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Discrete approximation to Brownian motion with
varying dimension in unbounded domains

Shuwen Lou*

Abstract

We establish the discrete approximation to Brownian motion with varying dimension
(BMVD in abbreviation) by random walks. The setting is very similar to that in [11],
but here we use a different method allowing us to get rid the restrictions in [11] (or
[3]) that the underlying state space has to be bounded, and that the initial distribution
of the limiting continuous process has to be its invariant distribution. The approach
in this paper is that we first obtain heat kernel upper bounds for the approximating
random walks that are uniform in their mesh sizes, by establishing an isoperimetric
inequality and a Nash-type inequality based on their Dirichlet form characterization.
Using the heat kernel upper bound, we then show the tightness of the approximating
random walks via delicate analysis.
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1 Introduction

Brownian motion on spaces with varying dimension was introduced in [7]. The
state space of such a process looks like a plane with a vertical half line installed on it,
“embedded” in the following space:

R2 ∪R+ = {(x1, x2, x3) ∈ R3 : x1 = 0 or x2 = x3 = 0 and x1 > 0}.

As has been noted in [7], Brownian motion cannot be defined on such a state space in
the usual sense because a two-dimensional Brownian motion does not hit a singleton.
The BMVD in [7] was constructed by “shorting” a closed disc on R2 to a singleton, which
in other words, makes the resistance on this closed disc zero, so that the process travels
on the disc at infinite velocity. The resulting Brownian motion hits the shorted disc in
finite time with probability one. Then an infinite half line R+ is attached to the plane R2

at this “shorted” disc.
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Discrete approximation to BMVD

The state space of BMVD can be rigorously defined as follows: Fix 0 < ε < 1/64 and
denote by Bε the closed disk on R2 centered at (0, 0) with radius ε. Let Dε := R2 \ Bε.
By identifying Bε with a singleton denoted by a∗, we introduce a topological space
E := Dε ∪ {a∗} ∪ R+, with the origin of R+ identified with a∗ and a neighborhood of
a∗ defined as {a∗} ∪ (V1 ∩R+) ∪ (V2 ∩Dε) for some neighborhood V1 of 0 in R1 and
V2 of Bε in R2. Let m be the measure on E whose restriction on R+ or Dε is 1- or
2-dimensional Lebesgue measure, respectively. In particular, we set m({a∗}) = 0. Note
that the measure m depends on ε, the radius of the “hole” Bε.

Same as in [7], the state space E is equipped with the geodesic distance ρ. Namely,
for x, y ∈ E, ρ(x, y) is the shortest path distance (induced from the Euclidean space) in E
between x and y. For notation simplicity, we write |x|ρ for ρ(x, a∗). We use | · | to denote
the usual Euclidean norm. For example, for x, y ∈ Dε, |x− y| is the Euclidean distance
between x and y in R2. Note that for x ∈ Dε, |x|ρ = |x| − ε. Clearly,

ρ(x, y) = |x− y| ∧ (|x|ρ + |y|ρ) for x, y ∈ Dε (1.1)

and ρ(x, y) = |x|+ |y| − ε when x ∈ R+ and y ∈ Dε or vice versa. Here and in the rest of
this paper, for a, b ∈ R, a ∧ b := min{a, b}.

The following definition for BMVD can be found in [7, Definition 1.1].

Definition 1.1 (Brownian motion with varying dimension). An m-symmetric diffusion
process satisfying the following properties is called Brownian motion with varying
dimension.

(i) its part process in R+ or Dε has the same law as standard Brownian motion in R+ or
Dε;

(ii) it admits no killings on a∗;

It follows from the definition that BMVD spends zero amount of time under Lebesgue
measure (i.e. zero sojourn time) at a∗. The following theorem gives the Dirichlet form
characterization of BMVD.

Theorem 1.2 ([7]). For every ε > 0, BMVD on E with parameter ε exists and is unique.
Its associated Dirichlet form (E ,D(E)) on L2(E;m) is given by

D(E) =
{
f : f |Dε ∈W 1,2(Dε), f |R+

∈W 1,2(R+), and f(x) = f(0) q.e. on ∂Dε

}
,

E(f, g) =
1

4

∫
Dε

∇f(x) · ∇g(x)dx+
1

2

∫
R+

f ′(x)g′(x)dx.

Furthermore, such a BMVD is a Feller process with strong Feller property.

Remark 1.3. For the computation convenience in this paper, we let BMVD in Theo-
rem 1.2 corresponds to the BMVD defined in [7, Theorem 2.2] with parameters (ε, p = 1)

but running on Dε at a speed 1/2.

It is well-known that Brownian motion on Euclidean spaces is the scaling limit of
simple random walks on square lattices. In [3], it was shown that reflected Brownian
motion in bounded domains can be approximated by simple random walks. Roughly
speaking, the method in [3] consists of two steps: The first step is to prove the tightness
of the laws of the random walks by verifying the tightness of the martingale parts of
the random walks through the analysis of their quadratic variations and then applying
the Lyons-Zheng decomposition. The second step is to show the uniqueness of the
subsequential limits of the laws of the random walks by characterizing the limits as
the solution to the martingale problem for the infinitesimal generator of the continuous
process. Utilizing the same method, it was proved in [11] that BMVD killed upon exiting
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Discrete approximation to BMVD

a bounded domain can be approximated weakly by simple random walks in lattices with
varying dimension. However, the method used in both [3] and [11] has the limitation
that it only works on bounded domains, and that the initial distribution has to be the
invariant measure of the continuous limiting process. In this paper, we use a different
approach to get rid of the constrain that the approximation can only be established on
bounded domains with initial distribution having to be the invariant measure.

Same as in [11], we use a sequence of approximating random walks indexed by k ≥ 1

on lattices with with mesh-size 2−k. Notice that in [11], these approximating random
walks can be characterized in terms of Dirichlet forms. Therefore carefully applying the
combination of Nash-type inequality and Davies method provides some heat kernel upper
bound that is “uniform in k” for the entire family of random walks. Intuitively speaking,
this gives some level of “equi-continuity” for the transition densities of this family random
walks. From there. the C-tightness of the random walks can be established via some
delicate analysis. As a result, we show that starting from the darning point a∗, BMVD
on E can be weakly approximated by a family of random walks with varying dimension
starting from the respective darning point in each of their state spaces. We note that
although in this paper, the approximation is only established for BMVD starting from
the darning point a∗, with similar computation one can show the same approximation
results for BMVD starting from any single point.

The rigorous description of the state spaces of random walks with varying dimension
has been given in [11]. Here we repeat it for completion. For k ∈ N, let Dk

ε := Dε∩2−kZ2.
We identify vertices of 2−kZ2 that are contained in the closed disc Bε as a singleton a∗k.
Let Ek := 2−kZ+ ∪ {a∗k} ∪Dk

ε , where Z+ = {1, 2, . . . }.
Recall that in general, a graph G can be written as “G = {Gv, Ge}”, where Gv is

its collection of vertices, and Ge is its connection of edges. Given any two vertices
in a, b ∈ G, if there is unoriented edge with endpoints a and b, we say a and b are
adjacent to each other in G, written “a ↔ b in G”. One can always assume that given
two vertices a, b on a graph, there is at most one such unoriented edge connecting these
two points (otherwise edges with same endpoints can be removed and replaced with
one single edge). This unoriented edge is denoted by eab or eba (eab and eba are viewed
as the same elelment in Ge). In this paper, for notational convenience, we denote by
G2 := {2−kZ2,V2}, where V2 is the collection of the edges of 2−kZ2. Also we denote
by G1 := {2−kZ+ ∪ {0},V1} the 1-dimensional lattice over 2−kZ+ ∪ {0}, where V1 is the
collection of edges of 2−kZ1

+ ∪ {0}. Here we emphasize that Gi, Vi, i = 1, 2, all refer to
the usual 1- or 2-dimensional Euclidean spaces (without darning). We prepare these
notations in order to introduce the graph structures on the space with darning in the
next paragraph.

Now we introduce the graph structure on Ek. Let Gk = {Gkv , Gke} be a graph where
Gkv = Ek is the collection of vertices and Gke is the collection of unoriented edges over
Ek defined as follows:

Gke :={exy : x, y ∈ Dk
ε , there exists an exy ∈ V2, such that exy ∩Bε = ∅}

∪{exy : ∃x, y ∈ 2−kZ+ ∪ {0}, |x− y| = 2−k, exy ∈ V1}
∪{exa∗k : x ∈ Dk

ε , there exists an exy ∈ V2 such that exy ∩Bε 6= ∅}, (1.2)

where exy ∈ V2 is the line segment (in the usual R2 without darning) connecting x and y,
including the two endpoints. In view of (1.2), any x ∈ Dk

ε is said to be adjacent to a∗k in
Gk if and only if when being viewed as an element in 2−kZ2, at least one of the following
two conditions holds for x:

(i) There exists at least one (at most two) y ∈ Bkε satisfying y ↔ x in 2−kZ2;
(ii) There exists y ∈ Dk

ε satisfying y ↔ x in 2−kZ2 with exy ∩Bε 6= ∅, where exy ∈ V2

is a line segment in R2.
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Discrete approximation to BMVD

Note that for x ∈ Dk
ε , x↔ a∗k in Gk, the Euclidean distance between x and Bε must

be up to 2−k. It follows that Gk = {Gkv , Gke} is a connected graph. We emphasize that
given any x ∈ Gkv , x 6= a∗k, there is at most one element in Gke with endpoints x and a∗k.
Denote by vk(x) = #{exy ∈ Gke}, i.e., the number of vertices in Gkv adjacent to x. Ek is
equipped with the following underlying reference measure:

mk(x) :=



2−2k

4
vk(x), x ∈ Dk

ε ;

2−k

2
vk(x), x ∈ 2−kZ+;

2−k

2
+

2−2k

4
(vk(x)− 1) , x = a∗k.

(1.3)

Next we define the random walks that will be shown to approximate the BMVD. Consider
the following Dirichlet form on L2(Ek,mk):

D(Ek) = L2(Ek,mk)

Ek(f, f) =
1

8

∑
eoxy : exy∈Gke ,
x,y∈Dkε∪{a

∗
k}

(f(x)− f(y))
2

+
2k

4

∑
eoxy : exy∈Gke ,

x,y∈2−kZ+∪{a∗k}

(f(x)− f(y))
2
, (1.4)

where eoxy is an oriented edge from x to y. In other words, given any pair of adjacent
vertices x, y ∈ Gkv , the edge with endpoints x and y is represented twice in the sum: eoxy
and eoyx. One can verify that (Ek,D(Ek)) on L2(Ek,mk) is a regular symmetric Dirichlet
form. We denote the symmetric strong Markov process associated with (Ek,D(Ek)) by
Xk. The explicit distribution of Xk is presented in Proposition 2.2. In this paper, for
every fixed 0 < ε < 1/64, we select and then fix some k0 ∈ N only depending on ε such
that

2−k < ε/4 for all k ≥ k0. (1.5)

Our main result is the following theorem.

Theorem 1.4. For every T > 0, the laws of {Xk,Pa
∗
k}k≥k0 are tight in the space

D([0, T ], E, ρ) equipped with Skorokhod topology. Furthermore, as k → ∞, (Xk,Pa
∗
k)

converges weakly to BMVD with parameter ε starting from a∗.

Remark 1.5. In the statement of Theorem 1.4, for every k ∈ N, a∗k can be identified with
a∗ when being viewed as an element in E.

The rest of this paper is organized as follows: For Section 2, we first give a brief
introduction to continuous-time reversible pure jump proceses and their corresponding
symmetric Dirichlet forms in §2.1. Then in §2.2 we present some basics about the
approximating random walks {Xk, k ≥ 1}, including their explicit transition probabilities.
These results were obtained in [11]. In §2.3, we review the results on isoperimetric
inequalities for weighted graphs summarized from [1]. In Section 3, we first establish a
Nash-type inequality for {Xk, k ≥ 1}. From there using Davies method we obtain some
heat kernel upper bounds for this family of random walks. The tightness of {Xk, k ≥ 1} is
shown in Section 4, which is done with some very delicate analysis based upon the heat
kernel upper bounds. Finally, the weak approximation result is completed in Section 5,
by identifying the limit of {Xk, k ≥ 1} as the unique solution to the martingale problem
for the infinitesimal generator of BMVD, i.e., the generator associated with the Dirichlet
form (E ,D(E)) in Theorem 1.2.

In this paper we follow the convention that in the statements of the theorems or
propositions C,C1, · · · denote positive constants, whereas in their proofs c, c1, · · · denote
positive constants whose exact value is unimportant and may change from line to line.
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2 Preliminaries

2.1 Continuous-time reversible pure jump processes and symmetric Dirichlet
forms

In this section, we give a brief background on continuous-time reversible pure jump
processes and symmetric Dirichlet forms. The results in this section can be found in [5,
§2.2.1].

