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Abstract

We prove that the critical percolation parameter for Finitary Random Interlacements
(FRI) is continuous with respect to the path length parameter 7. The proof uses a
result which is interesting on its own right; equality of natural critical parameters for
FRI percolation phase transition.
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1 Introduction

Finitary Random Interlacements (FRI) was introduced by Bowen [2] as a tool to
answer a problem of Gaboriau and Lyons, who asked whether every non-amenable
measured equivalence relation contains a non-amenable treeable subequivalence relation.
FRI is a Poisson point process of geometrically killed random walk paths. There are
two parameters controlling the model, an intensity parameter v > 0, and the killing
parameter T" > 0 controlling the length of the finite paths. In the same paper Bowen
asks about the FRI on Z¢ percolation properties as a function of » and 7. It was proved
in [22] that for any v > 0 and large enough 7' there is a unique infinite component and
that for small enough T all connected components are finite. In [4] it was proved that
the model is not monotonic as a function of T, making it harder to prove a sharp phase
transition.

This paper delves into the percolative properties of FRI for a fixed 7" and changing
intensity parameter u. This approach was considered in [20] in the context of the massive
Gaussian free field, and in [5] where the global existence of a critical intensity w.(T)
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Continuity and uniqueness of percolation critical parameters

was proved. Note that FRI can be considered as a massive random interlacements with
killing measure.

In this paper we prove that that the critical parameter for percolation u.(T) is
continuous as a function of 7. To achieve that we first prove that various natural
percolation critical parameters are all equal to each other. By proving that the critical
intensity for percolation equals that of the so called local uniqueness phase (denoted by
@(T) here), one immediately gets that results such as good chemical distance [3] and
isoperimery [21] hold for all the super-ciritical phase.

The proof of the unique critical parameter in this paper, follows the general scheme of
[10]. We try to avoid repeating arguments from [10], however since many of the details
are different we do need to reprove some of their Lemmas. For instance their truncation
of the Gaussian free field is replaced here with a restriction of the FRI Poisson point
process to paths of length smaller than a prescribed parameter.

The FRI with parameters v and T naturally scales to Random Interlacements of level
u as T — oo [28, Appendix]. Naturally the set of vertices not visited by the FRI scales as
T — oo to the so called vacant set of random interlacements. It would be interesting to
extend the results of this paper to the case of the vacant set of Random Interlacements,
and prove uniqueness of the percolation critical parameters in that case. However, as
pointed out by an anonymous referee, this problem could be a quite different and likely
more difficult one, as there seems to be no natural decomposition for the vacant set
to ensure finite dependence. Moreover the continuity proved in this paper suggests
continuity of the chemical distance norm for FRI with u > u.(7T'), and its convergence to
the chemical distance norm of random interlacements, in the limit as 7" grows to infinity.
It is expected that the ball in the chemical distance norm of random interlecements,
scaled correctly, would converge to a Euclidean ball as the intensity parameter converges
to zero.

1.1 Notations and preliminaries

Before presenting our results formally, we need to introduce some notations and
useful results.

Graph (Z¢,1.%) and two metrics: We denote by Z? the d-dimensional lattice. We
also denote the /> and /! distances on Z¢ by |-| and |-|; respectively. Precisely, for any » =
(zM, .., z@) € Z9, |z| := max,<i<q|z@| and |z|, := YL, |z®|. The set of undirected
edges on Z? is denoted by L? (i.e. L? := {e = {z,y} : 2,y € Z% s.t. |z — y|; = 1}).

Definition of FRI: Let W(%>) be the set containing all nearest-neighbor paths of
finite lengths on Z?. For any € Z? and 0 < T < oo, we denote by ngT) the law
of geometrically killed simple random walks on Z¢ with starting point 2 and killing

rate T%rl at each step. Consider the measure v(™) x AT on W% x [0, 00), where
v =3 e B P and A+ is the Lebesgue measure on [0, cc). Since the set TW[0:>)

is countable and for each € W%, v(T) () < %' the measure v(T) x AT is o-finite.
Referring to Definition 4.4 in [8], let FI" be the Poisson point process on W) x [0, )
with intensity measure v(7) x A*T. We hereby present the first definition of FRI:

Definition 1.1. For T € (0,00), assume that FI" := 3, x 8(y..u,)- Then for any u > 0,
finitary random interlacements with expected fiber length T and level u are defined as

FIuT = Y 6y (1.1)

€N, <u

By Definition 1.1, we note that FZ*” is a point measure on W) and for any
u1 < ug, under the natural coupling one always has support(]—'I“l’T) C support(fI“Q’T).
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When we consider a single FRI ]-'I“’T, an alternative definition of FRI introduced in
[22] is also useful:

Definition 1.2. Let {N.},.,. be a sequence of i.i.d. Poisson randon variables with

parameter Z4%. For each x € 7, independently sample N, random walks by P Then
let FZ%T be the point measure on W) consisting of all the trajectories above from

every x € 7.

Edge sets and sets of vertices: When we write a set of vertices, we will use capital
letters in the normal style such as A, B, E, etc. For edge sets, we use Calligraphic
typeface such as A, B and &, or Greek capital letters such as A and ¥. Especially,
for x € Z? and R € IN*, we denote B,(R) := {y € Z%: |z —y| < R} and B,(R) :=
{e={z,y} €eL?: 2,y € B,(R)}. For an edge set A, we write the set of all vertices
covered by A as V(A) (i.e. V(A) := {z € Z¢ : there exists e € A s.t. x € e}).

For any 71 = (1(0), ...,n(m)) € W) (m > 1), 5 can also be regarded as an edge set
{{n@@),n(i + 1)}};1;1 C L4, Hence, sometimes we no longer distinguish between these
notations. In this way, a point measure w =) jer 6nj on W0:) ig equivalent to a unique
edge set Ujern; C L? and we similarly do not make distinction between them.

Especially, for each nearest-neighbor path of finite length n = (n(0),...,n(m)), the
length of 7 is defined as |n| := m.

Ordering relation in vertices, edges, edge sets and sets of vertices: For any
T1,xo € 74, we say x1 is lexicographically-smaller than x5 (denoted by x; < x3) if there
exists 1 < ¢ < d such that xgi) < xéi) and forall1 < j <4, mgj) = xéj). Furthermore, for
e1 = {z1,y1},e0 = {w2,y2} € L (z1 <41, 22 < y2), we also say e; is lexicographically-
smaller than e, (denoted by e; < eg) if either of the following condition holds: (1) 1 < x9;
(2) z1 = w2 and y; < y2.

Based on the ordering relation given above, edge sets and sets of vertices can also
be ordered as follows: for any A = {z1,....2m}, B = (Y1, ..., yn) C Z* (21 < ... < Ty,
y1 < ... < ynp), we say A is lexicographically-smaller than B, and denote it by A < B,
if A c B, or A ¢ B while z;, < y;,, where iy := min{i : z; # y;}. Similarly, for
A= {e1,em}, B = (€),...,el) C Z (e1 < ... Aep, € < ... <€), we also say A is
lexicographically-smaller than B (A < B) if A C B, or A ¢ B while e, < ¢} , where
Jo :=min{j : e; # € }.

Several kinds of boundaries: For each set of vertices A, we denote its internal
boundary and outer boundary by 04 and 9°“* A, where

0A = {x € A :there exists y € zZ? \Ast |z—yl = 1} , (1.2)

OMA = {z € 74\ A: there existsy € A sit. |z —y|; = 1}. (1.3)

Similarly, for an edge set A, we write 9..4 and 9°“* A for its internal edge boundary
and outer edge boundary. Precisely,

0cA ={e={x,y} e A:z,y € OV(A)}, (1.4)
O A= {e={a,y} e LI\ A:2 € IV(A),y € 0°V(A)}. (1.5)
Distance and diameter: Based on the metrics | - | and | - |1, one can define dis-

tances accordingly: for any A, B C Z%, d(A, B) := mingeca yep |z — y| and di(A, B) =
minge 4 yep | — yl1; for edge sets A, B C L%, d(A,B) := d(V(A),V(B)) and d; (A, B) :=
& (V(A), V(B)).

For each subset E C Z<, the diameter of E is denoted by diam(E) := max, ye |z —y|.
Similarly, for £ C L4, diam(€) := diam(V (€)).

Connection between two sets: For any A, B C Z? and £ C L%, we say A and B
are connected by £ if there exists a path 1 = (1(0), ...,n(m)) € W(%>) such that 5 C &,
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7(0) € A and n(m) € B. We denote this event by A & B. We also say “A and B are
connected by £ within a set of vertices D” (denoted by A % B)if A &, B and one of the
connecting paths 7 further satisfies that V(n) C D.

Forany A C Z¢ and £ C ¢, we denote by A &, oo the event that there exist an infinite

connected component (sometimes, connected components are also called clusters) in £

intersecting A.
£

For convenience, sometimes we also write A <& B := V(A) < V(B), A % B =
V(A) % V(B) and A <% 00 1= V(A) <5 oo for A,B,£ € L¢ and D C 7.

oo

Decomposition of FRI: We introduce a restriction of FZ%7 = Y ey O
For any L € INt, let

FIpT =Y 6y Lip<r (1.6)
i=1

be the collection of trajectories of length < L.

Critical values of FRI: Similar to [10], we consider the following types of critical
values:

For any fixed d > 3,

w, T
* uy(T) := supqu>0:P|0 I o =0 , which is the most common critical

value for percolation and is previously studied in [4, 5, 22]. Especially, Theorem 4
in [5] shows that u.(T") € (0,00) forall 0 < T < oc;

w, T

o Uy, (T) == sup {u >0 :infpens P {B(R) RSN 8B(2R)] = 0};

e w(T) := inf {uo > 0 : for all u > ug, FZ* strongly percolates}, where “FT7"7
strongly percolates” means that there exists ¢,p > 0 such that for any integer
R >0,

P [Exist(R, FI*")] := Pl[there exists a cluster in B(R) N FZ*" with 17
diameter at least R/5] > 1 — e f’, ‘
P [Unique(R, FZ"7)]
R
:= PJall clusters in B(R) N FZ*” with diameter at leastﬁ (1.8)

are connected by B(2R) N FZ»T] > 1 — e~ °F";
}-I“"T

e u(T) = inf {u>0:infR€]NRdP B(u(R)) " 6B(R)} :O}, where p(R) :=
[eaog(R»%J .

2 Statements of results

Our main result is the continuity of the critical parameter with respect to the killing
parameter 7.
Theorem 2.1. For any d > 3, u.(T) is a continuous function w.r.t. T on (0, c0).

The main tool we use is a theorem which is parallel to Theorem 1.1 of [10]. We prove
that all critical values introduced above are actually equivalent to each other.
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Theorem 2.2. Foranyd >3 andT > 0,
U (T) = uss (T) = w(T) = u(T). (2.1)

Referring to [1, 11, 12, 15], for a model with phase transition, if in the subcritical
regime, the cluster size distribution decays exponentially, then this model is considered
to have sharp phase transition. By Theorem 2.2, we can show that the phase transition
of FRI is sharp.

Corollary 2.3. For any d > 3 and (u,T) € (0,00)?, ifu > u,(T), FI*" strongly perco-
lates; if u < u.(T), there exists C(u,T) > 0 and 6(u,T) > 0 such that for any integer

R >0,

puT [o I

8B(R)} < Ce™°R, (2.2)
Remark 2.4. As pointed out by a anonymous referee, it is worth noting that the afore-
mentioned result for subcritical regime may be alternatively proved following the tech-
nique developed in [13] for Poisson Boolean model.

Theorem 2 of [3] shows that for any d > 3 and u > 0, there exists a constant
Ts(u,d) > 0 such that for any T > T3, FI*T strongly percolates. Indeed, Corollary 2.3
implies the following stronger results and gives a more precise expression for the
constant 73 in Theorem 2, [3].

For a fixed d > 3, we introduce the following critical value: for u > 0,

T, (u) :==inf {Ty € R* : forall T > Tp,u > u,(T)} . (2.3)

*

Corollary 2.5. For any u > 0, T (u) € (0,00) and if T > T} (u), FI** strongly perco-
lates.

Indeed, Corollary 2.5 can improve the constant 73 in Theorem 2 of [3] to 7. (u).
Furthermore, contants 75 in Corollary 2.1 of [3] and 75 in Corollary 2.2 of [3] can also be
improved to Tj(u) by using the arguements in Section 7 of [6] and Theorem 1.1 of [21].

3 Proof of Theorem 2.1

In this section, we show the proof of Theorem 2.1 assuming Theorem 2.2.

For Theorem 2.1, it is sufficient to prove the following four results: for any 7, > 0 and
€c (O, 0.5, (TO)), there exists AT} (7707 6), ATy (To, 6), ATs (To, E), ATy (To, 6) € (0, To) such
that

for any T € [Ty, Ty + ATy, FIUT)+T percolates;

for any T € [Ty — ATy, Ty), FI** «(To)=¢T goes not percolate;

for any T € [Ty, To + AT3), FZ** «(To)=«T goes not percolate;
[ B

W N =

for any T € [Ty — ATy, Tp], FZ%(T0)+<T percolates.

Among these four parts, Part 1 and Part 2 follow from a coupling construction of
FRI’s. Part 3 is mainly based on a decoupling type renormalization argument in [25, 27]
and Part 4 uses arguments from [21, 23].

Before proving, we need to introduce some notations and results:

* For Ko, ko € N, let K,, = Ko - k& and K,, = K,, - Z<.
» Forintegrn >0, letI,, = {n} xXK, (n stands for “level” in the decoupling argument);
for (n,z) € I,, n > 1, define that

Hy(n,z) = {(n —Ly el 1: By(Kn—l) - Bw(Kn)vBy(Kn—l) NOB.(Ky) # (D}a
(3.1)
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Hy(n,z) ={(n—1,y) € L,_1 : By(Kn—1) N 0B, (|1.5K,_1]) # 0}, (3.2)

Yoo ={T C|JTk: TN, = (n,x);forall 0 < k < n, (k,y) € T NI, (k,y)
k=0
has two descendants (k — 1,y;(k,y)) € H;(k,y),i = 1,2 such that (3.3)
Tﬂ]lk—l - U {(k_17y1(kay))7(k_17y2(kay))}}
(k,y)eT NIk

Like (2.8) of [25], there exists constant C'(d) > 0 such that for any n > 1,

277,
Mol < (CRE4D) (3.4)
w, T
« For z € K, define event A, , = {B,(K,) <~ 0B,(2K,)}. Similar to (2.14) in
[25],
Ao | A7 (3.5)
TeTn,z

where A7 =, e7rr, Ao,y- See Figure 1 for an illustration of this renormaliza-
tion scheme.

B (2K,)

B 2Kn_1)

y2(n,T) (

Figure 1: An illustration of the renormalization scheme.

