0)∫
Qt

|∇uλ|pF ′′λ (uλ) ≥ −CF
∫
Qt

|∇uλ|p .

Thanks to Assumption C and the non-expansive character of Jλ the trace term can be
estimated as

∞∑
k=0

∫
Qt

|∇uλ|p|J ′λ(uλ)|2|h′k(Jλ(uλ))|2 ≤ CH
∫
Qt

|∇uλ|p .

Concerning the stochastic integral we have

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
γp(∇uλ(s)),∇Hλ(uλ(s)) dW (s)

)
L2(O)d

∣∣∣∣
= E sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
|∇uλ(s)|

p−2
2 ∇uλ(s), |∇uλ(s)|

p−2
2 ∇Hλ(uλ(s)) dW (s)

)
L2(O)d

∣∣∣∣
≤ E

(
sup
t∈[0,T ]

‖|∇uλ(t)|
p−2
2 ∇uλ(t)‖2H

∫ T

0

‖|∇uλ(s)|
p−2
2 ∇Hλ(uλ(s))‖2L 2(U,H)ds

)1/2

≤ σE sup
t∈[0,T ]

∫
O
|∇uλ(t)|p +Mσ E

∞∑
k=1

∫
Q

|∇uλ|p|h′k(Jλ(uλ))|2

≤ σE sup
t∈[0,T ]

∫
O
|∇uλ(t)|p +MσCHE

∫
Q

|∇uλ|p

Taking the supremum in time and expectation, the arbitrariness of σ > 0 and the
estimate (2.1) yield

‖uλ‖Lpw(Ω;L∞(0,T ;Vp)) + ‖∆puλ‖L2
P(Ω;L2(0,T ;H)) ≤ K . (2.10)

Once the estimate (2.10) is established, the proof of Theorem 1.2 relies on standard
arguments. Indeed, one readily gets that

uλ
∗
⇀ u in Lpw(Ω;L∞(0, T ;Vp))

and

−∆puλ ⇀ −∆pu in L2
P(Ω;L2(0, T ;H)) .

Hence u belongs to Lpw(Ω;L∞(0, T ;Vp)) with ∆pu ∈ L2
P(Ω;L2(0, T ;H)) and satisfies (1.2).

This proves Theorem 1.2.
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3 Separation property

We present here the proof of Theorem 1.3, which is divided in two main steps. In the
first step we prove that, almost surely in Ω, it holds |u(t, x)| < 1 for every (t, x) ∈ (0, T )×O,
namely that u cannot touch the barriers ±1 at any point in space and time. Afterwards, in
the second step, we show that, for almost every ω ∈ Ω it exists a threshold δ = δ(ω) > 0

such that ‖u(ω)‖L∞(Q) ≤ 1− δ(ω). In order to show this, we will rely on suitable pathwise
estimates and Hölder regularity of the solution. Throughout the section, the assumptions
of Theorem 1.3 are in order.

3.1 Pathwise estimates

Given ς ∈ N \ {0} as in the assumption D, in order to “measure” how much u is
concentrated around ±1 we use the following convex function

Gς : (−1, 1)→ R , Gς(r) :=
1

(1− r2)ς
, r ∈ R , (3.1)

and also the corresponding functional

Gς : H → [0,+∞] , Gς(v) :=


∫
O
Gς(v) if Gς(v) ∈ L1(O) ,

+∞ otherwise .

A direct computation shows that G′ς , G
′′
ς : (−1, 1)→ R are given by

G′ς(r) = 2ς
r

(1− r2)ς+1
, G′′ς (r) = 2ς

(2ς + 1)r2 + 1

(1− r2)ς+2
, r ∈ (−1, 1) .

Lemma 3.1. There exists K1 > 0, only depending of ς, p, T , O, F , H, and u0, such that

sup
t∈[0,T ]

∫
O
Gς(u(t)) ≤ K1 + sup

t∈[0,T ]

∫ t

0

(
G′ς(u(s)),H(u(s)) dW (s)

)
H
< +∞ P-a.s. (3.2)

where the right-hand side is well-defined as (G′ς(u),H(u)·)H ∈ L2
P(Ω;L2(0, T ; L 2(U,R))).

Proof of Lemma 3.1. Ideally, we would like to write Itô’s formula for Gς(u): however,
since G′ς is not Lipschitz continuous and G′′ς is not bounded, we cannot relay on standard
Itô’s formulas in the variational setting. Hence, we use an approximation of the function
Gς in order to recover such regularity. For example, since G′ς is monotone increasing
and continuous, then we can identify it with a maximal monotone graph. Therefore,
for every λ ∈ (0, 1), we can consider its Yosida approximation G′ς,λ : R→ R and define
Gς,λ : R→ R as

Gς,λ(r) := 1 +

∫ r

0

G′ς,λ(y) dy , r ∈ R .

In this way we have that Gς,λ ∈ C2(R) is exactly the Moreau-Yosida regularisation of
Gς , and is such that G′ς,λ is Lipschitz-continuous and G′′ς,λ is continuous and bounded.
Therefore, letting

Gς,λ : H → R , Gς,λ(v) :=

∫
D

Gς,λ(v) , v ∈ H ,

we can write Itô’s formula for Gς,λ(u) and then, by passing to the limit for λ ↓ 0, we can
recover an Itô’s inequality for Gς(u) by lower semicontinuity. Indeed, for every t ∈ [0, T ],
P-almost surely it holds that∫

O
Gς,λ(u(t)) +

∫
Qt

G′′ς,λ(u)|∇u|p +

∫
Qt

G′ς,λ(u)F ′(u)
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=

∫
O
Gς,λ(u0) +

1

2

∫ t

0

∞∑
k=0

∫
O
G′′ς,λ(u(s))|hk(u(s))|2 ds

+

∫ t

0

(
G′ς,λ(u(s)),H(u(s)) dW (s)

)
H
.

Now, the second term on the left-hand side is nonnegative by convexity of Gς,λ. For the
third term on the left-hand side, by assumption B, by monotonicity, and the fact that
G′ς,λ(0) = 0 we have that∫

Qt

G′ς,λ(u)F ′(u) =

∫
Qt∩{u∈(−1,rF )}

G′ς,λ(u)F ′(u) +

∫
Qt∩{u∈[rF ,RF ]}

G′ς,λ(u)F ′(u)

+

∫
Qt∩{u∈(RF ,1)}

G′ς,λ(u)F ′(u)

≥
∫
Qt∩{u∈[−rF ,RF ]}

G′ς,λ(u)F ′(u)

≥ −|Q| max
r∈[rF ,RF ]

|G′ς(r)| max
r∈[rF ,RF ]

|F ′(r)| .