Suppose E is a locally compact separable metric space and {Q(x, dy)} is a probability
kernel on (E,B(E)) with Q(x, {x}) = 0 for every x ∈ E. Given a constant λ > 0, we
can construct a pure jump Markov process X as follows: Starting from x0 ∈ E, X
remains at x0 for an exponentially distributed holding time T1 with parameter λ(x0) (i.e.,
E[T1] = 1/λ(x0)), then it jumps to some x1 ∈ E according to distribution Q(x0, dy); it
remains at x1 for another exponentially distributed holding time T2 also with parameter
λ(x1) before jumping to x2 according to distribution Q(x1, dy). T2 is independent of T1. X
then continues. The probability kernel Q(x, dy) is called the road map of X, and the λ(x)

is its speed function. If there is a σ-finite measure m0 on E with supp [m0] = E such that

Q(x, dy)m0(dx) = Q(y, dx)m0(dy), (2.1)

m0 is called a symmetrizing measure of the road map Q. Another way to view (2.1) is
that, Q(x, dy) is the one-step transition “probability” distribution, so its density with
respect to the symmetrizing measure Q(x, dy)/m0(dy) must be symmetric in x and y, i.e.,

Q(x, dy)

m0(dy)
=
Q(y, dx)

m0(dx)
.

The following theorem is a restatement of [5, Theorem 2.2.2].

Theorem 2.1 ([5]). Given a speed function λ > 0. Suppose (2.1) holds, then the
reversible pure jump process X described above can be characterized by the fol-
lowing Dirichlet form (E,F) on L2(E,m) where the underlying reference measure is
m(dx) = λ(x)−1m0(dx) and

F = L2(E, m(x)),

E(f, g) =
1

2

∫
E×E

(f(x)− f(y))(g(x)− g(y))Q(x, dy)m0(dx).
(2.2)

2.2 Continuous-time random walks on lattices with varying dimension

The following proposition follows from the exact same argument for [11, Proposition
2.2], which describes the behavior of Xk in the unbounded space with varying dimension
Ek.

Proposition 2.2. For every k = 1, 2, . . . , Xk has constant speed function λk = 22k and
road map

Jk(x, dy) =
∑

z∈Ek, z↔x in Gk

jk(x, z)δ{z}(dy),

where

(i)

jk(x, y) =
1

vk(x)
, if x ∈ Dk

ε ∪ 2−kZ+, y ↔ x in Gk (2.3)

(ii)

j(a∗k, y) =


1

vk(a∗k) + 2k+1 − 1
, y ∈ Dk

ε , y ↔ x in Gk;

2k+1

vk(a∗k) + 2k+1 − 1
, y ∈ 2−kZ+, y ↔ x in Gk.

(2.4)
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The next proposition is essentially contained in the proof of [11, Proposition 2.1].

Proposition 2.3. For any fixed 0 < ε ≤ 1/64 and all k ≥ k0, where k0 is specified in (1.5),

mk(a∗k) < 2−k. (2.5)

Proof. It has been shown in the proof of [11, Proposition 2.1] that for all k = 1, 2, . . . ,

vk(a∗k) ≤ 56ε · 2k + 28. (2.6)

It thus follows from (1.5) that for k ≥ k0,

mk(a∗k) ≤ 2−k

2
+

2−2k

4

(
56ε · 2k + 28

)
=

2−k

2
+ 14ε · 2−k + 7 · 2−k · 2−k

≤ 2−k

2
+ 14ε · 2−k +

7ε

4
· 2−k ≤

(
1

2
+

63ε

4

)
2−k < 2−k.

2.3 Isoperimetric inequalities for weighted graphs

Before we establish Nash-type inequality for Xk, we give a summary on the isoperi-
metric inequalities for weighted graphs. Most of the results in this section can be found
in [1]. In the following, Γ is a locally finite connected graph, and the collection of vertices
of Γ is denoted by V. If two vertices x, y ∈ V are adjacent to each other, then the the
unoriented edge connecting x and y is assigned a unique weight µxy > 0. Set µxy = 0 if
x and y are not adjacent in Γ. Denote by µ := {µxy : x, y connected in Γ} the assignment
of the weights on all the unoriented edges. (Γ, µ) is called a locally finite connected
weighted graph. We equip the weighted graph with (Γ, µ) following measure ν on V:

ν(x) :=
∑

y∈V:y↔x in Γ

µxy, x ∈ V. (2.7)

Given two sets of vertices A,B in V, we define

µΓ(A,B) :=
∑
x∈A

∑
y∈B

µxy. (2.8)

The following definition of isoperimetric inequality is taken from [1, Definition 3.1].

Definition 2.4. For α ∈ [1,∞), we say that a weighted graph (Γ, µ)

satisfies α-isoperimetric inequality (Iα) if there exists C0 > 0 such that

µΓ(A,V\A)

ν(A)1−1/α
≥ C0, for every finite non-empty A ⊂ V. (2.9)

Proposition 2.5 ([1]). Let (Γ, µ) be a locally finite connected weighted graph satisfying
α-isoperimetric inequality with constant C0. Let ν be the measure defined in (2.7). Then
(Γ, µ) satisfies the following Nash-type inequality:

1

2

∑
x∈V

∑
y∈V,y↔x

(f(x)− f(y))
2
µxy ≥ 4−(2+α/2)C2

0‖f‖
2+4/α
L2(ν) ‖f‖

−4/α
L1(ν), f ∈ L1(ν) ∩ L2(ν)

Proof. This can be seen combining [1, Theorem 3.7, Lemma 3.9, Theorem 3.14] and the
proofs therein.

The next proposition follows immediately from [1, Theorem 3.26], which states the
isoperimetric inequality on 2−kZ2. As a notation in [1], given a weighted graph (Γ, µ)

with collection of vertices V. We denote the counting measure times 2−2k on 2−kZ2 by
µ

(2)
k , which can be viewed as the measure “ν” in (2.7) corresponding to weighted 2−kZ2

with all edges weighing 2−2k/4.
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Proposition 2.6 ([1]). Let k ∈ N. Let all edges of 2−kZ2 be assigned with a weight of
2−2k/4. There exists a constant C1 > 0 independent of k such that for any finite subset A
of 2−kZ2,

µ2−kZ2(A, 2−kZ2\A) ≥ C1 · 2−kµ(2)
k (A)1/2. (2.10)

3 Nash-type inequality and equicontinuity for random walks on
lattices with varying dimension

In the following, for every k ∈ N, we view 2−kZ+ ∪ {a∗k} as a subgraph of Gk. Let
all the edges in the 2−kZ+ ∪ {a∗k} be assigned with a weight 2−k/2. Then we define a
measure on 2−kZ+ ∪ {a∗k}:

ν
(1)
k (x) :=

2−k

2
·#{y ∈ 2−kZ+∪{a∗k} : y ↔ x in 2−kZ+∪{a∗k}}, ∀x ∈ 2−kZ+∪{a∗k}. (3.1)

Similarly, let all the edges in the connected graph Dk
ε ∪ {a∗k} be assigned with a weight

of 2−2k/4. Then we define a measure on Dk
ε ∪ {a∗k}:

ν
(2)
k (x) :=

2−2k

4
·#{y ∈ Dε ∪ {a∗k} : y ↔ x in Dε ∪ {a∗k}}, ∀x ∈ Dk

ε ∪ {a∗k}. (3.2)

The next lemma establishes the isoperimetric inequalities in the form of (2.9) onDk
ε∪{a∗k}

and 2−kZ+ ∪ {a∗k} respectively, which gives us the two Nash-type inequalities on these
two subspaces separately. Then in Proposition 3.2, we “add up” the two Nash-type
inequalities on these two subspaces to get the desired Nash-type inequality for the entire
state space Ek.

Lemma 3.1. Let Dk
ε ∪{a∗k} and 2−kZ+∪{a∗k} be equipped with the weights and measure

described in the preceding paragraph. There exists a constant C2 > 0 independent of k
such that for all k ≥ k0 (see (1.5) for the definition of k0),

µDkε∪{a∗k}(A, (D
k
ε ∪ {a∗k})\A)

ν
(2)
k (A)1/2

≥ 2−kC2, for any finite set A ⊂ (Dk
ε ∪ {a∗k}), (3.3)

and

µ2−kZ+∪{a∗k}(A, (2
−kZ+ ∪ {a∗k})\A) ≥ 2−kC2, for any finite set A ⊂ (2−kZ+ ∪ {a∗k}).

(3.4)

Proof. (3.4) is clear. In the following we prove (3.3). We divide it into two cases
depending on whether a∗k ∈ A or not. For the remainder of this proof, we denote by

Bkε := 2−kZ2 ∩Bε.

Case (i). a∗k /∈ A. In view of the definitions of V2 and (1.2), as well the paragraph of
explanation following it,

µDε∪{a∗k}(A, (Dk
ε ∪ {a∗k})\A)

=
2−2k

4

∑
x∈A

#

{
y ∈ Dk

ε\A : ∃ exy ∈ V2 such that exy ∩Bε = ∅
}

+
2−2k

4
# {x ∈ A : x↔ a∗k}

=
2−2k

4

∑
x∈A

#

{
y ∈ Dk

ε\A : ∃ exy ∈ V2 such that exy ∩Bε = ∅
}
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+ 2 · 1

2
· 2−2k

4
# {x ∈ A : x↔ a∗k}

≥ 2−2k

4

∑
x∈A

#

{
y ∈ Dk

ε\A : ∃ exy ∈ V2 such that exy ∩Bε = ∅
}

+
1

2
· 2−2k

4
#
{
x ∈ A : ∃ y ∈ Bkε such that x↔ y in 2−kZ2

}
+

1

2
· 2−2k

4
#

{
x ∈ A : ∃ y ∈ Dk

ε such that exy ∈ V2 but exy ∩Bε 6= ∅
}

≥ 2−2k

4

∑
x∈A

#

{
y ∈ Dk

ε\A : ∃ exy ∈ V2 such that exy ∩Bε = ∅
}

+
1

4
· 2−2k

4

∑
x∈A

#
{
y ∈ Bkε such that x↔ y in 2−kZ2

}
+

1

4
· 2−2k

4

∑
x∈A

#

{
y ∈ Dk

ε : ∃exy ∈ V2 but exy ∩Bε 6= ∅
}

≥ 1

4
· 2−2k

4

∑
x∈A

#

{
y ∈ Dk

ε\A : ∃ exy ∈ V2

}

+
2−2k

4
· 1

4

∑
x∈A

#

{
y ∈ Bkε : y ↔ x in 2−kZ2

}

=
1

4
· 2−2k

4

∑
x∈A

#

{
y ∈ 2−kZ2\A : y ↔ x in 2−kZ2

}
(2.8)
=

1

4
µ2−kZ2(A, 2−kZ2\A)

(2.10)
≥ C1

4
· 2−kµ(2)

k (A)1/2 ≥ C1

4
· 2−kν(2)

k (A)1/2, (3.5)

where the first inequality results from the explanation following (1.2), and the second
inequality is due to the fact for every x ∈ A, there are at most two y ∈ Bkε adjacent to
it in 2−kZ2, as well as at most two y ∈ Dk

ε such that exy ∈ V2 but exy ∩ Bε 6= ∅. The

last inequality above is due to the fact that for A ⊂ Dk
ε , µ(2)

k (A) ≥ ν(2)
k (A) in view of the

definitions for both.

Case (ii). a∗k ∈ A. Similar to the argument for Case (i), noting that (Dk
ε ∪ {a∗k})\A =

Dk
ε\A in this case, we have

µDε∪{a∗k}(A, (Dk
ε ∪ {a∗k})\A)

=
2−2k

4

∑
y∈Dkε\A

#

{
x ∈ A\{a∗k} : x↔ y in Dk

ε ∪ {a∗k}
}

+
2−2k

4
#

{
y ∈ Dk

ε\A : y ↔ a∗k in Dk
ε ∪ {a∗k}

}
=

2−2k

4

∑
y∈Dkε\A

#

{
x ∈ A\{a∗k} : x↔ y in Dk

ε ∪ {a∗k}
}

+ 2 · 1

2
· 2−2k

4
#

{
y ∈ Dk

ε\A : y ↔ a∗k in Dk
ε ∪ {a∗k}

}
≥ 2−2k

4

∑
y∈Dkε\A

#

{
x ∈ A\{a∗k} : ∃ exy ∈ V2 such that exy ∩Bε = ∅

}
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+
1

2
· 2−2k

4
#

{
y ∈ Dk

ε\A : ∃ x ∈ Bkε such that x↔ y in 2−kZ2

}
+

1

2
· 2−2k

4
#

{
y ∈ Dk

ε\A : ∃ x ∈ Dk
ε such that exy ∈ V2, but exy ∩Bε = ∅

}
≥ 2−2k

4

∑
y∈Dkε\A

#

{
x ∈ A\{a∗k} : ∃ exy ∈ V2 such that exy ∩Bε = ∅

}

+
1

4
· 2−2k

4

∑
y∈Dkε\A

#

{
x ∈ Bkε such that x↔ y in 2−kZ2

}

+
1

4
· 2−2k

4

∑
y∈Dkε\A

#

{
x ∈ Dk

ε such that ∃ exy ∈ V2, but exy ∩Bε = ∅
}

≥ 1

4
· 2−2k

4

∑
y∈Dkε\A

#

{
x ∈ A\{a∗k} such that x↔ y ∈ 2−kZ2

}

+
1

4
· 2−2k

4

∑
y∈Dkε\A

#

{
x ∈ Bkε such that x↔ y in 2−kZ2

}

=
1

4
· 2−2k

4

∑
y∈Dkε\A

#

{
x ∈ (A\{a∗k}) ∪Bkε : x↔ y in 2−kZ2

}

≥ 1

4
µ2−kZ2((A\{a∗k}) ∪Bkε , 2−kZ2\A)

(2.10)
≥ C1

2
· 2−kµ(2)

k ((A\{a∗k}) ∪Bkε )1/2

(1.3)
≥ C1

2
· 2−k

(
µ

(2)
k ((A\{a∗k}) +mk(a∗k)− 2−k

2

)1/2

≥ C1

2
· 2−kν(2)

k (A)1/2, (3.6)

where the first inequality results from the explanation following (1.2), and the second
inequality is due to the fact for every y ∈ Dk

ε\A, there are at most two x ∈ Bkε adjacent
to it in 2−kZ2, as well as at most two x ∈ Dk

ε such that exy ∈ V2 but exy ∩ Bε 6= ∅.
The second last inequality follows from the definition of mu(2)

k as well as the fact that

mk(a∗k) − 2−k

2 equals the number of edges in Dk
ε ∪ {a∗k} with an endpoint a∗k. The last

inequality above is due to the fact that for A ⊂ Dk
ε , µ(2)

k (A) ≥ ν(2)
k (A), as well as the fact

that ν(2)
k (a∗k) = mk(a∗k)− 2−k

2 .