* In fact, we can couple two geometric random variables by {U;}°, "y [0,1]: for
any 0 < p; < p2 < 1,let N; = min{n € N* : U, > p;}, i = 1,2. Then for i € {1,2},
N; ~ Geo(p;). Note that for all m € N7,

P[Nl = NQ = m]

m—1
P[Ny = N3|Ny =m] = PN, = 1] = (i;) . (3.6)

s Forany 1’ > T > 0 and u > 0, there are two steps to construct FZ%7 from FreT',

1. For each n = (n(0),...,n(m)) € FT*T', sample the geometric random variable
N7 condition on N = m under the coupling above (p; = TLH,pz = T,Tiﬂ); then

let 7) = (7(0),...,n(NY)) and FZ""" =37 _ 7o O
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—~—

w(T'—T) ,
2. Sample an independent copy of FZ 77+1 ‘T and then add it to FZ*7".

With a slight abuse of notation, we still denote the probability measure of this
coupling by P. Under this construction, we have: for any R € IN*,

P [J—"I“’T NB(R) # FI*T N B(R)]
<p [szvT NB(R) # @} 3.7
+P [there existsn € FIT st.nnB(R) = 0, Ny # Ng] .

By (3.6), (3.7) and definition of FRI, under the given coupling between FRI’s, we
have

lim sup  P[FI*TNB(R) = FI*T NB(R)| =1 (3.8)
AT —0+ T:|T—To|<AT [ ( ) ( )]

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We separatly show the existence of AT), AT,, AT3 and ATy.
Recall that Tp > 0 and € € (0, 0.5u.(Tp)).

For AT;: Arbitrarily take d € (0,0.5¢), then choose AT} > 0 such that % =

W. For any T € [Ty, Ty + ATy, since zd(“*T(ngﬁ) > 2d("i§£°1)+5) and T > Ty,

Fru-To+eT stochastically dominates FZ%(T0)+370 By definition of u.(-), we know that
FTu-To)+0To hercolates. Hence, we also have FZ%(70)7¢T percolates.

For AT,: Similarly, we take ¢ € (0, 0.5¢) arbitrarily and then choose AT, > 0 such that
200 o)) — 20(w-o)=9)  For any T € [Ty — ATy, Tp), since 244:To)=d) < 2d(u. (o) =0)
and T < T, we have F. u(To)=6,To stochastically dominates Fru-(To)=eT Noting that
FT"(T0)=0To goes not percolate, we know that FZ*(T0)=¢T does not percolate either.

For AT3: Forany n > 1 and 7 € T, o, parallel to Equation (5.15) of [5], take ko > 2T,

then there exists ¢ > 0 such that for all 7" € [Ty, 275,

P(A7) < (P"7(Ag) + 2¢~K0) " (3.9)

Combine (3.4), (3.5)and (3.9),
on
P(Anp) < [Ckﬁ(d_” (P(Ao.o) +2e*CK0)] ‘ (3.10)

By Theorem 2.2, we have u, = u... Hence, there exists a large enough integer K, such
that

. 1
CrG ™ (Pl (4 ) + 26750 ) < o (3.11)

By (3.8), there exists AT; € (0,7p) such that for all T’ € [Ty, Tp + ATj3],
_ 1
kg P [FT =0T 0 B2R) = FI" W= 1 B2R)| < . (3.12)

Combining (3.10), (3.11) and (3.12), for any T' € [Ty, To + AT5), we have

Frus(To)—eT
>

P [Bz(Kn) aBz(an)} < (g)n . (3.13)

Therefore, FZ**(T0)=¢T does not percolate for all T € [Ty, Ty + AT3].
For ATy: In this part, we adapt a block construction argument introduced in [21, 23].

We say that a box B, (Kj) is good if both of the following events, denoted by G; and
G5 occur (otherwise, call B, (Kj) a bad box):
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1. Recall notations Exist(:,-) and Unique(-,-) in (1.7) and (1.8). Define
Gy (z) := Exist(Kg, —z 4+ FZ 1)1y 0 Unique (Ko, —x + FZT0+eT0) - (3.14)
where —z + FZ"(T0) .= {{y1 —xz,ys —x}:e={y1,y2} € F “*(TO)“’TD}.

2. Under the coupling between FZ(T0)+¢To anq Fru-(To+eT  define

Ga(w,T) i= { B,(2Ko) N FT* T = B, (2,) 0 FT= (T +<TL - (3.15)

Let F,, := G1(z) N G2(x,T). By Theorem 2.2 and (3.8), we have

lim sup  P[F,]=1. (3.16)
AT =0+ 7e[Ty— AT, To)

For z,y € Ky, we say z and y are x-neighbors if |z — y| = K, and call a path
(2o, ®1...2,) in Lo as x-path if for all 0 < ¢ < m — 1, x; and z,;41 are x-neighbors. For
integers N > M > 1, let H*(x, M, N) be the event that B, (M) and 0B, (V) are connected
by a *-path with centers of bad boxes. Let ZHT = H*(z,K,,2K,). Similar to (3.10), we
have: for any n > 1,

P(An0) < [Ckg“l*” (P(/TO,O) n 2e—cK0)rn . (3.17)

Combining (3.16) and the fact that P*7 (4, o) < P“T(3z € Ko x B(1), By(Kj) are bad) <
34(1 — P[F,]), there exists K, € IN*, AT, > 0 such that

_ ~ 1
Ck?](d 1) (Pu*(To)+e,To (AO,O) + 26751(0) < 5
By (3.16) and (3.17), we have: for any T € [Ty — ATy, To + ATy,

P(A,0) <277, (3.18)

For any T € [Ty — ATy, Ty, F, C Exist(Ky, —z + FZD+4T) 0 Unique (Ko, —z +
Fr*-(To+eT) Hence, if there exists an infinite nearest-neighbor path in (Kg-Z2) x {0}92
containing 0 € Z? with centers of good boxes, then there also exists an infinite cluster in
FID+eT within the slab (Z2) x [-2K,, 2K,]42.

By dual graph arguement on 72, if the infinite cluster in (KoZ?) x {0}9~2 with
centers of good boxes does not exist, then there must exist a x-connected circuit in
(KoZ%) x {0}4~2 with centers of bad boxes surrounding all boxes [~ K,,, K,,]? x {0}¢72,
m € INt. Therefore, by (3.18), for any T € [Ty — ATy, Ty + ATy] and integer mg > 1, we
have

r [there exists an infinite cluster of FZ"* (") *<Twithin the slab (Z?) x [-2K, 2K,]* 2

>1-—-P {for allm e ]N+, there exists a *-connected circuit with centeres of bad boxes
surrounding the slab [~ K,,, K,,]? x {O}dz]

>1—-P {there exists a *-connected circuit with centeres of bad boxes surrounding
the slab [~ K, Kum,]* X {o}d—Q]

>1- Y )> PAn)

n2mo x€(KoZ4)x{0}4-1: K, <|z|<Kni1

>1- ) kgt

n>mo

(3.19)
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Take a sufficiently large integer mg in (3.19) such that Zn>m0 kg+12*2" < 1. Then we

have that for any T € [Ty — ATy, Ty, FZUD+T percolates.
In conclusion, we take AT = min{ATy, ATy, AT5, AT,}, then forany T € [Ty — AT, To+
AT], we have |u.(T) — u.(Tp)| < e. O

Remark 3.1. In fact, the apporach in this section can also be adapted to prove the
continuity of critical value of massive Gaussian free field level set.

Briefly, massive Gaussian free field {¢?},czq¢, 0 € (0,1) is a Gaussian random field
satisfying that (goggo?‘j) = go(x,y), where gp(x,y) is the Green function produced by
geometrically killed simple random walks on Z? with killing rate 6 at each step (see
Section 1.5 of [29] or [24] for more details). For any h € R, the level set at level A is
EZ" = {z ez % > h}. Let h?, h?,, h? and h? be critical values corresponding to .,
hsv, b and hin [10].

As mentioned in the last paragraph of Section 1.2 in [10], the techniques developed
in [10] is ready to be applied to prove h? = h?, = h? = hY for all 6 € (0,1). Based on
this equivalence, parallel to the proof of Theorem 2.1, one can use the remonalization
scheme in [25], the block construction approach in [23] and a coupling arguement
between massive Gaussian free fields with different killing rates # to show that A’ is
continuous w.r.t. # on (0, 1).

4 Proof outline of Theorem 2.2

In this paper, we follow the strategy in [10] to prove Theorem 2.2. For coherence, we
still give a general scheme for the proof in this section.
Theorem 2.2 is divided into four sub-questions (SQ): for any d > 3 and 7" > 0,

SQ]-: U Z Usx;
SQ2: u > uy;
SQ3: @ >

SQ4: u., > u.

Among these four sub-questions, proofs of SQ1 and SQ2 are elementary. So we just
put them at the end of this section for reader’s confirmation.

Motivated by [10], we introduce a restricted model ]-'I%’T for L € INT (recall the
definition of }'Iz’T in (1.6)). In fact, fIZ’T share a series of good properties (such as
“finite-range dependence”) and play an important role in proofs of SQ3 and SQ4. Parallel
to definitions of w,, u.., @ and u, one can also define critical values u, uZ,, a* and u”
for the restricted model FZ;7.

To prove SQ3, we first build up a “bridging lemma” for FZ*7, similar to Lemma
3.5 in [10]. This “bridging lemma” shows that for any subsets S;, S, C L, if they are
both large and close to each other in a given box, then no matter how one fixes the
configuration of FwT (u > u4) on S; USs and outside the given box, there is still a non-
negligible probability for FZ%7 to connect S; and S,. Using the “bridging lemma” and
a series of combinatorial arguments, one can show that when u > u, a weak version of
event Exist(R, ]—'I’“T) N Unique(R, .FI“’T) happens with high probability. Using another
bridging lemma for finite-dependent models and restriction arguements based on .FIZ’T,
we ulteriorly prove that there exists a sufficiently large and thick cluster of FI%T (u > W)
in an arbitrarily given box except in a stretched-exponentially small probability (w.r.t. the
size of box). With the help of this key cluster, the desired “strongly percolating” property
is ultimately proved to hold for all u > u. Details of this part can be found in Section 5.
Indeed, the proof of SQ3 is parallel to Proposition 1.5 in [10]. Although level-sets of
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Gaussian free field (GFF) and FRI share some similarities in structure, they are two
different types of objects (GFF is a random field but FRI is a Possion point process). So
we can not directly cite the main results in [10]. For completeness of this article, we still
need to write the proof down in detail.

SQ4 is proved by contradiction. The first step is to show that for all L € INT,
L — uL = @". We adapt the approaches in [11] and [16] to accomplish this step.
In the second step, we aim to find a uniform upper bound for the increment term

FIeT pret

P[B(R) +—— 0B(2R)] — P[B(R) P AN OB(2R)]. To get the bound, Russo’s formulas
for FRI and “bridging lemma” are used to prove a key inequality between two partial
derivatives of (¢, u, R), the probability that B(R) and 0B(2R) are connected by x; (where
X+ is a continuous version of the restricted model ]-"IZ’T). Assuming there exists ug,e > 0
such that ug € (u.. + 26, U — 2¢), it is immediate that u., < u < u + ¢ < u” = ul, for all
L € INt, and finally causes contradiction with the bound mentioned above. See Section 6
for technical details.
We hereby conclude this section with the proofs of SQ1 and SQ2:

u

Proof of SQ1. Recall the definition of u., in Section 1.1. For any u < U«,

inf P [B(R) AN 8B(2R)] —0. 4.1)
ReN

Note that for any R > 0, P [0 AN 8B(2R)} <P [B(R) AN 53(23)} . By (4.1),

P {o AN oo} = inf P {0 AN 6‘B(2R)} < inf P {B(R) AN 8B(2R)} —0, (4.2)
€ €

which implies that u© < u,. In conclusion, we have w,, < u,. O

Proof of SQ2. For any u > 1, recalling (1.7) and (1.8),

> P[Exist(R, FI*")° U Unique(R, FI*")°] < Y 2¢7" < cc. 4.3)
ReN+ ReN+

By Borel-Cantelli Lemma, with probability one, the following events may not happen
i.0.: {Exist(R, FZ*")¢ U Unique(R, }'I“’T)C}Rew. Therefore, with probability 1, there
exists Ry(w) such that for all R > Ry, the event Exist(R, FZ*") N Unique(R, FZ"7")
happens.

For each R > Ry, denote by € the collection of all connected clusters contained
in FZ*T N B(R) with diameter at least R/5. For any C; € €z and C; € €g, 1, since
diam(C;) > £ > £ diam(Cy) > £ > £+t and the event Unique(R+1, FI*") occurs,
we have that C; and C, are connected by FZ*” N B(2(R + 1)). Therefore, Ug>p,Cr is
connected, which implies that a.s. there exists an infinite cluster in FZ*T . In conclusion,
U > Uy O

5 Proof of SQ3

Unless stated otherwise, we fix d > 3 and T € (0, o) in the rest of this section.

5.1 Bridging lemmas

In the first part, we cite some notations and concepts about “bridge” from Section 2
of [10] along with two useful “bridging lemmas”.
Here are some basic notations we need:
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 For integers Ly > 100,ly > 1000 and n > 0, let L,, := Lol{ and L,, :== (2L,, + I)Zd;

» For integers x > 100 and n > 0, let A, := B(10kL,), A,, := B(8xL,) and %,, :=
B(9xLy) \ B(|8.5kLy]);

+ For integer m > 0 and vertex = € Z¢, we call the box B,(L,,) an m-edge-box
centered at « and B, (L,,) an m-vertex-box centered at x.

For A,,, say that the edge set S C A,, is 0-admissible if S is a conneted subset of A,
such that diam(S) > kL,. For any susbets S;, S, C A,,, define that 8, a finite collection
of some 0-vertex-boxes is a 0-bridge between S; and S, in A, if Ugcs0 B is a connceted
subset of V(A,) intersecting both V' (S;) and V(Sa2).

Lemma 5.1 ([10, Corollary 2.6] and [9, Theorem 4.1]). Suppose there exists some family
of events {Fy , : © € Lo} satisfying:

1. For any finite subset U C Z¢ such that |y — z| > 5 for all y,» € U, the events
{Fos:x € (2Lo + 1)U} are independent;
2. Forallx € Ly, P[F§,] < c1, where c; € (0,1) is a constant.

Say a 0-bridge B° is good if for any B,(Lo) € B°, the event F,, happens. Then for
each k > 100,ly > C4(k), there exists ci(k,lp) € (0,1) such that for all Ly > Cy(k,ly) and
n >0,

P [gqg] —p ﬂ {3a good 0-bridge between S; and Sy in A, }| > 1-272",
0-admissible S1,S2CA,,
(5.1)

Definition 5.2 (Definition 2.1, [10]). For any S1,So C A,, say a finite collection of
vertex-boxes of various levels, 8 is a bridge between S; and S; inside A,, if B satisfies:

1. Upeop B is connected and for each box B € B, B C V(%,);

2. There exists two 0-vertex-boxes By, By € B such that BNV (Sy) # 0, BoNV(S2) # 0
and for all B € B\ {B1, B2}, BNV (S US8;) = 0;

3. For each m-vertex-box B € B with1 <m <n, d(B,V(S1US83)) > KLy

4. For any 0 < m < n, the number of m-vertex-boxes in B is smaller than 2K, where
K > 100 is a constant.

For an edge set S C A,,, say that S is admissible if each connected component in &
intersects OV (A,,) and there exists one of them intersecting 0V (A,,).