Furthermore, on the right-hand side we have by assumption on the initial datum that∫
O
Gς,λ(u0) ≤

∫
O
Gς(u0) ≤ |O|

δ2ς
0

.

Putting together this information we deduce that∫
O
Gς,λ(u(t)) ≤ |O|

δ2ς
0

+ |Q| max
r∈[rF ,RF ]

|G′ς(r)| max
r∈[rF ,RF ]

|F ′(r)|

+
1

2

∫ t

0

∞∑
k=0

∫
O
G′′ς,λ(u)|hk(u)|2 +

∫ t

0

(
G′ς,λ(u(r)),H(u(r)) dW (r)

)
H
.

Let us handle the trace term. To this end, we exploit assumption D: indeed, for every
k ∈ N, thanks to Taylor’s theorem with integral reminder, it holds for every r ∈ (−1, 1)

that

hk(r) =

ς+1∑
j=0

h
(j)
k (1)

j!
(r − 1)j − 1

(ς + 1)!

∫ 1

r

h
(ς+2)
k (y)(r − y)ς+1 dy ,

hk(r) =

ς+1∑
j=0

h
(j)
k (−1)

j!
(r + 1)j +

1

(ς + 1)!

∫ r

−1

h
(ς+2)
k (y)(r − y)s+1 dy .

Recalling assumption D, we have for every r ∈ (−1, 1) and k ∈ N that

|hk(r)| ≤
‖hk‖W ς+2,∞(−1,1)

(ς + 2)!
|r − 1|ς+2 ,

|hk(r)| ≤
‖hk‖W ς+2,∞(−1,1)

(ς + 2)!
|r + 1|ς+2 .

Now, the non-expansivity of the resolvent of G′ς and the fact that r 7→ G′′ς (|r|), r ∈ (−1, 1),
is non-increasing imply that G′′ς,λ(u) ≤ G′′ς (u). Therefore, exploiting the form of G′′ς and
the fact that |u| ≤ 1 almost everywhere, we infer that

1

2

∫ t

0

∞∑
k=0

∫
O
G′′ς,λ(u(s))|hk(u(s))|2 ds
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≤ 2ς(ς + 1)

∫ t

0

∞∑
k=0

∫
O

|hk(u(s))|2

(1− u(s)2)ς+2
ds

≤ 2ς(ς + 1)

(ς + 2)!2

∞∑
k=0

‖hk‖2W ς+2,∞(−1,1)

∫
Qt

(
|u− 1||u+ 1|
|u− 1||u+ 1|

)ς+2

≤ 2ς(ς + 1)

(ς + 2)!2
C2
H,ς |Q| .

Consequently, by choosing

K1 :=
|O|
δ2ς
0

+ |Q| max
r∈[rF ,RF ]

|G′ς(r)| max
r∈[rF ,RF ]

|F ′(r)|+ 2ς(ς + 1)

(ς + 2)!2
C2
H,ς |Q| , (3.3)

we get exactly∫
O
Gς,λ(u(t)) ≤ K1 +

∫ t

0

(
G′ς,λ(u(s)),H(u(s)) dW (s)

)
H

∀ t ∈ [0, T ] , P-a.s. (3.4)

Now, by the BDG inequality we have

E sup
r∈[0,t]

∫ r

0

(
G′ς,λ(u(s)),H(u(s)) dW (s)

)
H
≤ C E

( ∞∑
k=0

∫
Qt

G′ς,λ(u)2|hk(u)|2
)1/2

,

where

G′ς,λ(u)2|hk(u)|2 ≤ 4ς2
|hk(u)|2

(1− u2)2ς+2

≤ 4ς2

(ς + 2)!2
‖hk‖2W ς+2,∞(−1,1)

|u− 1|ς+2|u+ 1|ς+2

|u− 1|2ς+2|u+ 1|2ς+2

≤ 4ς2

(ς + 2)!2
‖hk‖2W ς+2,∞(−1,1)

1

|u− 1|ς |u+ 1|ς

=
4ς2

(ς + 2)!2
‖hk‖2W ς+2,∞(−1,1)Gς(u) .

It follows that

E sup
r∈[0,t]

∫
O
Gς,λ(u(r)) ≤ K1 + C

ς

(ς + 2)!
CH,ς

(
1 + E

∫
Qt

Gς,λ(u)

)
and the Gronwall Lemma implies the existence of a constant C > 0 independent of λ
such that

E sup
t∈[0,T ]

‖Gς,λ(u)‖L1(O) ≤ C ,

yielding by the Fatou Lemma that

E sup
t∈[0,T ]

‖Gς(u)‖L1(O) ≤ C .

Now, this information together with analogous computations as above imply that

E

∞∑
k=0

∫
Q

G′ς(u)2|hk(u)|2 < +∞ ,

or in other words that (Gς(u),H(u)·)H ∈ L2
P(Ω;L2(0, T ; L 2(U,R))). Eventually, the BDG

inequality implies

E sup
r∈[0,t]

∫ r

0

(
G′ς,λ(u(s))−G′ς(u(s)),H(u(s)) dW (s)

)
H
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≤ C E

( ∞∑
k=0

∫
Qt

|G′ς,λ(u)−G′ς(u)|2|hk(u)|2
)1/2

.

SinceG′ς,λ(u)→ G′ς(u) almost everywhere, the right-hand side goes to 0 by the dominated
convergence theorem since (Gς(u),H(u)·)H ∈ L2

P(Ω;L2(0, T ; L 2(U,R))). Hence, we can
let λ ↓ 0 in (3.4) and deduce exactly (3.2): this concludes the proof.

Lemma 3.2. There exists K2 > 0, only depending of ς, p, T , O, F , H, and u0, such that

sup
t∈[0,T ]

‖u(t)‖pVp +

∫
Q

|∆pu|2 ≤ K2 +K2 sup
t∈[0,T ]

∫ t

0

(−∆pu(s),H(u(s)) dW (s))H P-a.s.