Proposition 3.2. For every k ∈ N, let (P kt )t≥0 be the transition semigroup of Xk with
respect to mk. There exists a constant C3 > 0 independent of k such that for all k ≥ k0,

‖P kt ‖1→∞ ≤ C3

(
1

t
+

1√
t

)
, ∀t ∈ (0,+∞]. (3.7)

Proof. We still consider the weighted graph 2−kZ+ ∪ {a∗k} with all edges having equal
weight 2−k/2, and all edges of the weighted graph Dk

ε ∪ {a∗k} have an equal weight of

2−2k/4. Also for now, we let the measures on 2−kZ+ ∪ {a∗k} and Dk
ε ∪ {a∗k} be ν(1)

k and

ν
(2)
k , respectively. Lemma 3.1 says that the weighted graph 2−kZ+ ∪ {a∗k} described

above satisfies isoperimetric inequality I1 with constant 2−kC2, and the weighted graph
Dk
ε ∪ {a∗k} described above satisfies isoperimetric inequality I2 also with constant 2−kC2,

for all k ≥ k0. Therefore, by Proposition 2.5, it holds for all f ∈ L1
(

2−kZ+ ∪ {a∗k}, ν
(1)
k

)
∩
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L2
(

2−kZ+ ∪ {a∗k}, ν
(1)
k

)
that

2−k

4

∑
x∈2−kZ+∪{0}

∑
y∈2−kZ+∪{0},

y↔x

(f(x)− f(y))
2

≥ 4−42−2kC2
2‖f‖6L2

(
2−kZ+∪{a∗k}, ν

(1)
k

) · ‖f‖−4

L1
(

2−kZ+∪{a∗k}, ν
(1)
k

).
Similarly, also by Proposition 2.5, for all f ∈ L1

(
Dk
ε ∪ {a∗k}, ν

(2)
k

)
∩L2

(
Dk
ε ∪ {a∗k}, ν

(2)
k

)
,

2−2k

8

∑
x∈Dkε∪{a∗k}

∑
y∈Dkε∪{a

∗
k},

y↔x

(f(x)− f(y))
2

≥ 4−42−2kC2
2‖f‖4L2

(
Dkε∪{a∗k}, ν

(2)
k

) · ‖f‖−2

L1
(
Dkε∪{a∗k}, ν

(2)
k

).
The above two inequalities can be rewritten as2k

4

∑
x∈2−kZ+∪{a∗k}

∑
y∈2−kZ+∪{a∗k},

y↔x

(f(x)− f(y))
2


1/3

‖f‖4/3
L1
(

2−kZ+∪{a∗k},ν
(1)
k

)

≥ 4−4/3C
2/3
2 ‖f‖2

L2
(

2−kZ+∪{a∗k},ν
(1)
k

) (3.8)

and  ∑
x∈Dkε∪{a∗k}

∑
y∈Dkε∪{a

∗
k},

y↔x

(f(x)− f(y))
2


1/2

· ‖f‖
L1
(
Dkε∪{a∗k}, ν

(2)
k

)

≥ 4−2C2‖f‖2
L2
(
Dkε∪{a∗k}, ν

(2)
k

). (3.9)

Notice that any f ∈ L1(Ek,mk) ∩ L2(Ek,mk), it holds that

‖f‖Lp(Ek,mk) =
∥∥∥f |2−k∪{a∗k}∥∥∥Lp(2−k∪{a∗k},ν

(1)
k

) +
∥∥∥f |Dkε∪{a∗k}∥∥∥Lp(Dkε∪{a∗k},ν(2)

k

) , p = 1, 2.

For notational convenience, for f ∈ L1(Ek,mk)∩L2(Ek,mk), we set f1 := f |2−k∪{a∗k} and

f2 := f |Dkε∪{a∗k}. Adding up (3.9) and (3.8) yields that for all f ∈ L1(Ek,mk)∩L2(Ek,mk),(
4−4/3C

2/3
2 ∧ 4−2C2

)
‖f‖2L2(Ek,mk)

≤

2k

4

∑
x∈2−kZ+∪{0}

∑
y∈2−kZ+∪{0},

y↔x

(f1(x)− f1(y))
2


1/3

· ‖f1‖4/3
L1
(

2−kZ+∪{0}, µ(1)
k

)

+

 ∑
x∈Dkε∪{a∗k}

∑
y∈Dkε∪{a

∗
k},

y↔x

(f2(x)− f2(y))
2


1/2

· ‖f2‖L1
(
Dkε∪{a∗k}, ν

(2)
k

)

≤ Ek(f, f)1/3‖f‖4/3
L1(Ek,mk)

+ Ek(f, f)1/2‖f‖L1(Ek,mk), (3.10)

The desired conclusion thus follows by selecting µ = 1 and ν = 2 in [4, Corollary
2.12].
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With the Nash-type inequality established above, next we use Davies method to get a
heat kernel upper bound for (Ek,D(Ek)) that can be viewed as “equicontinuity” of the
heat kernels of {Xk, k ≥ 1} in k. For this purpose, we first rewrite (1.4) as follows:

D(Ek) = L2(Ek,mk)

Ek(f, f) =
22k

8

∑
x∈Dkε

∑
y↔x

(f(y)− f(x))
2
mk(x) +

22k

4

∑
x∈2−kZ+

∑
y↔x

(f(y)− f(x))
2
mk(x)

+
22k

8

∑
y↔a∗k
y∈Dkε

(f(y)− f(a∗k))
2 2−2k

4
+

22k

4

∑
y↔a∗k

y∈2−kZ+

(f(y)− f(a∗k))
2 2−k

2
.

(3.11)

Now for every k ∈ N, we define a metric dk(·, ·) on Ek as follows:

dk(x, y) := 2−k × number of edges along the shortest (geodesic) path between x and

y in Gk. (3.12)

In the next proposition as well as the corollary following it, we establish an heat
kernel upper bound estimate for Xk using Davies’s method. In the remainder of this
paper, for every k ∈ N, we denote by pk(t, x, y) the transition density function of (P kt )t≥0

with respect to mk.

Proposition 3.3. There exist C4 > 0 independent of k, such that for any k ≥ k0 fixed
in (1.5) and any αk ≤ 2k−1,

pk(t, x, y) ≤ C4

(
1

t
∨ 1√

t

)
exp

(
−αkdk(x, y) + 2tα2

k

)
, 0 < t <∞, x, y ∈ Ek. (3.13)

Proof. We prove this result using [4, Corollary 3.28]. Towards this, for each k, we
set F̂k := {h + c : h ∈ D(Ek), h bounded, and c ∈ R1}. It is known that the regular
symmetric Dirichlet form (Ek,D(Ek)) can be written in terms of an energy measure Γk

as follows:

Ek(u, u) =

∫
Ek

Γk(u, u), u ∈ F̂k.

where Γk is a positive semidefinite symmetric bilinear form on Fk with values being
signed Radon measures on Ek, which is also called the energy measure. Now we define
F̂k∞ as a subset of ψ ∈ F̂k satisfying the following conditions:

(i) Both e−2ψΓk(eψ, eψ) and e2ψΓk(e−ψ, e−ψ) as measures are absolutely continuous with
respect to mk on Ek.

(ii) Furthermore,

Γk(ψ) :=

(∥∥∥∥de−2ψ Γk(eψ, eψ)

dmk

∥∥∥∥
∞
∨
∥∥∥∥de2ψ Γk(e−ψ, e−ψ)

dmk

∥∥∥∥
∞

)1/2

<∞. (3.14)

We have fixed a constant αk ≤ 2k−1 and thus denote by

ψk,n(x) := αk · (dk(x, a∗k) ∧ n) , for every n ∈ N. (3.15)

In order to apply [4, Corollary 3.28], we first check that for every n, ψk,n ∈ F̂k∞. Notice

that ψk,n is a constant outside of a bounded domain of Ek, therefore it is in F̂k. Now we
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compute e−2ψk,nΓk(eψk,n , eψk,n) as a measure. Noting that ψk,n(a∗k) = 0, we first rewrite

the expression of Ek in (1.4) as follows: for f ∈ F̃k∞,∫
Ek

Γk(f, f) = Ek(f, f)

=
1

8

∑
eoxy : exy∈Gke ,
x,y∈Dkε∪{a

∗
k}

(f(x)− f(y))
2

+
2k

4

∑
eoxy : exy∈Gke ,

x,y∈2−kZ+∪{a∗k}

(f(x)− f(y))
2

=
22k

8

∑
x∈Dkε∩A

∑
y↔x

(f(y)− f(x))
2
mk(x) +

22k

4

∑
x∈2−kZ+∩A

∑
y↔x

(f(y)− f(x)))
2
mk(x)

+ 1{a∗k∈A}

22k

8

∑
y↔a∗k
y∈Dkε

(f(y)− f(a∗k))
2 2−2k

4
+

22k

4

∑
y↔a∗k

y∈2−kZ+

(f(y)− f(a∗k))
2 2−k

2

 . (3.16)

On account of (3.16), given any subset A ⊂ Ek, we have

e−2ψk,nΓk(eψk,n , eψk,n)(A)

=
22k

8

∑
x∈Dkε∩A

e−2ψk,n(x)
∑
y↔x

(
eψk,n(y) − eψk,n(x)

)2

mk(x)

+
22k

4

∑
x∈2−kZ+∩A

e−2ψk,n(x)
∑
y↔x

(
eψk,n(y) − eψk,n(x))

)2

mk(x)

+ 1{a∗k∈A}

22k

8

∑
y↔a∗k
y∈Dkε

(
eψk,n(y) − 1

)2 2−2k

4
+

22k

4

∑
y↔a∗k

y∈2−kZ+

(
eψk,n(y) − 1

)2 2−k

2

 .

In view of the definition of mk in (1.3), we further have

e−2ψk,nΓk(eψk,n , eψk,n)(A)

≤ 1

8

∑
x∈Dkε∩A

∑
y↔x

(
eαk(dk(y,a∗k)∧n−dk(x,a∗k)∧n) − 1

)2

+
2k

4

∑
x∈2−kZ∩A

∑
y↔x

(
eαk(dk(y,a∗k)∧n−dk(x,a∗k)∧n) − 1

)2

+ 1{a∗k∈A}

 1

32

∑
y↔a∗k
y∈Dkε

(
eαk(dk(y,a∗k)∧n) − 1

)2

+
2k

8

∑
y↔a∗k

y∈2−kZ+

(
eαk(dk(y,a∗k)∧n) − 1

)2

 . (3.17)

From the above it is clear that e−2ψk,nΓk(eψk,n , eψk,n) is absolutely continuous with
respect to mk. By similar compution, one can show that so is e2ψk,nΓk(e−ψk,n , e−ψk,n).
Thus ψk,n satisifies the first condition in the definition of F̂k∞.

Next we verify that ψk,n also satisfies the second condition of the definition of F̂k∞. It
is obvious from (1.3) that

mk(x) ≥


2−2k

4
, x ∈ Dk

ε ;

2−k

2
, x ∈ 2−kZ+ ∪ {a∗k}.