We need another bridging lemma, which can be seen as the counterpart of Lemma
3.5, [10].

Lemma 5.3. For any ¢ > 0 and Ly > Cjs(¢), there exists constant Cy(e, Ly) > 0 such
that for all u > u.. + €, integer n > 1, admissible edge sets S1,S» in A, and event D
measurable w.r.t. F := J(Z(%m)efﬂ S(aims) * Lo<a, <umin(81US,UAS )20), We have

FITnA,
P|§ —————3 S5,

D] > 6704(10g(Ln))2. (5.2)

Before proving Lemma 5.3, we need the following estimate parallel to Lemma 3.3 in
[10].

Lemma 5.4. For any e > 0, there exist constants cz(€), Cs > 0 such that for all u > u.. +e,
integer L > 1 and z,y € B(L), we have

FIoT _c
Plrx——y| > col™ ™. (5.3)
B(2L)
EJP 27 (2022), paper 97. https://www.imstat.org/ejp
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Proof of Lemma 5.4. Let ug = u.. + €. There exists ¢(¢) > 0 such that forall n > 1,
wy, T
P {B(n) N 8B(2n)] > c. (5.4)

Since ¢ < P {B(n) LA 6B(2n)] <Y conm P {y ZEL 9B, (n )}, we have

P [0 AN aB(n)} > ¢ (e)yn~ (@D, (5.5)

Hence, there exists y* € 0B(n) such that

P {o <%°)T> y ] > ¢’ (e)n~ 241, (5.6)

For 1 < i < d, denote by z; the vertex z € Z? such that () = 1 and for any j # i, () = 0.
By FKG inequality (Proposition A.1 in Appendix A), we have

2
wg,T uqg, T
P[o <};—2)> 2na;] > (P[O % y ]) > (¢)2n D), (5.7)

For z,y € B(L), let zy =, z; = (y(V, 23, .., 2(®), 2y = (yV,y@ 2O . 2@®), ., and
zqg=1vy. Ifx; —y; is even for all 1 < i < d, applying (5.7) and FKG inequality,

P{xﬂ ]>HP{21 FIo ¢+1}

B(2L)
// 2d H

If there exists 1 < ¢ < d such that z; — y; is odd, we arbitrarily select a vertex y’ €
B,(1) N B(L) such that for all 1 <1i < d, z; — y} is even. By FKG inequality and (5.8),

—4(d—1) (5.8)

T/(Z ( ) > (C//)2dL74d(d71).

Ple ZE% g > Pl EE25 . Ply S50 ) > (o) L4, (5.9)
B(2L) B(2L) B(2L)

For each e = {w,w'} € L%, we have

Ple € FT*T e ¢ FT4o ]

< Z Plthere exists path n € FI""" such that n(0) = 2 and e € 7]
©€Z\B,, (L)

+ Z Plthere exists path n € FI""" such that n(0) = z and |n| > L + 1]

z€By (L)
2duy [ T \°*7V
= 1 — exp(— _— 5.10
p> < exp( T+1<T+1> ) (5.10)
2€Z\By (L)
2dug T \'*!
+ Z (1 —exp(— <> )
v€Bu(L) T+1\T+1
o0 L-1 )
< Z C(m+1) e 4 Z C(m + 1)3- e~ tHD) < 07 (¢)e~ AL
m=L m=0
EJP 27 (2022), paper 97. https://www.imstat.org/ejp
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By (5.8), (5.9) and (5.10), we have: for any u > u.. + € and L > C"(e),

FreT FrioT
Pz +—— y] >Plx +——— y]
B(2L) B(2L)
}—IHU’T U—€ —E€,
2Ple syl = > Plee FI T e g FI] (5.11)
e€B(2L)
>Cm(6) —4d(d—1) _ Z C/ —(‘ e)L > 0. 50///( ) —4d(d—1).
ec€B(2L)
ug, T
Thus we only need to choose a sufficiently small ¢; € (0,0.5¢"'(€)) such that P[z ﬁ
y] > co L4441 holds for all L < C”(¢), and then (5.3) follows. O

Now we are able to show the proof of Lemma 5.3. See Figure 2 for an illustration of
the proof of Lemma 5.3.

Proof of Lemma 5.3. By Lemma 2.4 of [10], the following fact holds: for any « > 0,
lop > C(k) and K > C'(k,lp), then for all Ly > 100, n > 0 and admissible 81,8z C A,
there exists a bridge % between them inside A,,.

Figure 2: An illustration of the proof of Lemma 5.3.

Consider an arbitrary bridge B8 between S; and S, in A,,. Take a sequence of boxes
in B, (By, By, ..., B,,) such that: By and B,,, are the unique boxes intersecting V' (S;) and
V(8S,) respectively; for 0 < i < m—1, B;NB;y1 # (. Then for any 1 < i < m, we arbitrarily
choose a sequence of vertices z; € B;_1 N B;, and zg € V(S1) N By, zm+1 € V(S2) N Byy,.
For any 0 < i < m, let xp, := z; and yp, := 2;41. For each B; = B,,(L,,), we also denote
that Bi = Byi (Lnl)

For 0-vertex-box B = B, (L) € B, let B := B,(Lo) and define the event

u, T
AB = {:EB<J:IIO—(B\OCB)>Z/B}. (512)

For m > 1 and m-vertex-box B = B, (L,,) € B, we define

FIp?
Ap = rp<—— YB /- (5.13)
B.(2L.wm)
EJP 27 (2022), paper 97. https://www.imstat.org/ejp
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Since Ap is independent to F and A, N Ap,, forall B € B\ {By, B, }, we have

m

P {51&32}@} >P |Dn () 4s,
1=0
=E |1p- P |( 45,|D ] (5.14)
=0

=E [1p - P [Ap, N Ap,|D]] P

m—1
[ Az
i=1

For i € {0,m}, we arbitrarily choose a nearest-neighbor path »; from z; to z;; within
B; \ (S1 US2 Ud.B;). Noting that events {e € ]-“I?’T e EnyuU nm} are independent to
each other and independent to F, we have

P [ABU N ABm |D}

>P| () {eeFI?"} D] (5.15)
e€noUnm
>c(e) Pl IBnl = [/ (¢, Lo)]*.

By FKG inequality and (5.15),

E []].D-P [ABO ﬁABm|DH - P

m—1
N 45
i=1

(5.16)

m—1
>()*P[D]- [] PlAs]-
=1
For any 0 < m < n, assume that there are exactly k,, m-vertex-boxes in 5.
By Lemma 5.4, >°, .., km1og(Lyn) < 2K 3, .o, log(Ly) < C"(log(Ly))* and for

any 0-vertex box B, P[Ag] > ¢/, there exists a contant C3 such that for any Ly > Cs,

(c/)2 1__[ P[AB] Z(C/)k0+2 H (62(Lm)—05)km

1<m<n
5.17
—expl(ko +2)log(c) + > km (log(cs) = Cilog(Ln))  O17)
1<m<n
> exp(—2C5C" (log(Ly))?).
For C, := 2C5C"”, one may combine (5.14), (5.16) and (5.17),
FI*TnA, 2
P [{Sl 58N D} > exp(—C4(log(Ly,))?)P[D], (5.18)
from which (5.2) follows. O
5.2 From connection to a weak version of strong percolation
For 8> a > 0and N € INT, the event £(N, a, 3) is defined as:
o, T
&(N,a, B) = {B(N) AN 8B(6N)} n {all clusters in FZ*7 N B(4N)
(5.19)

crossing B(4N) \ B(2N) are connected in 777 N B(4N)},

where “crossing B(4N) \ B(2N)” means intersecting both 0B(4N) and 0B(2N + 1).
Parallel to Proposition 3 in [10], we have the following result:
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Proposition 5.5. For any ¢ > 0,

limsup inf PE(N,u,u+e€)]=1. (5.20)

N—ooo u>u+2e
Before proving Proposition 5.5, we first introduce the following notations:

1. €={C C B(4N) : C is a cluster in FI"T N B(4N) intersecting OB(4N)};
2. For C,C’ € ¢ and edge set W such that FZ»T ¢ W, we write that C ~yy C’ if

¢ &% (. Note that if C ~yy C', then C and C’ are contained in the same cluster of
W. Therefore, “- ~yy -” forms an equivalence relation.

3. For any cce, E/ ~yy is a partition of ¢ such that in each equivalence class, all
clusters are connected by W, but clusters in different classes are not;

4. For 0 <i < 2[v/N], letV; := B(|4N — iv/N));

5. For 0 <i < [v/N] and W such that FZ** c W, $;(W) := {C € € : CNVy; # 0}/ ~w;
the number of classes is written as U; (W) := |;(W)|. Note that U;(W) is decreasing
wrt. Wand ¢ (i.e., if WC W, i <#, then U;(W) > Uy (W')).

6. For any ¢ C ¢, we denote the support of this subset by ue = UCGE C;
7. For 0 < i < [V/N], define that

Wi = (Vo N FZT) U (BAN) \ Vo N FZT4T). (5.21)

Note that we have W, C W; C ... C WL\/NJ'

8. For 0 <i < [V/N], let {; := $;(W;) and U; := |4l;|. Note that U; is decreasing w.r.t.
1. An example of 4l; can be found in Figure 3.

B(4N) C

Cy

Figure 3: An example of i;: in this example, there are six clusters in €, called Cy,Cs, ..., Cg
(colored in blue). The red lines represent the edge set W; \fI“’T. As shown in the
picture, clusters C;, C; and Cs are connected by W;, so they are contained in the same
class of ;. In the same way, there are also two other classes in {l;: {C4} and {C5,Cs}.

9. Recall the notation u(-) below (1.8). Let ng = min{n : L,, > pu(10N)}. Define the
event

A= N {BQJ(LWO) 2N 8B(6N)} : (5.22)

©€Z%:By(Lny ) CB(4N)
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For the proof of Proposition 5.5, we need the following lemma similar to Lemma 4.2 in
[10].

Lemma 5.6. For any ¢ > 0, there exists constant cs(e) > 0 such that for all u > u + 2¢,
integers N > 1, a € [4,N"/* and0 <i < [VN]| —a,
2U2 1/4
P|lAN{U;1q > 1V —}| <exp(—csN'/?). (5.23)
a

Next we prove Proposition 5.5 given Lemma 5.6.

Proof of Proposition 5.5. Fix ¢ > 0 and arbitrarily take u > u + 2¢. Note that

ac {By(LnU) e 8B(6N)} < U {By(u(l()N)) T 8By(1ON)}.

yEB(4N) yEB(4N)
(5.24)
By (5.24), we have

P[A] < (8N +1)*.P [B(M(ION)) i 6‘B(10N)} . (5.25)

Since AN{U| /) =1} C §(N, u,u + ¢), we have
PE(N,u,u+ )] <P[A] + P [A UL w, > 1}} . (5.26)

Note that there exists constant C' > 0 such that
€| < [0B(4N)| < CN 1. (5.27)

For an integer a € {4, N i] , arbitrarily select an integer M satifying aM < [v/N| and
(%)M CN9" < 1. If the event (Voo py {Uht1)a <1V 2Ure } happens, then either

U < Upa < 2U <. <(2 MU— 2 M\¢\< 2 MCNd‘1<1 (5.28)
"\/ﬁ“_ Ma_a (M-1)a = -+ = a 0= a =\y 3 .

or for some 0 < k < M, Uggy41), < 1 and thus U[\/NW <Upgt1)a < 1.
Therefore, we have

Wie
N {U(Hl)a <1v=E } c{orum <1}, (5.29)
0<k<M
which implies that
Wia
AN {me > 1} c U {Aﬂ {U(k+1)a S1v a‘“ }} (5.30)

0<k<M
By Lemma 5.6 and (5.30),

2Uk'a
a

P [Am {me > 1}] <M-P [Aﬂ {U(k+1)a S1v }] < M -exp(—esNY4). (5.31)

Recall the definition of u in Section 1.1. Combining (5.25), (5.26), (5.31) and the
fact that liminfy_, o (any + by) < limsupy_, ., any + liminfy_, o, by, we conclude Proposi-
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tion 5.5:
limsup inf PI[E(N,u,u—+ €)]

N—ooo U>u+2e

Zlimsup{l— sup P[AQ{UNN]>1H— sup P[AC]}

N—o00 u>u+2e u>u—+2e
>1 — limsup {M : exp(—c3N1/4)} (5.32)
N—o00
. . d fIﬂ+2€,T
- 1}\Ifnmf (8N +1)¢- P |B(u(10N)) " “«»  9B(10N)
— 00
=1.
O

Thus, in order to prove Proposition 5.5, it is sufficient to prove Lemma 5.6, where
some additional notations need to be specified in advance:

1. For0 <i < [VN], k € {0, 3} and edge set W containing FZ*", let

Wi it (W)

= {class € € (W) : (UE) N Va(igr1) = 0, (UE) N Vaiin) # 0}, (5:33)
Uiit1 W) = U 101 (W) (5.34)
2. Consider the following mapping ¢; : 4;(W) \ &; i-1(W) — iy (W),

Vi(€) =C\{C €€ :CNVy;41) =0} (5.35)

Remark 5.7. Note that 1; is a bijection and thus
UW) =Uip1OWV) + Uy i1 (WV). (5.36)

By (5.36), one has

Uira W)+ Y Ujja(WV) = Ui(Wi) = U (5.37)

Ju<lj<i+ta

3. For 0 < j < [V/N], define a set of equivalence classes ﬁj and an edge set A; as
follows: ifﬂj+%’j+1(Wj) = @, let .Aj = Vijl \V2j+2 and ilj = uj(Wj) \ufj;,jJrl(Wj);
otherwise, define .Aj = ng \ V2j+1 and ﬂj = ﬂj (Wj) \L’Li7j+1(Wj) U {%}, where
¢ = {C : there exists € € U; j11(W;) such that C € €}.

We hereby cite the following combinatorial lemma on ﬂj, which will play an important
role in proving Lemma 5.6. The proof of this lemma can be totally found in the proof of
Lemma 4.2 in [10].

Lemma 5.8. For integers 0 < j < (\/NW and 4 < a < LN%J, given that the event
E; = An {Ujﬂ >1v (% + UjJH(Wj))} happens, {; has following properties with
probability one:

1. for each ¢ € iNlj, U% crosses A; and |J, g (U?) intersects all the boxes with
radius Ly, contained in V(A;); '
~ o~ ~ ~ Wit1
2. there exists a non-trivial partition {{; = L(} UU.? such that1 < |il}| < ¢ and C} & C2,
where C} = Uﬁfeﬁ_’; (U%), i e {1,2}.
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With Lemma 5.8, we are ready to conclude the proof of Lemma 5.6 and Proposition 5.5.
See Figure 4 for an illustration of the main step in the proof of Lemma 5.6.