(3.5)
where the right-hand side is well-defined as (∆pu,H(u)·)H ∈ L2

P(Ω;L2(0, T ; L 2(U,R))).

Proof of Lemma 3.2. By Itô’s formula (see [32, Prop. 3.3]) we have for all t ∈ [0, T ],
P-a.s. that

1

p

∫
O
|∇u(t)|p +

∫
Qt

|∆pu|2 +

∫
Qt

F ′′(u)|∇u|p

=
1

p

∫
O
|∇u0|p + (p− 1)

∞∑
k=0

∫
Qt

|h′k(u)|2|∇u|p +

∫ t

0

(−∆pu(s),Hλ(uλ(s)) dW (s))H .

On the left-hand side it holds by assumption B that∫
Qt

F ′′(u)|∇u|p ≥ −CF
∫
Qt

|∇u|p ,

whereas on the right-hand side the assumption C yields

(p− 1)

∞∑
k=0

∫
Qt

|h′k(u)|2|∇u|p ≤ (p− 1)C2
H

∫
Qt

|∇up| .

It follows for every t ∈ [0, T ] that

‖∇u(t)‖pLp(O) + p

∫
Qt

|∆pu|2 ≤ ‖∇u0‖pLp(O) + p
[
(p− 1)C2

H + CF
] ∫

Qt

|∇u|p

+ p sup
t∈[0,T ]

∫ t

0

(−∆pu(s),Hλ(uλ(s)) dW (s))H .

Setting then

K2 := exp
(
p
[
(p− 1)C2

H + CF
]
T
)

max
{
‖∇u0‖pLp(O) , p

}
, (3.6)

the thesis follows from the Gronwall lemma: this concludes the proof.

3.2 Separation of the trajectories

Now, we are ready to prove Theorem 1.3. As already outlined at the beginning of
this section, the proof consists of two steps. First of all, we prove that there exists
a set Ω∗ ∈ F with P(Ω∗) = 1 such that for every ω ∈ Ω∗ one has |u(ω, t, x)| 6= 1 for
every (t, x) ∈ [0, T ] × O. Since we already know that |u| ≤ 1 almost everywhere from
Theorem 1.2, this amounts to show that |u(ω, t, x)| < 1 for all (ω, t, x) ∈ Ω∗ × [0, T ]×O.

Now, since the assumption ς(p − d) > d guarantees in particular that p > d, by the
Sobolev embedding theorem we have the continuous inclusion

Vp ↪→ C0,α(O) ∀α ∈ (0, 1− d/p) .
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We will denote by cα,p > 0 the norm of such inclusion. By the regularity of u in Theo-
rem 1.2 and the inclusion C0([0, T ];H)∩L∞(0, T ;Vp) ⊂ C0

w([0, T ];Vp) (see [35, Thm. 2.1]),
we infer that there exists Ω∗ ∈ F with P(Ω∗) = 1 such that, for all α ∈ (0, 1− d/p),

u(ω) ∈ C0([0, T ];H) ∩ L∞(0, T ;Vp) ⊂ C0
w([0, T ];C0,α(O)) ∀ω ∈ Ω∗ .

This means that every trajectory u(ω) starting from Ω∗ can be evaluated pointwise in
space and time, and not only almost everywhere. Since Ω∗ has full measure, it is not
restrictive to assume that (3.2) and (3.5) hold pointwise in Ω∗.

Step 1. Let ω ∈ Ω∗ be fixed. Recall that by Lemmas 3.1–3.2 we have that

sup
t∈[0,T ]

‖Gς(u(ω, t))‖L1(O) + sup
t∈[0,T ]

‖u(ω, t)‖pVp < +∞ .

By contradiction, let us suppose that there exists (t̄, x̄) ∈ [0, T ]×O such that |u(ω, t̄, x̄)| =
1: then, thanks to the boundary conditions it holds that x̄ ∈ O necessarily, and we have

+∞ > sup
t∈[0,T ]

‖Gς(u(ω, t))‖L1(O) ≥
∫
O
Gς(u(ω, t̄, x)) dx =

∫
O

1

|1− u(ω, t̄, x)2|ς
dx

=

∫
O

1

|u(ω, t̄, x̄)2 − u(ω, t̄, x)2|ς
dx

=

∫
O

1

|u(ω, t̄, x̄)− u(ω, t̄, x)|ς
1

|u(ω, t̄, x̄) + u(ω, t̄, x)|ς
dx .

Now, note that

|u(ω, t̄, x̄) + u(ω, t̄, x)|ς ≤ (1 + |u(t̄, x)|)ς ≤ 2ς for a.e. x ∈ O ,

while the Sobolev embedding theorem guarantees that

|u(ω, t̄, x̄)− u(ω, t̄, x)|ς ≤ ‖u(ω, t̄)‖ς
C0,α(O)

|x̄− x|ςα

≤ cςα,p sup
t∈[0,T ]

‖u(ω, t)‖ςVp |x̄− x|
ςα .

It follows by rearranging the terms that

+∞ > sup
t∈[0,T ]

‖Gς(u(ω, t))‖L1(O) · sup
t∈[0,T ]

‖u(ω, t)‖ςVp ≥
1

cςα,p2
ς

∫
O

1

|x̄− x|ςα
dx .

However, the assumption ς(p − d) > pd in D ensures that d/ς < 1 − d/p: hence, it is
possible to choose α ∈ (0, 1− d/p) such that ςα > d. With this choice, the integral on the
right-hand side is infinite, but this is a contradiction since the left-had side is finite. This
shows that |u(ω, t, x)| < 1 for all (t, x) ∈ [0, T ]×O, as required.

Step 2. Let ω ∈ Ω∗ be fixed. We show here that there exists δ = δ(ω) ∈ (0, δ0] such
that |u(ω, t, x)| ≤ 1− δ(ω) for every (t, x) ∈ [0, T ]×O. We proceed again by contradiction,
supposing the existence of a sequence (tn, xn)n∈N ⊂ [0, T ]×O for which |u(ω, tn, xn)| → 1

as n → ∞. By compactness of [0, T ] × O, possibly arguing on a subsequence, we can
assume that there exists (t̄, x̄) ∈ [0, T ]×O such that (tn, xn)→ (t̄, x̄) as n→∞. At this
point, using the same notation as in Step 1, for α ∈ (0, 1− d/p) we have

|u(ω, tn, xn)− u(ω, t̄, x̄)| ≤ |u(ω, tn, xn)− u(ω, tn, x̄)|+ |u(ω, tn, x̄)− u(ω, t̄, x̄)|
≤ cα,p sup

t∈[0,T ]

‖u(ω, t)‖Vp |xn − x̄|α + |u(ω, tn, x̄)− u(ω, t̄, x̄)| .