(3.18)

EJP 27 (2022), paper 99.
Page 12/33

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP829
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Hence combining (3.17) and (3.18) shows that∥∥∥∥de−2ψk,n Γk(eψk,n , eψk,n)

dmk

∥∥∥∥
∞

≤ max
x∈Dkε

{
22k

2

∑
y↔x

(
eαk(dk(y,a∗k)∧n−dk(x,a∗k)∧n) − 1

)2
}

∨ max
x∈2−kZ

{
22k

2

∑
y↔x

(
eαk(dk(y,a∗k)∧n−dk(x,a∗k)∧n) − 1

)2
}

∨

2k

16

∑
y↔a∗k
y∈Dkε

(
eαk(dk(y,a∗k)∧n) − 1

)2

+
22k

4

∑
y↔a∗k

y∈2−kZ+

(
eαk(dk(y,a∗k)∧n) − 1

)2

 .(3.19)

By similar computation one can show that∥∥∥∥de2ψk,n Γk(e−ψk,n , e−ψk,n)

dmk

∥∥∥∥
∞

≤ max
x∈Dkε

{
22k

2

∑
y↔x

(
eαk(dk(x,a∗k)∧n−dk(y,a∗k)∧n) − 1

)2
}

∨ max
x∈2−kZ

{
22k

2

∑
y↔x

(
eαk(dk(x,a∗k)∧n−dk(y,a∗k)∧n) − 1

)2
}

∨

2k

16

∑
y↔a∗k
y∈Dkε

(
e−αk(dk(y,a∗k)∧n) − 1

)2

+
22k

4

∑
y↔a∗k

y∈2−kZ+

(
e−αk(dk(y,a∗k)∧n) − 1

)2

 .(3.20)

Combining (3.19) and (3.20) we get

Γk(ψk,n) =

(∥∥∥∥de−2ψk,n Γk(eψk,n , eψk,n)

dmk

∥∥∥∥
∞
∨
∥∥∥∥de2ψk,n Γk(e−ψk,n , e−ψk,n)

dmk

∥∥∥∥
∞

)1/2

≤

(
max
x∈Dkε

{
22k

2

∑
y↔x

(
eαk|dk(x,a∗k)∧n−dk(y,a∗k)∧n| − 1

)2
})1/2

∨

(
max

x∈2−kZ

{
22k

2

∑
y↔x

(
eαk|dk(x,a∗k)∧n−dk(y,a∗k)∧n| − 1

)2
})1/2

∨

2k

16

∑
y↔a∗k
y∈Dkε

(
eαk(dk(y,a∗k)∧n) − 1

)2

+
22k

4

∑
y↔a∗k

y∈2−kZ+

(
eαk(dk(y,a∗k)∧n) − 1

)2


1/2

.

(3.21)

In the following we claim that all three “(· · · )1/2” terms on the right hand side of (3.21)
are bounded by

√
2αk, where αk is fixed in the line above (3.15). First of all, we note

that ex − 1 < 2x, for all 0 < x < 1/2. Thus for all k ∈ N,

eαkx − 1 ≤ 2αkx, for 0 < x ≤ 2−k, αk ≤ 2k−1. (3.22)
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In view of the definition of dk, dk(x, y) ≤ 2−k for any x↔ y. Thus for all k ≥ k0 ≥ 1,(
max
x∈Dkε

{
22k

2

∑
y↔x

(
eαk|dk(x,a∗k)∧n−dk(y,a∗k)∧n| − 1

)2
})1/2

≤ 2k√
2

max
x∈Dkε

{∑
y↔x

(
eαk|dk(x,a∗k)∧n−dk(y,a∗k)∧n| − 1

)}

(3.22) ≤ 2k√
2
· max
x∈Dkε

∑
y↔x

2 (αk |dk(x, a∗k) ∧ n− dk(y, a∗k) ∧ n|)

≤ 2k√
2
· 2αk · 2−k ≤

√
2αk (3.23)

By similar computation one can show that for the second “(· · · )1/2”,(
max

x∈2−kZ

{
22k

2

∑
y↔x

(
eαk|dk(x,a∗k)∧n−dk(y,a∗k)∧n| − 1

)2
})1/2

≤
√

2αk. (3.24)

Finally, to bound the last “(. . . )1/2” on the right hand side of (3.21), we have for 0 < ε <

1/64 and k ≥ k0 that2k

16

∑
y↔a∗k
y∈Dkε

(
eαk(dk(y,a∗k)∧n) − 1

)2

+
22k

4

∑
y↔a∗k

y∈2−kZ+

(
eαk(dk(y,a∗k)∧n) − 1

)2


1/2

≤

2k

16
·
(
56ε · 2k + 28

)
· max
y↔a∗k
y∈Dkε

(
eαk(dk(y,a∗k)∧n) − 1

)2

+
22k

4
·
(
eαk·2

−k
− 1
)2


1/2

≤
((

7ε

2
+

7 · 2−k

4

)
· 22k ·

(
eαk·2

−k
− 1
)2

+
22k

4

(
eαk·2

−k
− 1
)2
)1/2

(1.5)
<

(
22k

2

(
eαk·2

−k
− 1
)2
)1/2

≤ 2k√
2

(
eαk·2

−k
− 1
) (3.22)
≤
√

2αk, (3.25)

where the first inequality above is due to Proposition 2.3. Combining (3.23), (3.24),
and (3.25), we have for k ≥ k0,

Γk(ψk,n) ≤
√

2αk. (3.26)

This also shows that ψk,n is indeed in the class F̂∞ defined in the second paragraph of
the proof. Finally, to complete using [4, Corollary 3.28], by Proposition 3.2 and the choice
of ψk,n in (3.15), we have that for every x ∈ Ek and every n, there exists a constant
C4 > 0 only depending through the C3 given in Proposition 3.2 but not k that

pk(t, x, y)≤C4

(
1

t
∨ 1√

t

)
exp

(
−αk (dk(x, y) ∧ n) + 2tα2

k

)
, for 0 < t <∞,mk-a.e. y ∈ Ek.

Since all singletons in Ek have strictly positive measures, we may drop the “a.e.” in the
inequality above. Finally, the proof is completed by letting n→∞.
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Corollary 3.4. There exist C5 > 0 independent of k, such that for any k ≥ k0 fixed
in (1.5) and any αk ≤ 2k−1, it holds for all x, y ∈ Ek and all t ≥ 0 that

pk(t, x, y) ≤


C5

(
1

t
∨ 1√

t

)
e−dk(x,y)2/(32t), when dk(x, y) ≤ 16 · 2kt;

C5

(
1

t
∨ 1√

t

)
e−2kdk(x,y)/2, when dk(x, y) ≥ 16 · 2kt.

(3.27)

In particular, given any T > 0, there exists C6 > 0 such that

pk(t, x, y) ≤ C6

t

(
e−dk(x,y)2/(32t) + e−2kdk(x,y)/2

)
, for all (t, x, y) ∈ (0, T ]×Ek×Ek. (3.28)

Proof. To prove this, in Proposition 3.3, given any k ≥ k0, for any fixed t0 > 0 and any
pair of x0, y0 ∈ Ek, we take

αk :=
dk(x0, y0)

16t0
∧ 2k.

Then Proposition 3.3 yields that for all t > 0 and x, y ∈ Ek,

pk(t0, x, y)

≤ C4

(
1

t0
∨ 1√

t0

)
exp

[
−
(
dk(x0, y0)

16t0
∧ 2−k

)
dk(x, y) + 2t0

(
dk(x0, y0)

16t0
∧ 2−k

)2
]
,

where C4 only depends on the C3 in Proposition 3.2. Taking x = x0 and y = y0 yields that

pk(t0, x0, y0)

≤ C4

(
1

t0
∨ 1√

t0

)
exp

[
−
(
dk(x0, y0)

16t0
∧ 2−k

)
dk(x0, y0) + 2t0

(
dk(x0, y0)

16t0
∧ 2−k

)2
]
.

(3.29)

Now we divide our discussion into two cases:
Case 1. dk(x0, y0) ≥ 16 · 2kt0. Then for the exponential term on the right hand side

of (3.29) it holds

−
(
dk(x0, y0)

16t0
∧ 2−k

)
dk(x0, y0) + 2t0

(
dk(x0, y0)

16t0
∧ 2−k

)2

≤ −2kdk(x0, y0) + 2t0(2k)2

≤ −2kdk(x0, y0) + 2t0
dk(x0, y0)

16t0
· 2k

≤ −2kdk(x0, y0) +
1

8
· 2k · dk(x0, y0) ≤ −2k

2
dk(x0, y0). (3.30)

Case 2. dk(x0, y0) ≤ 16 · 2kt0. For this case,

−
(
dk(x0, y0)

16t0
∧ 2−k

)
dk(x0, y0) + 2t0

(
dk(x0, y0)

16t0
∧ 2−k

)2

≤ −dk(x0, y0)2

16t0
+ 2t0

(
dk(x0, y0)

16t0

)2

≤ −dk(x0, y0)2

32t0
. (3.31)

The proof is completed by substituting the power of the exponential term on the right
hand side of (3.29) with (3.30) and (3.31) for the two cases, respectively.

Remark 3.5. It worths pointing out that we do not expect the heat kernel upper bound
obtained in Corollary 3.4 to be sharp (c.f. [7, Theorem 1.3-1.4]). However, this upper
bound is sufficient for proving the tightness of {Xk}k≥1 using Proposition 4.1.
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4 Tightness of random walks on spaces with varying dimensions

4.1 General fact regarding tightness

In order to use Corollary 3.4 to establish the tightness of {Xk}k≥1, we first record a
proposition in [10, Chapter VI Theorem 3.21], which provides a criterion for tightness for
càdlàg processes adapted to our setting. As a standard notation, given a metric d(·, ·),
we denote by

wd(x, θ, T ) := inf
{ti}1≤i≤n∈Π

max
1≤i≤n

sup
s,t∈[ti,ti−1]

d(x(s), x(t)),

where Π is the collection of all possible partitions of the form 0 = t0 < t1 < · · · < tn−1 <

T ≤ tn with min1≤i≤n(ti − ti−1) ≥ θ and n ≥ 1.

Proposition 4.1 (Chapter VI, Theorem 3.21 in [10]). Let {Yk,Py}k≥1 be a a sequence of
càdlàg processes on state space E. Given y ∈ E, the laws of {Yk,Py}k≥1 are tight in the
Skorokhod space D([0, T ], E, ρ) if and only if

(T-i). For any T > 0, δ > 0, there exist N1 ∈ N and M > 0 such that for all k ≥ N1,

Py

[
sup
t∈[0,T ]

∣∣Y kt ∣∣ρ > M

]
< δ. (4.1)

(T-ii). For any T > 0, δ1, δ2 > 0, there exist δ3 > 0 and N2 > 0 such that for all k ≥ N2,

Py
[
wρ
(
Y k, δ3, T

)
> δ1

]
< δ2. (4.2)

In the next two subsections, we establish the tightness of {Xn}n≥1 by veritying the
two conditions (T-i) and (T-ii) in Proposition 4.1 using the heat kernel upper bounds in
Corollary 3.4.

4.2 Validation of (T-i) in Proposition 4.1 for {Xk; k ≥ 1}
We first prepare the following simple lemma which will be used later in this subsec-

tion.

Lemma 4.2. Given any T,M > 0, for any sufficiently large k ≥ k0 specified in (1.5) such
that 2−k < T , it holds for all x ∈ Ek that

Px

[
sup
t∈[0,T ]

|Xk
t |ρ ≥M

]
≤ Px

[
sup

t∈[0,8−k]

|Xk
t |ρ ≥M

]
+ Px

[∣∣Xk
T

∣∣
ρ
≥ M

2

]
+ Px

[
T − 8−k ≤ τM ≤ T,

∣∣Xk
T

∣∣
ρ
≤ M

2

]
+ Px

[
8−k ≤ τM ≤ T − 8−k,

∣∣Xk
T

∣∣
ρ
≤ M

2

]
,

where τM := inf{t > 0 : |Xk
t |ρ ≥M}.

Proof. By inclusions of events, we have

Px

[
sup
t∈[0,T ]

|Xk
t |ρ ≥M

]

= Px

[
sup

t∈[0,8−k]

|Xk
t |ρ ≥M

]
+ Px

[
sup

t∈[8−k,T ]

|Xk
t |ρ ≥M, sup

t∈[0,8−k]

|Xk
t |ρ < M

]

= Px

[
sup

t∈[0,8−k]

|Xk
t |ρ ≥M

]
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+ Px

[
sup

t∈[8−k,T ]

|Xk
t |ρ ≥M, |Xk

T |ρ ≥
M

2
, sup
t∈[0,8−k]

|Xk
t |ρ < M

]

+ Px

[
sup

t∈[8−k,T ]

|Xk
t |ρ ≥M, |Xk

T |ρ ≤
M

2
, sup
t∈[0,8−k]

|Xk
t |ρ < M

]

≤ Px
[

sup
t∈[0,8−k]

|Xk
t |ρ ≥M

]
+ Px

[∣∣Xk
T

∣∣ ρ ≥ M

2

]
+ Px

[
8−k ≤ τM ≤ T,

∣∣Xk
T

∣∣
ρ
≤ M

2

]

≤ Px
[

sup
t∈[0,8−k]

|Xk
t |ρ ≥M

]
+ Px

[∣∣Xk
T

∣∣ ρ ≥ M

2

]
+ Px

[
8−k ≤ τM ≤ T − 8−k,

∣∣Xk
T

∣∣
ρ
≤ M

2

]
+ Px

[
T − 8−k ≤ τM ≤ T,

∣∣Xk
T

∣∣
ρ
≤ M

2

]
.

(4.3)

In the next few propositions, by verifying the two conditions in Proposition 4.1
respectively, we establish the tightness of the laws of {Xk

t ,P
a∗k}k≥1.