Proof of Lemma 5.6. By (5.37), there must exist an integer j € [i,7 + a) such that

U;
Ujjr1(WV)) < =

When the event in (5.23) occurs (we denote it by F), we have

2, Ui U _U;

U; > U;iq =24+ 2> U s 5.38
j Z Vita > 2 a a T G5+1 (W) (5.38)
which implies that
Ec | E; (5.39)
0<j<[VN]

Bml1 (10K Ly,)

Bmlz (10kLp,)

B(4N)

Figure 4: An illustration for the proof of Lemma 5.6: in this picture, the blue lines and
red lines represent (:’;1 and 532 respectively. By definitions, we know that 5]1 and (ZQ are not
connected by W, ;. Meanwhile, they get close to each other in each box B, (10kL,,).
Recall that Lemma 5.3 shows there is still an considerable probability that @;1 and 532
are connected within B, (10« L, ), which will give an upper bound for the probability of
event I;.

Forany 0 <j < [\W |, given the event £}, for any 10, which is a possible realization

of ﬂ? by Lemma 5.8 there exists a partition ﬁ? = ﬂ;’o u ﬂ?"o such that |i~1]10\ < aand
W.:

~1 J+1 =~ ~ )

cHo & C-’O, where C;’O = U%GQ;,O (U%), i € {1,2}.

J J
Recall the definition of ny above (5.22) and the event £; in Lemma 5.8. We claim that
given the event E;, there exist k = Lﬁj disjoint boxes By, (10kLy,),..., Bz, (10K Ly, )
no
contained in V(A;) with z; € IL,,, such that forall 1 <[ <k, @}’0 and 5?’0 both intersect
B, (8%Ly,). In fact, for 1 <[ < k, consider

T :={z € Z: |2| = b; + 50k Ly, + (I — 1)80kLng } ,
where b; = [4N — (2j + 1)VN| if A; = Vo; \ Vo(j41) and b; = [4N — (25 + 2)V/N]|
if Aj = Vajq1 \ Vo(j4+1)- Note that for any Iy # I and y; € Tj,,y2 € Tp,, the boxes
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By, (20kL,,) and B,,(20xL,,) are both contained in V(.A;) and disjoint from each other.
For any = € Tj, color it in black if C? intersects B, (L,,) and in red if C{ intersects By (Ly, ).
Note that for each x € T;, x must be colored for at least once (but possibly twice). Since
both C?’O and @?’O cross 1;, there must exist z, 2] € T; such that |z} — z/|c = 1, and that
xj, x] are colored in black (or both black and red) and in red (or both black and red)
respectively. Let z; be the closest vertex in LL,,, to # (if there are more than one such
vertices, let z; be the lexicographically-smallest one of them). Then {By, (10kLy,) }1<i<k
are disjoint, and for all 1 < <k, both 5;’0 and @?’0 intersect By, (8xL., ). Hence,

~ ~ u—+e,T ~ ~
P[E;] < Zp [uj - gﬂ ) Z P m {@},0 JFET @‘]z,o}c 8, = u;? . (5.40)
2 S0 51045110 | <o | 1<I<k By (105 Lo )
j 57 CHUGEUT [ <al PSES

~ 1 70 | | fout Fi0 |, FTeT
Fori € {1,2}, let S; := By, (10kL,, )N (Cj U agC; ) When the event S; ERT.
z; 10 no
S} occurs, there exists edge set {e}, ¢4} such that e} € 92/C° N By, (101 Ly,) fori € {1,2}
wte, T
and € % e,. We denote by {ello, ey } the lexicographically-smallest one among
2, (10K L
all edge sets {e},eh}. Note that A; N (B(4N) \ Vs;) = 0 and that the event &(; = £1J only

depends on

Z O (Locas<umnBAN)£0 + Luca; <utemn(BAN)\Vay)#£0) » (5.41)
(aiﬂh‘)e]:IT

which is independent to ﬂi’T N A;, where ﬂi’T = Z(ai,m)efﬂ O Luca;<ute|ni|=1-
1,0 T 1, FIvteT ! 51,0 , FI'TT 520
By N, e € FI7 NS +———— 85y C 1C7 «——— (. 5, for an
y 016{1,2}{ 7 <L =] } { 1 le(lo’”ano) 2} { J B.—pl(lol‘iLno) J y
1<I<k,

8, =, N {CIO<———>””+€T @?’0}“]

le(mm:no) i L met m (106 Lpg)
Frute 51.0 FruteT ~5 04 e
<P |{8 S Cm
[{ 1 By (10k L) 2} g J’ ﬂ { Bap (10kLng) 7 }
1<m<l
1, FruteT L 0 51,0 , Fz'reT  So04c
P S «———— S|4 = 4, ﬂ {7 +————C; 1 (5.42)
Ba, (105Ln) By, (10kLn)
1<m<l1 )

P [ U {e” ¢ Z277}

i=1,2

1, FIeT el g0 51,0 , FIUteT | 5a04c
S +—— S5, 45 = 45, ﬂ {7 e ———C7}°

By (105Lp) Bay, (10kLy,) 7

1<m<l

Bz, (106Lng) 1<m<l Bayy, (10KLp) J

=1—c(e)- P lslﬂ &=, N {CIO&@’O}C].

We claim that for any 1 < j < (\/N} and 1 <[ < k, the event ﬂj = ﬁ? is measurable
w.r.t. the following o-field:

Firi=0 Z 5(a,,,m) ) 10<ai§u+e,nm(3{uS§uB;l(10KL"0))mB(4N);é® : (5.43)
(ain:)€FIT

Since Ll = 110 is measurable w.r.t. Z i) EFT O(aimi) " Lo<a;<ute,nnB(an)=0, it is sufficient
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to confirm that ﬂj = ZNL(J) is independent to

> Oasm) * Lo<ai<utenCBe, (105Lag \(SLUSL)-
(aimi)EFT

For each given ZLQ, we enumerate the clusters in U, egq‘f by {Ci,...,Cy}. To ensure the
J

event iNJ.j = ﬂ? happens, it is sufficient to have that for any 1 < i < n, (C; U92*'C) N
FI*T = C; and that W;, W, ; group {Ci,...,C,} following the way given in ﬂ?. Since
each path in FZ""%” that totally contained in B,,(10xL,,) \ (S} U S%) does not intersect
any C;, it will not have any impact on (C; U aotC) N FI*T and the way how {C1,....Cn}
are grouped. In conclusion, i; = £1J is measurable w.r.t. F;.

FIvteT

For each 1 < [ < k, noting that ; = ﬁg, ml<m<l{é;1"0 T
= 10K Ly,

?’O}C are both

measurable w.r.t. F;, by Lemma 5.3 we have

. FruteT

pls! S =50, () AC0 < ZE 0y 0| 2 e Clontbn))’, (5.40)
Bay(10kLy,)

(10K Ly, ) J

1<m<l

Since |19] < CN9~1, there are no more than (CN?~!)® subsets of {l%, whose cardinal-
ities are not larger than a. By (5.40), (5.42) and (5.44), we have

k

B, (10kL
QO Ql_vocﬁf?;|ﬁ1_’0‘<a =1 .L‘l( Ok no)
J J J J -

m {Clo FruteT (’3‘?70}0}

1 L
1<m<l 0reling)

<SPG =] eNte e e—c4<log<Lno>)1k
i

)

(5.45)

=(CN-1)e [1 —c- 6—04(1%(%))2} *

Recalling the definition of ng, we have u(10N) < L,,, <lo- u(10N). Hence, one has
k> ¢VN/u(10N) and 1 — e~ Calos(Lng))* < 1 — =C" (log(n(10N))*,

Since a < N'/* and log(1 — x) < —z (z > 0), we have: for each ¢/(¢) > 0, there exists
integer Ny(e) > 0 such that for all N > N,

[VN] ik
PE] < 3 PIE] < [VN]- (CNT1)e - 1 emCalonthn))?|
§=0
<[VNT- (CNHN* ]~ e_cl(log;(u(loN)))Q} ¢VN/u(10N) (5.46)
/\/N 1" N 2/3
< 1 N N1/41 Ndfl _ c . »,—C"(log(10N))
<exp(log(N) + og(C ) 0N ¢ )
<exp(—c¢’NY*).
From (5.46), we finally get (5.23). O

5.3 Renomalization

We define the following events: for = € Ly, let

]_—I'zi 3e,T
FO = {Bw(QLO +1) 2 9B, (6(2Ly + 1))} , (5.47)
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F® = {all clusters in .FIZO_%’T N By (4(2Lo + 1)) crossing

B, (4(2Lo + 1)) \ Bx(2(2Ly + 1)) are connected by fquo_%’T N By (4(2Lo + 1))},
(5.48)

and
For:=FYNED, (5.49)

Fix a constant € > 0. For x € ILy, we say that a box B, (Lo) is (u, Lg)-good if the event
Fy.o occurs. Furthermore, we also say a cluster A C 7% is a (u, Lo)-good cluster if A is a
union of some (u, Ly)-good boxes.

Similar to Proposition 4 in [10], we are to show that in a given box B(V), with a
high probability there exists a sufficiently large (u, Lo)-good cluster intersecting all big
connected subsets of B(N).

Proposition 5.9. For any ¢ > 0 and u > u+6¢, there exist p(u,€), Lo(u,€) and c4(u,€) > 0
such that for all integers N > 1,

Plthere exists (u, Lg) — good cluster Jy C B(2N) intersecting every cluster

1 (5.50)
S C B(N) with diameter > N2] > 1 — exp(—caNP).

Proof. Recall the definition of the event £(-, -, -) in (5.19) and let &, := = + £. Moreover,
one may note that

€(2Lo + 1,u — 4e,u — 3¢) N {B(6(2Lo + 1)) N (FIZ“ 7> = FI} %) =0} c £V, (5.51)

€.(2Lo + 1, u — %e,u - ﬁe) N {Bm(6(2L0 +1)N (]-' u=fe Hg%) = (/)} c F®,
(5.52)
By (5.10), for any v’ > 0, we have
P [Bx(G(QLO +1)N (fI“’ . fzz’o) + (2)} < C(u')e=cEo, (5.53)
By (5.51), (5.52) and (5.53), for any v > u + 6¢ and z € Ly, we have
PIFS,)
<P [5; <2Lo+1au— %67“— 1936)] (5.54)
+P [g; <2L0 +1,u-— %46,’11/ — 193€>:| + C(u)e=cWlo,
Combine Proposition 5.5 and (5.54),
limsup P[Fy ;] = 1. (5.55)

L(]*}OO

Note that it is sufficient to prove (5.50) in the case when N > (L;)?. Let n = max{k €
IN: Ly.1 <+VN}. Then we have

@ <L,< @ (5.56)
12 lo
For any m > 0 and a subset A C I,,,, we say A is L,,-connected if the set of vertices
{57257 : # € A} is connected in Z.
For each z € IL,,, let Comp(x) be the largest Lo-connected component (in the sense of
diameter) consisting of vertices y € Iy N B, (4xL,) such that the event Fy,y happens (if
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there are more than one “largest clusters”, let Comp(z) be the lexicographically-smallest
one of them). Define the following (u, Lg)-good cluster:

= U  By(Lo). (5.57)

z€L,NB(N) yeComp(x)

Note that Jy C B(N +4kL,, + Ly) C B(2N).

Recall the event ) in (5.1) and define 4, = v + %). Let G = (e, np(v) Dna-
Then we try to confirm that when GGy happens, Jy satisfies the condition in (5.50):

We first check that given the event Gy, Jy is Lo-connected: for any z,y € IL,, N B(N)
such that |z — y|; = 2L, + 1, since each pair of oppsite faces of B, (kL,,) are both subsets
of B, (10xL,,) with diameters larger than «L,, (in other words, they are both 0-admissible),
there must exist a 0-bridge B° with (u, Ly)-boxes connecting both of the two opposite
faces. Since the diameter of {2 : B, (L) € B°} must be larger than xL,, and Comp(z) is
the largest, we have that S, := UzEComp(:v) B. (L) is 0-admissible in both B,(10xL,,) and
B,(10kL,). In the same way, S, is 0-admissible in both B, (10xL,,) and B,(10xL,,) as well.
By the definition of GGy, we have that

S8, NS, #0, (5.58)

which implies that Jy is connected.

Meanwhile, for any connected subset S C B(N) with diameter at least VN, we
have diam(S) > v/N > 10kL,. Arbitrarily choose a vertex = € L, N B(N) such that
SNB,(L,) # 0. Then SN B, (4xL,) contains a cluster with diameter at least xL,,. Since
the event Gy occurs, there must exist a 0-bridge B° with (u, L)-boxes intersecting both
S and S,. Therefore, we have that SN S, # ). In conclusion, if we denote the event in
(5.50) by D, then

P[D] > P|Gn]. (5.59)

Note that there exists a large enough L; such that events {Fp ;}qer, defined in
(5.49) satisfy all the conditions in Lemma 5.1. In fact, since Fj, only depends on
ZnEFIZ‘OT 0y - Ly0)eB. (20Ly) @nd x > 100, the first condition for Fy , in Lemma 5.1 holds;
meanwhile, by (5.55), we can choose a sufficient large Ly such that P[Fox] < ¢; for all
x € L.

By (5.55) and Lemma 5.1, there exists a sufficient large Ly such that

P[D] > P[Gn] > 1-27% =1 —exp(—c'N*). (5.60)

5.4 Proving SQ3

With Proposition 5.9, we are ready to hereby finish the proof of SQ3.
We first note that it suffices to prove that for any v > @, there exists ¢(u) > 0, p(u) > 0
such that for all integer N > 1,

P [Exist(N, FI*7)¢] < exp(—cN*), (5.61)

P [Unique(N, FZ*T)¢] < exp(—cN?). (5.62)

For any u > u, let € := ”1;017. By defintion we have u > u + 6e.

For the first part, when the event in (5.50) occurs, there exists at least one (u, Lg)-good
cluster satisfying the condition of Jy in (5.50). We denote the lexicographically-smallest
one of them by J3. Note that diam(.J) > 2N — 2v/N. Recalling the definition of “(u, L)-
good” below (5.49), there exists a connected cluster 73 C FI'~°T intersecting every
(u, Lo)-box in J%.. Therefore, (5.61) holds by Proposition 5.9.
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For the second part, we denote the event in (5.50) by A. For any © € B(N), let C(x)
be the connected cluster in FZ“7 N B(N) containing x (if such cluster does not exist, set
C(x) :=0).