Clearly, the first term on the right-hand side converges to 0 as n→∞. As for the second
term, we note that

Ix̄(v) := v(x̄) , v ∈ Vp ,
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defines a continuous linear functional Ix̄ ∈ V ∗p thanks to the embedding Vp ↪→ C0(O).
Consequently, recalling that u(ω) ∈ C0

w([0, T ];Vp), we have as n→∞ that

u(ω, tn, x̄) = 〈Ix̄, u(ω, tn)〉 → 〈Ix̄, u(ω, t̄)〉 = u(ω, t̄, x̄) ,

so that

|u(ω, tn, x̄)− u(ω, t̄, x̄)| → 0 .

Putting this information together, we deduce that |u(ω, t̄, x̄)| = 1: however, this is in
contrast with what we proved in Step 1. This shows indeed that there exists δ = δ(ω) > 0

such that |u(ω, t, x)| ≤ 1− δ(ω) for every (t, x) ∈ [0, T ]×O. The fact that δ(ω) ≤ δ0 follows
a posteriori from the initial condition. This concludes the proof of Theorem 1.3.

4 Probability of separation

The aim of this section is to investigate the asymptotic behaviour of the probability
distribution of the separation layer Λ defined in (1.3) and to prove Theorem 1.4. Let
us recall that the random variable Λ : Ω → (0, δ0], whose existence is ensured by
Theorem 1.3, defines the separation layer of each trajectory of u from the potential
barriers ±1. We already know by definition of Λ that its distribution is concentrated on
(0, δ0] in the sense that

P{Λ ≤ 0} = 0 and P{Λ ≤ δ0} = 1 .

Here we want to give an estimate of the probability

P{Λ ≤ δ} = P

{
sup

(t,x)∈[0,T ]×O
|u(t, x)| ≥ 1− δ

}

when δ ∈ (0, δ0) is close to 0. The main idea is to estimate the L∞-norm of u in two parts,
focusing on “interior” estimates and on “boundary” estimates, separately. To this end,
we use the notation

Oσ :=

{
x ∈ O : inf

y∈∂O
|x− y| > σ

}
, Ocσ := O \ Oσ , σ > 0 .

The following lemma is crucial.

Lemma 4.1. For every α ∈ (0, 1− d/p), there exists a constant K > 0, depending only
on α, d, p, ς, and O, such that

P{Λ ≤ δ} ≤ P

{
sup
t∈[0,T ]

‖Gς(u(t))‖L1(O) · sup
t∈[0,T ]

‖u(t)‖d/αVp
≥ K

δς−
d
α

}
∀ δ ∈ (0, δ0] . (4.1)

Remark 4.2. Let us point out that the estimate given by Lemma 4.1 is meaningful for
those values α ∈ (0, 1− d/p) such that ς − d/α > 0. Now, an easy computation shows that
it is possible to choose α satisfying both conditions if and only if

d

ς
< 1− d

p
,

and this is ensured exactly by assumption D. Hence, by virtue of assumption D, we will
restrict from now on to the values α ∈ (d/ς, 1− d/p) only, so that it actually holds that
ς − d

α > 0.
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Remark 4.3. Note that as direct consequence of Lemma 4.1 and the fact that Λ ≤ δ0
almost surely by definition, it holds that

P

{
sup
t∈[0,T ]

‖Gς(u(t))‖L1(O) · sup
t∈[0,T ]

‖u(t)‖d/αVp
≥ K

δ
ς− d

α
0

}
= 1 .

Proof of Lemma 4.1. Let δ ∈ (0, δ0] and α ∈ (0, 1 − d/p). Since u ∈ C0
w([0, T ];C0,α(O)),

we have the following trivial estimate

P{Λ ≤ δ} = P
{
∃ (t̄, x̄) ∈ [0, T ]×O : |u(t̄, x̄)| ≥ 1− δ

}
.

Let us estimate now the probability on the right-hand side: we distinguish the cases when
x̄ is close to the boundary ∂O or not. To this end, let ω ∈ Ω∗, σ > 0, and (t̄, x̄) ∈ [0, T ]×Ocσ
be such that

|u(ω, t̄, x̄)| ≥ 1− δ .

Then there exists x̄∂ ∈ ∂O such that |x̄ − x̄∂ | ≤ σ: hence, thanks to the boundary
conditions and the regularity of u, we have

|u(ω, t̄, x̄)| = |u(ω, t̄, x̄)− u(ω, t̄, x̄∂)| ≤ ‖u(t̄)‖C0,α(O)|x̄− x̄∂ |
α

≤ cα,p sup
t∈[0,T ]

‖u(ω, t)‖Vp σ
α .

We would like to choose now σ = σ(ω) in such a way that |u(ω, t̄, x̄)| < 1− δ: for example,
this can be achieved by setting

σk = σk(ω) :=

(
δ/k

cα,p supt∈[0,T ] ‖u(ω, t)‖Vp

) 1
α

and picking k > 0 so that δ < k(1 − δ) for all δ ∈ (0, δ0]. An elementary computation
shows that this is satisfied when

k > max
δ∈(0,δ0]

δ

1− δ
=

δ0
1− δ0

.

Hence, setting k0 := 1 + δ0
1−δ0 and defining

σ = σ(ω) :=

(
δ/k0

cα,p supt∈[0,T ] ‖u(ω, t)‖Vp

) 1
α

, (4.2)

from the previous considerations we obtain |u(ω, t̄, x̄)| ≤ δ/k0 < 1− δ. This shows that{
ω ∈ Ω∗ : ∃ (t̄, x̄) ∈ [0, T ]×O : |u(ω, t̄, x̄)| ≥ 1− δ

}
=
{
ω ∈ Ω∗ : ∃ (t̄, x̄) ∈ [0, T ]×Oσ(ω) : |u(ω, t̄, x̄)| ≥ 1− δ

}
.