Proposition 4.3. For any δ > 0, any T > 0, there exists M1 > 0 such that for all k ≥ k0

specified in (1.5):

sup
y∈Ek

Py

[
sup

t∈[0,8−k]

ρ
(
Xk

0 , X
k
t

)
≥M1

]
< δ. (4.4)

Proof. We denote by T k0 := 0, and

T kl := inf{t > T kl−1 : Xk
t 6= Xk

t−}, for l = 1, 2, . . . ,

i.e., T kl is the lth holding time of Xk, and {T kl }l≥1 are i.i.d. exponential random variables,
each with mean 2−k. We then denote by Nk

t := sup{l ≥ 1 : T kl ≤ t}. It is clear that Nk
t

follows Poisson distribution with parameter t · 22k Recall that dk(x, y) is the smallest
number of edges that a path with endpoints x and y has multiplied by 2−k, which implies
that for any k ∈ N and x, y ∈ Ek, dk(x, y) ≥ ρ(x, y). Therefore, for any y ∈ Ek, given any
δ > 0, for any M satisfying e

M < δ∧1
16 , it holds that

Py

[
sup

t∈[0,8−k]

ρ
(
Xk

0 , X
k
t

)
≥M

]
≤ Py

[
sup

t∈[0,8−k]

dk
(
y,Xk

t

)
≥M

]
≤ Py

[
2−kNk

8−k ≥M
]

(Nk
t ∼ Poisson(t · 22k)) = e−8−k·22k

∞∑
j=M ·2k

(8−k · 22k)j

j!

(Stirling’s formula) ≤
∞∑

j=M ·2k

(8−k · 22k)j

jje−j
√

2πj

≤
∞∑

j=M ·2k

(
8−k4ke

M · 2k

)j

≤
∞∑
j=1

( e

M

)j
<

δ∧1
16

1− δ∧1
16

≤ δ ∧ 1. (4.5)

Proposition 4.4. For any δ > 0, any T ≥ 1, there exists M2 > 0 such that for all k ≥ k0

specified in (1.5):
sup

8−k≤t≤T
Pa
∗
k
[
dk(Xk

t , a
∗
k) ≥M2

]
< δ.
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Proof. To prove this, we utilize Proposition 3.4. Given any k ≥ k0 fixed in (1.5), any
T ≥ 1, any t ∈ [8−k, T ], and any M > 1,

Pa
∗
k
[
dk(Xk

t , a
∗
k) ≥M

]
≤

∑
dk(y,a∗)≥M

c1
t

(
e−

dk(a∗k,y)
2

32t + e−
2kdk(a∗k,y)

2

)
mk(dy).

≤
∑

y∈2−kZ+

dk(y,a∗k)≥M

c1
t

(
e−

dk(a∗k,y)
2

32t + e−
2kdk(a∗k,y)

2

)
· 2−k

+
∑
y∈Dkε

dk(y,a∗k)≥M

c1
t

(
e−

dk(a∗k,y)
2

32t + e−
2kdk(a∗k,y)

2

)
· 2−2k. (4.6)

To handle the first term on the right hand side of (4.6), for x ∈ Ek, we let na∗k(x) =

2kdk(x, a∗k), i.e., the smallest number of edges a path has connecting x and a∗k. Thus for
the first term on the right hand side of (4.6), it holds for M > 1 that

∑
y∈2−kZ+

dk(y,a∗k)≥M

c1
t
e−

2kdk(a∗k,y)
2 · 2−k

i=na∗
k

(y)

≤
∞∑

i=2k[M ]

c2 · 2−k

t
e−i/2

≤
∞∑

i=2k[M ]

c2 · 2−k

t
e−i/4 · e−i/4

(t ∈ [8−k, T ]) ≤ c2 · 4ke−2k/4
∞∑

i=2k[M ]

e−i/4. (4.7)

On the right hand side above, it is clear that supk≥1{4ke−2k/4} < ∞. Also since∫∞
0
e−x/4dx < ∞, by integral comparison theorem we know that the infinite sum∑∞

i=0 e
−i/4 converges. There, the right hand side of (4.7) can be made arbitrarily

small as long as M is sufficiently large. In addition, to bound the other term in the line
above (4.6), noticing that there exists some constant c(M) > 0 decreasing in M > 1 such
that

1

t
e−

M2

64t < c(M), for all t ∈ (0, T ], lim
M↑∞

c(M) = 0, (4.8)

we have ∑
y∈2−kZ+

dk(y,a∗k)≥M

c1
t
e−

dk(a∗k,y)
2

32t · 2−k ≤
∑

y∈2−kZ+

dk(y,a∗k)≥M

c1 · 2−k

t
e−

dk(a∗k,y)
2

64t · e−
dk(a∗k,y)

2

64t

(4.8)
≤

∑
y∈2−kZ+

dk(y,a∗k)≥M

c1 · c(M) · 2−k · e−
dk(a∗k,y)

2

64t

(i = na∗k(y) = 2kdk(a∗k, y)) ≤
∞∑

i=2k[M ]

c1 · c(M) · 2−ke− i
24−k
64t

≤ c1 · c(M)

∞∑
j=[M ]

2k(j+1)−1∑
i=2kj

2−ke−
i24−k

64t

≤ c1 · c(M)

∞∑
j=[M ]

e−
j2

64T . (4.9)
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In view of (4.8), the right hand side of (4.9) can be made arbitrarily small with sufficiently
large M . Combining the discussion above, we come to the conclusion that for the right
hand side of (4.6), given any δ > 0, there exists c3 > 0 sufficiently large, such that for all
k ≥ k0 and M > c3, it holds that∑

y∈2−kZ+

dk(y,a∗k)≥M ·2k

c1
t

(
e−

dk(a∗k,y)
2

32t + e−
2kdk(a∗k,y)

2

)
· 2−k < δ. (4.10)

To handle the second term on the right hand side of (4.6), we denote by Ski the bound-
ary of the square centered at the origin with four vertices (i2−k, i2−k), (i2−k,−i2−k),
(−i2−k,−i2−k), (−i2−k, i2−k). Si contains at most 8i points in Ek. In addition, by elemen-
tary geomemtry,

{y ∈ Ek : dk(y, a∗k) ≥M} ⊂
∞⋃

i=2k
[
M+ε√

2

]Si, for i ≥ [ε2k] + 1. (4.11)

Noticing that for any y ∈ Si,

dk(a∗k, y) ≥
(
i− [ε2k]

)
· 2−k ≥ i2−k − [ε], (4.12)

by selecting M ≥ 16ε, we first have∑
y∈Dkε

dk(y,a∗k)≥M

c1
t
e−

2kdk(a∗k,y)
2 · 4−k

≤
∞∑

j=2k
[
M+ε√

2

]
∑
y∈Sj

c1
t
e−

2kdk(a∗k,y)
2 · 4−k

(4.12) ≤
∞∑

j=2k
[
M+ε√

2

] c1 · 8j ·
4−k

8−k
exp

(
−2k

2

(
j2−k − [ε]

))

= c4 · 2k
∞∑

j=2k
[
M+ε√

2

] j exp

(
−2k

4

(
j2−k − [ε]

))
exp

(
−2k

4

(
j2−k − [ε]

))

≤ c4 · 2k exp

−2k
([

M+ε√
2

]
− [ε]

)
4

 ∞∑
j=2k

[
M+ε√

2

] j exp

[
−2k

4

(
j2−k − [ε]

)]

= c4 · 2k exp

−2k
([

M+ε√
2

]
− [ε]

)
4

 ∞∑
j=2k

[
M+ε√

2

] j exp

(
−j − 2k[ε]

4

)

(M ≥ 16ε) ≤ c4 · 2ke−
2kM
16

∞∑
j=2k[M2 ]

je−
j
8 . (4.13)

We notice that supk≥1 2ke−2k/16 < ∞,
∑∞
j=1 je

−j/8 < ∞, Therefore, since the right
hand side of (4.13) decreases to zero as M ↑ ∞, it can be made arbitrarily small with
sufficiently large M . To finish bounding the second term on the right hand side of (4.6),
we again first note that for any M ≥ 16ε > 0, there exists c(M) ↓ 0 as M ↑ +∞ such that

sup
x≥M,0<t<T

x+ 1

t
e−

(x−ε)2
64t < c(M). (4.14)
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Hence we have∑
y∈Dkε

dk(y,a∗k)≥M

c1
t
e−

dk(a∗k,y)
2

32t · 4−k ≤
∞∑

j=2k
[
M+ε√

2

]
∑
y∈Sj

c1
t
e−

dk(a∗k,y)
2

32t · 4−k

≤ c1

∞∑
j=2k

[
M+ε√

2

]
∑
y∈Sj

4−k

t
exp

[(
j2−k − [ε]

)2
32t

]

≤ c1

∞∑
j=2k

[
M+ε√

2

]
4−k · 8j

t
exp

[(
j2−k − [ε]

)2
32t

]

≤ c1

∞∑
u=
[
M+ε√

2

]
2k(u+1)−1∑
j=2ku

4−k · 8j
t

exp

[(
j2−k − [ε]

)2
32t

]

≤ 8c1

∞∑
u=
[
M+ε√

2

]
4−k · 2k(u+ 1)

t
e−

(u−ε)2
64t e−

(u−ε)2
64t

(4.14)
≤ 8c1 · c(M)

∞∑
u=
[
M+ε√

2

] e−
(u−ε)2

64T . (4.15)

Again, the right hand side of (4.15) can be made arbitrarily small with sufficiently large
M . This combined with the earlier discussion shows that for any δ > 0, there exist c5 > 0

sufficiently large, such that for all k ≥ k0 and M > c5,∑
y∈Dkε

dk(y,a∗k)≥M

c1
t

(
e−

dk(a∗k,y)
2

64t + e−
2kdk(a∗k,y)

4

)
· 4−k < δ. (4.16)

Replacing the two terms on the right hand side of (4.6) with the two upper bounds (4.10)
and (4.16) respectively, we have shown that given any δ > 0, for all k ≥ k0 and all
M ≥ max{c3, c5},

Pa
∗
k
[
dk(Xk

t , a
∗
k) ≥M

]
≤ 2δ.

This completes the proof.

The next proposition justifies the first tightness condition (T-i) in Proposition 4.1 for
{Xk}k≥1.

Proposition 4.5. For any fixed T > 1, δ > 0, there exist k1 ∈ N and M3 > 0 such that
for all k ≥ k1,

Pa
∗
k

[
sup
t∈[0,T ]

∣∣Xk
t

∣∣
ρ
> M

]
< δ.

Proof. We first note Proposition 4.4 implies that: Given T > 1 fixed, for every δ > 0,
there is M2 > 0 such that

Pa
∗
k
[
dk(Xk

T , a
∗
k) ≥M2

]
< δ.

Since ρ(x, a∗) ≤ dk(x, a∗k) for all x ∈ Ek ⊂ E, this further implies that

Pa
∗
k

[∣∣Xk
T

∣∣
ρ
≥M2

]
< δ. (4.17)

In view of Lemma 4.2, it suffices that in the following we show that for every T > 1 and
every δ > 0, there exists an M > 0 and n1 ∈ N such that for all k ≥ n1,
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(i) Pa
∗
k

[
supt∈[0,8−k] |Xk

t |ρ ≥M
]
< δ, and Pa

∗
k

[
T − 8−k ≤ τM ≤ T,

∣∣Xk
T

∣∣
ρ
≤ M

2

]
< δ;

(ii) Pa
∗
k

[
8−k ≤ τM ≤ T − 8−k,

∣∣Xk
T

∣∣
ρ
≤ M

2

]
< δ,

where τM = inf{t > 0 : |Xk
t |ρ ≥M}. The first statement of (i) is proved in Proposition 4.3.