If Unique(N, FZ"") does not happen, there must exist two clusters £, and £, with
diameters > i% in %7 N B(N), which are not connected within FZ*7 N B(2N). Since
JN C FI'~“", there must exist one cluster in {£1, Lo} such that V(£;) NV (Jy) = 0. By
Proposition 5.9,

P [Unique(N, FZ" )]
<P [A°] + P [Unique(N, FI* ") 0 A]
<exp(—cN®) + P [Unique(N, FZ* ") N A] (5.63)

<exp(—cN?)+ > P[A,diam(C(x)) > N/10,V(C(z)) NV (Ix) = 0] .
z€B(N)

It is sufficient to prove: there exist ¢’(u), p'(u) > 0 such that for any N > 1 and
x € B(N),

P [A,diam(C(z)) > N/10,V(C(x)) N V(TY) = 0] < exp(—c'N*). (5.64)
For any L € INT, consider the following point measure

EGL’T = Z 5% ']lufe<anSu,|nn\:L (5.65)
(an,mn)EFIT

and the o-filed F = o ((}'I“’T - ﬂi’T) N B(QN)). Note that FZ¢7 has the same

distribution as a Bernoulli bond percolation. We denote the law of ﬂi’T by P;.
Since the event A is measurable w.r.t. 7, we have

P [A,diam(C(z)) > N/10,V(C(z)) NV (Tx) = 0] (5.66)
=F [14 - P, [diam(C(z)) > N/10,V(C(z)) NV (Tgx) = 0| F]] . '
For each z € B(N), denote the connected component in (F»T — FI°7) N B(2N)
containing = by C(z) (we also set C(z) = 0 if there is no such a cluster). Note that
conditioned on F, the edge sets JR,, J J?, and C(x) are all deterministic.
For x € B(N), similar to the proof of Proposition 1.5 in [10], we run a random
algorithm ¥, under the following laws:

1. Initially, set Cy(z) := C(x), Open, = 0, Close, := () and Dy := J%.

2. For step i, we already have Ci(z), Open,, Close; and D;. If 92“'C;(z) \ Close; C
d"'B(2N) or C;(x) intersects V(Jy), stop the process. Otherwise, we denote the
lexicographically-smallest edge in 9°“'C;(x) by e;11.

(a) Ife;41 € ﬂi’T and e¢;4; does not interset D;, let Open,,; = Open; U {e;;1},
Close;+1 =Close;, D;11 = D; and let C~i+1(at) the connected cluster in [(]-'I"’T—
FIen B(ZN)LU Open, ., containing z;

(b) If e;41 € FZ7' and e;4 intersets D, at the boundary of a 0-vertex-box
By, (Lo), sample the configuration of FIi'n Ba..,(Lo) \ (Open; U Close;).
Then denote the sets of open and closed edges in it by OP;,; and CL;,1
respectively. Let Open;,; = Open; U OP;;, Close;y; = Close; UCL;11,
Diy1 = D;\ By, ,(Lo) and let Ci+1(z) be the connected cluster in [(FZ“T —
FZ;") N B(2N)] U Open,,, containing z;
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(c) If e;41 ¢ ﬂi’T, let C~i+1(:1:) = @(z) Open,;,; = Open,;, D;;; = D; and
Close; 1 = Close; U {e;+1}.

Given configuration of 7, we denote by N; the number of steps that the condition in (b)
holds before the random algorithm terminates. When event A and V (C(z)) NV (Jy) =0
happen, by property of JIQ[ (see (5.50)), we have

diam(C(z)) < 10V'N - N;. (5.67)
Therefore, on the event A, we have
Py [diam(C(z)) > N/10,V(C(z)) NV(ITN) = 0| F]

VN
N12Lm

(5.68)
<P

LV (C(a)nV(Ix) = (Z)‘J—'} :

Note that all the O-vertex-boxes B,, ., (L) (recall step (b) in the random algorithm %)
are disjoint to each other by definition of D;. Each time when the condition in (b) holds,
Ciy1(x) will intersect 79 with at least ¢”/(Lo, €) € (0, 1) probability (if B,,(2Lo+1)  FZ57,
then C; 1 (z) N JY # 0). Hence,

N1>L\/N

vy L¥o5 ]
= 100

P, (5.69)

LV(C()nV(IN) = (DH < (1=

By (5.63), (5.64), (5.66), (5.68) and (5.69), we get (5.62) and finish the proof of
SQ3. O

6 Proof of SQ4

In this section, we will first prove the equality of critical values for restricted model
]-"I}j"T. And then we will prove an important inequality to estimate the influence of
remaining part FZ“7 — ]-'I%’T on the probability of an crossing event. Applying these
two results, we finally conclude SQ4 by contradiction.

Like in Section 5, we also fix d > 3 and T > 0 in this section.

6.1 Equality for critical values of FIZ’T

We hereby recall the definition of ]-“IZ’T and define critical values of this restricted
system,

u, T

FIY
1. uf:sup{u>0:P[O<—L>oo} 20};

w, T
2. ul, = sup {u >0 infrens P [B(R) I 8B(2R)] - 0};

3. ul = inf {u > 0 : infren RYP {B(M(R)) T 5B(R)} = 0};

where pu(R) = LeUOg(R))l/SJ. Like Proposition 1.3 in [10], we show that these critical
values are equivalent to each other.
Proposition 6.1. For any L € NT, ul = ul, = u”.

Before proving Proposition 6.1, we first state several basic properties of ]—'IZ’T.

Lemma 6.2. ]-'I%’T has the following properties:

(a) Lattice Symmetry: Assume that ¢ is either a shift, reflection w.r.t. hyperplanes
spanned by the base vectors or rotation by %’r (k € Z) of Z%. Then qb(]-'IZ’T) has
the same distribution as FZ;'".

EJP 27 (2022), paper 97. https://www.imstat.org/ejp
Page 24/46


https://doi.org/10.1214/22-EJP824
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Continuity and uniqueness of percolation critical parameters

(b) Positive Association: The FKG inequality holds. I.e., if f and g are both increasing
functions (or both decreasing functions) on {0,1}L" such that E[f?], E[¢?] < oo,
then

E[1FIiNeFTy )] > B [f(FTy)| B [o(FTET)] - (6.1)

(c) Uniform Finite-energy: For any u > 0, there exists cyr(u) € (0,1) such that for

any edge set K, event F € ¢ (IC N ]-'I“Z’T) and edge e € .7\ K,

1= cup < Ple¢ FILT|E] < cor. (6.2)

(d) Bounded-range i.i.d. Coding: For x € 7% and L € N, denote

FIp (@)= Y & Lyo=aimist- (6.3)
neFIwT

Then for any e € L4, 1, zzwr only depends on {}'I%T(:Jc) cdy(z,e) < L — 1}.

(e) Sprikling Property: For anyu > v’ > 0, there exists e > 0 s.t. J-'I%’T stochastically
dominates ]-'I{’TUCG, where (. is a Bernoulli bond percolation on ¢ with parameter
€.

(f) Uniform Embeddability: For any u > 0, there exists cyg(u) > 0 such that for
any e € L%, subset K & {z € Z* : d(e,{z}) < L — 1} and configuration w of

{}'IZ’T(x) Lz € K},
Ple € FI¥" 0] > cug. (6.4)

Proof of Lemma 6.2. Property (a) and (d) are immediate. For property (b), see Propo-
sition A.4. Since FZI7™ " has the same distribution as a Bernoulli bond percolation,
property (e) also holds. Hence, it is sufficient to check property (c) and (f).

First consider the first inequality of (6.2). Note that events F and {e = {z,y} ¢
]-"T”L"T} are both measurable w.r.t. &/ := Z(umi)efz On; * Locu;<umin(cn{e})#0- For any

configuration w of <7 such that the event E N {e = {x,y} ¢ FZ*"} happens, there exists
no path 7 in ]-"I”Z’T such that 7(0) = z and n(1) = y. Thus, let 9 = (z,y), then the
configuration w + §,, € EN{e € FI¥"}. Note that for N, 1 ~ Pois(2d% ),

T+1
Plw] P[Nyr = 0]
- : = ce(0,1). (6.5)
Plw+0dn]  P[N,r=1]- P (no) ce O
By (6.5), we have
PlEN{e={z,y} ¢ FI*TY < c- PIEN{e = {z,y} € FT'T}], (6.6)

which implies
C

Pl{e = {x,y} ¢ FI} "} E) < L+c

<1 (6.7)
Now consider the second inequality of (6.2). For K ¢ I.? and e = {x, y}, denote that
Koy={2€Z":di(2,K) <L —1,di(z,e) < L —1}. (6.8)

For any z € Z<, since the number of paths with starting point z and length < L is finite,
the number of w, configurations of {]—'I%’T(z) : z € Ko}, such that for any 71,72 € w,m #
712 is also finite. We can define

= min Plw] € (0,1). (6.9)

w:configuration of {]-'IZ’T(z):ZGKO}
such that for any 71,m2€w, N1 #n2

We introduce four mappings, ¢1, ¢2, ¢3 and ¢ as follows:
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¢1: for any path 7 = (1(0),...,n(n)) € W), if 5 does not intersect K, define
¢1(n) = 0; otherwise, let mg := inf {0 < i < n:n(:) € Ko} and then define ¢;(n) =
(W(mo)a ) 77(”))"

¢9: for any path n = ((0), ...,n(n)) € W), if yne = (), define ¢o(n) = {n}; otherwise,
we denote all integers i such that {n(:),n(i + 1)} = e by {i1,...,ix}, where 0 < i; <
... <1 <n—1, and then define

d2(n) ={((i +1),.;n(ijr1)) : 1< j <k —1} (6.10)
U{((0),...,n(i1)), (n(ix +1),...,n(n))}. ‘

¢3: for any point measure w on W) containing finitely many paths, we denote all
the diffierent paths in w by {11, ..., 7, }. Then we define ¢3(w) = >_7" | §,,.

¢: for any point measure w on W% containing finitely many paths, we also define
that

dw) =3 (Y. > oo |- (6.11)

NEW (€d2(n)

We claim that for any configuration w of {fIZ’T(Z) 1z € Ko}, ¢(w) must be one of the
configurations mentioned in (6.9) and satisfies ¢(w) N K = w N K. In fact, for each path in
w, the mapping ¢, will cut off all steps traversing the edge e while still visits exactly the
same set of edges. Then for each sub-path, the mapping ¢; only keep the part of it after
first intersecting Ko. Thus, compared with w, >, ¢, > ¢y, () 961 (¢) does not traverse
e and visits the same edges in K as w does. Finally, the mapping ¢3 eliminates those
repetitive paths in Zneu Z<E¢2(n) d4,(¢c) and maps it to one of the configurations in (6.9).

Let K := {z € Z% : d(2,K) < L — 1} and note that Ky & K. For any configuration w*
of {.FIZ’T(Z) 1z € Kl}, let UJ‘IKO = Znewl 577 . ]]-7)(0)61(0 and o! = ZnEwl 577 . 17](0)61{1\}(0 +
¢(w|1KO). By definition of ¢ in (6.9),

1 Plowl
o] - p[¢[<w§:j>] <5 ©12
Note that &' € EN{e ¢ FZ4"}. By (6.12) we have
P[EN{ec FIV"}) < () 'PIEn{e ¢ FIVY, (6.13)
which implies
Ple ¢ FI¥"|E] > C,i o> 0. (6.14)

By (6.7) and (6.14), we show that property (c) holds.

For property (f), choose 2y € {z € Z? : d(e,z) < L — 1} \ K and a path 7 such that
17(0) = 29, e € n and |5| < L. Since the event { € FZ'"} is measurable w.r.t. FZ'" (z)
and zp ¢ K, we have

Plee FIpT|w]| = Py e FIy|w] = P ne FIP"| > ¢ € (0,1). (6.15)
O
We will prove Proposition 6.1 in the following two steps:
Step 1: u” < u*L;

Step 2: ul =ul, <al.
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For Step 1, we hereby cite a result (see (6.7) in [10]), which shows that for a specific
class of models (]-"I“L"T is one of them), there exists an infinite cluster inside a sufficiently
thick slab in the supercritical phase. This is a version of Grimmett, Marstrand’s theorem
[16] for this class of models.

Lemma 6.3. Assume that H" is a random subset of I. which is increasing w.r.t. param-
eter u and satisfies property (a)-(f) in Lemma 6.2. Define

ux(H) :=sup{u>0:P[0<H—u>oo] :0}.
Then for any u > u.(H), there exists an integer M > 0 such that
P {0(7{—”)00} >0, (6.16)
S(M)

where $(M) := 72 x {—M,...,—1,0,1,..., M}4=2,

Note that ]-"IZ’T satisfies all the requirements for H*. By Lemma 6.3, for any u > ur,
there exists M (u) € INT such that

w, T

c:—P{O%oo} € (0,1). (6.17)

For any integer R s.t. u(R) > 100(M + L) and integer 0 < i < {’;EJI\?JL)J let z; =

(0,0, ...,0,5(M + L)i) € Z. Note that forany 0 < i < j < {%J the distance between

]_—Iu,T c

slabs x; + $(M) and z; + S(M) is greater than 2L. Thus, the events {xl W oo} ,
i+

for0<i < ngf)-‘r )J are independent. Therefore, by (6.17), for any u > u’ and ingeter

R > 0s.t. u(R) > 100(M + L), we have

]_-l-u,T Lg(ﬁj+£\/)lj w. T (&
P|Bu®) # B®R)|<P| {x P N oo}
- o b i S(M)
. (6.18)
Lty FrwT I (R)—M
= H P [{xl «—F oo} = (1 — C)L‘j(ﬂl+L)J
2 +S(M) |

i=1

which implies that v > @”. In conclusion, u” < ur.

For Step 2, it is sufficient to prove: for any u < uZ, there exists ¢/(u) > 0 s.t. for any
R e N*¥,
]'_IZ'T —¢'R
Pl0+—— J0B(R)| <e °™. (6.19)

In fact, by
FrvT FIo T
P[B(R) <= dB(2R)] < Y Plz <= 0B.(R)),
2€OB(R)
PBuR) <5 0B(R) < Y. Ple <25 9B,(0.5R)],
€dB(u(R))

and (6.19), we have vl < vZ, and uX < u”. Using the same arguments as in the proof of
SQ1, we also have ul > u**. Hence, (6.19) implies u% = ul, <al

EJP 27 (2022), paper 97. https://www.imstat.org/ejp
Page 27/46


https://doi.org/10.1214/22-EJP824
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Continuity and uniqueness of percolation critical parameters

For any u < ul, define event ~.(u) = ]—'Iz’T U (. (recalling that ¢, is a Bernoulli
bond percolation w1th parameter €). Let e.(u) € [0, 1] be the critical value of the model
{7e : € € ]0,1]}. Precisely,

eo(u) := sup {e c0,1: P [0 N oo} - o} . (6.20)

u+uf
2

stochastically dominates }'IZ’T U (.. Since FI'"T does not percolate, we have ¢.(u) >
€ >0 forall u < ul.

In order to get (6.19), it is sufficient to prove: for any 0 < ¢ < €., there exists
¢ (u,€) > 0 such that for all integer R > 1,

For u < uf, let v/ = By property (e), there exists ¢ > 0 such that ]-"TLLI’T

Or(e) := P [0 &5 OB(R)| < e~¢'E. (6.21)

In fact, we prove here a moderately stronger result since (6.19) is the special case of
(6.21) when € = 0.