Let then ω ∈ Ω∗, t̄ ∈ [0, T ], and x̄ ∈ Oσ(ω) be such that |u(ω, t̄, x̄)| ≥ 1 − δ. If we denote
with Bσ(ω)(x̄) the ball centred in x̄ with radius σ(ω), it holds that Bσ(ω)(x̄) ⊂ O since
x̄ ∈ Oσ(ω), from which

sup
t∈[0,T ]

‖Gς(u(ω, t))‖L1(O) ≥
∫
O

1

|1− u(ω, t̄, x)2|ς
dx ≥

∫
Bσ(ω)(x̄)

1

|1− u(ω, t̄, x)2|ς
dx .

Let us suppose with that u(ω, t̄, x̄) ≥ 1− δ (the alternative case when u(ω, t̄, x̄) ≤ −1 + δ

is analogous and the argument can be adapted easily). For every x ∈ Bσ(ω)(x̄), the
denominator of the integrand can be bounded as follows:∣∣1− u(ω, t̄, x)2

∣∣ς = |1− u(ω, t̄, x)|ς |1 + u(ω, t̄, x)|ς
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≤ 2ς |1− u(ω, t̄, x)|ς

≤ 2ς
[
|u(ω, t̄, x)− u(ω, t̄, x̄)|ς + |u(ω, t̄, x̄)− 1|ς

]
≤ 2ς

[
‖u(ω, t̄)‖ς

C0,α(O)
|x− x̄|ας + δς

]
≤ 2ς

[
cςα,p sup

t∈[0,T ]

‖u(ω, t)‖ςVp σ
ας + δς

]
,

so that taking (4.2) into account we obtain

∣∣1− u(ω, t̄, x)2
∣∣ς ≤ 2ς

[
cςα,p sup

t∈[0,T ]

‖u(ω, t)‖ςVp

(
δ/k0

cα,p supt∈[0,T ] ‖u(ω, t)‖Vp

)ς
+ δς

]
= 2ς(k−ς0 + 1)δς .

Therefore, putting this information together and denoting by ad the measure of the unit
ball in Rd, we infer that

sup
t∈[0,T ]

‖Gς(u(ω, t))‖L1(O) ≥
1

2ς(k−ς0 + 1)δς

∣∣Bσ(ω)(x̄)
∣∣ =

ad

2ς(k−ς0 + 1)δς
|σ(ω)|d

=
ad

2ς(k−ς0 + 1)c
d/α
α,p k

d/α
0 supt∈[0,T ] ‖u(ω, t)‖d/αVp

δ
d
α−ς .

Rearranging the terms, we obtain the inequality

sup
t∈[0,T ]

‖Gς(u(ω, t))‖L1(O) · sup
t∈[0,T ]

‖u(ω, t)‖d/αVp
≥ ad

2ς(k−ς0 + 1)c
d/α
α,p k

d/α
0

δ
d
α−ς .

Hence, setting

K :=
ad

2ς(k−ς0 + 1)c
d/α
α,p k

d/α
0

, (4.3)

we have proved that{
ω ∈ Ω∗ : ∃ (t̄, x̄) ∈ [0, T ]×O : |u(ω, t̄, x̄)| ≥ 1− δ

}
=
{
ω ∈ Ω∗ : ∃ (t̄, x̄) ∈ [0, T ]×Oσ(ω) : |u(ω, t̄, x̄)| ≥ 1− δ

}
⊂

{
ω ∈ Ω∗ : sup

t∈[0,T ]

‖Gς(u(ω, t))‖L1(O) · sup
t∈[0,T ]

‖u(ω, t)‖d/αVp
≥ Kδ dα−ς

}
.

Since P(Ω∗) = 1, this concludes the proof.

We are now ready to prove Theorem 1.4. Recalling Lemmas 3.1–3.2, we know that

(G′ς(u),H(u)·)H ∈ L2
P(Ω;L2(0, T ; L 2(U,R))) ,

(∆pu,H(u)·)H ∈ L2
P(Ω;L2(0, T ; L 2(U,R))) ,

so that the processes

M1 :=

∫ ·
0

(G′ς(u(s)),H(u(s)) dW (s))H ∈ L2
P(Ω;C0([0, T ])) ,

M2 :=

∫ ·
0

(−∆pu(s),H(u(s)) dW (s))H ∈ L2
P(Ω;C0([0, T ])) ,

are well-defined square-integrable continuous real martingales that satisfy

sup
t∈[0,T ]

‖Gς(u(t))‖L1(O) ≤ K1 + sup
t∈[0,T ]

M1(t) P-a.s. ,
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sup
t∈[0,T ]

‖u(t)‖pVp + ‖∆pu‖2L2(0,T ;H) ≤ K2 +K2 sup
t∈[0,T ]

M2(t) P-a.s.

We will make use of Bernstein’s inequality for martingales (see [22, Lem. 2]), that we
recall here.

Lemma 4.4. (Bernstein’s inequality) Let M be a continuous real martingale and [M ] its
quadratic variation. Then, for l, a, b > 0 we have the following inequality

P

{
sup
t∈[0,T ]

|M(t)| ≥ l , [M ](T ) ≤ a sup
t∈[0,T ]

|M(t)|+ b

}
≤ exp

(
− l2

al + b

)
.

Exploiting Berstein’s inequality on M1 and M2, we obtain the following important
estimates.

Lemma 4.5. There exist four constants K ′1,K
′′
1 ,K

′
2,K

′′
2 > 0, only depending on ς, p, T ,

O, F , H, and u0, such that, for every l > 0,

P

{
sup
t∈[0,T ]

M1 ≥ l

}
≤ exp

(
− l2

K ′1l +K ′′1

)
,

P

{
sup
t∈[0,T ]

M2 ≥ l

}
≤ exp

(
− l2

K ′2l +K ′′2

)
.

Proof of Lemma 4.5. Let us focus on M1. One has

[M1](T ) =

∫ T

0

∞∑
k=0

∫
O
|G′ς(u(s))|2|hk(u(s))|2 ds ,

where, using the same computations as in the proof of Lemma 3.1,

|G′ς(u)|2|hk(u)|2 ≤ 4ς2

(ς + 2)!2
‖hk‖2W ς+2,∞(−1,1)Gς(u) .