In order to claim the second statement of (i), for the M1 specified in Proposition 4.3,
when M > 2M1 and k ≥ k0, on account of strong Markov property,

Pa
∗
k

[
T − 8−k ≤ τM ≤ T,

∣∣Xk
T

∣∣
ρ
≤ M

2

]
≤ Ea

∗
k

[
P
XkτM

[
sup

t∈[0,8−k]

|Xk
t |ρ ≤

M

2

]
, T − 8−k ≤ τM ≤M

]

≤ sup
|y|ρ≥M

Py

[
sup

t∈[0,8−k]

|Xk
t |ρ ≤

M

2

]

≤ sup
|y|ρ≥M

Py

[
sup

t∈[0,8−k]

ρ
(
Xk
t , X

k
0

)
≥ M

2

]

≤ sup
|y|ρ≥M

Py

[
sup

t∈[0,8−k]

ρ
(
Xk
t , X

k
0

)
≥M1

]
< δ. (4.18)

This establishes (i). To verify (ii), again by strong Markov property, we have for any
M > 0 that

Pa
∗
k

[
8−k ≤ τM ≤ T − 8−k,

∣∣Xk
T

∣∣
ρ
≤ M

2

]
=

∫ T−8−k

8−k
Ea
∗
k

[
PX

k
s

[∣∣Xk
T−s

∣∣ ≤ M

2

]
; τM ∈ ds

]
≤

∫ T−8−k

8−k
Ea
∗
k

[
sup

t∈[8−k,T−8−k]

PX
k
s

[
|Xk

t |ρ ≤
M

2

]
; τM ∈ ds

]

≤ sup
|y|ρ≥M

t∈[8−k,T−8−k]

Py
[
|Xk

t |ρ ≤
M

2

]
. (4.19)

To bound the right hand side of (4.19), we utilize Proposition 3.4. Given any k ≥ k0, for
any y ∈ Ek such that |y|ρ ≥M and any t ∈ [8−k, T − 8−k],

Py
[
|Xk

t |ρ ≤
M

2

]
=

∑
x∈2−kZ
|x|ρ≤M2

pk(t, y, x)mk(dx)+
∑
x∈Dkε
|x|ρ≤M2

pk(t, y, x)mk(dx)+pk(t, y, a∗k)mk(a∗k),

(4.20)
In the following we give upper bounds to each of the three terms on the right hand
side of (4.20) respectively. We note that for |y|ρ ≥ M , dk(y, x) ≥ ρ(y, x) ≥ M/2 when
|x|ρ ≤M/2. Also note that #{x : x ∈ 2−kZ+, |x|ρ ≤M/2} ≤M2k. Therefore, or the first
term on the right hand side of (4.20), by Corollary 3.4 we have∑

x∈2−kZ+

|x|ρ≤M2

pk(t, y, x)mk(dx) ≤
∑

x∈2−kZ
|x|ρ≤M2

c1
t

(
e−

dk(y,x)2

32t + e−
2kdk(y,x)

2

)
· 2−k

(dk(y, x) ≥M/2) ≤
∑

x∈2−kZ+

|x|ρ≤M2

c12−k

t

(
e−

M2

128t + e−
2kM

4

)
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≤ 2kM · c12−k

t

(
e−

M2

128t + e−
2kM

4

)
=

c1M

t
e−

M2

128t +
c1M

t
e−

2kM
4 . (4.21)

To estimate the two terms on the right hand side of (4.21), we note that given M > 0

and T > 1 fixed, there exists some c(M) <∞ decreasing in M such that

sup
x≥M,0<t<T

1

t
e−x

2/(256t) < c(M). (4.22)

Thus for t ∈ [8−k, T − 8−k],

c1M

t
e−

M2

128t =
c1M

t
e−

M2

256t · e− M2

256t

(4.22)
≤ c1 ·M · c(M)e−M

2/(256T ), (4.23)

which can be made arbitrarily small by choosing M sufficiently large. For the second
term on the right hand side of (4.21), noticing that t ∈ [8−k, T − 8−k], we have

c1M

t
e−

2kM
4 ≤ c1M8ke−

2kM
4 =

(2kM)3

M2
e−

2kM
4 , (4.24)

which again, regardless of the value of k ≥ k0, can be made arbitrarily small as long as
M is chosen sufficiently large, regardless of the value of k ≥ k0, in view of the fact that
limx→+∞ x3e−x/4 = 0. The discussion above shows that both terms on the right hand
side of (4.21) can be made arbitrarily small with sufficiently large M , i.e., given any
δ > 0, there exists c2 > 0 such that for all k ≥ k0 and all M > c2,∑

x∈2−kZ
|x|ρ≤M2

pk(t, y, x)mk(dx) < δ. (4.25)

Now we take care of the second term on the right hand side of (4.20). We again denote
by Si the boundary of the square centered at the origin with four vertices (i2−k, i2−k),
(i2−k,−i2−k), (−i2−k,−i2−k), (−i2−k, i2−k). Similarly, since |y|ρ > M and |x|ρ ≤ M/2,
provided that M ≥ 4ε, it holds∑

x∈Dkε
|x|ρ≤M2

pk(t, y, x)mk(dx) ≤
∑
x∈Dkε
|x|ρ≤M2

c1
t

(
e−

dk(y,x)2

32t + e−
2kdk(y,x)

2

)
· 4−k

≤
∑
x∈Dkε
|x|ρ≤M2

c1
t

(
e−

M2

128t + e−
2kM

4

)
· 4−k

≤
2k([M/2+ε]+1)∑

j=1

∑
x∈Sj

c14−k

t

(
e−

M2

128t + e−
2kM

4

)

(#{x : x ∈ Sj} ≤ 8j) ≤
2k([M/2+ε]+1)∑

j=1

c14−k8j

t

(
e−

M2

128t + e−
2kM

4

)

≤
([M/2+ε]+1)∑

u=0

2k(u+1)−1∑
j=2ku

c14−k8j

t

(
e−

M2

128t + e−
2kM

4

)

≤
([M/2+ε]+1)∑

u=0

c12−k8(u+ 1)

t

(
e−

M2

128t + e−
2kM

4

)
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≤ c32−kM2

t

(
e−

M2

128t + e−
2kM

4

)
. (4.26)

To bound the two terms on the right hand of (4.26) respectively, we first notice that there
exists some constant c4 > 0 such that supx≥0 xe

−x/128 ≤ c4. Thus

c32−kM2

t
e−

M2

128t ≤ c3c42−k, (4.27)

which can be made arbitrarily small with sufficiently large k. For the other term on the
right hand side of (4.26), noticing that t ≥ 8−k,

c32−kM2

t
e−

2kM
4 ≤ c34kM2e−

2kM
4 ≤ c3

(
2kM

)2
e−

2kM
4 ,

which again can be made arbitrarily small as long as M is sufficiently large, regardless
of the value of k ≥ k0, because limx→+∞ x2e−x/4 → 0. Combining the disccusion above
regarding both terms on the right hand side of (4.26), we see that given any δ > 0, there
exists an integer n1 ≥ k0 and c5 > 0, such that for all k ≥ n1 and all M > c5,∑

x∈Dkε
|x|ρ≤M2

pk(t, x, y)mk(dx) < δ. (4.28)

Finally, for the third term on the right hand side of (4.20), since |y|ρ ≥M ,

pk(t, y, a∗k)mk(a∗k)
(2.5)
≤ c1

t

(
e−

dk(y,a∗k)2

32t + e−
2kdk(y,a∗k)

2

)
· 2−k ≤ c12−k

t

(
e−

M2

128t + e−
2kM

4

)
.

From here, using the same argument as that for (4.25), it can be shown that given any
δ > 0, there exists there exists c6 > 0 such that for all k ≥ k0 and all M > c6,

pk(t, y, a∗k)mk(a∗k) < δ. (4.29)

Combining (4.25), (4.28), and (4.29), in view of (4.20), we have showed that given any
δ > 0, for all k ≥ n1 and all M > max{c2, c5, c6}, it holds that

sup
|y|ρ≥M

t∈[8−k,T−8−k]

Py
[
|Xk

t |ρ ≤
M

2

]
< 3δ. (4.30)

In view of (4.19), we have verified the condition (ii) stated at the beginning of this proof.
Now that both conditions (i) and (ii) have been verified, the proof is complete.

4.3 Validation of (T-ii) in Proposition 4.1 for {Xk; k ≥ 1}
Before we establish the second tightness condition (T-ii) in Proposition 4.1 for

{Xk}k≥1, we need the following lemma.

Lemma 4.6. For any T > 0, δ1, δ2 > 0 given, there exist δ3 > 0 and k2 ∈ N such that for
all k ≥ k2,

sup
x∈E

sup
t∈[8−k,δ3]

(
1

δ3
+ 1

)
Px
[
ρ
(
Xk

0 , X
k
t

)
≥ δ1

]
< δ2.

Proof. The idea of this proof is similar to that of Proposition 4.4. By the definition of dk,
for any x ∈ E and any t ∈ [8−k, δ3],(

1

δ3
+ 1

)
Px
[
ρ
(
Xk

0 , X
k
t

)
≥ δ1

]
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≤
(

1

δ3
+ 1

)
Px
[
dk
(
Xk

0 , X
k
t

)
≥ δ1

]
≤

(
1

δ3
+ 1

) ∑
y∈2−kZ+

dk(x,y)≥δ1

c1
t

(
e−

dk(x,y)2

32t + e−
2kdk(x,y)

2

)
· 2−k

+

(
1

δ3
+ 1

) ∑
y∈Dkε

dk(x,y)≥δ1

c1
t

(
e−

dk(x,y)2

32t + e−
2kdk(x,y)

2

)
· 4−k

+ 1{dk(x,a∗k)≥δ1}(x) ·
(

1

δ3
+ 1

)
c1
t

(
e−

dk(x,a∗k)2

32t + e−
2kdk(x,a∗k)

2

)
mk(a∗k)

= (I) + (II) + (III). (4.31)

Now we need to claim that given any δ1, δ2 > 0, there exist δ3 > 0 and n1 ∈ N such
that for all k ≥ n1, all three terms (I)-(III) on the right hand side of (4.31) are smaller
than δ2. Towards this purpose, for the first term in (I), we let nk(x, y) := dk(x, y)2k, i.e.,
the smallest number of edges between x and y in Ek. For k sufficiently large such that
δ12k/4 ≥ 1, noticing that there exists some c2 > 0 such that

sup
k≥1

4k · exp
(
−2

3k
16

)
≤ c2, (4.32)

we have ∑
y∈2−kZ+

dk(x,y)≥δ1

c12−k

t
e−

2kdk(x,y)

2 =
∑

y∈2−kZ+

nk(x,y)≥δ12k

c12−k

t
e−

nk(x,y)

2

(i = nk(x, y)) =

∞∑
i=[δ12k]+1

c12−k

t
e−

i
2

(t ≥ 8−k) ≤
∞∑

i=[δ12k]

c14ke−
i
4 e−

i
4

(δ12k/4 > 1) ≤
∞∑

i=[2(3k)/4]

c14ke−
i
4 e−

i
4

≤ sup
k≥1

(
4k exp

(
−2

3k
16

)) ∞∑
i=[2(3k)/4]

c1e
− i

4

(4.32) ≤ c2

∞∑
i=[2(3k)/4]

c1e
− i

4 . (4.33)

For the second term in (I) on the right hand side of (4.31), since there exists some c3 > 0

only depending on δ1 such that

sup
t>0

1

t
e−

δ21
64t ≤ c3, (4.34)

we have∑
y∈2−kZ+

dk(x,y)≥δ1

c1
2

−k
te−

dk(x,y)2

32t ≤
∑

y∈2−kZ+

dk(x,y)≥δ1

c12−k

t
e−

dk(x,y)2

64t e−
dk(x,y)2

64t

≤

(
sup

8−k≤t≤δ3

c1
t
e−

δ21
64t

)
2−k

∑
y∈2−kZ+

nk(x,y)≥δ12k

c1e
−nk(x,y)24−k

64t

EJP 27 (2022), paper 99.
Page 24/33

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP829
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Discrete approximation to BMVD

((4.34), i = nk(x, y)) ≤ c3 · 2−k
∞∑

i=[δ12k]

c1e
− i24−k

64t

≤ c3 · 2−k
∞∑

u=[δ1]

(u+1)2k−1∑
i=u2k

c1e
− i24−k

64t

≤ c3 · 2−k
∞∑

u=[δ1]

(
2k · c1e−

u2

64t

)

(t ≤ δ3) ≤ c3
∞∑

u=[δ1]

e−
u2

64δ3 , (4.35)

Combining (4.33) and (4.35), we have shown that for any given δ1 > 0, for all k large
enough such that (21/4)kδ1 > 1, there exists c4 > 0 such that(

1

δ3
+ 1

) ∑
y∈2−kZ+

dk(x,y)≥δ1

c1
t

(
e−

dk(x,y)2

32t + e−
2kdk(x,y)

2

)
· 2−k

≤ c4

(
1

δ3
+ 1

) ∞∑
i=[2(3k)/4]

e−
i
4 +

∞∑
u=[δ1]

e−
u2

64δ3

 . (4.36)

Now we take care of (II) on the right hand side of (4.31). First of all, we claim that for
any given x ∈ Ek any j ∈ N,

#
{
y ∈ Dk

ε : dk(x, y) ≤ j · 2−k
}
≤ 256

(
j2 + ε24k

)
. (4.37)

To see (4.37), it suffices to note that for any y1, y2 ∈
{
y ∈ Dk

ε , dk(x, y) ≤ j2−k
}
, if we

denote by nk(y1, y2) the smallest number of edges between y1 and y2, then it must hold
that nk(y1, y2) ≤ 2j. Therefore |y1 − y2| ≤ 2j2−k + 2ε. Thus the Lebesgue measure of the

set
{
y ∈ Dk

ε : dk(x, y) ≤ j2−k
}

is at most π
(
2j2−k + 2ε

)2
. Since any two points in this

set is at least 2−k Euclidean distance apart, any two discs with Euclidean radius 2−k−2

centered at two distinct points in the set
{
y ∈ Dk

ε : dk(x, y) ≤ j
}

must be disjoint. Thus

#
{
y ∈ Dk

ε : dk(x, y)≤j2−k
}
≤ π(2j2−k + 2ε)2

π2−2k−4
≤ 128

(
j2 + jε2k + ε24k

)
≤ 256

(
j2 + ε24k

)
.