We fix u < ul and define ¢ == {0 RN OB(R)}. We denote
Vo= {]:IlLL’T(x) cx € B(R+ L)} ,

and & := {((e) : e € B(R)}. Note that 1¢,, is a function of ¥ and &. For each z € Z? and
e € 1%, we also write ¥, := FZ}'" (z) and &, := (. (e).

Like in [11] and [18], we define the following probabilities to discribe the influence
when the configurations of ¥ (or &) at each single vertex (or edge) is resampled:

. Assume that 7 is an independent copy of 7. For any z € 7%, we denote that
={¥,:y € Z\ {z}} U{¥,} and then define

I’I’Lf«//z =P |:15R(7/7£) 7é ]]_ER(V’/‘\M(%B)] . (622)

* Similarly, we write & for an independent copy of &'. For each e € L4, we also denote
& =1{6 ¢ €L\ {¢}} U{&.} and define

Infep =P {1@(%&) ”] HER(%)%C)} . (6.23)

Remark 6.4. Although the notation “Inf” (abbreviation of the word “influence”) may
cause confusion with infimum “inf”, we keep this notation in order to be consistent with
previous works such as [10, 11, 18].

Lemma 6.5. Forany R € N* and € € (0,1),
e zale)- Yo Infyt+ Y Infey |, (6.24)
2€B(R+L) c€B(R)

where a(¢) = 0.5 - min {(eu (1 — epp)*DE (2L 4 2)7, 1}.

Proof of Lemma 6.5. Using the standard Russo’s formula (see Section 2.4 in [15]) for
the Bernoulli percolation, we have

Bn_ v p (Pive(én,70).e ¢ FILT (6.25)
€ e€B(R)
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where Piv.({gr,7v.) := {0 ot 0B(R),0 FALEA OB(R)}. By definition, one may
immediately have P [Pive(gR, Ye), € & fIZ’T} > Inf ¢ Hence,

dor
e€B(R)
Define that Pivg, (1) (€, 7e) = {0 <22 9B (R), 0 2222 9B(R)}. Noting that
FI}'"(x) only influences the values of l,cpgur foree B.(L), we have: for any x € Z¢,
P [Pivg, (1) (Er,7e)] = Inf - (6.27)

By property (c), we have
P [Pivg, (1)(Er,7e)] < (1 - cor) P {PiUBI(L) (Er 7e), Bo(L) N FIPT = 0} . (6.28)
Note that the event on the RHS of (6.28) is measurable w.r.t.
o(V,{éc:e € B(R)\ Bx(L)}).

For any (7°,&°), configuration of (¥,{&. : e € B(R) \ B,(L)}) such that the event in
(6.28), {PivBI(L) (€Rr,7e), Bz(L) N ]-"I’j-j’T = (Z)} happens, we can label edges in B, (L) N
B(R) in an arbitrary but deterministic way, and open them one by one in this given order.
Then the event £i will occur for the first time at a certain step. At the first time &g
happens, suppose the edges opened are (e, es, ..., em) (m > 1). Let £°(7°, £°) be the
configuration of {&, : e € B(R)} such that for all e € B(R) \ B,(L), &° = &° and for all
e € B(R)NBy(L), &2 = Leeer ea,....m_1}- Then we have

(7°,6°) € {Pivem(fR,*ye),em ¢ fz“gT}. (6.29)

Noting that e, € B,(L) N B(R), m < |B,(L)| < cL?, (6.29) and by property (c), we have

(e(1 = )" P [Pivis, (1, (€7, Ba (L) N FTET = 0]

y 2 (=)™ PV =" {6 c € BR)\ Bo(L)} = &°
(¥0,80) s.t. Piva(L)(gR,'YE)7Bz(L)ﬂfI7I‘;‘T=0
< Z Pl¥ =¥° {& e B(R)\ Bs(L)} = &°,& = &°) (6.30)

(¥9,60) s.t. PivBI(L)(&RafYE),Bz(L)ﬂ_FIZ‘Tzﬂ

< Y P|Pwvdrded I,
e€B; (L)NB(R)

where the last inequality of (6.30) is based on the observation that all events in the
summation, {”// =90 {& e B(R)\ Bo(L)} = £°,& = éoo} are contained in the event

{Pi’uem (ER,Ve), m ¢ ]-"I‘,{’T} and disjoint to each other.
Combining (6.27),(6.28) and (6.30),

Z Inf,

z€B(R+L)

S [6(1 — €>(1 — CUF)]_CLd Z Z P {Pive(gRaVE)ae ¢ }—-I%T .

2EB(R+L) e€B,(L)NB(R)

(6.31)
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For any e € B(R), there exist at most (2L + 2) points z such that e € B,(L). Thus for
each edge ¢ in the inner summation of (6.31), it can only be summed for at most (2L + 2)d
times. Hence, by (6.25) and (6.31) we have

Z Tnfy, <l =91 - CUF)]_CLd (2L+2)*- Z P [Pive(§R776)7 e¢ ]’IE’T

z€B(R+L) e€B(R)
= (1= 1 —eom) < 2L+ 2)" D,
€
(6.32)
By (6.26) and (6.32), (6.24) follows. O

Inspired by Definition 6.3 in [10] and Section 3 in [11], we want to introduce the
following randomized algorithm T. This algorithm provides an approach to sample the
random variable 1¢,, where j ~ U{1,R}, R € N* (i.e. forany 1 <i <R, P[j =i| = %).

Definition 6.6 (Algorithm T). First, uniformly choose j € {1,2,...,R}. Initially, set
& = B(j), Py =0 and Cy = (). Then we construct the algorithm T by induction.
Fort > 1, assume that we already have & _1, P,_1 and C;_1,

e IFOOC, 1 NE_1 # 0 (we set 9% = IL¢ and denote the lexicographically-smallest
edge in 9°“*C;_1 N E;_1 by e;) and &,, has not been sampled, there are two different
cases:

- If@t € Uyept_qu/y, let Et = gt—l \ {et}, Pt = Pt—l and Ct = Ct—l U {et}.

- Ife; ¢ Uyep, , 7V, sample &.,. Thenif &, =1,1let& = &1\ {e,}, P = P4
and Ct = Ct,1 @] {et}; jf@@et = 0 and {y : d(y7€t) < L— ].} \ Pt71 = Q), let (c;t =
Ei—1\{et}, P, = P,_1 and C; = C;_y; in the other cases, let& = &1, P, = P,
and Ct = Ct—l-

e IFO%"'Cy_1 N E—1 # 0 and &,, has been sampled, there are also two different cases:

- If{y:d(y,e;) < L —1}\ P,_, contains more than one elements, we denote the
lexicographically-smallest point in it by x; and sample ¥,,. Ife, € ¥,,, let
gt = gt—l \ {et}, Pt = Pt—l U {l‘t} and Ct = Ct—l ] {et}; otherwise, let 5t = 575_1,
Pt = Pt,1 U {xt} and Ct = thl-

- If{y:d(y,e:) < L —1}\ P,_; contains only one point x;, sample ¥,,. Ife; €
7/1115' gt = 575_1 \ {6t}, Pt = Pt—l U {J}t} and Ct = Ct—l U {et}; otherwise, let
(‘:t = gtfl \ {et}, Pt = Pt,1 @] {.’L’t} and Ct = thl.

e IFO%'C,_1 N E—1 = (), stop the algorithm.

Let py(x) := P[Y; is sampled in T] and pg(e) := P[&, is sampled in T|. By OSSS
inequality (see Theorem 3.1 in [18]), we have: forany R € INT,

Var(le,] =0r(1—0r) < > py(@)-Infy + Y pele) Infg,. (6.33)
z€B(R+L) e€B(R)

Lemma 6.7. For an integer R > 1, we denote X = Zf‘;ol 0, (for convenience, we set

6o = 1) and let B(e) = a(e) - [2(2L + 1)9] ~! (recalling the function a(e) in Lemma 6.5).
Then for any R € NT and € € (0,1),

dor R
— > _ — . .
g = 8 Sy Or(1—0r) (6.34)
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Proof of Lemma 6.7. We first claim that if ¥, is sampled in the Algorithm T, then the
event {9B(jy) <> B,(L) N B(R)} must happen. In fact, if j = jo and ¥, is sampled in
the k-th step for some k € IN*, by Definition 6.6 we have d; (ex, {z}) < L — 1 (recalling
that ey, is the lexicographically-smallest edge in 9°“'C,_1 N Ek_1). If k = 1, recalling that
Cr—1 = 0 and &_1 = B(joy), we have B, (L) N B(jo) # 0 and thus the event {9B(jy) PN
B,(L) N B(R)} happens. If k¥ > 2, since the edge set Cj_; is contained in . N B(jo) and
intersects dB(jo), we have that d; (v.NB(jo), {z}) < L and thus {B(jo) < B,(L)NB(R)}
also happens. Hence, we have

R R
py(z) < %ZP [aB(j) &5 B,(L)N B(R)} < %Z > P [y & 8B(j)] :
=1 i=1y€B,(L)NB(R)
(6.35)

Forany y € B(R), ify € dB(l), | € [0, R], then forall 1 < j < R, P [y & 8B(j)} <0,y
Therefore, we have

ER: 3 P[y&)@B(j)}

J=1y€B(L)NB(R)
R

l
- Y (Xrlesosi)|+ X Plyesony)
yEBL(L)NB(R) \Jj=1 Jj=l+1 (6.36)
l R
< Y DO+ Y Oy
y€BL(L)NB(R) \Jj=1 j=l+1
< Z 2%p < 2(2L+1)¢- 2p.
yEB,(L)NB(R)
Combine (6.35) and (6.36),
)
py(x) < 2(2L + 1) fR. (6.37)

Similarly, for any e = {z,y} € B(R) we have

R
1 Ve . Ve . Yp d 2R

< — < 4.2 <L L .

pele) < R;(P [mH@B(])} +P[y<—>83(j)D <4 7 <2(2L+1) 7 (6.38)
By (6.24), (6.33), (6.35), (6.37) and (6.38), we have
by ¥ df
d R -1 R R
z€B(R+L) e€B(R)

(6.39)
From (6.39), we finally get (6.34). O

Now we are able to prove (6.21) by adapting the proof of Lemma 3.1 in [11].

Proof of (6.21). Let ¢; = inf {e € [0,1] : limsupy, ., B0 > 1}. Noting that when ¢ >

pe(d) (pe(d) € (0,1) is the critial parameter of Bernoulli bond percolation on IL%), for any
integer n > 0, we have

6, > P [0 & 8B(n)} >p [0 & oo} = ¢(e) > 0. (6.40)
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By (6.40),
log(Sr) . log(e()R)
lim su > limsup —————= =1, (6.41)
oad 1og(R) ~ mos log(R)
which implies that ¢; < p.(d) < 1.
We then show that for any € € (e, 1),
Oo(€) := lim Or(e) > 0. (6.42)
R—o0
In order to get (6.42), we first note the following fact: for 7),(e) = @ Z? 1 Z.‘ , then
1Lm T.(e) = 00 (€). (6.43)

N
To verify (6.43), consider T = ZZ:: i Since lim;_, o 0; = 0, for any é > 0, there exists
| < 0.56. Hence,

M-—1
|rj—7 .y |< Zi:l %(9 ‘Zz M z Z 900)
n ool —= n n l
Zz 1 N z 13 (644)
ZM 11
< i=1 1 +055
Zz 17

M—1 ~
Note that Z’;Tl j < 0.50 holds for all sufficiently large n. So that we have lim,, ,., T, =

i=1 14
1

0 and then (6.43) follows because of lim,, o %)’g(;)l =1.

For convenience, we write 2% as 0. By Lemma 6.7 and 6; < 6,

0’ i i ~ g
Z2>81-60.) — >B(1—607) — =8 —. 6.45
oz A=) 2B -0) = F (6.45)
By (6.45), we have B
1 0 B b
T!(e) = = > =, (6.46)
9= Togm & 7 = Togi) & T
Since §; = ¥;11 —X; > 0foralli € INT,
0, Bit1 q
S > / zdt = 10g(2i+1) — 1Og(21) (647)
Combine (6.46), (6.47) and X1 =60y =1,
B
Y1) — log(X;)) = log(X,+1). 6.48
D (05(Si1) ~108(5:)) = o s+ 1og(Bn) (6.48)
Forany 1 > € > ¢/ > €1, by (6.48) we have
1,0~ (€)= [ Ti(e)ds _%g /B )log(5 ())ds
(6.49)

where ¢/(¢,¢') := mf{ﬁ( ) :s € [¢,e]} > 0. Recall that lim,,_,o T, = 0. Taking upper
limits in both two sides of (6.49), since limsup,, .. % > 1, we have (6.42) since
that

Ooo(€) > c(e,€) (€ — €') 4+ o (') > 0. (6.50)
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Recalling the definition of €. in (6.20), by (6.50) we have:
€1 > €. > 0. (6.51)

On the other hand, for any 0 < € < €7, there exist v(¢) > 0 and M (¢) € INT such that
forany R > M, ¥r < R'"". By (6.45),

0 ~
“E > 3(e)R". (6.52)
Or
For any 0 < € < ¢, by (6.52) we have,
€ / € .
In(0r(e)) — In(Or(e)) = / Z—Rds > / B(s)R"ds > " (¢',e)R" (e — €'), (6.53)

where ¢'(¢,¢) := inf{f(s) : € < s < ¢} > 0. From (6.53), we have: for all R > M,
0r(€) < exp(In(fr(e)) — (€, )R (e — €')) < e~ ¢ (=) R (6.54)

and thus ¥ := S5 Op(€) < M+ 35, e (R < o0 Hence, forany 0 < ¢’ < ¢,
sele,e]and R > 1,
Yr(s) < Tgr() <3 < 0. (6.55)

Combining (6.45) and (6.55), we have: for s € [¢’,¢€/],

0" s)R
i(s) > B(z) (6.56)
Taking integration from €’ to ¢ on both sides of (6.56)
In(0r(e")) — In(0r(e”)) :/ eRds > —/ B(s)ds > " (", /)];(e/ —é"), (6.57)
" R

where ¢’/ (¢”,€) := inf{3(s) : €’ < s < ¢} > 0. Thus Op(") < e~ (") —)Z R
To summarize, we have: for any 0 < e < ¢;, there exists ¢(e) > 0 such that for any
integer R > 1,

Or(e) < e °F, (6.58)
which implies that ¢; < ¢.. Recalling (6.51), we get ¢; = ¢. and then the proof of (6.21) is
completed. O

In conclusion, we have finished the proof of Proposition 6.1. O

6.2 From FIy" to FI*7

Recall the notation L,, at the beginning of Section 5.1. Similar to (5.4) in [10], we
define a function (¢, u, R): for R € NT, ift € NT,

Wt R) = P (B(R) T, 8B(2R)> : (6.59)

otherwise, let n = |t] and y; := FZ}" + (]—"I“(t T ]—'IZS_")’T),

L1
W(t,u,R) = P (B(R) 2 aB(2R)) . (6.60)

We first note that for any n € N* and ¢ € (n,n + 1), ¥(¢,u, R) is an analytic function
w.r.t. (¢,u). To confirm this fact, we consider an equivalence “~” between point measures
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on W% for point measures w1, ws on W) say wy ~ ws if {ne W02+ w1 (1) > 0} =
{n e W) :wy(n) > 0}. In fact, the event {B(R) &y 8B(2R)} is measurable w.r.t.