Hence, exploiting (3.2) we deduce that

[M1](T ) ≤ 4ς2

(ς + 2)!2
C2
H,ς

∫ t

0

‖Gς(u(s))‖L1(O) ds ≤ 4ς2

(ς + 2)!2
C2
H,ςT

(
K1 + sup

t∈[0,T ]

M1(t)

)
,

so that setting

K ′1 :=
4ς2

(ς + 2)!2
C2
H,ςTK1 , K ′′1 :=

4ς2

(ς + 2)!2
C2
H,ςT , (4.4)

we have that
[M1](T ) ≤ K ′1 +K ′′1 sup

t∈[0,T ]

M1(t) P-a.s.

Bernstein’s inequality as in Lemma 4.4 yields then

P

{
sup
t∈[0,T ]

M1 ≥ l

}
= P

{
sup
t∈[0,T ]

M1 ≥ l , [M1](T ) ≤ K ′1 +K ′′1 sup
t∈[0,T ]

M1(t)

}

≤ exp

(
− l2

K ′1l +K ′′1

)
,

as desired. Let us turn now to M2: exploiting (3.5) of lemma 3.2 we have

[M2](T ) =

∫ T

0

∞∑
k=0

∫
O
|∆pu(s)|2|hk(u(s))|2 ds
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≤ C2
H

∫
Q

|∆pu|2 ≤ C2
H

(
K2 +K2 sup

t∈[0,T ]

M2(t)

)
.

The conclusion follows then analogously from Bernstein’s inequality with the choices

K ′2 := K ′′2 := C2
HK2 . (4.5)

We are now ready to conclude the proof of Theorem 1.4. By Lemma 4.1, for every
δ ∈ (0, δ0) and α ∈ (d/ς, 1− d/p) we have

P{Λ ≤ δ} ≤ P

{
sup
t∈[0,T ]

‖Gς(u(t))‖L1(O) · sup
t∈[0,T ]

‖u(t)‖d/αVp
≥ K

δς−
d
α

}
.

Now, Young’s inequality implies for every η ∈ (1,+∞) that

sup
t∈[0,T ]

‖Gς(u(t))‖L1(O) · sup
t∈[0,T ]

‖u(t)‖d/αVp

≤ 1

η
sup
t∈[0,T ]

‖Gς(u(t))‖ηL1(O) +
η − 1

η
sup
t∈[0,T ]

‖u(t)‖
η
η−1

d
α

Vp
,

from which we obtain that

P{Λ ≤ δ} ≤ P

{
1

η
sup
t∈[0,T ]

‖Gς(u(t))‖ηL1(O) +
η − 1

η
sup
t∈[0,T ]

‖u(t)‖
η
η−1

d
α

Vp
≥ K

δς−
d
α

}

≤ P

{
sup
t∈[0,T ]

‖Gς(u(t))‖ηL1(O) ≥
ηK

2δς−
d
α

}

+ P

{
sup
t∈[0,T ]

‖u(t)‖
η
η−1

d
α

Vp
≥ ηK

2(η − 1)δς−
d
α

}

= P

{
sup
t∈[0,T ]

‖Gς(u(t))‖L1(O) ≥
(
ηK

2

)1/η
1

δ
1
η (ς− d

α )

}

+ P

{
sup
t∈[0,T ]

‖u(t)‖pVp ≥
(

ηK

2(η − 1)

) η−1
η

pα
d 1

δ
η−1
η

pα
d (ς− d

α )

}
.

In order to optimise the rate of convergence, we choose now η ∈ (1,+∞) so that both
contributions on the right-hand side yield the same order, namely

1

η

(
ς − d

α

)
=
η − 1

η

pα

d

(
ς − d

α

)
.

An easy computation shows that we obtain

η̄ := 1 +
d

pα
=
pα+ d

pα
.

The corresponding exponent of δ on the right-hand side is given by

ρ :=
1

η̄

(
ς − d

α

)
= p

ς − d/α
p+ d/α

> 0 ,

and substituting in the estimate above yields

P{Λ ≤ δ} ≤ P

 sup
t∈[0,T ]

‖Gς(u(t))‖L1(O) ≥

[
K(1 + d

pα )

2

] pα
pα+d

δ−ρ
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+ P

{
sup
t∈[0,T ]

‖u(t)‖pVp ≥
[
K(1 + pα

d )

2

] pα
pα+d

δ−ρ

}
.

Setting now for brevity

L1 :=

[
K(1 + d

pα )

2

] pα
pα+d

> 0 , L2 :=

[
K(1 + pα

d )

2

] pα
pα+d

> 0 , (4.6)

Lemmas 3.1–3.2 imply that

P{Λ ≤ δ} ≤ P

{
sup
t∈[0,T ]

M1(t) ≥ L1δ
−ρ −K1

}
+ P

{
sup
t∈[0,T ]

M2(t) ≥ L2

K2
δ−ρ − 1

}
.

We are only left to exploit the estimates of Lemma 4.5. To this end, we shall restrict to
small values of δ so that

L1δ
−ρ −K1 >

L1

2
δ−ρ and

L2

K2
δ−ρ − 1 >

L2

2K2
δ−ρ ,

namely

0 < δ < min

{
δ0,

1

2
,

(
L1

2K1

)1/ρ

,

(
L2

2K2

)1/ρ
}
.

For every such δ, using Lemma 4.5 we infer that

P{Λ ≤ δ} ≤ P

{
sup
t∈[0,T ]

M1(t) ≥ L1

2
δ−ρ

}
+ P

{
sup
t∈[0,T ]

M2(t) ≥ L2

2K2
δ−ρ

}

≤ exp

(
−

1
4L

2
1δ
−2ρ

1
2L1K ′1δ

−ρ +K ′′1

)
+ exp

(
−

1
4L

2
2K
−2
2 δ−2ρ

1
2L2K

−1
2 K ′2δ

−ρ +K ′′2

)
.

Now, in order to get a clearer estimate, we can further restrict the values of δ so that

K ′′1 ≤
1

2
L1K

′
1δ
−ρ and K ′′2 ≤

1

2
L2K

−1
2 K ′2δ

−ρ ,

which yields after some easy computations, recalling that K ′1/K
′′
1 = K1 and K ′2/K

′′
2 = 1,

0 < δ < min

{
δ0,

1

2
,

(
L1

2K1

)1/ρ

,

(
L1K1

2

)1/ρ

,

(
L2

2K2

)1/ρ
}
.