This verifies (4.37). Now for the first term in (II) on the right hand side of (4.31), it holds
that ∑

y∈Dkε
dk(x,y)≥δ1

c1
t
e−

dk(x,y)2

64t · 4−k ≤
∞∑
j=0

∑
y∈Dkε

δ1+j≤dk(x,y)<δ1+j+1

c14−k

t
e−

dk(x,y)2

64t

(4.37) ≤
∞∑
j=0

c14−k

t

[(
(δ1 + j + 1)2k

)2
+ 4k

]
e−

(δ1+j)2

64t

≤
∞∑
j=0

c14−k

t

(
(δ1 + j + 1)24k + 4k

)
e−

(δ1+j)2

64t

≤
∞∑
j=0

2c1
t

(δ1 + j + 1)
2
e−

(δ1+j)2

64t

≤ 4c1 (δ1 + 1)
2
∞∑
j=0

1

t
e−

(δ1+j)2

64t + 4c1

∞∑
j=0

j2

t
e−

(δ1+j)2

64t
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≤ 4c1(δ1 + 1)2 1

t
e−

δ21
64t + 8c1(δ1 + 1)2

∞∑
j=0

j2

t
e−

(δ1+j)2

64t . (4.38)

for any δ1, δ2 > 0 given, we first note that sup
0<t<δ3

∞∑
j=0

j2

t
e−

(δ1+j)2

64t

 ≤

 sup
0<t<δ3

j2

t
e−

δ21
64t

∞∑
j=0

j2e−
j2

64t


≤

∞∑
j=0

j2e−
j2

64δ3

(
sup
t>0

1

t
e−

δ21
64t

)

(4.34) ≤ c3

∞∑
j=0

j2e−
j2

64δ3 . (4.39)

Replacing the last summation term on the right hand side of (4.38) with (4.39), we get

∑
y∈Dkε

dk(x,y)≥δ1

c1
t
e−

dk(x,y)2

64t · 4−k ≤ 4c1(δ1 + 1)2 1

t
e−

δ21
64t + 8c5(δ1 + 1)2

∞∑
j=0

j2e−
j2

64δ3 .

For the second term in (II) on the right hand side of (4.31), we have∑
y∈Dkε

dk(x,y)≥δ1

c1
t
e−

2kdk(x,y)

4 · 4−k

≤
∞∑
j=0

∑
y∈Dkε

δ1+j≤dk(x,y)<δ1+j+1

c14−k

t
e−

2kdk(x,y)

4

(4.37) ≤
∞∑
j=0

c14−k

t

[(
(δ1 + j + 1)2k

)2
+ 4k

]
e−

δ1·2
k+j·2k
4

(t ≥ 8−k) ≤
∞∑
j=0

4c12k
(
δ2
14k + j2 · 4k + 4k

)
e−

δ1·2
k+j·2k
4

≤
∞∑
j=0

4c1
[
(δ2

1 + 1)8k + j2 · 8k
]
e−

(δ1+j)2k

4 . (4.40)

Finally, for (III) on the right hand side of (4.31), on account of Proposition 2.3, we have
for k ≥ k0 and t ∈ [8−k, δ3] that

1{dk(x,a∗k)≥δ1}(x) ·
(

1

δ3
+ 1

)
c1
t

(
e−

dk(x,a∗k)2

32t + e−
2kdk(x,a∗k)

2

)
mk(a∗k)

(Proposition 2.3) ≤
(

1

δ3
+ 1

)
c1 · 2−k

t

(
e−

δ21
32t + e−

2kδ1
2

)
(t ≥ 8−k) ≤

(
1

δ3
+ 1

)(
c1
t
e−

δ21
32t + c14ke−

2kδ1
2

)
. (4.41)

Now combining the discussion for (I)-(III) above, i.e., replacing the right hand side
of (4.31) with the right hand side terms of (4.36), (4.38), (4.40), and (4.41), we have(

1

δ3
+ 1

)
Px
[
ρ
(
Xk

0 , X
k
t

)
≥ δ1

]
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≤ c4

(
1

δ3
+ 1

) ∞∑
i=[2(3k)/4]

e−
i
4 +

∞∑
u=[δ1]

e−
u2

64δ3


+

(
1

δ3
+ 1

){
4c1(δ1 + 1)2 1

t
e−

δ21
64t + 8c5(δ1 + 1)2

∞∑
j=0

j2e−
j2

64δ3

+ 4c1

∞∑
j=0

(
δ2
1 + 1)8k + j2 · 8k

)
· e−

(δ1+j)2k

4

}

+

(
1

δ3
+ 1

)(
c1
t
e−

δ21
32t + c14ke−

2kδ1
2

)
. (4.42)

To bound the right hand side of (4.42), notice that for any pair of δ1, δ2 > 0 given, we
may first select δ3 > 0 sufficiently small so that

(
1

δ3
+ 1

)c4 ∞∑
u=[δ1]

e−
u2

64δ3

 < δ2,

(
1

δ3
+ 1

)
sup

0<t<δ3

c1
t
e−

δ21
32t < δ2, (4.43)

as well as

(
1

δ3
+ 1

)4c1(δ1 + 1)2 sup
0<t<δ3

(
1

t
e−

δ21
64t

)
+

(
1

δ3
+ 1

)
8c5(δ1 + 1)2

∞∑
j=0

j2e−
j2

64δ3

 < δ2.

(4.44)
Then with this δ3 > 0 fixed, we then choose n1 ∈ N big enough so that for all k ≥ n1,

c4

(
1

δ3
+ 1

) ∞∑
i=[2(3k)/4]

e−
i
4

 < δ2,

(
1

δ3
+ 1

)(
c14ke−

2kδ1
2

)
< δ2, (4.45)

and (
1

δ3
+ 1

)
4c1

∞∑
j=0

((
(δ2

1 + 1)8k + j2 · 8k
)
e−

(δ1+j)2k

4

)
< δ2. (4.46)

Combining (4.42)-(4.46), it has been shown that for any pair δ1, δ2 > 0 given, there exists
δ3 > 0 and n1 ∈ N such that for all k ≥ n1,(

1

δ3
+ 1

)
Px
[
ρ
(
Xk

0 , X
k
t

)
≥ δ1

]
< 6δ2, for all x ∈ E, t ∈ [8−k, δ3],

which completes the proof.

The next proposition justifies the second tightness condition in Proposition 4.1 for
{Xk}k≥1.

Proposition 4.7. For any T > 0, δ1, δ2 > 0, there exist δ3 > 0 and k3 ∈ N such that for
all k ≥ k3,

Pa
∗
k
[
wρ
(
Xk, δ3, T

)
> δ1

]
< δ2, (4.47)

where

wρ(x, δ3, T ) := inf
{ti}

max
i

sup
s,t∈[ti,ti−1]

ρ(x(s), x(t)),

where {ti} ranges over all possible partitions of the form 0 = t0 < t1 < · · · < tn−1 < T ≤
tn with min1≤i≤n(ti − ti−1) ≥ δ3 and n ≥ 1.
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Proof. Based on Proposition 4.6, we further first claim that given any T > 0, δ1, δ2 > 0,
there exist δ3 > 0 and n1 ∈ N such that for all k ≥ n1,

sup
x∈E

sup
t∈[0,δ3]

Px
[
ρ
(
Xk

0 , X
k
t

)
≥ δ1

]
< δ2. (4.48)

In view of Proposition 4.6, it suffices to show that given any T > 0, δ1, δ2 > 0, there exists
n1 ∈ N such that for all k ≥ n1,

sup
x∈E

sup
t∈[0,8−k]

Px
[
ρ
(
Xk

0 , X
k
t

)
≥ δ1

]
< δ2. (4.49)

In fact, for any x ∈ E, any k ∈ N and any t ∈ [0, 8−k], by the same computation as that in
the proof to Proposition 4.3 using Stirling’s formula,

Px
[
ρ
(
Xk

0 , X
k
t

)
> δ1

]
≤ Px

[
sup

s∈[0,8−k]

ρ
(
Xk

0 , X
k
t

)
> δ1

]

≤
∞∑

j=δ1·2k

(
8−k4ke

δ1 · 2k

)j
≤

∞∑
j=δ1·2k

(
e

δ14k

)j
, (4.50)

which proves (4.49). This combined with Proposition 4.6 shows (4.48). For any δ1, δ3 > 0,
in view of the definition of wρ, by strong Markov property we have

Pa
∗
k
[
wρ
(
Xk, δ3, T

)
> δ1

]
≤ Pa

∗
k

[
sup

1≤i≤[T/δ3]

sup
s,t∈[(i−1)δ3,iδ3∧T ]

ρ
(
Xk
s , X

k
t

)
> δ1

]

≤ Pa
∗
k

[T/δ3]⋃
i=1

{
sup

s,t∈[(i−1)δ3,iδ3∧T ]

ρ
(
Xk
s , X

k
t

)
> δ1

}
(strong Markov property) ≤

([
T

δ3

]
+ 1

)
sup
x∈E

Px

[
sup

s,t∈[0,δ3]

ρ
(
Xk
s , X

k
t

)
> δ1

]
.(4.51)

In order to handle the last display in (4.51), we first denote by τkδ1/2 := {t > 0, ρ(Xk
0 , X

k
t )≥

δ1/2}. It then follows by strong Markov property that for any x ∈ E,

Px

[
sup

s,t∈[0,δ3]

ρ
(
Xk
s , X

k
t

)
≥ δ1

]

≤ Px

[
sup

s∈[0,δ3]

ρ
(
Xk

0 , X
k
s

)
≥ δ1

2

]

≤ Px
[
ρ
(
Xk

0 , X
k
δ3

)
≥ δ1

4

]
+ Px

[
τkδ1/2 < δ3, ρ

(
Xk

0 , X
k
δ3

)
≤ δ1

4

]
≤ Px

[
ρ
(
Xk

0 , X
k
δ3

)
≥ δ1

4

]
+

∫ δ3

0

Ex
[
P
Xkτδ1/2

[
ρ
(
Xk

0 , X
k
δ3−s

)
≥ δ1

4

]
, τδ1/2 ∈ ds

]
≤ 2 sup

y∈E
0≤s≤δ3

Py
[
ρ
(
Xk

0 , X
k
s

)
≥ δ1

4

]
. (4.52)

Replacing the last term on the right hand side of (4.51) with (4.52), we get that for any
δ1, δ3 > 0, and any k ∈ N,

Pa
∗
k
[
wρ
(
Xk, δ3, T

)
> δ1

]
≤ 2

([
T

δ3

]
+ 1

)
sup
y∈E

0≤s≤δ3

Py
[
ρ
(
Xk

0 , X
k
s

)
≥ δ1

4

]
. (4.53)
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Now we are ready to apply Proposition 4.6 to finish the proof. Indeed, by Proposition 4.6,
for any T > 0, given any δ1, δ2 > 0, there exist δ3 > 0 and n1 ∈ N such that for all k ≥ n1,(

1 +
1

δ3

)
sup
y∈E

0≤s≤δ3

Py
[
ρ
(
Xk

0 , X
k
s

)
≥ δ1

4

]
<

δ2
4(T + 1)

. (4.54)

Thus (4.53) yields that

Pa
∗
k
[
wρ
(
Xk, δ3, T

)
> δ1

]
≤ 2

([
T

δ3

]
+ 1

)
sup
y∈E

0≤s≤δ3

Py
[
ρ
(
Xk

0 , X
k
s

)
≥ δ1

4

]

≤ 2 (T + δ3)

δ3
sup
y∈E

0≤s≤δ3

Py
[
ρ
(
Xk

0 , X
k
s

)
≥ δ1

4

]

(4.54) ≤ 2 (T + δ3)

δ3
· δ2

4(T + 1)
· δ3
δ3 + 1

< δ2. (4.55)

This completes the proof.

Theorem 4.8. For every T > 0, the laws of {Xk,Pa
∗
k , k ≥ 1} are C-tight in the Skorokhod

space D([0, T ], E, ρ) equipped with the Skorokhod topology.

Proof. This follows immediately from [10, Chapter VI, Proposition 3.26], in view of
Proposition 4.5 and Proposition 4.7.

5 Weak limit of random walks on spaces with varying dimension

We first establish the uniform convergence of the generators of Xk. The method
is similar to that in [11]. For notation convenience, we define the following class of
functions G:

G : = {f : R2 ∪R+ → R, f |Bε = const = f |R+
(0), f |R2 ∈ C3(R2), f |R+

∈ C3(R+),

f is supported on a compact subset of (E\{a∗}) ∪Bε}. (5.1)

Every f ∈ G can be uniquely identified as a function mapping E to R. Thus for f ∈ G, we
define

Lkf(x) := 22k
∑
y∈Ek,

y↔x in Gk

(f(y)− f(x)) Jk(x, dy), for x ∈ Ek. (5.2)

We also set
Sk := {x ∈ Dk

ε ∩ Ek : vk(x) = 4} ∪ 2−kZ+.

It is easy to see that {Sk}k≥1 is an increasing sequence of sets. Also, it is clear that if
a vertex x ∈ Ek\Sk, then it must be that either x = a∗k or x ↔ a∗k in Gk. By a similar
argument as that for [11, Lemma 2.7], we have the following lemma.