F 1= 0 (Carmerzr 00 (Ul <Lam@BER L) + LLa<lalShnsin©)eB@R  Lay) ) Under
the equivalence “~”, there are only finitely many classes of configurations in . Then
it is sufficient to show that the summed probability of any class is analytic w.r.t. (u,t).
For any given paths {1y, ...,n,} C W) with lengths < L, and equivalent class
{w:forany 1 <i<m,w(n;) > 0}, the summed probability of this class under the law of
xt is [T~ Plw(n;) > 1], where each term is analytic because w(;) is a Poisson random

m T u n T . .
variable with parameter Td Pé (2))( ;) or QdT(frl )P7§7(2))( ;). In conclusion, ¥ (t, u, R) is an
analytic function w.r.t. (¢,u).

Inspired by [7], we can calculate partial derivatives of ¥ (¢, u, R).

Proposition 6.8 (Russo’s formula). Foranyn € NT,t € (n,n+1), u > 0and R € N7,

0 2d
o _ (T) (1) . ;
8U¢(t’u,R) T—|— 1 Z Q (71) P (P’I”U(Xtan))
neWl0:2):|n|<L,
(6.61)
2d(t — n) (T
+ Ti—{—l Z Q ( ) (P“’(Xtﬂ?))
neEWI0:02):L,, <|n|<Lyt1
and
0 2du
g _ (T) (1) . ;
ot R) = > Q™ (n) - P(Piv(xs,n)), (6.62)

nEWI0,20): L, <|n|<Lpi1

where Q1) =Y, _,, PT) and Piv(x:,n) := {B(R) N aB(QR)} { (R) 3%63(2}2)}.

Proof. Recalling that (¢, u, R) is an analytic function of (¢, u), we have

0 .1
%¢(t7u, R) = 5£rg+ 5 [W(t,u+ 8, R) —(t,u, R)]. (6.63)

Therefore, it is sufficient to calculate the limit in (6.63). For any § > 0, we denote by
N (6) the number of paths in FT'H0T _ F7%T with starting point z and length € [0, Ly],
and by Néz)(é) the number of paths in FZ )= T _ Frult=n).T \with starting point =
and length € (L, L,,+1]. By definition of FRI, we have that { ( )} and {N(2)}

reZ4 reZd

are sequences of Poisson random variables with parameters 7%151 P(T) (Inl < Ly) and

%Q")PO(T) (L, < |n| < L,41) respectively. Meanwhile, by property of Poisson point
process (see Section 2.9.1 in [26]), we also know that {N;l)} i’ {Nf)} - and x:
€ re
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are all independent to each other. Thus,

w(ta U+ 55 R) - w(t u, R)

xt(t,ut+d
>

—P |B(R) **4" 8B(2R), B(R) ) 83(2R)}

>P |B(R) “%" 9B(2R), B(R) & 9B2R), Y. NP =1, Y NP =0
z€B(2R+Ly,) z€B(2R+Lyp41)

+P | B(R) %Y 0B(2R), B(R) & op2r), Y. NV =0, Y N®=1
L z€B(2R+Ly) z€B(2R+Ly 1)
- P N = 1}
- z€B(2R+Ly,) .
=Pl > N —0] Ay e QT mPPt)
. L N = Ltn o).
[€BQ2R+Lny1) seBGRLLY) nEWI0:00)ij| <Ly,
P NP = 1]
Gy . zEB(2R+Lp41)
P P(L <L
2€B(2R+Ly) e (Ln < |n| < Lng1)
z€EB(2R+Lp41)

. ( 3 Q") ()P [Piv(xt, 77)}) :
newl

0,00): Lp <n|<Lpt1

(6.64)
; (1) - 2ds p(T)
Recalling that Nz’ ~ Pois(777 Py’ (In] < L)) and
N ., 2do(t —n
R ~ pois(2 G P (Lo < 0] < L)
for all z € Z%, we have
Py NP =1
lim 2€EB(2R+Lypy1) ~' % _ 2d (6.65)
T J :
020F 5% Y e BRI L) P )(Ln < <Lpy) TH1
7(2) _
lim Psepenir, N =1 _udt-n) (6.66)
T - ’ :
020 0% Y e BRRY Lus) P (L < 10| < Lota) T+1
and
dm Pl D NU=0=lm Pl >~ NP=0=1 667
¢€B(2R+Ly,) 2€B(2R+Lnt1)
Combine (6.64)-(6.67),
.1
2d . 2d(t —n .
> Y QWP+ TS Q) PlPiv(u )
neEW0:20):|n|<L, nEWI0:59): L, <|n|< Ly
(6.68)
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On the other hand, we also have

O(t,u+0,R) — 0(t, u, R)

<P |B(R) “%" 9B(2R), B(R) & oB2R), Y NV =1, Y N® =0
2€B(2R+Ln) 2€B(2R+Lp41)

+P

B(R) *%" 0B(2R), B(R) & 9B2R), Y. NV =0, 3 N§2>:1]

zEB(2R+Ly,) 2€B(2R+Lp11)
z€B(2R+Ln) zE€B(2R+Lp 1 zEB(2R+Ly)

+P > N® >l .
x€B(2R+Ly 1)

Note that we have P [ZIEB@RH;”) N > 2} o(0), P {ZweB(2R+L7L+1) N2 > 2] = o(5),
(2
P [ZIEB@RH )N( : 1} ) and P [Z eB(2R+Ln+1)NﬂE = 1} = O(4). Hence,

+P[ > N;”:l].P[ > )N(Q) 1]+P[ > N;“zQ]

(6.69)

lim sup ! [O(t,u+ 0, R) — 0(t,u, R)]
5—0+ 0

2d . 2d(t — n) .
<2 O (M PIP el ST T (M PIP )
<STo1 > Q) () P[Piv(xi,n)] + Tl > QM) (n)P[Piv(xs,n)]
nEW10:20):|n|<L, nEWI0:20): L, <|n|<Ln1

(6.70)

Combining (6.68) and (6.70), we get (6.61). The proof of (6.62) is parallel to (6.61),
which is therefore omitted. O

Lemma 6.9. For any ¢ > 0 and Uy > u.. +¢, there exist c5(Uy, €), c6(Up), Cs(Ug, €), C7(Up)
all greater than 0, such that foralln € NT, n <t <n+ 1, uw +¢ <u < Uy, Ly > Cs and
R>Cy,

%Mt, u,R) < e~sln. a%qp(t,u,R) +et ek, (6.71)

Proof. Letn; = inf{m : L, 11 > 0.5R}.
Case 1: If n > nq, by (6.62), there exists Ro(Up) > 0 such that for any R > Ry (Up),

2du .
—z/J(t wR) =z > QT (n) P (Piv(xt,m))
flew[o’m):Ln<|7]|SLn+l
2du (T)
<t > Q" (n)
nEW0:50):1(0)€E B(2R+Ln41),Ln<|n|<Lni1
2du (6.72)
Tl > PU(Ln < n| € Lya)
£€B(2R+Lny1)
< 24l (AR + 2Ly 1 +1)° T\
“T+1 et T+1

_cR _
SG_QCL" — e—cL,,, X E_CL” S e 2o -¢ t.

Case 2: If 0 < n < nq, for any cluster A C B(2R), denote by €(.A) be the collection of
all clusters in x, N (B(2R) \ B(R)) intersecting A. Then we define C4 := AU Ucce(a) C-
Note that C 4 is always connected. We also define £(R) := (B(2R) \ B(R)) U 0.B(R).
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For any disjoint clusters C;,C; C E(R) such that 9.B(R) C C; and 9.B(2R) C Co,
define the event C(Cy,Cs) = {Cp(r) = C1,Cs.8(2r) = C2}. Note that the event C(Cy,C») is
measurable with respect to x; N (C; UCy), where C := (C U 92C) N E(R).

Arbitrarily fix a path € W%>) such that N E(R) # 0 and that L,, < || < Ln1.
Then denote A} | := B, 0)(10Ly41). For each C1,Cy s.t. C(C1,C2) C Piv(xy,n), since

u > U+ eand C(C1,C2) € 0 (X4, 1) Oaim) * 10<uiSU,WQ(GIU62U(AZ+1)C)7£@)’ we can use
the same approach in Lemma 5.3 to prove

P 61 (i) C_g
A

C(Cl,cg>] > e~ CleLo)logllnta)”, (6.73)

If (C1 NC2) NA],, # 0, then there exists an edge e in A, , such that C; and C, are
connected by eg. Hence, we have

P[C_l (A%) C_Q, C(Cl, CQ)] < Z P [Piv(Xt, (20)7 C(Cl, CQ)] . (6.74)
e @0€A171+1

If (C;NC2) N A}, =0, and when event C; % C, happens, there exist two different
An+l
edges e; = {y;,zi} € A, (i =1,2) such that z Xy 20, g1 &5 OB(R), y2 & OB(2R)
Al

and {ej, ea} N x: = 0. Recalling (6.6), we have

P C_'l % C_Q,C(C1,C2):|

An+1

<> > P

626A2+1 616A2,+1\{'32}

<C'ed., >, P

526A2’+1 el EAZ+1\{€2}

21 ¢ :t 22,51 &% OB(R),y2 &% OB(2R),C(C1,C2),e1 & xt,e2 & 4

n+1

21 ¢ :t 22,91 &5 OB(R),y2 €% 0B(2R),C(C1,Ca),e1 € xt,e2 & Xt] ]
n+1

(6.75)

Recall the event Piv(x, ) in Proposition 6.8. For each e; € A} |, noting that each event
on the RHS of (6.75) implies Piv(x¢, e2), we have

> op
e1€A) 1 \{e2}
S Z P[PiU(Xt7€2),C(Cl,CQ)]

el GAZ’+1\{62}

<C"(d)(Lni))*- Y P[Piv(xi,e2),C(C1,Ca)] .
er€A) \{e2}

21 € ft 22,1 <ﬁ> 8B(R),y2 (& 3B(2R),C(C1,C2),e1 & Xt, €2 ¢ Xt]

n+1

(6.76)
Combining (6.73)-(6.76), we have: there exists M;(¢) > 0 such that for all Ly > M,

P[Pi’l)(Xt, n)] SeC(log(Ln,+1))2 Z P C_l (% (?2, C(Cl,CQ)
C1,C2:C(C1,C2) C Piv(x+,m) Anta
SmaX{C/C//(Ln+1)d, 1}eC(log(Ln+1))2 . Z P [Piv(xt,€e)] (6.77)
"‘GAZ+1
SeZC(log(Ln+1))2 ) Z P [Piv(xy,e)].
"‘GAZ+1
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By Proposition 6.8 and (6.77), there exists Mz (e, Uy) > M; such that for any Lo > Mo,

St B) =0 > Q) ()P (Piv(xi, 1)

neWl0:50): L, <|n|<Lyya

2dUo  2¢(log(Ly,41))? (T) ;
Sme + Z Q" (n) Z P[Piv(x:,e)]

"IEW[O’OO)ZLn<W|SLn+1 66A2+1

2dUO 2C (log(Ly, ))2 ) @
ST+1° 7N PlPiv(xe)] 2. Q7

eeB(R) neWl0:99): 1, <|n|<Ly11,d(e,n(0)) <10k Ly, 41

< 200 2onlbns)® 57 P [Pin(xi,e) S PO (L < 0l < Luta)
e€B(R) 2€Z4:d(e,z) <10k Ly 41

T Lp+1
ezc(log(L,,L+1))2(QOKLMrl +2)d (m) Z P[Piv(xs, e)]
e€B(R)

2dUy
T+1

IN

<ot 2 ST QM= @) + @M = (4,2))) PPiv(xe)
e={z,y}eB(R)

L, 0
S %¢(tau7 R)
(6.78)
Combining (6.72) and (6.78), we get (6.71). O

6.3 Proving SQ4
Before concluding the proof of SQ4, we prove the following corollary of Lemma 6.9:

Lemma 6.10. For any e > 0 and u > u.. + €, there exist integers Lo(u, ¢) and m(u,e) > 0
such that for any R > Cs(u),

FIyT
P |B(R) +—= B(2R)

<P [B(R) LA B(2R)]
(6.79)

F 1£+5,T
B(R) <" B(2R)

<P + e ok,

Proof. The left inequality in (6.79) is a direct corollary of the fact that .FIIL": c FIwT.
Consider a function f(t,u, R) := ¢(t,u+e~t, R). Note that forany ¢ > 0, u+e~* < u+1.
By Lemma 6.9, foranyn € N*, t € (n,n+ 1), Ly > Cg and R > C-,

gf(u u, R) :gw(t, u+e ' R)— e‘tﬁz/}(t, u+e ' R)
5 .
g(e_CSL" — e‘”)a—w(t, u+e b, t) + el o=t
U

Recalling that L,, = L,,-ljj, there exists mg such that foralln = [t| > mg, e"%En—e~™ < 0.
Then for all ¢t > my,

0
el < e R ot 6.81
atf(t,u, R)<e e ( )

Therefore, for all n > my,

?/1(71 + 17“ + ei(nJrl)v R) - T/J(n,u + eina R)

n+1 a

n+1
</ emcoVE =l = e_c“‘/ﬁ(e_" — e+l
n
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By (6.82) and lim; , 0(t,u + e *,R) = P {B(R) AN 83(2R)}, for any m > mg, we

have

P {B(R) JEESN 8B(2R)} —(m,u+e"™, R)

= Z {w(n +1,u+ e_("'H), R) —¢(n,u+e™", R)} (6.83)

n=m
o0

Se_c‘“/ﬁ Z (e_" — e_(”H)) — e VR mm

n=m
Hence, for all m > my,

u4e ™. T

w, T F
P |B(R) <X 83(2]%)} < P|B(R) &5 9B(2R)| + e VE, (6.84)
Choose integer m > mg such that e < ¢ in (6.84), then we get (6.79). O

With Lemma 6.10, we are ready to conclude the proof of SQ4.

Proof of SQ4. By contradiction, suppose that u., < u. Take ug > 0 and € > 0 such that
Usr < Ug — 26 < ug < Uy + 2¢ < u. And note that for any L € Nt, u < u% = ul,.

By Lemma 6.10 and the fact that u.. < up < ug + € < uly, there exist integers L
and m such that

. FrvoT
0 < limsup P {B(R) S OB(QR)}
R—00
quote.T

(6.85)
B(R) +—™— 0B(2R)| + ECGR} =0,

which is a contradiction. In conclusion, we finish the proof of SQ4. O

< lim sup {P

R—o0

7 Proof of corollaries

In Section 7, we give the proofs for Corollary 2.3-2.5.