For every such δ we obtain then

P{Λ ≤ δ} ≤ exp

(
− L1

4K ′1
δ−ρ
)

+ exp

(
− L2

4K2K ′2
δ−ρ
)
.

Setting then

L :=
1

2
min

{
L1

4K ′1
,

L2

4K2K ′2

}
,

we get exactly
P{Λ ≤ δ} ≤ 2 exp

(
−2Lδ−ρ

)
.

It is now clear that further adapting the range of δ, namely

0 < δ < δ∗ := min

{
δ0,

1

2
,

(
L1

2K1

)1/ρ

,

(
L1K1

2

)1/ρ

,

(
L2

2K2

)1/ρ

,

(
L

log 2

)1/ρ
}
, (4.7)

one gets 2 exp(−Lδ−ρ) ≤ 1 for all δ ∈ (0, δ∗), hence

P{Λ ≤ δ} ≤ exp
(
−Lδ−ρ

)
∀δ ∈ (0, δ∗) .

This concludes the proof of Theorem 1.4.
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5 Convergence of the separation layer

In this section we prove Theorem 1.5 about the convergence of the random separation
layers towards the deterministic one as the noise switches off.

For every ε ∈ (0, 1) we denote by uε the unique solution of the system (1.4)–(1.6) in
the sense of Theorem 1.2, and by Λε : Ω→ (0, δ0] its respective threshold of separation
from the barriers ±1 in the sense of Theorem 1.3 and definition (1.3). Moreover, let ū be
the unique solution to the deterministic system (1.4)–(1.6) when ε = 0, namely

∂tū−∆pū+ F ′(ū) = 0 in (0, T )×O ,
ū = 0 in (0, T )× ∂O ,

ū(0) = u0 in O .

The existence and uniqueness of a strong solution ū satisfying (1.7)–(1.8) is well-known
in the deterministic setting (see for example [33]) and can be obtained here path-by-path.
Moreover, one can test the equation by (ū− (1− δ0))+ to infer that

1

2

∫
O

(ū(t)− (1− δ0))2
+ +

∫
Qt∩{ū>1−δ0}

|∇ū|p +

∫
Qt∩{ū>1−δ0}

F ′(ū)(ū− (1− δ0))

=
1

2

∫
O

(u0 − (1− δ0))2
+ = 0 ∀ t ∈ [0, T ] .

Under the assumption that max{|rF |, |RF |} ≤ 1 − δ0, one has in particular that F ′ ≥ 0

on (1− δ0, 1). It follows that (ū− (1− δ0))+ = 0 almost everywhere, i.e. (exploiting the
space-time continuity of ū) that

ū(ω, t, x) ≤ 1− δ0 ∀ (t, x) ∈ [0, T ]×O , P-a.e. ω ∈ Ω .

Analogously, testing by −(ū+ 1− δ0)−, the same argument yields that

ū(ω, t, x) ≥ −1 + δ0 ∀ (t, x) ∈ [0, T ]×O , P-a.e. ω ∈ Ω .

Since ‖u0‖L∞(O) = 1− δ0, this readily implies that (1.9) holds too.
Let us focus now of the proof of the convergence of (Λε)ε∈(0,1) to the constant

deterministic threshold δ0. To this end, recalling the proofs of Lemmas 3.1–3.2 and
exploiting the fact that ε ∈ (0, 1), it is not difficult to check that the constants K1,K2 > 0

given by (3.3) and (3.6) are independent of ε and satisfy

sup
t∈[0,T ]

∫
O
Gς(uε(t)) ≤ K1 + sup

t∈[0,T ]

M1,ε(t) P-a.s. ∀ ε ∈ (0, 1) , (5.1)

sup
t∈[0,T ]

‖uε(t)‖pVp +

∫
Q

|∆puε|2 ≤ K2 +K2 sup
t∈[0,T ]

M2,ε(t) P-a.s. ∀ ε ∈ (0, 1) , (5.2)

where the real-valued martingales M1,ε and M2,ε are (well-) defined as

M1,ε :=
√
ε

∫ ·
0

(
G′ς(uε(s)),H(uε(s)) dW (s)

)
H
, ε ∈ (0, 1) , (5.3)

M2,ε :=
√
ε

∫ ·
0

(−∆puε(s),H(uε(s)) dW (s))H , ε ∈ (0, 1) . (5.4)

Analogously, it is immediate to check from the proof of Lemma 4.1 that for every
α ∈ (d/ς, 1− d/p) the constant K defined in (4.3) is independent of ε and satisfies

P{Λε ≤ δ} ≤ P

{
sup
t∈[0,T ]

‖Gς(uε(t))‖L1(O) · sup
t∈[0,T ]

‖uε(t)‖d/αVp
≥ K

δς−
d
α

}
∀ δ ∈ (0, δ0] .

(5.5)
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Similarly, going back to the proof of Lemma 4.5 we readily see that the constants
K ′1,K

′′
1 ,K

′
2,K

′′
2 defined in (4.4) and (4.5) are independent of ε and satisfy

[Mi,ε](T ) ≤ K ′iε+K ′′i ε sup
t∈[0,T ]

Mi,ε(t) P-a.s. , i = 1, 2 .

Now, for a technical reason that will be clear below, we define

K̃ ′′1 := max{K ′′1 ,K ′1K1 + 1} > 0 , K̃ ′′2 := max{K ′′2 ,K ′2 + 1} > 0 ,

so that we still have

[Mi,ε](T ) ≤ K ′iε+ K̃ ′′i ε sup
t∈[0,T ]

Mi,ε(t) P-a.s. , i = 1, 2 .