Lemma 5.1. For every fixed k0 ∈ N and every f ∈ G, Lkf converges uniformly to

Lf :=
1

2
∆f |R+ +

1

4
∆f |Dε on Sk0 as k →∞. (5.3)

Also, there exists some constant C7 > 0 independent of k such that for all k ≥ 1 and all
x ∈ Ek,

Lkf(x) ≤ C7.

Proof. This can be proved by an argument very similar to [11, Lemma 2.7]. Thus it is
omitted.
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We prepare the following lemma for the main theorem.

Lemma 5.2. Fix 0 < ε < 1/64. Given any 0 < δ < (1 ∧ T )/4, there exists kδ ∈ N such
that for all k ≥ kδ,

sup
t∈[2−k/δ,T ]

Pa
∗
k
[
Xk
t /∈ Sk

]
≤ 4C5δ,

where the C5 > 0 on the right hand side above is the same as in Corollary 3.4.

Proof. Given k0 specified in (1.5), let kδ ≥ k0 be an integer large enough such that
2−kδ < δ2. Recall that for any x ∈ Ek\Sk, it must hold that either x = a∗k, or x ∈ Dk

ε and
x↔ a∗k in Gk. Notice that for t ≥ 2−k/δ and y ↔ a∗k, it holds

d(a∗k, y) ≤ 1 ≤ 16 · 2kt, (5.4)

it then follows that for the C5 speicified in Corollary 3.4, for any t ∈ [2−k/δ, T ],

Pa
∗
k
[
Xk
t /∈ Sk

]
≤

∑
y/∈Sk

C5

(
1

t
∨ 1√

t

)
e−

dk(a∗k,y)
2

32t mk(dy)

(1.3) ≤

 ∑
y∈Dkε ,y↔a∗k

C5

t
· 2−2k

+
C5

t
·mk(a∗k)

(2.6) ≤ C5δ · 2k · 2−2k
(
56ε · 2k + 28

)
+ C5 · δ · 2k · 2−k

(ε < 1/64) ≤ 4C5δ. (5.5)

The desired conclusion readily follows.

Theorem 5.3. {Xk,Pa
∗
k , k ≥ 1} converges weakly to the BMVD described in Theo-

rem 1.2 starting from a∗.

Proof. This proof is adapted from that for [11, Proposition 2.9] with some minor changes.
We spell out the details for readers’ convenience. Since the laws of {Xk,Pa

∗
k}k≥1 are

C-tight in D([0, T ], E, ρ), any sequence has a weakly convergent subsequence supported

on the set of continuous paths. Denote by {Xkj ,P
a∗kj : j ≥ 1} any such weakly convergent

subsequence, whose weak limit must be continuous and starting from a∗ almost surely
(note Remark 1.5). Denote such a solution by (Y,Pa

∗
). By Skorokhod representation

theorem (see, e.g., [8, Chapter 3, Theorem 1.8]), we may assume that {Xkj ,P
a∗kj ; j ≥ 1}

as well as (Y,Pa
∗
) are defined on a common probability space (Ω,F ,P), so that {Xkj , j ≥

1} converges almost surely to (Y,Pa
∗
) in the Skorokhod topology.

For every t ∈ [0, T ], we setMkj
t := σ(X

kj
s , s ≤ t) andMt := σ(Ys, s ≤ t). It is obvious

thatMt ⊂ σ{M
kj
t : j ≥ 1}. With the class of functions G defined in (5.1), in the following

we first show that (Y,Pa
∗
) is a solution to the D([0, T ], E, ρ) martingale problem (L,G)

with respect to the filtration {Mt}t≥0. That is, for every f ∈ G, we need to show that{
f(Yt)− f(Y0)−

∫ t

0

Lf(Ys)ds

}
t≥0

is a martingale with respect to {Mt}t≥0. By [9, Corollary 5.4.1], we know that for any
k ≥ 1 and any f ∈ G, {

f(Xk
t )− f(Xk

0 )−
∫ t

0

L̃kf(Xk
s )ds

}
t≥0
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is a martingale with respect to {Mk
t }t≥0. Therefore, for any 0 ≤ t1 < t2 ≤ T and any

A ∈Mkj
t1 , it holds for every j ∈ N that

E
a∗kj

[(
f(X

kj
t2 )− f(X

kj
t1 )−

∫ t2

t1

Lkjf(Xkj
s )ds

)
1A

]
= 0. (5.6)

We first claim that for any A ∈Mt1 ,

lim
j→∞

E
a∗kj

[(
f(X

kj
t2 )− f(X

kj
t1 )
)
1A

]
= Ea

∗
[(f(Yt2)− f(Yt1))1A] . (5.7)

Towards this, we note that it has been claimed at the beginning of this proof that one can
assume {Xkj , j ≥ 1} as well as Y are defined on a common probability space (Ω,F ,P),
so that {Xkj , j ≥ 1} converges almost surely to Y in the Skorokhod topology, and that
Y is a continuous process. From the proof of [8, Chapter 3, Theorem 7.8]), we can tell
that: Given a squence {ωn, n ≥ 1} convergent to ω in the Skorokhod topology and ω is
continuous at some t0 > 0, then limn→∞ ωn(t0) = ω(t0). This yields that outside of a zero

probability subset of (Ω,F ,P), X
kj
t → Yt as j → ∞ for all t ∈ [0, T ]. Thus (5.7) follows

from dominated convergence theorem.
In order to show the convergence of the integral term in (5.6), for k ≥ 1, we denote

by
T k0 = 0, and T kl = inf{t > T kl−1 : Xk

Tl
6= Xk

Tl−} for l = 1, 2, . . . ,

i.e., T kl is the lth holding time of Xk. {T kl : l ≥ 1} are i.i.d. random variables, each
exponentially distributed with mean 2−2k. Similar to the proof for [11, Proposition 2.9],
it holds ∣∣∣∣∣∣∣Ea

∗
kj


 ∑
l: t1<T

kj
l ≤t2

Lkjf
(
X
kj

T
kj
l

)1A

− Em [(∫ t2

t1

Lf(Ys)ds

)
1A

]∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣Ea
∗
kj


 ∑
l: t1<T

kj
1 ≤t2

Lkjf
(
X
kj

T
kj
l

)(
T
kj
l − T

kj
l−1

)
−
∫ t2

t1

Lkjf(Xkj
s )ds

1A


∣∣∣∣∣∣∣

+

∣∣∣∣Ea∗kj [(∫ t2

t1

Lkjf(Xkj
s )ds−

∫ t2

t1

Lf(Xkj
s )ds

)
1A

]∣∣∣∣
+

∣∣∣∣Ea∗kj [(∫ t2

t1

Lf(Xkj
s )ds

)
1A

]
− Ea

∗
[(∫ t2

t1

Lf(Ys)ds

)
1A

]∣∣∣∣
= (I) + (II) + (III). (5.8)

Again by the same reasoning as in [11, Proposition 2.9], both (I) and (III) on the right
hand side of (5.8) converge to zero. To take care of (II), for any δ > 0, we let kδ be chosen
as in Lemma 5.2. Hence∣∣∣∣Ea∗kj [(∫ t2

t1

Lkjf(Xkj
s )ds−

∫ t2

t1

Lf(Xkj
s )ds

)
1A

]∣∣∣∣
≤

∣∣∣∣Ea∗kj [∫ t2

t1

Lkjf(Xkj
s )ds−

∫ t2

t1

Lf(Xkj
s )ds

]∣∣∣∣
≤

∣∣∣∣∣Ea∗kj
[ ∫ t2

t1

Lkjf(Xkj
s )1{

X
kj
s ∈Skj

}ds−
∫ t2

t1

Lf(Xkj
s )1{

X
kj
s ∈Skj

})ds

]∣∣∣∣∣
+

∣∣∣∣∣Ea∗kj
[ ∫ t2

t1

Lkjf(Xkj
s )1{

X
kj
s /∈Skj

}ds+

∫ t2

t1

Lf(Xkj
s )1{

X
kj
s /∈Skj

}ds
]∣∣∣∣∣. (5.9)
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For the first term on the right hand side of (5.9), by Lemma 5.1, we have∣∣∣∣∣Ea∗kj
[ ∫ t2

t1

Lkjf(Xkj
s )1{

X
kj
s ∈Skj

}ds−
∫ t2

t1

Lf(Xkj
s )1{

X
kj
s ∈Skj

})ds

]∣∣∣∣∣
=

∣∣∣∣∣Ea∗kj
[ ∫ t2

t1

(
Lkjf(Xkj

s )− Lf(Xkj
s )
)
1{

X
kj
s ∈Skj

}ds
]
j→∞→ 0. (5.10)

For the second term on the right hand side of (5.9), given any δ ∈ (0, (1∧T )/4, for kj ≥ kδ
where kδ is specified in Lemma 5.2 satisfying 2−kδ < δ2,∣∣∣∣∣Ea∗kj

[ ∫ t2

t1

Lkjf(Xkj
s )1{

X
kj
s /∈Skj

}ds+

∫ t2

t1

Lf(Xkj
s )1{

X
kj
s /∈Skj

}ds
]∣∣∣∣∣

≤

∣∣∣∣∣Ea∗kj
[ ∫ T

0

Lkjf(Xkj
s )1{

X
kj
s /∈Skj

}ds+

∫ T

0

Lf(Xkj
s )1{

X
kj
s /∈Skj

}ds
]∣∣∣∣∣

=

∣∣∣∣∣Ea∗kj
[ ∫ 2−k/δ

0

Lkjf(Xkj
s )1{

X
kj
s /∈Skj

}ds+

∫ 2−k/δ

0

Lf(Xkj
s )1{

X
kj
s /∈Skj

}ds
]∣∣∣∣∣

+

∣∣∣∣∣Ea∗kj
[ ∫ T

2−k/δ

Lkjf(Xkj
s )1{

X
kj
s /∈Skj

}ds+

∫ T

2−k/δ

Lf(Xkj
s )1{

X
kj
s /∈Skj

}ds
]∣∣∣∣∣

(Lemma 5.1) ≤ (C5 + ‖Lf‖∞) · 2−k

δ
+ T · (C5 + ‖Lf‖∞) sup

t∈[2−k/δ,T ]

P
a∗kj

[
X
kj
t /∈ Skj

]
(Lemma 5.2) ≤ (C5 + ‖Lf‖∞) δ + T · (C5 + ‖Lf‖∞) · 4C1δ. (5.11)

Since δ can be made arbitrarily small, we have proved that for the second term on the
right hand side of (5.9), it also holds that

lim
j→∞

∣∣∣∣∣Ea∗kj
[ ∫ t2

t1

Lkjf(Xkj
s )1{

X
kj
s /∈Skj

}ds+

∫ t2

t1

Lf(Xkj
s )1{

X
kj
s /∈Skj

}ds
]∣∣∣∣∣ = 0. (5.12)

Combining (5.10) and (5.12), we have showed that (II) on the right hand side of (5.8),
thus the entire right hand side of (5.8) tends to zero as j →∞. This combined with (5.7)
shows that (Y,Pa

∗
) is indeed a solution to the D([0, T ], E, ρ) martingale problem (L,G)

with respect to the filtration {Mt}t≥0.
To finish the proof, it remains to show that the D([0, T ], E, ρ) martingale problem

(L,G) has a unique solution. Towards this, we denote the infinitesimal generator of
BMVD defined in Theorem 1.2 by (L,D(L)) (see [7, Theorem 2.3] for its description). In
view of the definition of G, it is easy to verify that the bp-closure (whose definition can
be found, e.g., in [2, Definition 3.4.3]) of the graph of L restricted on D(L) ∩ G is the
same as the bp-closure of the graph of L restricted on D(L) ∩ Cc(E). Therefore by [2,
Proposition 3.4.19], the D([0, T ], E, ρ) martingale problem (L,D(L) ∩ G) has the same
set of solution(s) as the D([0, T ], E, ρ) martingale problem (L,D(L) ∩ Cc(E)).

Finally, given any f ∈ C0(E) ∩ D(L), there exists {fn}n≥1 ⊂ Cc(E) ∩ D(L) such that
fn → f and Lfn → Lf both in L2-norm. This means that the closure of L restricted
on D(L) ∩ Cc(E) coincides with the closure of L restricted on D(L) ∩ C0(E), which
corresponds to the BMVD defined in Theorem 1.2 which is a Feller process with strong
Feller property. By [12, Theorem 3.1, Remark 3.3], the D([0, T ], E, ρ) martingale problem
(L,D(L)∩Cc(E)) has a unique solution, which has to be the BMVD defined in Theorem 1.2.
In view of the last sentence of the last paragraph, BMVD defined in Theorem 1.2 also
has to be the D([0, T ], E, ρ) martingale problem (L,D(L) ∩ G). Since earlier in thie proof
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we have claimed that (Y,Pa
∗
) is a solution to the D([0, T ], E, ρ) martingale problem

(L,G) with respect to the filtration {Mt}t≥0, (Y,Pa
∗
) coincides with the BMVD defined in

Theorem 1.2 starting from a∗. Since Y is the sequencial limit of any weakly convergent
subsequence of {Xk}k≥1, the proof is complete.
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