7.1 Proof of Corollary 2.3

To prove Corollary 2.3, we need a more detailed version of the renormalization
arguement in [25]. Here we need some notations introduced in [19]:

 Fix a constant b € (1, 2] and a positive integer J; > 100.
e Forany k > 1, let J41 = 2 (1 + m) J. and Ji, = Ji, - Z%; by (7.3) in [19], we
have: for any k € INT,
J2F1 < g < eSO g2kt (7.1)

where ¢(b) := 3277 15y

« Forz € Z% and k € N, let C* = [0, Jy)* N Z? + 2z and D} = [~ J;,2J,)* N Z4 + x;
letCr:={e={z,y} €L 2,y C*} and D} := {e = {z,y} € L?: 2,y € DF}.
w,T
» Forz € Z%, k € N* and u > 0, define the event A (u) := {Cf T, 740\ D’;}

. . . d d—1
* For k € N, consider two collections of vertices {«}}?_, and {yF}34""  as follows:
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- {2k}, JIk satisfies that CA+! = UZ ) Ckk,
- {yF 21*7 satisfies that UQd*7

0 (2 D).
By (7.8) of [19], we have

At U (Ahnak). (7.2)
1<34,5<2dx7d—1

Ch is disjoint from DX*! and contains
J

See Figure 5 for an illustration of this renormalization scheme.

k+1
Dm+ Ck \
]
chtt
D,
vy
X
Dk
ck, ¥
g

Figure 5: An illustration of the renormalization scheme.

s Forx € Z% and k € N*, let EF := {2 € Z? : d(z,DF) < ),,} Then we define

(k+5
the restricted FRI ]?\ITk = Zmefzu,T dy; - 1, (0)epr and consider the following
restriction of the event A”:

A () = {ck RN Zd\D’;}. (7.3)

Before proving Corollary 2.3, we first introduce the following estimate about the
diameter of geometrically killed random walks, similar to Lemma 5.1 in [5].

Lemma 7.1. Ford > 3 and T > 0, assume that {Xi(T)} is a geometrically killed random

walks with law P{"). Then there exist constants Cy(d,T), ¢7(d,T) > 0 such that for all
n€INT,

PéT) [max{‘Xi(T)’} > n} < Cge_”"%. (7.4)

Proof. We denote the length of {Xi(T)} by NT). Note that NT) ~ Geo( Since

{maxogigz\?m {‘XZ,(T)’} > n} C {N(T) > n} we have: for any § > 0,

" | o, {7} =]

1)-

0<i<N(T)
<p" {N(T) > nz_é} + P [n < ND < p?7% max {‘X ‘} > n] (7.5)
0<i< N(T)
T n2-%
< (T—i—l) + PéT) [n <ND < n2*5] -P [0<Hiax {1X:|} > n} ,
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where {Xi}?io is a simple random walk on Z¢ with starting point 0.
By Theorem 1.5.1 in [17], there exists ¢(d) > 0 such that for all n € N7,

S
P{ max {|X;|} zn] <c-e ™. (7.6)
0<i<n2-9
Combine (7.5) and (7.6),
’ 2— ’ S
P(gT) { max {’XZ'(T)‘} > n] < e ¢ (Mn ’ +c.eDMn gn2 (7.7)
0<i< N (T)

Taking 0 = £ in (7.7), then we get (7.4). O

Now we are ready to give the proof of Corollary 2.3:

Proof of Corollary 2.3. For any k£ > 1, by (7.2) we have
P (A () < 3 P (A’;f (w) N AL (u)) . (7.8)
1<i<34,1<j<2d*7d—1

For any » € Z? and integer k& > 0, we denote by F* the event that all paths in

—u,T
FIuT — FZ1,) do not intersect DF. By Lemma 7.1, we have the following estimate for
probability of FF:

P {(Ff)c] =1- exp(—j?du1 Z PT) HX}T)} intersects D’;})

2€(EL)"
2du
(T) () ; k
ST+1 Z P; [{XZ } intersects DI}
z€(Ef)°
_ 2du i () <m+3J )dlp(T) { max {’X,(T)‘} >m}
—T+1 7 2 k # 0<i<N(T) ¢ -
m=l e |
< 2du i C(d) m + §J -t C 7C7m%
ST y 57k 9€
m=lTrer
2Jg 4 e 4
<C'(du,T) Y (@A) le ™ + CN(d,u,T) Y (2m)? e
m=[ I 1 m=2Jy
(k+5)b

(7.9)

For the first term in the RHS of (7.9), by (7.1) there exists integer M; such that for all
J12M1 andel,

20— [ 2k
Cl % (4Jk)d—16—c7m% < C/(4Jk)d716*c7<|'(ki71;ﬂ)-|)% k iJrs)b eicﬂng < 167.]1%@
i - — ~2
m=TGroy] -
(7.10)
For the second term, by (7.1) there exists integer M, such that for all J; > M and k£ > 1,
> 4 4 4
c’ Z (2m)d—temerm? —Ceme7(20)3 (2m + 4, )4 temerm?
m=2J m=0
1+ = 4 1 k
SC/ (@) BT (i 1) e < Cem
m=0
(7.11)
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Combining (7.9), (7.10) and (7.11), we have: for J; > M3 := max{M;, My} and k > 1,

c2k gy

P|(FE)] < e 3. (7.12)

Forany 1 <i<3%and 1< j < 2dx 7%, since Efk N Efj;_c =0, .7-/'\17;7;c and }/'\IZJI;C are
independent. By (7.12), Eﬁ, c Ak and AN FF C E’;, Eor ee{(:]h term in the RHS of (7.8),
P (k) 0 AL ()

<p(anaywn 0 Fy) + P(F4) ]+ P[(5)) ]
<P (ﬁgf (w) N AL, (u)) + e N2 (7.13)
=P (ﬁﬁk (u)) P (glzjf (u)) +2¢~ 2"
<P (A% (w) P (a, () + 2672

Combine (7.8) and (7.13),

P (A (u) 4 2¢72"
< 3 [P (Ag’;iF (u)) P (A’;j (u)) n 4e—J12’°}

1<i<34,1<5<2dx7d—1 (7.14)

Sy et et o () v

1<i<3d,1<j<2d#7d~1

By (7.14) and induction, we have: for all k € INT,
, 1 k
P (AE () < P (4B (w)) +2¢2" < (3%.2d- 71 (P (Ab(w)) +2¢7)7 . (7.15)

Let J; := |4 and 2o = (J1,J1, ..., 1) € Z*. Since C} C B,,(J1+1) and B, (2J;+2) C
~ w, T ~
D}, we have P (A}(u)) < P (BZO(Jl +1) £ 0B, (20, + 2)). For any u < u, = U,

recalling that inf g+ P (B(R) AN 8B(2R)) = 0, there must exist a certain J; > M3

such that
(3% 2d- 717 (P (Ab(w)) +27)

5 ~ FruT . 1 (7.16)
<(3%-2d-71)". (P (BZO(Jl +1) ¢~ 9B.,(2J; + 2)) + 2—J1> <3

We arbitrarily take a J; such that (7.16) holds. By (7.15) and (7.16), we have: for all
EeNTt, .
P(A§T () <277 (7.17)

For each integer N > .J,, assume that N € [Jx, 11, Jko12), ko € INT. Noting that for all
z€{0,-1}4, Df;zoz C B(N), by (7.1), (7.17) and N < Jy, 12 < 9Ji,, we have

w, T w, T
P (0 TN B(N)) < Y P (052095 T 7\ D§20w>
d

2€{0,—1} (7.18)

. ___ 2N

S 2d . 2—2 0 S 2d .9 9.7 eC(0) .
From (7.18), we finish the proof of Corollary 2.3. O
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7.2 Proof of Corollary 2.5

Proof of Corollary 2.5. Recalling the definition of 77 (u) in (2.3), by Theorem 2.2 we
know that FZ*” strongly percolates for all T > T. (). Hence, it is sufficient to show
that for any d > 3, u > 0, Ti(u)* € (0, 00).

By Theorem 2 of [22], there exists Ty > 0 such that for all T' < T, F7*T does not
percolate. Thus we have T.F(u) > Ty > 0.

On the other hand, if 7 (up) = 4oo for a certain uy > 0, there must exist an
increasing sequence {7,}52, such that 7,, — oo and that for all n > 1, up = u.(Ty).
By (v) of Theorem 3 in [5], we have: there exists C,C’,c > 0 such that for all T > C,
us(T) < C'T~°. Therefore, for all large enough n, u.(T,) < C'T;, ¢, which is contradictory
to up = us(Ty).

In conclusion, 0 < T (u) < oo for all u > 0. O

A FKG Inequality for 7Z*” and FZ'"

In this section, we prove FKG Inequality for both FI*T and ]-"IZ’T by using the
approach in Section 2.2, [15].

Proposition A.1 (FKG Inequality for FZ*7). If f and g are both increasing functions (or
d
both decreasing functions) on {0, 1}" such that Ef?, Eg? < oo, then

E [f(FT*")g(FI*")] > E [f(FT"")| E [g(FT*“")] . (A.1)

Remark A.2. Especially, for two increasing events (or two decreasing events) A and B,
14 and 1p are both increasing events (or decreasing events). Hence, by Proposition A.1
we have

P[AN B] > P[A]P]B. (A.2)

To prove Lemma A.1, we need the following lemma as preparation:
Lemma A.3. Enumerate all elements in W) by {;}2,. For w € #, define countable
0-1 valued random variable {v;}5°,, where ¢;(w) = 1 if and only if w(n;) > 1. Then for
anyn > 1,

n

Py == ¢ = 0] = [T P s = 0). (A.3)

i=1

As a result, {,;}$2, are independent.

Proof of Lemma A.3. Let (ig, ..., i,,) be the unique integer array satisfying 1 = ig < i; <

... < i, = n and following properties: i, := max{jo € [1,n] : for all ip < j < jo,n;(0) =

n1(0)}; forany k > 1, ix41 := max{jo € [ix+1,n]: forall ix+1 < j < jo,n;(0) =1;,+1(0)}.
Since paths in FZ%7T with different starting points are independent, we have

m—1

PUTlpy = o=ty = 0] = P*"[gpy = . =y, = 0]« [] P  [hip 11 = o = ¥y, = 0.
k=1
(A.4)
In each term in the RHS of (A.4), all related paths have the same starting point, so
it is sufficient to prove (A.3) in the case 7;(0) = ... = ,,(0). Since for any = € Z, the

number of paths in FZ%7T starting from z is a Poisson random variable with parameter
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du
72174—1' we have
Pu T[’[bl = = ¢n P O}
o) 2d (M)q q
T
=Y exp(— ) - e (PO (forall 1 < i < o #1:))
g T+1 q
00 9d ( 2du )q n q
U T+1
— _ . . _ (T) () — .
= exp( T+1) g <1 ZP (77_171)> (A5)
q=0 i=1
2du "
_ . (T) () —
(g 2 P (=)
. 2du
= — ( w, T _
= 21;[1 exp( T+1 P H P =
Combining (A.4) and (A.5), we get Lemma A.3. O

Now we are ready to show the proof of Proposition A.1:

Proof. Without loss of generality, we only prove Proposition A.1 in the case when f and
g are both increasing functions.

First, note that f and g are both measurable w.r.t. o (¢;,7 > 1). For any integer n > 1,
define that f,, := E[f|¢1,...,¢,] and g, := E[g|¢1, ..., ¥n]. By Theorem 4.6.8 in [14], we
have f,, and g, almost surely converge to f and g respectively, as n — co.

We claim that for any n > 1, f,, and g, are both increasing functions on {0,1}" (i.e.
for any sequences (¢4, ..., ¢.,), (¥1, ..., ) € {0,1}" such that ¢} > ¢ forall1 < i <mn,

one has f,(¢1,....,¢)) > fa(¥7,...;¥)) and g, (Y1, ..., ¥L) > gn (P, ..., 000)). Without loss
of generality, we only check it for f: since that f is increasing and that o(¢1,...,%n) is
independent with o (1,41, ¥n42,...), We have

fn (1/}/1771/1 ) fn( 7ﬂ/’g):E[f(i/Jia7¢;7¢n+17)—f( PR 7/¢ ¢n+17-~)] ZO
(A.6)

Now we are going to prove that for any n > 1 and increasing functions hi, ho on

{0,137,
E [hl(d]la ceey ¢71)h2(¢17 771)71)} Z B [hl(d)la 77%)} E [hQ(wla 71/}77.)] . (A7)

We prove (A.7) by induction. When n = 1, denote that p,,, = P[¢,,, = 1] for all m > 1.
Then we have

Ehy(1)ha(¥1)] = E [ha(¢1)] E [ha2(¢1)]
=p1h1(1)ha(1) + (1 = p1)h1(0)h2(0) — [prhi(1) + (1 — p1)h1(0)] - [prh2(1) + (1 — p1)h2(0)]
=p1(1 = p1) (h1(1) — h1(0)) (h2(1) — h2(0)) = 0.
(A.8)
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For n > 2, using inductive hypothesis and Lemma A.3,

Ehi(¢1, o Dho(P1, s hn)] = E[ha (1, s hn)] E [h2 (Y1, ..., ¥n)]
=pnE [ (1, ..., Dha (¢, ..., D] + (1 = p) E [h1 (Y1, .., 0)ha (¢1, ..., 0)]
—A{pnE [Pa (1, -, D] + (1 = pn) E[ha (1, ., 0)]}
ApnE [ha (1, .o, )] + (1 = pn) E [ha (91, ..., 0)]}
ZpnE [ (Y1, s D] Eho (1, ..., )] + (1 = pp) E[h1 (¢1, ..., 0)] E [ha(¢1, ..., 0)]
—{PnE M1 (Y1, .., D] + (L = pp) E [ha (¢1, ..., 0)]}
ApnE [ho (Y1, -, )] + (1 = pp) E [h2 (1, -, 0)]}
=pn(1 = pu) {E [ (1, ., )] = E[h1 (P10, )] {E [h2(3b1, ..., 1)] = E [h2(1, .., 0)]}
>0.

(A.9)
In conclusion, we finish the induction and get (A.7).
For any n > 1, let hy = f,, and hs = g, in (A.7). Then we have
E [fu(FIT" ") gu(FI"T)] > E [fu(FI"")] E [gu(FT"T)] . (A.10)

Taking limits in both sides of (A.10), then we complete the proof of Proposition A.1. O

For ]-'I%’T, proof of FKG inequality is parallel. So we just leave it here and omit its
proof.
Proposition A.4 (FKG Inequality for }'I'E’T). Assume that f and g are both increasing
functions (or both decreasing functions) on {0,1}L" such that Ef?, E¢g? < oo, then for
any L € N*t,
E[1(FIiNeFTy )] > B [f(FTy)| B [o(FTET)] - (A.11)
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