Consequently, exploiting again the Bernstein inequality as in the proof of Lemma 4.5 we
obtain

P

{
sup
t∈[0,T ]

Mi,ε ≥ l

}
≤ exp

(
−1

ε

l2

K ′il + K̃ ′′i

)
, i = 1, 2 . (5.6)

Now, let δ ∈ (0, δ0) and α ∈ (d/ς, 1 − d/p) be arbitrary. Taking into account the
relations (5.1)–(5.2) and (5.5) and proceeding as at the end of Section 4, we obtain that

P{Λε ≤ δ} ≤ P

{
sup
t∈[0,T ]

M1,ε(t) ≥ L1δ
−ρ −K1

}
+ P

{
sup
t∈[0,T ]

M2,ε(t) ≥
L2

K2
δ−ρ − 1

}
,

where the constants L1, L2 are defined in (4.6) and are independent of ε. Exploiting then
the estimate (5.6) we get

P{Λε ≤ δ} ≤ exp

(
−1

ε

(L1δ
−ρ −K1)2

K ′1(L1δ−ρ −K1) + K̃ ′′1

)
+ exp

(
−1

ε

( L2

K2
δ−ρ − 1)2

K ′2( L2

K2
δ−ρ − 1) + K̃ ′′2

)
.

Now, by the updated definition of K̃ ′′1 and K̃ ′′2 above, one has that

K ′1(L1δ
−ρ −K1) + K̃ ′′1 > 0 , K ′2

(
L2

K2
δ−ρ − 1

)
+ K̃ ′′2 > 0 .

Hence, we can define the function N : (0, δ0)→ (0,+∞) as

N(δ) := min

{
(L1δ

−ρ −K1)2

K ′1(L1δ−ρ −K1) + K̃ ′′1
,

( L2

K2
δ−ρ − 1)2

K ′2( L2

K2
δ−ρ − 1) + K̃ ′′2

}
, δ ∈ (0, δ0) ,

and infer that

P{Λε ≤ δ} ≤ exp

(
−N(δ)

ε

)
∀ δ ∈ (0, δ0) .

At this point, we are ready to conclude. Indeed, given η ∈ (0, δ0) we have

P {|Λε − δ0| ≥ η} = P {Λε ≤ δ0 − η} ≤ exp

(
−N(δ0 − η)

ε

)
,

from which

lim sup
ε↓0

ε logP {|Λε − δ0| ≥ η} ≤ −N(δ0 − η) ,

and this concludes the proof of Theorem 1.5.
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6 Examples and applications

In this section we propose some examples for the potential F and for the diffusion
operator H, and we also highlight a possible application of the model we studied.

Let us start by giving a relevant example for the potential F . We recall that F :

(−1, 1)→ [0,+∞) is assumed to be of class C2, with F ′(0) = 0, such that

lim
r→(−1)+

F ′(r) = −∞ , lim
r→1−

F ′(r) = +∞ ,

and
∃CF ≥ 0 : F ′′(r) ≥ −CF ∀ r ∈ (−1, 1) .

An important example of potential that satisfies the required assumptions is the so-called
logarithmic potential which is defined as

Flog(r) :=
θ

2
((1 + r) log(1 + r) + (1− r) log(1− r)) +

θ0

2
(1− r2) , r ∈ (−1, 1) ,

with 0 < θ < θ0 being given constants. Such a potential possesses two global minima in
the interior of the physically relevant domain [−1, 1], and it is the most coherent in terms
of thermodynamical consistency. For these reasons, it is usually employed in contexts
related to separation phenomena in physics. As already mentioned, the potential Flog

satisfies the assumptions that we required. Indeed, it holds

F ′log(r) =
θ

2
log

(
1 + r

1− r

)
− θ0r , F ′′log(r) =

θ

1− r2
− θ0 , r ∈ (−1, 1) ,

and therefore the hypothesis are trivially fulfilled, with CF = θ0 − θ.
Concerning the diffusion operator H : B1 → L 2(U,H), we recall that it is defined as

H(v) : ek 7→ hk(v) , v ∈ B1 , k ∈ N ,

where
(hk)k∈N ⊂W 1,∞

0 (−1, 1) , F ′′h2
k ∈ L∞(−1, 1) , ∀ k ∈ N ,

and

C2
H :=

∞∑
k=0

(
‖hk‖2W 1,∞(−1,1) +

∥∥F ′′h2
k

∥∥
L∞(−1,1)

)
< +∞ .

A sequence of functions (hk)k∈N satisfying the assumptions that we have just mentioned,
with F = Flog, is the following

hk(r) :=
1

k + 1
(1− r2)2 , r ∈ (−1, 1) , ∀k ∈ N . (6.1)

Indeed, there exist constants a, b > 0 such that, for every k ∈ N, it holds

hk(±1) = h′k(±1) = 0, ‖hk‖L∞(−1,1) =
1

k + 1
<∞, ‖h′k‖L∞(−1,1) =

a

k + 1
<∞ ,

and

‖F ′′h2
k‖L∞(−1,1) =

b

(k + 1)2
<∞ ,

which implies that

C2
H =

∞∑
k=0

(
1

k + 1
+

a

k + 1

)2

+
b

(k + 1)2
<∞ .
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However, we recall that Theorem 1.3, 1.4 and 1.5 require some additional conditions, i.e.
the existence of ς ∈ N \ {0} such that ς(p− d) > pd and

(hk)k∈N ⊂W ς+2,∞
0 (−1, 1) , C2

H,ς :=

∞∑
k=0

‖hk‖2W ς+2,∞(−1,1) < +∞ .

The sequence of functions defined in (6.1) does not satisfy such assumptions, but a trivial
modification of it allows to fulfil also these additional requirements. At this purpose, we
consider the sequence of functions (hk)k∈N defined as

hk(r) :=
1

k + 1
(1− r2)ς+3, r ∈ (−1, 1) , ∀k ∈ N ,

which trivially satisfies the previous assumptions on the sequence (hk)k∈N, with F = Flog.
For every n = 0 , . . . , ς + 2, one can easily verify that there exists a constant an > 0 such
that

h
(n)
k (±1) = 0 , ‖h(n)

k ‖L∞(−1,1) =
an
k + 1

<∞ ,

and therefore

C2
H,ς =

∞∑
k=0

(
ς+2∑
n=0

an
k + 1

)2

<∞ .

Finally, let us observe that an interesting application of our problem arises in the
one-dimensional case. Indeed, under the setting of Theorems 1.3, 1.4 and 1.5, we shall
require that p > d. Therefore, if d = 1, we can choose p = 2, retrieving the classical
Allen-Cahn equation. We observe that, in this case, we should require ς ≥ 3, which
means that the sequence of functions (hk)k∈N should belong at least to W 5,∞

0 (−1, 1).
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